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Introduction by the Organisers

The Arbeitsgemeinschaft mit aktuellem Thema “Algebraic structures in conformal
field theories”, organized by Y. Kawahigashi (University of Tokyo), V. Ostrik
(University of Oregon) and C. Schweigert (University of Hamburg), was held from
April 1 to 7, 2007.

Two-dimensional conformal field theory plays a fundamental role in the theory
of two-dimensional critical systems of classical statistical mechanics, in quasi one-
dimensional condensed matter physics and in string theory. The study of defects
in systems of condensed matter physics, of percolation probabilities and of (open)
string perturbation theory in the background of certain solitonic solutions of string
theory, the so-called D-branes, forces one to analyze conformal field theories on
surfaces that may have boundaries and / or can be non-orientable. This study has
recently led to deeper insight into the mathematical structure of conformal field
theory.

Many mathematical disciplines have contributed to a better understanding of
conformal field theory and have received stimulating input from questions arising in
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conformal field theories. There are two major approaches to chiral conformal field
theory: one that is based on operator algebras and one based on vertex algebras.
In both approaches, chiral conformal field theory is described by a certain infinite
dimensional algebraic structure. In the first approach, conformal field theory is
described by a net of von Neumann algebras, where each von Neumann algebra
consists of bounded linear operators and is generated by local observables. This
approach was initiated by Haag and Kastler more than 40 years ago (and applies
also to quantum field theories in dimensions other than two). The latter is based
on algebraic axiomatization of quantum fields in chiral conformal field theory and
was initiated by Frenkel, Lepowsky, Meurman and Borcherds in the 1980s.

Both algebraic structures lead to representation categories which are tensor cat-
egories and, in the case of rational chiral conformal field theories, more specifically
modular tensor categories. In the operator algebraic approach, the representation
category consists of representations of a net of von Neumann algebras on a Hilbert
space; while its original form is due to Doplicher, Haag and Roberts, for chiral
conformal field theory certain adaptations have to be made. The representation
category of vertex algebras consists of modules over (conformal) vertex algebras.
In this Arbeitsgemeinschaft, we have studied algebraic structures related to tensor
categories arising in conformal field theory.

These tensor categories also encode the monodromy representations of the vec-
tor bundles of conformal blocks for rational vertex algebras, objects that are of
interest for algebraic geometry. Moreover, modular tensor categories are a crucial
ingredient in the construction of three-dimensional topological field theories.

While chiral conformal field theories have certain physical applications in the
description of quantum Hall systems, full local conformal field theories are relevant
for the physical applications referred to in the first paragraph. Recently, it has
been understood that the construction of a full local conformal field theory is best
described using the structure of a module category over the tensor category that
describes the chiral data.

In view of the above background, we started the Arbeitsgemeinschaft with a
general introduction (Svegstrup) to tensor categories and module categories to
provide an oecumenic language for both approaches. Then we had three talks
on how tensor categories naturally arise in various approaches to conformal field
theory: through operator algebras (Bartels), loop groups (Bunke), and Frobenius
algebras (Grossman).

The notion of a fusion category provides an abstract framework for various
kinds of representation categories. The quantum double construction, originally
due to Drinfeld, is a very important method to produce a modular tensor category.
It applies to a finite group and also to a more general tensor category. Whenever
a finite group acts on a conformal field theory by symmetries, one can pass to a
new theory fixed by such a symmetry. This new theory is called an orbifold, and
constructions of this type are studied in many different approaches. Doubles of
finite groups, their representation categories and orbifold theories in the operator
algebraic approach were introduced in the talks by Müller and Gray.
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Certain module categories can be classified and the A-D-E classification for the
case of the quantum SL(2) due to Kirillov and Ostrik is a basic example. Another
type of classification for fusion categories is the one for given fusion rules or a given
number of simple objects. Various such classification results have been obtained
by Ostrik and collaborators; they have been the subject of two talks (Phung,
Cuntz). The operator algebraic approach based on theory of subfactors by Jones
has produced a few exceptional tensor categories (the topic of Peters’ talk) which
have not been obtained by other approaches such as theory of quantum groups.
Our understanding of such structures in the framework of conformal field theory
is still very poor and further developments are expected.

There have been various concrete constructions of (2 + 1)-dimensional topolog-
ical quantum field theory in the sense of Atiyah. Two of such constructions, due
to Reshetikhin-Turaev and Turaev-Viro, are particularly closely related to tensor
categories. In these constructions, a three-dimensional closed manifold is realized
through Dehn surgery and triangulation, respectively, and combinatorial data aris-
ing from a tensor category produce a number for each closed manifold which is
a topological invariant of the manifold. This was explained in a first talk by
Suszek; in a second talk (Schommer-Pries), the construction of three-dimensional
topological field theories from subfactors was presented.

Conformal blocks play a fundamental role in conformal field theory. They were
defined in the concrete context of Wess-Zumino-Witten models in Graziano’s talk
and the Knizhnik-Zamolodchikov connection on them was introduced in Nieper-
Wißkirchen’s talk.

Correlation functions, symmetries and dualities are studied in the categorical
framework of conformal field theory. Techniques from topological field theory
provide tools to study such objects. This was the topic of two talks (Lehn, Zito).
In this context, a tensor functor from a tensor category to a category of bimodules
called α-induction plays a prominent role; this was the topic of a Asaeda’s talk. A
study of boundary conformal field theory in the operator algebraic approach, based
on recent results of Longo-Rehren was presented by Bahns. It gives a concrete
realization of the general abstract structure.

We had 17 talks by the participants and two sessions where 12 participants
gave 10-minute presentations on their work. We also had two short supplemen-
tal presentations by the organizers. We had a sufficient amount of time for free
discussions among the participants.

The meeting had 54 participants from various countries in Europe and the U.S.,
Canada, Japan and India.
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Abstracts

Tensor Categories and Module Categories

Rolf Dyre Svegstrup

In the following we will introduce the notions of tensor categories, braidings and
duality for tensor categories, and module categories.

In order to conserve space many definitions have been written in the form of
equations rather than commutative diagrams. However, commutative diagrams
undoubtedly provide a clearer picture and the reader is encouraged to write the
commutative diagrams corresponding to the relevant equations on his own.

1. Tensor Categories

To motivate our definition of a tensor category we briefly consider the cate-
gory of finite-dimensional complex vector spaces having linear maps as morphisms,
Vecfin. On this category the usual tensor product of vector spaces and linear maps
defines a bifunctor ⊗ : Vecfin × Vecfin → Vecfin. Besides defining a bifunctor, the
tensor product has such properties as V ⊗ C ∼= V ∼= C ⊗ V for V ∈ Vecfin as well
as (V ⊗W ) ⊗X ∼= V ⊗ (W ⊗X) for any V,W,X ∈ Vecfin.

We will define a tensor category as being a category equipped with a bifunctor
with properties similar to those indicated above.

Definition. A tensor category is a six-tuple (C,⊗,I,a,l,r) where C is a category,
⊗ : C × C → C a bifunctor, I an object in C, and a : ⊗(⊗ × id) → ⊗(id × ⊗),
l : ⊗(I × id) → id, r : ⊗(id × I) → id are natural isomorphisms such that

(1) (idU ⊗ aV,W,X) ◦ aU,V⊗W,X ◦ (aU,V,W ⊗ idX) = aU,V,W⊗X ◦ aU⊗V,W,X
(2) (idV ⊗ lW ) ◦ aV,I,W = rV ⊗ idW

The natural isomorphism a is called the associativity constraint and l (resp. r) is
called the left (resp. right) unit constraint. The object I is called the unit of the
tensor category. If a, l and r are all identities of the category, the tensor category
is said to be strict.

The requirements on the associativity constraint and the left and right unit
constraints above are called the Pentagon Axiom and the Triangle Axiom, respec-
tively, refering to the shape of the commutative diagrams representing them. They
ensure that the exact manner of moving parentheses around is of no concern.

It is worth noting that what we call a tensor category above is also sometimes
called a monoidal category in the literature. Further adding to the confusion both
terms are sometimes taken to refer to a stricter definition in which the category
is furthermore required to be abelian and the bifunctor ⊗ additive. We will get
back to this in Section 4.

Lastly, we mention that any tensor category is actually equivalent to a strict
tensor category. This is known as Mac Lane’s Coherence Theorem and allows us
to assume strictness of our tensor categories.
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2. Braided Tensor Categories

Returning to the example of the category of finite-dimensional complex vector
spaces, we note that for any two vector spaces V and W the tensor products V ⊗W
and W ⊗ V are isomorphic. Generalizing this notion to tensor categories leads to
the concept of braidings.

For any category C we define the flip functor τ : C × C → C × C by τ(U, V ) =
(V, U) on objects and τ(f, g) = (g, f) on morphisms.

A commutativity constraint on a tensor category is a natural isomorphism c :
⊗ → ⊗τ .

Definition. A braiding in a tensor category (C,⊗,I,a,l,r) is a commutativity con-
straint c such that

(1) (idV ⊗ cU,W ) ◦ aV,U,W ◦ (cU,V ⊗ idW ) = aV,W,U ◦ cU,V⊗W ◦ aU,V,W
(2) (cU,W ⊗ idV ) ◦ a−1

U,W,V ◦ (idU ⊗ cV,W ) = a−1
W,U,V ◦ cU,V⊗W ◦ aU,V,W

A braided tensor category (C,⊗,I,a,l,r,c) is a tensor category (C,⊗,I,a,l,r) with
a braiding c.

The two requirements on the associativity and commutative constraints are
called the Hexagon Axioms.

In our example Vecfin the braiding satisfies cV,W ◦ cW,V = idV⊗W and the one
hexagon axiom above therefore follows from the other. However, not all braided
tensor categories have this property. In case that cV,W ◦cW,V = idV⊗W holds true,
we say that the tensor category is symmetric.

3. Duality

To motivate the definition of duality in tensor categories, we return once more to
our current example Vecfin. Let V be a finite-dimensional complex vector space and
denote by V ∗ its dual space. We can then define an evaluation map ev : V ∗⊗V → C

and the natural isomorphism λ : V ⊗ V ∗ → Hom(V, V ). Furthermore we have
coevalution, δ : C → V ⊗V ∗ defined by setting its value on 1 to be δ(1) = λ−1(idV ).

Identifying V with V ⊗C, it is easy to check that for instance (idV ⊗ ev) ◦ (δ⊗
idV ) = idV holds true. For general tensor categories, we will take the concept
of duality to mean the existence of an object V ∗ for every object V along with
morphisms playing the role of evaluation and coevalution. However, as earlier
noted, not every tensor category is symmetric and we therefore have to distinguish
between left and right duality. This will be made clear below.

Definition. A strict tensor category (C,⊗,I) has left duality if for each object V
in C there exists an object V ∗ in C along with morphisms bV : I → V ⊗ V ∗ and
dV : V ∗⊗V → I such that (idV ⊗dV )◦ (bV ⊗ idV ) = idV and (dV ⊗ idV ∗)◦ (idV ∗ ⊗
bV ) = idV ∗ .

A useful mnemonic for the letters b and d is to take them to mean birth and
death, respectively. For a given object V the dual object V ∗ is defined uniquely up
to isomorphism. Working with duality and braidings is most easily done through
pictorial representations as can be found in [1].
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Right duality can similarly be defined as the existence of an object ∗V for each
object V along with morphisms b′V : I →∗ V ⊗ V and d′V : V ⊗∗ V → I satisfying
equations similar to those of bV and dV .

4. Module Categories

The definition of a module category is more technical than what we have seen
in the previous sections and we will not define all the relevant terms. However, all
omitted definitions can be found in [2].

Henceforth, we only consider categories which are semi-simple abelian categories
over an algebraically closed field k with finite-dimensional Hom-spaces. Also, all
our functors will be additive from now on. This would include, for instance, the
category Vecfin along with the tensor product thereon.

We mentioned in Section 1 that there are varying definitions of tensor categories.
In this section we will be using a definition differing from that previously given. In
order to avoid confusion we will follow [3] and call this one a monoidal category.

We define a monoidal category exactly as in Section 1 but with the caveat
that our category satisfies the requirements stated above and that all involved
functors, amongst these the tensor functor itself, are additive. For convenience we
will assume that our monoidal categories are strict.

Definition. A module category over a monoidal category (C,⊗,I) is a category
M along with an exact bifunctor ⊠ : C × M → M and natural isomorphisms
m : ⊠ ◦ (⊗× idM) → ⊠ ◦ (idC × ⊠), lM : ⊠(I × idM) → idM such that

(1) (idX ⊠mY,Z,M ) ◦mX,Y⊗Z,M ◦ (aX,Y,Z ⊠ idM ) = mX,Y,Z⊠M ◦mX⊗Y,Z,M
(2) (idX ⊠ lMM ) ◦mX,I,Y = mX,I,Y

The two equations above allow the moving around of parentheses. An easy
example of a module category is taking a monoidal category, such as Vecfin, to
be a module category over itself. For more details and examples, the reader can
consult [3].

References

[1] C. Kassel, Quantum Groups, Springer, New York, 1995.
[2] S. Mac Lane, Categories for the Working Mathematician, 2nd ed., Springer, 1998.
[3] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform.

Groups 8 177–206 (2003).

Tensor Categories from Factors

Arthur Bartels

A net of von Neumann algebras over R is an inclusion preserving assignment

I ∋ I 7→ A(I) ∈ N
where I is the set of bounded open intervals in R and N is the set of von Neumann
algebras on a fixed Hilbert space H . Such a net is called additive if A(I ∪ J) =
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A(I) ∨ A(J) whenever I ∩ J 6= ∅. (Here A(I) ∨ A(J) denotes the von-Neumann
algebra generated by A(I) and A(J).) It is called local if A(J) is contained in the
commutant of A(I) whenever I∩J = ∅. It is said to satisfy Haag-duality if A(J) is
the commutant of the von-Neumann algebra generated by all A(I) with I ∩J = ∅.

An endomorphism ρ of the C∗-algebra A(R) generated by all A(K) is said be
localized in I ∈ I if ρ|A(J) = idA(J) whenever J ∩ I = ∅. Such an endomorphism
is said to be transportable if it can be localized (up to unitary equivalence) in any
given I ∈ I. The sectors of A are the transportable endomorphism of A(R). The
tensor product of sectors is defined by composition of endomorphisms. If the net
A is additive and satisfies Haag-duality, then the sectors form a braided tensor
category.

Further assumptions on the net A lead to further properties of the category of
sectors. A net A is irreducible if the von-Neumann algebra generated by the A(I)
is the von-Neumann algebra of all bounded operators. consider I, J,K ∈ I such
that I and J are the components of K−{x} for some x ∈ I. A is strongly additive
if in this situation A(K) = A(I) ∨ A(J). A has the split property if whenever
I, J ∈ I with I ∩ J = ∅ then A(I) ∨ A(J) is the tensor product A(I) ⊗ A(J)
of von-Neumann algebras. The net A is completely rational if in addition to the
above properties the following condition is satisfied. Consider E = I ∪ J where
I, J ∈ I and I ∩ J = ∅. Consider the commutant A(E′)′ of the von-Neumann
algebra generated by all A(K) with K ∩ E = ∅ and let A(E) := A(I) ∨A(J). By
locality A(E) ⊆ A(E′)′. It is required that the Jones index [A(E′)′ : A(E)] of this
inclusion (of factors) is finite.

The following result is due to Kawahigashi-Longo-Müger [1].

Theorem. Let A be a completely rational net with a modular PCT-symmetry.
Then the sectors of A form a modular tensor category with a finite number of
irreducible objects ρ1, . . . , ρn (localized in I). Moreover,

[A(E′)′ : A(E)] =

n∑

i=1

[A(I) : ρi(A(I))].

References

[1] Y. Kawahigashi, R. Longo and M. Müger Multi-interval subfactors and modularity of rep-
resentations in conformal field theory, Comm. Math. Phys. 219(3):631–699 (2001).

Tensor Categories for Loop Groups

Ulrich Bunke

A characteristic feature of the WZW-model based on a group G is the presence of
a loop group symmetry. On the infinitesimal level this symmetry is reflected by
an action of a central extension ĝ of the loop algebra Lg := g⊗C[t, t−1] of the Lie
algebra g of G. We refer to [5] for an introduction to the WZW-model.

The goal of the talk at the Arbeitsgemeinschaft was to explain the category
of integrable highest weight representations of ĝ with particular emphasis on the
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fusion product. We start with a simple complex Lie algebra g. We choose a
Cartan algebra h ⊂ g and a system ∆+ ⊂ h∗ of positive roots. For α ∈ ∆+ let
Hα ∈ h denote the corresponding coroot. We fix the unique invariant bilinear
form (. . . , . . . ) on g such that (Hθ, Hθ) = 2 for the longest root θ ∈ ∆+. We
the form the central extension ĝ := Lg ⊕ CK of loop algebra with commutator
[X ⊗ f, Y ⊗ g] = [X,Y ] ⊗ fg −K(X,Y )Res(fdg). We then form the Lie algebra
g̃ := ĝ ⊕ dC where [d,X ⊗ f ] = X ⊗ t ddtf and [d,K] = 0. The Lie algebra g̃ is a
Kac-Moody algebra and is called the affinization of g. A reference for the theory
of Kac-Moody algebras and their representations is [3].

The sum h̃ := h⊕KC⊕dC is a Cartan algebra of g̃. Let α1, . . . , αr be a system
of simple roots of g. We use the same symbols to denote their extensions to h̃.
Then α0, . . . , αn is a system of simple roots of g̃, where α0 := δ − θ and δ is dual
to d.

Every coroot Hαi
fits into a sl(2)-triple gi := (Hαi

, Ei, Fi), i = 0, . . . r. A repre-
sentation V of g̃ is called integrable if each vector v ∈ V spans a finite-dimensional
representation of gi for all i. If V has a highest weight, then integrability imposes
a strong restriction on this weights.

Theorem. The isomorphism classes of integrable highest weight representations
of g̃ are in bijection with the set of integral (i.e. λ(Hi) ∈ Z, i = 0, . . . , r) and

dominant (i.e. λ(Hi) ≥ 0, i = 0, . . . , r) highest weights λ ∈ h̃∗.

Let Vλ denote the integrable irreducible representation with highest weight λ.
The integer l := λ(K) ∈ N0 is called its level. From now on we will only consider
the case where λ(d) = 0 and let Al denote the finite set of those integral dominant
λ of level l.

For the rest of this note we fix a level l ∈ N. The category Cl of integrable
highest weight representations of g̃ at level l is semisimple, and its simple objects
are labeled by Al. Its Grothendieck group is therefore given by K0(Cl) := Z[Al].
The category Cl has actually the structure of a modular tensor category. The
details of this assertion form a long and complicated story, and we refer to [1] for
more information. The braided tensor structure ⊗Cl

on Cl induces on K0(Cl) the
structure of a based ring. In our presentation we focussed on a description of this
ring structure following the exposition [2].

Given µ, ν ∈ Al, then we have a decomposition Vµ ⊗Cl
Vν = ⊕λ∈Al

Nλ
µ,νVλ,

where the integers Nλ
µ,ν are called fusion coefficients. We are going to define the

fusion coefficients using the notion of conformal blocks.
Let Σ be a Riemann surface with n distinct marked points p = (p1, . . . , pn)

and a choice of coordinates t1, . . . , tn at these points. Let λ := (λ1, . . . , λn) be a
collection of elements of Al. We can form the Liealgebra g(Σ−p) := g⊗O(Σ−p).
Using the coordinates we get evaluations evi : g(Σ−p) → g⊗C[[t]][t−1]. Note that
the action of g̃ on an integrable highest weight representation extends uniquely
to formal power series. As a consequence of the residue theorem the following
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prescription defines an action of g(Σ − p) on Vλ1 ⊗ · · · ⊗ Vλn
:

(X ⊗ f)(v1 ⊗ · · · ⊗ vn) =

n∑

i=1

v1 ⊗ · · · ⊗ evi(X ⊗ f)vi ⊗ · · · ⊗ vn .

Definition. The space

V (Σ, p, λ) := Homg(Σ−p)(Vλ1 ⊗ · · · ⊗ Vλn
,C)

is called the space of conformal blocks.

One can show that it does not depend on the choice of the coordinates ti. For
λ ∈ Al let λ∗ be the dual of λ defined as the unique representative in Al of the
orbit of −λ under the Weyl group of h̃ ⊂ g̃.

Definition. We define the fusion coefficients by

Nλ
µ,ν := dimV (CP

1, (0, 1,∞), (µ, ν, λ∗))

We have the following non-trivial result:

Theorem. The fusion coefficients Nλ
µ,ν are the structure constants of a commu-

tative associative based ring structure on Z[Al].

For details we refer to [1], [2], [4].
The goal of the final part of our presentation was to explain a way to calculate

Nλ
µ,ν . If λ is integral dominant for g̃, then λ|h is integral dominant for g and hence

corresponds to a finite-dimensional irreducible representation Vλ|h
of g.

For integral dominant weights µ̄, ν̄ of g we define Lλ̄µ̄,ν̄ ∈ N0 such that

Vµ̄ ⊗ Vν̄ :=
∑

λ̄

Lλ̄µ̄,ν̄Vλ̄ ,

where the sum runs over all integral dominant wights. Let ρ := 1
2

∑
α∈∆+ α ∈ h∗.

Then we have the so-called Racah-Speiser formula

Nλ
µ,ν =

∑

w

ǫ(w)L
((λ+ρ)w−ρ)|h
µ|h,ν|h ,

where the sum runs over all w ∈Wl+h such that ((λ+ρ)w−ρ)|h is dominant. Here
Wl+h is the ”affine Weyl group at level l+ h” , the semidirect product QW (l+ h)
of the Weyl group W of h ⊂ g and the lattice (l+ h)Q, where [1]h := ρ(Hθ) + 1 is
the dual Coxeter number, and Q ⊂ h∗ is the lattice generated by the W -orbit of
the long root θ. The sign ǫ(w) is given by the number of reflexions in w.

In the talk we explained that this formula is equivalent to the non-trivial fact,
that a certain natural group homomorphism R(g) → K0(Cl) is multiplicative. A
conceptual proof was given in [6], but see also [4], [2].
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Frobenius Algebras and Q-Systems

Pinhas Grossman

The notion of a Q-system was introduced by Longo to characterize the canonical
endomorphism of a subfactor. If M is an infinite factor (a von Neumann algebra
with trivial center which does not admit a trace), a Q-system on M is a triple
(γ, v, w), where γ is a unital endomorphism of M and v and w are elements of M
which are intertwiners of (IdM , γ) and (γ, γ2), respectively, satisfying the following
associativity and compatibility conditions: γ(w)w = w2 and v∗w = w∗γ(v) = 1

d
for some positive number d. A Q-system is said to be irreducible if the inter-
twiner space of (IdM , γ) is 1-dimensional. Longo showed that the existence of an
irreducible Q-system for γ is a necessary and sufficient condition for γ to be the
canonical endomorphism of an irreducible finite-index subfactor of M . The dimen-
sion d of the Q-system is then equal to the Jones index of the subfactor. Longo
and Roberts then showed that Q-systems actually have a more general foundation
as Frobenius algebras in abstract tensor categories.

If C(= (C,⊗, I)) is a strict tensor category, then a monoid in C is a triple
(A, η, µ), where A is an object in C, η ∈ Hom(I, A), and µ ∈ Hom(A ⊗ A,A),
satisfying the associativity condition µ ◦ (µ ⊗ 1A) = µ ◦ (1A ⊗ µ) (as elements of
Hom(A⊗A⊗A,A)) and the unit condition µ◦(η⊗1A) = µ◦(1A⊗η) = 1A. Then µ
is called the multiplication and η is called the unit. A comonoid is defined exactly
the same way but “reversing the arrows.” A Frobenius algebra is a quintuple
(A, η, µ, δ, κ) such that (A, η, µ) is a monoid, (A, δ, κ) is a comonoid, and µ and κ
satisfy the duality relation (µ⊗ 1A) ◦ (1A ⊗ κ) = (1A ⊗ µ) ◦ (κ⊗ 1A) = κ ◦ µ (as
elements of End(A⊗A)).

A strict C∗-tensor category is a strict tensor category C with the following
additional structure. Each Hom-space has a Banach space structure such that
composition is bilinear. Also C is endowed with a contravariant endofunctor ∗
which fixes objects and commutes with ⊗, such that the C∗ identity is satisfied:
‖x∗ ◦ x‖ = ‖x‖2 for all morphisms x. If (A, T, S∗) is a monoid in a C∗-tensor
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category, then (A, T ∗, S) is a comonoid (since ∗ is contravariant), and it is natural
to ask when (A, T, S∗, T ∗, S) is a Frobenius algebra. Longo and Roberts showed
that this happens whenever the comultiplication S is a scalar multiple of an isom-
etry, i.e. S∗ ◦ S = a1A for some positive scalar a. If C is irreducible (End(I)
consists only of scalar multiples of 1I) then T is also necessarily an isometry, since
T ∗ ◦ T ∈ End(I). We can “normalize” such a Frobenius algebra by rescaling S
to be an isometry, but this requires rescaling T as well, since the product of the
norms of the rescaled S and T is fixed by the unit condition. Then a Q-system is
defined as a comonoid in an irreducible C∗-tensor category whose comultiplication
is an isometry. We can write such a comonoid as (A, dT ∗, S), where S and T are
isometries and d is a positive scalar called the dimension of the Q-system.

If (A, dT ∗, S) is a Q-system, and R = dST ∈ Hom(I, A ⊗ A), then by the
Frobenius duality we have the relation (R∗⊗1A)◦ (1A⊗R) = 1A. More generally,
two objects A and Ā of a C∗-tensor category are said to be conjugate if there exist
R ∈ Hom(I, Ā ⊗ A), R̄ ∈ Hom(I, A ⊗ Ā) such that (R̄∗ ⊗ 1A) ◦ (1A ⊗ R) = 1A
and (R∗ ⊗ 1Ā ◦ (1Ā ⊗ R̄) = 1Ā. By rescaling if necessary we may assume R is an
isometry, and then it is easy to check that (A⊗Ā, dR∗, 1A⊗R⊗1Ā) is a Q-system,
where d = ‖R̄‖.

To any unital C∗-algebra M there is associated a C∗-tensor category whose
objects are unital endomorphism of M , with tensor product given by compo-
sition, and whose morphisms are intertwiners. If u1 ∈ Hom(ρ1, σ1) and u2 ∈
Hom(ρ2, σ2), then u1 ⊗ u2 is given by u1ρ1(u2) = σ1(u2)u1. It is then easy to
check that if M is an infinite factor, the definition of a Q-system given in the
first paragraph is the same as the categorical definition for the category of unital
endomorphisms of M (up to a uniquely determined scalar).

If M is an infinite factor then inner conjugacy classes of unital endomorphisms
of M are in bijective correspondence with isomorphism classes of M −M (Hilbert
space) bimodules, with the correspondence given by ρ 7→M L2(M)ρ(M), i.e. the
left action is multiplication (continuously extended) and the right action is mul-
tiplication twisted by ρ. Since ρ(M)L

2(M)M is also an M − M bimodule, for
each ρ there exists an endomorphism σ, unique up to inner conjugacy, such that

ρ(M)L
2(M)M = ML

2(M)σ(M).
Longo’s results on subfactor Q-systems can now be formulated as follows: if ρ

and σ are unital endomorphisms of an infinite factor M such that ρ(M) ⊂M has
finite index, then ρ and σ are conjugate (in the category of unital endomorphisms of
M) iff ρ(M)L

2(M)M =M L2(M)σ(M). In particular, ρ̄ exists. Therefore ρρ̄, which
is the canonical endomorphism for the inclusion ρ(M) ⊂M , has a Q-system.

Conversely, if (γ, dT ∗, S) is an irreducible Q-system on M , then there is an
irreducible subfactor N ⊂ M with index d whose canonical endomorphism is γ.
If N is isomorphic to M (a situation which can always be achieved by taking
a suitable tensor product of the subfactor with another factor), then γ actually
splits as ρρ̄, where ρ is an endomorphism of M implementing the isomorphism with
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N . There is also a notion of cocycle equivalence of Q-systems such that cocycle-
equivalence classes of irreducible Q-systems on M are in bijective correspondence
with inner conjugacy classes of subfactors of M .

This talk was an exposition of parts of the papers of Longo and Longo-Roberts.
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Modular Tensor Categories and Quantum Doubles

Jürgen Müller

In the first part, we introduce ribbon categories [1] and quantum traces as well
as semisimple categories and the fusion rings associated to them, as particular
examples of based rings [4]. We then define modular tensor categories, which
are semisimple ribbon categories whose additional ingredient is a non-degeneracy
condition on the associated S-matrix, essentially encoding how far the braiding
deviates from being symmetric.

The name-giving property of modular tensor categories is an action of the mod-
ular group SL2(Z) on the fusion ring, where the usual standard generators of
SL2(Z) act through the S-matrix already mentioned, and through a diagonal ma-
trix T whose diagonal entries are the eigenvalues of the twist map associated to
the underlying ribbon structure. By Vafa’s Theorem (1988) these eigenvalues are
roots of unity. Actually, for the modular tensor categories arising in Lusztig’s work
on characters of reductive groups over a finite field, these have an intepretation as
eigenvalues of the Frobenius endomorphism, acting on certain ℓ-adic cohomology
groups.

Moreover, we present Verlinde’s Formula, which relates the fusion coefficients
to the entries of the S-matrix. The basic idea of the proof is to interpret the struc-
ture constants matrices, whose entries are the fusions coefficients, as representing
matrices for the regular representation of the fusion ring, to view the S-matrix
as the character table of the fusion ring, and to show that the latter provides
a base change simultaneously diagonalising all the structure constants matrices.
Actually, this phenomenon is also well-known in other disciplines such as algebraic
combinatorics and algebraic graph theory.

In the second part, we present the module categories of quantum doubles of
finite groups as explicit examples of modular tensor categories. To do so, we first
recall the notion of finite-dimensional quasi-triangular Hopf algebrasH , possessing
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invertible universalR-matrices inH⊗H , leading to solutions of the quantum Yang-
Baxter equation. In general, for a finite-dimensional Hopf algebra H the bicrossed
product

D(H) := (Hop)∗ ⊲⊳ H ,

being called the quantum double of H , is a quasi-triangular Hopf algebra.
Given a finite group G, the quantum double construction applied to the group

ring K[G] yields the crossed product D(G) := K[G]∗ ⋊ K[G] with respect to the
left coadjoint action x ·δg = δxgx−1 ·x, for all x, g ∈ G, where the δg form the basis
of K[G]∗ dual to the group basis of K[G]. Now D(G) has the universal R-matrix

R =
∑

g∈G
δg ⊗ g ∈ D(G) ⊗D(G).

If K is an algebraically closed field such that char(K) 6 | |G|, then the category
of finite-dimensional D(G)-modules is a modular tensor category, whose quantum
trace coincides with the usual trace. The simple D(G)-modules are labelled by
pairs (gi, π), where the gi are a chosen fixed set of conjugacy class representatives
of G, and π is an irreducible representation of the centralizer CG(gi) of gi in G.
The associated S-matrix is a non-abelian (exotic) Fourier transform matrix having
entries

sgi,π;gj ,ρ :=
1

|CG(gi)|
· 1

|CG(gj)|
·

∑

h∈G

hgj h−1∈CG(gi)

trπ(hg−1
j h−1) · trρ(h

−1g−1
i h).

Actually this matrix occurred in Lusztig’s work on characters of reductive groups
over a finite field in the framework of decomposing unipotent characters.

In the third part we indicate how the notion of quantum doubles can be
generalised in the setting of category theory: Given a tensor category C the
Drinfeld center Z(C) is defined by having objects (V, c−,V ), where V ∈ C and
cX,V : X ⊗ V → V ⊗ X are natural isomorphisms such that for all X,Y ∈ C we
have

cX⊗Y,V = (cX,V ⊗ idY )(idX ⊗ cY,V ),

and morphisms f : (V, c−,V ) → (W, c−,W ) where f : V → W is a morphism such
that

(f ⊗ idX)cX,V = cX,W (idX ⊗ f)

for all X ∈ C. Then Z(C) is a braided tensor category. For any finite-dimensional
Hopf algebra H we have Z(H-mod) ∼= D(H)-mod as braided tensor categories.

If K is an algebraically closed field such that char(K) 6 | |G|, then any inde-
composable module category over K[G]-mod is equivalent to Kω[H ]-mod, where
H ≤ G and ω ∈ H2(H,K∗) are uniquely determined up to G-conjugacy. The
indecomposable module categories over Z(K[G]-mod) are labelled by (G × G)-
conjugacy classes of pairs (H,ω), where H ≤ G×G and ω ∈ H2(H,K∗) [5]. More
general, the category vecGψ of G-graded vector spaces, with monoidal structure la-

belled by ψ ∈ H3(G,K∗), is a modular tensor category equivalent to Dψ(G)-mod,
where Dψ(G) is a quasi Hopf algebra, and the indecomposable module categories
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over Z(vecGψ ) are labelled by (G × G)-conjugacy classes of pairs (H,ω), where

H ≤ G×G such that ψ̃|H = 0 and ω ∈ H2(H,K∗).
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Orbifolds

Oliver Gray

As a motivation of the notion of an orbifold, we will extend the analysis of a net
A of von-Neumann algebras, as seen in [1], to the case where a finite group G acts
on A. We will see that there is a natural “quotient” to take, and then generalise
this idea to general crossed-G fusion categories. These notes rely heavily on the
papers by Müger [4] and Kirillov [3].

Notation: Let K be the collection of bounded open intervals in R. For an
interval I ∈ K we write I ′ = R− I, and, when sup I < inf J , we write I < J . For a
von-Neumann algebra A we set A′ := {x ∈ B(H)|xy = yx ∀y ∈ A(I)}. Given two
von-Neumann algebras A1, A2 we define A1 ∧A2 to be the smallest von-Neumann
algebra containing both A1 and A2.

Definition. We define a quantum field theory (QFT) on the line R to be a triple
(H, A,Ω) where H is a separable Hilbert space with distinguished non-zero vector
Ω, and A is a net of von-Neumann algebras on R (i.e. to each interval I ∈ K,
A associates the von-Neumann algebra A(I) ⊂ B(H)) such that A(I) is a type-III
factor ∀I ∈ K satisfying locality, Haag duality and strong additivity. (See [4] for
details.)

We denote by A∞ the C∗-algebra generated by all A(I) with I ∈ K. As in the
talk of Bartels [1], we will study EndA∞ := {∗ − algebra homomorphisms ρ :
A∞ → A∞}, the strict tensor category given by the following, where ρ, σ ∈
EndA∞:

Hom(ρ, σ) = {s ∈ A∞|sρ(x) = σ(x)s ∀x ∈ A∞}, the intertwiners of ρ and σ;

ρ⊗ σ = ρ ◦ σ;

s⊗ t = sρ(t) = ρ′(t)s for s ∈ Hom(ρ, ρ′), t ∈ Hom(σ, σ′).

Definition. Let G be a finite group.
(a) We say G acts on A (or rather, on the QFT (H, A,Ω)) iff there exists a unitary
representation V of G on H such that
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(i) βg(A(I)) = A(I) ∀g ∈ G where βg ∈ EndA∞ is defined by βg(x) :=
V (g)xV (g)∗;
(ii) V (g)Ω = Ω; and
(iii) If βg|A(I) = id then g = 1.

(b) Let ρ ∈ EndA∞, I ∈ K. Then we say ρ is g-localised in I iff

ρ(x) = x ∀x ∈ A(J) with J < I;

ρ(x) = βg(x) ∀x ∈ A(J) with J < I.

Note that if ρ is g-localised in some I then it is g-localised in any interval
containing I.

Lemma. If ρ is both g- and h-localised then g = h.

The proof is straight-forward and can be found in [4].

Definition. (a) A g-localised ρ ∈ EndA∞ is transportable if for every J ∈ K there
exists a ρ′ ∈ EndA∞, g-localised in J , such that ρ is unitary equivalent to ρ′ (i.e.
there exists a unitary u ∈ Hom(ρ, ρ′)).
(b) G−LocA is the full subcategory of EndA∞ whose objects are finite direct sums
of G-localised transportable objects of EndA∞.

Compare this to the definitions of localisation and sectors in [1].
The action of G on A defines a collection γg ∈ Aut(G− LocA) ∀g ∈ G:

γg(ρ) = βgρβ
−1
g ∀ρ ∈ G− LocA;

γg(x) = βg(x) ∀x ∈ Hom(ρ, σ) ⊂ A∞.

Definition. A strict crossed-G (or G-equivariant) category is a strict tensor cate-
gory C together with a full tensor sub-category Chom ⊂ C, a map δ : Obj(Chom) → G
which is constant on isomorphism classes, and a homomorphism γ : G → Aut(C)
satisfying: (i) δ(X ⊗ Y ) = δ(X)δ(Y ); (ii) γg(Ch) ⊂ Cghg−1 ; (iii) every object in C
is a direct sum of objects in Chom.

Proposition. G− LocA is a G-crossed category.

Proof. Define (G − LocA)g to be the full subcategory of G − LocA consisting
of those ρ that are g-localised. By the lemma, (G − LocA)g are distinct, so we
can define a map δ : (G − LocA)hom :=

⋃
g∈G(G − LocA)g → G by assigning

δ(ρ) = g if ρ is g-localised. We already have a tensor product on G− LocA and a
homomorphism γ : G → Aut(C), and condition (iii) comes immediately from the
definition. It remains to check conditions (i) and (ii). Both are straight-forward,
but proofs can be found in [4]. �

Definition. A braiding for a crossed-G category C is a family of isomorphisms
cX,Y : X ⊗ Y → γg(X) ⊗ Y satisfying cX′,Y ′ ◦ (s⊗ t) = (γg(t) ⊗ s) ◦ cX,Y (where
X ∈ Cg, X ′ ∈ Cg′ ,Y, Y ′ ∈ C) and, similarly, compatibility with associativity and
the group action. See [2] for details.

Proposition. G− LocA admits a unitary braiding.
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Proof. This is a direct analogue of the G = {1} case treated in detail in [1]. See [4]
for a detailed proof of the crossed-G case. �

There is a natural “quotient” to take on G− LocA. Define (G− LocA)G to be
those objects and morphisms fixed by G. It is a rigid, braided, semi-simple crossed-
G category. If we consider only finite-dimensional ρ ∈ EndA∞ (as defined by the
Jones index) then we find (G − LocfA)G ∼= Locf (AG) (as strict braided tensor
categories), where AG is the QFT given by (H, AG,Ω), and AG(I) := (A(I))G|HG.
This gives rise to the natural question: can we form a generalised notion of orbifold
on other crossed-G categories?

Recall that a fusion category is a ribbon category (i.e. a rigid, balanced, braided,
monoidal category C) which is, in addition, a semi-simple abelian category over C

with finite-dimensional spaces of morphisms, and such that 1 is simple. We define
a crossed-G analogue:

Definition. (a) A crossed-G fusion category is a rigid, monoidal, semi-simple,
abelian category equipped with a braiding (in the crossed-G sense given above)
such that 1 is a simple object and γg is a tensor functor, and also with a family of
balancing isomorphisms {θV : V → γg(V )} which satisfy the crossed-G analogue
of the usual axioms (see Ch. 3.2 of [2]).
(b) If C is a crossed-G fusion category then the orbifold category C/G consists of
objects (X, {φg}g∈G) where X ∈ C, (φg : γg(X) → X) ∈ HomC ∀g ∈ G satisfying

(∗) φgγg(φh) = φgh, φ1 = id;

while morphisms f ∈ HomC/G((X, {φg}g∈G), (Y, {ψg}g∈G)) are exactly those f ∈
HomC(X,Y ) satisfying f ◦ φg = ψg ◦ γg(f).

Note that (∗) allows for a canonical identification of all γg(X) ∼= X , since,
writing φg,h := φ−1

g φh, we have φg,hφh,f = φg,f , γg(φa,b) = φga,gb. This definition

applied to G− LocA gives an equivalent category (G−LocA)/G ∼= (G− LocA)G.

Theorem. C/G is a fusion category.

Proof. Abelian-ness is easy to check. The other structures are ensured by the
following: Monoidality: (X, {φg}g∈G) ⊗ (Y, {ψg}g∈G) = (X ⊗ Y, {φg ⊗ ψg}g∈G);

1C/G = (1C , {id}); Duality: (X, {φg}g∈G)∗ = (X∗, {(φ∗g)
−1
g∈G); Braiding: c

C/G
X,Y =

(ψg ⊗ id) ◦ cCX,Y ; Twists: If X =
⊕

hXh, Xh ∈ C then θC/G is the direct sum of

the compositions φh ◦ θC . �

Examples. (i) Let C = Vect(C) with trivial grading (i.e. C1 = C) and triv-
ial action of G. Then Vect(C) ∼= Rep(G), since if X is a vector space, then
(X, {φg}g∈G) ∈ Obj C/G, where each φg : X → X satisfies φgφh = φgh and thus
defines a representation of G.
(ii) Let C = GVec, the category of G-graded vector spaces. It can be explicitly
described as the category of simple objects Xg, g ∈ G with Xg ⊗ Xh = Xgh,
X∗
g = Xg−1 , γg(Xh) = Xghg−1 . Then the orbifold category GVec/G is the cat-

egory of finite-dimensional modules over the Drinfeld double D(G): recall from [1]
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or from [5] that a representation of D(G) is the same as a G-graded representation
of G that satisfies gVh ⊂ Vghg−1 .

We close with a remark: One can also define a crossed-G version of the s-
matrix and thereby a crossed-G version of modularity. Then we have the result:
C is modular iff C/G is modular, and when one of these is modular, C1 is also
modular; in this case, C, C/G and C1 all share the same central charge.
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Finite Tensor Categories

Phùng Hô Hai

The aim of this talk is first to present some basic facts about finite tensor cate-
gories. Then the Frobenius-Peron dimension is introduced and used to derive an
analog of the freeness theorem of finite Hopf algebras for finite tensor categories.
In the second part we discuss the notion of exact module categories over a finite
tensor category and its properties, in particular the relationship with the center
of the given category.

1. Definition and basic properties of finite tensor categories

Let k be an algebraically closed field. A finite tensor category over k is by
definition a k-linear abelian rigid monoidal category, which is equivalent as a k-
linear abelian category to the category of modules over a finite dimensional k-
algebra and has the property that the endomorphism ring of the unit object is
equal to k. We refer to [3] for the notion of rigid monoidal categories.

Let C be a finite tensor category over k. By definition, there exists a projective
generator, say P , in C. Thus each simple object in C is a subquotient of P , in
particular, there exist only finitely many simple objects in C. Notice that the unit
object of C, denoted by I, is also simple, as by assumption End(I) = k.

The assumption on rigidity of C implies that the tensor product is exact in both
arguments. Hence for a projective object P , and any object X in C, the tensor
products P ⊗X and X ⊗P are projective. Indeed this follows from the canonical
isomorphism Hom(P ⊗X,Y ) ∼= Hom(P,X∗⊗Y ), where X∗ denotes the (left) dual
to X . In particular the functor P ⊗− splits exact sequences. Using this properties
one can easily show that P ∗ is also projective. Note on the other hand that the
dualizing functor maps projective to injective objects and vice-versa. Hence in C,
projective objects are injective and vice-versa. Thus, let {S1, ..., Sn} be the set of
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non-isomorphic simple objects of C, we can choose for each Si a projective cover
Pi.

2. The Frobenius-Peron dimension

The Grothendieck ring K(C) of C is generated by the classes of Si, denoted by
[Si], subject to the relations [Si] ⊗ [Sj ] = [Si ⊗ Sj ] =

∑
kN

k
ij [Sk], where Nk

ij are
certainly non-negative integers. Therefore, by Frobenius-Peron theorem (see [2]),
there exists a unique character on K(C), i.e. a ring homomorphism d : K(C) → R,
that take positive values on simple objects. This gives a dimension theory for C
with values in the set of algebraic integers.

A functor F between two tensor categories C and D is said to be quasi-tensor
if there exists a natural isomorphism F (−)⊗F (−) → F (−⊗−), and is said to be
surjective if F is exact and any object of D is a subquotient (in D) of the image
under F of an object of C. Thus a quasi-tensor functor preserves Frobenius-Peron
dimension. Using this fact one can show that a quasi-tensor surjective functor
maps projective objects to projective objects. In particular, assuming that the
Frobenius-Peron dimension of C is integral, define the regular object RC of C to be

RC :=
⊕

i

P
⊕d(Si)
i

which is projective. Then if F : C → D is a quasi-tensor surjective functor, the
Frobenius-Peron dimension of D is integral as well and F (RC) is a multiple of
RD. This is a categorical analog of the Freeness theorem for finite dimension Hopf
algebras (a finite dimension Hopf algebra is free over its Hopf subalgebra).

3. Exact module categories

Let C be a tensor category. A module category over C is an abelian category
M equipped with a functor ⊗ : C × M → M, which is exact, and functorial
isomorphisms (X ⊗ Y ) ⊗ M ∼= X ⊗ (Y ⊗ M), I ⊗ M ∼= M satisfying obvious
coherence conditions. In what follows we shall assume that C is finite and consider
only module categories over C which are finite. Such a module category M is
called exact if for P projective in C, P ⊗M is projective in M for any M ∈ M.
Consequently in M projective objects are injective and vice-versa. Thus M is the
category of finitely generated modules over a Frobenius k-algebra. There exists
an equivalence relation in the set of simple objects of M, any two such objects
M , M are equivalent if there exists X ∈ C such that M is a subquotient of
X ⊗ N . One can show that M decomposes into a direct sum of exact module
subcategories Mi in each of which all simple objects are equivalent. Further, by
considering the induced action of the Grothendieck ring of C on the Grothendieck
group of its exact module categories, one concludes that there are finitely many
indecomposable exact module categories.

On the other hand, let M be an exact module category over C and N be a not
necessarily exact module category over C, then any module functor M → N is
exact. In fact, this property also characterizes exact module categories.
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4. Internal Hom

Let M be a module category over C and M1,M2 be its objects. One defines
the internal hom hom(M1,M2) to be the object in C that represents the functor
Hom(−⊗M1,M2) : C → Vectk. One can check that this defines in fact a bifunctor
which is exact if M is an exact module category. The internal hom is compatible
with the tensor product in C in the usual sence, in particular end(M) is an algebra
in C. If M is an exact module category then the functor hom(M,−) : M →
ModC(end(M)) is an equivalence of category if M is a generator of C.

5. Hom functors

Let M1,M2 be exact module categories over C. Then the category
FunC(M1,M2) is a finite abelian category. Consequently, if M is indecomposable
as module category, the category C∗

M := FunC(M,M) is a finite tensor category
where the tensor product is the composition of functors and the duality is given
by taking adjoint functor. Notice that M is again an exact module category over
C∗
M. Further one has an equivalence C → (C∗

M)∗M of tensor categories.
On the other hand, for any exact module category M1 over C, the category

FunC(M1,M) is an exact module category over C∗
M. This construction yields a

correspondence between exact module categories over C and over C∗
M. Finally

consider M as a module category over C ⊠ C∗
M, we obtain an equivalence between

(C ⊠ C∗
M)∗M and the center of C.
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Classification of Fusion Categories

Michael Cuntz

Let k be an algebraically closed field of characterictic 0. A fusion category C over k
is a k-linear semisimple rigid monoidal category with finitely many simple objects,
finite dimensional spaces of morphisms and such that End(1) ∼= k.

1. Fusion categories of rank 2 and 3

A basic invariant for the classification of fusion categories is the Grothendieck
ring. The following theorem is a consequence of Ocneanu’s idea that a fusion
category cannot be nontrivially deformed.

Theorem (“Ocneanu rigidity” [3]). For a given based ring K there are only finitely
many fusion categories C with K(C) = K.
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The rank of category C is defined to be the rank of K(C) over Z (i.e. the number
of isomorphism classes of simple objects in C).

It is unknown how many fusion categories (or ribbon categories) of a given rank
exist. The fact that there are only finitely many semisimple Hopf algebras with a
given finite number of irreducible representations leads to the conjecture (Wang,
Ostrik) that there are only finitely many of them.

1.1. Rank 2. Let C be a fusion category of rank 2 and 1, X be representatives for
the isomorphism classes of simple objects. Then the fusion ring K(C) is completely
determined by the number n ∈ Z≥0 for which

X ⊗X = 1⊕ nX.

We denote this ring by Kn.
The classification of fusion categories C with K(C) = K0,K1 is due to Moore

and Seiberg (1989).

Theorem ([5]). There are exactly 4 fusion categories of rank 2. Two of them have
Grothendieck ring K0, the other two K1.

Remark that this is an open question over fields of positive characteristic.
To prove this theorem (compare with [5]), assume that there exists a fusion

category C with Grothendieck ring Kn, n > 1. Using results of [3], it is possible
to construct an equivalence from C to a subcategory of its Drinfeld center, hence
C is braided.

We then look at the braiding morphism βX,X and show that C is ribbon. From
the fact that the dimension of X cannot be an integer, we deduce that C is a
modular tensor category which finally leads to a contradiction.

1.2. Rank 3. For rank 3, it is only known which fusion categories admit a struc-
ture of ribbon category.

Theorem (for example [6]). There are exactly 7 fusion categories of rank 3 ad-
mitting a structure of ribbon category.

Note that there are fusion categories of rank 3 which do not admit a ribbon
structure. Belinschi, Rowell, Stong and Wang have classified all modular tensor
categories of rank ≤ 4.

2. Symmetric fusion categories

A ribbon category C is called symmetric if the square of the braiding is the
identity. Symmetric fusion categories have been classified by Deligne:

Theorem ([1]). For any symmetric fusion category C there exists a finite group
G and an equivalence C ≃ Rep(G).

This is not an equivalence of braided categories: there are two braided categories
equivalent to Rep(Z/2Z) as monoidal categories.
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3. Tambara-Yamagami categories

The Tambara-Yamagami categories appear for example in the classification of
categories of Frobenius-Perron dimension pq (see section 4). The original motiva-
tion for their definition [7], was to distinguish the categories of representations of
the dihedral group D8 and the group of quaternions.

Let A be a finite group, χ : A×A→ k× a symmetric nondegenerate bicharacter
and τ ∈ k such that |A|τ2 = 1. The category C(χ, τ) over k is defined by:

(1) Objects are finite direct sums of elements of S = A ⊔ {m}.

(2) For s, s′ ∈ S, Hom(s, s′) =

{
k if s = s′

0 if s 6= s′
.

(3) Tensor products of elements of S are given by

a⊗ b = ab, a⊗m = m⊗ a = m, m⊗m =
⊕

a∈A
a

where a, b ∈ A.
(4) Certain associativities depending on χ and τ .

Theorem ([7]). Any split semisimple tensor category with fusion algebra Z[S] is
equivalent to C(χ, τ) for some (χ, τ).

4. Fusion categories of given Frobenius-Perron dimension

Let Irr(C) be the set of isomorphism classes of simple objects in C and let
V ∈ Irr(C). The Frobenius-Perron (FP) dimension of V , FPdim(V ), is the largest
positive eigenvalue of the matrix of multiplication by V in K(C). The Frobenius-
Perron dimension (compare [2]) of the category C is

FPdim(C) :=
∑

V ∈Irr(C)

FPdim(V )2.

Theorem ([2]). Let C be a category over C of FP dimension pq, where p < q
are distinct primes. Then either p = 2 and C is a Tambara-Yamagami category of
dimension 2q, or C is group-theoretical.

Theorem (Drinfeld-Gelaki-Nikshych-Ostrik, unpublished). If C has FP dimen-
sion pn, p > 2 prime, then C is group-theoretical. If p = 2 and all objects have
integer dimensions, then C is group-theoretical.

5. Categories of type A

There are also some results about categories having the same Grothendieck ring
as the category of representations of certain Lie groups, for example:

Theorem ([4]). Any rigid semisimple tensor category whose Grothendieck semir-
ing is equivalent to the one of Rep(SU(N)) must necessarily be equivalent to the
category Rep(UqslN ) with q not a root of unity, up to N possible choices of a twist.

There is a similar theorem from Tuba and Wenzl [8] about categories of orthog-
onal or symplectic type.
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Exceptional Tensor Categories in Subfactor Theory

Emily Peters

In subfactor theory, some exceptional tensor categories have been constructed by
Asaeda, Haagerup and Izumi in [1] and Section 7 of [3]. These examples are not
known in other approaches to CFT.

Tensor categories arise from subfactors in the following way: Given a finite-
index inclusion of II1 subfactors N ⊂ M , one of its most important invariants is
the principal graph. The principal graph is a bipartite graph; it has even vertices
E = { (isomorphism classes of) irreducible N−N bimodules NXN which appear in
the decomposition of (NL

2(M)N )⊗n for some n ∈ {0, 1, 2, . . .}}, and odd vertices
O = { (isomorphism classes of) irreducibleN−M bimodules NYM which appear in
the decomposition of (NL

2(M)N )⊗n⊗NL
2(M)M for some n ∈ {0, 1, 2, . . .}}, with

all above tensors being taken over N. The even vertex NXN connects to the odd
vertex NYM with k edges if k ·NYM ⊂ NXN ⊗NL

2(M)M . The bimodules of E are
a tensor category, and the bimodules of O are a module category over E . Similarly,
one can define the dual principal graph of a subfactor as the inclusion/reduction
graph of irreducible M −M and M − N bimodules contained in tensor powers
(over M) of L2(M); this gives another pair of tensor and module categories. (See
[4] for more details.)

If N ⊂M is a II1 subfactor and has finite principal graph Λ, then one can show
that the index [M : N ] = ‖Λ‖2 (the norm of a bipartite graph is the operator norm
of its adjacency matrix). It is a theorem of Jones ([5]) that if N ⊂ M is a II1
subfactor, then [M : N ] ∈ {4 cos2(π/n)|n ≥ 3} ∪ [4,∞]. Haagerup proved in
[2] that if additionally, N ⊂ M is irreducible (i.e., the bimodule NL

2(M)M is
irreducible), and the principal graph of N ⊂M is finite, then

[M : N ] 6∈ (4,
5 +

√
13

2
≈ 4.303 . . .).

His proof relies on information about the Perron-Frobenius eigenvector of a prin-
cipal graph, the fact that there are not so many bipartite graphs with index in
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this interval, and the relation between the dual and principal dual graph. Later,
Asaeda and Haagerup proved in [1] that there are exactly two non-isomorphic

subfactors of the hyperfinite II1 factor having index 5+
√

13
2 ; they each have their

principal graph as one of

s c s c

s

c

s

s

c

s

aaaaaa

!!
!!!!

, s c s c s

s

c

c

��

@@

and their dual principal graph the other one. These subfactors are especially inter-
esting because the tensor category they give is not known to come from anywhere
else. Unlike most or all previously constructed subfactors, their construction does
not start with a group or a quantum group or another known tensor category.

Asaeda and Haagerup’s proof has three steps: First, they guess the fusion
rules of N −N subfactors by using the symmetries of the first graph. Then they
construct a bimodule NXM satisfying these rules (this is the difficult step); finally,
they get a subfactor from NXM by considering LX(N) ⊂ RX(M)′.

Here are the tensor categories that these graphs are describing. If we label the
even vertices of the first graph like so

s
1

c s
Y

c

s

S2Y c

s

S2

s
SY c

s
S

aaaaaa

!!
!!!!

then the tensor category of even vertices has fusion rules

1 S S2 Y SY S2Y
1 1 S S2 Y SY S2Y
S S S2 1 SY S2Y Y
S 1 S S2 S2Y Y SY
Y Y S2Y SY Y + SY Y + SY Y + SY

+S2Y + 1 +S2Y + S2 +S2Y + S
SY SY Y S2Y Y + SY Y + SY Y + SY

+S2Y + S +S2Y + 1 +S2Y + S2

S2Y S2Y SY Y Y + SY Y + SY Y + SY
+S2Y + S2 +S2Y + S +S2Y + 1

and if we label the even vertices of the second graph like so
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s
1

c s
B

c s
D

s
C

c

c

��

@@

then the tensor category of even vertices has fusion rules

1 B C D
1 1 B C D
B B 1 +B + C +D B +D B + C + 2D
C C B +D 1 +D B + C +D
D D B + C + 2D B + C +D 1 + 2B + C + 2D
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The Reshetikhin–Turaev Construction – an Example of TQFT

Rafa l R. Suszek

Axiomatic Topological Quantum Field Theory (TQFT), as formulated by Atiyah
in Ref. [1], renders mathematically rigorous and extends the compass of the earlier
constructions, advanced in Refs. [2, 3, 4] where a profound relationship between
physical TQFT models and the topology of the spaces of their definition was
established. In particular, it yields novel topological invariants. The abstract
definition of TQFT was explicitly implemented by Reshetikhin and Turaev (RT)
in Refs. [5, 6] in the framework of 3d topology. The resulting structure, built on the
notion of a modular category, offers useful insights into the nature of the TQFT
approach to 2d CFT’s and is therefore studied in much detail in the talk, along
the lines of Turaev’s monograph Ref. [7].

We begin with a brief reminder:

Proposition. Compact closed smooth oriented (d − 1)-dim. manifolds together
with compact smooth oriented d-dim. cobordisms (M, ∂−M, ∂+M) considered as
morphisms between pairs of such (d−1)-dim. manifolds composing their boundary

as ∂M = ∂+M⊔∂−M (Σ is the orientation conjugate of Σ) form a strict monoidal
cobordism category (d-Cob,⊔), with composition M1∪f M2 defined by the gluing
of the cobordism bases f : ∂+M2 7−→ ∂−M1 along an orientation-preserving
diffeomorphism f and with tensor product given by disjoint union ⊔.
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Our exposition is largely founded on a straightforward extension of the following

Definition. Topological Quantum Field Theory is a covariant functor

T : (d-Cob,⊔) 7−→ (Vectfin(k),⊗k)

from the topological cobordism category (d-Cob,⊔) to the algebraic category
(Vectfin(k),⊗k) of finite-dim. vector spaces over field k of characteristic zero,
with k-linear operators as morphisms, such that

- its object component T is a modular functor on the strict monoidal cat-

egory Diff↑d−1 with the same object class as d-Cob and with morphisms
given by orientation-preserving diffeomorphisms, i.e. T is a covariant
functor satisfying the identities:

T (Σ ⊔ Σ′) = T (Σ) ⊗k T (Σ′) , ∀Σ,Σ′ ∈ ObjDiff↑d−1 ,

(f ⊔ g)♯ = f♯ ⊗k g♯ , ∀ f, g ∈ Hom Diff↑d−1 ,

with f♯ := T (f) an isomorphism of the state space T (Σ) for Σ = source(f),
and normalised such that T (∅) = k;

- its morphism component τ , associating the operator invariant τ(M) ∈
Homk(T (∂−M), T (∂+M)) to (M, ∂−M, ∂+M), satisfies the identity:

τ(M⊔M′) = τ(M) ⊗k τ(M′) , ∀M,M′ ∈ Hom d-Cob ,

with the normalisation τ(Σ × [0, 1]) = idT (Σ) and hence also τ(∅) = 1k,

and such that the following axioms hold:

1. (Naturality) Given two cobordisms (Mi, ∂−Mi, ∂+Mi) , i = 1, 2 and any
orientation-preserving diffeomorphism f : M1 7−→ M2, we have

τ(M2) ◦ (f |∂−M1)♯ = (f |∂+M1)♯ ◦ τ(M1) .

2. (Gluing) Given two cobordisms (Mi, ∂−Mi, ∂+Mi) , i = 1, 2 composable
along an orientation-preserving diffeomorphism f : ∂+M2 7−→ ∂−M1,
the functoriality of T is expressed by the identity:

τ(M1 ∪f M2) = τ(M1) ◦ f♯ ◦ τ(M2) .

The relevant extension of the above definition, detailed in the talk, consists in
replacing the source category d-Cob with the more general category d-Cob(B,A) of
(B,A)-cobordisms based on a pair (B,A) of concordant involutive space-structures
compatible with disjoint union, in the sense of Ref. [7].

The definition of TQFT invites several comments.

Remark. Inequivalent TQFT’s are labeled by isomorphism classes of TQFT func-
tors, where an isomorphism T1

∼= T2 is understood to be a natural isomorphism
between the two functors, commuting with disjoint union, the identifications listed,
as well as with the action of homeomorphisms preserving the structure carried by
the objects of the cobordism category. We have the result of Ref. [7]:

T1
∼= T2 ⇐⇒ ∀M ∈ Homd-Cob(B,A) , ∂M = ∅ : τ1(M) = τ2(M)

for a pair (T1,T2) of TQFT’s that are non-degenerate in the sense of Turaev.
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Remark. The Gluing Axiom admits an important generalisation:

τ(M1 ∪f M2) = α(M1,M2, f) τ(M1) ◦ f♯ ◦ τ(M2)

which introduces a k-valued gluing anomaly α(M1,M2, f). The latter yields a
projective TQFT functor, reflecting the projectivity of the action of the modular
group on Obj d-Cob(B,A). Under certain mild assumptions, the anomaly can be
removed at the expense of introducing further structure on d-Cob(B,A).

Remark. By virtue of the Naturality Axiom, a non-anomalous TQFT assigns
topological invariants to closed cobordisms.

In Refs. [5, 6, 7], an explicit example of a 3d TQFT was given that is related to
the physical Chern–Simons TQFT of Ref. [3]. The point of departure of the RT
construction is the assignment of the topological RT invariant to a pair (ML,Ω)
consisting of a compact closed smooth oriented d-dim. manifold ML obtained by
Dehn’s surgery on the framed link L embedded in S3, and a ribbon graph Ω ⊂ ML

coloured over a modular category C of rank ∆ and dimension D over field k, with
compatible duality and the (finite) set {Vi}i∈I of isoclasses of simple objects Vi,
cp Ref. [7]. The assignment rests on the functorial RT realisation FRT in C of the
strict monoidal category of directed C -coloured ribbon graphs in R2 × [0, 1] and
uses the full modular structure of the latter, cp Turaev’s proof of its invariance
using a variant of the Kirby–Fenn–Rourke Theorem. The closed formula for the
RT invariant reads

τ̄RT (ML,Ω) =

∆σ(L)
D

−σ(L)−m−1
∑

λ∈col(L)

(
m∏

i=1

dim Vλ(Li)

)
FRT (Γ(L, λ) ∪ Ω) ∈ k ,

where σ(L) is the writhe of L, col(L) stands for the set of colourings of the con-
nected components Li , i = 1, 2, . . . ,m of L = L1∪L2∪ . . .∪Lm by representatives
of isoclasses of simple objects of C , and Γ(L, λ) denotes the directed C -coloured
ribbon link obtained by colouring all Li by the respective simple objects λ(Li).

Remarkably enough, τ̄RT extends to a full (projective) TQFT based on

Definition. Given a modular category C over field k, the strict monoidal C -
cobordism category (3-CobC ,⊔) has parameterised C -decorated surfaces as objects
and C -decorated 3d cobordisms as morphisms. Thus, the objects are compact closed
smooth oriented 2d manifolds Σ of type t(Σ) = (g, (Wa, ǫa)a=1,2,...,n), i.e. of genus
g and with an ordered sequence of marked points P1 ≺ . . . ≺ Pn, each coming
with a vector tangent to Σ and labeled by (Wa, ǫa) ∈ ObjC × {−1,+1}, and with
a structure-preserving homeomorphic parameterisation πΣ : Σt(Σ) 7−→ Σ by a

standard C -decorated surface Σt(Σ). The latter is the C -decorated 1 boundary of

1The decoration is fixed by (Wa, ǫa)a=1,2,...,n and the assignment of a right-directed unital
horizontal vector to each free end of an arrow in the diagram. These free ends are attached to
R2 × {1} ⊂ R2 × [0, 1].
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the n-legged genus-g handlebody Ht(Σ) forming the tubular neighbourhood, in R
2 ×

[0, 1], of the partially C -coloured ribbon graph Γt(Σ) represented by the diagram:

uncoloured

W
ǫ1
1

��

W
ǫ2
2

��

... W ǫn
n

�� �� ��

. . .
�� ,

W ǫa
a =

{
Wa if ǫa = 1 ,
W ∗
a if ǫa = −1 .

The C -decorated cobordisms are compact smooth oriented 3d manifolds, each with
an embedded ribbon graph. The graph is coloured over C and attached to the bases
by its free ribbons in a manner determined by the decoration of the bases.

In the last step, we consider the presentation, due to RT, of a C -decorated 3d
cobordism (ML ≡ M, ∂−M, ∂+M) with the embedded ribbon graph Ω by the
partially C -coloured ribbon graph2 Γ(ML,Ω) = Γ∗

t(∂+M) ◦ Ω ◦ Γt(∂−M) ∪ L deter-

mined by the requirement that it yield – upon embedding in S
3, Dehn’s surgery

on L, and subsequent removal of the tubular neighbourhoods of the base compo-
nents – the original C -decorated cobordism. We colour L with λ ∈ col(L) and
the base handles of Γ(ML,Ω) with sequences of simple objects of C represented

by the multi-labels ~i± ∈ Ig± , whereby we get the ribbon graph Γ(ML,Ω);λ;~i+;~i−

with only the base coupons uncoloured. Applying FRT to it and taking the
weighted sum over col(L) as above, we produce an element FRT (Γ(ML,Ω);~i+;~i−)∗ ∈
Homk(T (∂−M), T (∂+M)) on dualisation. We thus arrive at the fundamental

Theorem (Reshetikhin & Turaev). In the hitherto notation, and for

H = ⊕i∈I Vi ⊗ V ∗
i ,

the covariant monoidal functor TRT : 3-CobC 7−→ Vectfin(k) with the object
component (for f a 2d structure-preserving homeomorphism):

{
Σ 7−→ HomC (1C ,⊗na=1W

ǫa
a ⊗H⊗g) ,

f 7−→ idT (source(f)) ,

and with the morphism component (in a self-explanatory matrix notation):

((ML ≡ M, ∂−M, ∂+M),Ω) 7−→ [τRT (ML,Ω)
~i+

~i−
] , ~i± ∈ Ig± ,

τRT (ML,Ω)
~i+

~i−
= D

1−g+

(
g+∏

r=1

dimVi+r

)
FRT (Γ(ML,Ω);~i+;~i−)∗

defines a TQFT with the gluing anomaly:

α(ML1 ,ML2 , f) = (∆ D
−1)σ(L)−σ(L1)−σ(L2)

determined by ML = ML1 ∪f ML2 .

2The graph Γ∗
t(Σ)

coincides with the upturned Γt(Σ) in which all arrows have been reversed.
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The RT TQFT admits a straightforward reformulation which removes the gluing
anomaly and thus leads to genuine topological invariants of closed cobordisms with
embedded C -coloured ribbon links.
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Three-dimensional topological Quantum Field Theories from

Subfactors

Chris Schommer-Pries

In 1985 low dimensional topology was revitalized by V. Jones’ discovery of the
knot polynomial which now bears his name, [4]. This invariant of knots in S3 is,
perhaps, even more remarkable because of its origin in the study of von Neumann
algebras and subfactors. Soon after its discovery, E. Witten predicted that the
Jones polynomial should generalize to give other invariants of knots and links in
3-manifolds [13]. His predictions were based on physical arguments, where each
3-manifold with boundary is assigned a Hilbert space and these spaces are ‘well
behaved’ when manifolds are glued along their boundaries. The precise sense of
‘well behaved’ was axiomized by M. Atiyah [1] and the whole structure is now
known as a topological quantum field theory (TQFT).

In 1991, Reshetikhin and Turaev [10] gave the first rigorous constructions of
TQFTs using representations of certain quantum groups at roots of unity. The
key structure that their construction required was a braided tensor category (ac-
tually the braided tensor category must be ribbon and satisfy a non-degeneracy
condition). One of the most important features of a TQFT is that it produces
numerical invariants of closed 3-manifolds, and that these invariants can be com-
puted by decomposing the manifold into smaller well known pieces. This can also
be reversed: given a framed knot or link in S3, one can preform surgery on the link
to obtain a new 3-manifold, and then evaluate the TQFT on the 3-manifold yield-
ing an invariant of the link. In particular by varying the root of unity, Reshetikhin
and Turaev were able to recover the Jones polynomial.
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The Reshetikhin-Turaev construction of TQFTs essentially follows this scheme:

(1) Start with a braided tensor category.
(2) Use a surgery presentation of a given closed 3-manifold to describe it in

terms of braids.
(3) Combine the data from (1) and (2) to construct a number, which is then

proven to be independent of all the relevant choices.
(4) Add in the Hilbert spaces to get a full TQFT.

The following year, 1992, Turaev and Viro [12] gave a new construction of TQFTs.
The general scheme was identical to the above except in one respect: instead of
describing a given 3-manifold in terms of surgery and links, they used a triangula-
tion. Step three was modified too. Given a braided tensor category one extracted
certain combinatorial data, known as the 6j-symbols. Then given a triangulation
of a three manifold, step (3) was to label the triangulation by the combinatorial
data, extract a number from this, sum over all possible labelings and then prove
that the result does not depend on the triangulation. This is known as a state-sum
construction of a TQFT. Unfortunately, the resulting TQFTs were not so interest-
ing; they always were just the norm square of the analogous Reshetikhin-Turaev
TQFTs.

A year or two later the Turaev-Viro construction was generalized by A. Ocneanu
[9] and returned to the realm of subfactors. One of the basic invariants associated
to subfactors is a certain (not necessarily braided) tensor category (See [7, 8] for
some of the relevant categorical aspects). In fact, it was part of this structure
that V. Jones was studying when he discovered the Jones polynomial. Ocneanu’s
approach started with these tensor categories coming from subfactors and applied
the same state-sum recipe employed by Turaev and Viro. He was able to prove
that these resulted in TQFTs (and hence 3-manifold invariants) even when the
tensor category was not braided.

A detailed exposition of the Ocneanu-Turaev-Viro TQFT construction was
given in [2]. My talk is essentially equivalent to the calculation presented there,
however I found the calculations more understandable when presented in the lan-
guage of planar algebras [5]. In this language one merely has to manipulate a
number of two-dimensional diagrams via a graphical calculus. Since Ocneanu’s
work, M. Izumi made several explicit computations of the tensor categories arising
from certain exotic and interesting subfactors [3]. This made it possible for N.
Sato and M. Wakui to make explicit computations of the corresponding TQFTs
and 3-manifold invariants, [11]. Y. Kawahigashi, N. Sato and M. Wakui were later
able to express these invariants in terms of the better known surgery presentations
of manifolds [6].

A final piece of the story is also discussed in [6]: Given a subfactor, it is possible
to construct a new subfactor known as the asymptotic inclusion. This new sub-
factor serves as a sort of ‘quantum double’ of the original subfactor. In particular
the tensor category arising from the new subfactor will be braided. Thus we can
compare two TQFTs: We can apply the Ocneanu-Turaev-Viro construction to the
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original subfactor or we can apply the Reshetikhin-Turaev construction to the new
subfactor. These two TQFTs coincide.
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Wess-Zumino-Witten Model: Conformal Blocks

Vincent Graziano

Here we discuss the Wess-Zumino-Witten model. The main purpose of the talk is
to give the definition of the conformal blocks in this model. The exposition follows
closely the paper of Beauville [1] and the book by Bakalov and Kirillov [2].

Fix the following notation. Denote by g a finite-dimensional simple Lie algebra,
g((t)) the loop algebra, ĝ the affine Lie algebra, and ĝ+ = tg[[t]]. Denote by
V kλ the Weyl module induced by the irreducible finite dimensional g-module Vλ
with highest weight λ, and level k. In the case k ∈ Z+ denote the integrable
highest weight representation of weight λ ∈ P k+ by Lkλ. Denote by Ok the category
of ĝ-modules of level k which have weight decomposition with finite-dimensional
weight subspaces, such that the action of ĝ+ is locally nilpotent, and the action of
g is integrable. Let Σ be a compact, connected, nonsingular complex curve. Let
p1, . . . , pn be marked points on Σ with local parameters t1, . . . , tn. Denote these

data as the triple (Σ,−→p ,−→t ). We denote by M the moduli space of such triples.
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The WZW model is an example of a conformal field theory, and is based on
the category of integrable representations Oint

k of an affine Lie algebra ĝ at a

fixed level k ∈ Z+. For any point (Σ,−→p ,−→t ) in the moduli space associated
to each of its marked points pi a representation Vi of ĝ. The conformal blocks

W (Σ,−→p ,−→t ;V1, . . . , Vn) will be a subspace of Hom(C, V1⊗̂ · · · ⊗̂Vn) where ⊗̂ is
some suitable completion of the tensor product. Rather than define this completion
we define the dual space W ∗, called the space of coinvariants.

Consider the Lie algebra g(Σ−−→p ) ≡ g×O(Σ−−→p ) of g-valued functions which
are regular outside the points pi and meromorphic at these points. From this we
can define a Lie algebra homomorphism

−→γ : g(Σ −−→p ) → U(ĝ)k ⊗ · · · ⊗ U(ĝ)k

with exactly one copy of the enveloping algebra for each marked point pi. We can
now make the following

Definition. To the points pi associate the representations Vi ∈ Ok. Write
−→
V for

V1 ⊗ · · · ⊗ Vn. The space of coinvariants is the vector space

τ(Σ,−→p ,−→V ) ≡ Vg(Σ−−→p ) =
−→
V /g(Σ −−→p )

−→
V .

The space of conformal blocks W is then easily described by the dual space

W = τ(Σ,−→p ,−→V )∗.

The WZW model has the three important properties.

(1) The spaces of conformal blocks W are finite dimensional.
(2) W is a vector bundle with a projectively flat connection over the moduli

space.
(3) Sewing axiom or Factorization property.

To show that the spaces of conformal blocks are finite dimensional we establish
first the following.

Lemma. Let (Σ,−→p ,−→t ) be a point in M. Let q be a point on the curve Σ distinct
from the −→p . Let Vλ be an irreducible g-module, and V kλ the corresponding Weyl
module. Associate to the point q the module V kλ . Then

(
−→
V ⊗ Vλ)g(Σ−−→p ) ≃ (

−→
V ⊗ V kλ )g(Σ−−→p −q) = τ(Σ,−→p ∪ q,−→V ⊗ V kλ ),

where g(Σ − −→p ) acts on Vλ via the evaluation map at point q. That is, x ⊗ f 7→
f(q)x, for x ∈ g, f ∈ O(Σ −−→p ).

Lemma. Fix k ∈ Z+. Let Vi be in Ok. Suppose that at least one of the Vi is
integrable. Then

τ(Σ,−→p , V1 ⊗ · · · ⊗ Vn) = τ(Σ,−→p , V1/I1 ⊗ · · · ⊗ Vn/In)

where Ii is the maximal proper ideal in each Vi.

These two lemmas rely on the Riemann-Roch theorem: we can find a function
f on Σ which is regular outside −→p ∪ q that has a simple pole at the point q. See
[1] for details.
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Corollary. Let Lk−→
λ

= Lkλ1
⊗ · · · ⊗ Lkλn

. Then

τ(Σ,−→p , Lk−→
λ

) ≃ τ(Σ,−→p ∪ q, Lk−→
λ
⊗ Lk0),

where Lk0 is associated to the point q, and denotes the integrable module coming
from the trivial representation.

With these facts in place one can prove the following

Theorem. Let Lk−→
λ

= Lkλ1
⊗ · · · ⊗ Lkλn

. Then the spaces of coinvariants

τ(Σ,−→p , Lk−→
λ

)

are finite-dimensional.

As for the other properties, the second is shown using the Sugawara construc-
tion. In the case where Σ = P1 the flat connection is described by the Knizhnik-
Zamolodchikov equations. The third takes some work to establish. Consider two
Riemann surfaces connected by a long narrow tube, then the conformal blocks
should be the product of the corresponding blocks associated to each of the sur-
faces. This construction is carried out by taking the completion of the moduli
space M̄ using the Delinge-Mumford compactification. See [8] for the details.

We end the talk with two examples.

Example. Let Σ = P1 and let −→p be n distinct points on Σ. Let Vλi
be g-modules

with highest weight λi. Let V ki be the Weyl module of ĝ induced by Vλi
. Associate

to the points pi the Weyl modules V ki . Then

(Vλ1 ⊗ · · · ⊗ Vλn
)g ≃ τ(Σ,−→p , V kλ1

⊗ · · · ⊗ V kλn
).

That is to say, in the case where the surface has genus zero the conformal blocks
are determined by the highest weights of the finite dimensional g-modules. This is
not the case for surfaces of other genera.

Example. Let Σ = P1, and the Lie algebra g be semisimple. Fix the level k ∈ Z+.
Suppose that the surface is marked with three points 0, 1, and ∞. Associate to
these points the integrable representations Lλp

, Lλq
, and Lλr

. Then

N r
p,q = dim τ(P1,−→p , L−→

λ
),

where the N r
p,q are the multiplicity coefficients for the modular category Oint

k . See
[7] for details.
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The Knizhnik–Zamolodchikov Connection on the Sheaf of Covacua

Marc A. Nieper-Wißkirchen

Let g be a finite-dimensional simple Lie algebra together with a non-degenerate
symmetric bilinear form (·, ·) normalised such that (θ, θ) = 2 for the longest root
θ ∈ h. Here h is a Cartan subalgebra of g together with a decomposition of its set
of simple roots into the positive ones and the negative ones. Also fix a non-negative
integer l, from now on called the level.

The Wess–Zumino–Witten-model for g associates then to a marked curve C a
certain finite-dimensional vector space V , the space of covacua. Here, a marked
curve is a smooth compact Riemannian surface with n distinguished marked points
p1, . . . , pn.

Given a family of such marked curves π : X → S over a smooth base S — that
is a proper, smooth map of relative dimension 1 of complex manifolds together
with non-intersecting sections s1, . . . , sn.

In our talk we showed that this family is in fact a vector bundle V of finite rank
over S. It carries a natural flat projective connection, i.e. there is a natural flat
connection on the projectivisation of V . In the case that the fibres are of genus
0, the connection is induced by the classical Knizhnik–Zamolodchikov connection
(and is in fact already defined as a connection on V ) [1].

Let us now give precise definitions and a more detailed outline of the talk: Let
π : X → S be a proper smooth map of relative dimension 1 of complex manifolds.
Let s1, . . . , pn : S → X be sections such that the divisors Σi := si(S) do not
intersect each other. Let U be the formal neighborhood of Σ :=

∑n
i=1 Σi in X , let

Ẋ := X \ Σ, and set U̇ := Ẋ ∩ U .
We can then make g := g ⊗C π∗OU̇ ⊕ OS a sheaf of Lie algebras over OS by

defining

[(A⊗ f, c), (B ⊗ g, d)] := ([A,B] ⊗ (fg), (A,B) Res(df g)).

Let λ ∈ h be a dominant weight of g (with respect to the chosen set of positive
roots). Furthermore assume that λ lies in the so-called Weyl alcove defined by

(λ, θ) ≤ l.

Then we can define a sheaf of Verma modules Mλ over S to the weight λ with
level l in the same way as Verma modules for finite-dimensional semi-simple Lie
algebras are defined [5]. In particular, it is generated by OS . This module has a
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unique, maximal integrable quotient Lλ, which is by construction a quasi-coherent
sheaf over S.

By restriction, there is an action of the sheaf g⊗ π∗OẊ of Lie algebras on S on
Lλ. We can then define the sheaf of covacua to be

Vλ := Lλ/(g ⊗ π∗OẊ)Lλ.

We then showed in our talk that this quasi-coherent sheaf is actually coherent
[4].

We continued with constructing a projectively flat connection on Vλ. A projec-
tively flat connection on Vλ is nothing else than a projective representation of the
tangent sheaf ΘS on Vλ such that the Leibniz rule holds. From the existence of
this connection it follows that Vλ is in fact locally free of finite rank, i.e. the sheaf
of sections of a vector bundle [4].

There are two ways to produce this projectively flat connection. One is using
a coordinate-free language [5, 3] and actually involves a coordinate-free construc-
tion of the Virasoro algebra. The other approach assumes that we are given an
isomorphism

π∗OU̇ =

n⊕

i=1

OS [[ti]].

For simplicity, we followed the second approach in our talk.
Our presentation of the connection was based on the Bourbaki talk on [4].

It involves the Sugawara construction, which is a representation of the Virasoro
algebra on each integrable g-module Vλ. For details, we refer to the Bourbaki talk
mentioned.

Let us finish by mentioning that one can measure the failure of the projective
connection to be a proper connection. In fact, there is a canonical extension A of
sheaves of Lie algebras of the tangent sheaf ΘS by the trivial sheaf OS such that
A has a canonical representation on Vλ [2, 5].
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The TFT Approach to CFT Correlation Functions

Christian Lehn

In [2] the authors define the notion of a correlation function of a conformal field
theory. There a correlation function is an assignment of a multilinear map to a
worldsheet satisfying certain compatibility conditions concerning sewings of the
worldsheet and Weyl transformations of the metric. In [5] this notion is put in
a more abstract setting, which is worked out more explicitly in [4] and [1]. The
main idea is to store the conformal structure of the theory in a modular tensor
category C, which can be thought of as the representation category of a conformal
vertex algebra. After that they define correlation functions for purely topological
worldsheets using a topological field theory associated to C following [6]. Here we
take our starting point.
To give the definition of a correlation function (or correlator), we have to introduce
some categories and functors between them.

Definition. An extended surface E is the following data.

• A compact, closed, oriented, topological manifold E of dimension 2.
• A finite set of marked arcs, i.e. embeddings of an interval [−ε, ε] →֒ E.

The marked points p1, .., pn, i.e. the zeros of the arcs, are labelled with
pairs (Ai, ǫi), i = 1, ..n, where Ai ∈ ObC and ǫi = ±1.

• A lagrangian subspace λ ⊆ H1(E,R) w.r.t. the intersection form.

There are two types of morphisms of extended surfaces: homomorphisms pre-
serving the structure and weighted, oriented cobordisms. The resulting category
of extended surfaces E is a tensor category with disjoint union of surfaces (and
obvious extension to the additional structure) as the tensor product. All this is
explained in more detail in [6], just like the construction of a tensor functor

tftC : E → k − Vect,

where k−Vect is the category of finite dimensional vector spaces over the ground
field k of C, i.e. k = EndC(1) with 1 the tensor unit. Throughout the talk k = C

is assumed. In this construction the weight is used to kill the anomaly in the usual
construction.
The category WS of (topological) worldsheets is defined as follows.

Definition. A (topological) world sheet X is the following data.

• A compact, oriented, topological manifold X of dimension 2, possibly with
boundary.

• An orientation-reversing involution i : X → X, such that Ẋ := X/i is a
manifold.

• An orientation-preserving parameterisation δ : ∂X → S1 ⊆ C, such that
for each connected component B of ∂X the restriction δ|B is a homeomor-
phism and compatible with the involution in the sense that

δ(i(p)) = δ(p) (complex conjugation)
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• A partition of π0(∂X) = bin∪ bout into ”‘in-going-boundaries”’ and ”‘out-
going-boundaries”’ such that i∗bin = bin and i∗bout = bout.

• A section s : Ẋ → X of the canonical projection X → Ẋ.

One should think of Ẋ as the worldsheet rather than X . The description above
can be used to define ”‘open”’, ”‘closed”’ and ”‘physical”’ boundary components
and treat them all at once. Morphisms of worldsheets are homeomorphisms com-
patible with the additional structure and sewings, i.e. the process of sewing an
incoming and an outgoing boundary (see [1] for details).
For a fixed Hop ∈ C and Hcl ∈ C ⊠ C, the ”‘spaces of open/closed states”’, one
constructs an embedding

I : WS → E
and selects a subspace Bl(X) ⊆ tftC (I(X)). This will constitute the functor of
Blocks

Bl : WS → C − Vect,

which, together with the trivial functor One : WS → C − Vect, which assigns C

to every object and idC to every morphism, enables the following

Definition. A consistent collection of correlators is a monoidal natural transfor-
mation

Cor : One→ Bl.

Given such a consistent collection of correlators Cor, one can construct a sym-
metric special Frobenius algebra ACor in the modular tensor category C (accom-
plished in [1]), and conversely given a symmetric special Frobenius algebra A in C,
one can construct correlators CorA (accomplished in [4]). A lot of the technique
is provided in [3]. It is proven in [1] that under rather natural conditions the
consistent collection of correlators obtained from an algebra of the form ACor is
equivalent to the original correlator Cor.
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Symmetries and Dualities in Conformal Field Theory

Pasquale A. Zito

In the approach to Rational Conformal Field Theory developed in the series of
papers ([1]-[6]) the starting point is a set of chiral data as that given by a vertex
algebra whose representation category is a modular tensor category C. The basic
idea is to use the TFT of Reshetikhin-Turaev type given by C to establish a
correspondence between families of decorated ribbon graphs in 3-d manifolds and
correlation functions of the CFT (see [4], sect. 3-6). Worldsheets are assumed to
be extended surfaces, which may have boundaries and may not be orientable.

One is furthermore interested in situations in which different parts of a world
sheet can be in different phases, i.e. different full CFTs, all with the same un-
derlying rational vertex algebra. Lines along which such phases meet are called
defect lines and are supposed to be transparent with respect to the holomorphic
and anti-holomorphic components of the stress tensor, i.e. they can be deformed
continuously on the world sheet with the field insertion points removed without
changing the value of a correlator (see [7], sect. 1).

Each phase of the worldsheet is associated (up to Morita equivalence) to a
special symmetric Frobenius algebra in C (see [1], par. 3). In the case of non-
orientable worldsheets the more particular notion of “Jandl” algebra is considered
(see [2], sect. 2).

A prominent role is played by the 2-category whose objects are symmetric spe-
cial (Jandl) Frobenius algebras {A,B, . . . } in C, 1-morphisms are A-B-bimodules
and 2-morphisms are bimodule morphisms. Each algebra A may be viewed as a
bimodule over itself, the corresponding identity 1-morphism. It is easily verified
that this 2-category inherits from the initial modular category C the properties of
semisimplicity, finiteness and rigidity (see [7], sect. 2).

Boundaries between phases cft(A) and cft(B) are labelled by A-B-bimod-
ules. The invisible defect in phase cft(A) is labelled by the algebra A itself,
i.e. the identity 1-morphism. Bulk fields which transform in the representation
Ui×Uj of the left- and right-moving copies of V correspond to bimodule mor-
phisms in HomA|A(Ui⊗+A⊗− Uj , A) (see [4], sect. 3.1 for a precise definition of
these spaces). Analogously, defect fields which join a defect labelled by an A-
B-bimodule X to a defect labelled by another A-B-bimodule Y correspond to
elements in HomA|B(Ui⊗+X ⊗− Uj, Y ). Boundary conditions associated to, say,
phase cft(A) and cft(B) are labelled by A-modules andB-modules, respectively.
A boundary field separating these two boundary conditions and transforming in
the Ui representation is labelled by an element in HomA|A(Ui⊗+A,A). Defect
lines associated to simple bimodules are called “simple” defects.

Information about internal symmetries of the theory is obtained by the study of
the Picard groupoid of this 2-category. This consists of isomorphism classes of bi-
modules of the form AXB such that AXB ⊗B BX

∨
A ≃ A and BX

∨
A ⊗A AXB ≃

B (where BX
∨
A is the dual bimodule). In particular, for each symmetric special

simple Frobenius algebra A we have the associated Picard group (see [3], def. 2.5)
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of the tensor category of A-A bimodules. A topological defect is called group-like
iff it is labelled by a group-like A-A-bimodule.

A bulk field, passing through a group-like defect line, transforms into a new
bulk field (were the defect line not group-like, one would obtain in general a more
complicated linear combination of defect fields and defect lines). Thus, one can
associate to each group-like defect bimodule a map sending fields into fields. Com-
position of maps reflects bimodule composition. Non-isomorphic bimodules label
distinct defects (see [7], prop. 2.8). In particular, there is a faithful representation
of the Picard groupoid acting as a symmetry of the CFT.

By similar reasoning, one shows that Morita equivalent algebras give rise to the
same CFT, i.e. equivalent correlation functions (see [7], sect. 3.3).

A B-A-defect Y is called a duality defect iff there exists an A-B-defect Y ′ such
that, for every bulk field of cft(A), first taking Y past that bulk field and then
Y ′ past the resulting sum over disorder fields, gives a sum over bulk fields of
cft(A). It is shown (see [7], th. 3.9) that this condition is equivalent to saying
that Y ∨⊗B Y is a direct sum of group-like A-A defects. Duality defects are shown
to be responsible of high/low temperature dualities (see [7], sect. 3.6; [8]).

References

[1] J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators I: Partition
functions, Nucl. Phys. B, 624 (2002) 452, hep-th/0110133

[2] J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators II: Unori-
ented surfaces, Nucl. Phys. B, 678 (2004) 511, hep-th/0306164

[3] J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators III: Simple

Currents, Nucl. Phys. B, 694 (2004) 277 hep-th/0403158
[4] J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators IV: Structure

constants and correlation functions, Nucl. Phys. B, 715 (2005) 539, hep-th/0412290
[5] J. Fjelstad, J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators

V: Proof of modular invariance and factorisation, Theory and Appl. Cat., 16 (2006) 342,
hep-th/0503194

[6] J. Fjelstad, J. Fuchs, I. Runkel, and C. Schweigert, Uniqueness of open/closed CFT with
given algebra of open states, hep-th/0612306

[7] J. Frölich, J. Fuchs, I. Runkel, and C. Schweigert, Duality and defects in rational conformal
field theory, hep-th/0607247
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On α-Induction

Marta Asaeda

1. Introduction

This is an expository talk on α-induction. α-induction was first introduced
by Longo and Rehren in [6] for a net of subfactors A ⊂ B as a way to extend
a localized endomorphism for A to an endomorphism for B. Xu investigated it
further in [11]. Ocneanu introduced chiral projectors of double triangle algebras
and showed that they correspond to M -M bimodules of a subfactor N ⊂ M
when N -N , N -M bimodules and 6j-symbols involving them are given [9]. In [1],
Böckenhauer, Evans and Kawahigashi showed that Ocneanu’s chiral projectors
are essentially the same thing as α-induction and obtained numerous interesting
results.

It is known that various operator algebraic phenomena have a lot in common
with phenomena occuring in representation theory, vertex operator algebras, and
so on. A categorical description yielding a unified view has been developed by
Kirillov, Müger, Nikshych, Ostrik, Vainerman as in [8], [5], [7], and [10]. In [10,
sec.5] Ostrik gives a categorical description of α-induction. In this talk we will
give a survey on [10, sec.5].

2. α-induction in a categorical language

Let C be a rigid monoidal category, and M be a module category over C. The
definitions of those categories have been given in earlier talks. One may think of
C as a tensor category of N -N bimodules and M as N -M bimodules for a given
subfactor N ⊂ M if one wishes, as an example. We will indeed mention this
example often.

We study C∗ := FunC(M,M), a category of module functors, namely a category
of functors compatible with C-action on M. C∗ is a monoidal category, with tensor
product given by the composition of functors. In subfactor setting we may consider
an M -M bimodule V as an object ?⊗M V in C∗: indeed associativity of bimodule
tensor products

(NX ⊗N W ) ⊗M VM ∼=N X ⊗N (W ⊗M VM )

shows that ? ⊗M V is a module functor on M, where X ∈ C, W ∈ M. Moreover
it is known that any F ∈ C∗ is given by ⊗MV for some M -M bimodule V .

In a special setting we may construct an object in C∗ out of an object in C.
Such is the α-induction. In the following we assume that C is braided, and that
all categories C, M, and C∗ are semisimple, the unit object of C is irreducible, and
that M is indecomposable. Let {βV,W : V ⊗W →W ⊗V } be braidings on C. We
define two functors

α± : C → C∗

by α±(X) := X⊗?, with module functor structures

c
α±(X)
Y,M : α±(X)(Y ⊗M) = X ⊗ Y ⊗M → Y ⊗X ⊗M = Y ⊗ α±(X)(M)
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by c
α±(X)
Y,M = β±1

X,Y ⊗ idM . One may check using hexagon identity (by drawing

picture) that this defines module functors, and that they are monoidal functors
as well. Note that the braiding βX,Y defines an isomorphism of module functors
α+(X) ◦ α−(Y ) ∼= α−(Y ) ◦ α+(X).

Let C∗
± be the monoidal subcategory of C whose objects are direct summands

of α±(X)’s. Then one may show that the above isomorphism is restricted to a
“relative” braiding F+ ◦ F− ∼= F− ◦ F+ for F± ∈ C∗

±. In particular we obtain a
braided category C∗

0 := C∗
+ ∩ C∗

−.

3. Several results

The following results are proved by Fröhlich, Fuchs, Runkel, and Schweigert in
categorical terms, in given references respectively.

3.1. Modular Invariants. We assume that C is also a ribbon category. In such
case there is a SL(2,Z) representation on K0(C)⊗C, in particular there are S and
T matrices with rows and columns indexed by simple objects {Xλ}λ∈Λ of C. Let
Z := (Zλ,µ)λ,µ, where Zλ,µ = dimHomC∗(α+(Xλ), α−(Xµ)).

Claim ([1, 3]). The matrix Z commutes with S and T .

When S is invertible, we say the category C is modular. Matrices that commute
with S and T are called modular invariants in such a case.

3.2. Nondegenerate Case. Assume further that C is modular. We have the
following results:

Claim ([1, 2]). The category C∗ is generated by C∗
±, i.e. any object of C∗ is a

direct summand of α+(X) ◦ α−(Y ) for some X,Y ∈ C.

Claim ([4]). The number of irreducible objects in the category C∗ is Tr(ZZt) =∑
λ,µ Z

2
λ,µ. Moreover the Grothendieck ringK0(C∗) is isomorphic to ⊕λ,µMZλ,µ

(C).

Since K0(C) is commutative, all its irreducible representations are the charac-
ters. It is known that the characters of K0(C) are given by χλ : [Xµ] ∈ K0(C) 7→
Sλ,µ ∈ C, where λ, µ ∈ Λ, and Sλ,µ is an entry of the S-matrix. (Recall that Λ
is the index set for the simple objects of C.) Then we have the decomposition
K0(M) ⊗ C ∼= ⊕λC

nλ

λ as K0(C) ⊗ C-module, where Cλ denotes one-dimensional
representation corresponding to χλ.

Claim ([3]). The multiplicity nλ coincides with Zλ,λ.

4. An example: E6

Let C be the category of integrable modules over ŝl2 of level k = 10. Simple
objects of C are V0, V1, ..., V10, and A = V0 ⊕ V6 is a rigid commutative C-algebra
(see [5] for detail). Let M = RepA. Then M is a module category over C, and
itself a monoidal category. The fusion rule of M is given by the Dynkin diagram
E6. It turns out that the categories C∗

± also form E6 as well. In the following
diagram, the vertices on the dark (resp. grey) solid graph are simple objects of C∗

+
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(resp. C∗
−), the circled vertices are in C∗

0 , and all the vertices, including the ones
on broken graphs, compose all the simple objects of C∗.

C∗
+ C∗

−
C∗
0

a

b
c

Modular invariant is given as follows: at the vertices a, b, and c we have in-
decomposable functors α+(Vp) ∼= α−(Vp) ∼= α+(Vq) ∼= α−(Vq), where (p, q) =
(0, 6), (3, 7), (4, 10) for a, b, c respectively in this order. Thus we have a 11 ×
11 modular invariant matrix Z = (Zi,j), where for i ≤ j, Zi,j = 1 if (i, j) =
(0, 0), (0, 6), (3, 3), (3, 7), (4, 4), (4, 10), (6, 6), (7, 7), (10, 10),Zi,j = 0 otherwise, and
for i > j, Zi,j = Zj,i.
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[2] J. Fröhlich, J. Fuchs, I. Runkel, C. Schweigert, Duality and defects in rational conformal
field theory , hep-th/0607247

[3] J. Fuchs, I. Runkel, C. Schweigert, TFT construction of RCFT correlators I: Partition
functions, Nucl. Phys. B, 646, (2002) 353–497

[4] J. Fuchs, I. Runkel, C. Schweigert, The fusion algebra of bimodule categories, Submitted to
Applied Categorical Structures (Springer), math.CT/0701223

[5] A. Kirillov Jr., and V. Ostrik, On q-analogue of McKay correspondence and ADE classifi-

cation of sl(2) conformal field theories, Advances in Mathemat Mathematics, 171 (2002),
183–227

[6] R. Longo, and K.-H. Rehren, Nets of subfactors, Reviews in Math. Phys. 7 (1995), 567–597.
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Directions in Hopf Algebras,Ó MSRI Publications, 43 (2002), 211-262.
[9] A. Ocneanu, Paths on Coxeter diagrams: from Platonic solids and singularities to minimal

models and subfactors, (Notes recorded by S. Goto), in Lectures on operator theory, (ed.
B. V. Rajarama Bhat et al.), The Fields Institute Monographs, Providence, Rhode Island:
AMS Publications (2000), 243–323.

[10] V. Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform.
Groups, 8 177 (2003)

[11] F. Xu, New braided endomorphisms from conformal inclusions, Communications in Math-
ematical Physics, 192 (1998), 349–403.



Arbeitsgemeinschaft: Conformal Field Theory 989

Classification of Boundary Conformal Field Theories

Dorothea Bahns

The main focus of my talk was a classification result of Longo and Rehren [1, 2] on
boundary conformal field theories in the framework of local nets of von Neumann
algebras.

Starting point is a net of von Neumann algebras on the real line (called chiral
net), which is an inclusion preserving mapA from the set of bounded open intervals
to the set of von Neumann algebras on a fixed Hilbert space H0 that is local and
completely rational (i.e. selfdual, irreducible, strongly additive, split, as well as
subject to a certain finiteness condition), and moreover equivariant with respect
to an action of the Möbius group.

A local covariant net on the half space M+ = {(t, x) ∈ R2 | x > 0} (that
is equipped with a quadratic form η = (1,−1), the Minkowskian metric), is an
inclusion preserving map from double cones O in M+ to the set of von Neumann
algebras on a fixed Hilbert space H, subject to locality (with respect to causal
complements) and Möbius-equivariance. A straightforward prescription allows to
construct from a chiral net A an associated local covariant net A+ (on the half
space) of von Neumann algebras on the Hilbert space H0 of A.

A boundary conformal field theory on the half space M+ associated to A is
then defined to be a local covariant net B+ (on the half space) of von Neumann
algebras on some fixed Hilbert space H such that there is a representation π of A
on H with an extension to the associated net A+ such that π(A+(O)) ⊂ B+(O)
for any double cone O in M+ (and some additional technical properties).

By another straightforward construction, such a boundary conformal field the-
ory can then be restricted to yield a (not necessarily local) net on R (restriction to
the boundary), a so called chiral extension of A (i.e. a net on R of von Neumann
algebras on H containing π(A) such that the inclusion is relatively local). On the
other hand, any chiral extension of A taking values in the set of von Neumann alge-
bras on some fixed Hilbert space H̃ can be extended to a local boundary conformal
field theory, if the extension contains π̃(A) irreducibly (induction to M+).

The theorem of Longo and Rehren then states that, given a chiral net A, there
is a bijection between selfdual boundary conformal field theories associated with A
and irreducible chiral extensions of A. The theorem’s proof relies on techniques of
von Neumann subfactor theory and modular theory (Tomita Takesaki Theorem).

As a consequence, one finds that the classification of selfdual boundary con-
formal field theories is a finite problem, since completely rational theories possess
only a finite number of irreducible chiral extensions. For similar reasons also the
classification problem of non-selfdual boundary conformal field theories is finite.

Within this framework, the fact that certain inequivalent chiral extensions of
a given chiral net A possess the same coupling matrix can be understood as fol-
lows. Each of these extensions yields an induced boundary conformal field theory.
Employing the technique of Q-systems and studying the algebras of charged in-
tertwiners (see for instance [3, 4]), it can be shown by the split property of A that



990 Oberwolfach Report 17/2007

these boundary conformal field theories are locally isomorphic to one local net on
R2 which is obtained from A⊗A by α-induction.
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