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Introduction by the Organisers

The mini-workshop was organized by Michael Krivelevich (Tel Aviv) and Tibor
Szabó (ETH Zürich).

The theory of Positional Games is a branch of Combinatorics, whose main aim
is to develop systematically an extensive mathematical basis for a variety of two
player perfect information games, ranging from such commonly popular games
as Tic-Tac-Toe and Hex to purely abstract games played on graphs and hyper-
graphs. Though a close relative of the classical Game Theory of von Neumann
and of Nim-like games popularized by Conway and others, Positional Games are
quite different and are of much more combinatorial nature. The first papers on the
subject appeared in the 60’s and the 70’s. József Beck turned it into a well estab-
lished mathematical discipline through a series of papers spanning the last quarter
century. Positional games are strongly related to several other branches of Com-
binatorics like Ramsey Theory, Extremal Graph and Set Theory, the Probabilistic
Method. The subject has proven to be quite instrumental in deriving important
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results in Theoretical Computer Science, in particular in derandomization and
algorithmization of important probabilistic tools.

Recently the field of Positional Games has been experiencing an explosive
growth with quite a few new and important results in different directions (new
versions of game definitions; analysis of biased games; exact results in Ramsey-
type games; games of geometric nature; fast winning strategies etc.) appearing.
The purpose of this mini-workshop was two-fold: it was aimed to provide an op-
portunity for leading researchers in the field to present and discuss their recent
results on a systematic basis; it was also meant to attract new researchers, includ-
ing students, to this exciting and rapidly developing field.

17 scientists from different countries participated in the meeting. The organiz-
ers and participants would like to thank the Mathematisches Forschungsinstitut
Oberwolfach for providing an inspiring setting for this event.
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Abstracts

The game domination number of graphs

József Balogh

The game domination number of a (simple, undirected) graph is defined by the
following game. Two players, A and D, orient the edges of the graph alternately
until all edges are oriented. Player D starts the game, and his goal is to decrease
the domination number of the resulting digraph, while A is trying to increase it.
The game domination number of the graph G, denoted by γg(G), is the domination
number of the directed graph resulting from this game. This is well-defined if we
suppose that both players follow their optimal strategies.

The k-domination number, γk(G), is the minimal cardinality of a k-dominating
set. It is easy to see that γ1(G) ≤ γg(G) ≤ γ2(G). Both γ2(G) and γ2(G) are
monotone decreasing, in the sense that addition of edges do not increase them.
An easy application of the pairing strategy implies that adding even number edges
does not increase γg(G). However, adding one edge might have a different effect,
as the following examples shows:

Example Let G be obtained from the complete bipartite graph Kt,4 (t ≥ 6)
as follows. Let Kt,4 = K(M, N) with M = {e, f, g, . . . , z}, N = {a, b, c, d}), and
G = Kt,4 + ab + cd − dz. Then γg(G) = 2, while γg(G + dz) = 3.

Furthermore, (k − 1)(G + dz) + G has game domination number 2k and adding
only one edge to the graph, k(G + dz) has game domination number 3k.

We proved additionally the following (sharp) inequalities:

Theorem 1. For any tree T on n vertices γg(T ) ≥
⌈

n
2

⌉

.

Theorem 2. If a graph G has minimal degree at least 2, then γg(G) ≤ ⌊n
2 ⌋.

The upper bound for the game domination number can be further strengthened
if the minimal degree is larger using a probabilistic argument.

Theorem 3. For every graph G = (V, E) with n vertices and minimum degree
δ ≥ 2 and for every real number p between 0 and 1, γg(G) ≤ np + 2n(1− p)δ + 1 +

nδp(1 − p)δ. Therefore, γg(G) ≤ (1 + o(1))n ln(δ+1)
δ+1 , where the o(1)-term tends to

zero as δ tends to infinity, and the above the estimate is tight, up to the o(1) error
term.
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Tic-Tac-Toe like games and the Surplus

József Beck

Traditional Game Theory (J. von Neumann, J. Nash, etc.) is about games of
incomplete information, like Poker where a player doesn’t know the opponent’s
cards, and the main problem is how to compensate for the lack of information by
Random Play. A key result is Neumann’s minimax theorem about mixed strategies
(involving Random Play).

Traditional game theory doesn’t really say anything interesting about real
games like Chess, Go, Checkers, Tic-Tac-Toe and its grown-up versions, Hex,
and so on. The reason why “real” game theory doesn’t exist yet is the immense
space of possibilities, or combinatorial chaos. Brute force case study is totally im-
practical even for the simplest games. Is there an escape from the combinatorial
chaos?

Perhaps the most natural model to start with is Generalized Tic-Tac-Toe. No-
body knows what generalized Chess or Go are supposed to mean, but it is obvious
how to define generalized Tic-Tac-Toe (TTT). In ordinary TTT the “board” con-
sists of 3 × 3 = 9 cells and there are 8 winning triples. One can play Generalized
TTT on an arbitrary finite hypergraph, where the underlying set is called the
“board” and the hyperedges are the “winning sets”. The players take turns and
occupy new elements of the board; the winner is the player who occupies a whole
winning set first, otherwise the play ends in a draw.

Generalized TTT is hopelessly complicated, mainly for two reasons: (1) Ex-
ponentially Long Play (for a typical hypergraph), and because (2) Winning is
non-monotonic (Extra Set Paradox)!

This forces us to study Weak Win instead: Weak Win simply means to occupy
a whole winning set, but not necessarily first. I wrote a whole book about Weak
Win. It is 700 pages long and the title is “Tic-Tac-Toe Theory”. It will appear
in Cambridge University Press in 2007. We have a good understanding of Weak
Win, which is summarized in the so-called Meta-Conjecture. I can prove the Meta-
Conjecture for large classes of hypergraphs; this is the subject of the book. The
main open problem is how to extend the Meta-Conjecture for biased games (we
have an analog conjecture, but cannot fully prove it).

The biased case seems far too hard, so what to do next? Weak Win requires a
very dense hypergraph: the Set/Point ratio has to be exponentially large. What
happens if the hypergraph the players are playing on is sparse? Can one still hope
for any positive result? Of course the “complete occupation” has to be replaced
by some kind of weaker “majority” concept. This is exactly what motivates the
introduction of the Row-Column Game and the concept of Surplus. There is a
perfectly natural way to generalize the “geometric” Row-Column Game for arbi-
trary graphs. This leads to the Degree Game on Graphs. I have a 100 pages long
manuscript (unpublished yet) about this. The main result is that “every dense
graph has a large Surplus”. I can generalize this even for the biased case.

There is a simple conjecture which predicts the exact order of the Surplus in
terms of the local density of the graph (“skew core density”). I have partial results,
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but the general case remains wide open. This is a wonderful research project, which
seems more doable than the biased case in Tic-Tac-Toe Theory.

Winning fast in sparse graph construction games

Ohad N. Feldheim

(joint work with Michael Krivelevich)

1. Introduction

A Graph Construction Game is a Maker-Breaker game. In the graph construc-
tion game (KN , G) Maker and Breaker take turns in choosing previously unoccu-
pied edges of the complete graph KN - (also referred to as the Board of the game).
Maker’s aim is to claim a copy of a given graph G while Breaker’s aim is to prevent
Maker from doing so. It is not difficult to show that for every graph G there exists
large enough N such that (KN , G) is won by Maker. One may also notice that if
Breaker can prevent Maker from winning the Graph construction game (KN , G)
before the m-th turn, then for every N ′ < N Breaker can delay Maker’s victory
in (KN ′ , G) at least for m turns. In this talk, we study how long can breaker
delay graph construction games on an infinite board. Our goal is identify what
kind of sparseness is useful for Maker in order to win fast, and to find an explicit
Maker’s strategy for constructing such sparse G-s quickly. We will also address the
question of finding lower bounds for the number of turns required for constructing
a specific G on an infinite board. Our interest in these results stems in part from
their relation to the famous Burr-Erdős conjecture [3] as will be further explained.

2. Definitions and results

One can expect different graphs with the same number of vertices to differ
significantly in the difficulty of their construction, and it is not surprising that
denser graphs are harder (i.e. take more turns) for Maker to build. For example,
due to Pekec and to Beck [5], [2] we know that the minimal N such that the Clique
Game (KN , Kn) is won by Maker is N = P (n)2n/2 where P is a polynomial1, and
that for N large enough Maker can win (KN , Kn) in less than 2n+2 turns, but
cannot win in less than 2n/2 turns. However, constructing a star of order n can
easily be done on K2n+1 as the board and in n rounds. These examples show us
that the order of G is far from being enough to determine both boards size and
game length required for Maker to win.

Another class of graphs that has been discussed in the literature in this respect
is that of bounded degree graphs. Beck proved in [1] that if N ≥ P (d)3d · n, then
in a Maker-Breaker game played on the edges of KN Maker can create a universal
graph for the class of graphs on n vertices with maximum degree d, i.e., a graph
that contains all such graphs. This immediately implies that a boardsize linear in
n (with a coefficient of order 3d) is sufficient to construct a graph on n vertices of

1Actually Beck describes the exact boardsize in [2].
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maximum degree d. Yet, Beck’s approach can only give an upper bound on the
game length quadratic in n. In this talk we will show an upper bound on game
length for such graphs which is linear in n.

In order to understand our construction one must be familiar with the definition
of degenerate graphs:

Definition 2.1. (d-degenerate graph) A graph G is called d-degenerate if every
subgraph of G contains some vertex with degree d or less. We call the minimal d
such that G is d-degenerate the degeneracy of G.

The most important property of a d-degenerate graph is that it has a d-
degenerate ordering.

Definition 2.2. (d-degenerate ordering) Let G = (V, E) be a graph. An ordering
σ = v1...vn of V is called a d-degenerate ordering if every vertex vi has at most d
neighbors among {vi+1, ..., vn}.

Note that if a graph has maximum degree at most d, then it is d-degenerate,
and every ordering of its vertices is a d-degenerate ordering.

in this talk we show that d-degenerate graphs can be constructed by Maker in
linear time:

Theorem 2.3. (Quick victory theorem) Let G be a d-degenerate graph G on n
vertices. For every natural N > d1122d+9 ·n, Maker can win the game (KN , G) in
at most d1122d+7 · n rounds.

We learn from this result that the order of the constructed graph has a relatively
small impact on the length of the construction game. We will see that the reason
for this fact is that graphs which are sparse (in the sense of degeneracy) can be
built fast using a local strategy.

Obviously the bound stated in Theorem 2.3 applies to every graph G of maxi-
mum degree d on n vertices.

We will also show a simple lower bound for the length of a sparse graph con-
struction game:

Theorem 2.4. (Long game theorem) Let G be a graph of order n with m edges.
Let k = |aut(G)| be the number of automorphisms of G. For every N < (2m−1k)1/n

the game (KN , G) is won by Breaker. Also, the game (KM , G) cannot be won by
Maker in less than 1

2 (2m−1k)1/n rounds, for every M .

Theorem 2.4, which is proved through direct application of a theorem by P.
Erdős and J. Selfridge[4] gives us a method to bound from below the board-size
and the game length required for Maker to win. Applying the bound to com-
plete bipartite graphs, we obtain a family of d-degenerate graphs that cannot be
constructed by Maker much faster than our strategy suggests:

Corollary 2.5. (The bounds are tight) For every pair 1 ≤ d < n there exists a

d-degenerate graph G on n vertices such that for N < 2d−d2

n − 1
n (d!(n − d)!)

1
n , the

game (KN , G) is won by Breaker. Also, for every M the game (KM , G) cannot be

won by Maker in less than 2d−1−d2

n − 1
n (d!(n − d)!)

1
n rounds.
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Observe that for a fixed d and a large n, the last quantity behaves as c2dn for
an absolute constant c > 0, showing that the upper bound obtained in Theorem
2.3 is not far from being tight.

Our interest in these results stems in part from their relation to the famous
Burr-Erdős conjecture [3], and the research on Ramsey Numbers of different graph
families, in particular of d-degenerate graphs and graphs with bounded degree.
The Ramsey Number of a graph G, denoted by r(G) is the smallest integer n such
that the edges of Kn can not be divided into two disjoint sets, neither of which
contains a copy of G. We know that if N ≥ r(G) then a draw in (KN , G) is
impossible. We can then deduce using the Strategy Stealing argument that Maker
has a winning strategy for (KN , G) (though we do not necessarily know how to
describe it explicitly). The Burr-Erdős conjecture suggests that for d-degenerate
graphs, r(G) < Cn where n is the number of vertices of G, and C is a constant
depending only on the degeneracy d of G. So far this conjecture has been settled
for several cases including graphs with bounded degree. Our results thus provide
a certain support for this conjecture. The value of our construction in the case of
graphs with bounded degrees, or in other cases where the Burr-Erdős conjecture
is settled, is partly given by the fact that our proof uses an explicit construction,
unlike its Ramsey theory-based counterpart (which relies on the so called strategy
stealing argument, inherently non-constructive in nature); it also deals with the
dependency between C and the degeneracy d of G.

3. Concluding remarks and open problems

It appears that in graph construction games when the graph’s structure is rela-
tively regular (for example - if it has many automorphisms), a local construction,
immediately designating every touched vertex to potentially function as a specific
vertex in Maker’s claimed copy G may asymptotically be the fastest possible -
or at least asymptotically the fastest. This speculation is backed by Corollary 1.
However, when the graph is very irregular it might be possible for Maker to use a
global strategy, and to decide which vertex in KN shall function as which vertex
in G very late in the game, making Breaker’s life a bit more difficult. Whether
this is true remains an open problem.

Problem 3.1. For a fixed d > 0, are there infinitely many d-regular graphs G for
which Maker can win the game (KN , G) in at most f(d)|V (G)| rounds for large
enough board-size N , where f(d) ≤ (1 + o(1))d?

Induced graphs versus copies. In the proof of Theorem 2.3 we show that
Maker’s claimed graph not only contains a copy of G in KN but also contains an
induced copy of it. This follows from the fact that we never claim an edge between
two candidates for vertices which have no edge between them in G. The reason
we chose not to define the graph construction game for induced copies of G is that
such a game cannot be represented as a weak game on a hypergraph.

Biased games. It may be of interest to extend our method to biased graph
construction games. In these games Maker claims one edge per turn as before, but



1082 Oberwolfach Report 20/2007

Breaker answers by taking b ≥ 1 edges. Our proof cannot be easily extended to
handle this change.
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Fast and slow winning strategies in Positional Games

Dan Hefetz

(joint work with Michael Krivelevich, Miloš Stojalović, Tibor Szabó)

1. Introduction

In this talk, we study games which are played on the edges of the complete
graph on n vertices. For quite a few Maker-Breaker and Avoider-Enforcer games
it is rather easy to determine the winner. For example, in the connectivity game
played on the edges of the complete graph Kn on n vertices, Maker can easily
construct a spanning tree by the end of the game, in fact he just needs n − 1
moves. The Avoider-Enforcer planarity game, played on the edges of Kn for n
sufficiently large, is an even more convincing example – Avoider creates a non-
planar graph and thus loses the game in the end, irregardless of his strategy, the
prosaic reason being that every graph on n vertices with more than 3n − 6 edges
is non-planar. Thus, for games of this type, a more interesting question to ask is
not who wins but rather how long it should take the winner to reach a winning
position. This is the type of question we address in this talk.

2. Definitions and results

For a (1, 1,H) Maker-Breaker game, let τM (H) be the smallest integer t such
that Maker can win the game within t moves (if the game is a Breaker’s win, then
set τM (H) = ∞).

Similarly, for a (1, 1,H) Avoider-Enforcer game, let τE(H) be the smallest in-
teger t such that Enforcer can win the game within t rounds (if the game is an
Avoider’s win, then set τE(H) = ∞).
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2.1. Fast strategies for Maker and slow strategies for Breaker. We study
τM for specific games with board E(Kn).

Let Mn be the hypergraph whose hyperedges are all perfect matchings of Kn (or
matchings that cover every vertex but one, if n is odd). Let Dn be the hypergraph
whose hyperedges are all spanning subgraphs of Kn of positive minimum degree.
We find the exact number of moves that Maker needs, in order to win the (1, 1,Mn)
game and the (1, 1,Dn) game. Obviously, Maker needs to make at least ⌊n

2 ⌋ moves,
as this is the size of a member of Mn. We show that if n is odd, then he does
not need more moves, whereas if n is even, then he needs just one more move. A
similar result, showing the tightness of the obvious lower bound for the minimum
degree game Dn, easily follows.

Theorem 2.1. (i)

τM (Mn) =

{

⌊n
2 ⌋ if n is odd

n
2 + 1 if n is even

(ii)

τM (Dn) =
⌊n

2

⌋

+ 1.

As mentioned earlier, Chvátal and Erdős [6] proved that Maker can win the
(1, 1) Hamilton cycle game on Kn within 2n rounds. Here we show that for
sufficiently large n, Maker can win the (1, 1) Hamilton cycle game within n + 2
rounds. This bound is now only 1 away from the obvious lower bound.

Theorem 2.2. For sufficiently large n,

n + 1 ≤ τM (Hn) ≤ n + 2.

A corollary of the proof of the previous theorem is that Maker can win the
”Hamilton path” game within n − 1 moves, which is clearly best possible.

Theorem 2.3. For sufficiently large n,

τM (HPn) = n − 1,

where HPn is the hypergraph whose hyperedges are all Hamilton paths of Kn.

Let Vk
n be the hypergraph whose hyperedges are all spanning k-vertex-connected

subgraphs of Kn. The classical theorem of Lehman [12] asserts that Maker can
build a 1-connected spanning graph in n − 1 moves. From Theorem 2.2 it follows
that Maker can build a 2-vertex-connected spanning graph for the price of spending
just 3 more (that is, in n + 2) moves.

In the following, we obtain a generalization of the latter fact for every k ≥ 3.
As every k-connected graph has minimum degree at least k, Maker needs at least
kn/2 moves just to build a member of Vk

n (even if Breaker doesn’t play at all). The
next theorem shows that this trivial lower bound is asymptotically tight, that is,
there is a strategy for Maker to build a k-vertex-connected graph in kn/2 + ok(n)
moves.
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Theorem 2.4. For every fixed k ≥ 3 and sufficiently large n,

kn/2 ≤ τM (Vk
n) ≤ kn/2 + (k + 4)(

√
n + 2n2/3 log n).

An easy consequence of Theorems 2.1, 2.2 and 2.4, is that for every fixed k ≥ 1
Maker can build a graph with minimum degree at least k within (1 + o(1))kn/2
moves. This is clearly asymptotically optimal.

2.2. Slow strategies for Avoider and fast strategies for Enforcer. We
study τE for specific games with board E(Kn).

In the Avoider-Enforcer non-planarity game, Avoider loses the game as soon
as his graph becomes non-planar. Clearly, Enforcer can win this game within
3n − 5 moves no matter how he plays; that is, τE(NP n) ≤ 3n − 5, where NP n

is the hypergraph whose hyperedges are all non-planar subgraphs of Kn. On the
other hand, Avoider can keep from losing for 3

2n − 3 moves by simply fixing any
triangulation and claiming its edges arbitrarily for as long as possible.

The following theorem asserts that the trivial upper bound is essentially tight,
that is, Avoider can refrain from building a non-planar graph for at least (3−o(1))n
moves. More precisely,

Theorem 2.5.

τE(NPn) > 3n − 28
√

n.

In the Avoider-Enforcer non-k-coloring game NCk
n, Avoider loses the game as

soon as his graph becomes non-k-colorable. Avoider can play for at least (1 −
o(1)) (k−1)n2

4k moves without losing by simply fixing a copy of the k-partite Turán-
graph and claiming half of its edges. On the other hand, it is not hard to see that
the game is an Enforcer’s win if it is played until the end (see [10]), so Avoider

will lose after at most 1
2

(

n
2

)

≈ n2

4 moves. In our next theorem we essentially close
the gap between the two bounds for the case k = 2 (the “non-bipartite game”).
We also improve the trivial lower bound and establish the order of magnitude of
the second order term of τE(NC2

n).

Theorem 2.6.

n2

8
+

n − 2

12
≤ τE(NC2

n) ≤ n2

8
+

n

2
+ 1.

Next, we look at two Avoider-Enforcer games that turn out to be of similar be-
havior. In the game Dn Enforcer wins as soon as the minimum degree in Avoider’s
graph becomes positive, and in the game Tn Enforcer wins as soon as Avoider’s
graph becomes connected and spanning. Enforcer wins both games (see [9]), entail-
ing τE(Dn), τE(Tn) ≤ 1

2

(

n
2

)

. On the other hand, Avoider can choose an arbitrary
vertex v, and, for as long as possible, claim only edges which are not incident with
v, implying τE(Dn), τE(Tn) > 1

2

(

n−1
2

)

. This determines the first order term for
both parameters. In the following theorem we determine the second order term
and the order of magnitude of the third.
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Theorem 2.7.

1

2

(

n − 1

2

)

+

(

1

4
− o(1)

)

log n < τE(Dn) ≤ τE(Tn) ≤ 1

2

(

n − 1

2

)

+ 2 log2 n + 1.

3. Concluding remarks and open problems

• It was proved in Theorem 2.4 that Maker can win the (1, 1) k-vertex-
connectivity game on Kn within kn/2+o(n) moves. It would be interesting
to decide whether the o(n) term can be replaced with some function of k, if
not for this game, then for the k-edge-connectivity game or the minimum-
degree-k game.

• It would be interesting to find the exact value of τM (Hn).

• It was proved in Theorem 2.6 that τE(NC2
n) ≤ n2

8 + Θ(n). For k ≥ 3,

we know just the trivial bounds (k−1)n2

4k ≤ τE(NCk
n) ≤ 1

2

(

n
2

)

. It would
be interesting to close, or at least reduce, the gap between these bounds.
It seems reasonable that, as in the case k = 2, the truth is closer to the

trivial lower bound, and maybe τE(NCk
n) ≤ (1 + o(1)) (k−1)n2

4k for every
k ≥ 3.

• It was proved in Theorem 2.7 that τE(Tn) and τE(Dn) are “almost the
same”. This is reminiscent of the well-known property of random graphs,
that the hitting time of being connected and the hitting time of having
minimum positive degree are a.s. the same, and it motivates us to raise
the following conjecture.

Conjecture 3.1. τE(Dn) = τE(Tn).

• It would be interesting to obtain good estimates on τE(Mn) and τE(Hn).
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games, submitted.
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On-line Ramsey theory

H. A. Kierstead

(joint work with Goran Konjevod)

For a positive integer n and a set S, let [n] denote the set {1, . . . , n} and
(

S
n

)

denote {X ⊆ S : |X | = n}. An s-uniform hypergraph, or s- graph for short, is a

structure H = (V, E), where E ⊆
(

V
s

)

. Elements of E are called edges or s-edges.

Let Kt
s denote the complete s-graph on t vertices defined by Kt

s =
(

[t],
(

[t]
s

)

)

. For

s-graphs G and H we write G →c H , if every c-coloring of the s-edges of G results
in a monochromatic copy of the target H .

For positive integers s, c, t the Ramsey number Rams
c(t) is the least integer

n such that Kn
s →c Kt

s. Estimating Ramsey numbers, even for graphs, is a
notoriously difficult problem. This has led researchers to consider other versions
of the problem. Suppose that f is an increasing graph parameter. For positive
integers s, c, t, define the f -Ramsey number, f -Rams

c(t), to be the least integer n
for which there exists an s-graph G such that f(G) = n and G →c Kt

s. Trivially,
we have

f(Kt
s) ≤ f - Rams

c(t) ≤ f(Kn
s ), where n = Rams

c(t).

Erdős, Faudree, Rousseau and Schelp [1] studied the size Ramsey number, ob-
tained when f(G) = size(G), the number of edges of G. Erdős et al. showed, with
a proof attributed to Chvatál, that the size Ramsey number for graphs is exactly
the trivial upper bound

(

n
2

)

, n = Rams
c(t). In other words, allowing more vertices

will not reduce the number of edges needed to force a monochromatic clique. The
coloring number of a graph G = (V, E) is the least integer d such that its vertices
can be ordered as v1 ≺ · · · ≺ vn so that

|{vi : i < j ∧ {i, j} ∈ E}| < d for all j ∈ [n].

Let χ(G) be the chromatic number of G. Clearly, χ(G) ≤ col(G), since its vertices
can be colored with col(G) colors using First-Fit on the enumeration v1, . . . , vn.
Recently, Kurek and Ruciński [3] considered the chromatic and coloring Ramsey
numbers obtained when f is χ and col, respectively. They observed that the trivial
upper bound for the chromatic Ramsey number is again tight, and thus the trivial
upper bound is also tight for the coloring Ramsey number.

From a Ramsey theoretic perspective, these results are disappointing. Kurek
and Ruciński suggested a more promising line of inquiry might be to study on-line
versions of f -Ramsey numbers. This seems encouraging because many Ramsey
theoretic constructions are inherently on-line.

In the on-line setting we consider a process in which edges (not vertices) are
generated one at a time and then immediately and irrevocably colored by an on-
line algorithm. This is best understood as a game played between two players,
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Builder and Painter. For positive integers c, s, t the (c, s, t)-Ramsey game (with
target Kt

s) is played as follows. Play begins with an empty s-graph G0 = (V, E0) on
an arbitrarily large, but finite, vertex set V determined by Builder. (So E0 = ∅.)
The game is played in rounds. At the beginning of the ith round Builder will have
constructed an s-graph Gi−1 = (V, Ei−1) with |Ei−1| = i−1 and Painter will have
constructed a coloring fi−1 : Ei−1 → [c]. On the ith round Builder constructs
a new edge ei (distinct from previous edges) and sets Gi = (V, Ei), where Ei =
Ei−1∪{ei}. Painter responds by coloring ei to obtain a coloring fi : Ei → [c] with
fi−1 ⊆ fi. Builder wins if Painter eventually creates a monochromatic copy of Kt

s;

otherwise Painter wins when she has colored all
(|V |

s

)

edges.
For positive integers s, c, t and an increasing graph parameter f , define the on-

line f -Ramsey number, f -oRams
c(t), to be the least integer n such that Builder

can win the (c, s, t)-Ramsey game while constructing a graph G with f(G) = n.
Trivially,

f(Kt
s) ≤ f - oRams

c(t) ≤ f - Rams
c(t) ≤ f(Kn

s ), where n = Rams
c(t).

Kurek and Ruciński conjectured:

Conjecture 1. For all positive integers c and t, lim
t→∞

size - oRam2
c(t)

size -Ram2
c(t)

= 0.

We consider the on-line coloring Ramsey number, col-oRam2
c(t). First we prove

the following Theorem that shows that the trivial lower bound on col-oRam2
c(t)

is tight even though the trivial upper bound is tight for χ-Ram2
c(t).

Theorem 2. For all positive integers c, t, col-oRam2
c(t) = χ(Kt

2) = col(Kt
2) = t.

Next we extend the definition of coloring number to hypergraphs in a natural
way so that χ(G) ≤ col(G) for all hypergraphs G. Finally we prove our main
result:

Theorem 3. For all positive integers c, s, t, col-oRams
c(t) = χ(Kt

s) = col(Kt
s).

Our techniques were first used in [2], where it is shown that χ-oRam2
2(t) = t

for every positive integer t and col-oRam2
c(3) = 3 for every positive integer c. As

in [2] our main tool is the analysis of an auxiliary game called survival, which
seems to be interesting in its own right. The novelty of the current paper is that
our previous analysis of survival for graphs is extended to hypergraphs. This is
needed, even in the case of graphs (Theorem 2) to extend the results of [2] to
arbitrary c and t.

Let p, s, t be positive integers with s ≤ p. The (p, s, t)- survival game is
played by two players, Presenter and Chooser. Play begins with the s-graph
H0 = (S0, E0), where S0 is an arbitrarily large, but finite, set of vertices deter-
mined at the beginning of the game by Presenter and E0 = ∅. The game is played
in rounds. At the beginning of the ith round the players will have constructed an
s-graph Hi−1 = (Si−1, Ei−1). During the ith round they construct Hi = (Si, Ei)
as follows. Presenter plays by presenting a p-subset Pi ⊆ Si−1. Chooser responds
by choosing an s-set Xi ⊆ Pi. The remaining vertices in Pi \ Xi are discarded,
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leaving Si = Si−1 \ (Pi \ Xi) and Ei = (Ei−1 ∪ {Xi}). The vertices in Si are
called surviving vertices. Presenter wins if Hi contains a copy of Kt

s for some i.
Otherwise Chooser wins when eventually |Si| < t as then Presenter cannot make
a play.

Theorem 4. For all positive integers p, s, t with s ≤ p, Presenter has a winning
strategy in the (p, s, t)-survival game.
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Positional games and probabilistic considerations

Michael Krivelevich

Positional games are two player perfect information games. Being such, they
appear to leave no room for probabilistic considerations of any sort. Yet, as
accumulated research experience has convincingly shown, probabilistic intuition
and arguments are in fact omnipresent, when analyzing and even playing positional
games, especially those where players’ roles are non-symmetric (like Maker-Breaker
and Avoider-Enforcer games), and also biased games. This is certainly one of the
key qualitative discoveries of the research in the field during the last three decades,
supported by an array of recent results.

In this survey-type talk I discuss several important aspects of applying proba-
bility to positional games. The topics to be discussed include:

• First moment method: Maker-Breaker (unbiased) games, Erdős-Selfridge
criterion for Breaker’s win [8] and its probabilistic interpretation;

• Second moment method [4]: Beck’s analysis of the maximum degree game
[3];

• Maker-Breaker biased games; the Erdős paradigm – connection between
a critical bias and a threshold for property’s appearance in the random
graph G(n, m);

• applying the Erdős paradigm: the connectivity [7], [1], Hamiltonicity [7],
[2] [11], non-planarity [9], giant component [6] and creating-a-copy-of-H
[7], [5] games;

• Random strategies for positional games: creating a copy of H [5], creating
a k-connected spanning subgraph [10].
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Biased positional games and small hypergraphs with large covers

Michael Krivelevich

(joint work with Tibor Szabó)

We prove that in the biased (1 : b) Hamiltonicity and k-connectivity Maker-
Breaker games (k > 0 is a constant), played on the edges of the complete graph Kn,
Maker has a winning strategy for b ≤ (log 2 − o(1))n/ log n. Also, in the biased
(1 : b) Avoider-Enforcer game played on E(Kn), Enforcer can force Avoider to
create a Hamilton cycle when b ≤ (1 − o(1))n/ log n. These results are proved
using a new approach, relying on the existence of hypergraphs with few edges and
large covering number. The main combinatorial tool is a recent sufficient condition
for Hamiltonicity, derived by Dan Hefetz and the authors [8].
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The diameter game

Ryan Martin

(joint work with József Balogh, András Pluhár)

1. Introduction

In a generalized Maker-Breaker positional game, Maker and Breaker play in
turns. Maker makes a moves in each turn and Breaker makes b moves in each
turn. We choose Maker to be the first player, although this nearly always makes
no difference in the outcome of the game. We call such games (a : b)-games. If
a = b, the game is fair, otherwise it is biased. If a = b > 1, the game is accelerated.
In [3], Beck asked about the behavior of accelerated versus unaccelerated games,
having observed a game in which Maker can win the (1 : 1)-game, but the result
of the (2 : 2)-game is inconclusive. It is well-studied in the literature that a game
may have completely different outcomes if it is played as (1 : 1) or (a : b) game,
where either a or b is greater than 1, see [1, 5, 6, 7].

Here, we investigate the so-called 2-diameter game and, in particular, we prove
that in the (1 : 1)-game, Breaker wins; but, in the (2 : 2)-game, Maker wins.

1.1. Probabilistic intuition. An important guide to understanding such games
is the so-called probabilistic intuition, see [2]. In the probabilistic intuition, the
perfect players can be thought of as being replaced by players with a random
strategy. See, for example, the papers [2, 4, 8]. In this extended abstract, we
consider the property that the graph has diameter at most d. We denote the
corresponding d-diameter game by Dd(a : b), or more briefly, by Dd if a = b = 1.

It should be noted that while it has been known that acceleration may change
the outcome somewhat, for the diameter game, it is shown that the (1 : 1)-game
and the (2 : 2)-game have completely different outcomes. More specifically, this is
the first non-trivial case in which the probabilistic intuition fails completely in the
(1 : 1)-game, and is at least partially restored in the (2 : 2)-game. Note further
that this is the first non-artificial case in which it is shown that the (1 : 1) and the
(2 : 2)-game have a different outcomes, when the minimum size of a winning set
of both players is large (say, at least n − 1).

2. Results

A simple pairing strategy gives that Breaker wins the diameter 2 game unless
the graph is trivially small:

Proposition 2.1. If n ≤ 3, then Maker wins the game D2. If n ≥ 4, then Breaker
has a winning strategy for the the game D2.
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A little acceleration of the game changes the outcome completely. In the case
where a = 2, we expect the probabilistic intuition to work but we can only prove
a weaker result:

Theorem 2.2. Maker wins the game D2(2 : 1
8n1/8/(log n)1/2), and Breaker wins

the game D2(2 : (2 + ǫ)
√

n/ ln n) for any ǫ > 0, provided n is large enough.

Note that Gn,1/2 has diameter 3 almost surely if p−1/3+ǫ, and it does not have

diameter 3 almost surely if p = n−1/3−ǫ, for an arbitrary ǫ > 0. The game D3(1 : b)
defies the probabilistic intuition again.

Theorem 2.3. Maker wins the game D3(1 : c1

√

n/ ln n), and Breaker wins the
game D3(1 : c2

√
n), for some c1, c2 > 0, provided n is big enough.

We suspect, however, that for the D3(3 : b) game the breaking point should be
b0 ≈ n2/3 × polylog(n), satisfying the probabilistic intuition, but we do not have
a conjecture for the breaking point for the D3(2, b) game.

Theorem 2.3 is implied by the following more general theorem.

Theorem 2.4. There exists a constant c0 > 0 such that if d is an integer, 3 ≤
d ≤ c0 ln n/ ln ln n, then there is a c1 = c1(d) > 0, such that Maker wins the game
Dd(1 : c1(n/ ln n)1−1/⌈d/2⌉) if n is large enough.

Furthermore, for every a > 1, there is a constant c2 > 0, depending only on a
such that if d is an integer, 3 ≤ d ≤ c2 ln n/(ln ln n), then there exist c3 = c3(d) > 0
and c4 = c4(a, d) > 0 such that Breaker wins the games Dd(1 : c3n

1−1/(d−1)) and
Dd(a : c4n

1−1/d), provided n is big enough.

Note that in Theorem 2.4, Maker achieves diameter 2k by achieving diameter
2k − 1 for any integer k ≥ 2. We conjecture that the correct break point is close
(up to polylog factor) to the “Breaker” bounds.

3. Degree game

A useful tool in proving Theorems 2.2 and 2.4 is the so-called Degree Game. In
this game, Maker and Breaker play an (a : b) game on the edges of G. Maker wins
by getting at least d edges incident to each vertex. For G = Kn and a = b = 1 this
game was investigated thoroughly in [9] and [2]. It was shown that Maker wins if
d < n/2−√

n log n, and Breaker wins if d > n/2−√
n/12, satisfying probabilistic

intuition. The general case is analogous.

Lemma 3.1. Let a ≤ n/(4 ln n) and n be large enough. Then Maker wins the

(a : b) degree game on Kn if d < a
a+bn − 6ab

(a+b)3/2

√
n ln n.

3.1. Expansion game. In the Expansion Game, Maker attempts to ensure that
for every pair of disjoint sets R and S, where |R| = r and |S| = s, there is an edge
between R and S. We may assume that s ≥ r. This game is used to ensure that
vertices with large neighborhoods have very large second neighborhoods.

Lemma 3.2. Maker wins the (a : b)-Expansion Game with parameters r and s if
one of the following holds:
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(a) 2b ln n < r ln(a + 1),
(b) b ln n < r ln(a + 1) < 2b ln n and s > rb ln n

r ln(a+1)−b ln n ,

(c) r ln(a + 1) < b ln n and n − s < nr ln(a+1)
b ln n+r ln(a+1) .

4. Proof idea for Theorem 2.2

Maker plays in two phases. Phase I lasts for 2nr ≈ n3/2(ln n)1/2 rounds. There
are four subgames that Maker plays in successive rounds. The first subgame is a
ratio game. This ratio game ensures that if the degree of vertex x in Breaker’s
graph is large, then the fraction of the degree of x in Breaker’s graph over the
degree of x in Maker’s graph is small. Maker uses the Degree Game strategy in
these rounds.

The second game ensures that, at any vertex, the degree in Maker’s graph, at
the end of Phase I, is at least r ≈

√
n ln n. The third uses the Expansion Game to

ensure that every vertex in Maker’s graph, at the end of Phase I, has second-degree
at least n − s ≈ n − n3/4/lnn.

The fourth game connects pairs of vertices, each vertex having high degree in
Breaker’s graph, with a Maker’s path of length 2.

At the beginning of Phase II, therefore, many pairs of vertices in Maker’s graph
have a path of length at most two between them. Moreover, if a pair of vertices
does not have a Maker’s path between them, then at least one of the vertices has
very few edges incident to it both in Breaker’s graph and in Maker’s graph. So,
Maker will have many paths of length 2 to put between such a pair of vertices.
Before Phase II concludes, Maker can easily connect each of those pairs of vertices
with paths of length 2.
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Game Chromatic Index of Graphs with Given Restrictions on Degrees

Oleg Pikhurko

(joint work with Ma lgorzata Bednarska, Andrew Beveridge, Tom Bohman, Alan
Frieze)

Let a graph G and a positive integer k be given. Two players, called Alice
and Bob, alternatively color a previously uncolored edge of G in one of the colors
from [k] = {1, . . . , k} so that no two adjacent edges have the same color. Thus,
at any moment of the game, the current partial coloring of E(G) is a proper edge
coloring. The game can end in two different ways. Either all edges of G are colored
(and then Alice is the winner) or the uncolored edge picked by a player cannot be
properly colored (and then Bob wins).

Let us agree that Bob starts the game. (In fact, all theorems stated here will
remain valid for the version where we let Alice to start the game.) The game chro-
matic index χ′

g(G) is the smallest k such that Alice has a winning strategy. This
parameter has been previously studied by Lam, Shiu and Xu [9], Cai and Zhu [6],
Erdős, Faigle, Hochstättler, and Kern [8], Andres [1], Bartnicki and Grytczuk [2],
and others. Unfortunately, the game chromatic index seems hard to analyze.

This is a variation of the game chromatic number which is analogously defined
for a game where nodes (not edges) are colored. The latter parameter is much
better studied; we refer the reader to Bohman, Frieze, and Sudakov [5] for some
history and references on the game chromatic number.

The trivial bounds on the game chromatic index are

(1) ∆(G) ≤ χ′
g(G) ≤ 2∆(G) − 1,

where ∆(G) denotes the maximal degree of G.
We show that for any µ > 0 there is ǫ > 0 such that any graph G of order n

with ∆(G) ≥ (1
2 + µ)n satisfies

(2) χ′
g(G) ≤ (2 − ǫ)∆(G).

Surprisingly, this is done by letting Alice to play randomly as follows. Fix small
constants σ ≫ c ≫ ǫ depending on µ. Let G be a graph as above and let k =
⌊(2 − ǫ)∆(G)⌋. Suppose that Bob colored an edge {x, y} in the previous move.
With probability σ, Alice picks a random u ∈ {x, y} and then a random uncolored
edge containing u. With probability 1 − σ, Alice picks a random uncolored edge
in the whole graph. Having selected an edge e (either way), Alice uses a color,
chosen uniformly at random from the set of colors currently available for e. We
show that with probability 1 − o(1) as n → ∞, every two vertices of G share at
least ǫ∆(G) common colors after the first cn2 rounds of the game. If this is so,
then every edge e gets eventually colored (and Alice wins) because the number of
colors forbidden at e cannot be larger than 2(∆(G) − 1) − ǫd.

While probabilistic intuition and reasoning often help in the analysis of posi-
tional games, see e.g. Beck [3], there are not many examples where non-trivial
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results are obtained by actually introducing randomness into a player’s strat-
egy. Such examples were discovered by Spencer [11], Bednarska and  Luczak [4],
Pluhár [10], and some others. Our proof of the upper bound fits into this category.

We make the following conjecture.

Conjecture 1. There is ǫ > 0 such that for an arbitrary non-empty graph G we
have χ′

g(G) ≤ (2 − ǫ)∆(G).

Also, we construct, for every sufficiently large d, an example of a graph G with
∆(G) ≤ d and χ′

g(G) ≥ 1.003d. This answers in the negative a question posed by
Lam, Shiu and Xu [9, Question 1], who asked whether there is a constant C such
that χ′

g(G) ≤ ∆(G) + C for an arbitrary graph G.
On the other hand, the lower bound in (1) is attainable for some graphs. A

trivial example is G = K1,d. However, we believe that the large minimal degree
δ(G) will force χ′

g(G) to be well above δ(G). Namely, we make the following
conjecture.

Conjecture 2. There are ǫ > 0 and d0 such that any graph G with δ(G) ≥ d0

satisfies χ′
g(G) ≥ (1 + ǫ)δ(G).
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On Chooser-Picker Positional Games

András Pluhár

(joint work with András Csernenszky, C. Ivett Mándity)

The Positional Games may be defined as follows. Given an arbitrary hypergraph
F = (V,F), the first and second players take elements of V in turns. The player,
who takes all elements of an edge A ∈ F first wins the game. Easy to see that
tic-tac-toe, 5-in-a-row, Qubic, y-game etc fit into that framework.

In the Maker-Breaker version of a game Maker wins by taking all elements of
an A ∈ F , while Breaker wins otherwise. A wellknown example is the game of
hex.

Note that if Breaker wins (as a second player) then the original game is a draw,
while if the first player wins the original game then Maker wins the Maker-Breaker
version. See the detailed theory and further examples in [3, 2, 6, 7].

In order to understand the very hard clique games, Beck introduced the Picker-
Chooser and the Chooser-Picker version of Maker-Breaker games in [1].

In these versions Picker takes an unselected pair of elements and Chooser keeps
one of these elements and gives back the other to Picker. In the Picker-Chooser
version Picker is Maker and Chooser is Breaker, while the roles are swapped in
the Chooser-Picker version. When |V | is odd, the last element goes to Chooser.
Beck demonstrates in several cases that Picker may win easily the Picker-Chooser
game if Maker wins the corresponding Maker-Breaker game. He also notices that,
considering the same hypergraph, Picker has more control than Maker.

Something similar must hold for Chooser-Picker games, since Picker has seem
to have an easier job in the Chooser-Picker version than Breaker has in the cor-
responding Maker-Breaker game. The other reason of such belief is that one can
always consider (V,F∗), the transversal hypergraph of (V,F). That is F∗ contains
those minimal sets B ⊂ V such that for all A ∈ F , A∩B 6= ∅. Note that Breaker as
a first (second) player wins the Maker-Breaker (V,F) iff Maker as a first (second)
player wins the Maker-Breaker (V,F∗).

We refer to both of these paradigms as Beck’s conjecture:

Conjecture 1. Picker wins a Picker-Chooser (Chooser-Picker) game on (V,F) if
Maker (Breaker) as a second player wins the corresponding Maker-Breaker game.

We prove Conjecture 1 for the Picker-Chooser version of Shannon’s switching
game in the generalized version as Lehman did in [8]. Let (V,F) be a matroid,
where F is the set of bases, and Picker wins by taking an A ∈ F . Note that the
Chooser-Picker version of that game would mention the cutsets, the transversals
of the bases.

Theorem 2. Let F be collection of the bases of a matroid on V . Picker wins the
Picker-Chooser (V,F) game, if and only if there are A, B ∈ F such that A∩B = ∅.

The Erdős-Selfridge theorem gives a very useful condition for Breaker’s win in
a Maker-Breaker (V,F) game, see [5].
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Theorem 3 (Erdős-Selfridge [5]). Breaker as the second player has a winning
strategy in the Maker-Breaker (V,F) game when

∑

A∈F 2−|A| < 1/2.

Using a stronger condition, Beck proves Picker’s win in a Chooser-Picker (V,F)
game, see [1]. Let ||F|| = maxA∈F |A| be the rank of the hypergraph (V,F).

Theorem 4. Picker wins the Chooser-Picker game on the hypergraph (V,F) if
∑

A∈F 2−|A| <
{

8(||F|| + 1)
}−1

.

We improve on his result by showing:

Theorem 5. Picker wins the Chooser-Picker game on the hypergraph (V,F) if
∑

A∈F 2−|A| <
{

e
√

π(||F|| + 1)
}−1

.

Chooser-Picker games may be played on an infinite hypergraph (V,F), too. In
that case Chooser selects a finite sub-hypergraph of (V,F) first, then the game
proceeds as before. We show that Picker wins the Chooser-Picker version of the
game 8-in-a-row by modifying the method of [6]. The key element in such proofs
is the monotonicity of these games. It formalizes as follows:

Given the hypergraph (V,F) let (V \ X,F(X)) denote the hypergraph where
F(X) = {A ∈ F , A ∩ X = ∅}.

Lemma 6. If Picker wins the Chooser-Picker game on (V,F), then Picker also
wins it on (V \ X,F(X)).
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The 7-in-a-row game

András Pluhár

(joint work with András Csernenszky)

The board of the classical 5-in-a-row game is a graph paper or the 19 × 19 Go
board, and the players goal is to get k squares in a row vertically, horizontally or
diagonally first.

Theoretically the board might be the infinite square grid, and the generalization
k-in-a-row is considered. In that case the number of required squares is k ∈ N.

A delicate case study by Allis shows that the first player wins for k = 5 on the
19 × 19 or even on the 15 × 15 board, see [1].

By the strategy stealing argument the first player wins or achieves a draw for
any k ∈ N. Moreover the first player wins if k ≤ 4, and the game is a blocking
draw if k ≥ 9, Shannon and Pollak, see e. g. [3, 4], and even for k = 8, T. G. L.
Zetters, see [6]. While the k = 5 is still open on the infinite board, Allis’ result
implies that Maker wins for k = 5 in the Maker-Breaker version. Besides this, the
open cases left in k-in-a-row are k = 6, 7.

Here we announce that Breaker wins the Maker-Breaker version of the 7-in-a-
row game, consequently the original 7-in-a-row game is a draw.

Theorem 1. The 7-in-a-row game is a blocking draw.

The proof consists of two parts, and follows the ideas that Shannon and Pollak
used for the case k = 9, see [4], or T. G. L. Zetters for the case k = 8, see [6]. The
plane is tiled with 4 × 8 rectangles; if T is the base rectangle, all the other are in
the form T + iu + jv, where u = (8, 0), v = (4, 4) vectors and i, j ∈ Z.
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The winning sets of a tile

The tesselation of the plane

It is easy to see that if Breaker wins in every sub-board, then he wins on the
whole plane. It is far from obvious though that Breaker can win on T . The proof
of this relies on brute force computer search.
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According to Beck’s conjecture, see [2, 5] one would expect that the Chooser-
Picker version of the 7-in-a-row game is a Picker win. See the definition and the
monotonicity property in [5]. Indeed, this is the case.

Theorem 2. Picker wins the Chooser-Picker version of the 7-in-a-row game.

The proof in this case is a medium size case study, since because of the mono-
tonicity it is enough to prove the claim for T . The following observation is also a
great help.

Observation. In a Chooser-Picker game if a winning line contain no elements
of Picker, and has only two unclaimed elements, x, y then Picker has an optimal
strategy that starts with picking the set {x, y}.
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Online Ramsey games in random graphs

Reto Spöhel

(joint work with Martin Marciniszyn, Angelika Steger)

1. Online vertex colorings

Consider the following one-player game: The vertices of a random graph Gn,p

are revealed one by one to a player called Painter, along with all edges induced
by the vertices revealed so far. The player has to assign one of r available colors
to each vertex immediately, without creating a monochromatic copy of some fixed
graph F . For which values of p can the player asymptotically almost surely (a.a.s.)
color the entire random graph Gn,p? We say that p0(n) is a threshold for this game
if there is a strategy such that the player a.a.s. succeeds if p ≪ p0, but a.a.s. fails
with any strategy if p ≫ p0.

In [6] we proved an explicit threshold function p0 = p0(F, r, n) for a large family
of graphs F including cliques and cycles of arbitrary size, and an arbitrary number
r of colors. For any graph F , let

(1) m1(F ) := max
H⊆F

eH

vH − 1
.
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Moreover, let

m1
1(F ) := max

H⊆F

eH

vH
,

and for r ≥ 2,

(2) mr
1(F ) := max

H⊆F

eH + mr−1
1 (F )

vH
.

With these definitions at hand, the result from [6] reads

Theorem 1.1. Let F be a nonempty graph that has an induced subgraph F ◦ ⊂ F
on vF − 1 vertices satisfying

m1(F ◦) ≤ m2
1(F ) .

Then for all r ≥ 1, the threshold for the online vertex-coloring game with respect
to F and with r available colors is

p0(F, r, n) = n−1/mr
1(F ) .

The side condition m1(F ◦) ≤ m2
1(F ) is required by our approach to show that

n−1/mr
1(F ) is an upper bound for the online vertex-coloring game. As a lower

bound, we prove this formula in full generality.
There are obvious lower and upper bounds for the threshold of the online vertex-

coloring game. Clearly, Painter cannot lose the game if the underlying random
graph contains no copy of F . The following well-known theorem of Bollobás, which
is a generalization of a result of Erdős and Rényi [2] to arbitrary graphs F , states
a threshold for this event.

Theorem 1.2 ([1]). Let F be a nonempty graph, and let P =‘G contains a copy
of F ’. Then

lim
n→∞

P[Gn,p ∈ P ] =

{

1 if p ≫ n−1/m(F )

0 if p ≪ n−1/m(F )
,

where

m(F ) := max
H⊆F

eH

vH
.

Thus, for p ≪ n−1/m(F ) there is a.a.s. no copy of F in Gn,p, and finding a
proper vertex-coloring is trivial. In fact, the case r = 1 of Theorem 1.1 is a mere
reformulation of Theorem 1.2.

More interesting is the connection to the obvious upper bound for the duration
of the game. Obviously, knowing the entire graph in advance would ease Painter’s
situation. An upper bound for the online game thus follows from a result of  Luczak,
Ruciński, and Voigt about offline Ramsey properties of random graphs.
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Theorem 1.3 ([4]). Let r ≥ 2 and F be a nonempty graph that in the case r = 2
is not a matching. Moreover, let P =‘every r-vertex-coloring of G contains a
monochromatic copy of F ’. Then there exist positive constants c = c(F, r) and
C = C(F, r) such that

lim
n→∞

P[Gn,p ∈ P ] =

{

1 if p > Cn−1/m1(F )

0 if p < cn−1/m1(F )
,

where m1(F ) is defined as in (1).

Hence, there is no hope of finding an r-vertex-coloring avoiding a monochro-
matic copy of F whenever p ≫ n−1/m1(F ). Since the parameter mr

1(F ) is strictly
increasing in r and satisfies

lim
r→∞

mr
1(F ) = m1(F ) ,

the online threshold depends on the number of colors r, in contrast to Theorem 1.3,
and approaches the offline threshold as the number of colors grows.

2. Online edge colorings

Online Ramsey games in random graphs were first considered for edge-colorings.
Investigating algorithmic Ramsey properties of triangles, Friedgut et al. introduced
and solved the online edge-coloring game with respect to triangles and with two
available colors in [3]. In [7, 8], we extended this to a a result analogous to Theorem
1.1, but only covering the case of two colors.

Similarly to (1), let for every nonempty graph F on at least three vertices

m2(F ) := max
H⊂F

eH − 1

vH − 2
.

This density measure replaces m1 in the edge-coloring analogon of Theorem 1.3,
which is due to Rödl and Ruciński [9, 10].

Similarly to (2), we define

m1
2(F ) := m(F ) ,

and for r ≥ 2,

mr
2(F ) := max

H⊆F

eH

vH − 2 + 1/mr−1
2 (F )

.

Theorem 2.1. Let F be a graph that is not a forest, and that has a subgraph F− ⊆
F with eF − 1 edges satisfying

m2(F−) ≤ m2
2(F ) .

Then the threshold for the online edge-coloring game with respect to F and with
two available colors is

p0(F, n) = n−1/m2
2(F ) .

As in the vertex case, the side condition m2(F−) ≤ m2
2(F ) stems from our

approach for the upper bound. In fact, we can prove a lower bound of n−1/mr
2(F )

in full generality for all non-forests F and an arbitrary number of colors r.
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3. Concluding remarks and open questions

• The generalization of Theorem 2.1 to an arbitrary number r ≥ 2 of colors
remains as a challenging open problem.

• Very recently, we found a graph F and a strategy which shows that our

lower bound of n−1/m2
1(F ) for the vertex-coloring game is not tight in

general. This means that the side condition m1(F ◦) ≤ m2
1(F ) is more

than just an artifact of our proof method, and that the parameter mr
1(F )

does not define a general threshold formula, as one might conjecture.
• In the edge-coloring game, the lower bound given by mr

2(F ) does not hold
for forests. For F a tree, our methods yield a general lower bound which
depends on the size of a minimum vertex cover of F . For some small
examples, we were able to establish a matching upper bound by ad hoc
methods, but in general it remains open whether our formula yields the
correct threshold.

• The colorings obtained by optimal strategies for the games considered
here are typically very unbalanced. What happens if Painter gets r ver-
tices (edges) in every step and has to use each color for exactly one of
these vertices (edges)? Marciniszyn, Mitsche, and Stojaković gave some
preliminary results for the edge case [5]; we are currently working on the
vertex case.
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Unbiased positional games on random graphs

Miloš Stojaković

(joint work with Dan Hefetz, Michael Krivelevich, Tibor Szabó)

Let p and q be two positive integers, X a finite set, and F ⊆ 2X a hypergraph.
In the positional game (X,F , p, q), two players take turns claiming previously
unclaimed elements of X . In every move, the first player claims p elements, and
then the second player responds by claiming q elements. The set X is called the
“board”, and p and q are the biases of the first and second player, respectively.
For the purposes of this paper F is assumed to be monotone increasing. In a
Maker/Breaker-type positional game, the two players are called Maker and Breaker
and F is referred to as the family of winning sets. Maker wins the game if the
subset of X he claims by the end of the game (that is, when every element of the
board has been claimed by one of the players) is a winning set, that is, an element
of F ; otherwise Breaker wins. Since F is monotone increasing, Maker wins if and
only if he occupies an inclusion-minimal element of F .

The study of positional games on the set of edges of a (complete) graph was
initiated by Lehman [5] who, in particular, proved that Maker can easily win
the (E(Kn), Tn, 1, 1) game, where the family Tn consists of the edge-sets of all
connected and spanning subgraphs of Kn (by “easily” we mean that he can do so
within n − 1 moves, which is clearly optimal). Chvátal and Erdős [4] suggested
to “even out the odds” by giving Breaker more power, that is, by increasing his
bias. They determined that the connectivity game (E(Kn), Tn, 1, b) is won by
Maker even when the bias b of Breaker is as large as cn/ log n, for some small
constant c > 0, whereas for a constant C > 0, Breaker wins the game if his bias
is at least Cn/ log n. They also showed that the (E(Kn),Hn, 1, 1) Hamiltonicity
game, in which Maker’s goal is to build a Hamiltonian cycle (that is, the family
Hn of winning sets consists of the edge-sets of all Hamiltonian subgraphs of Kn),
is won by Maker for sufficiently large n. Moreover, they conjectured that in fact
Maker can win the (E(Kn),Hn, 1, b) game for some b that tends to infinity with
n. This was proved by Bollobás and Papaioannou [2], who showed that Maker
wins Hamiltonicity against a bias of O(log n/ log log n). Finally, Beck [1] gave a
winning strategy for Maker against a bias of O(n/ log n).

Following [7] we give Breaker more power, not by increasing his bias, but by
“thinning out” the board before the game starts. Formally, let (X,H) be a hy-
pergraph and let 0 ≤ p ≤ 1 be a real number. We define (Xp,Hp) to be the
hypergraph whose set of vertices Xp is obtained from X by removing every ver-
tex of X with probability 1 − p, independently for each vertex, and whose set of
hyperedges is Hp = {A ∈ H : A ⊆ Xp}. Note that (Xp,Hp) is actually a prob-
ability space of hypergraphs. Looking at the (Xp,Hp, 1, 1) game, we can discuss
the probability that Maker (Breaker) wins the game.

The threshold probability pFn for the family of games Fn, n ∈ N is defined to be
the probability for which an almost sure Breaker’s win turns into an almost sure
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Maker’s win, that is,

Pr[(Xp, (Fn)p, 1, 1) is a Breaker’s win] → 1 for p = o(pFn),

and

Pr[(Xp, (Fn)p, 1, 1) is a Maker’s win] → 1 for p = ω(pFn),

when n → ∞. Such a threshold pFn exists [3], since being a Maker’s win is an
increasing property.

In [7] the threshold probability for the connectivity game, the perfect matching
game was determined. Moreover, it was proved that the threshold probability for
the Hamiltonicity game satisfies log n

n ≤ pHn ≤ log n√
n

, with the conjecture that

pHn = log n
n . This was verified in [6]. Here we strengthen this result and show that

the the property that Maker wins the Hamiltonicity game has a sharp threshold.

Theorem 1. There exists a constant c′ > 0 such that Maker a.s. wins the (1, 1)

Hamiltonicity game on G(n, log n+(log log n)c′

n ).

This statement is obviously very close to being best possible, as

G(n,
log n + 3 log log n − ω(1)

n
),

where the ω(1) term tends to infinity with n arbitrarily slowly, has at least two
vertices of degree at most three (and thus Breaker easily wins).

For a graph H , let FH be the set of all copies of H in Kn. In the k-clique-game
FKk

Maker’s goal is to build a complete subgraph on k vertices. In [7] the exponent
of the main factor of the threshold-probability pFKk

for the k-clique-game with
constant k was determined. For k ≥ 4 it was found that for every ǫ > 0,

n− 2
k+1−ε ≤ pFKk

≤ n− 2
k+1 .

Here the exponent 2
k+1 is the reciprocal of the so-called 2-density of Kk. The

maximum 2-density of an arbitrary graph H , defined by

m2(H) = max
H′⊆H

v(H′)≥3

e(H) − 1

v(H) − 2
,

is well-known parameter in random graph theory. For example, n−1/m2(G) is the
threshold probability that every edge of the random graph is contained in a copy of
H . Intuitively this means that above this probability the copies of H are “densely
and uniformly distributed” in G(n, p). Then it doesn’t come as a big surprise that
Maker is also able to win the H-game.

Theorem 2. Let H be a graph containing a cycle. There exists a real number

c0 > 0 such that for p > 1
c0

n
− 1

m2(H) Maker wins the H-game FH on G(n, p).

It turns out that the methods from [7] for dealing with the clique game can be
generalized to the H-game. Similarly to the case of cliques Kk for k ≥ 4, for some
graphs H we are able to prove a lower bound for the threshold probability of the
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H-game, which essentially matches the upper bound stated in Theorem 2. Let
dgn(G) = max{δ(G′) : G′ ⊆ G} denote the degeneracy of G.

Theorem 3. Let H be a graph such that m2(H) ≤ dgn(H) − 1
2 . Then for an

arbitrarily small ε > 0 and for p = n
− 1

m2(H)−ε , Breaker a.s. has a winning strategy
for the H-game on G(n, p).

This theorem includes the case of cliques and even more.

Corollary 4. The above theorem is valid for every regular graph H with degree at
least 4.
The above theorem is also valid for all graphs H for which m2(H) − ⌊m2(H)⌋ ∈
(0, 1

2 ].

Note that Theorem 3 is not applicable for H = K3 as m2(K3) = dgn(K3) = 2.
In fact, in[7] it was shown that the K3-game is somewhat of an anomaly in the
sense that Theorem 2 can be strengthened for it. While m2(K3) = 2, still it was

proved in [7] that the threshold probability for the triangle game is n− 5
9 . Observe

that 5
9 > 1

2 = m2(K3)−1.

In [7] it was asked for which graphs H we have pFH = Θ̃
(

n−1/m2(H)
)

and for
which graphs can Theorem 2 be improved.

For an arbitrary tree T 6= K2 we have m2(T ) = 1 and dgn(T ) = 1, which means
that Theorem 3 cannot be applied. We show that Theorem 2 can be improved for
trees.

Theorem 5. Let T 6= K2 be an arbitrary tree. Then there is an ǫ(T ) > 0, such
that Maker wins the game FT on G(n, p) for p = n−1−ǫ(T ).

We obtain relatively precise estimates for the threshold probability in special
tree-games, like the path-game and the star-game. We show that ǫ(Pd) is expo-
nential, while ǫ(Sd) is linear in d. It would be interesting to determine ǫ(T ) more
precisely for other trees.
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Maker-Breaker games on the complete graph

Tibor Szabó

(joint work with Dan Hefetz, Michael Krivelevich)

Positional games involve two players who alternately occupy the elements of a
given set V , the board of the game. The focus of their attention is a given family
F = {e1, . . . , ek} ⊆ 2V of subsets of V , usually called the family of winning sets.
The players exchange turns occupying one previously unoccupied element of V .
The game ends when there are no unoccupied elements of V .

There are several types of positional games depending on how the identity
of the winner is determined. In this talk we restrict our attention to Maker-
Breaker games. In a Maker-Breaker game the first player, called Maker, wins if he
completely occupies one of the winning sets by the end of the game; the second
player, called Breaker, wins otherwise, i.e., if he manages to occupy at least one
element of (i.e., “to break into”) every winning set by the end of the game.

Following Erdős and Chvátal [7] we study games are played on the edge set of
the complete graph Kn, and the winning sets are defined by some graph theoretic
property like connectivity or Hamiltonicity. In the connectivity game Maker wins
if he creates a spanning tree by the end of the game. In the Hamiltonicity game
Maker wins if his graph contains a Hamilton cycle in the end.

It seems that Maker, partly because he has so many (i.e., 1
2

(

n
2

)

) edges by the
end, should be able to win both of these games easily. This is indeed the case; for
the connectivity game the winning strategy is a triviality, for the Hamiltonicity
game it requires a one-page argument [7]. Motivated by the easy success of Maker,
Chvátal and Erdős suggested to make the game more “balanced” by introducing a
bias: at each turn Breaker is allowed to occupy b edges instead of just one, where
b ≥ 1 is an integer. In these games, as well as in other (1 : b) games, the most
natural question is to determine what is the largest bias bF against which Maker
still has a strategy to beat Breaker.

Chvátal and Erdős proved [7] that if b <
(

1
4 − o(1)

)

n
log n then Maker can still

occupy a spanning tree and thus win the connectivity game. They also proved [7]
that the order of magnitude of the bias is best possible. In fact they showed that
if b > (1 + o(1)) n

log n then Breaker can occupy all edges incident to some vertex, so

Maker loses the connectivity game, since his graph is disconnected. Later Beck [1]
improved the constant factor in the result of Chvátal and Erdős and established
that Maker wins the connectivity game even if b < (log 2 − o(1)) n

log n .

For the Hamiltonicity game Chvátal and Erdős conjectured that there is func-
tion bH(n) tending to infinity such that Maker can still build a Hamilton cycle
if he plays against a bias bH(n). Their conjecture was verified by Bollobás and
Papaioannou [6] who proved that Maker is able to build a Hamilton cycle even

if Breaker’s bias is as large as c log n
log log n . Beck improved greatly on this [2] and

established that the order of magnitude of the critical bias is the same for the
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Hamiltonicity game and the connectivity game. He showed that Maker wins the

Hamiltonicity game provided Breaker’s bias is at most
(

log 2
27 − o(1)

)

n
log n .

In this talk we discuss how to improve the constant factor in Beck’s result and
achieve the same lower bound as is known for the connectivity game.

Theorem 1 ([9]). Maker wins the (1 : b) Hamiltonicity game for every b <
(log 2 − o(1)) n

log n .

Our proof technique provides the same lower bound for the critical bias in the
k-connectivity game, where the family Ck of winning sets consists of the edgesets
of k-connected graphs. As far as we know the main term of earlier lower bounds
on bCk

depended on k.

Theorem 2 ([9]). Maker wins the (1 : b) k-connectivity game for every b <
(log 2 − o(1)) n

log n .

The proof of our theorems is based on the combination of our basic “thinning”
trick and the following quasirandom Hamiltonicity criterion derived recently in [8].

Lemma 3 ([8]). Let 12 ≤ d ≤ e
3
√

log n and let G be a graph on n vertices satisfying
properties P1, P2 below:

P1: For every S ⊂ V , if |S| ≤ k1(n, d) := n log log n log d
d log n log log log n then |N(S)| ≥

d|S|;
P2: There is an edge in G between any two disjoint subsets A, B ⊆ V such

that
|A|, |B| ≥ k2(n, d) := n log log n log d

4130 log n log log log n .

Then G is Hamiltonian, for sufficiently large n.

Open problems. The new results unify the known lower bounds for a large family
of games. Denote by bDk

, bCk
, bH, bT the critical biases for the minimum degree k,

k-connectivity, Hamiltonicity and connectivity games, respectively. We now have
that

(log 2 − o(1))
n

log n
≤ b athcalH ≤ bT ≤ bD1 ≤ (1 + o(1))

n

log n

and

(log 2 − o(1))
n

log n
≤ bCk

≤ bDk
≤ bD1 ≤ (1 + o(1))

n

log n
.

Hence the foremost obstacle standing in the way of the asymptotic determination
of the critical bias for the connectivity or Hamiltonicity game is the inability of
our current techniques to deal with the mindegree-1 game. In other words, what is
the smallest bias of Breaker which allows him to isolate a vertex in Maker’s graph?

Problem 4. Determine bD1 asymptotically.

Ever since the paper of Chvátal and Erdős, random graph intuition plays an
important role in the theory of positional games. In the model of random graph
process there is a very strong dependence between, say, the properties of connectiv-
ity and mindegree-1. In an informal language one could say that the main reason
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a random graph is not connected is that there exists an isolated vertex. This mo-
tivates our question whether a similar phenomenon holds in the theory of biased
positional games. We think the answer is yes, i.e., the only reason Maker cannot
win the connectivity game is that Breaker is able to isolate a vertex in Maker’s
graph.

Conjecture 5. For large n
bT = bD1.

We are curious whether one can show anything of this sort without obtaining
the asymptotic value of these critical biases. Other natural questions motivated
by known facts on random graph processes are

• Is it true that bH = bD2?
• Is it true that bCk

= bDk
?
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Avoider-Enforcer games on the complete graph

Tibor Szabó

(joint work with Dan Hefetz, Michael Krivelevich)

In this talk we discuss the misère version of Maker-Breaker games. In an
Avoider-Enforcer game positional game F ⊆ 2X the first player, called Avoider,
wins if he does not occupy completely any of the members of F ; otherwise the
second player, called Enforcer, wins. Although Avoider-Enforcer games appear
naturally in several situation related to Maker-Breaker games, our understanding
of them is much less satisfactory. Avoider-Enforcer versions of graph games often
behave completely differently from their Maker-Breaker counterparts.

The very first surprise comes when one realizes that the Avoider-Enforcer
threshold bias fF of a game F , defined analogously to its Maker-Breaker counter-
part bF , does not necessarily exist! Formally let fF be the integer, such that (i)
the (1 : f)-game is Enforcer’s win for every f ≤ fF and (ii) the (1 : f)-game is
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Avoider’s win for every f > fF . In [2] a hypergraph is constructed, such that in
the (1 : f) Avoider-Enforcer game the identity of the winner alternates depending
on the parity of the bias f of Enforcer, and thus the critical bias does not exist
in a strong sense. For this reason we define the lower threshold bias f−

F as the

largest integer such that the (1 : f)-game is Enforcer’s win for every f ≤ f−
F and

the upper threshold bias f+
F as the smallest integer such that the (1 : f)-game is

Avoider’s win for every f > f+
F .

In terms of lower bounds, it was shown in [2, 4, 6] that for a number of natural
graph games we have fF = O(f−

F ). It would be very interesting to decide whether
this is true in general. In terms of upper bounds we are doing much worse. Often
the only available upper bound on f+

F is the trivial one and in no cases are they
expected to provide the truth.

The second surprise of Avoider-Enforcer games is that the random graph in-
tuition fails badly for such a natural game like connectivity. More precisely, we
showed [2] that in the (1 : b) Avoider-Enforcer connectivity game the critical bias
exists and is linear in n: Avoider wins if and only if the bias of Enforcer is at least
(1 + o(1))n/2. This is in striking contrast with the order n

log n of the critical bias

in the Maker-Breaker connectivity game.
For the game of hamiltonicity, Beck raised the question [1] whether Enforcer,

playing with a bias of order n/ log n, can force Avoider to build a Hamilton cy-
cle. This was analyzed in [2], and an almost affirmative answer, short of only a
log log log n/ log log log log n-factor, was proved. Recently we improved this further
to the conjectured bias.

Theorem 1 ([6]). Enforcer wins the (1 : b) Hamiltonicity game for every

b < (1 − o(1))
n

log n
.

Note that the order of magnitude is the same as for the Maker-Breaker games
— with a better constant. A major difference we have here compared to the
Maker-Breaker counterpart is the complete lack of results from the other direction.
While we know the order of magnitude of the critical bias in the Maker-Breaker
Hamiltonicity game, for Avoider’s win the best available strategy is the trivial one:
Avoider (clearly) wins if he has less then n edges by the end of the game (which
happens for bias b = (1 + o(1))n/2).

Similarly to Maker-Breaker games, our technique carries the bound through to
k-connectivity games.

Theorem 2. Enforcer wins the (1 : b) k-connectivity game for every

b < (1 − o(1))
n

log n
.

The quasirandom Hamiltonicity criterion of [3] makes the proof of these theo-
rems very similar to their Maker-Breaker counterpart: Enforcer will make sure that
Avoider’s graph satisfies properties P1 and P2 for Hamiltonicity. The only major
difference in guaranteeing this is that instead of the generalized Erdős-Selfridge
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criterion “
∑

A∈F 2−|A|/p < 1
2” of Beck for Breaker’s win in the (p : 1)-game, En-

forcer uses criterion “
∑

A∈F

(

1 + 1
p

)−|A|
<

(

1 + 1
p

)−p

.” for Avoider’s win in the

(p : 1)-game (obtained recently in [2] (see also [1])).
Open Problems. Prove that nice games are asymptotically monotone in the bias.

Conjecture 3. Prove that for the perfect matching, the hamiltonicity, the non-
planarity, the non-k-colorability, and the Kk-minor games we have f−

F = Θ(f+
F ).

The following, admittedly modest conjecture could be a first step in this direc-
tion and highlights our lack of understanding of Avoider-Enforcer games.

Conjecture 4. Prove that Avoider has a winning strategy in the (1 : n
10 ) hamil-

tonicity game.

A remedy? A possible approach for making up for the lack of existence of a thresh-
old bias in Avoider-Enforcer games is to relax the rules on how many elements in
one round a player must take. Intuitively, taking more elements than one’s bias is
“bad” for a player in an Avoider-Enforcer game. The monotone Avoider-Enforcer
(a : b)-game is defined by requiring Avoider to take at least a elements in each
round and requiring Enforcer to take at least b elements in each round. Here, the
analogously defined monotone critical bias fmon

F trivially exists for practically all
games F .

Remark. In a Maker-Breaker game it is plausible to assume that taking less
elements than one’s bias is “bad” for a player. This motivates the analogous
definition of monotone Maker-Breaker (a : b)-game, where Maker must take at
most a (and at least one) elements and Breaker must take at most b (and at least
one) elements in each round. Short meditation convinces us that the analogously
defined monotone bias bmon

F always exists and is equal to the strict bias bF .
Hence the monotone Avoider-Enforcer game seems a comfortable remedy for the

non-existence of the critical bias for the original definition; provided the plausible
statement f−

F ≤ fmon
F ≤ f+

F is valid. The third surprise of Avoider-Enforcer games
is that this is not true in general. Even more discouragingly, our example is not
artificial at all. In [5] we show that the connectivity game has monotone threshold
bias in the order n/ log n compared with the strict bias of linear order.

We determine the monotone threshold bias asymptotically for many games, and
find that the random graph intuition is valid even in the constant factor!

Theorem 5 ([5]). For F = H, Ck,Dk, where k is a constant,

fmon
F = (1 + o(1))

n

log n
.
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[3] D. Hefetz, M. Krivelevich and T. Szabó, Hamilton cycles in highly connected and expanding

graphs, submitted.



1110 Oberwolfach Report 20/2007
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Problem session

József Beck: It is easy to see that Picker wins the Picker-Chooser game, played
on a hypergraph H that consists of 2n pairwise disjoint sets of size n each. What
happens when |H| < 2n? What if Picker just wants some surplus?

Dan Hefetz: For the Maker-Breaker (1, k) connectivity game on some graph G,
let c(G, k) = e(G)/(k+1) (more precisely c(G, k) in this case is the number of edges
that Maker will have in the end of the game - when every element of the board is
claimed by some player) if Maker wins the game and c(G, k) = ∞ otherwise. Let
Cn(k) = min c(G, k), where the minimum is extended over all graphs on n vertices.
Is it true that Cn(k) ≤ Cn(k + 1)? What about similarly defined functions for
other Maker-Breaker games?

Angelika Steger: Consider the following one player game. Edges of Kn arrive in
a random order (starting with the empty graph). The player immediately colors
every edge with some color c ∈ {1, . . . , r}. His goal is to avoid a monochromatic
copy of some fixed predetermined graph F for as long as possible. We are looking
for a threshold for the duration of play, that is an N0 = N0(F, r, n) such that if
the number of moves is N ≪ N0, then the player has a strategy for avoiding a
monochromatic copy of F , whereas if N ≫ N0, then no such strategy exists. Does
the threshold N0 exist (this seems plausible, but is only known for r = 1)? When

F is a tree, one can use a simple greedy strategy which gives N0 ≥ n1− 1
er(F ) , where

er(F ) = r(eF − 1) + 1 if F is a star and er(F ) = kr−1
k−1 (eF − 1) + 1, where k is the

size of a minimum vertex cover of F , otherwise. Is this bound tight? That is, is it
a threshold? This is true for some special cases.

See the abstract of the talk by Reto Spöhel for relevant information and open
problems.

Martin Marciniszyn: Consider the following variation of the previous game.
There are two rounds. In the first round, the player colors the edges of G(n, p)
in an off-line fashion. In the second round he colors on-line N additional random
edges. It is known that if p = Ω(n−1/2) and N = ω(1), then the player loses. Is
it true that, for every 0 ≤ α ≤ 1/6, if p = Ω(n−1/2−α) and N = ω(n8α), then the
player loses? Note that if p = cn−1/2−α for some constant c > 0, and N = o(n8α),
then the player has a winning strategy.
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Hal Kirstead:

(1) Let G be a graph. Alice and Bob take turns coloring a vertex of G from
a pool of k colors, such that the obtained partial coloring is proper. Alice
wins if by the end of the game, every vertex of G is colored; otherwise
Bob wins. The minimal k for which Alice has a winning strategy is called
the game chromatic number of G, and is denoted by χg(G). When G is
planar, it is known that 11 ≤ χg(G) ≤ 17. What is the exact value?

(2) Consider the following on-line game. Builder chooses some vertex set and
then, in every turn, he picks some edge such that the graph consisting of
his chosen edges is planar. Painter immediately colors this edge either red
or blue. Painter wins the game iff he is able to avoid a monochromatic
copy of some fixed predetermined graph H . Is it true that Builder wins
the game iff H is outer-planar? It is known that Builder wins the game
for H = K4 \ e. The case H = K4 is open.

József Beck: Maker and Breaker take turns claiming edges of K∞. Maker wins
as soon as he claims all edges of some copy of Kn. Let RM(n) denote the minimal
number of moves Maker needs in order to win. It is known that 2n/2 ≤ RM(n) ≤
c2n for an appropriate constant c. Can we close or reduce the gap between the
lower and upper bounds?

Ohad Feldheim: (extension to the previous problem) Let G be a d-regular graph
on n vertices. It is known that RM(G) ≤ 4dn. Moreover, there are graphs G for
which RM(G) ≥ 2d/2n. Is it true that there exists a constant c > 1 such that
RM(G) ≥ cdn for every d-regular n-vertex graph G?

Miloš Stojaković: Pairs of edges of the complete graph on n vertices arrive in a
random order. The player is required to immediately color one edge red and the
other blue. His goal is to avoid a monochromatic fixed graph H for as long as
possible. The threshold is known for Cℓ, Sℓ, P2, P3, P4; however, generally it is
not even known whether a threshold exists.

József Beck: Consider the following Maker-Breaker game, played on an n × n2

grid. Maker’s goal is to get as much surplus in a row or column as possible.
Trivially, Breaker keep Maker’s surplus at most n by only blocking the rows. Can
we do better? Is the correct answer Θ(

√
n log n)?

András Pluhár: Two players (called Maker and Breaker) play a game (Z,H) in
two stages. In the first stage the players claim elements of Z alternately. This
stage lasts exactly n rounds, where n is some predetermined positive integer. In
the second stage (whose length is not bounded), the players “move” their marks
alternately; that is, if Maker’s marks are X = {x1, . . . , xn} and Breaker’s marks
are Y = {y1, . . . , yn}, then, in every move, Maker can lift one of his marks xi ∈ X
and replace it with some z ∈ (Z \ (X ∪ Y )) ∪ {xi}; Breaker plays analogously.
Maker wins if he claims all elements of some A ∈ H, otherwise Breaker wins. It is
easy to see that if Breaker has a pairing strategy for the Maker-Breaker game
(Z,H), then he has a winning strategy for the recycled game as well. What if we
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just know that Breaker has a winning strategy? What if his win is guaranteed by
the Erdős-Selfridge Theorem? The answer is known in some special cases.

József Beck: In the n-in-a-line Kaplansky game two players take turns picking
unclaimed elements of Z

2. The first player to claim n points on some line which
is opponent free is the winner. Is 4-in-a-line Kaplansky game a draw?

Reporter: Dan Hefetz
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