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Abstract. The main objective of this workshop was to bring together math-
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metric and semiparametric statistical methods. Nonparametric and semi-
parametric methods are active fields of research in econometric theory and
are becoming increasingly important in applied econometrics. This is because
the flexibility of non- and semiparametric modelling provides important new
ways to investigate problems in substantive economics. Moreover, the devel-
opment of non- and semiparametric methods that are suitable to the needs
of economics presents a variety of mathematical challenges.

Topics to be addressed in the workshop included nonparametric methods
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metric estimation under the constraints of economic theory, statistical inverse
problems, long-memory time-series, and nonparametric cointegration.
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Introduction by the Organisers

The main objective of this workshop was to bring together mathematical statis-
ticians and econometricians who work in the field of nonparametric and semipara-
metric statistical methods. Nonparametric and semiparametric methods are active
fields of research in econometric theory and are becoming increasingly important
in applied econometrics. This is because the flexibility of non- and semiparamet-
ric modelling provides important new ways to investigate problems in substantive
economics. Many of the most important developments in semi- and nonparamet-
ric statistical theory now take place in econometrics. Moreover, the development
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of non- and semiparametric methods that are suitable to the needs of economics
presents a variety of mathematical challenges.

Econometric research aims at achieving an understanding of the economic pro-
cesses that generate observed data. This is different from fitting data that may be
useful for prediction but that do not capture underlying causes. A large part of
economic theory consists of models of equilibria of competing processes. Statisti-
cal data are a snapshot of the equilibrium but, by themselves, do not reveal the
processes that led to the equilibrium. Consequently a reduced form model (e.g. a
conditional mean function) does not suffice for much economic research. Achieving
an understanding of the economic processes requires a careful combining of eco-
nomic theory and statistical considerations. This often requires the development
of statistical tools that are specific to the problems that arise in economics and
are unfamiliar in other statistical specialties. For example, econometric research
has focused on developing methods to deal with endogenous covariates (that is,
covariates that are correlated with a model’s error terms), time series models that
fit equilibria as stationary submodels (cointegration), and time series models for
volatility processes (conditional variances) in finance.

Semi- and nonparametric methods are being used increasingly frequently in ap-
plied econometrics. The models are not necessarily of the simple form of classical
regression, ”response = signal plus independent noise,” where the signal can be re-
covered by nonparametric smoothing of the responses. Rather, the nonparametric
functions enter the model in a much more complicated way.

Mathematically this has led to challenging problems. Identifiability of a model
is much more involved in nonparametric model specifications. In particular, this
is the case for nonseparable models where the error terms do not enter additively
into the model. Some nonparametric inference problems with endogenous covari-
ates lead to statistical inverse problems and require the study of estimates and
solutions of noisy integral equations. The mathematical analysis of nonparametric
time-series models and of nonparametric diffusion models is strongly related to re-
search in stochastic processes, Markov processes, stochastic analysis and financial
mathematics. Empirical process theory is an essential tool for the understanding
of uniform performance and of convergence rates of nonparametric estimates and
for efficiency considerations in semiparametric models.

All these problems were topics of talks and discussions at the workshop. The
mathematical development in econometrics is complimentary to recent statistical
applications in biology. There, the focus tends to be on dimension reduction
for the statistical analysis of high-dimensional data. The intellectual charm of
mathematical research in modern econometrics comes from the interplay between
statistical and economic theory.
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Abstracts

Identification with Discrete Outcomes

Andrew Chesher

This paper studies models for discrete outcomes which permit explanatory vari-
ables to be endogenous. Outcomes can be binary, or integer valued such as arise
when considering counts, or ordered as might be obtained when there is interval
censoring of a latent continuous outcome.
Y and U are scalar random variables and X and Z are vector random variables.

Y , X and Z are observed but U is not. There is the following model: D.

D1. Y = h(X,U) with U continuously distributed and h is weakly monotonic
(normalized caglad, non-decreasing) in its last argument with as codomain
the ascending sequence {ym}Mm=1 which is independent of X . M may be
unbounded.

D2. For some τ ∈ (0, 1) there exists Z such that for all z: pr[U ≤ τ |Z = z] is
free of z and normalised to equal τ .

The scalar discrete outcome is determined by a structural function h(X,U).
There may be endogeneity in the sense that U and X may not be independently
distributed. Condition D2 is a local-to-τ independence condition involving instru-
mental variables Z.

This paper considers identification of the function h(x, τ). If h were strictly
increasing in U then Y would be continuously distributed and the model is the
basis for the identifying models developed in [1] and [2]. Since a discrete outcome
can be very “close” to continuous if it has many densely packed points of support
it seems plausible that there is an identification result for the discrete outcome
case. The contribution of this paper is the development of identification results
for this case, a case excluded from consideration in the papers just cited.

Under weak nonparametric restrictions there is only partial identification of the
structural function h when the outcome it delivers is discrete. As points of support
of Y become more dense the sets within which a structural function is identified
shrink, approaching point identification results for the continuous Y case under
suitable conditions.

The key to analysis of the continuous outcome case is, as shown in [1], the
following condition implied by the model set out above.

for all z: pr[Y ≤ h(X, τ)|Z = z] = τ

Under some additional conditions this leads to point identification of the function
h(·, τ).

When Y is discrete the model comprising D1 and D2 implies that h(·, τ) simul-
taneously satisfies two sets of inequalities, as follows.

(1) for all z: pr[Y ≤ h(X, τ)|Z = z] ≥ τ

(2) for all z: pr[Y < h(X, τ)|Z = z] < τ
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This leads to set identification of the structural function h(·, τ) and can place tight
bounds on admissible structural functions when Y has many densely packed points
of support.

For any joint distribution of Y and X conditional on Z = z, F ∗
Y X|Z , and

for some set of values Z within which values of Z can be observed there is a
set, H∗

τ (Z) of structural functions h(·, τ) which do not violate the inequalities
(1) and (2) for any z ∈ Z. These are the structural functions set identified by
the model D. It is interesting to study the properties of this set for particular
types of structure. Examples studied in the paper include structures admitted by
certain ordered probit and covariate dependent Poisson, binomial and binary logit
models with endogeneity. It will be necessary to introduce additional restrictions
such as monotonicity with respect to variation in x if the identified set is to be
informative. In practice, given an estimate F̂ ∗

Y X|Z one can calculate an estimate of

H∗
τ (Z) and examine hypotheses about features of the structural function. There

are challenging inferential problems to be solved here.
The paper complements the analysis of triangular models in [3] in which there is

set identification when endogenous variables are discrete as set out in [4]. Detailed
results are given in [5]. The results shed light on the impact of endogeneity in
situations where outcomes are by their nature discrete, for example where they
are counts of events. Classical instrumental variables (IV) attacks fail because the
restrictions of the IV model do not lead to point identification when outcomes
are discrete. The results are informative about the effect of interval censoring
and grouping on the identifying power of models. Calculations show that quite
small amounts of discretization due to interval censoring can result in significant
degradation in the identifying power of models. This is useful information for
designers of survey instruments who have control over the amount of interval
censoring banded responses induce.
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Policy Discontinuity and Duration Outcomes

Gerard J. van den Berg

Regression discontinuity (or discontinuity design) is often used to evaluate pol-
icy effectiveness. In case of a policy change at a point of time τ∗, the idea is that
a comparison of observed outcomes just before and just after τ∗ may provide an
estimate of the causal effect of the policy change on individual outcomes. It is
often thought that this methodology is not useful if the outcome of interest is a
duration variable, like unemployment duration. The main reason is that spells
that start before the policy change (and that should provide information on the
outcome distribution before the policy change) do not always end before the policy
change. The corresponding duration outcomes are affected by both policy regimes.

If one would consider a single cohort of individuals flowing into the state of
interest at say τ0 < τ∗ then the effect of the policy change cannot be distinguished
from the duration dependence of the hazard at τ∗ − τ0. Suppose one also has
data from another cohort, which flows into the state of interest after τ∗. One may
restrict attention to exits before duration outcome τ∗−τ0, because then in the first
cohort there are no outcome durations that are affected by both policy regimes.
(Typically a positive fraction of spells in the first cohort will be right-censored at
duration τ∗ − τ0.) One can then restrict attention to the duration distribution on
(0, τ∗ − τ0) as the outcome of interest (so the outcome is the probability that the
duration is smaller than τ∗ − τ0. However, the smaller τ∗ − τ0, the less interesting
this outcome is, whereas the larger τ∗ − τ0, the longer one has to wait before
the post-policy-change data become available. If one is interested in the effect on
the hazard rate after two years of unemployment duration then one would have
to wait for two years after the policy change before an estimate can be made.
An additional problem is that by comparing pre- and post-policy-change data
one can only estimate average effects on the individual hazard if one makes semi-
parametric assumptions, notably proportionality of the duration dependence effect
and the effect of the explanatory variables on the hazard rate, in combination with
independence between observed and unobserved individual characteristics. This
is problematic because we are primarily interested in features of individual hazard
rates and because such semi-parametric assumptions may be unappealing.

In this paper we argue that in fact the ongoing spells at the moment of the
policy change can be fruitfully used to estimate causal parameters of interest.
Specifically, one can estimate an average causal treatment effect on the hazard rate
of the duration distribution in the presence of unobserved heterogeneity, without
imposing a proportional hazard model structure. The basic insight is that the
policy change is an exogenous time-varying binary explanatory variable which
jumps only once and whose discontinuity point varies independently across spells
that started before τ∗.
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Missing and Mismeasured Data in Semiparametric Models

Raymond J. Carroll

The Partially Linear Model With Missing Covariates

Perhaps the most common model used in analyzing observational studies of the
causal effect of a possibly multivariate treatment or exposure XT = (X1, ..., Xp)
on a continuous response Y when data are available on one or more continuous
pretreatment confounding variables Z is the partial linear model

Y = XT β + ν(Z) + ǫ,(1)

where β is an unknown parameter, ν (·) is a smooth unknown function of Z,
E (ǫ|X,Z) = 0, and the joint distribution of the regressors (X,Z) is left completely
unspecified. Robins, Mark and Newey (1992) prove that this model arises whenever
we assume (i) no unmeasured confounders (i.e., ignorability of treatment X within
levels of Z) and (ii) a constant additive effect of treatment X on the mean of Y. In
particular, given assumption (i), this model is guaranteed to be correctly specified
under the causal null hypothesis of no effect of treatment X on Y, as the causal
null hypothesis implies (1) with β = 0. Thus, under (i), an asymptotically correct
1 − α confidence interval for β in model (1) provides an asymptotic distribution
free α-level test of the causal null hypothesis of no exposure effect. Tests of β = 0
based on lower dimensional models that impose parametric functional forms on
either ν(Z) and/or the density of X |Z do not provide asymptotically distribution
free tests of the causal null hypothesis under (i). Even when (i) cannot be assumed
to hold, model (1) remains useful and robust because a large sample test of β = 0
under model (1) remains an asymptotic distribution free test of the important
associational hypothesis that (i) Y is mean independent of X given Z and that
(ii) Y is conditionally independent of X given Z.

For these reasons estimation of β in model (1) has been the subject of consider-
able study; see Härdle, Liang and Gao (2000) for a summary. Our contribution in
this paper is to study model (1) when data on X are not fully observed for some
study subjects whether by design (as in two stage studies) or by happenstance.
The problem of missing exposure variables in regression has been treated in great
detail in Robins, Rotnitzky and Zhao (1994). However, those authors assumed a
parametric functional form for ν (Z) . For the aforementioned reasons, it is clearly
important to relax, as we do in this paper, the assumption that the functional
form of ν(Z) is known. As in Robins et al. we allow the missingness probabil-
ities to depend on both Y and Z but not on the unobserved value of X . Our
results include both the case where the missingness probabilities are known (as in
a designed two-stage study) and the case where they are unknown. Our results
build on the work of Wang, Wang, Gutierrez and Carroll (1998), who consider the
nonparametric problem (no X) with missing data; see also Cheng (1990, 1994)
and Cheng and Chu (1996).

Not only do we derive the asymptotic distribution of our estimators of β, but
we also describe three extensions. First, we compare our methods to those that
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use only the complete data with appropriate Horvitz–Thompson weighting, and
show that our methods are asymptotically more efficient. Second, besides deriving
analytic standard error estimates, we also justify the use of the nonparametric
bootstrap in this context. Finally, we show that our methods can be extended to
longitudinal and clustered data when working independence is used as the method
of estimation, thus extending the work on nonparametric regression for correlated
data using working independence (Zeger and Diggle, 1994; Hoover, Rice, Wu and
Yang, 1998; Fan and Zhang, 2000; Lin and Ying, 2001) to the missing data context.

We also study asymptotic efficiency for estimation of β in model (1). Here we
derive the semiparametric efficient score function and the semiparametric informa-
tion bound. The semiparametric efficient score function is a solution to a complex
integral equation, but in a special case we are able to derive the score function
explicitly and compare the result to our methods. Our asymptotic work uses the
general asymptotic theory for semiparametric models developed by Newey (1994)
and Robins et al. (1994).
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[5] W. Härdle, H. Liang and J. Gao, Partially Linear Models, Springer Physica-Verlag, Heidel-
berg, (2000).

[6] W.K. Newey, The Asymptotic Variance of Semiparametric Estimators, Econometrica, 62
(1994), 1349–1382.

[7] J.M. Robins, Correcting for Non-Compliance in Randomized Trials Using Structural Nested
Mean Models, Communications in Statistics, 23 (1994), 2379–2412.

[8] J.M. Robins, S.D. Mark and W.K. Newey, Estimating exposure effects by modelling the
expectation of exposure conditional on confounders, Biometrics, 48 (1992), 479–495.

[9] J.M. Robins, A. Rotnitzky and L.P. Zhao, Estimation of Regression Coefficients When
Some Regressors are not Always Observed, Journal of the American Statistical Association,
89 (1994), 846–866.

[10] C.Y. Wang, S. Wang, R.G. Gutierrez and R.J. Carroll, Local Linear Regression for Gener-
alized Linear Models with Missing Data, Annals of Statistics, 26 (1998), 1028–1050.

General Semiparametric Measurement Error Modeling

A common practice in facilitating increased level of model flexibility is through
nonparametric modeling, resulting in widely used semiparametric models includ-
ing partially linear models, generalized partially linear models or semiparametric
models that contain a single index component. Measurement error problems in
such a context are less well studied than their parametric counterpart, probably
due to the difficulty of handling multiple infinite dimensional parameters. In this
paper, we consider a class of such semiparametric measurement error models. We
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will construct estimators for the parametric part of the model that are root-n con-
sistent and asymptotically normally distributed, and for the nonparametric part
of the model that enjoys the usual bias and variance properties of the nonparamet-
ric estimation. We assume a parametric specification for the measurement error
part of the model. The methods are based upon a further parametric specifica-
tion for the latent variable: if this model specification holds then our methods are
semiparametric efficient, while if the latent variable model is misspecified we still
obtain root-n consistent and asymptotically normal estimators. As far as we know,
this is the first paper on semiparametric measurement error models that proposes
general methodology of consistent estimation of parametric and nonparametric
parts without resorting to deconvolution method or having to correctly specify a
distributional model for the variable measured with error.

An example of such problem is the following. In the Framingham Heart Study
data (Kannel et al., 1986), consider a logistic regression of coronary heart disease
Y on true systolic blood pressure X and age Z among the nonsmokers. The main
interest is in the effect of systolic blood pressure on coronary heart disease. A
model that allows for a flexible shape in age is

pr(Y = 1|X,Z) = H {BX + θ(Z)} ,(2)

where H(·) is the logistic distribution function. Of course, true systolic blood
pressure is not observable, and instead we observe W , measured blood pressure.
As described by Carroll et al. (2006, Chapter 5), a reasonable model relating W
and X is

log(W − 50) = log(X − 50) + U,(3)

where U is normally distributed with mean zero and variance σ2
u: Carroll et al.

estimate σ2
u = 0.0126 based on 1, 615 degrees of freedom, so that for the purposes

of illustration we will consider σ2
u as known. Although earlier analysis (Carroll et

al., 2006) has assumed a linear model for the age effect, our analysis will show that
the linearity assumption is somewhat violated, hence the inclusion of an arbitrary
function θ(Z) is needed.

There are various strategies for analyzing the model (2)-(3). An obvious and
reasonable approach in this particular data set is to make the further assumption
that log(X − 50) is normally distributed independently of Z, although a mo-
ments analysis suggests that the distribution of this transformed variable is heav-
ier tailed than the normal, with a kurtosis of approximately 9.0. We then have a
fully-specified semiparametric model, and we would thus typically apply standard
semiparametric methods such as profile likelihood (Severini and Staniswalis, 1994)
or backfitting (Chen et al., 2003).

The main point of our paper is illustrated by the following considerations. As-
suming that log(X − 50) is normally distributed implies the assumption that X
is a shifted lognormal random variable. However, there is inevitable concern that
the analysis will be sensitive to this assumption: the fact that log(X − 50) has a
kurtosis greater than 8.0 indicates a t-distribution with approximately 5 degrees of
freedom. A good discussion of this issue is in Gustafson (2004, Chapter 4.6). This
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concern is one of the major motivation for the class of functional measurement er-
ror methods, including the SIMEX estimator of Cook and Stefanski (1995), which
is an approximately consistent estimator. In contrast, we seek methods that are
fully consistent and semiparametric efficient when the shifted lognormal assump-
tion is true, and remain fully consistent when the assumption is false.

Our method is based upon a computationally convenient backfitting method
for estimating θ(•), in conjunction with kernel based local polynomial methods.
Denote the response variable Y , the predictor measured with error X , and predic-
tors measured without error (S,Z). The likelihood function for Y given (X,S, Z)
is

[Y |X,S, Z] = p{y|x, s, z,B, θ(z)}(4)

for some unknown function θ(z) and parameter B. However, instead of observ-
ing X , we observe W : which is conditionally independent of Y given (X,S, Z).
The likelihood function of W given (X,S, Z) is p(w|x, s, z, γmem) depending on a
parameter γmem. Often, γmem can be estimated using additional information.

Here, we separate the covariates measured without error into S and Z in order
to allow both parametric and nonparametric entry of these covariates. Throughout
the paper, S can be ignored without hampering understanding of the methodology.

In order to complete a parametric likelihood specification, one needs a model for
the unobservable X given (S,Z), one that we denote by pc(x|s, z, ξlatent) depending
on a parameter ξlatent, where the subscript means conjectured. We assume that

ξlatent can be estimated at root-n rate by an estimator ξ̂latent. We show how to
construct estimators of B such that:

• Whether or not pc(x|s, z, ξlatent) is correct, the estimator is consistent and
asymptotically normally distributed, with limiting distribution indepen-
dent of the method for estimating ξlatent. If pc(x|s, z, ξlatent) is correct, the
estimator is semiparametric efficient.

• For any chosen distributional model of X given (S,Z), the estimator
achieves the minimal estimation variance under such model. That is, no
further improvement for estimating B can be achieved through an im-
proved estimation of θ(Z).

One interesting example is the partially linear model with measurement error
Y = Xβ + θ(Z) + ǫ, and W = X + U , where both ǫ and U are assumed to be
normal. When θ(Z) is replaced by a constant θ in this model, Stefanski and Carroll
(1987, Equation 3.5) derived an efficient estimator. We generalize this work to the
partially linear model, deriving the semiparametric efficient estimator. When the
latent variable X is also assumed normal, the resulting estimator is explicit, and
enjoys the robustness property that it is consistent and asymptotically normal even
if all the normality assumptions are violated. We also show that this estimator is
the same as one proposed in Liang et al. (1999), thus characterizing their estimator
in terms of the optimality/sub-optimality property under different conditions.
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Semiparametric models with data missing by design and inverse

probability weighted empirical processes

Jon A. Wellner

(joint work with Norman E. Breslow)

Weighted likelihood, based on solving Horvitz-Thompson or inverse probability
weighted (IPW) versions of the likelihood equations, offers a simple and robust
method for fitting models to two phase stratified samples. We consider semi-
parametric models for which solution of infinite dimensional estimating equations
leads to

√
N consistent and asymptotically Gaussian estimators of both Euclidean

and nonparametric parameters. If the phase two sample is selected via Bernoulli
(i.i.d.) sampling with known sampling probabilities, standard estimating equation
theory shows that the influence function for the weighted likelihood estimator of
the Euclidean parameter is the IPW version of the ordinary influence function.
We establish weak convergence of the IPW empirical process by borrowing results
on weighted bootstrap empirical processes. By using the resulting of the IPW em-
pirical processes, we derive a parallel asymptotic expansion for finite population
stratified sampling. The asymptotic variance for Bernoulli sampling involves the
within strata second moments of the influence function, while for finite population
stratified sampling it involves only the within strata variances. We also show that
the latter asymptotic variance also arises when the observed sampling fractions
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are used as estimates of those known a priori. We propose a general procedure for
fitting semiparametric models with estimated weights to two phase data. Several
of our key results have already been derived for the special case of Cox regression
with stratified case-cohort studies, other complex survey designs and missing data
problems more generally. This paper is intended to help place this previous work
in appropriate context and to pave the way for applications to other models.

Structural Econometrics

Rosa Matzkin

We discussed nonparametric identification in structural econometric models.
These are models that use behavioral and equilibrium assumptions to map the
unobservable functions and distributions in the model into the distribution of the
observable variables. Nonparametric identification studies conditions under which
the unobservable functions and distributions can be recovered from the distribution
of the observable variables. We considered models that can be described by a
system of nonparametric equations of the type Y = m(X, e), where X and Y are
vectors of observable variables, and e is a vector of unobservable variables, such
that for some function r, e = r(Y,X). Within these, we consider the identification
of the function r and the distribution of e.

Threshold Crossing Models and Bounds on Treatment Effects: A

Nonparametric Analysis

Edward Vytlacil

(joint work with Azeem M. Shaikh)

This paper considers the evaluation of the average treatment effect of a bi-
nary endogenous regressor on a binary outcome when one imposes a threshold
crossing model on both the endogenous regressor and the outcome variable but
without imposing parametric functional form or distributional assumptions. With-
out parametric restrictions, the average effect of the binary endogenous variable is
not generally point identified. This paper constructs sharp bounds on the average
effect of the endogenous variable that exploit the structure of the threshold cross-
ing models and any exclusion restrictions. We also develop methods for inference
on the resulting bounds.
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Direct Semiparametric Estimation of the Binary Choice Model with

Endogenous Regressors under Varying Identification Conditions

Stefan Hoderlein

In this paper we consider the case of endogenous regressors in the binary choice
model without specifying the distribution of the unobserved latent error term to be
from a parametric family. We show that the use of instruments in a control function
fashion opens up the way to a rich class of direct semiparametric estimators for
the slope coefficient.

All estimators within this class have the same building principle in common,
namely they are the ratio of the derivatives of two functions of the instruments.
These ratio may contain both mean or quantile regression as well as nonseparable
functions, depending on the respective assumptions that define the control function
residuals. We discuss identification under varying assumptions, as well as the
large sample behavior of estimators based on sample counterparts. Simulation
and application conclude this paper.

Semiparametric Estimation of Binary Response Models with

Endogenous Regressors

Christoph Rothe

In this paper, we investigate the identification and semiparametric estimation
of single-index binary choice models with endogenous regressors. The model is
usually written in the latent variable form

Y =

{
1 if Y ∗ = Xβo − U > 0

0 else,

where Y is an indicator of the sign of an unobserved variable Y ∗ generated through
a linear model with regressorsX , vector of parameters βo and error term U . If one
is willing to assume that X and U are independent and that the distribution of the
error term follows some parametric law, it would be straightforward to estimate
βo by well-established likelihood methods such as Logit or Probit.

Our aim in this paper is to propose an estimator that relys on neither of these
two assumptions. This is of considerable practical importance since both might
be inappropriate for many empirical applications. First, economic theory usually
provides little to no guidance about the functional form of the distribution of the
error term, but misspecifications will generally result in inconsistent estimates for
likelihood-based approaches. A number of semiparametric estimators have there-
fore been proposed which do not impose parametric restrictions on the distribution
of U (see Horowitz [2] for a review).

Second, when the binary choice model arises in the context of a system of
triangular or fully simultaneous equations, or certain measurement error models,
some components of X will typically be endogenous and thus correlated with
U , violating the independence assumption. Although neglecting this problem will
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again render the usual estimates inconsistent, the corresponding literature is much
less extensive.

In this paper, we adopt a framework similar to Blundell and Powell [1]. They use
a control function approach to identify the vector of parameters, which introduces
residuals from a reduced form of the regressors as covariates into the outcome
equation to account for endogeneity. This idea is well established in parametric
econometrics and has recently been used in the identification and estimation of
various non- and semiparametric models with endogenous regressors. It has the
drawback that it requires the endogenous regressor to be continuously distributed,
but all other variables, including the instruments, can well be discrete.

In the context of a binary choice model, the control function approach for iden-
tification can be combined with different estimation procedures. Following one
of the suggestions of Blundell and Powell [1], we propose a two-step semipara-
metric maximum likelihood (SML) estimator for the index coefficients that can
be seen as an extension of the Klein and Spady [3] estimator, which achieves the
semiparametric efficiency bound in the exogenous case. The first step consists of
estimating a reduced form equation for the endogenous regressors and extracting
the corresponding residuals. In the second step, the latter are added nonparamet-
rically as control variates to the outcome equation, which is in turn estimated by
semiparametric maximum likelihood. The resulting estimator is computationally
somewhat more involved than the other competing procedures but still tractable.
It possesses the classic desirable asymptotic properties of

√
n-consistency and as-

ymptotic normality, and valid standard errors and tests statistics can be obtained
through consistent estimates of the asymptotic covariance matrix. Furthermore,
a simulation study we conduct shows that our SML estimator’s final sample prop-
erties compare very favourably to those of its existing competitors. It should thus
be appealing to applied researchers.
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On the Bootstrap of Rank Correlation Estimators

Viktor Subbotin

Estimators based on monotone relations are important tools in econometrics.
A classical example is the Maximum Rank Correlation Estimator (MRC) of Han
[3]. It applies to the generalized regression model Y = D ◦ F (X ′β0, ε) , where
X (observed) and ε (unobserved) are independent random variables, function D
is nondecreasing, F is strictly increasing in both arguments, and β0 is a finite-
dimensional vector of parameters. The binary choice model and the censored
regression model are popular examples of this model. In general, D, F, and the
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distribution function of ε need not be specified. Given a sample {(Xi, Yi)}ni=1 of
i.i.d. observations, β0 can be consistently estimated, up to scale, by maximizing
the objective function

∑

i6=j

1{Yi < Yj}1{X ′
iβ < X ′

jβ}.

with a scale normalization restriction. Estimators with similar structure, with
applications to transformation models, censored regressions and panel data have
also been proposed by Cavanagh and Sherman [2], Abrevaya [1], Lee [5] and Khan
and Tamer [4], among others.

One practical advantage of the rank correlation estimators is that their com-
putation does not depend on any tuning parameters (e.g. bandwidths). Han
[3] and Sherman [7] provided general theory for n1/2-consistency and asymptotic
normality for this type of estimators. The asymptotic variance, however, was pre-
viously estimated by either nonparametric or numerical derivative methods, both
depending on tuning parameters. The purpose of this paper is to show that the
nonparametric bootstrap, which does not involve tuning parameters, consistently
estimates the asymptotic distribution function and the asymptotic variance. We
also characterize the rates of convergence of the finite-sample distribution and the
bootstrap distribution of the estimators to the asymptotic limit.

Setup and Results. Let H = {hθ : Zm → R, θ ∈ Θ ⊂ Rd} be a family
of real symmetric functions defined on Zm = Z × ... × Z (m times). Let P be a
data-generating measure on Z. In the general model we assume that the estimated
vector of parameters, θ0, is identified by the relation θ0 = argmaxθ∈Θ P

mhθ, where
Pm denotes integration over the measure P × ... × P (m times). Given an i.i.d.
sample of data {Zi}ni=1 , the estimator θn is defined as a maximizer of a U -process
of order m:

(1) θn = argmax
θ∈Θ

∑

i1,...,im∈1,...n, distinct

hθ (Zi1 , ..., Zim)

For the bootstrap, form samples
{
Ẑi

}n
i=1

by drawing randomly with replace-

ment from the data set {Zi}ni=1 . The bootstrapped estimator, θ̂n, maximizes the

criterion function formed as in (1) with Ẑi replacing Zi.
Assumptions made by Han and Sherman for asymptotic normality of MRC

are sufficient for consistency of the bootstrap. Assumptions 1-3 below are their
stylized version. Additional assumption 4 is usually trivially satisfied for this type
of estimators.

Assumption 1. Θ is a compact set; Pmhθ is continuous on Θ and θ0 is its unique
maximum on Θ.

Assumption 2. H is a Euclidean class of functions for a Pm-square-integrable

envelope H in the sense of Nolan and Pollard [6]. As θ → θ0, P
2
[
(hθ − hθ0)

2
]
→

0.
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Assumption 3. Parameter θ0 is an interior point of Θ. Function τ(z, θ) =
Pm−1hθ(z, ·, ..., ·) is twice continuously differentiable at θ0, and there is a P -
integrable function M(z) such that for all z and all θ in a neighborhood of θ0,

|∇2τ(z, θ) −∇2τ(z, θ0)| ≤M(z) |θ − θ0| ,
where ∇2τ is the Hessian matrix of τ with respect to θ. The gradient of τ(·, θ) with
respect to θ at θ0, ∇τ(·, θ0), has finite variance matrix B. Matrix A = P∇2τ(·, θ0)
is finite and negative definite.

Assumption 4. For every hθ ∈ H, hθ (z, z, z3, ..., zm) ≡ 0.

Theorem 1. (a) Under Assumptions 1-3,

(2) sup
q∈Rd

∣∣∣P
{
n1/2 (θn − θ0) < q

}
− Φm2A−1BA−1(q)

∣∣∣ = o (1)

where Φm2A−1BA−1 is the c.d.f. of the N
(
0,m2A−1BA−1

)
-distribution.

(b) Under Assumptions 1-4, bootstrap of θn is consistent in probability:

(3) sup
q∈Rd

∣∣∣P̂
{
n1/2(θ̂n − θn) < q

}
− Φm2A−1BA−1(q)

∣∣∣ = op(1).

The rates of convergence in Theorem 1 depend on a stronger version of Assump-
tion 2. The next condition is relevant for rank correlation estimators whose ob-
jective functions involve, like in MRC, the nonsmooth indicator function 1{X ′

iβ <
X ′
jβ}.

Assumption 5. There exists C > 0 such that for all θ1, θ2 in a neighborhood of

θ0, P
2
[
(hθ1 − hθ2)

2
]
≤ C |θ1 − θ2| .

Theorem 2. Let Assumptions 1-3 and 5 hold, PM2 < ∞ and P ‖∇τ(θ0, z)‖4
<

∞. If H is a constant, put bn = n−1/6 (logn)
2
. If PmHk < ∞ for k ≥ 6, put

bn =
(
n−1/6 (logn)

2/3
)1/(1+2/3k)

. Then the left-hand side in (2) is O (bn) . Under

additional Assumption 4, the left-hand side in (3) is Op (bn) .
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Bootstrap Inference in Partially Identified Models

Federico A. Bugni

Chernozhukov, Hong and Tamer [2] propose a very general approach to perform
inference for partially identified models, referred to as the criterion function ap-
proach. Their procedure is implemented through subsampling. The goal of this
paper is to show that for a class of partially identified models, we can perform the
same type of inference using the bootstrap instead of subsampling.

The class of models considered in this paper encompasses relevant economic ap-
plications, such as missing data problems and static entry games with multiplicity
of equilibria.

The bootstrap procedure we propose differs qualitatively from a bootstrap ana-
logue of Chernozhukov, Hong and Tamer [2]. We show that, in general, replacing
subsampling with the bootstrap in their procedure will not result in consistent
inference. One of the reasons behind this issue is the well known inconsistency of
the bootstrap when the parameter of interest lies in the boundary of the parameter
space, as discussed by Andrews [1].

The main contribution of this paper is to provide an alternative bootstrap pro-
cedure that avoids these problems. Under our assumptions, we can provide rates
of convergence of the error in the coverage probability of the bootstrap approxi-
mation. Moreover, we show that the bootstrap has a faster rate of convergence
than subsampling, resulting in errors of coverage probability that are orders of
magnitude smaller.

Using Monte Carlo experiments, we explore the finite sample behavior of our
bootstrap procedure. The simulations show that our bootstrap has satisfactory
finite sample performance and a superior performance when compared to subsam-
pling.
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Dilation bootstrap for inference with incomplete models

Marc Henry

(joint work with Alfred Galichon)

Our basic econometric question is how to reject a given structure based on its
observable components. The general methodology proposed here is to test the
existence of a match between the observations and the structure. Sampling uncer-
tainty is taken into account through a suitable dilation of the structure. The test
is inverted to provide confidence regions for partially identified parameters. Eco-
nomic theory provides us with a structure of relations between observed variables
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Y , and latent variables U (bids vs valuations/information, entry vs productivity
shocks, chosen level of insurance vs risk level/risk attitude). Without loss of gen-
erality, the structure can be formulated as a U ∈ Γθ(Y ) and PU ∈ Vθ where the
multi-valued correspondence (many-to-many mapping) Γθ, the set of latent vari-
able distributions Vθ and the parameter θ ∈ Θ define the structure. Identification
obtains if there is a one-to-one correspondence between θ and the data generat-
ing process P . When the structure involves censoring, preference heterogeneity,
interaction effects, etc..., identification often requires the original structure to be
refined with arbitrary equilibrium selection mechanisms or restrictions on unob-
served heterogeneity. Otherwise, there is a many-to-many correspondence between
θ and P , denoted P 7→ Θ(P ), and the latter is called identified set. For instance,
let U ∈ R be the value of houses in a neighbourhood, with median θ. Let Y ∈ R

be level of insurance coverage chosen for the house. With heterogeneity of risk
attitudes, all we know is that Y ≤ U , so that the structure is summarized by
Γθ(Y ) = [Y,+∞), Vθ is the set of distributions with median θ, and the identified
set is Θ(P ) = [med(P ),+∞). As a second example, consider an m-player game,
with strategies Y = (Y1, . . . , Ym), unobserved shocks U = (U1, . . . , Um) to the
payoff functions and payoff profiles Πj = Π(Yj , Y−j , Uj; θ), θ ∈ Θ. Maximizing
behaviour yields

Γθ(Y ) = {U such that for all j, Π(Yj , Y−j , Uj ; θ) ≥ Π(Y ∗, Y−j, Uj ; θ)}
which, combined with an assumption on the distribution of U , defines the struc-
ture. Equilibria for this game will generically not be unique, so Γθ is generally
multi-valued.

The motivation for considering partially identified structures is the following:
there is a hierarchy of structural restrictions, some relatively uncontroversial (such
as maximizing behaviour), and some more so (such as equilibrium selection mech-
anisms). One wishes to test a controversial (hence salient) assumption without
maintaining a host of equally controversial assumptions necessary for identifica-
tion, or one wishes to see how the identified set shrinks when one rises in the
hierarchy of assumptions. We propose to cover elements of the identified set with
confidence regions such that

lim inf
n

P{θ ∈ Cn} ≥ 1 − α for all θ ∈ Θ(P )

To that end, we find a test ταn (θ) such that

• lim supn P(ταn (θ) 6= 0) ≤ α if the data is compatible with the structure
• lim infn P(ταn (θ) 6= 0) = 1 if the data and the structure are not compatible.

The region Cn = {θ : ταn (θ) = 0} has the desired pointwise coverage.
The compatibility hypothesis is that one can embed the observable Y into the

structure. Formally, there exists a joint distribution π over (Y, U) such that πY =
P , ie. the marginal for Y is the true DGP, πU ∈ Vθ, ie. the marginal for U satisfies
a set of (parametric or nonparametric) restrictions and π ({U /∈ Γθ (Y )}) = 0, ie.
the binary relation defined by Γθ is satisfied π−almost surely. We can rewrite
the compatibility condition as T (P, θ) := minπ∈M(P,θ) π[U /∈ Γθ(Y )] = 0, where
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M(P, θ) is the set of probability measures which satisfy πY = P and ν ∈ Vθ. This
problem is an optimization problem with a dual program which allows feasible
computation. A natural approach would be to use a suitable normalization of
T (Pn, θ) as test statistic. However, there are difficulties in practice, as the limiting
distribution of T (Pn, θ) is non-pivotal, complicated, and needs to be approximated
adaptively (i.e. with a user-chosen sequence), and a single evaluation T (Pn, θ)
may be computationally intense, which is a problem when running bootstrap or
subsampling procedures.

So we propose an alternative inference methodology to lift this critical burden.
The idea is to dilate each point of the sample space into a set of neighbouring
points, in order to control for the difference between the true DGP and the em-
pirical distribution. Then we are looking for a match between our latent variable
and any point in the neighbourhood. We construct sets y → Jαn (y) such that with
probability tending to no less than (1 − α) one has a representation (Y, Y ∗) with
joint distribution ρ such that Y ∼ P , Y ∗ ∼ Pn and ρ(Y ∈ Jαn (Y ∗)) = 1. As we
have representations such that U ∈ Γ(Y ), and Y ∈ Jαn (Y ∗), we can chain these
relations (on a common probability space). Thus, with probability tending to no
less than 1 − α there is a representation (U, Y ∗) with joint distribution µ such
that µ(U ∈ Γθ(J

α
n (Y ∗))) = 1, and checking the latter does not involve sampling

uncertainty any more. This provides us a ready-made test statistic, namely

ταn (θ) = inf
π∈M(Pn,θ)

π[{U /∈ Γθ(J
α
n (Y ∗))}]

and the rejection region is given by {ταn (θ) 6= 0}.
We build the dilation Jαn with an appeal to the empirical bootstrap principle,

i.e. such that lim infn P∗(∃ρ∗ ∈ M(Pn, P
∗) : ρ∗(Y ∗ ∈ Jαn (Y ∗∗) = 1)) ≥ 1 − α,

where Y ∗ ∼ Pn and Y ∗∗ ∼ P ∗ (bootstrap distribution). The dilation Jαn can be
approximated by simulation: DrawB bootstrap samples (Y b1 , . . . , Y

b
n ), b = 1, . . . B.

For each b, find a 1-to-1 matching (i.e. permutation πb) of (Y1, . . . , Yn) with
(Y b1 , . . . , Y

b
n ) that minimizes the number of nearest neighbours lb involved in the

matches. Call lα the (1 − α) quantile of the bootstrap distribution of neighbours,
and define Jαn (Yi) = { Yi and its lα nearest neighbours }. As an illustration,
suppose we want a 1 − α confidence interval for the γ quantile qY (γ) of the true
DGP P . We observe Pn, and use the dilation bootstrap to construct Jαn (y) =
[y− δ−n (y), y+δ+n (y)] such that with probability tending to no less than 1−α, there
exists a joint distribution ρ satisfying ρ(Y ∗ − δ−n (Y ∗) ≤ Y ≤ Y ∗ + δ+n (Y ∗)) = 1.
Then ρ(Y ∗ − δ−n (Y ∗) ≤ qY (γ)) ≥ γ and ρ(Y ∗ + δ+n (Y ∗) ≥ qY (γ)) ≥ 1 − γ. Hence,
with probability tending to no less than 1− α, we have qY ∗−δ−n (Y ∗)(γ) ≤ qY (γ) ≤
qY ∗+δ+n (Y ∗)(γ).

However, by the Law of the Iterated Logarithm for the quantile process, the
bootstrap dilation procedure proposed above yields a dilation which is asymptot-
ically equivalent to δ−n (y) = δ+n (y) = (2 ln lnn/nf(y))1/2 where f is the density
associated with P . Hence, the true asymptotic coverage is 1 rather than 1−α: the
insistence on minimax matching yields a dilation that is too conservative. Sim-
ilar results obtain in higher dimensions (with different rates). So we propose a
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modified procedure. We construct sets y → Jα,βn (y) such that with probability
tending to no less than (1 − α) one has a representation (Y, Y ∗) with joint dis-
tribution ρ such that Y ∼ P , Y ∗ ∼ Pn and ρ(Y ∈ Jα,βn (Y ∗)) ≥ 1 − β. Jα,βn

can be approximated by simulation with a slight modification of the procedure
described above. Finally, we revisit the example of the quantile. With proba-
bility tending to no less than 1 − α, there exists a joint distribution ρ satisfying
ρ(Y ∗−δ−n (Y ∗) ≤ Y ≤ Y ∗+δ+n (Y ∗)) ≥ 1−β. Then ρ(Y ∗−δ−n (Y ∗) ≤ qY (γ)) ≥ γ−β
and ρ(Y ∗ + δ+n (Y ∗) ≥ qY (γ)) ≥ 1 − γ − β. Hence, with probability tending to no
less than 1 − α, we have qY ∗−δ−n (Y ∗)(γ − β) ≤ qY (γ) ≤ qY ∗+δ+n (Y ∗)(γ + β).

Empirical Analysis of Static and Dynamic Models of Strategic

Interactions

Han Hong

(joint work with Patrick Bajari)

Our current research project consists of three studies of empirical methods for
analyzing static and dynamic models of strategic interactions under different infor-
mation assumptions. We develop a sequence of estimation methods for strategic
interaction models that are both flexible and computationally attractive. These
methods are being applied to the market of stock analyst recommendations and
the entry behavior in California highway procurement auctions. The first paper is
joint work with John Krainer who is at the Federal Reserve Bank of San Francisco
and Denis Nekipelov who is at Duke University. The second paper is joint with
Victor Chernozhukov who is at MIT. The third paper is joint with Stephen Ryan
who is at MIT.

Game theory has had a profound effect on microeconomic theory and theoretical
industrial organization in particular. Also, game theory has had an important
impact on economic policy, especially in antitrust and regulation. It is therefore
desirable to have empirical methods that are applicable when

agents are behaving strategically as predicted by game theory. Following Bres-
nahan and Reiss, in these papers we study econometric models of gaming where
players choose between a finite number of mutually exclusive actions. As in a
standard discrete choice model, utility depend on exogenous covariates, preference
parameters and random preference shocks. However, these models generalize stan-
dard discrete choice models by allowing an agent’s utility to depend on the actions
of other agents.

In the first paper, we study identification and estimation of static versions
of these game theoretic models under the assumption that the error terms are
private information to each agent. We first demonstrate that exclusion restrictions
can generate nonparametric identification of the latent mean utility functions.
Secondly, we study a flexible two step semiparametric estimator that is easy to
compute and characterize its asymptotic sampling properties. Third, we develop
an algorithm that computes the entire set of equilibria in these models. The
estimation and computation methods are then applied to the market of stock



854 Oberwolfach Report 15/2007

analyst recommendations, where we find strong evidence of peer influence and
substantial impact of multiple equilibria.

In the second paper, we extend these static models to a dynamic setting where
agents interact repeatedly in a markov-perfect equilibrium. We first present an
identification result for both discrete and continuous state variables by breaking
the analysis into two stages. The first stage resembles a single agent dynamic dis-
crete model. In this stage, we show that the expected static mean utility functions
can be nonparametrically identified from the data through a single value function
iteration as long as the per-period mean utility of one action, e.g. staying out of
the market, is normalized to zero. In the second stage, we show how the results
from the first paper can be used to recover the structural utility functions from
their respective expectations. Our identification analysis naturally leads to a flex-
ible nonparametric estimator and a practical semiparametric model for dynamic
oligopolistic models with general continuous or discrete state variables. We briefly
describe ongoing work to apply this method to oil exploration using a unique data
set.

The first two papers focus on a private information setting, where firms and
agents only observe their own private shocks. This assumption can potentially
impose restrictions on the model when unobserved heterogeneity is an important
element of the market. In the third paper, we relax this assumption for static
games and allow for a complete information setting where the latent shocks are
observable to all the firms and agents. The identification and estimation results
that we develop for this paper allow for both multiple and mixed strategy equilib-
ria. By exploiting two recent algorithmic developments, the simulated method of
moment estimator that we define has significant computational advantages over
existing methods. Not only does it compute all the equilibria of the model, includ-
ing mixed strategy ones, it also makes use of an importance sampling scheme to
allow for speedy optimization of the model parameters. We apply our method to
analyze entry behavior in California highway procurement auctions. The empir-
ical analysis recovers significant entry costs by large bidders, and also finds that
both multiple and mixed strategy equilibria are important determinants of entry
behavior. We also describe a planned project where we wish to use experimental
data to flexibly model equilibrium selection in normal form games.

Non-Parametric Estimation of Demand Functions and Bounds Under

Revealed Preferences Restrictions

Dennis Kristensen

We consider a simultaneous demand system for individual’s consumption of
nondurable goods where unobserved heterogeneity enters in a nonadditive manner.
We first give sufficient conditions in terms of the individual’s preferences for the
simulataneous system to be rewritten as a triangular set of equations. We then
propose two sets of nonparametric sieve estimators of the demand functions: The
first ones are unrestricted estimators and are computed under no constraints on the
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consumer’s behaviour. The second one are restricted estimators where we impose
revealed preferences constraints in the estimation. In both cases, the estimators are
essentially nonparametric quantile estimators. We establish the convergence rates
of the estimators under regularity conditions. Next, we consider the estimation
of demand bounds for the consumer given the arrival of a new set of prices. We
demonstrate how these bounds can be estimated based on our estimators of the
demand functions obtained in the first step. The estimation problem can be stated
within the framework of Chernuzhukov, Hong and Tamer (2007), and we derive the
asymptotics of the estimated demand bounds by verifying their general conditions
for our specific problem.

Estimation of a Semiparametric Transformation Model

Ingrid Van Keilegom

(joint work with Oliver Linton and Stefan Sperlich)

This paper proposes consistent estimators for transformation parameters in
semiparametric models. The problem is to find the optimal transformation into
the space of models with a predetermined regression structure like additive or mul-
tiplicative separability. We give results for the estimation of the transformation
when the rest of the model is estimated non- or semi-parametrically and fulfills
some consistency conditions. We propose two methods for the estimation of the
transformation parameter: maximizing a profile likelihood function or minimizing
the mean squared distance from independence. First the problem of identification
of such models is discussed. We then state asymptotic results for a general class of
nonparametric estimators. Finally, we give some particular examples of nonpara-
metric estimators of transformed separable models. The small sample performance
is studied in several simulation exercises.
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Testing for Stochastic Monotonicity

Sokbae Lee

(joint work with Oliver Linton and Yoon-Jae Whang)

Let Y and X denote two random variables whose joint distribution is absolutely
continuous with respect to Lebesgue measure on R2. Let FY |X(·|x) denote the
distribution of Y conditional on X = x. This paper is concerned with testing the
stochastic monotonicity of FY |X . Specifically, we consider the hypothesis
(1)
H0 : For each y ∈ Y, FY |X(y|x) ≤ FY |X(y|x′) whenever x ≥ x′ for x, x′ ∈ X ,

where Y and X , respectively, are the supports of Y and X . We propose a test
statistic and obtain asymptotically valid critical values. To our best knowledge,
we are not aware of any existing test for (1) in the literature.

This hypothesis can be of interest in a number of applied settings. If X is some
policy, dosage, or other input variable, one might be interested in testing whether
its effect on the distribution of Y is increasing in this sense. Also, one can test
whether the stochastic monotonicity exists in well-known economic relationships
such as expenditures (Y ) vs. incomes (X) at household levels, wages (Y ) vs.
cognitive skills (X) using individual data, outputs (Y ) vs. the stock of capital
(X) at the country level, sons’ incomes (Y ) vs. fathers’ incomes (X) using family
data, and so on.

We now describe our test statistic. Let {(Yi, Xi) : i = 1, . . . , n} denote a random
sample from (Y,X). We suppose throughout that the data are i.i.d., but the main
result also holds for the Markov time series case where Yi = Yt+1 and Xi = Yt.

We actually suppose that Xi is not observed but an estimate X̂i = ψ(Wi, θ̂) is
available, where Xi = ψ(Wi, θ0) is a known function of observable Wi for some

true parameter value θ0 and θ̂ is a root-n consistent estimator thereof. Let 1(·)
denote the usual indicator function and let K(·) denote a one-dimensional kernel
function with a bandwidth hn. Consider the following U -process:

Ûn(y, x) =
2

n(n− 1)

·
∑

1≤i<j≤n

[1(Yi ≤ y) − 1(Yj ≤ y)]sgn(X̂i − X̂j)Khn
(X̂i − x)Khn

(X̂j − x),

where Khn
(·) = h−1

n K(·/hn) and sgn(x) = 1(x > 0) − 1(x < 0). Note that

the U -process Ûn(y, x) can be viewed as a locally weighted version of Kendall’s

tau statistic, applied to 1(Y ≤ y) and that Ûn(y, x) is related to the U -process
considered in Ghosal, Sen, and van der Vaart (2000, equation (2.1)).
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Let Un(y, x) denote Ûn(y, x) computed using Xi instead of X̂i. First, notice
that under regularity conditions including smoothness of FY |X(y|x), as n→ ∞,

h−1
n EUn(y, x) → Fx(y|x)

(∫ ∫
|u1 − u2|K(u1)K(u2)du1du2

)
[fX(x)]2,

where Fx(y|x) is a partial derivative of FY |X(y|x) with respect to x. Therefore,

since θ̂ is a consistent estimator, under the null hypothesis such that Fx(y|x) ≤ 0

for all (y, x) ∈ Y ×X , Ûn(y, x) is less than or equal to zero on average for large n.
Under the alternative hypothesis such that Fx(y|x) > 0 for some (y, x) ∈ Y × X ,

a suitably normalized version of Ûn(y, x) can be very large. In view of this, we
define our test statistic as a supremum statistic

(2) Sn = sup
(y,x)∈Y×X

Ûn(y, x)

cn(x)

with some suitably defined cn(x), which may depend on (X1, . . . , Xn) but not
on (Y1, . . . , Yn). The U-statistic structure suggests that we use the scaling factor
cn(x) = σ̂n(x)/

√
n, where

σ̂2
n(x) =

4

n(n− 1)(n− 2)

∑

i≤i6=j 6=k≤n

sgn(X̂i − X̂j)sgn(X̂i − X̂k)

×Khn
(X̂j − x)Khn

(X̂k − x)[Khn
(X̂i − x)]2.

Our statistic is based on the supremum of a rescaled second order U-process
indexed by two parameters x and y, Nolan and Pollard (1987). It generalizes the
corresponding statistic introduced by Ghosal, Sen and van der Vaart (2000) for
testing the related hypothesis of monotonicity of a regression function.

Our first contribution is to prove that the asymptotic distribution of our test
statistic is a Gumbel with certain nonstandard norming constants, thereby facili-
tating inference using critical values obtained from the limiting distribution. We
also show that the test is consistent against all alternatives.

The proof technique is quite complicated and novel because the approximating
Gaussian stochastic process contains both a stationary part (corresponding to x)
and a nonstationary part (corresponding to y) and so we have to extend existing
results that only apply to either one or the other case.

One issue with the extreme value limiting distributions is known to be the poor
quality of the asymptotic approximation in the sense that the error declines only at
a logarithmic (in sample size) rate. The usual approach to this has been to use the
bootstrap, which provides an asymptotic refinement by removing the logarithmic
error term and giving an error of polynomial order, Hall (1993). In a special
case of ours (of a stationary Gaussian process), Piterbarg (1996) provides a higher
order analytic approximation to the limiting distribution that involves including
the (known) logarithmic factor in the first order error. His Theorem G1 shows
that this corrected distribution is closer to the actual distribution and indeed has
an error of polynomial (in sample size) magnitude. We apply this analysis to our
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more complicated setting and compute the corresponding “correction” term. Our
simulation study shows that this approach gives a dramatic improvement in size.
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Improving Tests with Many Weak Instruments

Yukitoshi Matsushita

This talk is about properties of t-ratios associated with the limited information
maximum likelihood (LIML) estimators and likelihood ratio (LR) statistic in a
structural form estimation when the number of instrumental variables is large.
An asymptotic expansion of the null distribution of a large K t-ratio statistic and
an asymptotic null distribution of the LR statistic are derived under large-Kn

asymptotics. From these asymptotic approximations, size-improved tests of the
t-ratio test and LR test are proposed, respectively.
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Smoothed Lasso for many high-dimensional regressions

Peter Bühlmann

In many application areas, the number of covariates is very large, e.g. in the
thousands, while the sample size is quite small, e.g. in the dozens. In such high-
dimensional settings, standard exhaustive search methods for variable selection
are computationally infeasible and forward selection methods are typically very
unstable yielding poor results.

We will show that ℓ1-penalty methods, i.e. the Lasso [4], can be very useful as
a first stage: with high probability, the (mathematically) true model is a subset
of the estimated model [1, 2]. Moreover, the adaptive Lasso [5] corrects Lasso’s
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overestimation behavior yielding a consistent variable selection schemes whose
exhaustive computation can be done very efficiently.

Further improvements are possible when having multiple datasets, e.g. over
different time points. The prime example is a time course of high-dimensional
linear models

Y (t) = X(t)β(t) + ε(t)

with n(t)× 1 response vector Y (t) and noise term ε(t) and n(t)× p design matrix
X(t) where typically p≫ n(t). In addition, the high-dimensional p× 1 parameter
vector β(t) is assumed to change slowly with respect to t. We propose the new
Smoothed Lasso [3] which employs a weighted ℓ1-penalized likelihood (using a
kernel function). The smoothed Lasso can lead to markedly improved prediction
and variable selection in such time course (or “panel-type”) data-structures.
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Inference and Testing for Jumps in Financial Data

Yacine Ait-Sahalia

(joint work with Jean Jacod)

We present a new test to determine whether jumps are present in asset returns
or other discretely sampled processes. As the sampling interval tends to 0, our test
statistic converges to 1 if there are jumps, and to another deterministic and known
value (such as 2) if there are no jumps. The test is valid for all semimartingales,
depends neither on the law of the process nor on the coefficients of the equation
which it solves, does not require a preliminary estimation of these coefficients, and
when there are jumps the test is applicable whether jumps have finite or infinite
activity. We then implement the test on simulations and asset returns data.

Next, we discuss estimating the behavior of the jump measure near 0: first if
it does not explode near 0, meaning that the number of jumps is finite; second,
when this number is infinite, we can say something about the concentration of
small jumps. For this purpose, we propose a generalization of the activity index
to semimartingales and construct consistent estimators of this index. These esti-
mators are applicable despite the fact that the semimartingale has a continuous
part, which makes it more challenging to learn about the small jumps. We can
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then test for instance the null hypotheses that jumps have any given fixed degree
of activity, or activity greater or smaller than a fixed degree.

Sieve Estimates for Conditional Quantiles of Financial Time Series

Jürgen Franke

(joint work with Jean-Pierre Stockis and Joseph Tadjuidje-Kamgaing)

We consider a stationary time series (Yt, Xt),∞ < t <∞, with Yt ∈ R, Xt ∈ R
d.

Our goal is to estimate nonparametrically the conditional α-quantile q(x) of Yt
given Xt = x defined by

pr{Yt ≤ q(x)|Xt = x} = α.

An immediate application in financial time series analysis is the estimation of con-
ditional (1 − α)-Value-at-Risk (VaR) which, if Yt is a time series of asset returns,
is the absolute value of the conditional α-quantile given past values Ys, s < t, as
well as past volatilities or data from other financial time series. All of them are
combined to form the multivariate time series Xt which is assumed to be observ-
able at time t− 1.

Usually, VaR-estimates are calculated from estimates of volatility, i.e. con-
ditional standard deviation of Yt given Xt. For nonparametric estimates, this
approach has been discussed in (Franke et al., 2004). There are some economic
reasons against relating extreme losses only to volatility which strongly depends
on th frequent small fluctuations of the return time series (Engle and Manganelli,
2002). The main disadvantage, however, is the necessity to specify the distribution
of innovations which is a difficult problem in practice.

We therefore follow the direct regression quantile approach of (Koenker and
Bassett, 1978) and note that the conditional quantile function q(x) is characterized
as the solution of

(1) E{|Yt − q(x)|α |Xt = x} = min
f∈L1(µ)

E{|Yt − f(x)|α |Xt = x},

where µ denotes the stationary law of Xt and |u|α = (1−α)u−+αu+. We consider
a sieve of function classes Fn ⊂ L1(µ) increasing with sample size n and with a
union which is dense in L1(µ). A sieve estimate of q(x) is then given as solution
of the sample version of (1):

qn = argminf∈Fn

1

n

n∑

t=1

∣∣Yt − f(Xt)
∣∣
α
.
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Finally, we truncate qn(x) at ±∆n and get the bounded sieve estimate q̂n(x).
Under appropriate, rather weak assumptions we show that this estimate is non-
parametrically consistent in the mean, i.e.

E

∫
|q̂n(z) − q(z)|µ(dz) → 0,

as well as a.s., provided that the size of Fn, measured by means of appropriate
covering numbers, and ∆n go to ∞ with the right rate depending on n. The
proof is based on a Vapnik-Cervonenkis (1971) inequality holding for stationary
processes (Franke and Diagne, 2006) and on a modification of the L2-regression
techniques of (Györfy et al., 2002).

As two specific examples for sieves, we consider feedforward neural networks
with one hidden layer, already investigated by (Chen and White, 1999) in the
context of quantile estimation, and piecewise constant functions motivated by the
qualitative threshold ARCH-model of (Gouriéroux and Montfort, 1992). For those
two function classes, we derive the specific rate conditions from the general theo-
rem, resulting in
• ∆n, Hn → ∞, ∆nHn log(∆nHn)/

√
n→ 0 for neural networks, Hn being the

number of neurons in the hidden layer,
• ∆n, Hn → ∞, ∆nHn log(∆n)/

√
n → 0 for piecewise constant functions, Hn

being the number of subsets of the input space on which the function is constant.

For the qualitative threshold quantile estimates, we also discuss how to choose
the underlying partition data-adaptively via a CART-like algorithm similar to (Au-
drino and Bühlmann, 2001). We illustrate the performance of those conditional
quantile estimates with some simulations and an application to stock price returns.

References
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Empirical Pricing Kernels and Investor

Wolfgang Härdle

Numerous attempts have been undertaken to describe basic principles on which
the behaviour of individuals are based. Expected utility theory was originally
proposed by J. Bernoulli in 1738. In his work J. Bernoulli used such terms as
risk aversion and risk premium and proposed a concave (logarithmic) utility func-
tion, see Bernoulli (1956). The utilitarianism theory that emerged in the 18th
century considered utility maximization as a principle for the organisation of soci-
ety. Later the expected utility idea was applied to game theory and formalized by
von Neumann and Morgenstern (1944). A utility function relates some observable
variable, in most cases consumption, and an unobservable utility level that this
consumption delivers. It was suggested that individualśı preferences are based on
this unobservable utility: such bundles of goods are preferred that are associated
with higher utility levels. It was claimed that three types of utility functions ñ
concave, convex and linear ñ correspond to three types of individuals ñ risk averse,
risk neutral and risk seeking. A typical economic agent was considered to be risk
averse and this was quantified by coefficients of relative or absolute risk aversion.
Another important step in the development of utility theory was the prospect the-
ory of Kahneman and Tversky (1979). By behavioural experiments they found
that people act risk averse above a certain reference point and risk seeking below
it. This implies a concave form of the utility function above the reference point
and a convex form below it. Besides these individual utility functions, market
utility functions have recently been analyzed in empirical studies by Jackwerth
(2000), Rosenberg and Engle (2002) and others. Across different markets, the
authors observed a common pattern in market utility functions: There is a refer-
ence point near the initial wealth and in a region around this reference point the
market utility functions are convex. But for big losses or gains they show a con-
cave form ñ risk aversion. Such utility functions disagree with the classical utility
functions of von Neumann and Morgenstern (1944) and also with the findings of
Kahneman and Tversky (1979). They are however in concordance with the utility
function form proposed by Friedman and Savage (1948). In this paper, we analyze
how these market utility functions can be explained by aggregating individual in-
vestorśı attitudes. To this end, we first determine empirical pricing kernels from
DAX data. Our estimation procedure is based on historical and risk neutral den-
sities and these distributions are derived with stochastic volatility models that are
widely used in industry. From these pricing kernels we construct the corresponding
market utility functions. Then we describe our method of aggregating individual
utility functions to a market utility function. This leads to an inverse problem for
1 the density function that describes how many investors have the utility function
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of each type. We solve this problem by discrete approximation. In this way, we
derive utility functions and their distribution among investors that allow to recover
the market utility function. Hence, we explain how (and what) individual utility
functions can be used to form the behaviour of the whole market. We describe the
theoretical connection between utility functions and pricing kernels. We present a
consistent stochastic volatility framework for the estimation of both the historical
and the risk neutral density. Moreover, we discuss the empirical pricing kernel
implied by the DAX in 2000, 2002 and 2004. We explain the utility aggregation
method that relates the market utility function and the utility functions of indi-
vidual investors. This aggregation mechanism leads to an inverse problem that is
analyzed and solved in this section. We conclude and discuss related approaches.

Inference for Realised Volatility using Infill Subsampling

Ilze Kalnina

(joint work with Oliver Linton)

The subsampling method of Politis and Romano (1994) has been shown to be
useful in many situations as a way of conducting inference under weak assumptions
and without utilizing knowledge of limiting distributions. Recently, the word sub-
sampling has been used in connection with the estimation of quadratic variation
of a semimartingale subject to market microstructure noise, see Zhang, Mykland,
and Aı̈t-Sahalia (2005) and Barndorff-Nielsen and Shephard (2007). The subsam-
pling scheme in this setting is slightly different from the usual one and is perhaps
better called ‘infill price subsampling’, as subsamples there consist of prices on
a lower frequency. Zhang, Mykland, and Aı̈t-Sahalia (2005) use this ‘infill price
subsampling’ to define a bias correction method that achieves consistent estima-
tion. It is the purpose of this paper to explore the use of this infill subsampling
as a means to conducting inference. We show that in an infill sampling scheme
the usual subsampling method described in Politis and Romano (1994) does not
achieve the required consistency. We show that infill price subsampling delivers
an asymptotically unbiased estimator of the asymptotic variance of the estimator
of interest (that is realised volatility in our paper), but it is still inconsistent (for
the variance of the realised volatility). We propose an infill returns subsampling
method that delivers consistent estimator of the asymptotic variance under some
smoothness assumption on the volatility. We follow the notation of Politis, Ro-
mano, and Wolf (1999) for easier comparison with the usual subsampling. We also
conduct a simulation study where we simulate a log-price sample paths that follow
a Heston model, which clearly reflects the theoretical properties of the different
subsampling approaches that we derive.
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Inference for diffusion processes in the simultaneous presence of noise

and jumps

Mark Podolskij

We consider a noisy diffusion model of the type

Z = X + U + J ,

where

Xt = X0 +

∫ t

0

audu+

∫ t

0

σudWu , t ∈ [0, 1]

J is a jump process and U is an i.i.d. process (independent of X), observed at
time points i/n, i = 0, . . . , n. We propose a new methodology for the estimation
of the volatility functionals of the form

∫ 1

0

|σu|pdu

for some p ≥ 0. In particular, this approach provides consistent estimates for the
integrated volatility (p = 2) and integrated quarticity (p = 4), which play a crucial
role in econometrics. Furthermore, the new method provides tests for jumps in
the process Z, estimates for the quadratic variation of X + J and solutions for
some related problems.

The main idea of the new approach can be described as follows. In a first step
we apply a smoothing procedure to balance the influence of the noise and the
continuous part. After that we construct the class of bipower variation statistics
based on the transformed data. Under very mild assumptions we show convergence
in probability for this class. The limit term contains a volatility part as well as
the second moment of the noise. After estimating the second moment of the noise
we can bias-correct the limit, so we finally obtain consistent estimates of volatility
functionals. Furthermore, by using appropriate powers we obtain estimators which
are robust to the jump component J .

Under some stronger assumption we present a stable central limit theorem for
the class of bipower variation statistics. The resulting convergence rate is n−1/4,
which is known to be optimal. By the approximation of the conditional variance we
obtain a feasible (standard) central limit theorem, which enables us to construct
confidence bands for the estimated quantities.
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Issues in Semiparametric Modelling of Multivariate Long Memory

Time Series

Peter M. Robinson

Moving from univariate to bivariate jointly dependent long memory time series
introduces a phase parameter (γ), at the frequency of principal interest, zero; for
short memory series γ = 0 automatically. The latter case has also been stressed
in the long memory case, along with the ”fractional differencing” case γ =(δ2−
δ1)π/2, where δ1, δ2 are the memory parameters of the two series. We develop
time domain conditions under which these are and are not relevant, and relate
the consequent properties of cross-autocovariances to ones of the (possibly bilat-
eral) moving average representation which, with martingale difference innovations
of arbitrary dimension, is used in asymptotic theory for local Whittle parameter
estimates depending on a single smoothing number. Incorporating also a regres-
sion parameter (β) which, when non-zero, indicates cointegration, the consistency
proof of these implicitly-defined estimates is nonstandard due to the β estimate
converging faster than the others. We also establish joint asymptotic normality of
the estimates, and indicate how this outcome can apply in statistical inference on
several questions of interest. Issues of implemention are discussed, along with im-
plications of knowing β and of correct or incorrect specification of γ, and possible
extensions to higher-dimensional systems and nonstationary series.

Nonstationary Nonparametric Regression

Melanie Schienle

This article studies nonparametric estimation of a regression model for d ≥ 2
nonstationary regressors. Given n joint observations (X,Y ) ∈ Rd+1, I estimate an
additive conditional mean function

(1) Yi = m0 +

d∑

j=1

mj(X
j
i ) + ǫi for all i ∈ {1, . . . , N}

under suitable identification conditions for the component functions. Furthermore
Y and all univariate Xj and pairs of bivariate marginal components Xjk are
(potentially nonstationary) β–Harris recurrent processes. Under different types of
independence assumptions, results are derived for the general case of a (potentially
nonstationary) β–Harris recurrent noise term ε but also for the special case of ε
being stationary mixing. The later case deserves special attention since the model
might be regarded as an additive type of cointegration model. In contrast to the
existing more general approach in [1], the number of cointegrated regressors is not
restricted.

In economic time series we often deal or should truly deal with nonstationary
components. In reality, neither prices nor exchange rates nor other macro variables
thoroughly follow an invariant stationary law over time (See e.g [4] in demand).
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Thus practitioners might feel more comfortable avoiding restrictions like stationar-
ity or not testable mixing conditions. However, it might also appear inappropriate
to exclusively impose nonstationary behavior in the model specification. So far an
econometrician has had to make a decision upfront: Model the situation paramet-
rically and have nonstationary components or have a nonparametric procedure in
a stationary environment. But can we not have both nonparametrics and nonsta-
tionarity?
In this paper, I want to explore how much generality can be theoretically admitted
at which possible results. I present a nonparametric procedure which offers a uni-
form treatment of certain nonstationary and all stationary cases within a suitably
chosen class of processes.

The appropriate framework for nonstationary kernel type inference is Harris
recurrence. This assumption allows for a certain type of nonstationarity of the
processes. Intuitively, it is the minimal assumption to still ensure consistency of
any type of nonparametric Kernel estimator. Within the imperceptibly smaller
class of β–recurrent processes, nonstationarity does not change the type of estima-
tion procedure applied. The degree of nonstationarity of the data is captured by
a single parameter β – the degree of regular variation of the recurrence time pro-
cess. It also represents the polynomial degree of the expected stochastic rates of
convergence and therefore offers an important way to compare the nonstationary
results to the well–known stationary theorems. The method works irrespective of
stationarity or not and is the same in both cases.
The idea of Harris recurrence as the key property for Kernel regression with Markov
processes was first suggested by Yakowitz [8]. But he only studied the positive
recurrent case. Park and Phillips were the first to move towards possibly null
recurrent processes in [7]. Their approach, however, was still quite restrictive as
it was valid only for one dimensional processes on a Brownian space with a con-
stant link function. Independently Moloche [6] and Karlsen and Tjøstheim [3]
have introduced an estimation framework for regression with general recurrent
Markov processes. While the first use embedding techniques under quite restric-
tive assumptions and employs existing results from probability theory literature,
the later is more general with different direct techniques.

In general, as in the stationary case, high-dimensional nonparametric regres-
sion models suffer from a curse of dimensionality (COD). The more regressors are
included the worse the finite sample behavior. In the stationary mixing case, ad-
ditive models have provided a powerful technique to overcome this problem and
to still maintain high flexibility. But in the nonstationary setting an additional
even more severe curse of dimensionality complicates nonparametric estimation.
For dimensions larger than two, Harris recurrence of the joint regressors is quite
unlikely. In fact the more regressors are added, the more unlikely it is to still
fit the framework of Harris recurrence. Most prominently, a random walk is null
recurrent only up to dimension two and transient for any higher dimension. In
such cases, none of the existing procedures in [1] and [6] can be applied any more.
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There is no nonparametric method at all.

In this paper, I provide an estimation method which countervails both curses
of dimensionality. To overcome the first, ordinary COD an additive model is esti-
mated. In order to tackle the second nonstationary COD, however, an estimation
method for the additive model must rely on low dimensional components only -
at best only univariate and bivariate ones to include the widest possible class of
processes. In a stationary setting, smooth backfitting introduced by Mammen et
al. in [5] fulfills both requirements. As the only estimation procedure for additive
models, it does not need a full–dimensional estimate in any step of the method,
but uses estimates of one– and two dimensional marginals only.
For nonstationary data, smooth backfitting estimates (SBE) are still defined as
minimizers of a smoothed least squares criterion. It is sufficient to assume all
pairwise bivariate marginal processes to be recurrent. Full dimensional recurrence
is not needed, therefore e.g. high dimensional random walks can be fitted, and a
broad class of models can be treated for which there has been no method so far.
In a general nonstationary setting, the derived general backfitting iteration oper-
ator has an additional factor which does not vanish and which complicates the
analysis. Asymptotic properties are derived under weak conditions. Rates of con-
vergence are of univariate type but governed by the most nonstationary univariate
component. In order to achieve asymptotic normality, the speed of convergence is
stochastic due to the nonstationarity of the data. The variance of a single compo-
nent, however, is shown to be the corresponding marginal variance type expression.
The similar the regressors are in their degree of nonstationarity, the more efficient
is the estimator. Oracle efficiency i.e., the same asymptotic bias and variance as
the theoretical estimator based on the knowledge of all other components, can
only be achieved if the degree of nonstationarity is exactly the same for all compo-
nents. Finite sample properties are evaluated using a simulation study for a five
dimensional random walk.
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Probability and moment inequalities for sums of weakly dependent

random variables

Michael H. Neumann

(joint work with Paul Doukhan, Efstathios Paparoditis)

1. Weak dependence vs. mixing

For a long time mixing conditions have been the dominating type of conditions
for imposing a restriction on the dependence between time series data. They
are considered to be useful since they are fulfilled for many classes of processes
and since they allow to derive tools similar to those in the independent case.
On the other hand, it turns out that certain classes of processes which are of
interest in statistics are not mixing although a successive decline of the influence
of past states takes place. The simplest example of such a process is an AR(1)-
process, Xt = θXt−1 + εt, where the innovations are independent and identically
distributed with P (εt = 1) = P (εt = −1) = 1/2 and 0 < |θ| ≤ 1/2; see also [11].
It is clear that this process has a stationary distribution supported on [−2, 2],
and for a process in the stationary regime, it can be seen from the equality Xt =
εt+θεt−1+ · · ·+θt−s−1εs+1+θt−sXs that a past state Xs can always be recovered
from Xt. (Actually, since |εt| > |θ||εt−1|+ · · ·+ |θ|t−s−1|εs+1|+ |θ|t−s|Xs| it follows
that Xt has always the same sign as εt which means that we can recover εt and
therefore Xt−1 from Xt. Continuing in this way we can finally compute Xs.) This,
however, excludes any of the commonly used mixing properties to hold. On the
other hand, Xs loses its impact on Xt as t→ ∞.

Besides this somehow artificial example, there are many other processes of this
type which are of great interest in statistics. For example, for bootstrapping a
linear autoregressive process of finite order, it is most natural to estimate first the
distribution of the innovations by the empirical distribution of the (possibly re-
centered) residuals and to generate then a bootstrap process iteratively by drawing
independent bootstrap innovations from this distribution. Now it turns out that
commonly used techniques to prove mixing for autoregressive processes fail; be-
cause of the discreteness of the bootstrap innovations it is in general impossible
to construct a coupling of two processes with different initial values.

Inspired by such problems, [5] and [1] introduced the alternative notions of weak
dependence and ν-mixing, respectively, which focus on covariances rather than the
total variation norm between the joint distribution and the product of marginal
distributions of random variables. A slightly simplified version of Doukhan and
Louhichi’s definition is given here:
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Definition 1.1. A process (Xt)t∈Z is called weakly dependent if there exists a
universal null sequence (ǫr)r∈N such that, for any k-tuple (s1, . . . , sk) and any
l-tuple (t1, . . . , tl) with s1 ≤ . . . ≤ sk < sk + r = t1 ≤ . . . ≤ tl and arbitrary
measurable functions g : Rk → R, h : Rl → R with ‖g‖∞ ≤ 1 and ‖h‖∞ ≤ 1, the
following inequality is fulfilled:

|cov (g(Xs1 , . . . , Xsk
), h(Xt1 , . . . , Xtl))| ≤ ψ(k, l,Lip g,Liph) ǫr.

Here Liph denotes the Lipschitz modulus of continuity of h, that is,

Liph = sup
x 6=y

|h(x) − h(y)|
‖x− y‖l1

,

where ‖z‖l1 =
∑
i |zi|, and ψ : N2 × R2

+ → [0,∞) is an appropriate function.

2. Tools under weak dependence

First central limit theorems for weakly dependent sequences were given by
Corollary A in [5] and Theorem 1 in [2]. While the former result is for sequences
of stationary random variables, the latter one is tailor-made for triangular arrays
of asymptotically sparse random variables as they appear with kernel density es-
timators. The following central limit theorem for general triangular schemes of
weakly dependent random variables was proved in [10]. An interesting aspect of
this result is that no moment condition beyond Lindeberg’s is required.

Theorem 2.1. Suppose that (Xn,k)k=1,...,n, n ∈ N, is a triangular scheme of
(row-wise) stationary random variables with EXn,k = 0 and EX2

n,k ≤ C < ∞.
Furthermore, we assume that

(1)
1

n

n∑

k=1

EX2
n,kI(|Xn,k|/

√
n > ǫ) −→

n→∞
0

holds for all ǫ > 0 and that

(2) var(Xn,1 + · · · +Xn,n)/n −→
n→∞

σ2 ∈ [0,∞).

For n ≥ n0, there exists a monotonously nonincreasing and summable sequence
(θr)r∈N such that, for all indices 1 ≤ s1 < s2 < . . . < su < su+r = t1 ≤ t2 ≤ n, the
following upper bounds for covariances hold true: for all measurable and quadratic
integrable functions f : Ru −→ R,

(3) |cov (f(Xn,s1 , . . . , Xn,su
), Xn,t1)| ≤

√
Ef2(Xn,s1 , . . . , Xn,su

) θr,

for all measurable and bounded functions f : Ru −→ R,

(4) |cov (f(Xn,s1 , . . . , Xn,su
), Xn,t1Xn,t2)| ≤ ‖f‖∞ θr,

where ‖f‖∞ = supx∈Ru |f(x)|. Then

1√
n

(Xn,1 + · · · +Xn,n)
d−→ N (0, σ2).
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The following Bernstein-type inequality which generalizes and improves previ-
ous inequalities of [5] and [9] was proved in [6].

Theorem 2.2. Suppose that X1, . . . , Xn are real-valued random variables with
zero mean, defined on a probability space (Ω,A,P). Let Ψ : N2 → N be one of the
following functions:

(a) Ψ(u, v) = 2v,
(b) Ψ(u, v) = u+ v,
(c) Ψ(u, v) = uv,
(d) Ψ(u, v) = α(u + v) + (1 − α)uv, for some α ∈ (0, 1).

We assume that there exist constants K,M,L1, L2 < ∞, µ, ν ≥ 0, and a nonin-
creasing sequence of real coefficients (ρ(n))n≥0 such that, for all u-tuples (s1, . . . , su)
and all v-tuples (t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n the fol-
lowing inequalities are fulfilled:

(5) |cov (Xs1 · · ·Xsu
, Xt1 · · ·Xtv )| ≤ K2 Mu+v−2 ((u + v)!)ν Ψ(u, v) ρ(t1 − su),

where

(6)

∞∑

s=0

(s+ 1)kρ(s) ≤ L1 L
k
2 (k!)µ ∀k ≥ 0,

and

(7) E|Xt|k ≤ (k!)ν Mk ∀k ≥ 0.

Then, for all t ≥ 0,

(8) P (Sn ≥ t) ≤ exp

(
− t2/2

An + B
1/(µ+ν+2)
n t(2µ+2ν+3)/(µ+ν+2)

)
,

where An can be chosen as any number greater than or equal to σ2
n and

Bn = 2 (K ∨M) L2

((24+µ+ν nK2L1

An

)
∨ 1

)
.

Remark 1. (i) Inequality (8) resembles the classical Bernstein inequality for
independent random variables. Asymptotically, σ2

n is usually of order O(n) and
An can be chosen equal to σ2

n while Bn is usually O(1) and hence negligible. In
cases where σ2

n is very small or where knowledge of the value of An is required for
some statistical procedure, it might, however, be better to choose An larger than
σ2
n. It follows from (5) and (6) that a rough bound for σ2

n is given by

(9) σ2
n ≤ 21+ν n K2 Ψ(1, 1) L1.

Hence, taking An = 21+νnK2Ψ(1, 1)L1 we obtain from (8) that

(10) P (Sn ≥ t) ≤ exp

(
− t2

C1n + C2t(2µ+2ν+3)/(µ+ν+2)

)
,
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where C1 = 22+νK2Ψ(1, 1)L1 and C2 = 2B
1/(µ+ν+2)
n with

Bn = 2(K ∨M)L2

( 23+µ

Ψ(1, 1)
∨ 1
)
.

Inequality (10) is then more of Hoeffding-type.
(ii) Based on a Rosenthal-type inequality, [5] also proved an exponential in-

equality for Sn, however, with
√
t instead of t2 in the exponent. [3] proved a

Bennett-type inequality for weakly dependent random variables. This also implies
a Bernstein-type inequality, however, with different constants. In particular, the
leading term in the denominator of the exponent differs from σ2

n. This is a con-
sequence of their method of proof which consists of replacing weakly dependent
blocks of random variables by independent ones according to some coupling device
(an analogous argument is used in [4] for the case of absolute regularity).

(iii) A Bernstein-type inequality with σ2
n as a possible leading term in the

denominator of the exponent has been derived in [9] under a weak dependence
condition which is tailor-made for causal processes with an exponential decay of
the coefficients of weak dependence. The result above is more general and is also
applicable to interesting classes of processes where Kallabis and Neumann’s in-
equality does not apply.

A first Rosenthal-type inequality for weakly dependent random variables was
derived by [5] via direct expansions of the moments of even order. Unfortunately,
the variance of the sum did not explicitly show up in their bound. Instead, a
rough bound for this expression based on upper estimates was used. Using cu-
mulant bounds in conjunction with Leonov and Shiryaev’s formula we are able to
obtain a tighter moment inequality which resembles the Rosenthal inequality in
the independent case (see [12] and [8] in the independent case, and Theorem 2.12
in [7] in the case of martingales).

Theorem 2.3. Suppose that X1, . . . , Xn are real-valued random variables with
zero mean, defined on a probability space (Ω,A,P). Let p be a positive integer.
We assume that there exist constants K,M <∞, and a nonincreasing sequence of
real coefficients (ρ(n))n≥0 such that, for all u-tuples (s1, . . . , su) and all v-tuples
(t1, . . . , tv) with 1 ≤ s1 ≤ · · · ≤ su ≤ t1 ≤ · · · ≤ tv ≤ n and u+ v ≤ p,

(11) |cov (Xs1 · · ·Xsu
, Xt1 · · ·Xtv )| ≤ K2 Mu+v−2 Ψ(u, v) ρ(t1 − su).

Furthermore, we assume that

E|Xi|p−2 ≤ Mp−2.

Then, with Z ∼ N (0, 1),

|ESpn − σpnEZp| ≤ Bp,n
∑

1≤u<p/2

Au,p K
2u (M ∨K)p−2u nu,
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where Bp,n = (p!)22pmax2≤k≤p{ρp/kk,n}, ρk,n =
∑n−1

s=0 (s+ 1)k−2ρ(s) and

Au,p =
1

u!

∑

k1+···+ku=p, ki≥2∀i

p!

k1! · · ·ku!
.

Remark 2. (i) For even p, the above result implies that

ESpn ≤ (p− 1)(p− 3) · · · 1 σpn + Bp,n
∑

1≤u<p/2

Au,p K
2u (M ∨K)p−2u nu,

which resembles the classical Rosenthal inequality from the independent case. If
supnBp,n < ∞ and σ2

n ≍ n, then the first term on the right-hand side is asymp-
totically dominating, as n → ∞. This term is equal to the p-th moment of a
Gaussian random variable with mean 0 and variance σ2

n.
(ii) [5] also obtained a Rosenthal-type inequality, however, essentially with

n ·∑∞
k=−∞ |EX0Xk| instead of var(Sn) in the first term.

Remark 3. The inequality from Theorem 2.3 is well suited for proving a cen-
tral limit theorem via the method of moments. Assume first that the random
variables Xt are uniformly bounded, centered and satisfy condition (11) with
lims→∞ ρ(s)/sp = 0, for all p > 0. Then

lim
n→∞

σ2
n

n
= σ2 =

∞∑

k=−∞

EX0Xk

is a convergent series, and thus the method of moments implies the central limit
theorem,

1√
n
Sn

d−→n→∞ σZ.
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A statistical view on inverse problems

Markus Reiß

Starting with typical inverse problems arising in econometrics like instrumental
variables, functional linear regression or density deconvolution, we introduce the
abstract notation of an inverse problem in a Gaussian white noise setting. Here,
f ∈ L2(D1) and g ∈ L2(D2) satisfy the linear relation

g = Kf

with a bounded linear operator K : L2(D1) → L2(D2) and we observe

gε = g + εẆ , ε > 0, ẆGaussian white noise

The statistical problem is to estimate f nonparametrically based on gε.
To tackle this problem we review and discuss regularization and estimation

methods from statistics and numerical analysis, in particular:

• Denoising in the image domain
• Singular value decomposition (SVD)
• Tikhonov method and related iterative methods
• Projection methods like Galerkin and least squares methods

Besides different behaviour in the implementations and possible difficulties in the
case of noisy operators we focus on the problem of the function classes for which
the methods are well designed. In the case of the SVD and Tikhonov’s method
these classes should have good smoothness properties with respect to the singular
functions of the operator (Hilbert scale approach). An intriguing example is that of
circular deconvolution where the eigenfunctions are given by the Fourier basis and a
smooth, but non-periodic function does have smothness less than 1/2 with respect
to this basis. On the other hand, denoising in the image domain and projection
methods usually require classical smoothness assumptions for the function class
and the operator considered. A general conclusion is that the method for solving
the inverse problem should be chosen according to expected properties of the
function f to be estimated. It might be worthwhile to consider different methods
and to apply statistical methods to select the best estimator among all those
obtained.
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Deconvolution with unknown error distribution

Jan Johannes

Let X and ǫ be independent random variables with unknown density functions
fX and fǫ, respectively. The objective is to estimate nonparametrically the density
function fX and its derivatives based on a sample of Y = X + ǫ. In this setting
the density fY of Y is the convolution of the density of interest fX and the density
fǫ of the additive noise, i.e.,

(1) fY (y) = fX ⋆ fǫ(y) :=

∫ ∞

−∞

fX(x)fǫ(y − x)dx.

Suppose we observe Y1, . . . , Yn from fY and the error density fǫ is known. Then
the estimation of the convolution density fX is a classical problem in statistics.
The most popular approach is to estimate fY by a kernel estimator and then to
solve equation (1) using a Fourier transform (c.f. [1] and [2]). It is well-known
that solving equation (1) leads to an ill-posed inverse problem and, hence equation
(1) has to be ‘regularized’ in some way in order to obtain a consistent estimator.
The rate of convergence of the deconvolution problem is determined by the tail-
behavior of the Fourier transforms FfX and Ffǫ of fX and fǫ, respectively. [3]
derive the minimax rate of convergence when the density fX lies in the well-known
Sobolev space Hp, which describes the level of smoothness of a deconvolution
density in terms of its Fourier transform FfX . They consider the two cases,
where the error distribution of ǫ is supersmooth, that is the Fourier transform
Ffǫ of fǫ has exponential descent, i.e., |Ffǫ(t)|2 ∼ exp(−t2a), and the other
extreme when the Fourier transform of the error density has polynomial descent,
i.e., |Ffǫ(t)|2 ∼ t−2a. Roughly speaking, in the first case the optimal rate of
convergence of the mean integrated squared error (MISE) in a minimax sense
is of order O(log(n)−p/a), while in the second case we have O(n−2p/(2(p+a)+1)).
However, we will show in this paper, that the rate of convergence is not determined
by the tail behavior of Ffǫ but by the tail behavior of the ratio of FfX and Ffǫ.

The present paper deals with the estimation of a deconvolution density fX if in
addition the density fǫ of the noise is unknown. In this case without any additional
information the density fX can not be recovered from the density of fY through
(1), i.e., the density fX is not identified assuming only a sample Y1, . . . , Yn from
fY . However, sometimes draws of the error distribution are observed. Thus, we
assume that we observe the sample Y1, . . . , Yn from fY and additionally the sample
ǫi, i = 1, . . . ,m from fǫ. In such a situation it is of interest to study the sampling
properties, in particular the mean squared error, of the estimator when we use
an estimator of fǫ, rather than the true density. It is interesting to note that
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[4] proposes an estimator of fX and derives its optimal rate of convergence in a
minimax sense for a class of densities with Fourier transform having a polynomial
decay. The main purpose of this paper is to propose and study a deconvolution
scheme which has enough flexibility to allow estimation when the tails of FfX and
Ffε have a wide range of behaviors.

The estimators proposed in this paper are based on a regularized inversion of (1)
using a spectral cut-off (thresholding of the characteristic function of the errors),
where we replace the unknown densities fY and fε by nonparametric estimators.
Given the error density fǫ is known we show that the estimators based on a spectral
cut-off and a nonparametric estimator of fY are asymptotically optimal. It is of
interest to compare the MISE rates when the density of fǫ is estimated with the
optimal rates, where fǫ is known. We show that the rate of convergence when fǫ
is unknown depends on both, the sample size n (of observations Y ) and also on
the errors m. In fact we show that if m grows with n at a sufficiently fast rate,
then the error due to the estimation of fǫ is asymptotically negligible. The rate
is determined by the smoothness of fǫ and fX . For example, if fX ∈ Hp and the
Fourier transform Ffǫ has exponential descent, i.e., |Ffǫ(t)|2 ∼ exp(−t2a), and
m ≈ nν for an arbitrary ν > 0, then the rate of convergence of the MISE is of order
O(log(n)−p/a). Therefore, if the sample size m tends to ∞ as a polynomial growth
of n, then estimation of the error density does not influence the rate of convergence
of the MISE. This leads to the rather surprising result that for normally distributed
errors the MISE is, mainly, unaffected by using an estimator of the density rather
than the true density. The situation is different if the Fourier transform Ffǫ has
polynomial descent, i.e., |Ffǫ(t)|2 ∼ t−2a, then the optimal rate of convergence
of the MISE is of order O(n−2p/(2(p+a)+1)) provided that m ≈ n2(p∨a)/(2(p+a)+1).
Therefore, the smoother the error density, i.e., the larger the value a, the smaller
the necessary sample size m has to be to imply that the proposed estimator has the
optimal rate O(n−2p/(2(p+a)+1)) (where fε is known). In contrast, by studying the
optimal rate O(n−2p/(2(p+a)+1)), we see that the rate decreases as a is increasing.
Conversely, if fε is known, then the rate of convergence of the MISE is fast if p

is large. However, in the case that fε is estimated, the same is only true if the
sample m is sufficiently large.

One of the main achievements in this paper is the derivation of the MISE of
the proposed estimator for a general class of density functions, which unifies and
generalizes many of the previous results for known and unknown error distribu-
tions. Roughly speaking, we show that the MISE of the proposed estimator can be
decomposed essentially into a function of the MISE of the nonparametric density
estimator of fY plus an additional bias term which depends on the relationship be-
tween the tails of FfX and Ffǫ. Therefore by balancing the bias and variance we
are able to obtain the optimal bandwidth. The relationship between FfX and Ffǫ
essentially determines the bias of the estimator. Returning to the example above,
where the error distribution is supersmooth (e.g. in case of a normal distribution)
and FfX descents polynomial (e.g. in case of a double exponential distribution),
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the bias is a logarithm of the smoothing parameter (the parameter which deter-
mines the spectral cut off point). On the other hand, if both, the error distribution
and X are supersmooth, the bias is a polynomial of the smoothing parameter (c.f.
[6]). We show that the theory behind these rates are unified through the ‘link
function’ κ, which ‘links’ the tail behavior of FfX and Ffǫ, that is for large t,
|FfX(t)|2 ∼ κ(|Ffε(t)|2)β . This link function determines the bias. For example,
if the error distribution is supersmooth (e.g. in case of a normal distribution) and
the Ffǫ descents polynomial (e.g. in case of a double exponential distribution),
the ‘link function’ is κ(t) = | log(t)|−1, whereas if both the error distribution and
X are supersmooth then the link function is h(t) = t. We mention that in this
paper we use the classical Rosenblatt-Parzen kernel estimator (c.f. [5]) and the
empirical characteristic function to estimate the densities fY and fε, respectively.
Therefore, the kernel function does not need to have a compact support. However,
since the MISE of the proposed estimator can be decomposed into the MISE of the
density estimator of fY , any other nonparametric estimation method (e.g. based
on Splines or Wavelets) can be used and the theory still holds.

We note that if there is a-priori knowledge concerning the smoothness of fX
characterized by fX ∈ Hp for some a > 0, then we may use a similar scheme to
estimate the derivatives of fX . Furthermore, similar MISE can be derived.
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Statistical Inference for Deconvolution

Hajo Holzmann

In the talk we discuss inference for nonparametric density deconvolution, as
arising in the general context of statistical inverse problems.

Let X1, . . . , Xn be i.i.d. real-valued observations with density g. Nonparametric
estimation of g by kernel methods was introduced by Rosenblatt (1956) and Parzen
(1962). Often, the observations Xi are only noisy versions of the random variables
Zi of interest, i.e. Xi = Zi + ǫi, where ǫi and Zi are independent, the errors ǫi
have known density ψ and the Zi have density f . Note that g = f ∗ψ. Estimating
f from the observations Xi is therefore called the deconvolution problem.
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Under the assumption Φψ(t) 6= 0 for all t ∈ R, a standard estimator of f is the
kernel deconvolution density estimator

f̂n(x) =
1

2π

∫

R

e−itxΦK(ht)
Φ̂n(t)

Φψ(t)
dt,

where Φf (t) is the Fourier transform of f , K is a kernel function such that ΦK
has compact support, h > 0 is a smoothing parameter called bandwidth and
Φ̂n(t) = 1/n

∑
k e

itXk is the empirical characteristic function of X1, . . . , Xn.
It is well-known that the deconvolution problem depends sensitively on the Fourier
transform Φψ of the error density ψ. If

Φψ(t) ∼ Cψ t
−β, t→ ∞,

for some β > 0 and Cψ ∈ C, the error density is called ordinary smooth, whereas
if

(1) Φψ(t) ∼ Cψ|t|λ0e−|t|λ/µ, |t| → ∞,

for λ > 1, µ > 0 and λ0, Cψ ∈ R, and that Φψ(t) 6= 0 for all t, ψ belongs to
the class of supersmooth densities (condition (1) does not cover all supersmooth
densities). For ordinary smooth error densities, under regularity conditions listed
in [1] we construct asymptotic level-α confidence bands of the form

(2) f̂n(t) − bn(t, x) ≤ f(t) ≤ f̂n(t) + bn(t, x), t ∈ [0, 1],

where

bn(t, α) =
( ĝn(t)CK,1
nh2(β+j)+1

)1/2( xα
(2 log(1/h))1/2

+ dn

)
,

and xα is the (1 − α)-quantile of the extreme-value distribution exp(−2e−x) and

dn =
(
2 log(1/h)

)1/2
+

log
(

1
2πC

1/2
K,2

)

(
2 log(1/h)

)1/2 .

Further, we show convergence of the nonparametric n-n bootstrap, present simu-
lation results and give an astrophysical example. Details can be found in [1].

We also study the asymptotic distribution of the statistic Tn, defined by

Tn =

∫

R

(
f̂n −Kh ∗ f

)2
(x) dx,

which is closely related to the integrated squared error of f̂n, and which can be used
to test hypotheses of the form (extensions to composite hypotheses are possible)

H0 : f = f0.

In [2] it is shown that for the ordinary smooth case, Tn is asymptotically normally
distributed as follows

nh2β+1/2
(
Tn −

C2
ψCK,1

2π nh2β+1

)
L→ N

(
0,
C4
ψCK,2‖g0‖2

π

)
.
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In contrast, for supersmooth error densities of the form (1) with some weak reg-
ularity conditions, we show in [3] that if the Fourier transform ΦK of the kernel
K is real-valued, symmetric and supported on [−1, 1], and if ΦK(0) = 1 and there
exist A > 0 , α ≥ 0 such that ΦK(1 − t) = Atα + o(tα), tց 0, then

(3)
(2λ)1+2απC2

ψ n

A2µ1+2αhλ−1+2λα+2λ0 exp( 2
µhλ )Γ(2α+ 1)

Tn
L→ (Y 2

1 + Y 2
2 )/2,

where Y1 and Y2 are independent standard normal random variables.

In [2], we also derive the asymptotic distribution of Tn under fixed alternatives to
the hypothesis H0, which has applications to model validation.
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Smoothing Splines Estimators for Functional Linear Regression

Alois Kneip

We consider a regression problem in which the variation of scalar responses Yi
is explained by functions Xi(t), t ∈ I, square integrable on the compact interval
I of R, i = 1, . . . , n. More precisely, we investigate functional linear regression
models of the form

Yi =

∫

I

α(t)Xi(t)dt+ ǫi, i = 1, . . . , n,

where ǫi’s are i.i.d. centered random errors, E(ǫi) = 0, with variance E(ǫ2i ) =
σ2
ǫ and α is a square integrable functional parameter defined on I that must

be estimated from the pairs (Xi, Yi), i = 1, . . . , n. X1, . . . , Xn is a sequence
of identically distributed random functions with the same distribution as X . The
main assumption onX is that it is a second order variable i.e. E(

∫
I
X2(t)dt) < +∞

and it is assumed moreover that E(Xi(t)ǫi) = 0 for almost every t ∈ I.
As a consequence of developments of modern technology data that may be

described by functional regression models can be found in a lot of fields such as
economics, medicine, linguistics, or chemometrics. An example is the application
motivating our study: the data consists in repeated measurements over the day of
pollutant indicators in the area of Toulouse used to explain the maximum (peak)
of pollution for the next day. In practice, the whole curves Xi are usually not
available, but instead are observed in p discretization points t1 < . . . < tp belonging
to I.

The problem of estimating the functional slope parameter α belongs to a class
of ill-posed inverse problems. Any sensible procedure for estimating α (or more
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precisely of its identifiable part) has to involve regularization procedures. We
propose an estimation procedure that can be seen as a generalization of the well-
known smoothing splines method in nonparametric regression.

Based on the observation times t1 < . . . < tp, some prespecified m = 1, 2, . . .
and a smoothing parameter ρ > 0, our estimate α̂ of α is determined by minimizing

1

n

n∑

i=1



Yi −
1

p

p∑

j=1

a(tj)Xi(tj)




2

+ ρ



1

p

p∑

j=1

πa(tj)
2 +

∫

I

a(m)(t)2dt



 ,

over all functions a in the Sobolev space Wm,2(I) ⊂ L2(I), where

πa(t) =

m∑

l=1

βa,lt
l−1

with
∑p

j=1(a(tj) − πa(tj))
2 = minβ1,...,βm

∑p
j=1

(
a(tj) −

∑m
l=1 βlt

l−1
)2

.

A detailed asymptotic theory of the estimator α̂ is developed for large values
of n and p. It is assumed that p is sufficiently large compared to n so that the
discretization error is negligible. Motivated by our application, we focus on the
error in predicting

∫
I α(t)X(t)dt by

∫
I α̂(t)X(t)dt. This is formalized by evaluating

the distance between α̂ and α with respect to an L2 semi-norm induced by the
covariance operator Γ of X , ‖u‖Γ = 〈Γu, u〉 with 〈u, v〉 =

∫
I u(t)v(t)dt. Note that

E

(
[

∫

I

α̂(t)Xn+1(t)dt−
∫

I

α(t)Xn+1(t)dt]
2| α̂

)
= ‖α̂− α‖2

Γ

for any random function Xn+1 possessing the same distribution as X and indepen-
dent ofX1, . . . , Xn. Moreover, by using these semi-norms we explicitly concentrate
on evaluating the estimation error only for the identifiable part of the structure of
α.

Rates of convergence of ‖α̂−α‖2
Γ then depend on the degree of smoothness of α

and on the rate of decrease of the eigenvalues λ1 ≥ λ2 ≥ . . . of Γ. More precisely,
if α is m times differentiable, α(m) belongs to L2(I), and if λj ≤ C · j−q for some
0 < C <∞ and q > 0, then under some additional regularity conditions it can be
shown that

‖α̂− α‖2
Γ = OP (n−(2m+q)/(2m+q+1)).

We then prove that these rates are optimal over large classes of distributions for
the predictive curves and functions α belonging to suitable Sobolev spaces.

The above results have been obtained by joint work with C. Crambes and P.
Sarda, Université Paul Sabatier, Toulouse. A detailed description of the conceptual
approach, asymptotic theory and a real data application can be found in Crambes,
Kneip and Sarda (2007)
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Estimating linear functionals of nonparametric regression models with

endogenous regressors

Gautam Tripathi

(joint work with Thomas A. Severini)

Models containing unknown functions, typically characterized as conditional
expectations, are common in economics and economists are often interested in
estimating linear functionals of these unknown functions; e.g., [12] estimates the
contrast between functionals of E[Y |X ] using before-and-after policy intervention
data; letting Y denote the market demand and X the price, [9] consider estimating∫ b
a

E[Y |X = x] dx, the approximate change in consumer surplus for a given price
change; additional examples can be found in [5] and [2, 2005b].

However, in models where variables are determined endogenously, unknown
functions cannot always be interpreted as conditional expectations which com-
plicates the problem of estimating their linear functionals. For instance, market
demand functions are not identifiable as conditional expectations because prices
are endogenous. Hence, simply integrating an estimator of the conditional expec-
tation of equilibrium quantity given equilibrium price over a certain interval will
not lead to a consistent estimator of the change in consumer surplus.

The basic objective of this paper is to investigate whether certain linear func-
tionals of unknown structural functions can be efficiently estimated with paramet-
ric rates of convergence even when the underlying structural function itself is not
a conditional expectation.

Consider the nonparametric regression model

(1) Y = µ∗(X) + ε, E[ε|W ] = 0 w.p.1,

where X is a vector of regressors some or all of which are endogenous and W
denotes the vector of instrumental variables (IV’s); since exogenous explanatory
variables act as their own instruments, W and X can have elements in common.
The functional form of µ∗ is unknown; we only assume that it lies in L2(X),
the set of real-valued functions of X that are square integrable with respect to the
distribution ofX . Endogeneity of regressors means that µ∗ cannot be a conditional
expectation function because W does not contain all of X ; of course, if W = X so
that there are no endogenous regressors, then µ∗(X) = E[Y |X ].

Even if the structural parameter µ∗ in (1) is identified, i.e., uniquely defined,
it is said to be “ill-posed” because the function that maps the data to µ∗ is not
continuous; see Lemma 2.4 of [11] for additional properties of this mapping. Al-
though µ∗ may be ill-posed and hence difficult to estimate, we study whether its
functionals E[ψ(X)µ∗(X)] and

∫
supp(X) ψ(x)µ∗(x) dx, where ψ is a known weight

function and supp(X) the support of X , can be estimated with parametric or
n1/2-rates of convergence.1

1For
∫
supp(X) ψ(x)µ∗(x) dx to make sense it is implicitly understood that X is continuously

distributed; the expectation functional E[ψ(X)µ∗(X)] is of course well defined even when some
components of X are discrete.
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In addition to the papers cited earlier, recent works on nonparametric IV meth-
ods include, e.g., [6], [1], [4], [10], [7], [8], and the references therein. Our main
contribution to this literature is to derive variational and non-variational, i.e.,
closed form, expressions for the efficiency bounds for estimating E[ψ(X)µ∗(X)]
and

∫
supp(X)

ψ(x)µ∗(x) dx without assuming that µ∗ is well-posed or even iden-

tified. We also conjecture that plug-in estimators of these functionals may be
asymptotically efficient (assuming µ∗ is identified), although we haven’t been able
to derive their asymptotic distribution.
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