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Introduction by the Organisers

This conference was one of a series of Oberwolfach conferences on the same topic,
held every two years. There were 55 participants, including about twenty graduate
students and postdocs.

Since graph theory is a broad and many-faceted field, we need to focus the
workshop on a specific domain within the field (as we did in previous years). A
dominant area within graph theory today is extremal graph theory: the study of
the asymptotic and probabilistic behaviour of various graph parameters. While
this is an exciting area, it is of a different character from much of the remainder
of graph theory, and its inclusion would lead to an undesired division of the par-
ticipants. Since extremal graph theory is adequately covered by the Oberwolfach
combinatorics conference, we decided to minimize the extremal content and to fo-
cus the conference on other fundamental areas in graph theory, their interaction,
and their interaction with mathematics outside combinatorics. In particular, we
focus on structural aspects of graphs like decomposability, embeddability, dual-
ity, and noncontainment of substructures and its relations to basic questions like
colourability and connectivity, and on the applicability of methods from algebra,
geometry, and topology to these areas.
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The conference was organized along lines similar to the earlier Oberwolfach
Graph Theory conferences of 2003 and 2005. There is a reduced number of formal
talks, to give space for informal workshops on various topics in the area. As
before, on the first day, we asked everyone to make a five-minute presentation
of their current interests. This was designed also to promote contact between
participants early in the meeting, and turns out to work very well.

As for the talks intended for all the participants, there were six 50-minute and
twenty-one 25-minute talks. We selected these from the abstracts submitted before
the meeting, and we chose them to be of scientific relevance and general interest,
as best we could. Also, we deliberately chose younger speakers, and tried for a
wide range of topics. Among the highlights of the week were the presentation
of a proof of Berge’s strong path partition conjecture for k=2, a new method to
apply chip-firing games in graphs to derive a Riemann-Roch theorem in tropical
geometry, and constructions of limits of graphs forming a topological space that
encompass Szemeredi’s regularity lemma.

The workshops are intended to be informal — no formal speakers or time slots,
with a ‘convenor’ to manage the workshop — and are focused on areas with specific
recent results, conjectures and problems. It is our experience that such workshops
can be the best part of a conference. We wanted these to be really informal,
so that anyone in the group who wanted to contribute could spontaneously get
up and say his or her piece. Before the meeting, we selected a few topics that
seemed appropriate for workshops, some of which were suggested by participants.
This time there were workshops on graph width, matroids, graph limits, flows and
cycles in infinite graphs, and paths and minors. Sometimes, the workshops were
scheduled in parallel, and some were extended in evenings later in the week.

We were very satisfied with the way the conference worked out. Although the
participants had varied interests, they were not so far apart that they polarized
into separate camps. Most of the talks were of interest to almost all of of the
participants, and the workshop format satisfied the desire of some for more focus.

Again, we regard this as a very successful conference. If we organize another
Graph Theory meeting at Oberwolfach, we would run it on the same lines. We
are very thankful to the Oberwolfach management and staff for the opportunity
to organize this meeting and for their smooth running and support of the meeting.

Reinhard Diestel,
Alexander Schrijver,
Paul Seymour.
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Tamás Király (joint with Lap Chi Lau)
On Steiner rooted-orientations of graphs and hypergraphs . . . . . . . . . . . . . 913

Daniel Král’ (joint with Robin Thomas)
Colorings of quadrangulations of the torus and the Klein bottle . . . . . . . . 916

László Lovász
Property testing, extremal graph theory, and graph limits . . . . . . . . . . . . . 918

Wolfgang Mader
Openly disjoint circuits through a vertex in digraphs . . . . . . . . . . . . . . . . . 920



890 Oberwolfach Report 16/2007

Bojan Mohar (joint with Matt DeVos)
Small separations in symmetric graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 922

Serguei Norine (joint with Matthew Baker)
From chip-firing games to Riemann-Roch theorem in tropical geometry . 923

R.A. Pendavingh (joint with H. van der Holst)
A generalization of planarity and linkless embeddability of graphs . . . . . . 924

Alexander D. Scott (joint with Pierre Charbit)
Infinite locally random graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926

Balázs Szegedy
Limits of Discrete Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928

Robin Thomas (joint with Zdeněk Dvořák and Daniel Král’)
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Abstracts

Two structures on the same set

Ron Aharoni

The talk concerned a way of casting combinatorial duality results, in which there
are two structures given on the same vertex set - two graphs, or two matroids, or a
graph and a matroid, or most generally - two, or even more, simplicial complexes
(a simplicial complex is a closed down hypergraph). The classical result of this
type is Edmonds’ two matroids intersection theorem [2]:

Theorem 1 (Edmonds). Given two matroids, M1 and M2 on the same ground
set V , we have:

max{|I| : I ∈ M1 ∩M2} = min{|X | + |Y | : spM1(X) ∪ spM1(Y ) = V }

The first part of the talk presented a version of this theorem which is valid for
general complexes, obtained in joint work with Eli Berger, Ron Holzman and Ori
Kfir (in writing). To present it we shall need a few definitions.

For a simplicial complex C write µ(C) = max{|σ| : σ ∈ C}. Define a “span”
operation, acting on subsets X of V (C), as

spC(X) = X ∪ {v : σ + v 6∈ C for some σ ∈ C}.
Note that for matroids this is the usual “span” operation. For complexes C1, C2, . . . ,
Cm on the same vertex set V write

γ∪(C1, C2, . . . , Cm) = min{
∑

|Xi| :
⋃

spCi
(Xi) = V }.

Given a complex C, let Ω(C) be the convex hull of the incidence vectors of simplices
in C. Also write:

µ∗
∩(C1, C2, . . . , Cm) := max{~x ·~1 | ~x ∈ ∩Ω(Ci)}.

For a graph G let I(G)) be the complex of independent sets of G and N (G) the
complex of non-punctured neighborhoods (namely the set of subsets of the closed
neighborhoods of vertices in G). As is customary, we denote µ(I(G)) by α(G).

For graphs G1, G2, . . . , Gm on the same set define:

α∗
∩(G1, G2, . . . , Gm) = µ∗

∩(I(G1), I(G2), . . . , I(Gm))

γ∪(G1, G2, . . . , Gm) = γ∪(I(G1), I(G2), . . . , I(Gm))

Theorem 2 (A+Berger+Holzman+Kfir). For any pair of graphs (G1, G2) on the
same vertex set

α∗
∩(G1, G2) ≥ γ∪(G1, G2)
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For a complex C we write χ(C) for the minimal number of simplices needed to
cover V (C). Note that χ(I(G)) is the chromatic number of G, more commonly
denoted by χ(G). On the other hand, χ(N (G)) is the domination number of G,
usually denoted by γ(G). Note also that

γ∪(G1, G2, . . . , Gm) = χ(N (G1),N (G2), . . . ,N (Gm)).

Theorem 3. For any system of graphs (G1, G2, . . . , Gm) on the same vertex set

α∗
∩(G1, G2, . . . , Gm) ≥ 2

m
γ∪(G1, G2, . . . , Gm).

The theorem is sharp asymptotically, but for m > 2 strict inequality holds.

(The case of partition graphs, namely graphs that are disjoint unions of cliques,
is a theorem of Lovász: in an r-partite hypergraph τ ≤ r

2τ∗). Theorem 2 has a
generalization to complexes:

Theorem 4.

µ∗
∩(C1, C2) ≥ γ∪(C1, C2).

This means that Edmonds’ theorem holds for general complexes, if we replace
the “max” side by its fractional version. Theorem 3 has a similar generalization.

Next we note the following hierarchy of inequalities.

• For one graph α ≥ γ.
• For two graphs α∗

∩ ≥ γ∪.
• For a general number of graphs α∗

∩ ≥ γ∗
∪

The underlying reason behind these inequalities is a duality between the inde-
pendence and neighborhood complexes. A first glimpse of this duality can be seen
in the duality between the two basic inequalities on the chromatic numbers of the
two complexes:

χ(I(G)) ≤ µ(N (G))

(which is usually stated as “χ(G) ≤ ∆(G) + 1”) and:

χ(N (G)) ≤ µ(I(G))

(usually formulated as “γ ≤ α”).
The fact which entails all these is:

Theorem 5. Ω(N (G)) ⊇ Ω(I(G))

Here P̄ is the anti-blocker of P ,

P̄ := {~x : ∀~y ∈ P ~y · ~x ≤ 1}.
The rest of the talk concentrated on topological extensions of Edmonds’ theo-

rem. Of these, we mention just the main one, from [1]:

Theorem 6 (A+Berger). For a matroid M and a complex C on the same vertex
set, µ(M∩ C) ≥ minX⊆V (ρ(M|X) + η(C|(V \ X))
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Here η(C) is the topological connectivity of C, plus 2. In other words, it is the
minimal dimension of a “hole” in the geometric realization of C (and if there is no
hole at all, η is defined as ∞).

References
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Proof of Berge’s Strong Path Partition Conjecture for k = 2

Eli Berger

(joint work with Irith Ben-Arroyo Hartman)

Let G = (V, E) be a directed graph containing no loops or multiple edges,
defined by a set V of vertices and a set E ⊆ V × V of directed edges. A path P
in G is a sequence of distinct vertices (v1, v2, . . . , vl) such that (vi, vi+1) ∈ E, for
i = 1, 2, . . . , l − 1. The set of vertices {v1, v2, . . . , vl} of a path P = (v1, v2, . . . , vl)
is denoted by V (P ), and the set of edges by E(P ). The cardinality of P , denoted
by |P |, is |V (P )|. A path of cardinality one is called a trivial path.

A family P of paths is called a path partition of G if its members are vertex
disjoint and ∪{V (P ); P ∈ P} = V . A directed graph, or for brevity, digraph,
may have many path partitions. The trivial path partition, where every path is
a trivial path, is an example of a path partition. For each nonnegative integer k,
the k-norm |P|k of a path partition P = {P1, . . . , Pm} is defined by

(1) |P|k :=

m
∑

i=1

min{|Pi|, k}.

A partition which minimizes |P|k is called k-optimal. Note that a 1-optimal path
partition is a partition that contains a minimum number of paths and |P|1 = |P|.
Denote by P≥k the set of paths in P of cardinality at least k, (which we also call
long paths), and by P<k the set of paths in P of cardinality less than k, (called
short paths). Then equation (1) can be alternatively written as

|P|k =

m
∑

i=1

min{|Pi|, k} = k|P≥k| + |V [P<k]|

A k-colouring is a family Ck = {C1, C2, . . . , Ck} of k disjoint independent sets
called colour classes. (Some of the colour classes may be empty). The cardinality

of a k-colouring is the sum of the sizes of the colour classes, i.e., |Ck| =
∑k

i=1 |Ci|
and Ck is said to be optimal if |Ck| is as large as possible. A path partition P and
a k-colouring Ck are orthogonal if every path Pi in P meets min{|Pi|, k} different
colour classes of Ck. Note that this is the maximum number of different colour
classes that a path can intersect a k-colouring.
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Conjecture 1 (Berge’s strong path partition conjecture [3]). Let G be a digraph
and let k be a positive integer. Then for every k-optimal path partition P there
exists a k-colouring orthogonal to it.

The conjecture holds for k = 1 for all digraphs by the Gallai-Milgram Theorem
[6]. Berge’s strong path partition conjecture has also been proved for acyclic
digraphs (see [4], [11], [2], [1], and [9]). It is not difficult to see, as was shown in
[3], that the conjecture is true when k ≥ λ, where λ is the cardinality of the longest
path in G, and when the k-optimal path partition contains only short paths, (i.e.,
paths of cardinality less than k). In [1] it was proved that the conjecture holds
also in the case that the given k-optimal path partition contains only long paths,
i.e., P = P≥k. For a survey of Berge’s conjecture and related problems see [8].
See also [5], [12], and [13] for related results.

Denote by αk(G) the cardinality of an optimal k-colouring in G, and by πk(G)
the k-norm of a k-optimal path partition in G. Conjecture 1 implies the following:

Conjecture 2 (Weak path partition conjecture -Linial [10]). For any digraph G
and positive integer k, αk(G) ≥ πk(G).

If G is transitive and acyclic (i.e., the graph of a partially ordered set), then
Green-Kleitman’s theorem [7] states that αk(G) = πk(G), implying Conjecture 2.

In this talk we prove Conjecture 1 for k = 2 for all graphs. This is done by first
itroducing an algorithmic proof for the case k = 1 and than adjasting it to the
case k = 2.
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Cycles in dense digraphs

Maria Chudnovsky

(joint work with Blair D. Sullivan, Paul Seymour)

We begin with some terminology. All digraphs in this paper are finite and have
no parallel edges; and for a digraph G, V (G) and E(G) denote its vertex- and
edge-sets. The members of E(G) are ordered pairs of vertices, and we abbreviate
(u, v) by uv. For integer k ≥ 0, let us say a digraph G is k-free if there is no
directed cycle of G with length at most k. A digraph is acyclic if it has no directed
cycle.

We are concerned here with 3-free digraphs. It is easy to see that every 3-
free tournament is acyclic, and one might hope that every 3-free digraph that is
“almost” a tournament is “almost” acyclic. That is the topic of this paper.

More exactly, for a digraph G, let γ(G) be the number of unordered pairs {u, v}
of distinct vertices u, v that are nonadjacent in G (that is, both uv, vu /∈ E(G)).
Thus, every 2-free digraph G can be obtained from a tournament by deleting γ(G)
edges. Let β(G) denote the minimum cardinality of a set X ⊆ E(G) such that
G \ X is acyclic. We already observed that every 3-free digraph with γ(G) = 0
satisfies β(G) = 0, and our first result is an extension of this.

1. If G is a 3-free digraph then β(G) ≤ γ(G).

Proof. We proceed by induction on |V (G)|, and we may assume that V (G) 6= ∅.
Let us say a 2-path is a triple (x, y, z) such that x, y, z ∈ V (G) are distinct, and
xy, yz ∈ E(G), and x, z are nonadjacent. For each vertex v, let f(v) denote the
number of 2-paths (x, y, z) with x = v, and let g(v) be the number of 2-paths
(x, y, z) with y = v. Since V (G) 6= ∅ and

∑

v∈V (G) f(v) =
∑

v∈V (G) g(v), there

exists v ∈ V (G) such that f(v) ≤ g(v). Choose some such vertex v, and let
A, B, C be the set of all vertices u 6= v such that vu ∈ E(G), uv ∈ E(G), and
uv, vu /∈ E(G) respectively. Thus the four sets A, B, C, {v} are pairwise disjoint
and have union V (G). Let G1, G2 be the subdigraphs of G induced on A and on
B ∪ C respectively. Since g(v) is the number of pairs (a, b) with a ∈ A and b ∈ B
such that a, b are nonadjacent, it follows that γ(G) ≥ γ(G1)+ γ(G2)+ g(v). From
the inductive hypothesis, β(G1) ≤ γ(G1) and β(G2) ≤ γ(G2); for i = 1, 2, choose
Xi ⊆ E(Gi) with |Xi| ≤ β(Gi) such that Gi \ Xi is acyclic. Let X3 be the set of
all edges ac ∈ E(G) with a ∈ A and c ∈ C; thus |X3| = f(v). Since there is no
edge xy ∈ E(G) with x ∈ A and y ∈ B (because G is 3-free), it follows that every
edge xy with x ∈ A and y ∈ {v} ∪ B ∪ C belongs to X3, and so G \ X is acyclic,
where X = X1 ∪ X2 ∪ X3. Hence

β(G) ≤ |X | = |X1| + |X2| + |X3|
= β(G1) + β(G2) + f(v) ≤ γ(G1) + γ(G2) + g(v) ≤ γ(G).

This proves the theorem. �

Unfortunately, Theorem 1 does not seem to be sharp, and we believe that the
following holds.
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2. Conjecture. If G is a 3-free digraph then β(G) ≤ 1
2γ(G).

If true, this is best possible for infinitely many values of γ(G). For instance, let
G be the digraph with vertex set {v1 . . . v4n}, and with edge set as follows (reading
subscripts modulo 4n):

• vivj ∈ E(G) for all i, j, k with 1 ≤ k ≤ 4 and (k − 1)n < i < j ≤ kn
• vivj ∈ E(G) for all i, j, k with 1 ≤ k ≤ 4 and (k − 1)n < i ≤ kn < j ≤

(k + 1)n.

It is easy to see that this digraph G is 3-free, and satisfies β(G) = n2 (certainly
β(G) ≥ n2 since G has n2 directed cycles that are pairwise edge-disjoint), and
γ(G) = 2n2.

The reason for our interest in Conjecture 2 was originally its application to the
Caccetta-Häggkvist conjecture [1]. A special case of that conjecture asserts the
following:

3. Conjecture. If G is a 3-free digraph with n vertices, then some vertex has
outdegree less than n/3.

This is a challenging open question and has received a great deal of attention.
Any counterexample to Conjecture 3 satisfies γ(G) ≤ 1

2 |E(G)|, so our Conjecture 2

would tell us that β(G) ≤ 1
4 |E(G)|, and this would perhaps be useful information

towards solving Conjecture 3.
We have not been able to prove Conjecture 2 in general, but we obtained two

partial results. We showed that Conjecture 2 holds for every 3-free digraph G such
that either

• V (G) is the union of two cliques, or
• the vertices of G can be arranged in a circle such that if distinct u, v, w

are in clockwise order and uw ∈ E(G), then uv, vw ∈ E(G).

Incidentally, Kostochka and Stiebitz [2] proved that in any minimal counterex-
ample to Conjecture 2, every vertex is nonadjacent to at least three other vertices,
and the conjecture is true for all digraphs with at most 8 vertices.
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Nowhere-zero 3-flows

Genghua Fan

(joint work with Chuixiang Zhou)

A nowhere-zero k-flow in a graph G with an orientation is an integer-valued
function f on E(G) such that 0 < |f(e)| < k for each e ∈ E(G), and for each
v ∈ V (G),

∑

e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e),

where E+(v) is the set of non-loop edges with tail v, and E−(v) is the set of
non-loop edges with head v. The following is the well-known 3-flow conjecture of
Tutte.

Conjecture. Every 4-edge-connected graph has a nowhere-zero 3-flow.

Let H1 and H2 be two subgraphs of a graph G. We say that G is the 2-sum of
H1 and H2, denoted by H1⊕2H2, if E(H1)∪E(H2) = E(G), |V (H1)∩V (H2)| = 2,
and |E(H1) ∩ E(H2)| = 1. A triangle-path in a graph G is a sequence of distinct
triangles T1T2 · · ·Tm in G such that for 1 ≤ i ≤ m− 1, |E(Ti) ∩ E(Ti+1)| = 1 and
E(Ti)∩E(Tj) = ∅ if j > i+1. A connected graph G is triangularly connected if for
any two edges e and e′, which are not parallel, there is a triangle-path T1T2 · · ·Tm

such that e ∈ E(T1) and e′ ∈ E(Tm).

Theorem 1. Let G be a triangularly connected graph with |V (G)| ≥ 3. Then G
has no nowhere-zero 3-flow if and only if there is an odd wheel W and a subgraph
G1 such that G = W ⊕2 G1, where G1 is a triangularly connected graph without
nowhere-zero 3-flow.

Repeatedly applying the theorem, we obtain a complete characterization of tri-
angularly connected graphs which have no nowhere-zero 3-flow. As a consequence,
G has a nowhere-zero 3-flow if it contains at most three 3-cuts, extending an earlier
result of DeVos et al. [1]. Also, by the characterization, we obtain extensions to
earlier results on locally connected graphs (Lai [3]), chordal graphs (Lai [2]) and
squares of graphs (DeVos et al. [1]).

Let G be a simple graph on n vertices, n ≥ 3. It is well known that if G satisfies
the Ore-condition: d(x) + d(y) ≥ n for every pair of non-adjacent vertices x and y
in G, then G has a hamiltonian circuit, which implies that G has a nowhere-zero
4-flow. But, it is not necessary for G to have a nowhere-zero 3-flow. We have that

Theorem 2. Let G be a simple graph on n vertices, n ≥ 3. If d(x)+ d(y) ≥ n for
for every pair of non-adjacent vertices x and y in G, then G has no nowhere-zero
3-flow if and only if G is one of the six completely described graphs on at most 6
vertices.
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For n ≥ 6, let K+
3,n−3 denotes the simple graph on n vertices obtained from the

complete bipartite graph K3,n−3 by adding an edge between two vertices of degree

n − 3. It is easy to show that in the graph K+
3,n−3, d(x) + d(y) ≥ n for each edge

xy, but K+
3,n−3 has no nowhere-zero 3-flow. We prove that

Theorem 3. Let G be a 2-edge-connected simple graph on n vertices. If d(x) +
d(y) ≥ n for each edge xy ∈ E(G), then G has no nowhere-zero 3-flow if and only
if G is either K+

3,n−3 or one of the five completely described graphs on at most 6
vertices.
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Graph Separator Theorems

Jacob Fox

(joint work with János Pach)

We describe some old and new generalizations of the Lipton-Tarjan separator
theorem for planar graphs. We conclude with three conjectures in combinatorial
geometry that we recently settled using the new separator theorems.

1. The Lipton-Tarjan separator theorem and its extensions

A weight for a graph G = (V, E) is a function w : V → R>0. For S ⊂ V , we let
w(S) :=

∑

v∈S w(v). A separator for a finite graph G = (V, E) with respect to a
weight w is a subset V0 ⊂ V for which there is a partition V = V0 ∪ V1 ∪ V2 with
w(V1), w(V2) ≤ 2

3w(V ) and no vertex in V1 is adjacent to a vertex in V2.
The classical Lipton-Tarjan separator theorem [7] states that for every planar

graph G with n vertices and weight function w for G, there is a separator for G
with respect to w of size O(

√
n).

Gilbert, Hutchinson, and Tarjan [5] generalized the Lipton-Tarjan separator
theorem to graphs embeddable in an orientable surface. They proved that for
every graph G with n vertices embeddable in an orientable surface of genus g and
for every weight w for G, there is a separator for G with respect to w of size
O(

√
gn). This result is tight up to the implied constant.

The well-known Kuratowski-Wagner theorem states that a graph is planar if
and only if it contains neither K5 nor K3,3 as a minor. Alon, Seymour, and Thomas
[1] proved that for every graph G with no Kh-minor and weight w for G, there is
a separator for G with respect to w of size O(h3/2n1/2). It is an interesting open
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problem to improve this bound to O(hn1/2). If true, this would imply the result
of Gilbert, Hutchinson, and Tarjan, since Kh has genus Ω(h2).

By an important theorem of Koebe [6], every planar graph can be represented
as the intersection (incidence) graph of nonoverlapping closed disks in the plane.
Miller, Teng, Thurston, and Vavasis [8] proved that for every d ≥ 2, graph G that
is an intersection graph of a collection of n balls in R

d such that no point belongs
to more than k of them, and weight w for G, there is a separator for G with respect
to w of size O(dk1/dn1−1/d).

A Jordan region is a subset of the plane that is homeomorphic to a closed
disk. We say that a Jordan region R contains another Jordan region S if S lies in
the interior of R. A crossing between R and S is either a crossing between their
boundaries or a containment between them. The following result is a generalization
of the separator theorems of Lipton and Tarjan and of Miller, Teng, Thurston, and
Vavasis [8] in two dimensions.

Theorem 1. If G is an intersection graph of a collection of Jordan regions with
a total of m crossings and w is a weight function for G, then G has a separator
of size O(

√
m).

To see that Theorem 1 implies the planar version of the theorem of Miller, Teng
et al. mentioned above, and hence the original Lipton-Tarjan theorem, it is enough
to notice that, given a system of n disks in the plane such that no k of them have
a point in common, the number of crossing pairs is O(kn).

Similar results hold for intersecting graphs in other orientable surfaces. Unlike
Theorem 1, the following result does not depend directly on the number of cross-
ings, but only on the number of edges and on the clique number of the intersection
graph.

Theorem 2. If G is a Kk-free intersection graph of a collection of convex sets in
the plane with m edges, and w is a weight function for G, then G has a separator
of size O(

√
km).

For proofs of Theorems 1 and 2, see [2]. Theorem 2 does not hold in higher
dimensions, as Tietze [12] showed that every finite graph can be obtained as the
intersection graph of convex polytopes in R

3. One can even assume that these
polytopes have no interior points in common!

2. Three applications

A. The following result, conjectured by Pach and Sharir [9], can be deduced both
from Theorem 1 and Theorem 2 (see [2]).

Theorem 3. For each bipartite graph H, there is a constant c(H) such that every
intersection graph of n convex sets in the plane that does not contain H as a
subgraph has at most c(H)n edges.

We cannot decide whether the theorem remains true for H-free intersection
graphs of not necessarily convex Jordan regions.
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B. The proof of the following result, conjectured by Pach and G. Tóth [11], was
found by the authors and Cs. D. Tóth [4], and is also based on Theorem 1.

Theorem 4. For any positive integer k, there is ck > 0 such that if G is an
intersection graph of n curves in the plane with no pair of curves intersecting in
more than k points, then G or its complement Ḡ contains a bi-clique of size at
least ckn.

It is interesting to note that this statement does not remain true if we drop the
assumption on the number of times two curves may cross.

C. The next result, proved in [3], strengthens a conjecture by Pach and G. Tóth
[10]. A topological graph is a graph drawn in the plane with vertices as points
and edges as curves connecting the corresponding pairs of vertices and not passing
through any other vertex.

Theorem 5. For any ǫ > 0 and for any positive integer k, there are δ > 0 and n0

such that every topological graph with n ≥ n0 vertices, at least n1+ǫ edges, and no
pair of edges intersecting in more than k points contains nδ pairwise intersecting
edges.
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Hadwiger’s conjecture for quasi-line graphs

Alexandra Ovetsky Fradkin

(joint work with Maria Chudnovsky)

All graphs we consider are finite and for a graph G, V (G) and E(G) denote its
vertex-set and edge-set, respectively. For X ⊆ V (G), let G|X denote the subgraph
of G induced on X . We say that X ⊆ V (G) is a claw if G|X is isomorphic to the
complete bipartite graph K1,3. A graph is then claw-free if no subset of V (G) is
a claw.

Hadwiger’s conjecture states that for every loopless graph G and every integer
t ≥ 0, either G is t-colorable, or G has a clique minor of size t + 1. The case
t = 4 is equivalent to the four color theorem and the case t = 5 was proved by
Robertson, Seymour, and Thomas with the use of the four color theorem. For
t > 5, the conjecture remains open.

Hadwiger’s conjecture has also been proved for some special classes of graphs.
In a recent work, Reed and Seymour [2] proved Hadwiger’s conjecture for line
graphs. We prove Hadwiger’s conjecture for a class of graphs that is a proper
superset of line graphs and a proper subset of claw-free graphs, the set referred
to as quasi-line graphs. A graph G is a quasi-line graph if for every vertex v, the
set of neighbors of v can be expressed as the union of two cliques. Note that this
is a partition of the vertex set of the neighborhood of v. Our main result is the
following:

Theorem 1. Let G be a quasi-line graph with chromatic number χ. Then G has
a clique minor of size χ.

Our proof of Theorem 1 uses a structure theorem for quasi-line graphs that
appears in [1]. We introduce some definitions and then state the theorem.

Let Σ be a circle and let F1, . . . , Fk be subsets of Σ, each homeomorphic to
the closed interval [0, 1]. Let V be a finite subset of Σ, and let G be the graph
with vertex set V in which v1, v2 ∈ V are adjacent if and only if v1, v2 ∈ Fi for
some i. Such a graph is called a circular interval graph. Let F = {F1, . . . , Fk}.
Then we call the pair (Σ, F) a representation of G. A subset S ⊂ V is a block if
S = Fi ∩ V for some Fi ∈ F. We then call S the block of Fi. A linear interval
graph is constructed in the same way as a circular interval graph except we take
Σ to be a line instead of a circle. It is easy to see that all linear interval graphs
are also circular interval graphs.

The structure theorem that we use states that there are two types of quasi-line
graphs. The first subclass is a generalization of the class of circular interval graphs
and we proceed to describe it below. Once again, we start with a few definitions.

Let X, Y be two subsets of V (G) with X ∩ Y = ∅. We say that X and Y
are complete to each other if every vertex of X is adjacent to every vertex of Y ,
and we say that they are anticomplete if no vertex of X is adjacent to a member
of Y . Similarly, if A ⊆ V (G) and v ∈ V (G) \ A, then v is A-complete if it is
adjacent to every vertex in A, and A-anticomplete if it has no neighbor in A. A
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pair A, B of disjoint subsets of V (G) is called a homogeneous pair in G if for every
vertex v ∈ V (G) \ (A ∪ B), v is either A-complete or A-anticomplete and either
B-complete or B-anticomplete.

Let G be a circular interval graph with V (G) = {v1, . . . , vn} in order clockwise.
An edge joining vj to vk with j < k is called a maximal edge if {vj, vj+1, . . . , vk}
is a block. In this case the following operation produces another quasi -line graph:
replace vj and vk by two cliques A and B, respectively, such that every member
of A has the same neighbors as vj and every member of B has the same neighbors
as vk in V (G) \ {vj , vk}, and the edges between A and B are arbitrary. The pair
(A, B) is then a homogeneous pair of cliques. Let H be a graph obtained from
a circular interval graph by choosing a matching of maximal edges and replacing
each of them by a homogeneous pair of cliques as described above. Then H is
called a fuzzy circular interval graph.

Let (A, B) be a homogeneous pair of cliques in a circular interval graph. We
say that (A, B) is non-trivial if there exists an induced 4-cycle in G with exactly
two vertices in A and exactly two vertices in B. It is easy to see that if a fuzzy
circular interval graph is not a circular interval graph, then it has a non-trivial
homogeneous pair.

We proceed with the construction of graphs that belong to the second subclass
of quasi-line graphs. A vertex v ∈ V (G) is simplicial if the set of neighbors of v is
a clique. A claw-free graph S together with two distinguished simplicial vertices
a, b is called a strip (S, a, b), with ends a and b. If S is a linear interval graph
with V (S) = {v1, . . . , vn} in order and with n > 1, then v1, vn are simplicial,
and so (S, v1, vn) is a strip, called a linear interval strip. Since linear interval
graphs are also circular interval graphs, we can define fuzzy linear interval strips
by introducing homogeneous pairs of cliques in the same manner as before.

Let (S, a, b) and (S′, a′, b′) be two strips. Then they can be composed as fol-
lows. Let A, B be the set of neighbors of a, b in S respectively, and define A′, B′

analogously. Consider the disjoint union of S \ {a, b} and S′ \ {a′, b′}, and make
A complete to A′ and B complete to B′.

This method of composing two strips described above can be used as follows.
Let S0 be a graph which is the disjoint union of complete graphs with |V (S)| =
2n. We arrange the vertices into pairs (a1, b1), . . . , (an, bn). For i = 1, . . . , n, let
(S′

i, a
′
i, b

′
i) be a strip and let Si be the graph obtained by composing (Si−1, ai, bi)

and (S′
i, a

′
i, b

′
i). The resulting graph Sn is then called a composition of the strips

(S′
i, a

′
i, b

′
i ).

We are finally ready to state the structure theorem for quasi-line graphs [1] that
we use to prove our main result.

Theorem 2. Let G be a connected, quasi-line graph. Then G is either a fuzzy
circular interval graph or a composition of fuzzy linear interval strips.

The proof of Theorem 1 is by induction on the number of non-trivial homo-
geneous pairs. We first show that the theorem holds if G is a quasi-line graph
with no non-trivial homogeneous pairs, that is, G is a circular interval graph or
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a combination of linear interval strips. We next show that if G has a non-trivial
homogeneous pair then there exists a graph H with the following properties:

(1) H is a quasi-line graph with one fewer non-trivial homogeneous pair than
G.

(2) χ(H) = χ(G).
(3) H is a minor of G.

Then inductively, since H has one fewer homogeneous pair than G, H has a
clique minor of size χ(H) = χ(G). Since H is a minor of G, every clique minor of
H is also a clique minor of G. Hence, G has a clique minor of size χ(G), which
completes the proof of Theorem 1.
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Fleischner’s theorem for infinite graphs

Angelos Georgakopoulos

The traditional approach to hamiltonicity in infinite graphs is to take a ‘Hamilton
cycle’ to be a double ray containing all vertices. However, it is easy to see that
no graph with more than two ends can contain such a double ray. Recently, a
way was found to overcome this difficulty, and many more, opening the way for
studying extremal-type problems for infinite graphs without restricting the scope
to a special class of graphs: Diestel [3, 4] suggested the use of topological paths and
circles as analogues of finite paths and cycles, respectively, in order to translate
finite extremal graph theory to locally finite graphs. The topology he uses is the
Freudenthal compactification |G| of G obtained by adding its ends (see [2]). In
this sense, an infinite cycle, called a circle, is a homeomorphic image of S1 in |G|,
and a hamilton circle is a circle containing all vertices (and hence, since circles are
closed subsets, all ends).

This approach of using topological circles as an analog for finite cycles has
already enjoyed considerable success in the study of the cycle space of a locally
finite graph, see [3]. Our main result, proving a conjecture of Diestel [2], suggests
that it is very promising for the study of extremal problems as well:

Theorem 1 ([6]). If G is a locally finite 2-connected graph, then |G2| has a Hamil-
ton circle.

(Gn is the graph on V (G) where xy is an edge if d(x, y) ≤ n in G.)

For finite graphs this is a well known theorem of Fleischner [5], and in fact one
of the ideas used for the proof of Theorem 1 led to a short proof of Fleischner’s
theorem, see [7]. For 1-ended graphs it is a theorem of Thomassen [8].
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When one tries to prove Theorem 1, the standard compactness tools fail; ap-
plying them one can easily obtain a continuous map from S1 to |G| visiting every
vertex exactly once, but such a map is in general not a circle because it does not
have to be injective at the ends.

In order to overcome this difficulty and construct a map that visits not only
every vertex but also every end exactly once, the proof of Theorem 1 reduces the
problem to that of proving the existence of a suitable Euler tour in an auxiliary
graph, where a (topological) Euler tour of a locally finite graph is defined as a
continuous image of S1 in |G| traversing every edge exactly once.

The rough structure of the proof of Theorem 1 is as follows. Firstly, an eulerian
auxiliary graph G′ is obtained from G by deleting some of its edges and by doubling
some others. Then, an Euler tour σ of G′ is chosen, and it is transformed into
a Hamilton circle of G2 by performing “leaps” over vertices, that is, by replacing
pairs of subsequent edges uv, vw in σ by the edge uw of G2. It is possible to
perform enough leaps of this kind to ensure that every vertex will eventually have
degree precisely 2, but only if G′ is carefully constructed to make this possible.
This task, already difficult in the finite case, is made more complicated by the fact
that G′ must have the same end-structure as G in order for the rest of the proof
to work. In any case, the resulting infinite walk, i.e. the alleged Hamilton circle,
will be injective at the ends if and only if σ is. Now σ can indeed be chosen to be
injective at the ends by the following result:

Theorem 2 ([6]). If a locally finite multigraph has a topological Euler tour, then
it also has one that is injective at ends.

Having seen Theorem 2 and the way it is applied to prove Theorem 1, a general
approach for generalising sufficient conditions for hamiltonicity to locally finite
graphs suggests itself: one could try to reduce the problem of finding a Hamilton
cycle to that of finding an Euler tour in some auxiliary graph, extend this reduction
to the infinite case, and then use Theorem 2. The following two conjectures are
good candidates for trying this approach, since the corresponding finite proofs do
use Euler tours:

Conjecture 1. Every locally finite 7-connected line graph has a Hamilton circle.

For finite graphs this is a theorem of Zhan [10].

Conjecture 2. If G is a 4-edge-connected locally finite graph then |L(G)| contains
a Hamilton circle.

For finite graphs there is an easy proof of this fact also using Euler tours ([1]).
The last two results are special cases of a conjecture of Thomassen [9], stating that
every finite 4-connected line graph is hamiltonian. Of course, one can also ask if
Thomassen’s conjecture is true for infinite graphs.

Up to now we restricted our attention to locally finite graphs, but our hamil-
tonicity problems can also be stated for non-locally-finite graphs, at least for count-
able ones:
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Conjecture 3. If G is a countable 2-connected graph then |G2| contains a Hamil-
ton circle.

A further result from [6] that could be extended to non-locally-finite graphs is
the following:

Theorem 3. If G is a connected locally finite graph, then |G3| contains a Hamilton
circle.

Conjecture 4. If G is a countable connected graph then |G3| contains a Hamilton
circle.

See [6] for a discussion of Conjecture 4.

References

[1] P.A. Catlin. Supereulerian Graphs: A Survey. J. Graph Theory, 16:177-196, 1992.
[2] R. Diestel. Graph Theory (3rd edition). Springer-Verlag, 2005.

Electronic edition available at:
http://www.math.uni-hamburg.de/home/diestel/books/graph.theory.

[3] R. Diestel. The cycle space of an infinite graph. Comb., Probab. Comput., 14:59–79, 2005.
[4] R. Diestel. Extremal infinite graph theory? a topological approach. Oberwolfach reports,

3:19–21, 2006.
[5] H. Fleischner. The square of every two-connected graph is hamiltonian. J. Combin. Theory

(Series B), 16:29–34, 1974.
[6] A. Georgakopoulos. Infinite hamilton cycles in squares of locally finite graphs. Preprint 2006.
[7] A. Georgakopoulos. A short proof of Fleischner’s theorem. Preprint 2006.
[8] C. Thomassen. Hamiltonian paths in squares of infinite locally finite blocks. Annals of

Discrete Mathematics, 3:269–277, 1978.
[9] C. Thomassen. Reflections on graph theory. J. Graph Theory, 10:309–324, 1986.

[10] S. Zhan. On hamiltonian line graphs and connectivity. Discrete Mathematics, 89:89–95,
1991.

The rotational dimension of a graph

Frank Göring

(joint work with Markus Wappler, Christoph Helmberg)

Fiedler [1] introduced an interesting graph invariant - the absolute algebraic con-
nectivity being the maximized (over all non-negative edge weightings that sum up
to the number of edges) second smallest eigenvalue of the laplacian of a graph G.
By semidefinite duality, the underlying semidefinite optimization problem leeds to
the problem of embedding G into n-space such that the variance of the vertex-
positions is maximized, while the distances of incident vertices are bounded by
one

(1)

max
∑

i∈N ‖vi‖2

s.t.
∑

i∈N vi = 0
‖vi − vj‖ ≤ 1 for ij ∈ E
vi ∈ ℜn for i ∈ N.

(see [2]).
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For connected graphs G let dima(G) be the minimum dimension of an opti-
mal embedding (for other graphs let dima(G) = max{dima(C)|C is a component
of G}).

We are interested in upper bounds for dima(G).
First we realize, that tw(G)+1 ≥ dima(G), where tw(G) denotes the treewidth

of G. Especially we show, that this bound is tight in the sense, that for each
positive integer t there is a graph with tw(G) = t and dima(G) = t + 1.

Unfortunately it turns out, that this bound is not very sharp for some wellknown
graph classes (i.e. if G is a planar grid, we get dima(G) = 1).

Thus better upper bounds for dima(G) are wanted.
To make this problem more tractable, we generalize it in the following way: We

attach a non-negative value to each edge (the edge length) and each vertex (the
vertex weight) and maximize the weighted variance of the vertex positions with
respect to the constrained, that the distance between positions of incident vertices
is bounded by the edge length:

(2)

max
∑

i∈N si‖vi‖2

s.t.
∑

i∈N sivi = 0
‖vi − vj‖ ≤ lij for ij ∈ E
vi ∈ ℜn for i ∈ N.

Again we look for the minimum dimension of an optimal embedding (in case G is
connected). The largest such minimum dimension maximized over all possible edge
lengths and vertex weights we call rotational dimension of G (short dimrot(G)).
By construction, dimrot(G) is an upper bound for dima(G).

An optimal solution of (2) can be interpreted as follows: Imagine a graph,
the edges being massless cords of fixed nonnegative lengths connecting vertices
of possibly different nonnegative masses, rotating uniformly (each vertex having
the same angular speed) around its barycenter. The centrifugal force tends to
maximize the weighted variance of the positions of its vertices.

This interpretation motivates the chosen name of the invariant as the following
theorem

Theorem 1 (Separator-Shadow). Let vi ∈ ℜn for i ∈ N be an optimal solution
of (2) for a connected graph G = (N, E) with vertex weights si and edge lengths
lij. Furthermore, let K1∪̇S∪̇K2 be a partition of N with no node in K1 adjacent
to a node in K2. Then, for at least one j ∈ {1, 2}, for every i ∈ Kj the straight
line segment [0, vi] intersects the convex hull of the points in S, i.e., ∀i ∈ Kj:
[0, vi] ∩ conv{vs : s ∈ S} 6= ∅.

Using Theorem 1 we give an idea of the proof of

Theorem 2. dimrot(G) ≤ tw(G) + 1.

Furthermore we note, that the rotational dimension is a minor monotone graph
property. For small values we got the following result:
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Theorem 3. Let G be a graph. Then

• dimrot(G) = 0 iff G is edgeless,
• dimrot(G) ≤ 1 iff G has maximum degree 2, and
• dimrot(G) ≤ 2 iff G is outerplanar.

We conjecture dimrot(G) ≤ µ(G), where µ(G) denotes the Colin de Verdiére
number of the graph (see [3] ). Because we could prove dimrot(K3,3) = 3 <
µ(K3,3) = 4 it is clear, that the rotational dimension and the Colin de Verdiére
number are different graph properties.

Computational experiments give strong evidence to the following conjectures:

• dimrot(M8) = 3 if M8 is the moebius ladder on 8 vertices (also known as
wagner graph).

• dimrot(P ) ≤ 3 if P is a planar graph.

Furthermore, we conjecture the following:

• dimrot(G1 ∪G2) ≤ max{dimrot(G1), dimrot(G2), |G1 ∩G2|+1} if G1 ∩G2

is complete.
• dimrot(G) ≤ 3 iff G has no K5-minor.
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On tree width, bramble size, and expansion

Martin Grohe

(joint work with Dániel Marx)

Tree width is a fundamental graph invariant with many applications in graph
structure theory and graph algorithms. Tree width has a dual characterisation in
terms of brambles [2, 3]. A bramble in a graph G is a family of connected subgraphs
of G such that any two of these subgraphs have a nonempty intersection or are
joined by an edge. The order of a bramble is the least number of vertices required
to cover all subgraphs in the bramble. Seymour and Thomas [3] proved that a
graph has tree width k if and only if the maximum order of a bramble of G is
k + 1.

Such a dual characterisation of a graph invariant can be very useful in algorith-
mic or complexity theoretic applications. However, the bramble characterisation
of tree width has a serious drawback, because brambles may be exponentially
large and therefore it is not even possible to “guess” a bramble of large order in
polynomial time and use it as a witness for large tree width in a nondeterministic
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algorithm. Motivated by such considerations, we address the question of how large
brambles actually need to be. It will be important in the following to distinguish
between the size of a bramble, that is, the number of subgraphs it consists of,
and its order. We establish an exponential lower bound on the size of brambles of
maximum order. Actually, we prove a stronger result that applies also to brambles
of order smaller than the maximum: There is a family (Gk)k≥1 of graphs such that
for every ǫ > 0 and every k, the tree width of Gk is k, and every bramble of Gk of
order at least Ω(k1/2+ǫ) has size exponential in n. Conversely, we prove that every

graph of tree width k has a bramble of order Ω(k1/2/ log2 k) and size polynomial
in n and k.

To establish the lower bound, we need sparse graphs with tree width linear in the
number of vertices. We observe that graphs with positive vertex expansion have
this property, hence bounded-degree expander graphs can be used for the lower
bound. Furthermore, we prove the following converse statement: if all graphs
in a class C has tree width linear in the number of vertices, then they contain
subgraphs of linear size (again in the number of vertices) with vertex expansion
bounded from below by a constant.

For the upper bound, we give a novel characterization of large tree width, which
might be of independent interest. Let G(q) denote the graph obtained by replacing
every vertex by a clique of size q and replacing every edge with a complete bipartite
graph. Let Lt be the line graph of a complete graph on k vertices. We show that

if the tree width of G is large, then G(q) has an L
(r)
k minor, for appropriate values

of q, r, and t. Thus, rather than characterizing the tree width of G with its
minors, we characterize it with the minors of G(q). This way, we can obtain a
characterization that is tight up to an O(log k) factor, where k is the tree width
of G. The proof is based on the connection between tree width and the existence
of certain separators. The main technical tool that we use is an intergrality gap
result of Feige et al. [1] for the balanced separator problem.
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Independent dominating sets and Hamilton cycles

Penny Haxell

(joint work with Ben Seamone, Jacques Verstraete)

A famous conjecture of Sheehan [6] from 1975 states that every four-regular hamil-
tonian graph has at least two hamilton cycles. In the direction of this conjec-
ture, Thomassen proved that all hamiltonian d-regular graphs contain at least two
hamilton cycles, provided d > 71. A graph is uniquely hamiltonian if it contains
exactly one hamilton cycle. Here we extend this result as follows:

Theorem 1. There are no d-regular uniquely hamiltonian graphs when d > 22.

The proof of Theorem 1 uses Thomassen’s [10] sufficient condition for a second
hamilton cycle: a hamiltonian graph has at least two hamilton cycles if it contains
an independent set of vertices in a hamilton cycle C which is a dominating set in
G−E(C). In this paper we call such a set of vertices a C-independent dominating
set. Since by Thomason [8] every d-regular graph with d odd is not uniquely
hamiltonian, to prove Theorem 1, it suffices to show that in a d-regular hamiltonian
graph with a hamilton cycle C and d > 23, there is a C-independent dominating
set. On the other hand one may ask if a smaller value of d is possible. We will
give examples of four-regular graphs G with hamilton cycle C that do not contain
any C-independent dominating set. However the following question is open: does
there exists a five-regular graph with a hamilton cycle C that does not contain a
C-independent dominating set?
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Intrinsically knotted graphs

Hein van der Holst

Consider an embedding of a graph G in 3-space. Each circuit of G corresponds
to an embedding of the 1-sphere in 3-space, and so is a knot. We call the embed-
ding knotless if each circuit of G is embedded knotlessly. If there is no knotless
embedding, we say that the graph is intrinsically knotted.

It is not difficult to see that if G has a knotless embedding, then each minor
of G has a knotless embedding. By a theorem of Robertson and Seymour [2], we
know that the class of graphs that have a knotless embedding can be characterized
by a finite collection of forbidden minors. Conway and Gordon [1] showed that K7

is intrinsically knotted. They showed that
∑

C α(C) = 1 for each embedding of
K7 in 3-space, where the sum is over all Hamilton circuits and where α is the Arf
invariant. Can we find more forbidden minors? Instead of restricting ourselves to
just the Arf invariant, we use Vassiliev’s invariants.

A singular knot of order m is an immersed circle in 3-space with m transversal
self intersections. If V is an invariant on singular knots with at most m − 1 self
intersection, then V can be extended to singular knots with m self intersection by
defining it as the difference of V on the two singular knots obtained from making
one self intersection an overcrossing and an undercrossing. Recursively, we can
then extend each knot invariant to singular knots. A Vassiliev invariant of order
m is a knot invariant that vanishes on singular knots with at least m + 1 self
intersections (see [3] for more on Vassiliev’s invariants).

Let G = (V, E) be a graph and let C be the collection of all circuits in G. Orient
each of the circuits in C and let V be a Vassiliev invariant. For each embedding
G of G, we define a vector V ∈ Z

C by V C = V (G(C)). Here G(C) denotes the
embedding of C induced by G. Then V is a topological invariant of G. A singular
graph of order m is an immersion of a graph in 3-space with m transversal self
intersections. Call two singular graphs of order m equivalent if can obtain one from
the other by pulling edges through other edges. Extend V to singular graphs. If
V is a Vassiliev invariant of order m, then V vanishes on each singular graph with
at least m + 1 self intersections. If G is a knotless embedding, then V (G) = 0.

To test whether a graph G has no embedding G in 3-space such that V (G) = 0,
we can use the following matrix M . For each integer m > 1 and each equivalence
class of singular graphs of order m, take one representative H and place V (H) as
a row in M . Take an arbitrary embedding G of the graph G. If V (G) is not an
integer combination of the rows of M , then G has no embedding G in 3-space such
that V (G) = 0.

The converse need not be true. If V (G) is an integer combination of the rows
of M , then G need not have an embedding G in 3-space such that V (G) = 0. To
find a system of equations such that also the converse holds, is work progress.
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Pin-collinear body-and-pin frameworks and the Molecular Conjecture

Tibor Jordán

(joint work with Bill Jackson)

Informally, a body-and-hinge framework in R
d consists of large rigid bodies artic-

ulated along affine subspaces of dimension d − 2 which act as hinges i.e. bodies
joined by pin-joints in 2-space, line-hinges in 3-space, plane-hinges in 4-space, etc.
This notion may be formalized by using the facts that the infinitesimal motions of
a rigid body in d-space can be coordinatized using screw centers (real vectors of

length
(

d+1
2

)

which represent (d− 1)-tensors in projective d-space), and that rota-
tions correspond to particular kinds of screw centers called (d − 1)-extensors, see
[1]. A d-dimensional body-and-hinge framework (G, q) is a multigraph G = (V, E)
together with a map q which associates a (d− 2)-dimensional affine subspace q(e)
of R

d with each edge e ∈ E. An infinitesimal motion of (G, q) is a map S from V

to
(

d+1
2

)

-space such that, for every edge e = uv, S(u)−S(v) is a scalar multiple of
P (e, q), where P (e, q) is a (d − 1)-extensor which corresponds to a rotation about
q(e). An infinitesimal motion S is trivial if S(u) = S(v) for all u, v ∈ V and (G, q)
is said to be infinitesimally rigid if all its infinitesimal motions are trivial.

These definitions can be motivated by considering each vertex v ∈ V as being
represented by a large rigid body Bv in d-space and each edge e = uv ∈ E as
being represented by the ‘hinge’ q(e) attached to Bu and Bv. Each body Bv can
move continuously subject to the constraints that, for each edge e = uv ∈ E, the
relative motion of Bu with respect to Bv is a rotation about the hinge q(e). At
any given instant, the motion of Bv is represented by the screw center S(v). The
constraint concerning the relative motion of Bu with respect to Bv is represented
by the condition that S(u) − S(v) is a scalar multiple of P (e, q). We refer the
reader to [7, 9] for a more detailed account of body-and-hinge frameworks in R

d.
We will only be concerned with the case d = 2.

Multigraphs which can be realized as infinitesimally rigid body-and-hinge frame-
works are characterized by the following theorem, proved independently by Tay
[5] and Whiteley [7]. Given a multigraph G and a positive integer k, we use kG to
denote the multigraph obtained by replacing each edge of G by k parallel edges.

Theorem 1. [5, 7] A multigraph G can be realized as an infinitesimally rigid body-

and-hinge framework in R
d if and only if (

(

d+1
2

)

− 1)G has
(

d+1
2

)

edge-disjoint
spanning trees.

Tay and Whiteley jointly conjecture that the same condition characterizes when
a multigraph can be realized as an infinitesimally rigid body-and-hinge framework
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in R
d with the additional property that all the hinges incident to each body are

contained in a common hyperplane.

Conjecture 2. [6] Let G be a multigraph. Then G can be realized as an infinites-
imally rigid body-and-hinge framework in R

d if and only if G can be realized as
an infinitesimally rigid body-and-hinge framework (G, q) in R

d with the property
that, for each v ∈ V , all of the subspaces q(e), e incident to v, are contained in a
common hyperplane.

Conjecture 2 is known as the Molecular Conjecture because of its implications
for the rigidity of molecules when d = 3.1 It has been verified by Whiteley [8] when
d = 2 for the special case when 2G is the union of three edge-disjoint spanning
trees.

Our main result is a complete solution of the conjecture when d = 2.

Theorem 3. [4] Let G = (V, E) be a multigraph. Then the following statements
are equivalent.
(a) G has a realization as an infinitesimally rigid body-and-hinge framework in
R

2.
(b) G has a realization as an infinitesimally rigid body-and-hinge framework (G, q)
in R

2 with each of the sets of points {q(e) : e ∈ EG(v)}, v ∈ V , collinear.
(c) 2G contains three edge-disjoint spanning trees.

Our proof relies on a new formula for the maximum rank of a pin-collinear body-
and-pin realization of a multigraph as a 2-dimensional bar-and-joint framework.
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On Steiner rooted-orientations of graphs and hypergraphs

Tamás Király

(joint work with Lap Chi Lau)

Introduction. Let H = (V, E) be an undirected hypergraph. An orientation of
H is obtained by assigning a direction to each hyperedge in H . In our setting, a
hyperarc (a directed hyperedge) is a hyperedge with a designated tail vertex and
other vertices as head vertices. Given a set T ⊆ V of terminal vertices (the vertices
in V −T are called the Steiner vertices) and a root vertex r ∈ T , we say a directed
hypergraph is Steiner rooted k-hyperarc-connected if there are k hyperarc-disjoint
paths from the root vertex r to each terminal vertex in T . Here, a path in a
directed hypergraph is an alternating sequence of distinct vertices and hyperarcs
{v0, a0, v1, a1, . . . , ak−1, vk} so that vi is the tail of ai and vi+1 is a head of
ai for all 0 ≤ i < k. The Steiner Rooted-Orientation problem is to find
an orientation of H so that the resulting directed hypergraph is Steiner rooted
k-hyperarc-connected, and our objective is to maximize k.

When the Steiner Rooted-Orientation problem specializes to graphs, it
is a common generalization of some classical problems in graph theory. When
there are only two terminals (T = {r, v}), it is the edge-disjoint paths problem
solved by Menger. When all vertices in the graph are terminals (T = V ), it can be
shown to be equivalent to the edge-disjoint spanning trees problem solved by Tutte
[12] and Nash-Williams [11]. An alternative common generalization of the above
problems is the Steiner Tree Packing problem studied in [7, 4, 8]. Notice that
if a graph G has k edge-disjoint Steiner trees (i.e. trees that connect the terminal
vertices T ), then G has a Steiner rooted k arc-connected orientation. The converse,
however, is not true. As we shall see, significantly sharper approximate min-max
relations and also approximation ratio can be achieved for the Steiner Rooted-

Orientation problem, especially when we consider hyperarc-connectivity and
element-connectivity. This has implications in the network multicasting problem.

Given a hypergraph H , we say T is k-hyperedge-connected in H if there are
k hyperedge-disjoint paths between every pair of vertices in T . It is not difficult
to see that for a hypergraph H to have a Steiner rooted k-hyperarc-connected
orientation, T must be at least k-hyperedge-connected in H . The main focus of
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this paper is to determine the smallest constant c so that the following holds: If T
is ck-hyperedge-connected in H , then H has a Steiner rooted k-hyperarc-connected
orientation.
Previous Work. Graph orientations is a well-studied subject in the literature,
and there are many ways to look at such questions (see [1]). Here we focus on
graph orientations achieving high connectivity.

In the following λ(x, y) denotes the maximum number of edge-disjoint paths
from x to y, which is called the local-edge-connectivity from x to y. Nash-Williams
[10] proved the following deep generalization of Robbins’ theorem which achieves
optimal local-arc-connectivity for all pairs of vertices: “Every undirected graph G
has an orientation D so that λD(x, y) ≥ ⌊λG(x, y)/2⌋ for all x, y ∈ V ”.

For the Steiner Rooted-Orientation problem, the only known result fol-
lows from Nash-Williams’ orientation theorem: if T is 2k-edge-connected in an
undirected graph G, then G has a Steiner rooted k-arc-connected orientation.
For hypergraphs, there is no known orientation result concerning Steiner rooted-
hyperarc-connectivity.

For orientation results concerning vertex-connectivity, very little is known even
for global rooted-vertex-connectivity (when there are no Steiner vertices). Frank
[3] made a conjecture on a necessary and sufficient condition for the existence of
a strongly k-vertex-connected orientation, which in particular would imply that
a 2k-vertex-connected graph has a strongly k-vertex-connected orientation (and
hence a rooted k-vertex-connected orientation). The only positive result along
this line is a sufficient condition due to Jordán [6] for the case k = 2: Every
18-vertex-connected graph has a strongly 2-vertex-connected orientation.
Results. Our main result is the following approximate min-max theorem on
hypergraphs, which is tight in terms of the connectivity bound.

Theorem 1. Suppose H is an undirected hypergraph, T is a subset of terminal
vertices with a specified root vertex r ∈ T . Then H has a Steiner rooted k-hyperarc-
connected orientation if T is 2k-hyperedge-connected in H.

The proof is constructive, and also implies a polynomial time constant factor
approximation algorithm for the problem. When the above theorem specializes
to graphs, this gives a new and simpler algorithm (without using Nash-Williams’
orientation theorem) to find a Steiner rooted k-arc-connected orientation in a
graph when T is 2k-edge-connected in G. On the other hand, we prove that
finding an orientation which maximizes the Steiner rooted-arc-connectivity in a
graph is NP-complete.

Following the notation on approximation algorithms on graph connectivity
problems, by an element we mean either an edge or a Steiner vertex. For graph
connectivity problems, element-connectivity is regarded as of intermediate diffi-
culty between vertex-connectivity and edge-connectivity (see [5, 2]). A directed
graph is Steiner rooted k-element-connected if there are k element-disjoint directed
paths from r to each terminal vertex in T . We prove the following approximate
min-max theorem on element-connectivity, which is tight in terms of the connec-
tivity bound. We also prove the NP-completeness of this problem.
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Theorem 2. Suppose G is an undirected graph, T is a subset of terminal vertices
with a specified root vertex r ∈ T . Then G has a Steiner rooted k-element-connected
orientation if T is 2k-element-connected in G.

Concluding Remarks. The questions of generalizing Nash-Williams’ theorem to
hypergraphs and obtaining graph orientations achieving high vertex-connectivity
remain wide open. We believe that substantially new ideas are required to solve
these problems. The following problem seems to be a concrete intermediate prob-
lem which captures the main difficulty: If T is 2k-element-connected in an undi-
rected graph G, is it true that G has a Steiner strongly k-element-connected ori-
entation? We believe that settling it would be a major step towards the above
questions.
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Colorings of quadrangulations of the torus and the Klein bottle

Daniel Král’

(joint work with Robin Thomas)

Our main motivation comes from the following classical theorem of Grötzsch [3].

Theorem 1. Every triangle-free planar graph is 3-colorable.

Until the work of Thomassen [5, 6], this result has been regarded as a very diffi-
cult theorem—Thomassen [5, 6] found two reasonably simple proofs, and extended
Theorem 1 to other surfaces. In the talk, we considered triangle-free quadrangu-
lations of the torus or the Klein bottle, and, more generally, embeddings of graphs
in the torus or the Klein bottle with all faces of even size.

Let us now introduce some basic notation. Graphs may have parallel edges,
but no loops. By a surface we mean a compact 2-dimensional manifold with no
boundary. A drawing of a graph G in a surface Σ refers to an embedding of G
in Σ with no crossings, and a subdrawing is a restriction of the embedding to a
subgraph of G. We apply standard graph-theoretic terminology to drawings and
speak about cycles in drawings, colorings of drawings, etc. Two drawings G1 and
G2 are isomorphic if there exists an isomorphism between the graphs of G1 and G2

that preserves face boundaries. A drawing G in a surface Σ is a quadrangulation
if every face is bounded by a walk of length four, and we say that a drawing G is
even-faced if every face is bounded by a walk of even length.

Thomassen [7] conjectured that every triangle-free quadrangulation of the torus
is 3-colorable. We prove that this conjecture holds, with the following exception:
the quadrangulation Q13,5,1 depicted in Figure 1 is a counterexample, as pointed
out by Archdeacon, Hutchinson, Nakamoto, Negami and Ota [1]. However, our
first main result states that Q13,5,1 is essentially the only counterexample, even
for the more general class of even-faced drawings.

Theorem 2. A triangle-free even-faced drawing in the torus is 3-colorable if and
only if it has no subdrawing isomorphic to Q13,5,1.

The edge-width of a drawing is the length of the shortest non-contractible cycle,
or infinity if the drawing has no non-contractible cycle. The representativity of a
drawing G in a surface Σ is the maximum integer k such that every non-contractible
simple closed curve in Σ meets G at least k times. Since Q13,5,1 has a non-
contractible cycle of length five, we obtain the following:

Corollary 3. Every even-faced drawing in the torus of edge-width at least six is
3-colorable.

This corollary settles a conjecture of Archdeacon, Hutchinson, Nakamoto, Negami
and Ota [1], who proved the same result for drawings of representativity at least
9. An earlier result of Hutchinson [4] proves this with 6 replaced by 25.

Let us turn to nonorientable surfaces now. From the vertex-coloring point
of view triangle-free drawings in the projective plane are completely understood.
First of all, Euler’s formula implies that they have a vertex of degree at most three,
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Figure 1. The drawing Q13,5,1 in the torus.

and hence they are always 4-colorable. Youngs [8] discovered the remarkable fact
that no quadrangulation of the projective plane has chromatic number exactly
three, and Gimbel and Thomassen [2] extended that result to a characterization
of 3-colorable triangle-free drawings in the projective plane:

Theorem 4. A drawing in the projective plane with no contractible cycles of length
three is 3-colorable if and only if it has no subdrawing isomorphic to a non-bipartite
quadrangulation of the projective plane.

Thus there are infinitely many triangle-free quadrangulations of the Klein bot-
tle that are not 3-colorable: take two quadrangulations of the projective plane
such that at least one of them is not bipartite, in each of them select a facial
cycle, and identify those cycles. The resulting quadrangulation of the Klein bot-
tle is not 3-colorable, because it has a subdrawing isomorphic to a nonbipartite
quadrangulation of the projective plane.

There is another reason why a quadrangulation of the Klein bottle may fail to
be 3-colorable. A closed walk or cycle in a drawing G in the Klein bottle is called
meridian if it is homotopic to a 2-sided simple closed curve that does not separate
the surface. It has been proved in [1] that if a quadrangulation G of the Klein
bottle contains an odd meridian walk, then G is not 3-colorable.

We establish that the above two obstructions are the only ones to 3-colorability
of quadrangulations of the Klein bottle. By an equator in a drawing G in the Klein
bottle we mean a non-contractible cycle in G that separates the surface.

Theorem 5. A non-bipartite quadrangulation of the Klein bottle is 3-colorable if
and only if

(1) it has no equator of length at most four, and
(2) it has no odd meridian walk.
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And we have the following corollary for even-faced drawings:

Corollary 6. Let G be an even-faced drawing in the Klein bottle with no equator
of length at most four and no odd meridian walk. Then G is 3-colorable.

This settles another conjecture of Archdeacon, Hutchinson, Nakamoto, Negami
and Ota [1], who proved the same result for drawings of representativity at least
7.

Corollary 7. Let G be an even-faced drawing in the Klein bottle with edge-width
at least five and no odd meridian walk. Then G is 3-colorable.

By Theorem 5 the bound of five is best possible.
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[5] C. Thomassen, Grötzsch’s 3-color theorem and its counterparts for the torus and the projec-

tive plane, J. Combin. Theory Ser. B 62 (1994), 268–279.
[6] C. Thomassen, A short list color proof of Grotzsch’s theorem, J. Combin. Theory Ser. B 88

(2003), 189–192.
[7] C. Thomassen, Lecture at the First joint meeting of the AMS and the Taiwanese Mathemat-

ical Society, special session Discrete Mathematics (Graph Colorings), December 14-18, 2005,
Taichung, Taiwan.

[8] D. A. Youngs, 4-chromatic projective graphs, J. Graph Theory 21 (1996), 219–227.

Property testing, extremal graph theory, and graph limits

László Lovász

The notion of convergent sequences of dense graphs and limit objects for them was
introduced in a number of papers by C. Borgs, J. Chayes, L. Lovász, V.T. Sós,
B. Szegedy and K. Vesztergombi. The main goal of this talk was to show that
applying these methods we obtain simple proofs of various results in property
testing and extremal graph theory.

Let hom(G, H) denote the number of homomorphisms (adjacency-preserving
mappings) from a graph G into a graph H . We also define the homomorphism
densities

t(F, G) =
hom(F, G)

|V (G)||V (F )|
.

(t(F, G) is the probability that a random map of V (F ) into V (G) is a homomor-
phism).

A graph sequence (Gn) of simple graphs with |V (Gn)| → ∞ is convergent, if
the sequence t(F, Gn) has a limit for every simple graph F . Let W0 denote the
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set of symmetric measurable functions W : [0, 1]2 → [0, 1]. To every convergent
graph sequence we can assign a limit object in the form of a function from W0,
which describes the limits of subgraph densities:

t(F, Gn) → t(F, W ),

where

t(F, W ) =

∫

[0,1]V (F )

∏

ij∈E(F )

W (xi, xj) dx.

Various other characterizations of convergent sequences and the limit object can
be found in [7, 4, 5]. Here we sketch two applications of this construction to derive
combinatorial results through means of functional analysis.
Example 1. Alon and Stav [1] proved that for every hereditary property P ,
a random graph with appropriate density is (asymptotically) farthest from the
property in edit distance. Define the closure P of the property is the set of limits
of of convergent sequences of graphs with this property. Then the result of Alon
and Stav says that the maximum L1 distance of a function W ∈ W from P is
attained by a constant.

In this context, there is a very simple proof. It is quite easy to check that the set
W0 \P is convex, and hence the maximum of the distance from its complement is
attained on a convex subset. Furthermore, this subset is invariant under measure
preserving transformations of [0, 1], and hence it is easy to argue that it must
contain a constant function.

Example 2. A sequence (Gn : n = 1, 2, . . . ) of graphs is called quasirandom
with density p (where 0 < p < 1), if for every simple finite graph F , we have
t(F, Gn) → p|E(F )|. Using the notion of limits, we can state this as Gn tends to
the identically p function. One of the most surprising facts proved in [6] is that it
is enough to require the homomorphism density condition for just two graphs: if
t(K2, Gn) → p and t(C4, Gn) → p4, then (Gn) is quasirandom. Since the definition
fits so well in the graph limit framework, it is not surprising that it also provides
a very simple proof. One such proof was described in [3], but an even simpler one
can be given. The following sketch should illustrate the technique.

If the sequence (Gn) is not quasirandom, then we can select a convergent subse-
quence whose limit is a function U 6≡ const. For this function we have t(K2, U) = p
and t(C4, U) = p4. Two simple applications of the Cauchy-Schwarz inequality tells
us that

t(C4, U) ≥ t(P3, U)2 ≥ t(K2, U)4

(where P3 is the path with length 3). Hence t(P3, U) = p2. Now U can be viewed

as a kernel operator on L2([0, 1]2), acting by f 7→
∫ 1

0 U(., x)f(x) dx. The function

U2(x, y) =
∫ 1

0 U(x, y)U(z, y) dz corresponds to its square, and satisfies
∫

[0,1]2
(U2(x, y) − p2)2 = t(C4, U) − 2p2t(P3, U) + p4 = 0,
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and so U2 ≡ p2. From this it follows by simple operator algebra that U ≡ p, a
contradiction.
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Openly disjoint circuits through a vertex in digraphs

Wolfgang Mader

First, we introduce some terminology and notation. All digraphs are assumed to
be finite without loops and without multiple edges of the same direction. All
paths and circuits are continously directed. Instead of strongly connected we
say connected. Let κ(D) be the connectivity number of D. The vertex number
of a digraph D is denoted by |D|, and x ∈ D means that x is a vertex of D.
Let g(D) be the girth of D, i.e. the length of a shortest circuit. A digraph is
r-outregular, if every vertex has outdegree r, and it is r-regular, if it is r-outregular
and r-inregular. Furthermore, δ+(D) denotes the minimum outdegree of D, and
we define δ(D) := min{δ+(D), δ−(D)}. For an x ∈ D, let κD(x, x) denote the
maximum number of openly disjoint circuits through x, i.e. circuits in D having
pairwise only x in common.
The starting point for our studies were the following two conjectures.

Conjecture 1 (M.Behzad, G. Chartrand, and C. Wall [1]). Every r-regular
digraph D has |D| ≥ r(g(D) − 1) + 1.

Conjecture 2 (L. Caccetta and R. Häggkvist [2]) Every r-outregular digraph
D has |D| ≥ r(g(D) − 1) + 1.

If an r-regular or r-outregular digraph D always has a vertex x with κD(x, x) = r,
this would easily imply Conjecture 1 or Conjecture 2, respectively. For r ≤ 2, this
is true.
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Theorem 3 (C. Thomassen [8]). Every 2-outregular digraph D has a vertex x
with κD(x, x) = 2.

But for r ≥ 3, r-outregularity is not enough for the existence of such a vertex.

Theorem 4 (C. Thomassen [9]). For every integer r ≥ 3 , there is a digraph
D with δ(D) ≥ r such that for every x ∈ D, κD(x, x) ≤ 2 holds.

(Notice that every D with δ+(D) ≥ r has an r-outregular subdigraph.)

The digraphs constructed by C. Thomassen for the proof of Theorem 4 are neither
r-regular nor connected.
Let us first consider digraphs of high connectivity. Of course, a digraph D with
κ(D) ≥ r has κD(x, x) ≥ r for every x ∈ D by Menger’s Graph Theorem. But we
can weaken the connectivity condition a bit.

Theorem 5 (W. Mader [5]). Let D be a digraph with δ(D) ≥ r ≥ 3 and
κ(D) ≥ r − 2. Then D contains a vertex x with κD(x, x) ≥ r. For each integer
r ≥ 3 , this does not remain true, if we weaken δ(D) ≥ r to δ+(D) ≥ r or
κ(D) ≥ r − 2 to κ(D) ≥ r − 3.

It is easily seen that Theorem 5 implies the following result proved in [7]. Herein,
Di(x) is the set of all y ∈ D which have distance exactly i from the vertex x in D.

Theorem 6 (Jian Shen and D.A. Gregory [7]). If κ(D) ≥ δ(D) − 1 for a
digraph D, then there is an x ∈ D with |Di(x)| ≥ δ(D) for all i = 1, ... , g(D) -
1.
It might be possible that Conjecture 1 is provable by the existence of an x with
κ(x, x) = r.

Question 7 (P.D.Seymour [6]). Does every r-regular digraph D contain a
vertex x with κD(x, x) = r?

This is true for r ≤ 2 by Theorem 3. Since every component of the underlying
graph of an r-regular digraph D induces an r-regular, connected subdigraph, The-
orem 5 answers Question 7 positively for r = 3. For r ≥ 4, the question remains
open.
For the class of all vertex-transitive digraphs, Conjecture 1 is proved.

Theorem 8 (Y.O. Hamidoune [3]). For every vertex-transitive digraph D,
|D| ≥ δ(D)(g(D) − 1) + 1 holds.

It seems that Hamidoune’s proof cannot be developed further to give the following
stronger result, which we proved using other methods.
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Theorem 9 (W. Mader [5]). For every vertex x in a vertex-transitive digraph
D, κD(x, x) = δ(D) holds.

Theorem 9 implies a recent result of Y.O.Hamidoune (cf. [4]) that for every x in
a vertex -transitive digraph D, |Di(x)| ≥ δ(D) holds for i = 1, ..., g(D) − 1.

Added in proof: In the meantime, I have found some examples which show that
Question 7, in general, has a negative answer.
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Small separations in symmetric graphs

Bojan Mohar

(joint work with Matt DeVos)

We prove a rough structure theorem for small separations in symmetric graphs.
Let G = (V, E) be a vertex transitive graph, let A ⊆ V be finite vertex set with

|A| ≤ |V |
2 and set k = |{v ∈ V \ A : u ∼ v for some u ∈ A}|. We show that

whenever the diameter of G is at least 31(k + 1)2, then either |A| ≤ 2k3, or G has
a (bounded) ring-like structure and A is efficiently contained in an interval of this
structure. This theorem may be viewed as a rough analogue of earlier results of
Mader, Lovász, Tindell, Watkins, and others. This subject is also closely connected
to the study of product sets and expansion in groups, and our theorem has some
applications in this context as well. For graphs, we apply this to get a new proof
of a theorem of Babai on the structure of vertex transitive graphs with no Kn

minor. Improving on the original work of Babai, whose proof did not give any
explicit bounds, our argument yields explicit structural bounds.
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From chip-firing games to Riemann-Roch theorem in tropical
geometry

Serguei Norine

(joint work with Matthew Baker)

A finite graph can be viewed, in many respects, as a discrete analogue of a Riemann
surface. We pursue this analogy in the context of linear equivalence of divisors.

Let G be a finite, loopless, connected graph, possibly with multiple edges.
Choose an ordering v1, . . . , vn of the vertices of G. The Laplacian matrix Q asso-
ciated to G is the n×n matrix Q = D−A, where D is the diagonal matrix whose
(i, i)th entry is the degree of vertex vi, and A is the adjacency matrix of the graph.

Let Div(G) be the free abelian group on the set of vertices of G. We think of
elements of Div(G) as formal integer linear combinations of elements of V (G). By
analogy with the Riemann surface case, elements of Div(G) are called divisors on
G. For convenience, we define D(v) to be the coefficient of v ∈ V (G) in D. We
define the degree deg(D) of the divisor D to be equal to

∑

v∈V (G) D(v). We say

that a divisor E is effective if E(v) ≥ 0 for every v ∈ V (G).
We let M(G) = Hom(V (G), Z) be the abelian group consisting of all integer-

valued functions on the vertices of G. One can think of M(G) as analogous to the
space of meromorphic functions on a Riemann surface. Using our ordering of the
vertices, we obtain isomorphisms between Div(G),M(G), and the space of n × 1
column vectors having integer coordinates. We define the subgroup Prin(G) of
Div(G) consisting of principal divisors to be the image of M(G) under multipli-
cation by the Laplacian matrix Q.

Define an equivalence relation ∼ on the group Div(G) by declaring that D ∼ D′

if and only if D − D′ ∈ Prin(G). Borrowing again from the theory of Riemann
surfaces, we call this relation linear equivalence.

This equivalence relation can be conveniently restated in terms of a game on G,
similar to the chip-firing game studied by Björner, Lovász, and Shor in [2]. The
initial configuration of the game assigns to each vertex v of G an integer number
of dollars. A vertex which has a negative number of dollars assigned to it is said
to be in debt. A move consists of a vertex v either borrowing one dollar from each
of its neighbors or giving one dollar to each of its neighbors. The object of the
game is to reach, through a sequence of moves, a configuration in which no vertex
is in debt. We will call such a configuration a winning position, and a sequence of
moves which achieves such a configuration a winning strategy. Configurations in
the game can be identified with divisors in Div(G), and winning positions can be
identified with effective divisors. It follows from the definitions that two divisors
D and D′ on G are linearly equivalent if and only if there is a sequence of moves
in the game taking D to D′.

Let g = |E(G)| − |V (G)|+ 1. We have the following description of the configu-
rations for which there exists a winning strategy.

Theorem 1. Let N = deg(D) be the total number of dollars present at any stage
of the game.
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1. If N ≥ g, then there is always a winning strategy.
2. If N ≤ g − 1, then there is always an initial configuration for which no

winning strategy exists.

For D ∈ Div(G), we define the linear system associated to D to be the set |D|
of all effective divisors linearly equivalent to D:

|D| = {E ∈ Div(G) : E ≥ 0, E ∼ D} .

We define the dimension r(D) of the linear system |D| by setting r(D) equal
to −1 if |D| = ∅, and then declaring that for each integer s ≥ 0, r(D) ≥
s if and only if |D − E| 6= ∅ for all effective divisors E of degree s. It is clear
that r(D) depends only on the linear equivalence class of D. There is a winning
strategy in our game whose initial configuration corresponds to D if and only if
r(D) ≥ 0. By Theorem 1 we have r(D) ≥ 0 for every D ∈ Div(G) with deg(D) ≥ g.

In fact, a stronger result, namely a graph-theoretic analogue of the classical
Riemann-Roch theorem, holds. Let the canonical divisor on G be the divisor K
such that K(v) = deg(v) − 2 for every v ∈ V (G).

Theorem 2 (Riemann-Roch for Graphs). Let G be a graph, and let D be a divisor
on G. Then

r(D) − r(K − D) = deg(D) + 1 − g .

The proof of Theorem 2 is purely combinatorial and is based on the analysis
of the chip-firing game described above. In [3] the authors use Theorem 2 to
derive the Riemann-Roch theorem for tropical curves. Further analogies between
Riemann surfaces and graphs that arise in this context are explored in [1].
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A generalization of planarity and linkless embeddability of graphs

R.A. Pendavingh

(joint work with H. van der Holst)

We propose a topological graph invariant σ(G) and show that it has the following
properties:

• σ is minor-monotone, that is if G is a minor of H , then σ(G) ≤ σ(H);
• σ(Kn) = n − 1;
• G is planar if and only if σ(G) ≤ 3; and
• G is linklessly embeddable if and only if σ(H) ≤ 4.
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The immediate motivation for the study of this invariant was to find an general
upper bound for the graph invariant µ(G) that was introduced by Yves Colin de
Verdière [1, 2]. Given an undirected graph G = (V, E), µ(G) is defined as the
maximum corank of a symmetric V × V matrix M with the following properties:

• if u 6= v, then Muv < 0 if uv ∈ E and Muv = 0 if uv 6∈ E;
• M has exactly one negative eigenvalue; and
• if X is a symmetric V × V matrix such that

– Xuv = 0 whenever u = v or uv ∈ E, and
– MX = 0,

then X = 0

Colin de Verdiére showed that µ is minor-monotone and that µ(Kn) = n− 1, and
he characterized the graphs with µ(G) ≤ k for k = 1, 2, 3. In view of the nature
of the definition of µ it remains a striking fact that µ(G) ≤ 3 if and only if G is
planar.

A high point in the subsequent study of µ was the characterization of the
graphs with µ ≤ 4 as the linklessly embeddable graphs. Robertson, Seymour
and Thomas [7] had characterized such linklessly embedable graphs in 1995 as the
graphs without a minor in the Petersen family. Each of the members of this family
has µ = 5, and by the minor-monotonicity of µ it follows from their theorem that if
µ(G) ≤ 4, then G is linkless. The converse implication was then shown by Lovász,
and A. Schrijver in 1998 [5].

Inspired by the proof of the latter theorem, we have shown:

Theorem 1. If G is an undirected graph, then σ(G) ≥ λ(G).

Here λ is a graph invariant related to µ, introduced by van der Holst, Laurent,
and Schrijver [3], with the property that λ(G) + 2 ≥ µ(G) [6]. So our theorem
indirectly gives an upper bound on µ.

The definition of σ(G) is as follows. A closure of a graph G = (V, E) is a
CW-complex C so that

• the 1-skeleton of C is equal to G, and
• the k-skeleton of C[U ] is (k− 1)-connected for each U ⊆ V such that G[U ]

is connected, and each integer k with 2 ≤ k ≤ |V |.
We say that a continuous mapping φ : C → R

n is even if

• φ(c1)∩φ(c2) = ∅ for every nonadjacent pair of cells c1, c2 of C with dim c1+
dim c2 = n − 1, and

• the intersection number of φ(c1) and φ(c2) is even for every pair of non-
adjacent cells c1, c2 of C with dim c1 + dim c2 = n.

Then, σ(G) is the smallest integer n so that a closure of G has an even mapping
into R

n.
Looking at this definition it would appear that determining σ(G) for a single

graph G is already a daunting task, but we have shown that to determine whether
there exists an even mapping of some closure of G into R

n, it suffices to inspect any
generic continuous mapping of any closure of G into R

n. In a way, the existence
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of such mappings depends only on the homology of the deleted product of some
closure of G. Even mappings are well-behaved objects, and hence our claim that
they are useful in the study of µ. We could show, for example, that if G embeds
on the torus, then σ(G) ≤ 6.

We have σ(G) ≤ t iff µ(G) ≤ t for t ≤ 4, but there is a graph T with µ(T ) ≤
18 < 20 ≤ λ(T ) [6] and thus for that graph µ(T ) < λ(T ) ≤ σ(T ). We nevertheless

hazard the following conjecture. For any graph G, the panelling G̃ of G is the
2-complex that arises by attaching a disk to each circuit of G (by glueing the
boundary of the disk to the circuit).

Conjecture 1. Let G be an undirected graph. Then the following are equivalent:

(1) µ(G) ≤ 5;
(2) σ(G) ≤ 5; and

(3) G̃ can be embedded in R
4.
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Infinite locally random graphs

Alexander D. Scott

(joint work with Pierre Charbit)

The Rado graph R is the unique graph with countably infinite vertex set such that,
for any disjoint pair X , Y of finite subsets of vertices, there is a vertex z that is
joined to every vertex in X and no vertex in Y . If 0 < p < 1, and G is a random
graph in G(N, p), then with probability 1 we have G ∼= R. For this reason, the
Rado graph is also known as the infinite random graph (see [5] for a survey).
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The Rado graph can be obtained deterministically by beginning with any finite
(or countably infinite) graph G and iterating the following construction:

[E1] For every finite subset X of V (G) add a vertex y with neighbourhood
N(y) = X .

Here N(x) = {y ∈ V (G) : xy ∈ E(G)} is the neighbourhood of x; we also write
N [x] = N(x) ∪ {x} for the closed neighbourhood of x.

Motivated by copying models of the web graph, Bonato and Janssen [3] (see also
[1] and [4]) introduced the following interesting construction. For a finite graph G,
the pure extension PE(G) of G is obtained from G by the following construction:

[E2] For every x ∈ V (G) and every finite X ⊆ N [x] add a vertex y with
neighbourhood N(y) = X .

Iterating this construction, we obtain a limit graph, denoted by ↑G.
Bonato and Janssen ([3], Theorem 3.3) claimed that ↑G ∼=↑H for every pair

G, H of finite graphs. The (claimed) unique limit graph has become known [1] as
the infinite locally random graph (the name follows from the fact that, as is easily
shown, the neighbourhood of any vertex in ↑G induces a copy of the Rado graph).

We show that Bonato and Janssen’s claim is incorrect. There are in fact in-
finitely many limit graphs G: for instance, ↑ C5, ↑ C6, ↑ C7, . . . are all distinct.
Furthermore, we give a simple criterion that determines when ↑G ∼=↑H , as fol-
lows.

We shall say that a vertex x of a graph G is inessential if there exists y ∈ V (G),
y 6= x such that N(x) ⊆ N [y]. A graph is essential if it contains no inessential
vertices. Given a graph G, a sequence of vertices x1, . . . , xk is a maximal sequence
of removals if xi is inessential in G\{x1, . . . , xi−1} for each i, and G\{x1, . . . , xk}
is an essential graph. It turns out that the resulting graph is well-defined (up to
isomorphism), and we shall write it as ↓G. For instance, ↓C4

∼=↓Kn
∼= K1, but

↓C5, ↓C6, . . . are all distinct and nontrivial.
We can now state our classification result.

Theorem 1. Let G and H be finite graphs. Then ↑G ∼=↑H ⇐⇒↓G ∼=↓H
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Limits of Discrete Structures

Balázs Szegedy

Let O be a set of objects and let let S be a set of sampling procedures from
the elements of O. Each element s ∈ S associates a (Borel) probability measure
s[A] on a compact space C(s) with every A ∈ O. A sequence A1, A2, · · · ∈ O
is called convergent if for every s ∈ S the distributions s[A1], s[A2], . . . converge.
This means that for every continuous function f : C(s) → R the sequence

∫

C(s)

f d(s[Ai])

is convergent. We denote by Ō the completion of O with respect to this conver-
gence notion. By definition, the sampling procedures extend from O to Ō.

Example 1. (Subsets of integers) This example is the first step in ergodic
theory. Let O := {X | n ∈ N, X ⊆ Z/nZ}. For every natural number k we define
the sampling procedure in which we pick a random element x from Z/nZ and then
we take the intersection I = X∩{x, x+1, . . . , x+k−1}. We represent I by a subset
of {1, 2, . . . , k} and so the sampling procedure is a probability distribution on
{0, 1}k. The elements of the completion Ō can be represented as Borel probability
measures on the compact space {0, 1}Z which are invariant under the coordinate-
wise shift. This language allows one to study certain properties of integer subsets
through measure preserving systems.

Example 2. (Bounded degree graphs) Let d be a fixed natural number and
let O be the set of graphs with maximum degree d. For every natural number k
we define a sampling procedure in which we pick a random vertex v and then look
at the neighborhood of v of radius k. The corresponding convergence notion was
introduced and studied by Benjamini and Schramm [6].

Example 3. (Dense Graphs) Let O be the set of finite graphs. For every natural
number k we have a sampling procedure in which we pick k (independent) random
vertices v1, v2, . . . , vk from the vertex set of a graph G and then we look at the
graph induced by these vertices. This procedure gives a probability distribution of
graphs on {1, 2, 3, . . . , k}. The analysis on Ō was studied by Borgs, Chayes, Lovász,
Sós, Szegedy, Vesztergombi [1],[2],[3],[4]. It turns out [3] that the elements of Ō can
be represented by equivalence classes of measurable functions w : [0, 1]2 → [0, 1]
which are symmetric in the two coordinates.

Example 4. (Dense Hypergraphs) Let O be the set of d-uniform hypergraphs.
For every natural number k we define the sampling procedure in which we pick
k random points from the vertex set of a hypergraph H and look at the induced
sub-hypergraph. The analysis on Ō was studied by Elek and Szegedy [7] using
the measure and integral theory on the ultra products of finite sets (Another
approach is by Tao [8]). It turns out that elements of Ō can be represented by
2k − 2 variable measurable functions. The method yields analytic proofs for the
so-called hypergraph removal lemma and hypergrah regularity lemma.
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Example 5. (Weighted graphs) Let us fix a real number d > 0 and let O
denote the set of those weighted complete graphs in which the edge weights are in
the interval [−d, d]. The sampling procedures are the same as in Example 3. The
corresponding convergence notion was studied by Lovász and Szegedy [5]. In this
setting, elements of Ō can be represented by three variable measurable functions.
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Coloring triangle-free graphs on surfaces

Robin Thomas

(joint work with Zdeněk Dvořák and Daniel Král’)

In this talk we are concerned with coloring graphs that embed in a fixed surface.
This restriction often makes coloring problems tractable, and the purpose of this
talk is to describe a new result along these lines.

The classical theorem of Grötzsch [2] states that every triangle-free planar graph
is 3-colorable. Thus deciding whether a triangle-free planar graph is 3-colorable is
trivial. However, Grötzsch’s Theorem does not generalize to any other surface Σ,
and, in fact, the 3-colorability of triangle-free graphs embedded in Σ is an inter-
esting problem. When Σ is the projective plane it has been solved by Gimbel and
Thomassen [1], but it was open for all other surfaces. In this talk we announce
solution for all surfaces, as follows.

Theorem 1. For every surface Σ there exists a polynomial-time algorithm that
given an input triangle-free graph G embedded in Σ correctly determines whether
G is 3-colorable.

In fact, our result is more general in two respects. The input graph is allowed to
have triangles, as long as they are not trivial. (We say that a cycle C is trivial if it
bounds a disk, and non-trivial otherwise.) Second, a bounded number of vertices
may be precolored.

We prove Theorem 1 by means of the following structural result. We need a
definition first. If G is a graph embedded in a surface Σ and f is a face of a
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subgraph of G, then by G[f ] we denote the subgraph of G consisting of all vertices
and edges of G embedded in the closure of f . Furthermore, we regard G[f ] as
embedded in the surface Σ[f ] obtained from f by capping off each component of
the boundary of f by a disk.

Theorem 2. For every surface Σ there exists an integer N such that every
triangle-free graph G embedded in Σ is either 3-colorable, or has a subgraph H
on at most N vertices such that for every face f of H

(i) f is a disk, or
(ii) f is a cylinder, or
(iii) the graph G[f ] embedded in the surface Σ[f ] is “locally planar”.

We omit the definition of local planarity. Instead, let us remark that we have
proven a coloring extension theorem that under the assumption of local planarity
gives an easily checkable necessary and sufficient condition for a coloring of the
boundary of f to extend to G[f ]. This condition is in terms of “winding number” of
the precoloring, and takes a different form depending on whether Σ[f ] is orientable
or not.

The proof of Theorem 2 can be converted to a polynomial-time algorithm to
find the graph H . Starting with the null graph, if the current graph does not
satisfy any of the conclusions of the theorem, then we find a way to enlarge H
while simplifying the faces of H , and repeat. The simplification guarantees that
there will be only a constant number of iterations.

Once the graph H is found we use Theorem 2 to test whether some 3-coloring of
H extends to G[f ] for all faces f of H . We have developed separate algorithms to
do that when f is a disk or a cylinder. If condition (iii) holds, then the extension
question can be easily decided using the coloring extension theorem mentioned
above.
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Submodular partition functions

Stéphan Thomassé

(joint work with Omid Amini, Frédéric Mazoit, Nicolas Nisse)

In their seminal paper Graph Minors X [3], Robertson and Seymour introduced
the notion of branch-width of a graph and its dual notion of tangle. Their method
is based on the definition of bias and tree-labellings. Later on, Seymour and
Thomas [4] found a dual notion to tree-width, the bramble number (named after
Reed [2]). The proof of the bramble-number/tree-width duality makes use of
Menger’s theorem to reconnect partial tree-decompositions, see for instance the
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textbook of Diestel [1]. Our aim in this paper is to show how the classical dual
notions of width-parameters can be deduced from the original method of Graph
Minors X.

Let E be a set. A partitioning tree on E is a tree T in which the leaves are
identified with the elements of E in a one-to-one way. Every edge e of T thus
corresponds to a bipartition Te of E: the leaves of the two subtrees obtained by
deleting e. In a similar way, every internal node v of T gives a partition Tv: the
leaves of the subtrees obtained by deleting v.

An obvious way of forming a partitioning tree is simply to fix a central node
which is linked to all elements of E - a partitioning star. But what if we are not
permitted to do so? Precisely, assume that a restricted set of partitions of E, called
admissible partitions, is given. Is it possible to form an admissible partitioning tree
(i.e. all partitions Te and Tv are admissible)?

An obstruction to the existence of such a tree is the dual notion of bramble.
An admissible bramble is a set of pairwise intersecting subsets of E which contains
an element of every admissible partition of E. It is routine to form an admissible
bramble: just pick an element e of E, and collect, for every admissible partition,
the element of the partition which contains e. Such a bramble is called principal.
The crucial fact is that if there is a non-principal admissible bramble B, there is
no admissible partitioning tree. To see this, assume for contradiction that T is an
admissible partitioning tree. For every internal node u of T , there is an element
X of Tu which belong to B. Let v be the neighbour of u which belong to the
component of T \ u having set of labels X . Now orient the edge uv of T from
u to v. Note that every internal node becomes the origin of an oriented edge.
Observe also that an edge of T incident to a leaf never gets an orientation since
B is non-principal. The contradiction follows from the fact that one edge of T
carries two orientations, which is impossible since the elements of B are pairwise
intersecting.

Unfortunately, if no principal admissible bramble exist, there is not necessarily
an admissible partitioning tree. However, for some particular families of admis-
sible partitions (e.g. generated by a submodular partition function) we have the
following:

• Either there exists an admissible partitioning tree.
• Or there exists a non-principal admissible bramble.

Let us now properly define submodular partition functions. Let E be a non-
empty set. A partition of E is a set X = {X1, . . . , Xn} of subsets of E satisfying
X1 ∪ · · · ∪ Xn = E and Xi ∩ Xj = ∅ for all i 6= j. The order in which appears
the Xi’s is irrelevant. We authorize degenerate partitions (i.e. the sets Xi can be
empty). Let F be a subset of E disjoint from Xi. The partition

XXi→F := {X1 ∩ F, . . . , Xi−1 ∩ F, E \ F, Xi+1 ∩ F, . . . , Xn ∩ F}
is the partition obtained from X by pushing Xi to F .

Let Φ be a function defined from the set of partitions of E into the reals. Let X
be a partition of E. We call Φ(X ) the Φ-width, or simply width, of X . Let k be an
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integer. A k-partition is a partition of width at most k. When F is a subset of E,
the width of F is denoted by Φ(F ) := Φ({F, F c}). A k-subset is a subset of width
at most k. The function Φ is a partition function if Φ(X ) ≥ Φ(Xi) for all partition
X = {X1, . . . , Xn} and for all i = 1, . . . , n. Observe that when Φ is a partition
function, k-partitions consist of k-subsets (but all partitions into k-subsets are not
necessarily k-partitions). A partition function Φ is submodular if for every pair of
partitions X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} with Xi ∩ Yj = ∅, we have:

Φ(X ) + Φ(Y) ≥ Φ(XXi→Yj
) + Φ(YYj→Xi

)

Let Φ be a partition submodular function and k be an integer such that every
singleton has width at least k. A partition X being admissible if Φ(X ) ≤ k, we
have the following:

Theorem 1. There exists either an admissible partitioning tree or a non-principal
admissible bramble.

The key-example of a submodular partition function is the function border,
denoted by δ, defined on the set of partitions of the edge set E of a graph G =
(V, E) by letting:

∆(X ) = {x ∈ V : ∃xy ∈ Xi and ∃xz ∈ Xj , i 6= j} and δ(X ) = |∆(X )|.
The tree-width of a graph G = (V, E) corresponds to the partition function δ.

To avoid technicalities, we assume that G has minimum degree two. Since δ is
partition submodular, there is, for every k ≥ 2, either an exact partitioning tree
or a non-principal bramble. Here is how we translate each of these cases into the
classical notions of tree-decomposition and bramble:

If E has an exact partitioning tree T . The restriction of T to its internal nodes,
each of these nodes u corresponding to the bag ∆(Tu), is a tree-decomposition of
G. Indeed, for every edge xy of G, there is a leaf v of T labelled by xy. Denoting
by u the unique neighbor of v in T , it follows that x and y both belong to ∆(Tu),
since the minimum degree in G is two. Furthermore, if a vertex of G both belongs
to ∆(Tu) and ∆(Tv), it also belongs to ∆(Tw) for every node w in the (u, v)-path
of T . Since every bag has size at most k, the tree-width of G is at most k − 1.

If E has a non-principal bramble B, we form a bramble B′ (in the usual sense)
as follows: Let S be a subset of V with |S| ≤ k. We associate to S the partition
{E1, . . . , En} of E where the sets Ei are the (nonempty) sets of edges minimal
with respect to inclusion for the property δ(Ei) ⊆ S. Observe that this is indeed a
partition since δ(Ei∩Ej) ⊆ δ(Ei)∪δ(Ej) ⊆ S. Since B is a non-principal bramble,
one of the Ei, with at least two edges, is in B. This means that Xi = V (Ei)\S is a
nonempty set of vertices. In other words, Ei is the set of edges incident to at least
one vertex of Xi (such a set is denoted by E(Xi)). We now collect, for all subsets
S with |S| ≤ k, these sets Xi to form our B′. Observe first that, by minimality of
Ei, every element Xi of B′ induces a connected subgraph of G. We have now to
prove that for every pair Xi, Xj of elements of B′, Xi∪Xj also induces a connected
subgraph of G. Indeed, let Ei = E(Xi) and Ej = E(Xj). Since the elements of
B are pairwise intersecting, there is an edge xy of G in Ei ∩ Ej . Without loss
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of generality, we can assume that x ∈ Xi. If we also have x ∈ Xj , Xi and Xj

have a nonempty intersection, and thus their union is connected. If x /∈ Xj , we
necessarily have y ∈ Xj , hence there is an edge of G connecting Xi and Xj . Thus
B′ is a bramble, and the minimum size covering set of B′ has at least k+1 elements.
In this case the bramble-number of G is at least k + 1.

The previous proof do not use Menger’s theorem. Moreover, this technique
provides duals to the notions of branch-width, path-width, rank-width, and also
to matroid tree-width.
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Decomposing Berge graphs and detecting balanced skew partitions

Nicolas Trotignon

A hole in a graph is an induced cycle on at least four vertices. A graph is Berge if
it has no odd hole and if its complement has no odd hole [2]. In 2002, Chudnovsky,
Robertson, Seymour and Thomas [5] proved a decomposition theorem for Berge
graphs saying that every Berge graph either is in a well understood basic class or
has some kind of decomposition. Then, Chudnovsky proved stronger theorems [3,
4]. One of them restricts the allowed decompositions to 2-joins and balanced skew
partitions.

We prove that the problem of deciding whether a graph has a balanced skew
partition is NP-hard. We give an O(n9)-time algorithm for the same problem
restricted to Berge graphs. Our algorithm is not constructive: it only certifies
whether a graph has a balanced skew partition or not. It relies on a new decom-
position theorem for Berge graphs, that is more precise than the previously known
theorems. Our theorem also implies that every Berge graph can be decomposed in
a first step by using only balanced skew partitions, and in a second step by using
only 2-joins. Our proof of this new theorem uses at an essential step one of the
theorems of Chudnovsky.
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Even-hole-free graphs that do not contain diamonds: structure
theorem and β-perfection

Kristina Vušković

(joint work with Ton Kloks, Haiko Müller)

We consider finite and simple graphs. We say that a graph G contains a graph F ,
if F is isomorphic to an induced subgraph of G. A graph G is F -free if it does not
contain F . Let F be a (possibly infinite) family of graphs. A graph G is F-free if
it is F -free, for every F ∈ F .

Many interesting classes of graphs can be characterized as being F -free for some
family F . Most famous such example is the class of perfect graphs. A graph G is
perfect if for every induced subgraph H of G, χ(H) = ω(H), where χ(H) denotes
the chromatic number of H and ω(H) denotes the size of a largest clique in H . The
famous Strong Perfect Graph Theorem (conjectured by Berge [2] and proved by
Chudnovsky, Robertson, Seymour and Thomas [3]) states that a graph is perfect
if and only if it does not contain an odd hole nor an odd antihole (where a hole is
a chordless cycle of length at least four, it is odd or even if it contains odd or even
number of nodes, and an antihole is a complement of a hole).

In the last 15 years a number of other classes of graphs defined by excluding a
family of induced subgraphs have been studied, perhaps originaly motivated by the
study of perfect graphs. The kinds of questions this line of research was focused
on were whether excluding induced subgraphs affects the global structure of the
particular class in a way that can be exploited for putting bounds on parameters
such as χ and ω, constructing optimization algorithms (problems such as finding
the size of a largest clique or a minimum coloring) and recognition algorithms. A
number of these questions were answered by obtaining a structural characterization
of a class through their decomposition (as was the case with the proof of the Strong
Perfect Graph Theorem). Each of these (often very complicated) decomposition
theorems, resolved some question, but interestingly very few of them answered the
question of how one might construct all graphs in a particular class starting from
basic blocks by some well defined operations. In [9] we show how such an explicit
construction can be obtained for the class of (even-hole,diamond)-free graphs (i.e.
graphs defined by excluding even holes and diamonds as induced subgraphs). For
this class we also show how they can be properly colored using a greedy algorithm
on a particular, easily constructable, ordering of vertices.

The structure of even-hole-free graphs was first studied by Conforti, Cornuéjols,
Kapoor and Vušković in [4], where a decomposition theorem is obtained for this
class, that was then used in [5] for constructing a polynomial time recognition
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algorithm. One can find a maximum weight clique of an even-hole-free graph in
polynomial time, since as observed by Farber [8] 4-hole-free graphs have O(n2)
maximal cliques and hence one can lisy them all in polynomial time. In [6] da
Silva and Vuškovic show that every even-hole-free graph contains a vertex whose
neighborhood is triangulated (i.e. does not contain a hole), and in fact they prove
this result for a larger class of graphs that contains even-hole-free graphs. This
characterization leads to a faster algorithm for computing a maximum weight
clique in an even-hole-free graph. More recently, Addario-Berry, Chudnovsky,
Havet, Reed and Seymour [1], settle a conjecture of Reed, by proving that every
even-hole-free graph contains a bisimplicial vertex (a vertex whose set of neighbors
induces a graph that is the union of two cliques). This imediately implies that if
G is a non-null even-hole-free graph, then χ(G) ≤ 2ω(G) − 1.

The study of even-hole-free graphs is motivated by their connection to β-perfect
graphs introduced by Markossian, Gasparian and Reed [10]. For a graph G, let
δG be the minimum degree of a vertex in G. Consider the following total order
on V (G): order the vertices by repeatedly removing a vertex of minimum degree
in the subgraph of vertices not yet chosen and placing it after all the remaining
vertices but before all the vertices already removed. Coloring greedily on this
order gives the upper bound: χ(G) ≤ β(G), where β(G) =max{δG′ + 1 : G′ is an
induced subgraph of G}. A graph is β-perfect if for each induced subgraph H of
G, χ(H) = β(H).

It is easy to see that β-perfect graphs belong to the class of even-hole-free
graphs. A diamond is a cycle of length 4 that has exactly one chord. A cap is a
cycle of length greater than four that has exactly one chord, and this chord forms
a triangle with two edges of the cycle.

Markossian, Gasparian and Reed [10] show that (even-hole, diamond, cap)-free
graphs are β-perfect. They show that a minimal β-imperfect graph that is not
an even hole contains no simplicial extreme (where a vertex is simplicial if its
neighborhood set induces a clique, and it is a simplicial extreme if it is either
simplicial or of degree 2). Then they prove that (even-hole,diamond,cap)-free
graphs must always have a simplicial extreme.

This result was then generalized by de Figuiredo and Vušković [7], who show
that (even-hole,diamond,cap on 6 vertices)-free graphs contain a simplicial ex-
treme, and hence are β-perfect.

In [9] we obtain a decomposition theorem for (even-hole,diamond)-free graphs
that uses 2-joins and a special type of a star cutset. This decomposition theo-
rem is then used to show that (even-hole,diamond)-free graphs contain simplicial
extremes, implying that they are β-perfect (which was conjectured in [7]). This
is now the largest class of graphs known to be β-perfect. We note that there
are (even-hole,cap)-free graphs that are not β-perfect. Total characterization of
β-perfect graphs remains open, as well as their recognition.

The fact that (even-hole,diamond)-free graphs have simplicial extremes implies
that for such a graph G, χ(G) ≤ ω(G)+1 and also leads to an explicit construction
of all graphs in this class.
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[2] C. Berge, Färbung von Graphen deren sämtliche bzw. deren ungerade Kreise starr sind
(Zusammenfassung), Wiss. Z. Martin-Luther Univ. Halle-Wittenberg, Math.-Natur. Reihe
10 (1961) 114-115.

[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas, The strong perfect graph the-

orem, Annals of Math. 164 (2006) 51-229.
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The binary matroids with no M(K3,3)-minor

Geoff Whittle

(joint work with Dillon Mayhew, Gordon Royle)

Seymour’s decomposition of regular matroids [2] is a celebrated result in matroid
theory. He proves that a sufficiently connected regular matroid is either graphic,
cographic or the matroid R10. Evidence is emerging that a qualitative version of
Seymour’s theorem holds for all proper minor-closed classes of binary matroids
[1]. This in turn motivates the task of finding exact structural characterizations
of natural minor-closed classes other than regular matroids. By extension from
graphs, it seems particularly natural to consider the classes of binary matroids
obtained by excluding cylce matroids of Kuratowski Graphs.

In the talk I discussed a recent characterization of the binary matroids with no
M(K3,3)-minor. It turns out that a sufficiently connected member of this class
must be close to being cographic. In particular, an internally 4-connected member
of the class is either cographic, one of a set of 18 sporadic matroids, or a matroid
obtained by taking a single-element extension of the dual of the matroid of a
Möbius Graph. Arbitrary members of the class can be obtained by taking 3-sums,
2-sums and direct sums of such matroids with the proviso that 3-sums are taken
across triads only.

The theorem has algorithmic consequences. For an internally 4-connected ma-
troid given by a rank oracle, it can be decided in polynomial time whether it
belongs to the class of binary matroids with no M(K3,3)-minor. The condition
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that the matroid is internally 4-connected is necessary as, if it is removed, it is
provably exponential to determine membership of the class.

The proof of the theorem relies heavily on computers. Most of the sporadic
matroids in the class were revealed by a computer search undertaken by Gordon
Royle. Moreover, the extensive case checking in the proof relied heavily on the
program MACEK, developed by Petr Hliněný.

Results of this nature rely heavily on having appropriate inductive tools. For
this theorem we developed a splitter-type theorem for finding internally 4-connected
minors of vertically 4-connected matroids.
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Progress on Removable Path Conjectures

Paul Wollan

(joint work with Ken-ichi Kawarabayashi, Orlando Lee, Bruce Reed)

Lovász has made the following conjecture.

Conjecture 1. There exists a function f = f(k) such that the following holds.
For every f(k)-connected graph G and two distinct vertices s and t in G, there
exists a path P with endpoints s and t such that G − V (P ) is k-connected.

Conjecture 1 is known to be true for several values of k. In the case k = 1, a
path P connecting two vertices s and t such that G − V (P ) is connected is called
a non-separating path. It follows from a theorem of Tutte any 3-connected graph
contains a non-separating path connecting any two vertices, and consequently,
f(1) = 3. When k = 2, it was independently shown by Chen, Gould, and Yu [1]
and Kriesell [3] that f(2) = 5.

We will consider here two distinct weakenings of Lovasz’ conjecture. The first
asks the following:

Question 1. Does there exist a function f1(k) such that for every f1(k)-connected
graph G and every pair s and t of vertices in G, there exists k internally disjoint
non-separating paths P1, . . . , Pk such that the endpoints of Pi are s and t?

The existence of such a function f1 was first shown by Chen, Gould, and Yu in
[1] where they show f1(k) = 22k + 2 would suffice. We outline a new proof based
on bridge analysis. Given a system of internally disjoint P1, . . . , Pt in a graph G,
let P be the subgraph given by the union of all the paths Pi. Then a bridge of
the path system is either an edge e with both endpoints contained in V (P ) or a
connected component H of G − V (P ) along with all the edges with one endpoint
in V (H) and one endpoint in V (P ). A bridge consisting of a single edge is a trivial
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bridge. The vertices of attachment of a trivial bridge are simply the endpoints of
the edge. For a connected component H of G − V (P ), the vertices of attachment
of the bridge B containing H are simply the vertices of B contained in P .

Theorem 1. There exists a constant c satisfying the following statement. Let G be
a ck-connected graph P1, . . . , Pt be collection of internally disjoint paths contained
in G where the endpoints of Pi are si and ti. Then there exist internally paths
P ′

1, . . . , P
′
t such that the endpoints of P ′

i are si and ti such that for every non-trivial
bridge B, there do not exist k−1 paths containing all vertices of attachment of B.
Furthermore, no path P ′

i contains both ends of any trivial bridge.

Theorem 1 generalizes a result of Tutte showing the same result for k = 2.
From Theorem 1, we immediately get the following theorem.

Theorem 2. There exists a constant c′ such that in every c′k-connected graph G
and for every pair of vertices s and t of G there exists internally disjoint paths
P1, . . . , Pk where the endpoints of Pi are s and t and moreover, for any I ⊆
{1, . . . , k}, the graph G −

(
⋃

i∈I V (Pi)
)

is connected.

Theorem 2 is a slight strengthening of the result of Chen, Gould, and Yu finding
many internally disjoint non-separating paths connecting a given pair of vertices,
although with a larger constant in the theorem.

An alternate weakening of Lovász’ conjecture is to ask the following. What if
instead of deleting the vertices on the path connecting s and t, one asks to delete
the edges of the path and maintain vertex connectivity. We answer this question
in the affirmative with the following theorem.

Theorem 3. There exists a function f2(k) such that for every f2(k)-connected
graph G and every pair of vertices u and v of G, there exists a path P such that
G − E(P ) is k-connected.

This answers a conjecture of Kriesell [4]. When the methods used to prove
Theorem 3 are applied to the original conjecture of Lovász, we are led to the
following conjecture.

Conjecture 2. There exists a function f3(k) such that for every f3(k)-connected
graph G and every three vertices s, t, and x in G, there exists an s-t path P and
a k- connected subgraph H with x ∈ V (H) such that V (H) ∩ V (P ) = ∅.

The methodology used in the proof of Theorem 3 shows that an affirmative
answer to Conjecture 2 would imply that Lovász’ conjecture is also true.

Much of the material presented here appears in [2]
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