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Abstract. The workshop brought together researchers and graduate stu-
dents from different areas of mathematics, such as analysis, probability the-
ory, geometry, and number theory. The topics of joint interest were motivated
by recent problems in potential theory with impacts into these areas:

• discrete approximation to energy minimising measures
• potential theory on fractals and manifolds
• geometric measure theory on fractals
• probabilistic potential theory
• spectral theory on fractals and sets with fractal boundary.

The format of a mini-workshop was especially well-suited for our subject,
since it allowed enough time for personal discussions besides the talks given
by the participants.

The concept of energy of a charge distribution on a subset of Euclidean
space is one of the core subjects of potential theory. Recent generalisations
of this concept to hyper-singular energy kernels and discrete N–point distri-
butions exhibit a close connection with ideas from geometric measure theory.
A recent article by two of the organisers shows that N–point configurations
minimising the discrete energy in the hyper-singular case can be used to
characterise the Hausdorff measure on d–dimensional d–rectifiable manifolds
embedded in Euclidean space. Such minimal energy point sets can be used
for the discretisation of manifolds, which has numerous applications.

On the other hand discretisation by graph structures is a common means
for analysis on fractal structures. Usually, a diffusion and an associated
Laplace operator are defined by rescaling discrete random walks and their
transition operators on the approximating graphs.
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Introduction by the Organisers

The mini-workshop Geometric Measure Theoretic Approaches to Potentials on
Fractals and Manifolds, organised by Peter Grabner (Graz), Douglas Hardin (Van-
derbilt), Edward B. Saff (Vanderbilt), and Martina Zähle (Jena) was held from
April 8 to 14, 2007. The meeting had 17 participants from 6 countries. The par-
ticipants had background from different areas such as fractal geometry, geometric
measure theory, stochastic processes, and potential theory. This diversity gave rise
to new interactions among the participants. In order to initiate these interactions
and to put the focus on the main themes of the workshop, the first two days of
the workshop were organised around three introductory lectures:

Edward B. Saff: An overview of discrete minimal energy problems on man-
ifolds

Martina Zähle: Classical potential theory and stochastic processes
Pertti Mattila: Geometric measure theory on fractals.

Potential theory and geometric measure theory have many applications and
interactions with various areas of mathematics. The workshop was focussed es-
pecially on applications in probability theory, fractal geometry, discrete minimum
energy, and harmonic analysis.

Stochastic processes are a classical application of potential theory. Several talks
during the workshop were devoted to this area. Michael Hinz discussed Dirichlet
form techniques for the approximation of jump processes on fractal sets. In partic-
ular, he studied the influence of a weight function on the behaviour of the process.
Yimin Xiao spoke on recent results on the behaviour of α-stable Lévy processes.
He discussed the connection between Lévy processes, energy forms, and the cor-
responding capacities. He suggested using these ideas for the study of fractal
properties of more general Markov processes. Martina Zähle gave an introductory
talk on the interplay between classical potential theory, stochastic processes, and
their traces on fractals. She gave special emphasis to Riesz and Bessel potentials,
as well as the corresponding function spaces. Jiaxin Hu discussed Dirichlet forms
on fractals and their domain. On post-critically finite (p. c. f.) fractals rescalings
of finite difference operators are used to construct Dirichlet forms. Estimates for
the effective resistance in terms of the distance were presented. Zhenquing Chen
presented a new approach to the definition of reflecting Brownian motion on com-
pact sets with non-smooth boundary. This is based on discrete approximation by
random walks on finer and finer grids. It is shown that this definition is equivalent
to other less constructive approaches.

Minimisation of discrete and continuous energies is a classical subject of po-
tential theory. Recently, relations to questions originating from geometric mea-
sure theory arose, which were one of the motivations for this workshop. Edward
Saff gave an introductory talk about recent joint work with S. Borodachov and
D. Hardin on discrete minimal energy in the hyper-singular case. In contrast to
classical potential theory for energy integrals, the discrete energy also exists for
Riesz-kernels ‖x − y‖−s with s ≥ d (d being the dimension of the set). Indeed,
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it has been proved by D. Hardin and E. Saff that the configurations of minimal
energy for such values of the Riesz parameter s are uniformly distributed with
respect to normalised d-dimensional Hausdorff measure, as the number of points
tends to ∞. Douglas Hardin presented the ideas of the proof, which is based on re-
sults for d-rectifiable sets, as well as self-similarity considerations. As s→ ∞, the
minimal energy problem becomes the classical problem of best packing. This re-
lates the determination of the asymptotic main term of minimal energy to packing
problems. Matthew Calef discussed the limiting case s = d, which can be obtained
from classical potential theory by taking limits s → d− of suitably renormalised
potentials. In this case the measure of minimal energy equals the normalised Haus-
dorff measure for compact subsets of Rd with positive Lebesgue measure. Johann
Brauchart discussed the support of the equilibrium measure on sets of revolution
in R3 for Riesz-potentials with 0 < s < 1. In particular, he discussed the question
of, when the support is a proper subset of the outer boundary of the surface of
revolution. Abey Lopez presented asymptotic distribution results for Leja points
on the circle. He showed that these points form a uniformly distributed sequence,
although their Riesz-s-energy is asymptotically strictly larger than the minimal
energy (for s > 1).

Geometric measure theory and potential theory provide important techniques
in the investigation of properties of fractal sets. Pertti Mattila presented methods
and results from the geometric measure theory of fractals. Special emphasis was
given to projection properties of fractal sets, such as the Hausdorff dimension of
the “generic” projection of a set of given dimension. Daniel Mauldin discussed
constructions of fractal sets based on (possibly infinite) iterated function systems
of conformal maps in R

n. He described tools and techniques which have been de-
veloped to analyse the properties of the limit set: Hausdorff, packing, Minkowski,
or packing dimensions, as well as the quantisation dimension of Gibbs states and
equilibrium measures of various potentials.

Classical potential theory Riesz, Bessel, and more general kernels and positive
harmonic functions were the subject of three talks. Volodymyr Andriyevskyy gave
a talk on positive harmonic functions in C \E depending on geometric properties
of the set E ⊂ R. He discussed necessary and sufficient conditions for the existence
of two linearly independent positive harmonic functions. Natalia Zorii presented
results on the existence of equilibrium measures on non-compact subsets of Rn.
Peter Dragnev discussed the supports of equilibrium on the sphere under the
presence of a Riesz external field. He gave applications of his results to separation
of discrete minimal energy point configurations.

Spectral theory on fractal set, its relation to complex dynamics, and correspond-
ing zeta functions were the subject of two talks. Michel Lapidus gave an intro-
duction to the theory that he and his coauthors developed of complex dimensions
of fractal sets. Relations to tube formulæ of self-similar fractals, Minkowski mea-
surability, and spectral asymptotics on sets with fractal boundary were discussed.
Peter Grabner presented results on the analytic continuation of the spectral zeta
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function on certain self-similar fractals and the relation to the classical Poincaré
functional equation from complex dynamics.
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Abstracts

Positive Harmonic Functions on Denjoy Domains in the Complex

Plane

Volodymyr V. Andriyevskyy

We use the following standard terminology. We denote by Denjoy domain an
open subset Ω of the complex plane C whose complement E := C \ Ω, where
C := C∪ {∞}, is a subset of R := R∪ {∞}, where R is the real axis. Throughout
the lecture we rely on the following assumption. Each point of E (including the
point at infinity) is regular for the Dirichlet problem in Ω. Denote by P∞ = P∞(Ω)
the cone of positive harmonic functions on Ω which have vanishing boundary
values at every point of E \ {∞}. A classical result by Levin [8], rediscovered
independently by Ancona [2] and Benedicks [3], states that either all functions in
P∞ are proportional or P∞ is generated by two linearly independent (minimal)
harmonic functions; that is, either dim P∞ = 1 or dim P∞ = 2 respectively.
In other words, it means that the Martin boundary of Ω has either one or two
“infinite” points.

The results in [2] and [3] are proved for positive harmonic functions in domain
Ω ⊂ Rn, n ≥ 2. In this talk we focus on the case n = 2 due to its extreme
importance in the theory of entire functions, where positive harmonic functions
and subharmonic functions in C which are non-positive on a subset of the real line
were the subject of research significantly earlier.

There is a close connection between the dimension of P∞ and the behavior of
the Green function gΩ(·, z) for Ω with pole at z ∈ Ω.

The problem of finding a geometric description of E such that dim P∞ = 2
attracted attention of a number of researches (see [1], [3], [7], [10], [6], [11], and
[12]).

Theorems 1 and 2 below provide a natural and intrinsic characterization of E
with a given dim P∞ in terms of the logarithmic capacity cap(S), S ⊂ C. In these
theorems we also connect the dimension of P∞ with continuous properties of the
Green function gΩ in a neighborhood of infinity.

Theorem 1. The following conditions are equivalent:
(i) There exist points aj , bj ∈ E, −∞ < j <∞ such that

bj−1 ≤ aj < bj ≤ aj+1, lim
j→±∞

aj = ±∞,

∞⋃

j=−∞

(aj , bj) ⊃ E∗,

inf
−∞<j<∞

cap(E ∩ [aj , bj ])

cap([aj , bj])
> 0,

∞∑

j=−∞

(
bj − aj

|aj | + 1

)2

<∞;



1034 Oberwolfach Report 19/2007

(ii) dimP∞ = 2;
(iii) lim supΩ∋t→∞ gΩ(t, z)|t| <∞ for any z ∈ Ω.

For particular results of this kind, see [10, Theorem 2], [11, Theorem 8], [9,
Theorem 4], [13] and [4, Theorem 1.11].

Notice that if (a,∞) ⊂ E∗ or (−∞, a) ⊂ E∗ for some a ∈ R, then, by the
Benedicks criterion, dim P∞ = 1.

Theorem 2. Let E ∩ (a,∞) 6= ∅ and E ∩ (−∞,−a) 6= ∅ for any a > 0. The
following conditions are equivalent:

(i) There exist points {aj, bj}M
j=−N , where M +N = ∞, such that aj, bj ∈ E,

bj−1 ≤ aj < bj ≤ aj+1,

sup
j

cap(E ∩ [aj , bj ])

cap([aj , bj ])
< 1,

M∑

j=−N

(
bj − aj

|aj + bj| + 1

)2

= ∞;

(ii) dimP∞ = 1;
(iii) lim supΩ∋t→∞ gΩ(t, z)|t| = ∞ for some z ∈ Ω.

Theorem 1 describes in particular the metric properties of E such that gΩ has
the “highest smoothness” at ∞ (see the recent remarkable result by Carleson and
Totik [4, Theorem 1.11] for another description of sets E whose Green’s function
possesses this property. We do not see any straightforward way to connect the
capacity covering condition in Theorem 1 with the capacity condition of Carleson
and Totik.

Note that Carroll and Gardiner [5] have independently proved the equivalence
(ii)⇔(iii) of Theorem 1. They used a method based on minimal thinness. In our
proof of Theorem 1 we discuss the equivalences (i)⇔(ii) and (i)⇔(iii) separately.
It makes the proof somewhat longer. However, it presents a new method of in-
vestigation of the general metric properties of the Green function on the one side
and the Akhiezer-Levin conformal mapping on the other which, in our opinion, is
of independent interest.
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Minimum Riesz s-energy points on compact sets in R3

Johann S. Brauchart

(joint work with Doug P. Hardin, Edward B. Saff)

Let A be a compact set in the right-half plane H+ which is identified with the
right-half complex plane and Γ(A) the set in R3 obtained by rotating A about
the vertical axis. The discrete energy problem for Riesz kernels ks(x) := |x|−s,
s > 0, on Γ(A) asks to find optimal configurations of N points in the most-stable
equilibrium, that is, that minimize the Riesz s-energy

Es(XN ) :=
∑

j 6=k

1

|xj − xk|s
, s > 0,

among all N -point sets XN = {x1, . . . ,xN} in Γ(A). We want to focus on the
range 0 < s < 1. At s = 1 the interaction of the points is governed by the
Coulomb potential, as s approaches 0 the interaction is of logarithmic character,
k0(x) := log(1/|x|). See [3] for a more detailed discussion of these kind of optimal
energy point configurations (s ≥ 0).

Each XN also defines a discrete measure µN := (1/N)
∑N

j=1 δxj
by placing the

point charge 1/N at xj (j = 1, . . . , N). Then Es(XN ) can be seen as the discrete
energy of the counting measure µN . We are interested in the limit distribution µ
as N → ∞. An essential first step in obtaining this limiting measure is to find its
support.

Potential theory yields that the limit distribution µ is given by the equilibrium
measure µs,Γ(A) which uniquely minimizes the s-energy

I[ν] :=

∫ ∫
ks(x − y)dν(x)dν(y)
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over the class M(Γ(A)) of all (Radon) probability measures supported on Γ(A).
It is assumed that the energy of Γ(A),

V := V (Γ(A)) := inf {Is[ν] | ν ∈ M(Γ(A))} ,
is always positive. The equilibrium potential

U
µs,Γ(A)
s (x) :=

∫
ks(x − y)dµs,Γ(A)(y), x ∈ R

3,

satisfies the variational inequalities [5, Chap. II, no. 3]

U
µs,Γ(A)
s ≥ V quasi-everywhere on Γ(A),

U
µs,Γ(A)
s ≤ V everywhere on the support suppµs,Γ(A) of µs,Γ(A),

which also completely determine the probability measure µΓ(A). A condition is
said to hold quasi-everywhere on a Borel set B if it holds everywhere in B except
for a subset of infinite energy.

Again, classical potential theory yields that the equilibrium measure on Γ(A) is
supported on the outer boundary of Γ(A) which is the boundary of the unbounded
component of the complement of Γ(A). In the logarithmic case (as → 0) Hardin,
Saff, and Stahl [4] showed an even stronger, remarkable, result: The equilibrium
measure is concentrated on the “outer-most” part of Γ(A). The “outer-most” part
of a torus Γ(A), for example, is the set of revolution generated by rotating the
right semi-circle A+ about the vertical axis. Numerical experiments for a torus
for certain 0 < s < 1 (cf. [6]) show that there are no points on the “inner-most”
portion. A natural question arises: Under what conditions is the support of the
equilibrium measure on Γ(A) a proper subset of the outer boundary of Γ(A)? We
show the following [1, 2]:

• There are compact sets A for which the support of the equilibrium measure
on Γ(A) is all of Γ(A) for every 0 < s < 1. For example, A is a compact
subsets of a horizontal or a vertical line-segment.

• We construct sets of revolution Γ(A) such that the support of the equilib-
rium measure on Γ(A) is a proper subset of the outer boundary of Γ(A), in
contrast to the Coulomb case s = 1. We demonstrate this for 0 < s < 1/3.
An example is the circle Γ({1/2}) on the outer boundary of the “washer”
Γ(A), where A is the rectangle with lower left corner 1/2− i/2 and upper
right corner 1 + i/2, which is not in suppµs,Γ(A). We conjecture that one
can find for every 0 < s < 1 a compact set A for which suppµs,Γ(A) is a
proper subset of the outer boundary of Γ(A).

• For certain sets A the support of the limit distribution on sets of revolution
Γ(R + A), for the translate R + A = {R + z | z ∈ A}, tends to the full
outer boundary of Γ(A) as R → ∞. For example, let the outer boundary
of A be a compact subset of a circle with radius r centered at a > r and
0 < s < 1.

• Related results for the logarithmic case and the case 0 < s < 1 differ
considerably for A being a compact subset of horizontal, vertical line-
segments, or circles: (i) Let A be a horizontal line-segment in H+. Then
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suppµ0,Γ(A) is the circle generated by the “outer-most” point of A. How-
ever, suppµs,Γ(A) = Γ(A) for all 0 < s < 1. (ii) The support of the loga-
rithmic equilibrium measure on the translate Γ(R + A) of a line-segment
A in H+ with polar angle φ to the real axis degenerates to two circles
generated by the endpoints of A as R→ ∞. The charge of the outer-most
circle is (1 + cosφ)/2. In contrast, the support of the s-equilibrium mea-
sure tends to the whole set for every 0 < s < 1 as R → ∞. The limit
measure on A as R → ∞ coincides with the equilibrium measure on A for
the kernel −|z − w|1−s.

One central idea in proving these results is to take advantage of the rotational
symmetry of the problem in R3. The problem in R3 for the singular kernel ks is
reduced to a problem in R2 for a related continuous kernel Ks by means of

Is[µ̃] =

∫ ∫
Ks(z, w)dµ(z)dµ(w) =: JKs

[µ],

where the compactly supported rotational symmetric measure µ̃ ∈ M(R3), admits
a decomposition

dµ̂ =
dφ

2π
dµ, µ = µ̂ ◦ Γ ∈ M(H+),

into the normalized Lebesgue measure on the half-open interval [0, 2π) and a mea-
sure µ on H+. The kernel Ks is given by the integral

Ks(z, w) :=
1

2π

∫ 2π

0

ks(Rφz − w)dφ,

where Rφ is a rotation by angle φ about the axis of revolution. Another central
idea is to use convexity of the kernel Ks(γ(t), w) when the outer boundary of A
(or its “outer-most” part if s = 0) is part of a simple continuous (closed) curve
γ : [a, b] → H+.
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A Normalization for the Riesz n-Energy

Matthew Calef

Given a compact set A ⊂ Rn, let ωN = {x1, . . . , xN} be a configuration of N
distinct points in A. The discrete minimal s-energy of ωN is

Es(ωN ) :=

N∑

i=1

∑

j 6=i

1

|xi − xj |s
.

The associated minimal energy problem is to find a configuration of N points on
A, which we shall denote ωs

N , such that

Es(ω
s
N ) ≤ Es(ωN )

for all ωN ⊂ A. The compactness of A and a suitable continuous truncation of
the kernel |x− y|−s ensure that such an ωs

N exists for all s ∈ (0,∞). The energy
of this minimal N -point configuration is denoted

Es(A,N) := Es(ω
s
N ).

Two questions of interest are, as N → ∞, how do the points in the minimal energy
configurations arrange themselves, and how does Es(A,N) grow? If s is less than
the Hausdorff dimension of A, which we shall denote as d, then this problem has
a connection to the following continuous problem:

Let MA be the set of all Borel probability measures supported on A. For s < d,
the continuous s-energy of a measure µ ∈ MA is defined as

Is(µ) :=

∫ ∫
1

|x− y|s dµ(y)dµ(x).

The associated minimal energy problem is to find a measure µs ∈ MA such that

Is(µs) ≤ Is(µ)

for all µ ∈ MA. It is known (cf. [1]) that such a µs exists and is unique. The
above question regarding the growth of the discrete minimal energy is addressed
by the fact that

lim
N→∞

Es(A,N)

N2
= Is(µs).

Further, by defining a Borel probability measure based on ωs
N as

γ(N)
s :=

1

N

∑

x∈ωs
N

δx,

where δx is the Dirac-mass measure centered at x, the following convergence in
the weak-star sense occurs:

γ(N)
s

∗→ µs.

This addresses the above question of how points in minimal energy configurations
are distributed as N → ∞.

In the case s ≥ d the continuous minimal energy problem is no longer meaningful
because Is(µ) is not convergent for any µ ∈ MA (cf. [2]). In response we develop
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a minimization problem for the case s = d for a certain class of sets. For A ⊂ R
n

such that Ln(A) ∈ (0,∞), we define a normalized n-energy as

Ĩn(µ) := lim
s↑n

(n− s)

∫ ∫
1

|x− y|s dµ(y)dµ(x).

With this normalization we are able to prove the following two theorems (cf. [4]):

Theorem 1. Let A ⊂ Rn be compact with 0 < Ln(A), and let λn denote the
normalized Lebesgue measure restricted to A, i.e. λn = Ln(· ∩ A)/Ln(A). Then

Ĩn(λn) < Ĩn(µ) for any Borel measure µ ∈ MA not equal to λn.

Theorem 2. Let A ⊂ Rn be compact with 0 < Ln(A), and let λn denote the nor-
malized Lebesgue measure restricted to A, and let µs denote the unique minimizer

in MA of Is. Then µs
∗→ λn as s approaches n from below.

The choice of the normalizing factor n − s and the associated limit were mo-
tivated by the following: In the distributional sense, the Fourier transform of a
Riesz potential (cf. [3], [1]) is

(|x|−s)̂ (k) = c(s, n)|k|n−s

where c(s, n) is a constant depending only on s and n. Is can be written as (cf. [2])

Is(µ) = c(s, n)

∫

Rn

|x|s−n|µ̂|2dx.

where µ̂ is the Fourier transform of the measure µ. Finally,

lim
s↑n

(n− s)c(s, n) = kn,

where kn is a constant depend only on n.
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Discrete Approximations to Reflected Brownian Motion

Zhen-Qing Chen

Let n ≥ 1 and D ⊂ Rn be a domain (connected open set) with compact closure.
Consider a reflected Brownian motion (RBM in abbreviation) Y in D. Heuristi-
cally, RBM in D is a continuous Markov process Y taking values in D that behaves
like a Brownian motion in Rn when Yt ∈ D and is instantaneously pushed back
along the inward normal direction when Yt ∈ ∂D. RBM on smooth domains can
be constructed in various ways, including the deterministic Skorokhod problem
method, martingale problem method, or as a solution to a stochastic differential
equation with reflecting boundary conditions (see the Introduction of [3]). WhenD
is non-smooth, all the methods mentioned above cease to work. On non-smooth
domains, the most effective way to construct RBM is to use the Dirichlet form
method. The RBM constructed using a Dirichlet form coincides with RBM con-
structed using any other standard method in every smooth domain (see [3], [4]
and the references therein).

It is natural to try to construct RBM in a non-smooth domain using a sequence
of approximations that can be easily constructed themselves. One such approxi-
mating scheme was studied in [1] and [3], where the processes approximating RBM
in a non-smooth domain D were RBM’s in smooth domains increasing to D. In
this talk, we consider processes approximating RBM in D that are defined on the
same state space D, or a discrete subspace of D. More specifically, we investigate
three discrete or semi-discrete approximation schemes for reflected Brownian mo-
tion. The first two approximations involve random walks and we prove that they
converge to reflected Brownian motion in a class of bounded non-smooth domains
in Rn that includes all bounded Lipschitz domains and bounded uniform domains
(for example, the von Koch snowflake domain). The third scheme is based on
“myopic” conditioning and it converges to the reflected Brownian motion in all
bounded domains. We now describe these schemes in more detail.

Let D be a bounded domain in Rn whose boundary ∂D has zero Lebesgue
measure. Without loss of generality, we may assume that 0 ∈ D. Let Dk be the
connected component of D ∩ 2−k

Z
n that contains 0 with edge structure inherited

from 2−kZn (see the next section for a precise definition). We will use vk(x)
to denote the degree of a vertex x in Dk. Let Xk and Y k be the discrete and
continuous time simple random walks on Dk moving at rate 2−2k with stationary

initial distribution mk, respectively, where mk(x) = vk(x)
2n 2−kn. We show that

the laws of both {Xk, k ≥ 1} and {Y k, k ≥ 1} are tight in the Skorokhod space
D([0,∞),Rn) of right continuous functions having left limits. We show that if D
satisfies an additional condition

(1) C1(D) is dense in the Sobolev space (W 1,2(D), ‖ · ‖1,2),

which is satisfied by all bounded Lipschitz domains and all bounded uniform do-
mains, then both {Xk, k ≥ 1} and {Y k, k ≥ 1} converge weakly to the stationary
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reflected Brownian motion on D in the Skorokhod space D([0, 1],Rn). Here

W 1,2 :=
{
u ∈ L2(D, dx) : ∇u ∈ L2(D)

}
and

‖u‖1,2 :=

(∫

D

(u(x)2 + |∇u(x)|2)dx
)1/2

.

The last of our main theorems is concerned with “myopic conditioning.” We
say that a Markov process is conditioned in a myopic way if it is conditioned
not to hit the boundary for a very short period of time, say, 2−k units of time,
where k is large. At the end of this period of time, we restart the process at its
current position and condition it to avoid the boundary for another period of 2−k

units of time. We repeat the conditioning step over and over again. Intuition
suggests that when 2−k is very small and the process is far from the boundary,
the effect of conditioning is negligible. On the other hand, one expects that when
the process is very close to the boundary, the effect of conditioning is a strong
repulsion from the boundary. These two heuristic remarks suggest that for small
2−k, the effect of myopic conditioning is similar to that of reflection. A more
precise description of myopic conditioning of Brownian motion is the following.
For every integer k ≥ 1, let {Zk

j2−k , j = 0, 1, 2, . . .} be a discrete time Markov chain

with one-step transition probabilities being the same as those for the Brownian
motion in D conditioned not to exit D before time 2−k. The process Zk

t can be
defined for t ∈ [(j − 1)2−k, j2−k] either as the conditional Brownian motion going
from Zk

(j−1)2−k to Zk
j2−k without leaving the domain D or as a linear interpolation

between Zk
(j−1)2−k and Zk

j2−k . We prove that for any bounded domainD, the laws

of Zk (defined in either way) converge to that of the reflected Brownian motion
on D. The myopic conditioning approximation of reflected Brownian motion is
proved for every starting point x ∈ D so these theorems demonstrate explicitly
that the symmetric reflected Brownian motion on D is completely determined by
the absorbing Brownian motion in D.

This talk is based on a joint work with Krzysztof Burdzy [2].
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On an energy problem with Riesz external field

Peter D. Dragnev

(joint work with Johann S. Brauchart and Edward B. Saff)

Let Sd := {x ∈ Rd+1 : |x| = 1} be the unit sphere in Rd+1, where |·| denotes
the Euclidean norm, and let σ be the unit Lebesgue surface measure on Sd. Given
a compact set E ⊆ Rd+1, consider the class M(E) of unit positive Borel measures
supported on E. For 0 < s < d the Riesz potential and Riesz s-energy of a measure
µ ∈ M(E) are given respectively by

Uµ
s (x) :=

∫
|x − y|−s dµ(y), Is(µ) :=

∫ ∫
|x− y|−s dµ(x) dµ(y),

The s-energy of E is Ws(E) := inf{Is(µ) : µ ∈ M(E)}. Its reciprocal gives the
s-capacity of E, caps(E) := 1/Ws(E) for s > 0. A property is said to hold quasi-
everywhere (q.e.), if the exceptional set has s-capacity zero (see [3, Chapter II] for
more details).

Given a non-negative lower semi-continuous external field Q we define the equi-
librium measure associated with Q(x) as the unique minimizer µQ ∈ M(E) of the
weighted energy

VQ := inf

{
Is(µ) + 2

∫
Q(x) dµ(x) : µ ∈ M(E)

}
.

The measure µQ is characterized by the Gauss variational inequalities

(1) UµQ
s (x) +Q(x) ≥ FQ q.e. on E, UµQ

s (x) + Q(x) ≤ FQ on supp(µQ),

where FQ := VQ−
∫
Q(x) dµQ(x). The existence, uniqueness, and characterization

related questions in the most general setting can be found in [5]. We remark that
logarithmic potentials with external fields are a classical topic in modern function
theory (see [4]). In the case when Q ≡ 0 and caps(E) > 0 the extremal measure
is the equilibrium measure of E and is denoted by µE .

In [1] Riesz external fields Qa,q(x) := q|x−a|−s on E = Sd, d−2 < s < d, were
considered, where q > 0 and a is a fixed point on Sd. The goal was to obtain new
separation results for minimal s-energy points on the sphere.

In this work we extend the investigation for Riesz external fields Q = Qa,q with
a 6∈ Sd and develop a technique for finding the equilibrium measure associated
with more general external fields. We note that for d = 2 and s = 1 it is a
standard electrostatic problem to find the charge density (signed measure) on a
charged, insulated, conducting sphere in the presence of a point charge q placed off
the sphere (see [2, Chapter 2]). This motivates us to give the following definition.

Definition 1. Given a compact subset E ⊂ Rd+1 and an external field Q, we
call a signed measure ηE supported on E and of total mass ηE(E) = 1 a signed
equilibrium on E associated with Q if its weighted potential is constant on E, i.e.

(2) UηE
s (x) +Q(x) = FE for all x ∈ E.
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The choice of the normalization ηE(E) = 1 is just for convenience in the ap-
plications here. One can show that if a signed equilibrium ηE exists, then it is
unique. Our first result establishes existence. We assume that a lies above the
North pole n = (0, 1), i.e. a = (0, R) and R > 1 (the case R < 1 is handled by
inversion). Observe, that in our notation the last coordinate of a point in Rd+1

indicates its altitude.

Theorem 1. Let 0 < s < d. The signed equilibrium ηa on Sd in the presence of
Riesz external filed Qa,q(x) is given by

(3) dηa(x) =

{
1 +

qUσ
s (a)

Uσ
s (n)

− q(R2 − 1)d−s

Uσ
s (n)|x − a|2d−s

}
dσ(x).

The next corollary explicitly shows the relationship between q and R, so that
µQ coincides with the signed equilibrium and has a support the entire sphere. Let
F (a, b; c;x) denote the hypergeometric function.

Corollary 1. Let 0 < s < d. If

(4)
Uσ

s (n)

q
≥ (R+ 1)d−s

(R− 1)d
−R−sF

(
s

2
,
s+ d+ 1

2
;
d+ 1

2
;R−2

)
,

then µQ = ηa and supp(µQ) = Sd.

Example 1. If d = 2, s = 1, q = 1, then µQ = ηa iff R ≥ (3 +
√

5)/2.

When ηa is not a positive measure, we write ηa = η+
a − η−a . Observe, that

supp(η+
a

) is a spherical cap centered at the South pole

Σt := {x = (y, u) ∈ Sd : −1 ≤ u ≤ t},
where t is the altitude of the boundary hypercircle. Using (1) and (2), and the
principle of domination we derive that supp(µQ) ⊂ Σt. Since µQ is also an equi-
librium measure associated with the external field Q, restricted on the subset Σt,
we consider the signed equilibrium ηt of Σt for varying altitude t. Using M. Riesz
approach to s-balayage (see [3, Chapter IV]), we introduce the measures

(5) ǫt := Bals(δa,Σt), νr := Bals(σ,Σt),

where δa is the Dirac-delta measure at a. Our main result is the following.

Theorem 2. Let d − 2 < s < d. The signed equilibrium ηt for the spherical cap
Σt is given by

ηt :=
1 + q‖ǫt‖

‖νt‖
νt − qǫt.(6)

If t0 := max{t : ηt ≥ 0}, then µQ = ηt0 and supp(µQ) = Σt0 .

Remark 1. The restriction on the parameter s is forced by the application of the
balayage and the principle of domination. It is a topic of further research to extend
the range of s.



1044 Oberwolfach Report 19/2007

Explicit formulas in terms of q and R, involving hypergeometric functions, are
given for the density ηt and the number t0. Using the superposition representation
of the balayage of a measure in terms of the original measure and the balayage
of the Dirac-delta measure, we extend the result to external fields that are s-
potentials.
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Poincaré functional equations, harmonic measures on Julia sets, and

fractal zeta functions

Peter J. Grabner

(joint work with Gregory Derfel and Fritz Vogl)

Let
p(x) = xd + ad−1x

d−1 + · · · + a1x

be a real polynomial with a1 = p′(0) = λ > 1. Then the functional equation

(1) f(λz) = p(f(z)), f(0) = 0, f ′(0) = 1

has been studied by H. Poincaré [12, 13]. Its solution entire f provides a local
linearisation of the polynomial function p around the repelling fixed point x = 0,
and therefore gives a local normal form for the complex dynamics of p (cf.[2, 11]).

In the case of the super-attracting fixed point ∞ the local normal form is
described by the Böttcher function [3], which is the solution of the functional
equation

g(z)d = g(p(z)).

The function g is holomorphic in some neighbourhood of ∞ and has an analytic
continuation to any simply connected subset of

F∞(p) =
{
z ∈ C | lim

n→∞
p(n)(z) = ∞

}
,

the Fatou component of ∞. This analytic continuation can be obtained by the
integral representation

g(z) = exp

(∫

J (p)

log(z − x) dµ(x)

)
,

where J (p) denotes the Julia set of p and µ is the harmonic measure on J (p)
(cf. [4]).
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In [6] we could prove several theorems, which relate the asymptotic behaviour
of the Poincaré functions to geometric properties of the Julia or Fatou sets.

Theorem 1. Let f be the entire solution of the Poincaré equation (1) for a real
polynomial p with λ = p′(0) > 1. Assume further that the Fatou component of ∞,
F∞(p) contains an angular region Wα,β. Then the following asymptotic expansion
for f is valid for all z ∈ Wα,β large enough

(2) f(z) = exp (zρF (logλ z)) +

∞∑

n=0

cn exp (−nzρF (logλ z)) ,

where F is a periodic function of period 1 holomorphic in the strip
{
z ∈ C | α

log λ
< ℑz < β

logλ

}

and ρ = logλ d. The coefficients cn are the Laurent series coefficients of the inverse
of the Böttcher function g. Furthermore,

(3) ∀z ∈Wα,β : ℜzρF (logλ z) > 0

holds.

Theorem 2. The periodic function F occurring in the asymptotic expression (2)
for f is constant, if and only if the polynomial p is either linearly conjugate to zd

or the Chebyshev polynomial of the first kind Td(z).

Theorem 3. Let p be a polynomial of degree d > 1 with real Julia set J (p). Then
for any fixed point ξ of p with minJ (p) < ξ < maxJ (p) we have |p′(ξ)| ≥ d.
Furthermore, |p′(minJ (p))| ≥ d2 and |p′(maxJ (p))| ≥ d2. Equality in one of
these inequalities implies that p is linearly conjugate to the Chebyshev polynomial
Td of degree d.

Remark 1. This theorem can be compared to [5, Theorem 2] and [9, 14], where
estimates for the derivative of p for connected Julia sets are derived. Furthermore,
in [8] estimates for 1

n log |(p(n))′(z)| for periodic points of period n are given.

We could show the existence of a meromorphic continuation of the Dirichlet
generating function (“zeta function”)

(4) ζf (s) =
∑

f(−ξ)
ξ 6=0

ξ−s

to the whole complex plane. Furthermore, we could relate the residues at the poles
of ζf to the residues at the poles of the Mellin transform of the harmonic measure
µ. The measure µ could also be related to the distribution of zeros of f , namely
let

Nf (x) =
∑

|ξ|<x
f(ξ)=0

1.

Then we have the following theorem.
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Theorem 4. Let f be the entire solution of (1). Then the following are equivalent

(1) the limit limx→∞ x−ρNf (x) does not exist.
(2) the limit limt→0 t

−ρµ(B(0, t)) does not exist.

We conjecture that the existence of one of these limits characterises polynomials
linearly conjugate to Chebyshev polynomials or pure powers.

Diffusion on fractals has been studied extensively as a generalisation of usual
Brownian motion on manifolds. After its introduction in the physics literature
(cf. [15]) M. Barlow and E. Perkins [1] gave a very detailed study of the properties
of the diffusion on the Sierpiński gasket. Later T. Lindstrøm [10] generalised these
results to nested fractals. Especially, he derived results on the distribution of the
eigenvalues of the Laplacian associated to the diffusion. Here the Laplacian is seen
as the infinitesimal generator of Brownian motion.

In [7] we could relate the spectrum of the Laplacian ∆ on self-similar fractals
with spectral decimation to the value distribution of a Poincaré function. This
yielded the analytic continuation of the spectral zeta function

ζ∆(s) =
∑

∆u=−µu
µ6=0

µ−s

to the whole complex plane. Furthermore, we could give analytic expressions for
certain values and residues of the zeta function.
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[12] H. Poincaré, Sur une classe étendue de transcendantes uniformes, C. R. Acad. Sci. Paris
103 (1886), 862–864.
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Discrete Minimal Energy Problems on Rectifiable Sets

Douglas P. Hardin and Edward B. Saff

LetA be an infinite compact set in Rd′

whose d-dimensional Hausdorff measure1,
Hd(A), is finite and positive (hence, d is the Hausdorff dimension of A). For a
collection of N(≥ 2) distinct points ωN := {x1, . . . , xN} ⊂ A, and s > 0, the Riesz
s-energy of ωN is defined by

Es(ωN ) :=
∑

1≤i6=j≤N

1

|xi − xj |s
=

N∑

i=1

N∑

j=1

j 6=i

1

|xi − xj |s
,

while the N -point Riesz s-energy of A is defined by

(1) Es(A,N) := inf{Es(ωN ) : ωN ⊂ A, |ωN | = N},
where |X | denotes the cardinality of a set X . Since A is compact, there must be
at least one N -point configuration ωs,N ⊂ A such that Es(A,N) = Es(ωs,N ).

This class of minimal discrete s-energy problems can be considered as a bridge
between logarithmic energy problems and best-packing ones. Indeed, when s →
0 and N is fixed, the minimal energy problem turns into the problem for the
logarithmic potential energy

∑

1≤i6=j≤N

log
1

|xi − xj |
,

which is minimized over all N -point configurations {x1, . . . , xN} ⊂ A.
On the other hand, when s → ∞, and N is fixed, we get the best-packing

problem (cf. [5], [3]); i.e., the problem of finding N -point configurations ωN ⊂ A
with the largest separation radius:

(2) δ(ωN ) := min
1≤i6=j≤N

|xi − xj |.

We are interested in the geometrical properties of optimal s-energy N -point
configurations for a set A; that is, sets ωN for which the infimum in (1) is at-
tained. Indeed, these configurations are useful in statistical sampling, weighted
quadrature, and computer-aided geometric design where the selection of a “good”
finite (but possibly large) collection of points is required to represent a set or man-
ifold A. Since the exact determination of optimal configurations seems, except in
a handful of cases, beyond the realm of possibility, our focus is on the asymptotics

1If d = d
′, then we pick a normalization so that Hausdorff measure and Lebesgue measure

agree.
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of such configurations. Specifically, we consider the following questions.

(i) What is the asymptotic behavior of the quantity Es(A,N) as N gets large?
(ii) How are optimal point configurations ωs,N distributed as N → ∞?
In the case s < dim A (the Hausdorff dimension of A), answers to questions

(i) and (ii) are determined by the equilibrium measure λs,A that minimizes the
continuous energy integral

Is(µ) :=

∫∫

A×A

1

|x− y|s dµ(x) dµ(y)

over the class M(A) of (Radon) probability measures µ supported on A. Specifi-
cally (cf. [11, Section II.3.12]), we have

lim
N→∞

Es(A,N)/N2 = Is(λs,A)

and (in the weak-star sense)

1

N

∑

x∈ωs,N

δx
∗−→ λs,A,

where δx denotes the atomic measure centered at x. In the case when A = Sd,
the unit sphere in R

d+1, the equilibrium measure is simply the normalized surface
area measure and it follows that optimal energy points on the sphere are uniformly
distributed in this sense.

If s ≥ dim A, then Is(µ) = ∞ for every µ ∈ M(A) and the above potential
theoretic methods cannot be applied. However, using the translation and scaling
invariance of these Riesz kernels together with measure theoretic techniques, we
obtain answers to (i) and (ii) for compact sets in Rd.

Theorem 1 ([6]). Let A be a compact set in Rd. Then

(3) lim
N→∞

Ed(A,N)

N2 logN
=

βd

Hd(A)
,

where βd is the volume of the d-dimensional unit ball.
For s > d, we have

(4) lim
N→∞

Es(A,N)

N1+s/d
=

Cs,d

Hd(A)s/d
,

where Cs,d is a positive constant independent of A.
Furthermore, if Hd(A) > 0 and s ≥ d, then optimal s-energy configurations

ωs,N for A are asymptotically uniformly distributed with respect to Hd; that is,

(5)
1

N

∑

x∈ωs,N

δx
∗−→ Hd|A

Hd(A)
, N → ∞.

When 0 < Hd(A) < ∞ we observe that the minimum energy experiences a
transition in order of growth; namely, as s increases from values less than d to val-
ues greater than d the energy switches from order N2 to order N1+s/d as N → ∞.
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At the transition value s = d, the order of growth is N2 logN .

To describe our results for d-dimensional sets A embedded in higher dimensional
Euclidean spaces we need the following definitions. Following [4] a set A ⊂ Rd′

is called d-rectifiable if it is an image of a bounded set from Rd with respect to
a Lipschitz mapping. A set A ⊂ Rd′

is called (Hd, d)-rectifiable, if Hd(A) < ∞
and A is a union of at most a countable collection of d-rectifiable sets and a set of
Hd-measure zero. Also see [10] for relevant definitions.

Theorem 2 ([1, 2, 6]). Let A be a compact set in Rd′

and s ≥ d. When s = d we
assume that A is a subset of a C1 d-dimensional manifold, while if s > d we merely
assume that A is an (Hd, d)-rectifiable set whose d-dimensional Minkowski content
exists and equals its d-dimensional Hausdorff measure. Then conclusions (3) and
(4) from Theorem 1 hold. Furthermore, if Hd(A) > 0, then (5) from Theorem 1
holds.

We remark that Theorem 2 applies, for s > d, to any d-rectifiable set A.
It is also shown in [1] that there exist Sierpinski-like compact sets A of positive

Hd measure with d integer such that the limit in (4) fails to exist, at least for each
s sufficiently large.

The results of Theorem 2 have been extended in [2] to weighted Riesz s-energy
of the form

Ew
s (ωN) :=

∑

1≤i6=j≤N

w(xi, xj)

|xi − xj |s
,

for suitable weight functions w : A × A → [0,∞). In this case, the limiting
distribution of weighted s-optimal Riesz configurations is given by the weighted
Hausdorff measure Hs,w

d defined on Borel sets B ⊂ A by

(6) Hs,w
d (B) :=

∫

B

(w(x, x))−d/sdHd(x),

suitably normalized.
We remark that the constant Cs,d of Theorems 1 and 2 can be represented using

the energy for the unit cube in Rd via formula (4):

Cs,d = lim
N→∞

Es([0, 1]d, N)

N1+s/d
, s > d.

For d = 1 and s > 1, it was shown in [12] that Cs,1 = 2ζ(s), where ζ(s) is the
classical Riemann zeta function. However, for other values of d, the constant Cs,d

is as yet unknown. For the case d = 2, it is a consequence of results in [9] that

(7) Cs,2 ≤
(√

3/2
)s/2

ζL(s),

where ζL(s) is the zeta function for the planar triangular lattice L consisting of

points of the form m(1, 0) + n(1/2,
√

3/2) for m,n ∈ Z. It is conjectured in [9]
that in fact equality holds in (7).
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Approximation of jump processes on fractals

Michael Hinz

The presented work provides approximations of pure jump processes on fractal
subsets of Rn. On d-sets and some generalizations such processes have been studied
during the recent years, see e.g. [17], [14], [4] or [5]. For jump processes on Rn

recent results on approximation can be found in [12]. Our method is related to an
approach proposed in [11].
We consider two different settings. First we consider a d-set, i.e. a compact
subset F ⊂ Rn which carries a finite Radon measure µ such that F = supp µ and
c1 r

d ≤ µ(B(x, r)) ≤ c2 r
d with c1, c2 > 0 for all r < r0 and x ∈ F with 0 < d ≤ n.

B(x, r) denotes the open ball with radius r and center x. We approximate processes
on d-sets by processes whose state spaces are the closed ε-parallel sets of F ,

Fε = {x ∈ R
n : dist(x, F ) ≤ ε} ,

where dist(x, F ) = infy∈F |x− y|, each Fε of positive n-dimensional Lebesgue
measure. On Fε we introduce probability measures µε such that for each ε > 0, µε

is an n-measure on Rn, equivalent to the restriction of the n-dimensional Lebesgue
measure to Fε. For a function f ∈ L1(Fε) we have by construction

∫
f(x)µε(dx) =

∫
(f)ε (x)µ(dx) ,
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where

(f)ε (x) :=
1

|B(x, 2ε) ∩ Fε|

∫

B(x,2ε)∩Fε

f(y)dy ,

|A| stands for the n-dimensional Lebesgue measure of a set A ⊂ Rn. Clearly, the
measures µε converge weakly to µ on Rn. Now consider the quadratic form given
by

E(u, u) =

∫ ∫

(F×F )\D

(u(x) − u(y))2J(x, y)µ(dx)µ(dy) , u ∈ L2(µ) ,

where for x, y ∈ F ,

J(x, y) =
1

|x− y|α µ(B(x, |x− y|)) ,

with α ∈ (0, 2) and D = {(x, x) : x ∈ F}. Set

F := {u ∈ L2(µ) : E(u, u) <∞} ,

then F = Hα/2(F ), defined as the trace on F of the Bessel potential space
Hα/2(Rn), see [13]. (E ,F) is a regular Dirichlet form on L2(µ). Next, define
the approximating forms by

Eε(w,w) =

∫ ∫

(Fε×Fε)\D

(w(x) − w(y))2Jε(x, y)µε(dx)µε(dy)

for w ∈ L2(µε). Here D = {(x, x) : x ∈ Fε} and

Jε(x, y) =
1

|x− y|α µε(B(x, |x− y|)) .

Set Fε = {w ∈ L2(µε) : Eε(w,w) <∞}. Again F = Hα/2(Fε) and each (Eε,Fε)
is a regular Dirichlet form on L2(µε). By the general theory, cf. [9], there exists a
µε-symmetric Hunt processes Xε on each Fε and a µ-symmetric Hunt process X
on F , uniquely determined by Eε resp. E .

The notions of convergence we make use of were introduced in [15], see this
reference for details. In particular, the definitions given there allow to investi-
gate convergence of sequences of functions (operators, forms, etc.) from (on) the
L2(µε) to functions (operators, forms, etc.) in (on) L2(µ). We prove that the Eε

(generalized) Mosco converge to E as ε tends to zero, the strong convergence of the
associated resolvents and semigroups in the sense of Kuwae and Shioya follows,
see [15]. As a consequence, the finite dimensional distributions of Xε with initial
distributions µε weakly converge to those of X with initial distribution µ.
The second setting we study is that of a jump process on a self-similar (compact)
set F ⊂ Rn,

F = Ψ(F ) =

N⋃

i=1

ψi(F )

with contractive similarities ψi, i = 1, .., N all having the contraction ratio r1 =
... = rN = s and satisfying the open set condition, see [8]. The associated self-
similar probability measure µ is a d-measure making F a d-set. Again the objective



1052 Oberwolfach Report 19/2007

is to approximate the process X on F with Dirichlet form E defined as above. To
do so, we introduce certain discrete measures µm on F , m ∈ N, converging weakly
to µ asm tends to infinity. We follow a similar strategy as before. For w ∈ L2(µm),
set

Em(w,w) =

∫ ∫

(F×F )\D

(w(x) − w(y))2Jm(x, y)µm(dx)µm(dy).

with

Jm(x, y) =
1

|x− y|α µm(B(x, |x− y|)) , x, y ∈ F .

For m ∈ N, (Em, L2(µm)) is a regular Dirichlet form. It is associated to a contin-
uous time Markov chain Y m with finite state space Vm = supp µm. Em can be
rewritten as

Em(w,w) =
∑

x,y∈Vm

(w(x) − w(y))2 Cm
xy ,

the conductivities Cm
xy having simple explicit representations. Again we prove the

convergence of the spectral structures as m tends to infinity via generalized Mosco
convergence, cf. [15], similarly as above the convergence of the finite dimensional
distributions follows. Now we additionally obtain the weak convergence of the laws
of the approximating Markov chains Y m to the law of X in the Skorohod space
DF ([0, t0]) of right-continuous functions on [0, t0] with left limits and values in F ,
considered under initial distributions µm and µ, respectively.
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Domains of Dirichlet forms and effective resistance estimates on p.c.f.

fractals

Jiaxin Hu

(joint work with X.S. Wang)

In this paper we consider post-critically finite (p.c.f.) self-similar fractals with
strictly recurrent self-similar Dirichlet forms. We first obtain effective resistance
estimates in terms of the Euclidean metric, which particularly imply the embedding
theorem for the domains of the Dirichlet forms. We then characterize the domains
of the Dirichlet forms. This paper was published in Studia Math. (2006).

The main theorems are the following.

Theorem 1. Let (K, {Fi}M
i=1) be a p.c.f. fractal in Rn with a strictly recurrent

self-similar Dirichlet form (E ,F) having a weight {r−1
i }M

1=1. Assume that ci is the
contraction ratio of Fi, that is

|Fi(x) − Fi(y)| ≤ ci|x− y|, for x, y ∈ R
n.

Then there exists some c > 0 such that, for all x, y ∈ K,

(1) c−1|x− y|α1 ≤ R(x, y)

where α1 = max1≤i≤M

{
ln ri

ln ci

}
.

In order to obtain the upper bound of R, we propose the following condition.

(C1): There exist a family of numbers b = {bi}M
i=1 with 0 < bi < 1 for every i,

and a constant c > 0 such that, for any 0 < λ < 1,

dist(Kw,Kτ ) ≥ cλ,

if Kw ∩Kτ = ∅ for w, τ ∈ Λb(λ).

Condition (C1) says that any two disjoint components obtained form any par-
tition Λb(λ) with 0 < λ < 1 is apart away by distance cλ.

Theorem 2. Let (K, {Fi}M
i=1) be a p.c.f. fractal in Rn with a strictly recurrent

self-similar Dirichlet form (E ,F) having a weight {r−1
i }M

1=1. Assume that condition
(C1) holds for some b = {bi}M

i=1. Then

R(x, y) ≤ c |x− y|α2(2)

for all x, y ∈ K, where α2 = min1≤i≤M

{
ln ri

ln bi

}
and c > 0.
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Theorem 3. Let (K, {Fi}M
i=1) be a p.c.f. fractal in R

n with a strictly recurrent
self-similar Dirichlet form (E ,F) having a weight {r−1

i }M
1=1. Let µ be a self-similar

measure with the weight {rα
i }M

1=1 where
∑M

i=1 r
α
i = 1. Then there exist some

c, c0 > 0 such that

c−1Wα(f) ≤ E(f) ≤ cWα(f)(3)

for all f ∈ F , where

Wα(f) := sup
0<λ<1

λ−(2α+1)

∫

K

∫

BR(x,c0λ)

|f(x) − f(y)|2dµ(y)dµ(x).

In particular, we have that F = {f ∈ C(K) : Wα(f) <∞}.
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Complex Fractal Dimensions, Tube Formulas and Zeta Functions

Michel L. Lapidus

We discuss some elements of the theory of fractal complex dimensions developed
by the author and his collaborators over the last few years, as presented in the
recent research monograph with Machiel van Frankenhuijsen, “Fractal Geometry,
Complex Dimensions and Zeta Functions: geometry and spectra of fractal strings”
[5]. We will also briefly talk about the higher-dimensional theory (joint with Erin
Pearse) in which we obtain an analogue of the Stein-Weyl-Federer tube formula
for self-similar tilings naturally associated to self-similar fractals and define a cor-
responding ‘geometric zeta function’. (See [4], building upon an earlier joint work
on a tube formula for the Koch snowflake curve and published in 2006 in the J.
London Math. Soc. [3])

If time allows, we may mention some extensions of the theory to multifractals
[6] and to the p-adic realm (jointly with Hung Lu).

Finally, we note that some aspects of the theory of complex fractal dimensions
are used or pursued in a forthcoming book by the author, entitled “In Search of
the Riemann Zeros: strings, fractal membranes and noncommutative spacetimes”
[2].

For more recent work see the author’s homepage [1].
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Riesz Energy and Distribution of Leja Sequences

Abey López Garćıa

(joint work with Alexander I. Aptekarev and Edward B. Saff)

Given a point set ωN = {x1, . . . , xN} of N distinct points in Rd′

, and s ∈ [0,∞),
the discrete Riesz s-energy of ωN is defined as

Es(ωN ) :=
∑

1≤i6=j≤N

K(|xi − xj |; s),

where | · | denotes the Euclidean norm and

K(t; s) =

{
t−s, if s > 0,

− log(t), if s = 0

is the Riesz kernel. Let A ⊂ Rd′

be an infinite compact set. We say that ω∗
N,s ⊂ A

is an optimal N-point configuration on A if

Es(ω
∗
N,s) = inf

ωN⊂A
Es(ωN ).

When s <dimH(A) (where dimH(A) denotes the Hausdorff dimension of A, which
will be denoted as d throughout the rest of this report), there is a unique proba-
bility measure λA,s supported on A such that

∫ ∫
K(|x− y|; s)dλA,s(x)dλA,s(y) = inf

µ

∫ ∫
K(|x− y|; s)dµ(x)dµ(y),

where the infimum is taken over the class of all probability measures on A. The
double integral

∫ ∫
K(|x − y|; s)dλA,s(x)dλA,s(y) is the continuous Riesz s-

energy of the equilibrium measure λA,s and will be represented as Is(λA,s).
The asymptotic behavior of Es(ω

∗
N,s) and asymptotic distribution of ω∗

N,s for

optimal configurations ω∗
N,s has been studied extensively in recent years (see, for

example, [6], [3], [1], and the survey article [2]).
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Using standard potential theoretic ideas it is shown in [4] that, for s < d,

(1) lim
N→∞

Es(ω
∗
N,s)

N2
= Is(λA,s),

(2)
1

N

∑

x∈ω∗

N,s

δx −→ λA,s,

where (2) is understood in the weak-star sense. In [1] Hardin and Saff employed
geometric measure theoretic tools to obtain, for a class of rectifiable sets A, that

(3) lim
N→∞

Ed(ω
∗
N,d)

N2 log(N)
=

Hd(B
d)

Hd(A)
,

(4) lim
N→∞

Es(ω
∗
N,s)

N1+ s
d

=
Cs,d

Hd(A)
s
d

, for s > d,

where Hd represents d-dimensional Hausdorff measure (normalized by the condi-
tion Hd([0, 1]d) = 1), Bd is the unit ball in R

d, and Cs,d is some constant inde-
pendent of A. This constant equals 2ζ(s) when d = 1, where ζ(s) is the classical
Riemann zeta function. In [1] it is also shown that if Hd(A) > 0, then

(5)
1

N

∑

x∈ω∗

N,s

δx −→ Hd(·)
Hd(A)

, s ≥ d.

Given s ∈ [0,∞) and a sequence of point sets ωN ⊂ A, we say that {ωN}N

is asymptotically s-energy minimizing on A ({ωN}N ∈ AEM(A; s)) if it
satisfies, with ω∗

N,s replaced by ωN , the limit relations (1), (3) or (4), according to
the value of s.

The determination of minimal s-energy points is a very difficult problem. This
motivates in part the analysis of an alternative construction of points obtained by
means of a “greedy” algorithm, analogous to the method described by Leja in [5].

Definition 1. Let A ⊂ Rd′

be a compact set, and s ∈ [0,∞). A sequence
(an)∞n=1 ⊂ A is called a Leja s-sequence if it is formed as follows:

• a1 is selected arbitrarily on A.
• Assuming that a1, . . . , an have been selected, an+1 is chosen to satisfy

Es({a1, . . . , an, an+1}) = inf
x∈A

Es({a1, . . . , an, x}).

We remark that the choice of an+1 is not unique in general. We will use the
notation

αN,s := {a1, . . . , aN}
to denote the set of the first N Leja points.

Do Leja sequences behave like minimal energy configurations, satisfying the
properties described by (1)-(5)? We now report on some results which answer
partially this general question.
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Theorem 1. If s ∈ [d′ − 2, d) then any Leja s-sequence {αN,s}N is AEM(A; s).
If s ∈ [0, d′− 2) and supp(λA,s) = ∂∞(A), the outer boundary of A, then the same
conclusion follows. Under these conditions,

1

N

N∑

k=1

δak
−→ λA,s, as N → ∞.

This result is valid in particular on the unit sphere Sd ⊂ Rd+1, for all 0 ≤ s < d.
Perhaps surprisingly, Leja sequences are not AEM(A; s) in the case when A = S1

and s > 1. Before stating this result we first give a description of these sequences
on S1.

Theorem 2. Leja s-sequences {an}∞n=1 ⊂ S1 are independent of s, and accordingly
we write αN instead of αN,s. The sets αN are obtained iteratively in the following
way: α1 = {a1}, a1 ∈ S1 is chosen arbitrarily. If the set α2m is formed for some
m ≥ 0, then

α2m+κ = α2m ∪ eiθκ · ακ, for 1 ≤ κ ≤ 2m,

where θκ is some angle satisfying

θκ ∈
{π(2k − 1)

2m

}2m

k=1
.

Furthermore,

1

N

N∑

k=1

δak
−→ σ, as N → ∞,

where σ denotes the normalized arclength measure on S1.

We remark that if {xn}∞n=1 ⊂ [0, 1) represents the Van der Corput sequence
(see [7] for definition), then the sequence {an}∞n=1 defined by an := exp(2πixn)
gives a Leja sequence on S1. Our main result is the following:

Theorem 3. Any Leja sequence {αN}∞N=1 ⊂ S1 is not AEM(S1; s) for s ∈ (1,∞).
In fact, the subsequence α3·2n satisfies:

lim
n→∞

Es(α3·2n)

(3 · 2n)1+s
= f(s)

2ζ(s)

(2π)s
,

where f(s) = 1
2

(
4
3

)1+s

+
(

1
3

)1+s

, and f(s) > 1 for all s > 1.

Conjecture: For s > 1, there exists no sequence {bn}∞n=1 ⊂ S1 such that the
sequence of configurations {bn}N

n=1 is AEM(S1; s).
In the critical case s = 1 we obtain:

Theorem 4. Any Leja sequence {αN}∞N=1 ⊂ S1 is AEM(S1; 1), i.e.

lim
N→∞

E1(αN )

N2 log(N)
=

1

π
.
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Geometric measure theory on fractals

Pertti Mattila

The purpose of this note is to describe some general methods rather than par-
ticular results. These methods are such that they can be used to study geometric
measure theoretic properties of very general sets and measures in Euclidean spaces,
including those of fractal type. We begin with energy-integrals of measures.

For a Borel set A ⊂ Rn let P(A) be the set of all Borel probability measures on
R

n with compact support contained in A. For 0 < s < n the s-energy of µ ∈ P(A)
is

Is(µ) =

∫ ∫
|x− y|−sdµxdµy.

The s-capacity of A is defined by

Cs(A) = sup{Is(µ)−1 : µ ∈ P(A)}.
Then

Cs(A) > 0 if and only is there is µ ∈ P(A) such that Is(µ) <∞.

It is well-known that the Hausdorff dimension of A, dimA, is related to the capac-
ities by

dimA = sup{s : Cs(A) > 0}
with the interpretation sup ∅ = 0.

We shall illustrate the use of these potential-theoretic concepts with orthogonal
projections. For simplicity we restrict to the plane, for higher dimensions, see for
example [2]. For θ ∈ [0, π) let pθ : R2 → R be the orthogonal projection

pθ(u, v) = (u cos θ, v sin θ).

We denote by L1 the 1-dimensional Lebesgue measure. Kaufman proved in 1968
the following result:

Theorem 1. For any Borel set A ⊂ R2

(1) Cs(pθ(A)) > 0 for almost all θ ∈ [0, π) if Cs(A) > 0 and 0 < s < 1,
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(2) L1(pθ(A)) > 0 for almost all θ ∈ [0, π) if C1(A) > 0.

The above relations with capacities and Hausdorff dimension give immediately
the following corollary, which was proved in 1954 by Marstrand by direct and more
complicated methods:

Corollary 1. For any Borel set A ⊂ R2

(1) dim pθ(A) = dimA for almost all θ ∈ [0, π) if dimA ≤ 1,
(2) L1(pθ(A)) > 0 for almost all θ ∈ [0, π) if dimA > 1.

The proof of Theorem 1 is rather simple. We give the basic ideas. For µ ∈ P(A)
let pθµ be the image of µ under pθ, that is,

pθµ(B) = µ(p−1
θ (B)) for B ⊂ R.

Then pθµ ∈ P(pθ(A)) if µ ∈ P(A). If 0 < s < 1, one checks easily by Fubini’s
theorem that ∫ π

0

Is(pθµ)dθ ≤ c(s)Is(µ)

with c(s) < ∞. This gives immediately (1). To prove (2) one can verify with the
help of Fatou’s lemma, Fubini’s theorem and a little of elementary geometry that

∫ π

0

∫
lim inf

δ→0
(2δ)−1pθµ((u − δ, u+ δ))dpθµudθ ≤ I1(µ).

By some general facts on differentiation of measures in R
n this implies that for

almost all θ ∈ [0, π) pθµ is absolutely continuous, even with L2-density, with
respect to L1. This gives (2).

There are many extensions of this basic method to deal with transformation
of dimension under various classes of parametrized mappings. A general setting
where methods of the above type are combined with delicate Fourier analytic
techniques is developed by Peres and Schlag in [5], see also [3] for discussion on
these.

The usefulness of Fourier transform stems from the formula

Is(µ) = c(n, s)

∫
|x|s−n|µ̂(x)|2dx.

The following result was proved by Falconer in 1985:

Theorem 2. Let A ⊂ R
n be a Borel set and

D(A) = {|x− y| : x, y ∈ A}
its distance set. If dimA > (n+ 1)/2, then L1(D(A)) > 0.

To prove this one can introduce the distance measure δ(µ) ∈ P(D(A)) for
µ ∈ P(A) by

δ(µ)(B) =

∫
µ({y : |x− y| ∈ B})dµx

for Borel sets B ⊂ R. Then it is rather simple to show that δ(µ) is absolutely
continuous, even with L∞-density, if I(n+1)/2(µ) < ∞. Theorem 2 follows from
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this. Later it was shown in [4] that D(A) has even non-empty interior under the
above assumption.

It is believed that when n ≥ 2, dimA > n/2 should imply L1(D(A)) > 0. The
following improvement was proved by Wolff in [6] for n = 2 and by Erdogan in [1]
for general n:

Theorem 3. If A ⊂ Rn is a Borel set and dimA > n(n+2)
2(n+1) , then L1(D(A)) > 0.

The idea here is to show that δ(µ) is absolutely continuous with L2-density

if Is(µ) < ∞ for some s > n(n+2)
2(n+1) . This is much more difficult and uses both

geometric and Fourier-analytic techniques.
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Exact packing dimension for random recursive constructions

R. Daniel Mauldin

The theory of the limit set generated by the iteration of finitely many similarity
maps has been well developed for some time now. A more complicated theory of
the limit set generated by the iteration of infinitely many uniformly contracting
conformal maps was developed by Mauldin and Urbanski. Several years after
that, they explored in their book [10] the geometric and dynamic properties of
a far reaching generalization of conformal iterated function systems, called graph
directed Markov systems (GDMS). We presented some of the main concepts and
results for the study of the geometric and measure theoretic properties of the
limit sets generated by iterating a finite or countably infinite family of conformal
maps subject to some restrictions of a Markovian type on what maps are allowed
in the iteration. Here we also indicate some further developments and possible
applications.

The setting is as follows. Let (V,E) be a directed multigraph. We assume the
vertex set V is finite and the set of edges E is countable. We consider the functions
i, t : E 7→ V where i(e) is the initial vertex of e and t(e) is the terminal vertex of
e. An incidence matrix A : E2 7→ {0, 1} is given such that if A(e, e′) = Ae,e′ = 1,
then t(e) = i(e′). The coding space consists of all infinite words describing a
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walk through the graph subject to A: E∞
A = {ω ∈ E∞ : Aωi,ωi+1 = 1, ∀i}.

E∗
A is the set of all finite words, En

A consists of all words of length n, |ω| is the
length of ω. A Graph Directed Markov System (GDMS) consists of the following
additional objects. For each v ∈ V a compact metric space Xv, a number s, 0 <
s < 1 and for every e a 1 − 1 map φe : Xt(e) 7→ Xi(e) with Lipschitz constant
s. The limit set is described as follows: for each ω = (ω1, ..., ωn) ∈ E∗

A, let
φω = φω1 ◦ ... ◦ ωn : Xt(ωn) 7→ Xi(ω1

. For ω ∈ E∞
A we define π(ω) to be the single

point in the intersection of the descending sequence of sets φω|n(Xt(ωn)). Thus,
π, the coding map, is a continuous map from E∞

A onto the limit set J = JA. In
order to analyze the geometric and measure theoretic properties of J we make
further assumptions about this general construction given in [10]. This allows us
to transfer results obtained on the abstract coding space to the geometric limit set
J . Of course, we need additional assumptions in order to do this. For examples,
we assume that the spaces Xv ⊂ Rd and the maps φe are conformal maps. We
also make some further technical conditions such as OSC, the open set condition
and the bounded distortion property.

One motivating result is the following.

Theorem 1 (Beford, Mauldin-Urbanski). Suppose we are given a conformal
GDMS with finitely many edges and the directed multigraph is strongly connected,
i.e, A is irreducible. Then α, the Hausdorff dimension of the limit set J , is the
unique zero of the topological pressure function, PA(t). Moreover, both the α-
dimensional Hausdorff and packing measures are positive and finite:

0 < Hα(J) ≤ Pα(J) <∞.

Also, the upper and lower Minkowski or box counting dimensions of J are both
equal to α.

The topological pressure function, PA, is defined as follows. For each t ≥ 0 and
n ≥ 1 we set:

ZA(t) =
∑

ω∈En
A

||ϕ′
ω ||t,

then

PA(t) = lim
n→∞

1

n
lnZA(t).

We note that in the very special case where we are iterating finitely many sim-
ilarity maps φi, 1 ≤ i ≤ n with contraction constants ri, then PA(t) = log(

∑
i r

t
i).

So, this theorem generalizes the classical theorem of Moran and Hutchinson.
My talk focused on various generalization of this result. For example, various

systems of continued fractions show that if the graph is has infinitely many edges,
then it can happen that the Hausdorff measure is zero and the packing measure
is infinite, see [9]. The study of the residual set in Apollonian packing or the
curvilinear Sierpinski gasket shows that it cannot be obtained as the limit set
generated by finitely many contracting conformal maps but it can be obtained
as the limit set of infinitely many maps, see [11]. It is suggested that the tools
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described in this talk should be useful for studying Laplacians and other operators
on the curvilinear gasket rather than the standard self-similar one.

I discussed some of the main tools used to analyze the limit sets: conformal
measures, equilibrium measures and transfer operators or Perron-Frobenius-Ruelle
operators.

Finally, I discussed some possible applications of this theory to the topic of
quantization dimension. This theory has been well developed by Graf and Luschgy
and, in particular, they gave a careful development for self-similar sets and mea-
sures, [3]. Mauldin and Lindsay started the corresponding theory for self-conformal
measures and related the quantization dimension function to the functions arising
from the thermodynamical formalism [6]. All this remains to be developed for the
general setting of graph directed systems.
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Potential Theory of Additive Lévy Processes

Yimin Xiao

(joint work with Davar Khoshnevisan)

Additive Lévy processes arise naturally in the studies of the Brownian sheet,
intersections of Lévy processes and form a natural class of random fields with
certain Markov structure. This talk is concerned with potential theory of additive
Lévy processes and their applications in studying random fractals. In Part 1 we
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present some recent results on connections between an arbitrary additive Lévy
process X in Rd and a class of energy forms and their corresponding capacities.
In the second part, we apply the results in Part 1 to solve some long-standing
problems in the folklore of the theory of Lévy processes. These methods may also
be useful for studying fractal properties of more general Markov processes; see [11]
for further information.

1. Potential theory for additive Lévy processes

Let X1, . . . , XN be independent Lévy processes that take their values in Rd

and Xj(0) = 0 for j = 1, . . . , N . The N -parameter stochastic process X =
{
X(t),

t ∈ RN
+

}
defined by X(t) =

∑N
j=1Xj(tj) (t ∈ RN

+ ) is called an (N, d)-additive Lévy

process. When X1, . . . , XN are isotropic stable processes in Rd of index α ∈ (0, 2],
then X is called an additive stable process. One can also define an N -parameter
multiplicative Lévy process Y with values in RNd by Y (t) =

(
X1(t1), . . . , XN (tN )

)

(t ∈ RN
+ ). Note that Y is a special case of additive Lévy processes.

We consider the following questions for an additive Lévy processX = {X(t), t ∈
R

N
+} in R

d:

(a). Given a Borel set F ⊆ Rd, when can P{X(RN
+ ) ∩ F 6= ∅} > 0?

(b). Given a Borel set F ⊆ R
d, when does F ⊕X(RN

+ ) have positive Lebesgue
measure?

(c). For any fixed a ∈ Rd and a Borel set E ⊂ RN
+ , when can P{X−1(a)∩E 6=

∅} > 0? Here X−1(a) =
{
t ∈ (0,∞)N : X(t) = a

}
is the level set of X .

Questions (a) and (b) were answered in [9] under some sector-type condition, which
is removed by Khoshnevisan and Xiao [8].

Theorem 1. Let X be an (N, d)-additive Lévy process whose Lévy exponent Ψ =
(Ψ1, . . . ,ΨN). Then, for any nonrandom compact set F ⊂ Rd, E{λd(X(RN

+ ) ⊕
F )} > 0 if and only if

inf
µ∈P(F )

∫

Rd

|µ̂(ξ)|2
N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ <∞,

where µ̂ denotes the Fourier transform of µ.

By taking F = {0} we have

Corollary 1. Let X be an (N, d)-additive Lévy process with exponent Ψ. Then

E{λd(X(RN
+ ))} > 0 ⇐⇒

∫

Rd

N∏

j=1

Re

(
1

1 + Ψj(ξ)

)
dξ < +∞.

Applying Theorem 1 to additive stable Lévy processes, we have the following
result which is useful for studying fractal properties of (additive) Lévy processes.
See Khoshnevisan [3] and the reference therein for related results.

Corollary 2. Suppose X = X1 ⊕ · · · ⊕XN is an additive stable process in Rd of
index α ∈ (0, 2]. Then for any Borel set F ⊂ Rd, the following are equivalent:
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(i) Capd−Nα(F ) > 0;

(ii) P
{
λd(F ⊕X(RN

+ )) > 0
}
> 0;

(iii) F is not polar for X in the sense that P
{
F ∩X(RN

+ ) 6= ∅
}
> 0.

Questions (c) was considered by Khoshnevisan and Xiao [5]. We say that an
additive Lévy process X is absolutely continuous if for each t ∈ (0,∞)N , the

function ξ 7→ exp
{
−∑N

j=1 tjΨj(ξ)
}
∈ L1(Rd). In this case, for every t ∈ (0,∞)N ,

X(t) has a density function p(t; •) that is given by the formula

p(t;x) =
1

(2π)d

∫

Rd

e−i〈ξ,x〉 exp

(
−

N∑

j=1

tjΨj(ξ)

)
dξ, x ∈ R

d.

Let Φ be the function defined by Φ(s) = p(s, 0) (s ∈ RN ), where s = 〈|sj |〉 ∈ RN
+ .

Khoshnevisan and Xiao [5, Theorem 2.9] showed that

P
{
X−1(a) 6= ∅

}
> 0 ⇐⇒ Φ ∈ L1

loc(R
N ).

See Khoshnevisan, Shieh and Xiao [4] for further results.

2. Applications to Lévy processes

The results in Section 1 can be applied to study the Hausdorff dimension, exact
capacity of the ranges and the self-intersections of ordinary Lévy processes, solving
several open problems in theory of Lévy processes. We refer to Khoshnevisan and
Xiao [5, 6, 7], Khoshnevisan, Xiao and Zhong [9] for details of these results. In
the following, we state a new result on intersections of Lévy processes.

Let X = {X(t), t ∈ R+} be a d-dimensional Lévy process. A point x ∈ Rd is
called a k-multiple point of X if there exist k distinct times t1, t2, · · · , tk ∈ (0,∞)
such that X(t1) = · · · = X(tk) = x. The set of k-multiple points is denoted by

M
(d)
k and the set of k-multiple times is denoted by

L
(d)
k =

{
(t1, · · · , tk) ∈ R

k
+

∣∣∣∣
t1, . . . , tk are distinct and
X(t1) = · · · = X(tk)

}
.

The existence of k-multiple points of X has been solved by LeGall et al. [10],
Evans [1], Fitzsimmons and Salisbury [2]. Khoshnevisan and Xiao [8] proved the
following refined result.

Theorem 2. Let X1, . . . , Xk be k independent Lévy processes on Rd, and assume
that each Xj has a one-potential density uj that is strictly positive a.e. Then, for
all nonempty Borel sets F ⊆ R

d,

P {X1(t1) = · · · = Xk(tk) ∈ F for distinct t1, . . . , tk > 0} > 0

if and only if there exists a µ ∈ P(F ) such that
∫

Rd

· · ·
∫

Rd

∣∣µ̂
(
ξ1 + · · · + ξk

)∣∣2
k∏

j=1

Re

(
1

1 + Ψj(ξj)

)
dξ1 · · · dξk <∞.

Further results on the Hausdorff dimensions of M
(d)
k and L

(d)
k are obtained in

Khoshnevisan and Xiao [8].
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symmetric additive Lévy processes. Probab. Th. Rel. Fields, to appear.

[5] Khoshnevisan, D. and Xiao, Y. (2002), Level sets of additive Lévy process. Ann. Probab. 30,
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Classical Potential Theory and Stochastic Processes

Martina Zähle

The classical Riesz potential operator Is of order s > 0 in Rn (with n ≥ 3 for
simplicity) is determined by its Fourier transform

(Isu)̂ = | · |−sû , u ∈ L2(R
n) .

For s 6= n+ 2k one obtains the Riesz kernel representation

Isu(x) = const(n, s)

∫
1

|x− y|n−s
u(y) dy .

The inverse operator I−sv = Dsv = (|·|s v̂)̌ is a special pseudodifferential operator
with symbol | · |s , s > 0. These operators define the positive powers of minus the
Laplace operator:

Ds = (−∆)s/2 .

The associated quadratic form in L2(R
n),

E2s(u, v) := 〈Dsu,Dsv〉L2(Rn) =

∫
|ξ|2sû(ξ) v̂(ξ) dξ

with domain {u ∈ L2(R
n) : Dsu ∈ L2(R

n)} for 0 < α = 2s < 2 admits the
difference representation

Eα(u, v) = const(n, α)

∫

Rn

∫

Rn

(u(x) − u(y))(v(x) − v(y))

|x− y|n+α
dxdy .



1066 Oberwolfach Report 19/2007

For α = 2 we have

E2(u, v) = const(n)

∫

Rn

〈gradu(x), gradv(x)〉 dx .

The Bessel potential operator Gs of order s > 0 determined by the Fourier trans-
form

(Gsu)̂ = (1 + | · |2)−s/2 û , u ∈ L2(R
n) ,

has the interpretation

Gs = (id − ∆)−s/2 .

In the set Hs(Rn) of s-Bessel potentials a Hilbert space structure is introduced by
the scalar product

〈u, v〉Hs(Rn) =

∫
(1 + |ξ|2)s û(ξ) v̂(ξ) dξ .

Note that

E2s
1 (u, v) := 〈u, v〉L2(Rn) + E2s(u, v) =

∫
(1 + |ξ|2s) û(ξ) v̂(ξ) dξ

is an equivalent scalar product in Hs(Rn). (Hs(Rn) coincides with the Besov
space Bs

22(R
n).)

Let Rα
λ be the resolvent of −Dα, i.e., the operator

Rα
λ := (λid +Dα)−1 .

From the general theory of operator semigroups it follows that for any α > 0 the
negative self-adjoint operator −Dα generates a strongly continuous semigroup

Tα
t := e−Dαt , t > 0 ,

of contractive operators on L2(R
n) with Iα as potential operator. Moreover, the

resolvent relationship reads:

Rα
λu =

∫ ∞

0

e−λt Tα
t u dt

and Eα is the corresponding closed and regular quadratic form in L2(R
n) with

domain Hα/2(Rn).
For 0 < α ≤ 2, Eα is Markovian, hence a regular Dirichlet form. Therefore the
associated Markov process Xα is a Hunt process, the so-called symmetric α-stable
Lévy process.

This approach remains valid for arbitrary Lévy processes in Rn subordinate to
Brownian motion: Replace Dα = (−∆)α/2, 0 < α ≤ 2, by the pseudodifferential
operator f(−∆) for a Bernstein function f . The corresponding f -Riesz potential
operator Uf has a kernel Kf = (f(| · |2)−1)∨ which is equivalent to | · |−nf(| · |−2)−1

(under some additional condition on f for the lower estimate). The scalar product
in the (f, s)-Bessel potential space Hf,s(Rn) is introduced by

〈u, v〉Hf,s(Rn) =

∫
(1 + f(|ξ|2))s û(ξ) v̂(ξ) dξ
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and the domain of the associated Dirichlet form

Ef (u, v) :=

∫
f(|ξ|2) û(ξ) v̂(ξ) dξ

agrees with Hf,1(Rn). (Note that Hf,s(Rn) may be interpreted as some Besov
space of generalized smoothness.)
The associated Markov semigroup is representable by the subordination formula

T f
t u(x) =

∫ ∞

0

∫

Rn

u(y) ps(x− y) dy ηf
t (ds) .

Here (pt)t≥0 are the transition densities of Brownian motion and (ηf
t )t≥0 is the

convolution semigroup of measures associated with f , which determines the sub-

ordinator. The subordinated Markov process Xf is given by (T f
t )t≥0.

These classical notions and results are extended to related versions on fractal
h-sets F with h-measures µ (equivalent to Hausdorff measure Hh on F ). Under
the trace condition ∫ 1

0

h(r) f(r−2)−1 r−(n+1) dr <∞

on the Bernstein function f and the gauge function h traces on F of the potential
spaces Hf,s(Rn), the potential operator Uf , the Dirichlet form Ef , and the Lévy
process Xf are considered.
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Necessary and sufficient conditions of the solvability of the Gauss

variational problem

Natalia Zorii

Let X denote a locally compact Hausdorff space, and M the linear space of
all real-valued Radon measures ν on X. A kernel κ on X is meant as a lower
semicontinuous function κ : X × X → [0,∞]. Let κ(ν, ν) and κ( · , ν) denote
respectively the energy and the potential of a measure ν with respect to a kernel κ
(certainly, provided the corresponding integral in the definition is well defined; see,
e. g., [1, 2]). Write E :=

{
ν ∈ M : −∞ < κ(ν, ν) <∞

}
.
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Let A = (Ai)i∈I be an ordered finite collection of closed sets in X such that
each Ai is assigned the sign + or −, and Ai ∩Aj = ∅ whenever signAi 6= signAj .
Given A, let M(A) consist of all linear combinations

µ =
∑

i∈I

(signAi)µ
i,

where µi, i ∈ I, is a nonnegative measure supported on Ai. We call µ ∈ M(A)
a measure associated with A, and µi the i-coordinate of µ. Any two elements in
M(A) are regarded as identical if and only if all their coordinates coincide.

For measures associated with A, it is convenient to determine the so-called
A-vague convergence as the vague convergence by coordinates. (Recall that the
vague topology on M is the topology of pointwise convergence on the class of all
real-valued continuous functions on X with compact support; see, e. g., [1, 2].)

Given A, let A denote the union of all Ai, i ∈ I. Fix a continuous function
g : A→ (0,∞) and a vector a = (ai)i∈I with ai ∈ R+ for all i ∈ I, and write

E(A, a, g) :=
{
µ ∈ M(A) : µ ∈ E ,

∫
g dµi = ai for all i ∈ I

}
.

Fix also a universally measurable function f : A→ [−∞,∞], and write

Ef(A, a, g) :=
{
µ ∈ E(A, a, g) :

∫
f dµ is defined

}
.

The Gauss variational problem is the problem of minimizing of the expression

Gf (µ) := κ(µ, µ) − 2

∫
f dµ

over the class Ef (A, a, g) (see, e. g., [2, 3]). In the case where the infimum value

Gf (A, a, g) := inf
µ∈Ef (A,a,g)

Gf (µ)

is finite, the following problem on the solvability naturally arises.

Problem 1. In the Gauss variational problem, does there exist a minimizing
measure, namely a measure λ ∈ Ef (A, a, g) such that Gf (λ) = Gf (A, a, g)?

If all Ai, i ∈ I, are compact, the class E(A, a, g) is clearly A-vaguely compact.
Therefore, if one chooses κ and f so that Gf be A-vaguely lower semicontinuous,
the existence of minimizing measures λ easily follows (see [2]).

But if anyAi is noncompact, the class E(A, a, g) is no longer A-vaguely compact,
and hence one has to use some additional tools of investigation.

Therefore from now on κ is always required to be positive definite, which means
that it is symmetric and the energy κ(ν, ν), ν ∈ M, is nonnegative whenever
defined. Then E is a pre-Hilbert space with the scalar product (ν1, ν2), equal to

the mutual energy κ(ν1, ν2), and the semi-norm ‖ν‖ :=
√
κ(ν, ν). The topology

on E defined by means of ‖ · ‖ is called the strong topology. See [1].

Definition [1]. A kernel κ is called perfect if E+ :=
{
ν ∈ E : ν > 0

}
, treated

as a topological subspace of E , is strongly complete and the strong topology on E+

is finer than the induced vague topology.
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Examples. In R
n, n > 3, the Newtonian kernel |x − y|2−n, the Riesz kernels

|x − y|α−n, 0 < α < n, and the Green kernel gD (here, D is an open set, and gD

its generalized Green function) are perfect. See, e. g., [1].

The concept of perfect kernels is an efficient tool in extremal problems over
classes of positive measures (see [1]). But Ef (A, a, g) consists of signed measures,
while, by H. Cartan, E is strongly incomplete even for the Newtonian kernel.

Nevertheless, we succeeded in solving Problem 1 exactly for perfect kernels
(see [4, 5, 7]). We showed that in the noncompact case the Gauss variational
problem is in general unsolvable, and this occurs even under extremely natural
restrictions on κ, g, and f (in particular, for the Newtonian, Green, or Riesz
kernels in Rn, n > 3). Under fairly general assumptions, we obtained necessary
and sufficient conditions for the problem to be solvable.

In the remainder, κ is supposed to be perfect and bounded on Ai×Aj whenever
signAi 6= signAj . Suppose also that inf g(x) > 0 (x ∈ A).

Let capQ denote the interior capacity of a set Q relative to a kernel κ.

Theorem 1. [4] Let either g be bounded or there exist r ∈ (1,∞) and ζ ∈ E such
that

gr(x) 6 κ(x, ζ), x ∈ A.

Suppose that either f = κ( · , ω) for some ω ∈ E or (signAi) f
∣∣
Ai

, i ∈ I, are

nonpositive (or with compact support) and upper semicontinuous. If moreover

capAi <∞ for all i ∈ I, (1)

then the Gauss variational problem is solvable for any vector a = (ai)i∈I .

In the following theorem, κ is required to satisfy the generalized maximum
principle with a constant h. This means that for any measure ν > 0, κ(x, ν) is
bounded from above by hM everywhere in X provided κ(x, ν) 6 M on supp ν.

Theorem 2. [4] Suppose κ is continuous for x 6= y, g is bounded, while f =
κ( · , ξ), where ξ ∈ E is a bounded measure such that A ∩ supp ξ = ∅ and

sup
x∈K, y∈supp ξ

κ(x, y) <∞ for all compact sets K ⊂ A.

Under the above assumptions, in order that the Gauss variational problem be
solvable for every a, it is necessary and sufficient that (1) be satisfied.

Consider now κ, g, and f satisfying all the assumptions of Theorem 2, and
suppose that capAj = ∞, j ∈ I being fixed. Then, in accordance with Theo-
rem 2, there exists a′ = (a′i)i∈I such that the Gauss variational problem has no
solutions. But what is a complete description of the set of all vectors a such that
this phenomenon of unsolvability occurs?

Theorem 3. [7] Suppose all other Ai, i 6= j, are of finite capacity and do not
intersect Aj, while κ( · , y) → 0 as y → ∞ uniformly on compact sets. Then the
Gauss variational problem is solvable for a vector a = (ai)i∈I if and only if

aj 6

∫
g dγj .
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Here, γ is a solution (it exists) of the problem of minimizing of Gf (µ) over
{
µ ∈ M(A) :

∫
g dµi = ai for all i 6= j

}
.

Remark 1. Theorems 1 and 2 were extended to the so-called constrained prob-
lem, posed by E. Rakhmanov (cf. [3]), where admissible measures were additionally
supposed to be bounded from above by a fixed constraint. See [5, 6].

Remark 2. Theorem 3 implies necessary and sufficient conditions of the solvabil-
ity of the main minimum problem of the theory of capacities of condensers with
respect to perfect kernels (in particular, the Newtonian, Green, or Riesz ones).
The corresponding results were obtained by the author in 1986 – 2000; cf. [4].
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