
Mathematisches Forschungsinstitut Oberwolfach

Report No. 21/2007

Diophantische Approximationen

Organised by
Yuri V. Nesterenko (Moscow)

Hans-Peter Schlickewei (Marburg)

April 15th – April 21st, 2007

Abstract. This Number Theoretic conference was focused on the follow-
ing subjects: the Subspace Theorem and its ramifications and applications,
heights of subvarieties of group varieties, effective methods for solution of
diophantine equations, geometry of numbers, arithmetic properties of zeta-
values and other numbers.

Mathematics Subject Classification (2000): 11-06.

Introduction by the Organisers

The workshop Diophantische Approximationen (Diophantine approximations), or-
ganised by Yuri V. Nesterenko (Moscow) and Hans-Peter Schlickewei (Marburg)
was held April 15th - April 21st, 2007. This meeting was well attended with over
40 participants with broad geographic representation. This workshop was a nice
blend of researchers with various backgrounds. All the participants were inspired
by the fact that the conference immediately followed the 300 anniversary of Euler
birth (15.04.1707).

Loosely speaking Diophantine approximation is a branch of Number Theory
that can be described as a study of the solvability of inequalities in integers, though
this main theme of the subject is often unbelievably generalized. As an example,
one can be interested in properties of rational points of algebraic varieties defined
over an algebraic number field. The conference was concerned with a variety of
problems of this kind. Below we briefly recall some of the results presented at
this conference, thus outlining some modern lines of investigation in Diophantine
approximation. More details can be found in the corresponding abstracts.

The classical Subspace Theorem claims that all integer solutions x ∈ Zn of a
special system of linear inequalities with algebraic coefficients belong to a finite
number of linear subspaces of Rn. This theorem proved by W.Schmidt in 70-th
of 20-th century is a far reaching generalization of the famous theorem of Roth
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about approximation of algebraic numbers by rationals. Subsequently Schmidt
gave an estimate for the number of such subspaces. This result was improved and
extended by H.P. Schlickewei and J.H. Evertse. Another approach to the proof of
Schmidt’s theorem was proposed by G. Faltings and G. Wüstholz. In the joint talk
of J.H. Evertse and R. Ferretti the upper bound for the number of the subspaces
in question was significantly improved by combining ideas of Schmidt, Faltings
and Wüstholz.

Results of this kind have many applications. For example Y. Bugeaud in his
talk announced joint with J.H. Evertse theorem that for any real algebraic number
ξ and any integer b > 1 the number of distinct blocks of n letters occurring in the
b-ary expansion of ξ asymptotically exceed n(logn)η for any positive η < 1/14.
Another example is connected to the classical theorem of Siegel about integer
points on curves of genus g ≥ 1. In the survey talk of Yu. Bilu another proof of this
theorem based on quantitative version of Subspace Theorem was presented. This
proof belongs to P. Corvaja and U. Zannier (2002) who applied their arguments
to integral points on surfaces. Corresponding results were presented in the talk of
Bilu the same as more precise statement of A. Levin and P. Autissier.

Talks of P. Habegger, A. Galateau were devoted to the problem of lower bounds
of heights on subvarieties of group varieties that is analogous to the classical
Lehmer problem. Earlier works in this direction belong to E. Bombieri, D. Masser,
U. Zannier, F. Amoroso, S. David and P. Philippon.

P. Mihailescu discussed in his talk so called Fermat-Catalan equation. In partic-
ular he gave some sufficient conditions on prime numbers p, q providing existence
only trivial rational solutions for the equation xp + yq = 1. The methods used by
Mihailescu have a cyclotomic nature and they combine class field conditions with
some new approximation techniques.

The well-known Khintchine Transference Principle relates the measure of simul-
taneous rational approximation of the real numbers θ1, . . . , θn with the measure of
linear independence over Q of the numbers 1, θ1, . . . , θn. M. Laurent introduced
in his talk exponents which measure the sharping of the approximation to the
point Θ = (θ1, . . . , θn) by rational linear varieties of dimension d for every inte-
ger d, 0 ≤ d < n, and proved some inequalities connecting these exponents. The
Khintchine’s inequality follows as a special case. Another kind of transference
ideas were used in the joint talk of V. Beresnevich and S. Vilani to state some
metric Diophantine approximation results. The transference lemma in functional
domain directed to applications in multiplicity estimates and algebraic indepen-
dence theory was reported by P. Philippon.

The determination of the arithmetic nature of values of the Riemann zeta func-
tion ζ(s) at odd values s ∈ Z, s > 3, is one of the most challenging problems in
number theory. After Apery’s celebrated proof of the irrationality of ζ(3), it took
over twenty years until T. Rivoal proved that there are infinitely many numbers
among ζ(3), ζ(5), ζ(7), . . . that are linearly independent over Q and W. Zudilin
stated that at least one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational number. The dif-
ficulties are connected to constructions of good rational approximations to the
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corresponding values of zeta function. All known constructions have a hyperge-
ometric nature. In a joint talk C. Krattenthaler and T. Rivoal gave a survey of
recent constructions and explained the proof of so called Denominator conjecture
that is based on some identities between a very-well-poised hypergeometric series
and a multiple sum due to G. Andrews. Some constructions of approximations
to zeta-values with multiple real integrals were discussed in the talk of C. Viola.
T. Rivoal presented a new proof of the irrationality of ζ(3) that uses the expansion
of the Hurwitz zeta function in interpolation series of rational functions. Such an
interpolation process was first studied by Rene Lagrange in 1935.

The arithmetic properties of values of the Tschakaloff function Tq(z) have been
investigated in many works. One of the open problems is to prove linear indepen-
dence of values of Tq(z) for rational z with different values of the parameter q.
In the joint talk of W. Zudilin and K. Väänänen some results of this kind were
presented.

In 2005 C. Fuchs and A. Dujella gave a negative answer on the question of Euler
about existence of four positive integers with the property that the product of any
two of them plus sum of multipliers is a perfect square. In his lecture C. Fuchs
discussed analogous question for any four integer numbers. The new result of
A. Dujella, A. Filipin and C. Fuchs is the finiteness of the number of quadruples
satisfying this condition. Moreover an effective bound for the size of the integers
was proved. A. Dujella in his talk discussed another analogous problem: to find
a set of positive distinct integers S such that for any pair x, y ∈ S the number
xy+1 is a square. The set S = {1, 3, 8, 120}was found by Fermat. It is proved that
#S ≤ 5 and there exists not more than finitely many sets with 5 elements. But no
example has ever been found. These problems are connected to lower bounds for
linear forms in logarithms of algebraic numbers. Diophantine equations of another
type were discussed in the talk of M. Bennett.

B. Adamczewski surveyed some results connected to some problem of Mahler
and Mendés France involving tools from automata theory, combinatorics on words
and Diophantine approximation.

Another excellent survey of results and open questions connected to Hilbert’s
tenth problem about universal algorithm for solution of Diophantine equations was
given by Yu. Matiyasevich.
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Abstracts

On the quantitative subspace theorem

Jan-Hendrik Evertse

(joint work with Roberto Ferretti)

Below, we fix some algebraic closure Q of Q, and choose extensions of the ab-
solute values | · |p (p ∈ MQ = {∞} ∪ {prime numbers}) to Q. The norm of
x = (x1, . . . , xn) ∈ Cn is defined by ‖x‖ = max(|x1|, . . . , |xn|). The (inhomoge-
neous) height H∗(L) of a linear form L(X) =

∑n
i=1 αiXi with coefficients in Q is

defined to be the absolute (multiplicative) Weil height of the vector (1, α1, . . . , αn).
Further we define the field Q(L) := Q(α1, . . . , αn).

Let S be a finite subset of MQ, n ≥ 2 an integer, δ > 0 a real, and for p ∈ S let

L1p(X), . . . , Lnp(X) be linearly independent linear forms from Q[X1, . . . , Xn]. In
general, in the Subspace Theorem one considers inequalities of the shape

∏

v∈S

n∏

i=1

|Lip(x)|p ≤ ‖x‖−δ in x ∈ Zn .

By an elementary combinatorial argument, originating from Mahler, one can re-
duce this to a finite number of systems of inequalities of the shape

(1) |Lip(x)|p ≤ Cp‖x‖cip (p ∈ S, i = 1, . . . , n) in x ∈ Zn ,

where the numbers Cp are positive constants, and where
∑

p∈S

∑n
i=1 cip < 0.

Schmidt [4] was the first to obtain a quantitative version of the Subspace The-
orem. After various improvements and extensions, Schlickewei and the author [2]
obtained the following refinement.

Put ε∞ = 1 and εp = 0 if p is a prime. Assume that

H∗(Lip) ≤ H, [Q(Lip) : Q] ≤ D for p ∈ S, i = 1, . . . , n;

#
⋃

p∈S

{L1p, . . . , Lnp} ≤ R;

cip ≤ εp for p ∈ S, i = 1, . . . , n;
∑

p∈S

n∑

i=1

cip = −δ with 0 < δ ≤ 1;

∏

p∈S

Cp =
(∏

p∈S

| det(L1p, . . . , Lnp)|p
)1/n

.

Then the set of solutions x ∈ Zn of (1) with ‖x‖ ≥ max(H,n2n/δ) is contained in
the union of at most

8(n+8)2δ−n−4 log(4DR) log log(4DR)

proper linear subspaces of Qn.
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Throughout this note, we keep the notation and assumptions from above. Then
this result can be improved as follows.

Theorem 1. (Ferretti, E.) (i) The set of solutions x ∈ Zn of (1) with ‖x‖ ≥
max(H,n2n/δ) is contained in the union of at most

A := 22n(10n)20δ−3 log(2δ−1) log(4DR) log log(4DR)

proper linear subspaces of Qn.

(ii) The set of solutions x ∈ Zn of (1) with ‖x‖ < max(H,n2n/δ) is contained in
the union of at most

B := 103nδ−1 log(2δ−1) log log(4H)

proper linear subspaces of Qn.

In 1994, Faltings and Wüstholz [3] proved the following refinement of the Subspace
Theorem, which was in turn an extension of results by Vojta [6] and Schmidt [5]:

There is a unique, effectively determinable proper linear subspace T of Qn such
that (1) has only finitely many solutions outside T . Furthermore, T can be chosen
from a finite collection, which depends only on the linear forms Lip (p ∈ S, i =
1, . . . , n), and is independent of the constants Cp and the exponents cip.

It seems hopeless to estimate the number of solutions of (1) outside T , but it
is possible to prove the following refinement:

Theorem 2. (Ferretti, E.) There is a sequence of reals Q1 < Q2 < · · · <
Q[A]−1 (where A is the quantity from Theorem 1), such that for every solution

x ∈ Zn we have either ‖x‖ < max(H,n2n/δ) or ‖x‖ ∈ [Qi, Q
1+δ/2n
i ] for some

i ∈ {1, . . . , [A] − 1}.

Theorem 1 can be deduced by combining Theorem 2 with the following Gap
Principle which is based on Lemma 5 of [1].

Gap Principle. Let Q be a real with Q ≥ 3. Then the set of solutions x ∈ Zn

of (1) with Q ≤ ‖x‖ ≤ Q(1+δ/2n) is contained in a single proper linear subspace of

Qn if Q ≥ n2n/δ, and in the union of at most 102n
√

2n proper linear subspaces of
Qn if Q < n2n/δ.

Schmidt’s original proof of the Subspace Theorem depends upon Roth’s Lemma
and geometry of numbers. His approach was followed by Schlickewei and the
author in their proof of the quantitative Subspace Theorem mentioned above. In
1994, Faltings and Wüstholz gave an entirely new proof of the Subspace Theorem,
which uses instead of Roth’s Lemma the more general Faltings’ Product Theorem,
but which avoids geometry of numbers. The method of Faltings and Wüstholz
lends itself also to a quantification of the Subspace Theorem, but it leads to a
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bound much larger than those mentioned above. The hard core of the proofs of our
Theorems 1 and 2 is again Schmidt’s method, but we combined this with certain
ideas of Faltings and Wüstholz; in particular in our Diophantine approximation
argument we used the auxiliary polynomial of Faltings and Wüstholz instead of
Schmidt’s.

We mention here that part (i) of Theorem 1 and Theorem 2 can be generalized

to the setting of twisted heights on Q
n

like in Theorem 2.1 of [2]; in particular it
is possible to obtain an improvement of that Theorem 2.1 similar to part (i) of
Theorem 1 mentioned above.
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Around Roth’s Theorem

Yann Bugeaud

In 1955, Roth [7] established that, like almost all real numbers (in the sense of
the Lebesgue measure), the algebraic irrational numbers cannot be approximated
by rationals at an order greater than 2. As pointed out by Mahler in Appendix B
of [5], Roth’s Theorem suggests the following problem.

Problem. Let ξ be an irrational, algebraic real number. To find a positive
function q 7→ ε(q) of the integral variable q, with the property limq→+∞ ε(q) =
0, such that there are at most finitely many distinct rational numbers p/q with
positive denominator for which

∣∣∣∣ξ −
p

q

∣∣∣∣ <
1

q2+ε(q)
·

As written by Mahler, ‘the method of Roth does not seem strong enough for
solving this problem’; however, a weaker result was found by Cugiani [3] in 1958.

Theorem (Cugiani, 1958). Let ξ be a real algebraic number of degree d. For
an integer q ≥ 16, set

ε(q) = 9d (log log log q)−1/2.
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Let (pj/qj)j≥1 be the sequence of reduced rational solutions of
∣∣∣∣ξ −

p

q

∣∣∣∣ <
1

q2+ε(q)
,

ordered such that 16 ≤ q1 < q2 < . . . Then either the sequence (pj/qj)j≥1 is finite,
or

lim sup
j→+∞

log qj+1

log qj
= +∞.

The above theorem was subsequently generalized by Cugiani and Mahler [5] to
include non-Archimedean valuations, and is now referred to as the Cugiani–Mahler
Theorem.

At the end of the 60’s, multidimensional extensions of Roth’s Theorem were
established by W. M. Schmidt [8]. However, no multidimensional analogue of the
Cugiani–Mahler Theorem has been published yet. One of our purposes is precisely
to establish such a statement, thanks to a new approach for proving the Cugiani–
Mahler Theorem.

For a positive real number η and for irrational numbers ξ1, . . . , ξn, we say that
the positive integer q corresponds to a primitive solution of

q · ‖qξ1‖ · · · ‖qξn‖ < η

if, denoting by pj the nearest integer to qξj for j = 1, . . . , n, the (n + 1)-tuple
(q, p1, . . . , pn) is primitive, that is, if the greatest common divisor of q, p1, . . . , pn

is equal to 1.

Theorem 1. Let n be a positive integer and ξ1, . . . , ξn be real algebraic numbers
such that 1, ξ1, . . . , ξn are linearly independent over the rationals. Let ε : Z≥1 →
R>0 be a non-increasing function satisfying

lim
q→+∞

ε(q) · (log log q)1/(2n+6) = +∞.

Let (qj)j≥1 be the sequence of positive integers corresponding to primitive solutions
of

q · ‖qξ1‖ · · · ‖qξn‖ < q−ε(q),

ordered such that 1 ≤ q1 < q2 < . . . If this sequence is infinite, then

lim sup
j→+∞

log qj+1

log qj
= +∞.

Theorem 2. Let n be a positive integer and ξ be a real algebraic number of
degree greater than n. Let ε : Z≥1 → R>0 be a non-increasing function satisfying

lim
H→+∞

ε(H) · (log logH)1/(2n+6) = +∞.

Let (αj)j≥1 be the sequence of distinct algebraic numbers of degree at most n with

|ξ − α| < H(α)−n−1−ε(H(α)),



Diophantische Approximationen 1127

ordered such that 1 ≤ H(α1) ≤ H(α2) ≤ . . . Then either this sequence is finite or

lim sup
j→+∞

logH(αj+1)

logH(αj)
= +∞.

In addition, we would like to point out another important application of our
method, dealing with the complexity of irrational, algebraic numbers.

Let b ≥ 2 be an integer and ξ be a real number with 0 < ξ < 1. There exists a
unique infinite sequence a = (aj)j≥1 of integers from {0, 1, . . . , b − 1}, called the
b-ary expansion of ξ, such that

ξ =
∑

j≥1

aj

bj
,

and a does not terminate in an infinite string of 0. For n ≥ 1, let p(n, ξ, b) = p(n, a)
be the number of distinct blocks of n letters occurring in the infinite word a.

Assume from now on that ξ is algebraic and irrational. In 1997, Ferenczi and
Mauduit [4] applied a non-Archimedean extension of Roth’s Theorem established
by Ridout [6] to show that

lim
n→+∞

(
p(n, ξ, b) − n

)
= +∞.

Then, a new combinatorial transcendence criterion proved with the help of
the Schmidt Subspace Theorem by Adamczewski, Bugeaud, and Luca [2] enabled
Adamczewski and Bugeaud [1] to establish that

lim
n→+∞

p(n, ξ, b)

n
= +∞.

By combining a similar extension of the Cugiani–Mahler Theorem with a care-
ful use of the quantitative Subspace Theorem, in a joint work with Jan-Hendrik
Evertse, we are able to improve the above result as follows.

Theorem 3. Let b ≥ 2 be an integer and ξ be an algebraic irrational number
with 0 < ξ < 1. Then, for any positive real number η such that η < 1/14, we have

lim
n→+∞

p(n, ξ, b)

n(logn)η
= +∞.
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Siegel’s Theorem on Surfaces (after Levin and Autissier)

Yuri Bilu

We discuss the beautiful theorem of Levin and Autissier: an affine surface with 4
(or more) properly intersecting ample divisors at infinity cannot have a Zariski
dense set of integral points.

1. Integral Points on Curves

Let C̄ be an absolutely irreducible projective curve defined over a number
field K and let C be an affine subset of C̄ embedded into the affine space Aν .
Further, let S be a finite set of absolute values of K, including all archimedean
absolute values, and let OS be the ring of S-integers of K. Siegel’s classical the-
orem (in the more general form due to Mahler and Lang) asserts that C has at
most finitely many points in Aν(OS) if g(C̄) ≥ 1 or if

∣∣C̄ \ C
∣∣ ≥ 3.

Of course, one should mention the celebrated result of Faltings, who proved
that the set of rational points on a projective curve of genus 2 or higher is finite.
We do not discuss Faltings’ work here.

The conventional proof of Siegel’s theorem relies on the Theorem of Roth1 and
heavily depends on the existence of the Jacobian embedding C̄ →֒ J(C̄), because
it exploits high degree étale coverings of C̄.

Recently Corvaja and Zannier [2] suggested a beautiful new proof, based on the
Subspace Theorem of Schmidt and Schlickewei rather than the Theorem of Roth,
and using projective rather than Jacobian embeddings.

Corvaja and Zannier prove the following theorem.

Theorem 1.1. In the above set-up assume that
∣∣C̄ \ C

∣∣ ≥ 3. Then C has at most
finitely many points in Aν(OS).

Siegel’s theorem easily follows from Theorem 1.1. Indeed, if g(C̄) ≥ 1 then
there is an étale covering C̄′ → C̄ of degree 3. It induces the covering of affine
curves C′ → C, and we have

∣∣C̄′ \ C′
∣∣ ≥ 3.

By the Chevalley-Weil principle, the set C̄(K) is covered by C̄′(K ′), where K ′

is a number field. Theorem 1.1 implies that the set of OS′-integral points on C′

is finite (where S′ is the extension of S to K ′). Hence so is the set of S-integral
points on C.

1At the time of Siegel Roth’s theorem was not available, and Siegel had to use a weaker
statement.
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Proof of Theorem 1.1. Write C̄ \ C = {Q1, . . . , Qr}, where, by the assumption,
r ≥ 3. Extending the field K, we may assume that each of the points Q1, . . . , Qr

is defined over K. Further, let D = Q1 + · · · +Qr be the “divisor at infinity”.
Let n be a (big) positive integer, to be specified later. By the Riemann-Roch

theorem, the dimension ℓ = ℓ(nD) of the vector space

L = L(nD) = {y ∈ K(C) : (y) + nD ≥ 0}
is given by ℓ = nr −O(1). In particular, for big n we have ℓ ∼ nr.

Pick a basis y1, . . . , yℓ of L. Multiplying each yj by a suitable non-zero constant,
we may assume that for every S-integral point P we have yj(P ) ∈ OS .

Now let P1, P2, P3, . . . be an infinite sequence of distinct S-integral points. Re-
placing it by a subsequence, we may assume that the sequence (Pi) converges in
v-adic topology for every v ∈ S, and we denote by Qv the corresponding limits.
Now we partition our set S as S = S0 ∪ S1, letting S1 consist of v ∈ S such that
Qv ∈ C̄ \ C and S0 of those v for which Qv ∈ C. We have |yj(Pi)|v ≪ 1 if v ∈ S0

and |yj(Pi)|v ≪ |tv(Pi)|−n
v if v ∈ S1, where tv is a local parameter at Qv. We

obtain

(1) H(y(Pi)) =
∏

v∈S

max {1, |y(Pi)|v} ≪
∏

v∈S1

|tv(Pi)|−n
v .

Now fix v ∈ S1 and let z1, . . . , zℓ be a basis of the filtration2

L = L(nD) ⊃ L(nD −Qv) ⊃ L(ND − 2Qv) ⊃ . . .

Then

(2)

ℓ∑

k=1

ordQv
zk ≥

ℓ∑

k=1

(k − n− 1) =
1

2
ℓ(ℓ− 2n− 1) =: A.

Since ℓ ∼ rn for large n, and r ≥ 3 by the assumption, we may specify n to have
A > 0.

Express every zk as a linear form in y:

zk = Lk,v(y).

This defines independent linear forms L1,v, . . . , Lℓ,v for v ∈ S1. For v ∈ S0 we
simply put Lk,v(y) = yk. We obtain

∏

v∈S

ℓ∏

k=1

|Lk,v(y(Pi))|v ≪
∏

v∈S′

|tv(Pi)|
∑ ℓ

k=1 ordQv zk

v ≤
∏

v∈S′

|tv(Pi)|Av ,

where A > 0 is defined in (2). Combining this with (1), we obtain

∏

v∈S

ℓ∏

k=1

|Lk,v(y(Pi))|v ≪ H(y(Pi))
−ε

with ε = A/n.

2A basis of a filtration W0 ⊇ W1 ⊇ W2 ⊇ . . . of vector spaces is, by definition, a basis of W0

which contains a basis of every Wi.
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Now apply the Subspace Theorem. We obtain that there exist finitely many
non-zero functions u1, . . . , us from L such that every Pi is a zero of one of uj . It
follows that among the points Pi only finitely many are distinct, which contradicts
the original assumption about the existence of an infinite sequence of distinct S-
integral points. The theorem is proved. �

2. Integral Points on Surfaces

It is widely believed that an affine (respectively, projective) variety V of general
type cannot have many integral (respectively, rational) points. Of course, one
cannot have here ultimate finiteness, but it is expected that integral (or rational)
points are not Zariski dense on V . Faltings did the case when V is a subvariety
of an abelian variety, and Vojta extended his result to subvarieties of semiabelian
varieties, but very little is known for general V .

Since the argument of Corvaja and Zannier does not use Jacobians, it is very
likely to extend to certain surfaces and varieties of higher dimension, the assump-
tion there exists at least 3 points at infinity being replaced by something like the
divisor at infinity is “sufficiently reducible”. Vojta used the Subspace Theorem to
show that integral points on an irreducible affine variety of dimension d are not
Zariski dense if the divisor at infinity has at least d+ ρ+ 1 components, where ρ
is the rank of the Néron-Severi group.

In the article [3] Corvaja and Zannier applied their argument to integral points
on surfaces. Let X̄ be a non-singular projective surface and X ⊂ Aν a non-empty
affine subset of X̄ . We let C1, . . . , Cr be the irreducible components of X̄ \X and
we may define the “divisor at infinity” D = C1 + · · · + Cr. Corvaja and Zannier,
however, use the divisor

D = a1C1 + · · · + arCr

with some positive integers a1, . . . , ar (“weights”). This approach is much more
flexible, because the weights can be chosen in a certain “optimal” way.

Recall that in the case of curves we could apply the Subspace Theorem because
for every point at infinity Q and for a sufficiently large n we found a basis z1, . . . , zℓ

of the space L(nD) such that
∑ℓ

j=1 ordQ(zj) > 0. Similarly, in the surface case,
we must find, for every curve Ci and for a sufficiently large n, a basis z1, . . . , zℓ of

the space H0(X̄, nD) such that
∑ℓ

j=1 ordCi
(zj) > 0.

Let z1, . . . , zℓ be a basis of the filtration

(3) H0(X̄, nD) ⊇ H0(X̄, nD − Ci) ⊇ H0(X̄, nD − 2Ci) ⊇ . . .

For this basis we have
ℓ∑

j=1

ordCi
(zj) = −ainh

0(nD) +

∞∑

k=0

h0(nD − kCi).

Thus, the basic condition to be satisfied is that the inequalities

(4)

∑∞
k=0 h

0(nD − kCi)

nh0(nD)
> ai (i = 1, . . . , r)
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hold for a certain n.

Theorem 2.1 (Corvaja, Zannier). Let X̄ be a non-singular projective surface
defined over a number field K and let X ⊂ Aν be a non-empty affine subset of X̄ .
Let C1, . . . , Cr be effective divisors3 supported at X̄ \X. Assume that C1, . . . , Cr

intersect properly (that is, no 2 of them have a common component and no 3 of
them have a common point). Further, assume that for some choice of positive
integers a1, . . . , ar the r inequalities (4) (with D = a1C1 + · · · + arCr) hold for
certain n. Then for any finite set S ⊂MK the set X ∩ Aν(OS) of S-integral
points on X is not Zariski dense.

Proof. It is quite analogous to the proof of Theorem 1.1. Let P1, P2, P3 . . . be
sequence of distinct S-integral points; we may assume that it v-adically converges
for every v ∈ S, and denote the limit by Qv. Now we have 3 cases: either Qv ∈ X
or Qv belongs exactly one of the Ci (call it Cv), or it belongs to exactly two of
them (call them Cv and C′

v). (By the assumption, Qv cannot belong to three or
more of Ci.) Let S0, S1 and S2 be the corresponding subsets of S.

The cases v ∈ S0 and v ∈ S1 are treated exactly as in the proof of Theorem 1.1.
For the case v ∈ S2 one uses the following “filtration lemma”, proved by induction
in dimW .

Lemma 2.2. Let

(5) W = W0 ⊇W1 ⊇W2 ⊇ . . . , W = W ′
0 ⊇W ′

1 ⊇W ′
2 ⊇ . . .

be two filtrations of a finitely dimensional vector space W . Then there exists a
common basis for the two filtrations (That is, there exists a basis of W containing
bases for every Wi and for every W ′

i .)

We leave the details of the proof to the reader. �

Imposing on our divisors Ci additional assumption (like ampleness), we can
estimate from below the quantity on the left of (4) asymptotically (as n→ ∞),
using the Riemann-Roch theorem on surfaces. After some calculation, we find
that (4) holds for large n if

(6)
D2

D · Ci

(
1 +

1

6

D2C2
i

(D · Ci)2

)
> 4ai (i = 1, . . . , r).

Levin [4], and, independently, Autissier [1] observed that a “nearly optimal”
choice of the weights a1, . . . , ar implies that 4 ample divisors at infinity would
suffice. More precisely, they prove the following.

Theorem 2.3 (Levin, Autissier). Let X̄ be a non-singular projective surface de-
fined over a number field K and let X ∈ Aν be a non-empty affine subset of X̄ . Let
C1, . . . , Cr be properly intersecting effective ample divisors supported at X̄ \X .
Assume that r ≥ 4. Then for any finite set S ⊂MK the S-integral points on X
are not Zariski dense.

3We do not assume the divisors C1, . . . , Cr irreducible.
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Remark 2.4. In Theorem 2.3 one can relax the assumption that the divisors Ci are am-
ple (see [4, Theorem 11.5A]), but one cannot just assume that Ci are effective and intersect
properly. As an example take X̄ = P1 × P1 and X = Gm × Gm, where Gm is obtained by re-
moving the 0-point and the ∞-point from P1. Then X̄ \ X consists of 4 curves. The map
(x, y) → (x, x−1, y, y−1) defines an affine embedding X → A4, and the set of S-integral points

with respect to this embedding is O×

S
×O×

S
, which is Zariski-dense in general.

To prove Theorem 2.3 we need one more elementary lemma.

Lemma 2.5. Let M = [µij ]1≤i,j≤r be a symmetric r × r-matrix with positive real

entries. Consider the linear forms

Li(x) = µi1x1 + · · · + µirxr (i = 1, . . . , r)

and the quadratic form Q(x) = xtMx. Then for any ε > 0 there exist positive
integers a1, . . . , ar such that

(7) (1 − ε)Q(a) < raiLi(a) < (1 + ε)Q(a)(1 − ε)Q(a) <

raiLi(a) < (1 + ε)Q(a) (i = 1, . . . , r),

where a = (a1, . . . , ar).

Proof. We follow the elegant argument of Autissier [1, Proposition 2.3]. Notice
that

Q(x) = x1L1(x) + · · · + xrLr(x).

Hence we have to find a point a with positive integral coordinates such that the r
numbers aiLi(a) are approximately equal. We first find a point with positive real
coordinates where these numbers are exactly equal.

Let ∆ be the simplex

x1 + · · · + xr = 1, 0 ≤ xi ≤ 1 (i = 1, . . . , r).

By the Brower theorem, the map ∆ → ∆ defined by

x 7→
(
L1(x)−1, . . . , Lr(x)−1

)
(

r∑

i=1

Li(x)−1

)−1

.

has a fixed point a ∈ ∆. For this point we have a1L1(a) = . . . = arLr(a). Re-
placing each ai by a suitable rational approximation, we obtain positive rational
numbers a1, . . . , ar satisfying (7). Multiplying them by the common denominator,
we arrive to the desired integers a1, . . . , ar. �

Proof of Theorem 2.3. First of all, remark that the term 1
6

D2C2
i

(D·Ci)2
is bounded from

below, uniformly in a, by a positive constant. Thus, to ensure (6), we must find
positive integers a1, . . . , ar such that for some ε > 0 the inequalities

D2 (1 + ε) > 4ai(D · Ci) (i = 1, . . . , r)

hold. Applying Lemma 2.5 to the intersection matrix of C1, . . . , Cr, we find
a1, . . . , ar such that

D2 (1 + ε) > rai(D · Ci) (i = 1, . . . , r).
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Since r ≥ 4, we are done. �

In his fundamental article [4] Levin extends Theorem 2.3 to varieties of arbi-
trary dimension, without assuming proper intersection. One difficulty he has to
overcome is that Lemma 2.2 is no longer true for three or more filtrations.

Levin gives a thorough analysis of the argument of Corvaja and Zannier and,
probably, reaches its “natural limitations”. In addition, he accompanies every
Diophantine result with an analogous statement about holomorphic maps, in ac-
cordance with Vojta’s philosophy.
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On the abc conjecture in number fields

Kálmán Győry

(joint work with Kunrui Yu)

Let K be an algebraic number field of degree n with class number h and regulator
R. Let MK denote the set of places on K, and let S be a finite subset of MK

which contains all infinite places. Let s =Card(S), p1, . . . , pt the prime ideals
corresponding to the finite places in S, P = maxi N(pi), and RS the S-regulator
of K. Let α, β ∈ K∗ with max (h(α), h(β)) ≤ H (H ≥ 1), where h(.) denotes the
absolute logarithmic height. Put log∗ a = max (log a, 1).

Many diophantine problems can be reduced to S-unit equations of the form

(1) αu + βv = 1 in S -units u, v of K.

Several people, including (in chronological order) the speaker, Kotov and Trelina,
Sprindzuk, Schmidt, Bombieri, Bugeaud and Győry, Bombieri and Cohen, and
Bugeaud gave effective upper bounds for the solutions of (1). These led to many
applications; see e.g. [2], [4], [5] and [1].

As a considerable improvement of several earlier results, we proved (cf. [8],
Theorem 2) a completely explicit version of the following.

Theorem 1. All solutions u, v of (1) satisfy

(2) max (h(u), h(v)) < cs1 (P/ log∗ P )RSH,

where c1 is an effectively computable positive constant which depends only on n, h
and R.
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In terms of S, ss was the dominating factor in the previous bounds whenever
t > logP . Theorem 1 provides the first upper bound not containing ss. This
improvement plays an important role in some applications; see [8], [7], [6] and
Theorem 2 below. The proof of (2) depends among others on the theory of loga-
rithmic forms.

From the explicit version of Theorem 1, we deduced the following. Let A, B,
C and a, b, c, be non-zero rational integers with

Aa+Bb+ Cc = 0

and with max (|A|, |B|, |C|) ≤ H , |abc| > 1, where both A, B, C and a, b, c are
relatively prime.

Corollary. We have

log max (|a|, |b|, |c|) < c2 (P/ log∗ P )



∏

p|abc

log p


 log∗H,

where c2 = 210t+23t4, and P and t denote the greatest prime factor and the number
of distinct prime factors of abc.

For a, b, c ∈ K∗, write

HK (a, b, c) =
∏

v∈MK

max (|a|v, |b|v, |c|v) ,

where the valuations |.|v are normalized in the usual way. Further, let

(3) NK (a, b, c) =
∏

v

N (p)
ordpp

,

where the product is over all finite v such that |a|v, |b|v, |c|v are not all equal, and p
is the rational prime lying below the prime ideal p which corresponds to v. Denote
by PK(a, b, c) the greatest factor N(p) in (3), and by ∆K the absolute value of the
discriminant of K. For K = Q, the following conjecture is due to Oesterlé and
Masser. The general case, in this form, was proposed by Masser [9].

abc conjecture for the number field K. For every ε > 0 there exists Cε,
depending only on ε, such that

HK(a, b, c) < Cn
ε (∆KNK(a, b, c))1+ε

for all a, b, c ∈ K∗ satisfying a+ b + c = 0.
This conjecture has many extraordinary consequences; cf. e.g. [12], [3] and [10].
The bounds on the solutions of (1) with α = β = 1 enable one to deduce

bounds for HK(a, b, c). In the case K = Q, Stewart and Yu [11] used a more direct
approach to prove that if a, b, c are relatively prime positive rational integers with
a+ b = c then

(4) log c < p′N c3 log3 N∗/ log2 N∗

,
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where p′ is the minimum of the greatest prime factors of a, b and c, respectively,
N =

∏
p|abc p, N

∗ = max (N, 16), c3 is an effectively computable positive absolute

constant and logi denotes the ith iterate of the log function.
From a consequence (cf. [8], Corollary 2) of the explicit version of Theorem 1,

we deduced the following.

Theorem 2. If a, b, c ∈ K∗ satisfy a+ b+ c = 0, then logHK(a, b, c) is bounded
above by

c4 (P/ log∗ P )N (c5+20n log3 N∗)/ log2 N∗

,

and, for every ε > 0, by

c6N
1+ε,

where P = PK(a, b, c), N = NK(a, b, c), N∗ = max (N, 16),

c4 = 83n+21n6n+18∆K (log∗ ∆K)
3n−1

, c5 = 9n3 log∗ ∆K

and c6 = c6(n,∆K , ε) is effectively computable.

For K = Q, we obtained (4) with c3 = 653 and with p′ replaced by 223P/ log∗ P ,
where P is the greatest prime factor of abc. For number fields K of degree > 1,
Theorem 2 provides the best known and the first completely explicit upper bound
for HK(a, b, c).
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The reduced length of a polynomial, revisited

A. Schinzel

Length of a polynomial P (x) =
d∑

i=0

aix
d−i is L(P ) =

d∑
i=0

|ai|. For P ∈ R[x]

A. Dubickas [2] introduced the reduced length

l(P ) = inf
Q∈R[x], Q -monic

L(PQ)

and noticed that if P = P0P1, where all zeros of P1 are inside the unit circle C
then

l(P ) = l(P0).

Thus the problem remains to compute l(P ), if all zeros of P are outside C or on
C. In [2] I have shown how to compute l(P ) if all zeros are outside C, or all zeros
are an C, or there is just one zero, possibly multiple, on C and all other zeros are
real of the same sign. This suffices to compute l(P ) for all quadratic polynomials,
but for cubic polynomials there remain two cases.

(1) P has just one zero on C, but the other zeros are either complex or real
of opposite sign.

(2) P has just two zeros on C.

The first case can be settled completely.

Theorem 1. If P (x) =
3∏

i=1

(x − αi), where |α1| ≥ |α2| > |α3| = 1, α1 6= α2, then

l(P ) can be effectively computed.

The idea of the proof is to indicate for every n in N a finite set Sn of monic
polynomials divisible by P such that 0 ≥ l(P ) − min

Q∈Sn

L(Q) > − 1
n .

Corollary. Let P ∗(x) = xdeg PP (x−1). Then, for every cubic P ∈ R[x], l̂(P ) =
min{l(P ), l(P ∗)} can be effectively computed.

The corollary is of interest, since l̂(P ), rather than l(P ) occurs in applications
given in [1].

The second case is really difficult and I cannot compute l(P ), already for P =
2x3 + 3x2 + 4. The computation can be made, however, if the zeros of P on C are
roots of unity and as an example I give

Theorem 2. Let P (x) = (x− α)(x2 − ε), where |α| > 1, ε = ±1. Then

l(P ) = 2
(
|α| + 1 − |α|−1

)
.

In connection with Theorem 2 I propose the following

Problem. Is the inequality

l
((
x2 + tx+ 1

)
P (x)

)
≥ 2M(P )

where M(P ), is the Mahler measure, true for all t ∈ [−2, 2] and all P ∈ R[x]?

Theorems 1 and 2 are proved in [3].
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Cubic Thue equations with many solutions

Cameron Stewart

Let F (x, y) be a cubic binary form with integer coefficients and non-zero discrim-
inant. Let m be a positive integer and let NF (m) be the number of solutions of
the Thue equation

F (x, y) = m,

in integers x and y. Following an approach introduced by Chowla in 1933, Mahler
proved, in 1935, that there is a positive number c1, which depends on F, such that

(1) NF (m) > c1(logm)1/4,

for infinitely many positive integers m. This was refined by Silverman in 1983.
He proved that the exponent 1/4 in (1) may be replaced by 1/3. In our talk we
indicated how we are now able to replace the exponent of 1/4 in Mahler’s result
by the exponent 1/2.

Small value estimates for the multiplicative group

Damien Roy

Define the height H(P ) of a polynomial P ∈ Z[T ] to be the maximum of the
absolute values of its coefficients. In an attemp to extend to the multiplicative
group Gm the results of [3], we present the following transcendence criterion dealing
with a sequence of integer polynomials taking small values on complex numbers
from a fixed geometric progression.

Theorem. Let ξ ∈ C and let β, σ, ν ∈ R such that

(1) 0 ≤ σ ≤ 11

7
, β ≥ 1 + σ, ν > 1 + β − 5

11
σ.

Suppose that, for each sufficiently large positive integer n, there exists a non-zero
polynomial Pn ∈ Z[T ] satisfying

(2) deg(Pn) ≤ n, H(Pn) ≤ exp(nβ), max{|Pn(ξi)| ; 1 ≤ i ≤ nσ} < exp(−nν).

Then ξ is algebraic over Q.

In the case where σ = 0, this result reduces to a well-known version of Gel’fond’s
transcendence criterion due to D. W. Brownawell [1] and M. Waldschmidt [4]:
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Gel’fond’s Criterion (Brownawell, Waldschmidt). Let ξ ∈ C and let β, ν ∈ R

with β ≥ 1 and ν > 1 + β. Suppose that for each sufficiently large positive integer
n, there exists a non-zero polynomial Pn ∈ Z[T ] satisfying deg(Pn) ≤ n, H(Pn) ≤
exp(nβ) and |Pn(ξ)| < exp(−nν). Then ξ is algebraic over Q.

The condition on ν in the theorem is weaker than that required by Gel’fond’s
criterion, with a saving of (5/11)σ. On the other hand, a simple application of
Dirichlet box principle shows that, given ξ ∈ C and β, σ, ν ∈ R with 0 ≤ σ < 1,
β > 2σ and ν < 1+β−σ, there exists for each sufficiently large index n a non-zero
polynomial Pn ∈ Z[T ] satisfying (2). So it is possible that the last condition in
(1) could be improved to ν > 1 + β − σ, which would then be best possible.

Sketch of proof. Assume for simplicity that |ξ| 6= 1. We present a sketch of proof
of the theorem with the last condition in (1) replaced by the stronger condition
ν > 1 + β − (1/3)σ. For the first four steps of the argument, we fix an arbitrary
large integer n and write P = Pn for simplicity.

1. Reduction: Without loss of generality, we may assume that P (0) 6= 0 and
that no root of P is a root of unity.

2. Let µ ∈ R with 0 < µ < σ, and let A be the set of all prime numbers p with
(1/2)nµ ≤ p ≤ nµ. Then the gcd Q ∈ Z[T ] of the polynomials P (T a) with a ∈ A
satisfies

deg(Q) ≪ n

|A| ≍ n1−µ log(n) and logH(Q) ≪ nβ

∑
a∈A a

≍ nβ−2µ log(n),

with implied constants depending only on µ. These estimates are optimal up to
the value of the constants and require simply that β ≥ 1 + µ (provided that P
does not vanish at 0 nor at any root of unity). They are proved by combinatorial
arguments.

3. LetD be a subset of {1, 2, . . . , [nσ−µ]}. Assume that β ≥ 1+σ, µ < σ < 1+2µ
and |D|nν > 10n1+β+µ. Then, if n is sufficiently large, we have

∏

i∈D

|Q(ξi)| ≤ exp
(
− 1

2
|D|nν

)
.

The proof of this is similar to that of Lemma 13 of [2]. It proceeds by estimating
from above the height of the U -resultant of the polynomials P (T a)/Q(T ) (a ∈ A)
upon noting that all of these take small values at the points ξi with i ∈ D.

4. By Part 3 above, there exists an element i ofD with |Q(ξi)| ≤ exp(−(1/2)nν).
Put Rn(T ) = Q(T i). Since i ≤ nσ−µ, the estimates of Part 2 imply that the
polynomial Rn ∈ Z[T ] satisfies

deg(Rn) ≪ n1+σ−2µ log(n) and logH(Rn) ≪ nβ−2µ log(n).

5. Applying Gel’fond’s criterion to the sequence of polynomials Rn, we deduce
that ξ is algebraic over Q if

ν > (1 + σ − 2µ) + (β − 2µ).
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If we choose µ = σ/3 and takeD to be the set of all integers in the interval [1, nσ−µ],
then all the above conditions are satisfied provided that σ < 3, β ≥ 1 + σ and
ν > 1 + β − σ/3. �
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On additive equations in positive characteristic

David Masser

Let K be a field and let G be a multiplicative subgroup of the group of non-
zero elements of K. For n ≥ 2 and a variety V in Pn write V (G) for the set
of points on V with projective coordinates in G. With Harm Derksen we gave a
completely effective description of V (G) when K has positive characteristic, G is
finitely generated, and V is linear.

Write
√
G = K

√
G for the radical of G (inside K) consisting of all x in K for

which there is k in N with xk in G. Call a linear variety V transversal if ev-
ery coordinate X0, . . . , Xn occurs (with non-zero coefficient) in the defining equa-
tions. Call it G-isotrivial if there are g0, . . . , gn in G such that the isomorphism
ψ(X0, . . . , Xn) = (g0X0, . . . , gnXn) sends V to a variety defined over a finite field.

Theorem. Suppose that K has positive characteristic and that V is defined over
K and transversal. Suppose further that

√
G is finitely generated. Then there is

an effectively computable finite collection W of proper
√
G-isotrivial linear subva-

rieties W of V , also defined over K, such that
(a) if V is not

√
G-isotrivial, then

V (G) =
⋃

W∈W

W (G),

(b) if V is
√
G-isotrivial and ψ(V ) is defined over Fq, then

V (G) = ψ−1

(
⋃

W∈W

∞⋃

e=0

(ψ(W )(G))qe

)
.

Thus we can always descend to lower dimension. After at most dimV ≤ n− 1
such descents we end up with an effective description of the solution set in terms
of a finite subset and a finite set of isomorphisms, together with at most n − 1
Frobenius actions; the latter generally do not commute with each other.
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The effectivity can be made explicit in terms of a suitable height function h(V )

and a related regulator function R(G). In the special case G =
√
G one even gets

a polynomial dependence on these functions. However in general one should allow
an exponential dependence on R(G), and there are examples to show that this
cannot be avoided.

The result can be used to solve diophantine equations in positive characteristic
involving several recurrence sequences, say u1, . . . , um taking values in K on N;
for example one can decide whether or not there exist r1, . . . , rm in N such that

u1(r1) + · · · + um(rm) = 0.

This may be compared with a conjecture of Cerlienco, Mignotte and Piras [CMP]
(p.104) that such problems can be undecidable in zero characteristic.

The result, apart from the effectivity, is a natural analogue of the classical result
of van der Poorten and Schlickewei in zero characteristic for dimV = n− 1.

The results in both characteristics, despite the apparent lack of effectivity in one
of them, nevertheless enable one to find effectively the smallest order of non-mixing
of a given algebraic Zd-action on a compact abelian group.

The impetus to consider these problems came from two sources: first Masser’s
paper [M], which uses Wronskians as in situations of abc type to reduce to p-th
powers, and second Derksen’s recent paper [D], where formally similar reductions,
but without derivatives, are carried out in the language of automata theory.

There is an independent literature in the more general context of Mordell-Lang
problems on semiabelian varieties (Abramovich-Voloch 1992, Hrushovsky 1996,
Voloch 1998, Moosa-Scanlon 2002, 2004, Ghioca to appear). When specialized,
some of the results seem related to ours, but the authors do not discuss effectivity,
apart from Voloch. His paper proves (a) above when n = 2 and gives a good
explicit upper bound for the number of W . He also uses derivatives, but the other
authors use among other things Hilbert schemes, model theory and ultrafilters.
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Relations on a power of an elliptic curve

Philipp Habegger

Let A be a semi-abelian variety defined over C and let X ⊂ A be an irreducible
closed subvariety. The intersection of X with the division closure of a finitely gen-
erated subgroup of A has been studied by Faltings, Hindry, Laurent, McQuillan,
Raynaud, Vojta and others. In 1995 this work culminated in the proof of the
Mordell-Lang conjecture.

More recently, interest has arose in analyzing the intersection of X with A[r],
the union of all algebraic subgroups of A with codimension at least r. Motivated
by a specialization of Silverman, early results were obtained by Bombieri, Masser,
and Zannier [1] in the algebraic torus Gn

m. More precisely, they showed that if
C is an algebraic curve defined over Q not contained in the translate of a proper
algebraic subgroup, then the points in C ∩ (Gn

m)[1] have uniformly bounded Weil
height. Using this height upper bound and Lehmer-type lower bounds for heights,
they also showed that C ∩ (Gn

m)[2] is finite.
An irreducible subvariety Y of X is called anomalous if dimY ≥ 1 and if Y

is contained in the translate of a proper algebraic subgroup K of A such that
dimY ≥ dimX + dimK − dimA + 1. Such a Y is contained in an improper
component of the intersection X ∩K. We define Xoa to be X deprived of all its
anomalous subvarieties.

When the semi-abelian variety is Gn
m, this definition appeared in a preprint [3] of

Bombieri, Masser, and Zannier. They proved thatXoa is Zariski open inX . IfX is
defined over Q they stated the Bounded Height Conjecture: Xoa(Q)∩(Gn

m)[dim X]

has uniformly bounded Weil height. The lower bound dimX imposed on the
codimension of the algebraic subgroups involved is best-possible.

If A is defined over Q and given a suitable height function on A(Q) it is straight-
forward to formulate the Bounded Height Conjecture for subvarieties of an arbi-
trary semi-abelian variety.

We consider the case A = Eg where E is an elliptic curve defined over Q. Let ĥ
be the Néron-Tate height associated to a symmetric and ample line bundle on Eg.
The purpose of this talk is to present a proof of the Bounded Height Conjecture
in Eg:

Theorem 1. Let X ⊂ Eg be an irreducible closed subvariety defined over Q, then

Xoa ⊂ X is Zariski open, furthermore the Néron-Tate height ĥ is bounded on
Xoa(Q) ∩ (Eg)[dim X].

If X is generic in a certain sense which will not be specified here, then Xoa will
be non-empty, hence Zariski dense in X .

As in Bombieri, Masser, and Zannier’s original article on curves it is possible to
deduce a finiteness result when the algebraic subgroups involved have codimension
at least 1+dimX as soon as a sufficiently strong Lehmer-type height lower bound
is known. Indeed, recent work of Ratazzi [4] on such bounds for abelian varieties
with complex multiplication suffices to prove:
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Theorem 2. Let X be as in Theorem 1, then Xoa(Q) ∩ (Eg)[1+dim X] is finite.

Bombieri, Masser, and Zannier noticed [1] that Xoa is most likely not the cor-
rect set for a finiteness statement as in Theorem 2. One generally believes that
finiteness holds with Xoa replaced by a possibly larger set Xta. The definition of
Xta is verbatim to Xoa with the exception that K is required to be the translate
of an algebraic subgroups by a torsion point. Some finiteness results in abelian
varieties have been obtained by Ratazzi, Rémond, and Viada.

To prove Theorem 1 one is lead to the study of the following function involving
the degree of a morphism:

fX(ϕ) = deg(ϕ|X)

here r = dimX and ϕ : Eg → Er is a homomorphism of abelian varieties with ϕ|X
its restriction to X . For simplicity let us assume that E does not have complex
multiplication. Then ϕmay be identified with an r×g matrix in integer coefficients.
By the Theorem of the Cube fX is polynomial with rational coefficients in the
entries of ϕ; more precisely it is homogeneous of degree 2 in each line of ϕ. This
polynomial is invariant under left-multiplication of ϕ by an element of SLr(C).
Therefore we may write fX as βX , a quadratic form with rational coefficients
in the N =

(
g
r

)
Plücker coordinates of the matrix ϕ. Considering the Plücker

embedding of the Grassmannian G(r, g) →֒ PN−1 one can show that

Xoa 6= ∅ if and only if βX is (strictly) positive on G(r, g)(Q).

We note that although the value of βX at a point of PN−1(R) is not well-defined,
its sign is since βX is a quadratic form. In the crucial step of the proof of Theorem
1 we use analytic geometry and a Theorem of Ax [2] to show that

(1) βX is positive on G(r, g)(Q) if and only if βX is positive on G(r, g)(R).

We have therefore established a strong Hasse principle for βX : this quadratic form
vanishes on G(r, g)(R) if and only if it vanishes on G(r, g)(Q). Assuming βX does
not vanish on G(r, g)(R), we can apply a compactness argument to deduce a lower
bound for the degree

(2) deg(ϕ|X) ≥ c(X) det(ϕϕT)

where c(X) > 0 is independent of ϕ. This uniformity in ϕ is essential for the proof
of Theorem 1. The degree is essentially the self-intersection number of a certain
line bundle related to ϕ. Using the theory of heights associated to line bundles and
a Theorem of Siu, inequality (2) translates into a uniform inequality of heights.
This height inequality is the main ingredient in the proof of Theorem 1.

In the special case where X is a curve or hypersurface, that is if r = 1 or
r = g − 1, one has G(r, g) = Pg−1. By a classical result any quadratic form with
rational coefficients with is positive on QN\{0} is also positive on RN\{0}. In
other words: if r ∈ {1, g − 1} then a quadratic form β in rational coefficients is
positive on G(r, g)(Q) if and only it is positive on G(r, g)(R). Hence in this case
(1) follows without using analytic geometric or Ax’s Theorem. But for general r
and g we need these tools. Indeed let us consider the example r = 2 and g = 4.
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Then G(2, 4) ⊂ P5 has dimension 4. If ∆0, . . . ,∆5 denote projective coordinates
on P5, then G(2, 4) is defined by one Plücker relation ∆0∆5 −∆1∆4 + ∆2∆3 = 0.
The quadratic form β = (∆0 − 2∆5)

2 + (∆1 − ∆4)
2 + ∆2

2 + ∆2
3 is positive on

G(2, 4)(Q) since
√

2 is irrational. On the other hand β(2,
√

2, 0, 0,
√

2, 1) = 0,
hence β vanishes on G(2, 4)(R). In particular this β cannot equal βX coming from
an algebraic surface X in E4.
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A lower bound for the essential minimum in a product of elliptic
curves

Aurélien Galateau

1. Introduction

Let C be an algebraic curve with genus g ≥ 2 defined on Q̄ and embedded in its

jacobian J(C). Thus, there is a canonical height ĥ for points of J(C). Extending
the Manin-Mumford conjecture (concerning torsion points, that is: points with
height zero), one can ask if there are a lot of points with small height lying in the
curve. In 1981, Bogomolov conjectured the following:

Conjecture 1. There exists ǫ > 0 such that {x ∈ C(Q̄), ĥ(x) ≤ ǫ} is finite.

Let now V be an algebraic subvariety of S a semi-abelian variety. In higher
dimension, finiteness is replaced by non Zariski density; semi abelian subvarieties
and their translates have a lot of small points (at least their torsion points). Define
the essential minimum :

µ̂ess(V ) = inf{θ > 0, V (θ) = V (Q)},
where V (θ) = {x ∈ V (Q̄), ĥ(x) ≤ θ}.

The generalisation of the Bogomolov conjecture then says:

Conjecture 2. The essential minimum of V is zero if and only if V = x+B with
x torsion and B a semi-abelian subvariety of S.

The first conjecture was proved by Ullmo in 1998 and the second by Zhang for
abelian varieties and tori, by David and Philippon for semi abelian varieties.
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2. Explicit version

Once qualitative conjectures are solved, one can ask for an explicit version,
that is: say more about the essential minimum provided it is non zero. Thanks
to the inequality on successive minima proved by Zhang, this would also give
information about the height of V . The invariants concerned for bounding the
essential minimum will be the dimension and the degree of V , a term measuring
the height of S and the degree of a definition field.

In the case of tori, Amoroso and David gave a lower bound optimal up to
logarithmic factors in the degree of V and further, their bound was thoroughly
explicit. The theorem of David and Philippon was also explicit but not optimal
yet in the degree. The aim of my work was to get the same results in the abelian
context as those already known for tori. In this direction, one obtains the following:

Theorem 3. Let V be a proper and irreducible subvariety of A = E1 × . . .× Eg

a product of elliptic curves (g ≥ 2), with codimension k. If V is not contained in
any translate of a proper abelian subvariety of A, the following holds:

µ̂ess(V ) ≥ C(A)

ω(V )
× (log(3ω(V )))−λ(k,g),

where C(A) > 0 is a constant depending only on A and λ(k, g) = (9g(3k)(k+1))k.

3. Diophantine approximation

The proof of the last theorem is classical diophantine approximation. Suppose
V is a subvariety with essential minimum unexpectedly large. Using an absolute
Siegel lemma, one proves that there is an auxiliary function which vanishes on
the subvariety with high order. The extrapolation is made using torsion points.
Therefore, one proves that the function is zero on a lot of translates of V by ‘good’
torsion points, but the new order is weaker. For technical reasons, one has to
iterate this step. One then shows that the union of varieties on which the auxiliary
function vanishes is large by working on the stabilisator and using combinatorics.
A zero lemma finally compares the degree of the union to the function’s degree
and gives a contradiction.

The extrapolation step is based on a p-adic inequality that is the analogue of
the following easy fact:

Lemma 4. For all ξ a pth-root of the unity and all v/p a place of Q[ξ]:

|ξ − 1|v ≤ p−1/p.

Using the theory of formal groups, one gets the same estimate in the elliptic
setting provided that the prime p is an ordinary prime (for supersingular primes,

one gets: p−1/p2

). Since such primes are in positive density (1/2 for CM curves
and 1 for non CM), it is possible to find a set of primes with positive density being
simultaneously ordinary for all the elliptic curves in A.
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That kind of argument should be refined for abelian varieties, since no result
of density is known for ordinary primes. Nevertheless, weaker p-adic properties
could be balanced by a larger number of torsion points reducing on zero, for which
the p-adic property holds.

A complete metric space arising from the logarithmic Weil height

Jeffrey D. Vaaler

(joint work with Daniel Allcock)

Let h : Q
× → [0,∞) denote the absolute logarithmic Weil height. We recall that

this is defined by

h(α) =
∑

v

log+ |α|v,

where the sum is over all places v of a number field k that contains α and | |v is a
certain normalized absolute value from the place v. It is obvious from the definition

that h(α) = h(ζα) for all points α in Q
×

and all ζ in the torsion subgroup Tor
(
Q

×)
.

Therefore the height h is well defined as a map on the quotient group

(1) h : G→ [0,∞) where G = Q
×
/Tor

(
Q

×)
.

If α and β are points in the group G then (1) satisfies

(i) h(α) = 0 if and only if α = 1 in G,
(ii) h(α−1) = h(α),
(iii) h(αβ) ≤ h(α) + h(β).

It follows that the map (α, β) → h(αβ−1) defines a metric on the group G and so
induces a metric topology in G. We are interested in the problem of describing

the completion Ĝ of this group.
As a first approach to this problem we note that the group G is also a vector

space over the field Q of rational numbers. To see this observe that if r/s is a
rational number with r and s relatively prime integers and s positive, if α is a

point in Q
×

, then all roots in Q
×

of the polynomial equations

Xs − (ζα)r = 0, where ζ ∈ Tor
(
Q

×)
,

are representatives of the same coset in G. We regard this coset as αr/s and then

(r/s, α) → αr/s

is easily seen to define a scalar product on the abelian group G. We find that

h
(
αr/s

)
=
∣∣r/s

∣∣
∞
h(α).

This shows that α → h(α) defines a norm on the vector space G with repsect to
the usual archimedean absolute value | |∞ on the field of scalars Q. From this it

follows that the completion Ĝ is a Banach space over the field R or real numbers.
It remains now to give a more precise description of this Banach space.
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Let L be the set of all intermediate fields k such that Q ⊆ k ⊆ Q and such
that k is a finite extension of Q. Then L is partially ordered by inclusion and is
a directed set. For each field k in L and place p of Q, let V (k, p) denote the set
of places v of k such that v|p. (Here p may be archimedean or non-archimedean.)
Let Ω be the set of all places of Q. Then Ω can be realized as the inverse limit
of the finite sets V (k, p) and in this way Ω is given a totally disconnected, locally
compact, Hausdorff topology. The absolute Galois group Aut(Q/Q) acts on points
of Ω and this can be used to prove the existence of a certain nontrivial, invariant
measure ν on the Borel subsets of Ω. Thus we may consider the real Banach space
L1(Ω, ν) and the codimension 1 subspace X defined by

X =
{
F ∈ L1(Ω, ν) :

∫

Ω

F (ω) dν(ω) = 0
}
.

If ω is an element of Ω, write ‖ ‖ω for an absolute value from the place ω that
extends the usual absolute value Q. Then for each point α in the group G let
fα : Ω → R be defined by

fα(ω) = log ‖α‖ω.

We show that fα is a continuous function on Ω with compact support and the set
of all such functions is dense in the subspace X . Moreover, the map

α→ fα

is an isometric isomorphism from G onto a dense subset of X . More precisesly, we
find that

h(α) = 1
2

∫

Ω

|fα(ω)| dν(ω).

It follows that we may identify G with this dense subset and conclude that Ĝ is
isometrically isomorphic to the real Banach space X .

Cyclotomic norm equations and short vectors in lattices

Preda Mihailescu

Let p, q be two odd primes, which may also be equal. The cyclotomic norm
equations under investigation are special cases of the general form

Xp + Y p

X + Y
= pe · Zq, with X,Y, Z ∈ Z with (X,Y, Z) = 1 and

e =

{
0 if (p, Z) = 1

1 otherwise .
(1)

The literature below is a small selection of papers which bring important con-
tributions to the general or some special case of (1) and have detailed historical
indications; the results in this abstract are proved in [Mi1, Mi2, Mi3].
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The specialization of (1) may be done by fixing one of the variables and/or
adding the equation X +Y = p−eT q, which leads together with (1) to the Fermat
- Catalan equation

Xp + Y p = Zq.(2)

The methods used are of cyclotomic nature and they combine class field con-
ditions with some new approximation techniques, which are closely related to the
problem of short vectors in affine lattices.

In the case of three independent variables, one obtains lower bounds for the
solutions. The following result illustrates the more general statements on (2)
which we obtain:

Theorem 1. Let p, q > 3 be primes such that (2) has a solution and suppose that

−1 ∈< p mod q >, max{p, p(p−20)
16 } > q and q 6 | h−pq, the relative class number of

the pq−th cyclotomic field. Then either

aq−1 ≡ 1 mod q2 for some a ∈ {2, p, 2p−1 · pp},(3)

or

A. p 6 | z and q2|xy if q 6≡ 1 mod p and q3|xy, if q ≡ 1 mod p.
B. If q 6≡ 1 mod p, then

min(|x|, |y|) > c1(q)

(
qp−1

p

)q−2

, if q 6≡ 1 mod p,(4)

and

min(|x|, |y|) > c1(q)

(
q2(p−1)

p

)q−2

,(5)

otherwise. Here c1(q) is am effectively computable, strictly increasing func-
tion with c1(5) > 1/2.

This yields on the one hand some conditions on p, q for which the special Fermat
- Catalan equation with fixed Y = C has no solutions. An other interesting
specialization is the equation Xp + Y q = Zpq which is equivalent to the Catalan
equation in the rationals. The result is then:

Theorem 2. Let p, q > 3 be distinct primes for which the following conditions are
true:

1. −1 ∈< p mod q > and −1 ∈< q mod p >,
2.
(
pq, h−pq

)
= 1,

3. 2p−1 6≡ 1 mod p2 and 2q−1 6≡ 1 mod q2,

4.
(
2p−1pp

)q−1 6≡ 1 mod q2 and
(
2q−1qq

)p−1 6≡ 1 mod p2,

5. pq−1 6≡ 1 mod q2 and qp−1 6≡ 1 mod p2,

6. max{p, p(p−20)
16 } > q and max{q, q(q−20)

16 } > p.

Then the equation Xp + Y q = 1 has no rational solutions.
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By fixing Y = −1 in (1), one obtains the equation of Nagell and Ljunggren.
In this case, the approximation methods yield effective upper bounds for possible
solutions of the equation. In this talk we treated the diagonal case with p = q in
more detail. This is:

(6)
xp − 1

x− 1
= pe · yp with x, y ∈ Z, e ∈ {0, 1},

and p an odd prime. The only known non - trivial solution is

183 − 1

18 − 1
= 73,(7)

and it is conjectured to be also the only such solution. The upper bounds for
solutions of (6), are the following:

Theorem 3. Suppose that x, y are integers verifying (6) and p ≥ 17. Then there
is a B ∈ R+ such that |x| < B. The values of B in the various cases of the
equation are the following:

B =






4 ·
(

p−3
2

) p+2
2 if (x mod p) 6∈ {−1, 0, 1}

(4p)
p−1
2 if x ≡ 0 mod p,

4 · (p− 2)p otherwise.

(8)

Using better lattice methods, the bounds can currently be improved to O(pc)
for some positive constant c < 20. Similar results are obtained for the case p 6= q.

The general idea of proof is the following: a solution (x, y; p) of (6) leads in the
p−th cyclotomic field Q(ζ) – with ζ an p−th root of unity – to the existence of an

α =
x− ζ

(1 − ζ)e
∈ Z[ζ] with NQ(ζ)/Q(α) = yp.

There is an ideal A = (α, y) ⊂ Z[ζ] with Ap = (α). Let G = Gal (Q(ζ)/Q) and
I ⊂ Z[G] be the Stickelberger ideal. Using annihilation by various elements Θ ∈ I,
one obtains β[Θ] ∈ Z[ζ] verifying:

βp[Θ] = αθ.(9)

With the series expansion of the p−th root (9) leads to approximations of β[Θ] up
to p−th root of unity. More precisely, there are positive integers k(Θ),m(Θ) such
that

β[Θ] = ζk(Θ) · ym(Θ) · f(1/x; Θ).(10)

Here f(1/x; Θ) =
∑∞

n=0
cn(Θ)

pn+e(n) · (1/x)n is a series with cn ∈ Z[ζ] and |cn| < pm·n

while e(n) < n/(p − 1). The idea for obtaining upper bounds consists in the
following steps.

1. Select a subset Jm ⊂ I such that m = m(Θ) is constant and small for all
Θ ∈ Jm. On the other hand the size |J | should be sufficiently large.

2. Select a J ⊂ Jm which is invariant under G, in the sense that Θ ∈ J ⇒
σΘ ∈ J for all σ ∈ G.

3. Let δ =
∑

Θ∈J λ(Θ)β[Θ] be a linear combination with λ(Θ) ∈ Z[ζ].



Diophantische Approximationen 1149

4. Try to determine λ(Θ) such that N(δ) is small but non null. Practically
one wishes imposes conditions

∑

Θ∈J

λ(Θ) · ζk(Θ) · cn(Θ) = 0,

under some additional constraint which guarantees that δ 6= 0. These are
developed using (10)

The upper bounds in Theorem 3 are derived in this way, by using quadratic linear
systems in 4. The use of under-determined systems can improve the bounds. The
inhomogeneous condition δ 6= 0 limits the efficacity of the approach. Lower bounds
can be gained in some (lucky) cases by using the same argument locally. Thus for
instance the case x ≡ 0 mod p can be eliminated in (6).

Improvements of lower and/or upper bounds are called upon for a solution of
the Nagell-Ljunggren equation.
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Power integral bases for prime-power cyclotomic integer rings

Gabriele Ranieri

Let K be a number field and let OK be its ring of integers. We say that K has a
power basis if there exists α ∈ OK such that Z[α] = OK . It is rare (see [Gyo2])
for a number field to have a power basis. Neverthless if K = Q(ζn), where n is a
positive integer and ζn is a primitive nth root of unity, then OK = Z[ζn]; hence
all cyclotomic integer rings have a power basis.

Let α ∈ Z[ζn] such that Z[α] = Z[ζn]. We say that α is equivalent to β ∈ Z[ζn]
(α ∼ β) if and only if there exist an integer k and σ ∈ Gal(Q(ζn)/Q) such that:

β = ±σ(α) + k.

Then Z[β] = Z[ζn] and ∼ is an equivalence relation. It is an interesting problem
to determine all the classes of generators of Z[ζn]. Gyory (see [Gyo1]) proves that
there are only finitely many classes of generators of Z[ζn] as to ∼.
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Consider now the case n = q, where q is a power of the prime number p ≥ 2.
Bremner (see [Bre]) conjectures that there are only two classes of generators (as
to ∼) of Z[ζq ]: the class of ζq and the class of 1/(ζq +1) (actually in [Bre] Bremner
only considers the case where q = p).

The first partial answer to Bremner’s conjecture is given by Robertson (see [Rob])
who proves that if α is a generator of Z[ζp] then either α ∼ ζp or α+ α is an odd
integer.

Afterwards Gaál and Robertson (see [Ga-Ro]) prove this weak generalization of
the previous result: let q be a power of a prime p ≥ 2, let h+

q be the class number

of Q(ζq + ζq) and let α ∈ Z[ζq] be a generator of Z[ζq]; then if (h+
q , p(p− 1)/2) = 1

either α ∼ ζq or α+ α is an odd integer.
Extensions of Cohen-Lenstra heuristics suggest that for a given q it is very likely

that (h+
q , p(p− 1)/2) = 1. Moreover the Vandiver’s conjecture, which says that p

does not divide h+
p , implies that p does not divide h+

q (see [Was], Corollary 10.5).

Neverthless we do not know the value of h+
q for q such that φ(q) > 66. Therefore it

is interesting to ask if it is possible to remove the hypothesis about h+
q in [Ga-Ro].

In my talk I show that the hypothesis can be removed; in other words I prove that
if α ∈ Z[ζq] is a generator of Z[ζq] then either α ∼ ζq or α + α is an odd integer
(see [Ran]).
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Diophantine equations and point distributions

Robert Tichy

In the first part of the lecture we establish a law of the iterated logarithm for the
discrepancy of sequences (nkx) mod 1 where (nk) is a sequence of integers satisfying
a sub-Hadamard growth condition and such that one and four-term Diophantine
equations in the variables nk do not have too many solutions. A suitable class of
such sequences is given by a multiplicative semigroup generated by two or more
coprime positive integers, where the elements of the semigroup in increasing order
form the sequence (nk). The conditions are discussed, the probabilistic details
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of the proof are based on martingale inequalities and chaining arguments. The
diophantine tools are applications of the subset theorem to S-unit equations. In
particular it is necessary to estimate the number of solutions of the Diophantine
equation

anν + bnµ = c.

As a corollary to our results, the asymptotic behavior of sums
∑
f(nkx) is ob-

tained. (Joint work with Istvan Berkes and Walter Philipp).

In the second part we studied the problem of representing an algebraic integer
as as sum of units in a given number field. (This is a joint work with Volker
Ziegler). By a recent result of Jarden and Narkiewicz the ring of algebraic integers
in a given number field cannot be generated additively by a finite number of units.
However, it is an open problem to determining all number fields such that any
integer can be represented as a sum of units. For quadratic number fields this
problem has been solved by various authors. Our main result is concerned with
purely cubic number fields.

Theorem 1. Let d be a cube-free integer and let Od be the maximal order of
Q( 3

√
d). The ring Od is generated by its units if and only if d is square-free,

d 6≡ ±1 mod 9 and d = a3 ± 1 for some integer a or d = 28.

The proof is based on Thue-equations and classical results of Siegel and Delauny
for equations axn + byn = c with at most one solution. Furthermore, involved
computations using Gröbner basis techniques are used.

Exponents of Diophantine Approximation and transfer inequalities

Michel Laurent

We present new inequalities which refine the well-known Khintchine Transference
Principle. Let n be a positive integer and let Θ = (θ1, . . . , θn) be a point in Rn. We
shall assume in all the forthcoming statements that the real numbers 1, θ1, . . . , θn

are linearly independent over the field Q of rational numbers. Khintchine Trans-
ference Principle relates the measure of simultaneous rational approximation to
the real numbers θ1, . . . , θn with the measure of linear independence over Q of the
numbers 1, θ1, . . . , θn. Our purpose is to split Khintchine’s inequalities into n− 1
intermediate estimates involving n exponents

ωd(Θ), 0 ≤ d ≤ n− 1,

which measure the sharpness of the approximation to the point Θ by rational linear
varieties of dimension d. We shall also be concerned with exponents of uniform
approximation (indicated by a hat) and their relations to the exponents ωd(Θ).

Let us now define algebraically the exponents ωd(Θ), as well as their uniform
analogues ω̂d(Θ). First, extend naturally the usual Euclidean norm | · | on Rn+1

to the Grassmann algebra ΛRn+1. Put

y = (1, θ1, . . . , θn) ∈ Rn+1 = Λ1Rn+1.
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Definitions. Let d be an integer with 0 ≤ d ≤ n − 1. We denote by ωd(Θ)
the supremum of the real numbers ω for which there exist infinitely many integer
decomposable multivectors X ∈ Λd+1(Zn+1) such that

|y ∧ X| ≤ |X|−ω.

We denote by ω̂d(Θ) the supremum of the real numbers ω such that for all suffi-
ciently large positive real number H , there exists a non-zero integer decomposable
multivector X ∈ Λd+1(Zn+1) satisfying

|X| ≤ H and |y ∧ X| ≤ H−ω.

It is easily seen that the extremal exponents ω0(Θ) and ωn−1(Θ) coincide with
the supremum of the real numbers ω for which there exist infinitely many integer
(n+ 1)-tuples (x0, . . . , xn) satisfying respectively the inequations

max
1≤i≤n

|x0θi−xi| ≤
(

max
0≤i≤n

|xi|
)−ω

or |x0+x1θ1+ · · ·+xnθn| ≤
(

max
0≤i≤n

|xi|
)−ω

.

Thus ω0(Θ) clearly measures the simultaneous approximation to θ1, . . . , θn by ra-
tional numbers, while ωn−1(Θ) stands for the usual measure of linear independence
of θ1, . . . , θn.

Theorem 1. For any integer d with 1 ≤ d ≤ n− 1, we have the estimate

dωd(Θ)

ωd(Θ) + d+ 1
≤ ωd−1(Θ) ≤ (n− d)ωd(Θ) − 1

n− d+ 1
.

Composing the preceding inequalities from d = 1 to d = n − 1, we recover
Khintchine Transference Principle which reads here as follows

(1)
ωn−1(Θ)

(n− 1)ωn−1(Θ) + n
≤ ω0(Θ) ≤ ωn−1(Θ) − n+ 1

n
.

We refer to [4] for more details and for an alternative geometrical definition of
the exponents ωd(Θ) in terms of distance between the point Θ and rational linear
varieties lying in the projective space Pn(R). Transfer inequalities of that type
were first investigated by Schmidt in [5].

As for the uniform exponents ω̂d(Θ) and their relations with ωd(Θ), few things
are known. The extremal exponents ω̂0(Θ) and ω̂n−1(Θ) were initially introduced
and studied by Jarńık’s. We direct the reader to [1, 2] for a survey of his results.
The two dimensional case is now fully understood.

Theorem 2. Let Θ = (θ1, θ2) be a point in R2 with 1, θ1, θ2 linearly independent
over Q. Put

v = ω1(Θ), v′ = ω0(Θ), w = ω̂1(Θ), w′ = ω̂0(Θ).

Then, the relations

2 ≤ w ≤ +∞, w′ = 1 − 1

w
,

v(w − 1)

v + w
≤ v′ ≤ v − w + 1

w
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hold. Conversely, for each quadruple (v, v′, w, w′) in (R>0 ∪ {+∞})4 as above,
there exists a point Θ in R2 such that

v = ω1(Θ), v′ = ω0(Θ), w = ω̂1(Θ), w′ = ω̂0(Θ).

Notice that our refined transfer inequalities

v(w − 1)

v + w
≤ v′ ≤ v − w + 1

w

sharpen Khintchine Transference Principle (1) when n = 2, since w ≥ 2. In di-
mension two, the uniform transfer linking w and w′, is achieved by the remarkable
Jarńık’s equation

w′ = 1 − 1

w
.

We easily deduce from Theorem 2 the non trivial lower bounds

v ≥ w2 − w and v′ ≥ w′2

1 − w′
,

which were first established by Jarńık. A proof of Theorem 2 is given in [3].
With regard to Theorems 1 and 2, we are naturally led to ask for an extension

of Theorem 2 in any dimension.

Problem. Let n be an integer ≥ 2. Describe a complete set of equations and
inequations linking the 2n exponents

ωd(Θ), ω̂d(Θ), 0 ≤ d ≤ n− 1,

for a generic point Θ ∈ Rn.

A report on the above results may also be found in [6].
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New transference ideas in the metrical theory of Diophantine
approximation

Victor Beresnevich

(joint work with Sanju Velani)

For x = (x1, . . . , xn) ∈ Rn consider the system of inequalities

(1) |qxi − pi| < ψ(q) with (pi, q) = 1 for all i = 1, n,

where (q,p) = (q, p1, . . . , pn) ∈ N × Zn. Given ψ : [0,+∞) → [0,+∞), define

Sn(ψ) = {x ∈ [0, 1]n : (1) holds for infinitely many (q,p) ∈ N × Zn}.
The measure theoretic description of Sn(ψ) goes back to Khintchine. In 1926

Khintchine proved a beautiful and simple criterion for the Lebesgue measure of
Sn(ψ), in which this measure is either 0 or 1 depending on whether the sum∑∞

q=1 ψ(q)n converges or diverges. The only restriction on ψ imposed in Khint-
chine’s theorem has been the assumption that ψ is monotonic. In an attempt to
relax this monotonicity constrain Duffin and Schaeffer stated a conjecture about
the measure of S1(ψ) later generalised by Sprindzhuk to higher dimensions:

Conjecture 1. Let ϕ be the Euler function. Then

|Sn(ψ)| = 1 if

∞∑

q=1

(ϕ(q)ψ(q)/q)n = ∞.

For n > 1 the conjecture has been proved by Pollington and Vaughan, but for
n = 1 it remains one of the most profound open questions. Only several partial
results are known in dimension 1 due to Gallagher, Erdös, Vaaler and others.

A more general and far more delicate is the theory of Hausdorff measures of
Sn(ψ). This theory goes back to Jarnik who found an analogue of Khintchine’s
theorem, again under monotonicity constrains on ψ. Nothing has been known
outside the case of monotonic ψ, in particular, about the following main problem
that generalises the conjecture of Duffin and Schaeffer to Hausdorff measures:

Conjecture 2. Let f be a dimension function, i.e. f : [0,+∞) → [0,+∞) is
continuous, monotonic and f(0) = 0. Assume that x−nf(x) is monotonic. Let ψ :
N → [0,+∞). Then the f -dimensional Hausdorff measure Hf of Sn(ψ) satisfies

Hf (Sn(ψ)) = Hf ([0, 1]n) if V f
n (ψ) :=

∞∑

q=1

f

(
ψ(q)

q

)
ϕ(q)n = ∞.

It is readily verified that if V f
n (ψ) < ∞ then Hf (Sn(ψ)) = 0, thus in certain

sense Conjecture 2 provides a complete metric theory of Sn(ψ). Clearly, Conjecture
2 contains Conjecture 1. Simply take Hf to be the Lebesgue measure. It turns out
that the converse is also true so that the two conjectures are in fact equivalent:

Theorem 1 (Beresnevich & Velani [1]). Conjecture 1 ⇐⇒ Conjecture 2.
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Because Conjecture 1 has been established for n > 1, Conjecture 2 is also true
for any n > 1. And if the original one dimensional Duffin-Schaeffer conjecture
was proved, its Hausdorff measure version would immediately follow. This at
first surprising fact has recently been obtained as a part of a general technique
developed in [1] that we have maned by Mass Transference Principle. The key
statement is the following

Theorem 2 (Beresnevich & Velani [1]). Let f be a dimension function such that
x−nf(x) monotonically decreases. Let {Bi}i be a sequence of balls in Rn with the
radii of Bi tending to 0. As usually lim supi→∞Bi denotes the set ∩∞

j=1 ∪i≥j Bi.
We define the following transformation of balls:

B 7→ Bf such that Bf (x, r) = B
(
x, f(r)1/n

)
,

where B(x, r) is the ball centred at x of radius r. If f(x) = xs then we write Bs

for Bf and Hs for Hf . Thus Bn = B. Then, for any ball B ⊂ Rn

Hn

(
B ∩ lim sup

i→∞
Bf

i

)
= Hn (B) =⇒ Hf

(
B ∩ lim sup

i→∞
Bn

i

)
= Hf (B) .

Because the Mass transference principle is insensitive to the nature of balls the
applications comprise various types of Diophantine approximation, e.g. inhomoge-
neous approximation, approximation with restricted numerator and denominator,
approximation by algebraic numbers, etc. The Mass transference principle also
works in locally compact metric spaces (see [1] for an appropriate statement) and
has been extended to the case which allows to consider Diophantine systems of
linear forms [2]. So far there is no Mass transference technique developed to the
very general framework introduced in [3].
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Khintchine’s theorem for simultaneous Diophantine approximations in
several metrics

Vasili Bernik

(joint work with Nataliya Budarina and Detta Dickinson)

Let n ∈ Z, n > 0 be fixed,

(1) P (t) = ant
n + an−1t

n−1 + · · · + a1t+ a0, ai ∈ Z, 0 ≤ j ≤ n

be an integral polynomial of degree degP ≤ n and

H = H(P ) = max
1≤j≤n

|aj |

be the height of P . We will consider the problem on approximation of zero by the
values P (x), P (z), |P (w)|p, where ū = (x, z, w) ∈ R × C × Qp. Let µ1(A) be the
Lebesgue measure of a measurable set A ⊂ R, µ2(B) is the Lebesgue measure of
a measurable set B ⊂ C, µ3(D) is the Haar measure of a measurable set D ⊂ Qp

and µ = µ1µ2µ3.
Let Ψ : N → [0,+∞) be a monotonically decreasing function, v̄ = (v1, v2, v3)

and λ̄ = (λ1, λ2, λ3) are the vectors with real positive coordinates. By Ln(v̄, λ̄)
we denote the set of triples from some parallelepiped T = I ×K ×D, where I is
an interval in R, K is a circle in C, D is a cylinder in Qp, for which the system of
inequalities

(2)





|P (x)| < H−v1Ψλ1(H),

|P (z)| < H−v2Ψλ2(H),

|P (w)|p < H−v3Ψλ3(H)

has infinitely many solutions in polynomials P (t) of the form (1).
If we take v̄ = (n − 1,−1, 0) and λ̄ = (1, 0, 0) then the set Ln(v̄, λ̄) essentially

reduces to the real case, which goes back to a famous problem of Mahler settled
by Sprindzhuk in 1964. In fact this problem corresponds to the choice of Ψ(H) =
H−1−ε with ε > 0. In the case of general monotonic Ψ the corresponding problem
has been posed by A. Baker. The solution has been given by Bernik in [1] in the
case of convergence of the sum

∑
H Ψ(H) and by Beresnevich in [2] in the case

of divergence of the same sum. Various generalisations of the real case have been
obtained for complex and p-adic case. The work [3] combines them altogether.
The following two theorems are the key statements:

Theorem 1. Assume that n ≥ 3 and

(3)

{
v1 + 2v2 + v3 = n− 3,

λ1 + 2λ2 + λ3 = 1.

Then

µLn(v̄, λ̄) = 0

provided
∑∞

H=1 Ψ(H) <∞.
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Theorem 2. If v1 = v2 = n−4
4 , v3 = n

4 , λj = 1
4 , 1 ≤ j ≤ 3. Then

µLn(v̄, λ̄) = µT

provided
∑∞

H=1 Ψ(H) = ∞.

The key to establishing Theorem 1 is a very deep generalisation of Gelfond’s
lemma which relates the upper bounds for small values of two irreducible polyno-
mials and the size of domain where these values are taken by these polynomials.
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Hypergeometrics and linear forms in zeta values

Christian Krattenthaler

(joint work with Tanguy Rivoal)

The determination of the arithmetic nature of values of the Riemann zeta func-
tion ζ(s) =

∑∞
k=1 1/ks at odd values s ≥ 3 is one of the most challenging problems

in number theory. After Apéry’s celebrated proof [2] of the irrationality of ζ(3), it
took over twenty years until the second author proved that there are infinitely many
irrational numbers among ζ(3), ζ(5), ζ(7), ζ(9), . . . , as well as the quantitative re-
sult that there is at least one irrational numbers among ζ(5), ζ(7), ζ(9), . . . , ζ(21)
(cf. [3, 8, 9, 10]). The latter result has since been improved by Zudilin [14] to the
assertion that one of ζ(5), ζ(7), ζ(9), ζ(11) is an irrational number. See [4] for a
comprehensive survey of these developments.

All the results mentioned are achieved by constructing a sequence of hypergeo-
metric series, (Sn)n≥0 say, which is shown to equal a linear combination of 1 and
values of the zeta function at odd integers ≥ 3, with rational numbers as coeffi-
cients. One then multiplies Sn by a number Nn which is big enough to cancel all
the denominators in these coefficients. In that way, one obtains a sequence NnSn

of linear combinations of 1 and values of the zeta function at odd integers ≥ 3,
with integer coefficients. Subsequently, one has to bound the growth of the linear
forms NnSn, and one has to find bounds for the growth of the coefficients of the
linear forms, as n tends to ∞. Given that these bounds are good enough, one can
apply Nesterenko’s lemma [7] to find a lower bound on the dimension of the vector
space over the rationals spanned by 1 and the zeta values which appear in the
linear combinations. The application of Nesterenko’s lenma is the more effective,
the smaller the growth of the “denominators” Nn is.
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In [9], Rivoal proposed a sequence of hypergeometric series, which would com-
prise all the constructions from [3, 8, 9, 10] as special cases. Namely, for positive
integers A, B, C, r, with A pair and 0 ≤ 2Br < A, let

Sn = n!A−2Br
∞∑

k=1

1

C!

∂C

∂kC

((
k +

n

2

) (k − rn)B
rn(k + n+ 1)B

rn

(k)A
n+1

)
.

By the usual procedure indicated above, one easily shows that

Sn = κ0 + κC+3ζ(C + 3) + κC+5ζ(C + 5) + · · · + κA+C−1ζ(A + C − 1),

where the coefficients κj are rational numbers with the property that dA+C
n κj is

an integer for all j. Here, dn denotes the least common multiple of the numbers
1, 2, . . . , n. However, computer experiments suggest that apparently dA+C−1

n “suf-
fices,” that is, that already dA+C−1

n κj is an integer for all j. This is indeed (a
special case of) our main result from [6, Théorème 1].

Theorem 1. We have dA−i−1
n κC+i ∈ Z for all i ≥ 1 and 2dA+C−1

n κ0 ∈ Z.

The monograph [6] contains in fact further results in this direction, plus re-
finements of Theorem 1, proving (among others) conjectures of Vasilyev from
[11, 12] (by taking a free ride on Zudilin’s observation [13] that Vasilyev’s inte-
grals equal very-well-poised hypergeometric series) and of Zudilin from [13]; see
[6, Théorèmes 1–6].

All the theorems are proved by making use of identities for hypergeometric
series, most prominently a thirty years old identity between a very-well-poised hy-
pergeometric series and a multiple sum due to Andrews [1, Theorem 4], combined
with a careful p-adic analysis of the resulting terms. The hypergeometric calcula-
tions have been carried out by relying heavily on the first author’s Mathematica
package HYP [5].

The “good” news is that, as a corollary, one can improve the second author’s
result from [10] to the result that one number out of ζ(5), ζ(7), ζ(9), . . . , ζ(19) is
irrational. In view of Zudilin’s result from [14] mentioned earlier, this is however
at the same bad news, since it cannot improve upon his result. However, all of
Zudilin’s constructions from [13, 14] are as well based on very-well-poised hyper-
geometric series, so that our methods are fully applicable. It is very likely that a
“denominator conjecture” holds as well for Zudilin’s constructions. He has in fact
worked out a precise denominator conjecture in [13] which would lead to the best
known upper bound on the irrationality measure of ζ(4). We are convinced that
our methods will in the end lead to a proof of this conjecture.
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Linear independence of values of Tschakaloff series

Wadim Zudilin

(joint work with Keijo Väänänen)

The arithmetic properties of values of the Tschakaloff function

Tq(z) =

∞∑

ν=0

q−ν(ν+1)/2zν , |q| > 1,

have been investigated in many works. One of the open problems is to prove linear
independence of values of Tq(z) with different values of the parameter q. The only
result obtained in this direction in [1] is very restrictive, and in the present paper
we generalize it considerably.

Let q ∈ Z \ {0,±1}, and let t1, . . . , td be positive integers (not necessarily
distinct). We will distinguish the following two cases:

(1) all the numbers
√
ti/tj for i 6= j are irrational, and

(2) some of the numbers
√
ti/tj are rational.
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We will say that an ordered pair of (real or complex) numbers β and β̂ belongs to a

rational exponent γ = m/n if there exist integers s and r such that β̂ms/βns = qr,

i.e., if the numbers β̂γ/β and q are multiplicatively dependent.

Theorem 1. Let β1, . . . , βd be nonzero rationals. Then the numbers

1, Tqt1 (β1), . . . , Tqtd (βd)

are linearly independent over Q if case (1) holds or in case (2), for any i 6= j such

that
√
ti/tj ∈ Q, the pair βi, βj does not belong to the exponent

√
ti/tj.

As special cases of Theorem 1 we have, for example, the linear independence of
1, Tq(β1), Tq2(β2) and Tq3(β3) for all β1, β2, β3 ∈ Q\{0}, or the linear independence
of 1, Tq(β1), Tq2(β2) and Tq4(β3) for all β1, β2, β3 ∈ Q \ {0} unless the numbers
β2

3/β1 and q are multiplicatively dependent.
If β1 = · · · = βd, Theorem 1 implies the following result.

Theorem 2. Let β ∈ Q \ {0}, and let the integers t1, . . . , td be distinct. Then the
numbers

1, Tqt1 (β), . . . , Tqtd (β)

are linearly independent over Q if case (1) holds or in case (2) the numbers β and
q are multiplicatively independent.

Our considerations imply also linear independence results for values of the theta
series

Θ(q−1, z) =

∞∑

ν=−∞

q−ν2

zν

(cf. [1]) related to the Tschakaloff function by the equality

Θ(q−1, z) = Tq2

(z
q

)
+ Tq2

( 1

qz

)
− 1.

Theorem 3. Let β1, . . . , βd be nonzero rationals such that the two numbers βi and
q are multiplicatively independent for all i. Then the numbers

1, Θ(q−t1 , β1), . . . , Θ(q−td , βd)

are linearly independent over Q if case (1) holds or in case (2), for any i 6= j

such that
√
ti/tj ∈ Q, any of the pairs βi, βj and β−1

i , βj does not belong to the

exponent
√
ti/tj.

Theorem 4. Let β ∈ Q \ {0} and q be multiplicatively independent, and let the
integers t1, . . . , td be distinct. Then the numbers

1, Θ(q−t1 , β), . . . , Θ(q−td , β)

are linearly independent over Q.

Our theorems remain valid if we replace Q by an imaginary quadratic field I
and Z by the ring of integers of I. We also stress that, due to the quantitative
character of the method used in our proof, it is possible to estimate from below
linear forms with integer coefficients involving the numbers in question.
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Lagrangian interpolation and zeta values

Tanguy Rivoal

Interpolation series theory (i.e., expansion of entire functions in series of polyno-
mials where the roots of the polynomials belong to a fixed set of C) played an
important rôle in diophantine approximation at the beginning of the twentieth
century. In particular, it was used by Pólya [6] when he proved that the function
2z is the entire function of smallest growth which sends N in Z. The transcendence
of eα for any algebraic number α 6= 0 was also obtained by Siegel [8] by expanding
exp(z) at suitable interpolation points.

Interpolation methods were crucial in Gel’fond’s proof the transcendence of eπ

(see [3]): this was a first step towards the proof of Hilbert’s 7th problem that αβ is
transcendental when α, β are algebraic numbers, with α 6= 0, 1 and β irrational. He
first expanded the entire function exp(πz) in interpolation series at interpolation
points (αn)n≥0 given by the gaußian integers ordered by increasing modulus and
argument, without multiplicity: we have eπz =

∑∞
n=0An z(z − α1) · · · (z − αn−1)

for all z ∈ C, where the coefficients An are given by a certain complex integral.
By the residue theorem, we obtain

An =

n∑

k=0

eπαk

∏
0≤j≤n

j 6=k
(αk − αj)

=

n∑

k=0

eπαk

ωn,k
= Pn(eπ),

where Pn(X) ∈ Q(i)[X, 1/X ] is of degree
√
n/π+ o(

√
n) in X and 1/X . Gel’fond

then proved the following results:
1) The number Pn(eπ) is non zero for infinitely many n because exp(πz) is not

a polynomial.
2) There exists Ωn ∈ Q(i) such that ΩnPn(eπ) ∈ Z[i][eπ, e−π] and the height

Hn of the Laurent polynomial ΩnPn(X) is bounded by eO(n).
3) We have ΩnPn(eπ) ≪ exp(−n log(n) + O(n)).
The conclusion follows by standard arguments. Despite some works by

Boehle [2], Kuzmin [4] and Siegel [8] for example, interpolation methods were
replaced by more powerful (and less explicit) methods based on auxiliary func-
tions contructed thanks to Siegel’s lemma.

The aim of my talk during the Oberwolfach meeting was to report on my recent
work [7], in which I show how another kind of interpolation process can be used
in irrationality theory. More precisely, I show that the irrationality of log(2), ζ(2)
and ζ(3) (Apéry’s theorem [1]) can be obtained by expanding the Hurwitz zeta
function ζ(s, z) =

∑∞
k=1 1/(k + z)s or related functions in interpolation series of

rational functions (not only polynomials). Such an interpolation process was first
studied by René Lagrange [5] in 1935 when the degree of the numerators and
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denominators of the rational summands are essentially equal. For example, using
certain of his formulae, I proved the following:

Theorem 1 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have that

ζ(2, z) =
∞∑

n=0

A2n
(z − n+ 1)2n

(z + 1)2n
+

∞∑

n=0

A2n+1
(z − n+ 1)2n

(z + 1)2n

z − n

z + n+ 1
,

where A0 = ζ(2) and, for all n ≥ 0,

A2n+1 =
2n+ 1

2πi

∫

Cn

(x+ 1)2n
(x− n)2n+1

ζ(2, x) dx ∈ Qζ(3) + Q

and

A2n+2 =
2n+ 2

2πi

∫

Cn

(x+ 1)2n
(x − n)2n+1

x+ n+ 1

x− n− 1
ζ(2, x) dx ∈ Qζ(3) + Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ(2, z).

(By definition, (u)0 = 1 and (u)m = u(u + 1) · · · (u +m− 1) for m ≥ 1.) The
irrationality of ζ(3) is a corollary of this theorem. Indeed, by the residue theorem,
it is easy to compute explicitely the coefficient An and to deduce that

d3
nAn = unζ(3) − vn ∈ Zζ(3) + Z

where dn = lcm(1, 2, . . . , n). Furthermore, from the integral representation of An,
we obtain that

lim sup
n→+∞

(d3
nAn)1/n ≤ e3(

√
2 − 1)4 < 1.

Since ζ(2, z) is not a rational function of z, we necessarily have An 6= 0 for infinitely
many n and the irrationality of ζ(3) is proved.

Similarly, the irrationality of log(2) can be deduced from the following result.
Let

ζ̃(1, z) =

∞∑

n=1

(−1)n

n+ z
.

Theorem 2 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have

(1) ζ̃(1, z) =
∞∑

n=1

An
(z − n+ 2)n−1

(z + 1)n

where, for all n ≥ 0,

An+1 =
2n+ 1

2πi

∫

Cn

(x+ 1)n

(x − n)n+1
ζ̃(1, x) dx ∈ Q log(2) + Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ̃(1, z).
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I don’t know if it is possible to obtain the irrationality of ζ(2) by means of
R. Lagrange’s interpolation. Instead, I found new interpolation formulae which
enabled me to use rational functions with unequal degrees for the numerators and
denominators. The irrationality of ζ(2) is then a consequence of the following
theorem. By a slight abuse of notations, let

ζ(1, z) =

∞∑

n=1

(
1

n
− 1

n+ z

)
.

Theorem 3 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have

ζ(1, z) =

∞∑

n=0

An
(z − n+ 1)2n

(z + 1)n
+

∞∑

n=0

Bn
(z − n+ 1)2n

(z + 1)n

z − n

z + n+ 1

where A0 = B0 = 0 and, for all n ≥ 1,

An =
1

2πi

∫

Cn

(x+ 1)n(x− n)

(x− n)2n+1

ζ(1, x) dx ∈ Qζ(2) + Q

and

Bn =
2n

2πi

∫

Cn

(x+ 1)n

(x− n)2n+1

ζ(1, x) dx ∈ Qζ(2) + Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ(1, z).
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Multidimensional integrals over the unit hypercube representing
linear forms in zeta-values

Carlo Viola

(joint work with Georges Rhin)

Since Rivoal’s theorem [1], [5] on the existence of infinitely many irrational values
of the Riemann zeta-function at odd positive integers, the arithmetical study of
Q-linear forms in the values of the zeta-function at positive integers aroused the
interest of several authors. The main techniques employed are the study of multiple
hypergeometric and polylogarithmic series, and the arithmetical study of multiple
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integrals of suitable rational functions over the unit hypercube. Concerning the
latter, of special interest are (i) the Beukers-type multiple integrals:

Bn :=

∫

(0,1)n

Xa1
1 (1 −X1)

b1 . . . Xan
n (1 −Xn)bn

(1 − (1 −X1 . . .Xn−1)Xn)bn+a1−c1

dX1 . . .dXn

1 − (1 −X1 . . . Xn−1)Xn
,

where (to ensure convergence of Bn) a1, . . . , an; b1, . . . , bn; c1 are any non-negative
integers such that

(1)

c2 := a2 + c1 − a1,

c3 := a3 + c2 − a2,

. . . . . . . . .

cn−1 := an−1 + cn−2 − an−2

are also non-negative, and (ii) the Sorokin-type multiple integrals:

Sn :=

∫

(0,1)n

xbn

1 (1 − x1)
an−1 x

cn−1

2 (1 − x2)
bn−1 . . . xc1

n (1 − xn)b1

(1 − x1x2)an−1+bn−1−an−2 . . . (1 − x1 . . . xn−1)a2+b2−a1(1 − x1 . . . xn)a1+b1−an

× dx1 . . . dxn

(1 − x1x2) . . . (1 − x1 . . . xn)

where the exponents satisfy the constraints (1).
In [4] we prove that

Bn = Sn,

using as a change of variables the birational transformation

ηn : (x1, . . . , xn) 7−→ (X1, . . . , Xn)

defined by the equations

ηn :





X1 =
(1 − x1 . . . xn−1)xn

1 − x1 . . . xn

X2 =
(1 − x1 . . . xn−2)xn−1

1 − x1 . . . xn−1

. . . . . . . . . . . . .

Xn−1 =
(1 − x1)x2

1 − x1x2

Xn = 1 − x1 . . . xn.

It is easily seen that ηn is a one-to-one mapping of the open unit hypercube (0, 1)n

onto (0, 1)n, and that ηn is a solution to the partial differential equation

dX1 . . .dXn

1 − (1 −X1 . . . Xn−1)Xn
= (−1)[n/2]+1 dx1 . . . dxn

(1 − x1x2) . . . (1 − x1 . . . xn)
.
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Using the equality of Bn and Sn, we also prove that

(2) Bn = Sn = A1 +A2ζ(2) +A3ζ(3) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n)

with A1, A2, . . . , An−1 ∈ Q, An ∈ Z. On the other hand, as was shown in a recent
paper by Cresson, Fischler and Rivoal [2], more general Sorokin-type multiple
integrals are Q-linear combinations of polyzeta-values. Thus our result (2) shows
that (1) are natural constraints for Sn, since they make Sn rid of polyzeta-values.

The representation (2) for Bn:

Bn = A1 +A2ζ(2) +A3ζ(3) + . . .+An−1ζ(n− 1) +An(n− 1)ζ(n)

can also be obtained as a special case of some formulae of Nesterenko [3] relating
multiple integrals over the unit hypercube with complex integrals of Mellin-Barnes
type and with linear forms in polylogarithms.
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On a problem of Diophantus and Euler

Clemens Fuchs

Diophantus of Alexandria was interested in finding sets of (rational) numbers with
the property that the product of any two of its distinct elements plus their sum
is a perfect square. He gave the examples {4, 9, 28}, { 3

10 ,
21
5 ,

7
10}. Euler gave an

example of a set consisting of four rational numbers with this property, namely
{ 5

2 ,
9
56 ,

9
224 ,

65
224}. He asked the following:

Euler’s question: Is there a set consisting of four positive inte-
gers and the property that the product of any two distinct elements
plus their sum is a perfect square, i.e. ∃D ⊆ Z>0 such that for all
x, y ∈ D, x 6= y : xy + x+ y is always a perfect square?

It is interesting to observe that xy + x + y = (x + 1)(y + 1) − 1 and therefore
we may equivalently ask for sets of integers larger than 1 with the property that
the product of any two distinct elements decreased by 1 is a perfect square. This
is related to another problem in which already Diophantus was interested in (for
a general account on this see [Dujella]’s m-tuple page).

Let us mention that there are infinitely many sets with three elements and
the above property, e.g. {1, 2x2 + 2x, 2x2 + 6x+ 4}, {x2, (x + 1)2, (2x+ 1)2 + 3}.
But these sets cannot be extended to sets D sought by Euler at least under the



1166 Oberwolfach Report 21/2007

assumption x 6≡ 1 modulo 4 in the first and x 6≡ 0 modulo 4 in the second case
(this was shown by [Brown]).

Recently jointly with A. Dujella we gave the answer to the question of Euler.

Theorem ([Dujella - F.]). The answer to Euler’s question is no.

More generally, we can consider D ⊆ Z; but if there is one negative element in
D, then all have to be less then −1 and by changing all the signs simultaneously
we get a set considered in the theorem. However, it is not natural to exclude zero
from D and this leads to a much harder problem. If 0 ∈ D, then all elements are
squares. Recently, we were able to prove the following

Theorem ([Dujella - Filipin - F.]). There are at most finitely many sets D of
four integers such that the product of any two distinct elements from this set plus

their sum is a perfect square. Moreover, maxD ≤ 101023

.

The open problem remains to calculate all the remaining possibilities, the con-
jecture being that there is no such set at all.

The method of proof can be outlined as follows: From the first theorem above we
may assume that D = {0, r2, s2, t2} with 0 < r < s < x. We set b− 1 = r2, c− 1 =
s2, then r2s2 + r2 + s2 = bc−1 = t2. Moreover d−1 = x2, bd−1 = y2, cd−1 = z2

with 1 < b < c < d. Now we describe all possible d’s once we start with given
fixed b and c and in this way we prove an absolute upper bound for d. Thus we
have to consider the system of Pellian equations given by

z2 − cx2 = c− 1, bz2 − cy2 = c− b, y2 − bx2 = b− 1,

where each two have a variable in common. By using the theory of Pellian equa-
tions we reduce the problem to find z = vm = wn, where v0 = z0, v1 = (2c−1)z0+
2scx0, vm+2 = (4c− 2)vm+1 − vm and w0 = z1, w1 = (2bc− 1)z1 + 2tcy1, wn+2 =
(4bc− 2)wn+1 − wn with |x0| < s, |y1| < t, 0 < z0, z1 < c.

Using the recurring relations one can show that, if vm = wn, then z0 = z1,m ≡ n
mod 2, n ≤ m ≤ 2n andm2z0+smx0 ≡ bn2z1+tny1 modulo c. The last important
relation implies that the sequences cannot have intersections for small indices
and therefore we get d > b9 (this was an essential conclusion in the proof in
[Dujella - F.]).

To finish the proof we consider six different cases, namely c > b9, 11b3 ≤ c ≤
b9, b3 < c < 11b6, b1.1 < c ≤ b3, 3b < c ≤ b1.1 and c < 3b, and in each case we
first prove a lower bound for n in terms of a power of c. The case of medium size
solutions (the range b1.1 < c < b3) is most delicate and in fact this is the most
important new part of the proof.

If c ≥ 11b6, then Bennett’s theorem on simultaneous approximations of square
roots which are close to 1 (in a slightly refined version for our context by [Fujita])
gives the result.
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In all other cases we compare the lower bounds for n with upper bounds obtained
by turning vm = wn into a linear form in three logarithms and using Baker’s theory

(we used [Matveev]’s theorem) and in this way, finally, we conclude with d ≤ 101023

.
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Diophantine m-tuples and generalizations

Andrej Dujella

A set of m positive integers is called a Diophantine m-tuple if the product of its
any two distinct elements increased by 1 is a perfect square. Diophantus himself
found a set of four positive rationals with the above property, while the first Dio-
phantine quadruple, the set {1, 3, 8, 120}, was found by Fermat. In 1969, Baker
and Davenport proved that this particular quadruple cannot be extended to a
Diophantine quintuple. A folklore conjecture is that there does not exist a Dio-
phantine quintuple.

In 2004, we have proved that there does not exist a Diophantine sextuple
and there are only finitely many Diophantine quintuples. However, the bounds
for the size of the elements of a (hypothetical) Diophantine quintuple are huge

(largest element is less than 101026

), so the remaining cases cannot be checked
on a computer. The stronger version of this conjecture states that if {a, b, c, d}
is a Diophantine quadruple and d > max{a, b, c}, then d = a + b + c + 2abc +

2
√

(ab+ 1)(ac+ 1)(bc+ 1). Diophantine quadruples of this form are called regu-
lar.

In our future attempt to prove the Diophantine quintuple conjecture, our strat-
egy will be to consider two different cases, depending on whether the hypothetical
quintuple extends a regular or irregular Diophantine quadruple. The problem of
extension of given Diophantine triple to a quadruple leads to solving a system
of Pellian equations, and this leads to finding the intersection of binary recursive
sequences. By a precise analysis of the initial terms of these sequences, we would
like to improve inequalities which have to be satisfied by irregular quadruples. At
present, it is known that d > c3, and we intend to prove something like d > c7.
Such an inequality will allow us to apply very useful results (e.g. a result due to
Bennett) on simultaneous Diophantine approximation of algebraic number close to
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1. For the proof of extendibility of regular Diophantine quadruples, we intend to
improve the congruence method, which is used to obtain lower bounds for solutions
of the system of Pellian equations. We will again distinguish two cases depending
of the form of the third element in the quadruple (one case is c = a+b+2

√
ab+ 1).

In order to obtain upper bounds for solutions, we will use recent results, due to
Matveev and Mignotte, on linear forms in logarithms of three algebraic numbers.
The last step in the proof will certainly include an extensive verification on com-
puters. Namely, we will have to check, by applying Baker-Davenport reduction
method, that large (but hopefully reasonable) number of systems of Pellian equa-
tions have only trivial solutions. The proposed methods and steps of the proof
have been recently tested, in the joint work with Yann Bugeaud and Maurice
Mignotte, on the family of Diophantine triples {k − 1, k + 1, 16k3 − 4k}, and we
were able to prove that for this family the strong conjecture of unique extension
to a Diophantine quadruple is valid.

Concerning rational Diophantine m-tuples, it is expected that there exist an
absolute upper bound for their size. Such a result will follow from the Lang
conjecture on varieties of general type. Very related problem is to find an upper
bound Mn for the size of D(n)-tuples (for given non-zero integer n), i.e. sets of
positive integers with property that xy + n is perfect square for all of its distinct
elements x, y. Again, the Lang conjecture implies that there exist an absolute
upper bound for Mn (independent on n). However, at present, the best known
upper bounds [Dujella, 2004] are of the shape Mn < c log |n|. Recently, in our joint
paper with Florian Luca, we were able to obtain an absolute upper bound for Mp,
where p is a prime. Let us mention that several examples of rational Diophantine
sextuples are known [Gibbs, 1999-2006], but it is not know whether there exist
infinitely many such sextuples.

An interesting open question arises even when we consider the existence of
quadruples. Namely, we stated the following conjecture: if n is not a perfect
square, then there exist only finitely many D(n)-quadruples. It is very easy to
verify the conjecture in case n ≡ 2 (mod 4) (then there does not exist a D(n)-
quadruple [Brown, 1984]), and recently, in the joint work with Clemens Fuchs and
Alan Filipin, we have proved this conjecture in cases n = −1 and n = −4.

Quartic Diophantine Equations : the work of Akhtari

Michael Bennett

Over a period of nearly forty years, Wilhelm Ljunggren derived a number of re-
markable sharp bounds for the number of solutions to various quartic Diophantine
equations, particularly those of the shape

(1) aX4 − bY 2 = ±1,

typically via application of Skolem’s p-adic method (some of the more sophisti-
cated of Ljunggren’s work essentially represents the earliest use of what would
nowadays be termed “elliptic Chabauty techniques”) . In recent years, there has
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been renewed interest in Ljunggren’s work (and quite a bit if recent progress on
such equations). For example, using lower bounds for linear forms in logarithms,
together with an assortment of elementary arguments, Walsh and I showed that
the equation

(2) aX4 − bY 2 = 1

has at most one solution in positive integers X and Y , when a is an integral
square and b is a positive integer. On the other hand, for general a and b, there
was, until recently, no absolute upper bound for the number of integral solutions
to (2) available in the literature, unless one makes strong additional arithmetic
assumptions. This lies in sharp contrast to the situation for the apparently similar
equation

(3) aX4 − bY 2 = −1

which Ljunggren was able to show to have at most two positive integral solutions,
for arbitrary fixed a and b. Moreover, it appears that the techniques employed
to treat equation (3) and, in special cases, (2), do not lead to results for (2) in
general.

In this talk, I will survey recent work of Akhtari that rectifies this situation.
Her main result is the following

Theorem 1. Let a and b be positive integers. Then equation (2) has at most two
solutions in positive integers (X,Y ).

This resolves a conjecture of Walsh. Since there are infinitely many pairs (a, b)
for which two such solutions exist, this result is also best possible.

Akhtari’s proof relies upon classical techniques of Thue from the theory of
Diophantine approximation, applied to quartic Thue inequalities of the shape

|F (x, y)| ≤ k,

where F is a binary quartic form. Specifically, she obtains sharp bounds for the
number of solutions in integers to constrained inequalities of the shape

(4) 0 < P (x, y) = x4 + 4tx3y − 6tx2y2 − 4t2xy3 + t2y4 ≤ t2, xy > 64t3.

To reach such an inequality, she first uses properties of binary recurrence sequences
to reduce the problem of bounding solutions to (2) to answering a like question
for

(t+ 1)X4 − tY 2 = 1,

which then can be shown, via elementary means, to give rise to solutions to (4).
To proceed, Akhtari defines ξ = ξ(x, y) and η = η(x, y) to be linear functions

of (x, y) so that

ξ4 = 4 (
√
−t+ 1)(x−

√
−ty)4 and η4 = 4 (

√
−t− 1)(x+

√
−ty)4.

We have

P (x, y) =
1

8
(ξ4 − η4)



1170 Oberwolfach Report 21/2007

and if (ξ, η) is a pair of such forms, then there are precisely three others with
distinct ratios, say (−ξ, η), (iξ, η) and (−iξ, η). Essentially, this diagonalizes the
form P (x, y), making possible direct application of classical results from the theory
of Padé approximation to binomial functions. These are polynomials of degree r
(or close to it), with rational coefficients, satisfying, say,

(5) Ar(z) − (1 − z)1/4Br(z) = z2r+1Fr(z),

for a power series Fr(z). For a fixed choice of ω, a fourth root of unity, and (ξ, η)
a fixed pair of forms as above, set

z = 1 −
(
η(x, y)

ξ(x, y)

)4

.

Akhtari shows that we may suppose, essentially without loss of generality, that
∣∣∣∣ω − η(x, y)

ξ(x, y)

∣∣∣∣ <
π

12
|z|,

for each nontrivial solution (x, y) to (4).
Supposing that there are distinct coprime positive solutions (x1, y1) and (x2, y2)

to inequality (4), each related to ω as above, and writing ηi = η(xi, yi) and ξi =
ξ(xi, yi), the key to Akhtari’s proof is to show that |η2| is arbitrarily large in size
in comparison to |η1|, contradicting the existence of 2 solutions corresponding to
ω. By restricting to a single choice of ω, in a rather clever way, Akhtari proves
Theorem 1.

The focal point of this part of the proof is (I’m oversimplifying things somewhat)
to consider the complex sequences Σr given by

Σr =
η2
ξ2
Ar(z1) − (−1)r η1

ξ1
Br(z1)

where z1 = 1 − η4
1/ξ

4
1 . Defining

Λr =
ξ4r+1
1 ξ2

(−t− 1)1/4
Σr,

Akhtari shows that Λr is an integer in Q(
√−t); provided Σr 6= 0, this provides

a lower bound upon its absolute value. Together with a modification of a “gap
principle” of Evertse (to force |η1| and |η2| apart in size), this leads to the desired
contradiction.

Apéry-like recursion and continued fraction for π cothπ

Kh. Hessami Pilehrood and T. Hessami Pilehrood

In 1929 A. O. Gel’fond proved that eπ is transcendental. This fact is a spe-
cial case of Hilbert’s seventh problem, which was solved independently by A. O.
Gel’fond and Th. Schneider in 1934 (see [1], [2, Ch.3] for details). In 1932 Koksma
and Popken [5] established the following quantitative refinement of Gel’fond’s the-
orem.
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Theorem. ([2, p.102]) Let ε be an arbitrary positive number. Every polynomial
P ∈ Z[x], P (x) 6≡ 0, satisfies the inequality

|P (eπ)| ≥ C ·H−(4+ε) ln H
ln ln H ,

where H = max(H(P ), 3) and C is a positive constant depending only on degP
and ε.

However, it is unknown whether eπ is a Liouville number. This question has
not yet been solved and conjecturally eπ is not a Liouville number (see [8, p.263]).
Thus, the problem of constructing rational approximations to any number related
to eπ represents an independent interest. In this presentation we deal with the
number

π cothπ = π · e
π + e−π

eπ − e−π
= 1 +

∞∑

n=1

2

n2 + 1
,

which is transcendental in view of algebraic independence of π and eπ due to
Nesterenko’s result [6]. Studying certain nearly-poised hypergeometric series with
complex parameters, which give us linear forms in π cothπ and 1 with rational
coefficients and applying Zeilberger’s algorithm of creative telescoping [7, Section
6] we obtain a second order difference equation for these forms and their coeffi-
cients. As a consequence, we find a new decomposition of π cothπ into a continued
fraction, which produces a rapidly convergent sequence of rational approximations
to this number.

We consider the second-order difference equation

(n2 + 2n+ 2)(n2 + 2n+ 5)p(n)un+1 − q(n)un − n2(n2 + 1)p(n+ 1)un−1 = 0,

where

(1) p(n) = 5n2 +2, q(n) = 55n6 +165n5+242n4 +209n3 +127n2 +50n+12,

with the initial data

u0 = 1, u1 =
3

5
, v0 = 1, v1 = 2

and its two corresponding independent solutions un and vn.

Theorem 1. For every n = 0, 1, 2, . . . , the numbers un and vn are positive ratio-
nals such that

lim
n→∞

vn

un
= π cothπ,

lim
n→∞

∣∣∣π cothπ − vn

un

∣∣∣
1
n

=
(√5 − 1

2

)10

= exp(−4.81211825 . . .),

lim
n→∞

u
1
n
n = lim

n→∞
v

1
n
n =

(√5 + 1

2

)5

= exp(2.40605912 . . .).

The denominators un can be derived explicitly

un =
n∑

k=0

bk,n =
n∏

j=1

(j2 + 1

j2 + 4

)
·

n∑

k=0

(−1)n+k

(
n

k

) k∏

j=1

(n+ j)2 + 1

j2 + 1
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and the numerators vn are given by the formula

vn = 2

n∑

k=0

k∑

l=0

lak,n + bk,n

l2 + 1
− un,

where ak,n and bk,n are the real and imaginary parts of the complex number

i

(
n

k

)
(k + 1 + i)n

(1 + 2i)k(1 − 2i)n−k
,

respectively. It can be shown (see [3, Lemma 3]) that the least common denomi-
nator of the numbers ak,n, bk,n, k = 0, 1, . . . , n, is bounded by ecn log n with some
absolute constant c and therefore this construction doesn’t allow one to obtain
quantitative irrationality results.

If we consider vn

un
as convergents of a continued fraction for π cothπ and make

an equivalence transformation of the fraction [4, Th.2.6], we get

Theorem 2. The following continued fraction expansion is valid:

π cothπ =

1 +
28

q(0) +

20p(0)p(2)

q(1) +
. . .

+

n2(n2 + 1)2(n2 + 4)p(n− 1)p(n+ 1)

q(n) +
. . . ,

where the polynomials p(n), q(n) are defined in (1).
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Hilbert’s tenth problem:
Diophantine equations from an algorithmical point of view

Yuri Matiyasevich

The talk contained short history of the negative solution of Hilbert’s tenth problem
and a survey of some other impossibility results about Diophantine equations. As
an example we can state

Theorem (Matiyasevich [1]). One can construct an exponential Diophantine
equation

(1) EL(a, x1, x2, . . . , xm) = ER(a, x1, x2, . . . , xm)

with the following properties:

• for every value of the parameter a, the equation (1) has at most one solu-
tion in x1, . . . , xm;

• for every total (i.e., defined for all values of its argument) effectively com-
putable function σ there is a value of a for which the equation (1) has a
solution x1, . . . , xm such that x1 > σ(a).

The left- and right-hand sides in (1) contains the exponentiation. It still remains
an

Open problem. To improve the above theorem to the case of genuine Dio-
phantine equations (possibly under the weaker requirement of the existence of only
finitely many solutions).
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Around a problem of Mahler and Mendès France

Boris Adamczewski

One motivation for this talk comes from a number theoretical problem concerning
the expansion of algebraic numbers in integer bases. It appears at the end of a
paper of Mendès France, but in conversation he attributes the paternity of this
problem to Mahler. The problem reads as follows: for any non-eventually periodic
binary sequence (an)n≥0, prove that at least one of the two real numbers

α =
∑

n≥0

an

2n
and β =

∑

n≥0

an

3n

is transcendental. At first glance, this problem seems contrived, but behind it hides
the more fundamental question of the structure of representations of real numbers
in two mutliplicatively independent integer bases. Unfortunately, problems of this
type are difficult and, up to now, it seems that no progress has been achieved
towards this particular question.

However, when considering addition and multiplication without carry things
become easier. In particular, we have a nice result of Christol, Kamae, Mendès
France and Rauzy [4]: a sequence of coefficients represents two algebraic power
series in distinct characteristics if and only if these power series are rational func-
tions. In particular, Christol et al. give the following result, solving the positive
characteristic analog of the problem.

Theorem 1 (Christol et al.). Let (an)n≥0 be a binary sequence. Then, the formal
power series

f(t) =
∑

n≥0

ant
n ∈ F2((t)) and g(t) =

∑

n≥0

ant
n ∈ F3((t))

are both algebraic (respectively over F2(t) and F3(t)) if and only if they are rational
functions.

As was remarked by Christol et al., Theorem 1 is a straightforward consequence
of two important results. On one side, Christol’s theorem describes precisely in
terms of automata the algebraic closure of Fq(t) in Fq((t)) (q being a power of
a prime p). On the other side, one finds Cobham’s theorem proving that for
multiplicatively independent positive integers k and l, a sequence that is both k-
and l-automatic is eventually periodic.

In this talk, we will survey some results related to the positive characteristic, to
the mixed charcteristic and to the p-adic counterparts of the problem of Mahler
and Mendès France. These results involve tools from automa theory, combinaotrics
on words and Diophantine approximation.

(i) Following [1], we will explain how to generalize Theorem 1 to the fields of
generalized power series introduced by Hahn (and we will give some motivation for
that). This work relies on the recent generalization of Christol’s theorem obtained
by Kedlaya [5].
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(ii) We will also discuss the following solution to the mixed-characteristic
analog of the Mahler–Mendès France problem.

Theorem 2. Let p be a prime, (an)n≥1 be an infinite sequence on {0, 1, . . . , p−1}
and set

α =

+∞∑

n=1

an

pn
and f(t) =

+∞∑

n=1

ant
n ∈ Fp((t)).

Then, α and f are algebraic (resp. over Q and over Fp(t)) if and only if both are
rational.

This result (proved in [2]) relies on Chrisol’s theorem and on a p-adic version
of the subspace theorem.

(iii) The p-adic counterpart of the problem is raised in [3] and reads as follows.

Problem. Let p be a prime number, (an)n≥1 be an infinite sequence on
{0, 1, . . . , p− 1}, and set

α =

+∞∑

n=1

an

pn
and αp =

+∞∑

n=1

anp
n.

Then, prove that the real number α and the p-adic number αp are algebraic if and
only if both are rational.

In [3], we solve some particular instance of this problem, namely in the case where
we can detect an excess of symmetry in the sequence (an)n≥1. This result relies
on the p-adic subspace theorem.
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Functional approximations of curves in projective spaces

Patrice Philippon

The approximation of transcendental objects by algebraic ones is an important tool
in diophantine approximation, it reduces algebraic independence type properties
to approximation ones. We will present results in the functional case when one
approximates germs of transcendental functions (in a single variable) by algebraic
functions. This has applications in the context of multiplicity estimates.

Let k be a commutative algebraically closed field and z a variable on this field.
We denote C := k((z)) and C an algebraic closure of C. For α, β ∈ Pn(C) we
define

Ordz(α ∧ β) := min
0≤i<j≤n

ordz(αiβj − αjβi) − ordz(α) − ordz(β) ,

where ordz stands for the extension to C of the order valuation of C.
One of our typical approximation result reads [2] :

Transference lemma – Let b ≥ 2n−1, µ ≥ n ≥ 2 and φ ∈ Pn(C) such that φ0 6= 0

et φ1

φ0
∈ k(z) \ k, if a non zero form P ∈ k[X0, . . . , Xn] satisfies d◦P ≥ 2(n + 1)

and

ordz(P ◦ φ) − d◦P.ordz(φ) > bd◦Pµ ,

then there exists a cycle Z = {α1, . . . , αD} ⊂ Pn(k(z)) of dimension 0 and defined
over k(z), contained in the set of zeros of P , satisfying

D = deg(Z) ≤ b
n−2
n−1 d◦P

1+µ(n−2)
n−1 , h(Z) ≤ h(φ0 : φ1)b

n−2
n−1 d◦P

1+µ(n−2)
n−1

and
∑

α∈Z

Ordz(α ∧ φ) >
1

4cn
b

1
n−1

(
h(Z)

h(φ0 : φ1)
+ deg(Z)

)
d◦P

µ−1
n−1

>
1

2cn
b

1
1+µ(n−2)

(
1

2

(
h(Z)

h(φ0 : φ1)
+ deg(Z)

)) µ(n−1)
1+µ(n−2)

The usual metric equivalent (for complex or p-adic numbers) of this lemma is
still a conjecture, which has been proved only when n ≤ 3, see [1].

This lemma can be used in order to prove multiplicity estimates for families of
series in one variable, satisfying a certain type of algebraic (functional or differen-
tial) equations [2].
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Hilbert irreducibility theorem for linear algebraic groups

Pietro Corvaja

The celebrated Hilbert Irreducibility Theorem can be rephrased in the following
way:

Theorem (HIT). Let Y be an affine curve defined over Q, not necessarely
irreducible, π : Y → Ga be a finite morphism. If every integer has a rational
pre-image, i.e. π(Y (Q)) ⊃ Z, then π admits a section (defined over Q).

Here Ga is the additive group, isomorphic as an algebraic variety to the affine
line A1, and Z is the group of integers, which is a Zariski-dense subgroup of Ga.

We consider natural generalizations to linear algebraic groups, not necessarily
commutative. Using recent results of A. Ferretti and U. Zannier on diophantine
equations involving linear recurrence sequences, we prove:

Main Theorem. Let G be a connected linear algebraic group, defined over a
number field k; let Y be an (affine) smooth algebraic variety, π : Y → G a finite
map. Let Γ ⊂ G(k) be a Zariski-dense subgroup. If π(Y (k)) ⊃ Γ then there exists
an irreducible component Y ′ of Y such that the map π|Y ′ : Y ′ → G is unramified.
In particular, Y ′ admits an algebraic group structure.

This generalizes a result of P. Dèbes for the multiplicative group Gm, which
was obtained via Siegel’s Theorem on integral points on curves.

As a corollary we obtain that no Zariski-dense subgroup of a simply connected
(linear) algebraic group is thin.

A second corollary asserts that in every Zariski-dense subgroup of GLn(k) there
exist matrices whose characteristic polynomial is irreducible over k. As a very
special case we obtain the following result, proved by J. Bernik:

Corollary. Let Γ ⊂ GLn(C) be a sub-semigroup. Suppose there exist a finitely
generated field k ⊂ C containing the spectrum of every element of Γ. Then the
subgroup generated by Γ contains a normal solvable subgroup of finite index.

We shall also discuss some conjectural extensions of the above Main Theorem
to semi-abelian varieties. We first recall the notion of S-integral point of a quasi
projective variety. Given a finite set of places S of a number field k, a quasi-
projective variety V ⊂ PN , let D = V̄ \V be its complement in the Zariski-closure
V̄ of V (so D = ∅ if V is projective). We say that a rational point P ∈ V (k) is
S-integral if for no prime ν outside S, the ν-reduction of P lies in D.

We propose the following

Conjecture. Let G be a semi-abelian variety defined over a number field k;
let V be a smooth variety, π : V → G a finite morphism, all defined over k. If
the set of S-integral points V (OS) is Zariski-dense in V , then the morphism π is
an unramified covering. In particular, V admits the structure of a semi-abelian
variety such that π becomes an isogeny.



1178 Oberwolfach Report 21/2007

In the particular case G = Gn
m is a linear torus, this conjecture has been

formulated by Zannier; it implies the (conjectural) finiteness of perfect squares of
the form 1 + 2a + 3b. In the particular case V is projective, it can be formulated
as follows:
If the smooth projective variety V satifies dimAlb(V ) ≥ dimV and V is not an
abelian variety, then V (k) is not Zariski-dense.

Here Alb(V ) denotes the Albanese variety of V . A famous theorem of Faltings
implies the same conclusion under the hypothesis that dimAlb(V ) > dimV .

Almost integer-valued functions in characteristic p

Noriko Hirata-Kohno

(joint work with David Adam)

Let f(z) be a complex entire function in one variable which satisfies f(N) ⊂
Z. A theorem of G. Pólya [8] assures that such function f is a polynomial if

the order of exponential type lim
r→+∞

log |f |r
r is less than log 2 (we denote |f |r =

sup|z|≤r |f(z)|). Instead of the assumption f(N) ⊂ Z, we may consider functions

not necessarily integer-valued on N. In fact, Ch. Pisot proved [7] that an entire
function on C taking values sufficiently near by integers on N, is a polynomial

whenever lim
r→+∞

log |f |r
r < log 2. The author gave an alternative proof [5] of Pisot’s

theorem by using transcendental method, so-called Schneider’s method. Let us
recall a simple corollary in [5]: let f be an entire function on C satisfying

lim
r→+∞

log |f |r
r

<
1

451
.

For all n ∈ N, we denote by ||f(n)|| the distance between f(n) and the nearest
integer, namely

||f(n)|| = inf
m∈Z

|f(n) −m|.
Suppose

||f(n)|| < e−5n for all n ∈ N sufficiently large.

Then, f is a polynomial.
We remark that P. Stäckel [9] showed in 1894 an existence of an entire transcen-

dental function taking algebraic values at all algebraic points. From his proof, we
may also construct an example of an entire transcendental function F such that
F (N) ⊂ Q or F (Z) ⊂ Q of arbitrary small order of exponential type. We then
see that an analogy of Pólya’s result does not hold in general for rational-valued
functions on N or Z (see also [4]).

Now we present here a corresponding theorem in characteristic p. Let q be a
power of a rational prime p, Fq be a finite field with q elements. Let Fq

((
1
T

))
be

the field of Laurent series with coefficients in Fq. This field is complete concerning
with the norm “deg” induced by the degree with respect to T of a rational function
in Fq(T ). The completion denoted by C of the algebraic closure of Fq

((
1
T

))
, is
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again algebraically closed. The set C corresponds to C in characteristic 0. We
continue denoting by deg the extension of the degree on C.

An entire function f on C is a function

f(z) =
∑

n≥0

anz
n with an ∈ C for all n ∈ N

that converges for all z ∈ C. For r ∈ R, r > 0, we define M(f, r) of f by

M(f, r) = sup
deg(z)≤r

{deg(f(z))}.

D. Adam proved [1] the analogy of Pólya’s theorem in characteristic p as follows:
let f be an entire function on C such that

lim
r→+∞

M(f, r)

qr
<

1

e ln q
and f(Fq[T ]) ⊂ Fq[T ].

Then, f is a polynomial ∈ Fq(T )[z] and the bound 1
e ln q is optimal.

Now let us mention our results. Let S be a subset of Fq[T ]. We put

Int(S,Fq[T ]) = {P ∈ Fq(T )[z] | P (S) ⊂ Fq[T ]}

and denote it by Int(Fq[T ]) if S = Fq[T ].
For a polynomial H ∈ Fq[T ], which plays a role of an integer in the case of char-

acteristic p, we put ||f(H)|| the distance between f(H) and the nearest element
of Fq[T ], i. e.

||f(H)|| = inf
Q∈Fq [T ]

{deg(f(H) −Q)}.

When ||f(H)|| is sufficiently small for all H of sufficiently large degree, we say that
f is an almost integer-valued function.

If f is already a polynomial ∈ C[z] and almost integer-valued under a suitable
condition on the speed, then it can be seen that f is indeed integer-valued, i. e.
P ∈ Int(Fq[T ]).

Now we show that an almost integer-valued entire function is a polynomial
provided that the order of exponential type is controlled [2].

Theorem 1. There exist two positive constants c1 and c2 that depend only on q
satisfying the followings. Let f be an entire function on C which verifies the two
conditions

(1) lim
r→+∞

M(f, r)

qr
< c1

(2) ||f(H)|| < −c2qdeg(H) for all H ∈ Fq[T ] of sufficiently large degree.

Then f ∈ Int(Fq[T ]).

We also get a version of result of Gel’fond, for such an almost integer-valued entire
function, over the powers of a polynomial. Let H ∈ Fq[T ] with degH = h ≥ 1.
Put S = {Hn | n ∈ Z, n ≥ 0}.
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Theorem 2. There exist c3 > 0 depending only on q and c4 > 0 depending only on
q and h, satisfying the followings. Let f be an entire function on C which verifies
the two conditions

(1) M(f, r) ≤ c3
h
r2

(2) ||f(Hn)|| ≤ −c4n2 for all n ∈ N sufficiently large.

Then f ∈ Int(S,Fq[T ]).

As seen before, it is sufficient to prove f ∈ C[z] to get the theorems.
Our proof is by means of Schneider’s method and is based on Lemma 3, a residue

formula with ultrametric Blashke factor for modified Schnirelmann integrals. Let
f be an analytic function on Γ := {z ∈ C | deg(z) ≤ R}. Schnirelmann integral of
f over Γ := {z ∈ C | deg(z) = R} is defined by

∫

Γ

f(z)dz = lim
n→+∞

p |/n

1

n

∑

ξn=1

f(ξγ)

where γ denotes any element of Γ (Schnirelmann integral is originally defined on
p-adic number field [6]).

Lemma 3. Let f be an analytic function on Γ and ξ0, ξ1, · · · , ξl be distinct points
in Γ◦ := {z ∈ C | deg(z) < R}. Then we have

deg(f(ξ0)) ≤ max{G1, G2}
where

G1 = M(f,R) − lR+
l∑

n=1

deg(ξ0 − ξn),

G2 = max
1≤n≤l





deg(f(ξn)) +

l∑

k=1
k 6=n

deg

(
ξ0 − ξk
ξn − ξk

)



.
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Some Geometry of Numbers for Function Fields

Jeff Thunder

(joint work with Chris Hurlburt)

Classically, Hermite’s constant is defined as follows. For a positive integer n > 1,
γn is the smallest number such that, for every positive definite quadratic form
F (X) ∈ R[X] in n variables, there is a non-zero integer point z ∈ Zn with

F (x)

disc(F )1/n
≤ γn,

where disc(F ) is the discriminant of F .
Hermite’s constant can also be defined in terms of lattices and geometry of

numbers. Specifically,

γn = sup
Λ

λ1(Λ)2

det(Λ)2/n
,

where the supremum is over lattices Λ ⊂ Rn of rank n, λ1(Λ) denotes the first
successive minimum of Λ with respect to the unit ball, and det(Λ) denotes the
determinant of Λ. With this in mind, it is not difficult to state the definition of
Hermite’s constant in terms of twisted heights:

γn = sup
A

inf
ξ

HA(ξ)2

| det(A)|2/n
,

where the supremum is over A ∈ GLn(QA) (the general linear group over the
adeles of Q), the infimum is over ξ in projective (n−1)-space over Q, and | det(A)|
is the adelic modulus. From this, one is lead to a “Hermite’s constant” over any
field with a product formula - including function fields.

Let K be a finite algebraic extension of the field of rational functions Fq(X),
where X is transcendental over the field with q elements, Fq. We assume that Fq

is the field of constants for K. Let g and J denote the genus and the number of
divisor classes of degree 0, respectively (J is also the cardinality of the Jacobian).
Let ζK denote the zeta function of K which is analogous to the classical Riemann
zeta function and let KA denote the adele ring. For A ∈ GLn(KA), let hA denote
the (additive) twisted height. For A ∈ GLn(KA), set λ1(A) to be the minimum
over all ξ ∈ Pn−1(K) of hA(ξ). We then have an analog of Hermite’s constant:

γn(K) := sup
A∈GLn(KA)

λ1(A) + (1/n) deg div det(A).

The analog of Minkowski’s theorem gives γn(K) ≤ g for all n > 1. We make
the conjecture that γn(K) = g for all n > 1. The case A = In shows that the
conjecture is true when g = 0. We prove the conjecture in many cases.

Theorem 2. If g = 1, then γ2(K) = 1.



1182 Oberwolfach Report 21/2007

The proof of this is via an explicit construction. We can prove more via some
measure theory. Let Gn denote the subgroup of GLn(KA) consisting of those
A with deg div det(A) = 0, and for notational convenience set Γn = GLn(K). We
construct a haar measure on µn on Gn normalized so that µn(Gn/Γn) = 1. Let Hn

be the subgroup of Gn consisting of those A where div det(A) is linearly equivalent
to the zero divisor.

Theorem 3. Suppose nK ∈ N satisfies qnK (q − 1)(1 − q−nK ) ≥ J . Then for all
n > nK , all m with −n < m ≤ −nK and all A ∈ GLn(KA) with deg div det(A) =
m there is a set of BΓn ∈ Gn/Γn of positive measure with with λ1(AB) = g. In
particular, γn(K) = g for all n ≥ nK .

Theorem 4. Suppose g = 1. If J is even, then for some A ∈ G2 there is a set of
BΓ2 ∈ H2/Γ2 of positive measure with λ1(AB) = 1.

Theorem 5. Suppose g = 1, q > 2 and J is odd. Then with the exception of
the cases q = 3, J = 7 and q = 4, J = 9, for every A ∈ G2 there is a set of
BΓ2 ∈ H2/Γ2 of positive measure with λ1(AB) = 1.

The number of exceptions to Roth’s theorem

Wolfgang Schmidt

A general version of Roth’s theorem is as follows. Let K be a number field, S a
finite, non-empty set of places of K, and for each v ∈ S, let ‖ · ‖v be a suitably
normalized absolute value belonging to v, and ξv ∈ Kv algebraic over K, where Kv

is the completion of K with respect to ‖ · ‖v. Also let µv for v ∈ S be nonnegative
reals with

∑
v∈S µv = 2 + δ, where 0 < δ < 1. Then the system of inequalities

(1) ‖ξv − α‖v < H(α)−µv (v ∈ S),

where H(α) is the absolute height of α, has only finitely many solutions in α ∈ K.
We are interested in the number of “exceptions” to Roth’s theorem, i.e. the

number of α ∈ K satisfying (1). Bounds for the number “large” solutions, i.e.
solutions with H(α) > e3/δ, can be given by well established methods, e.g.

≪ log+ log+H0

log(1 + δ)
+ δ−1 log(2s2D) log log(2s2D),

where s = |S|, H(ξv) ≤ H0 and [K(ξv) : K] ≤ D for v ∈ S.
Now we give the estimate

δ−1(2
√

3)d log+(d/δ)

for the number of “small” solutions, i.e. solutions satisfying H(α) ≤ e3/δ. Here
d = degK and the δ in the logarithm can be omitted when S contains an
archimedean place. In fact this holds whether the numbers ξv are algebraic or
not. The constants in ≪ are absolute.
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Dimension estimates for vector spaces generated by values of certain
q-series

Peter Bundschuh

Here we consider the entire transcendental functions

f0(z) :=

∞∏

j=0

P (zq−jm) and fh(z) :=

∞∑

i=0

q−him
i−1∏

j=0

P (zq−jm) (h = 1, 2, ...),

where the assumptions on P, q,m will be stated in a moment. These functions
satisfy the Poincaré functional equation

(1) f(qmz) = aP (qmz)f(z) + b with a := q−hm, b := 1 − δh,0,

δ the Kronecker symbol. Our principal result on these functions is the following.

Main Theorem. Let K be either Q or an imaginary quadratic number field, let
q ∈ OK , the ring of integers in K, satisfy |q| > 1, and let m ∈ N. Suppose
P ∈ K[X ], P (0) = 1, degP =: ℓ ∈ N and P (q−k) 6= 0 for any k ∈ N0 := N ∪ {0}.
Then, denoting

∆ := dimK K +

m−1∑

µ=0

Kfh(q−µ),

we have the lower bounds

(2) ∆ ≥ (m+ 1)2 − ℓm

ℓ(m+ 2)
if m ≥ 2ℓ, ∆ ≥ (m+ 1)2 + ℓ(m+ 2)

ℓ(ℓm+m+ 2)
if m ≥ ℓ2−2

uniformly in h ∈ N0.

We remark that P (q−k) = 0 for some k ∈ N0 would imply fh(q−µ) ∈ K for
µ ∈ {0, ...,m − 1} with µ ≡ k (mod m). We further notice that all fh(q−µ) can
be expressed as values of basic hypergeometric series with suitable parameters at
appropriate points.

Since the lower bounds for ∆ in (2) are greater than 1 if and only if m ≥
2ℓ,m ≥ ℓ2 − 2, respectively, we have the following immediate consequence of our
Main Theorem.

Theorem 1. Assume the hypotheses of the Main Theorem, and let h ∈ N0. If
m ≥ min(2ℓ, ℓ2 − 2) then at least one of the numbers fh(q−µ), µ = 0, ...,m− 1, is
not in K.

We remark that the case ℓ = 1,m = 1, h = 0 was first settled by Lototsky [7],
whereas we solved essentially the case ℓ = 2,m = 2, h = 0 in [3] after work of
Zhou and Lubinsky [13], who assumed K = Q, q > 1, P ∈ Q+[X ]. Under the same
restrictive hypotheses, Zhou [12] treated the case ℓ = 2,m ≥ 2, h = 1 separately.

It should be also remarked that we proved very recently in [4] the above Theorem
1 for h = 0 and h = 1 under the much stronger condition m ≥ max(ℓ, ℓ(ℓ − 1))
using our old irrationality criterion in [2], which is based on Newton interpolation
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series. Notice that min(2ℓ, ℓ2−2) is essentially linear in ℓ, whereas max(ℓ, ℓ(ℓ−1))
is quadratic.

Comparing both lower bounds for ∆ in (2), we recognize that the first is not
smaller than the second if and only if ℓ ≤ m− (5m+ 4)/m2 holds. Hence we have
the first assertion in

Theorem 2. Assume the hypotheses of the Main Theorem and h ∈ N0. Then

(3) ∆ ≥ (m+ 1)2 − ℓm

ℓ(m+ 2)
,

holds if ℓ ≥ 2 and m ≥ 2ℓ. If ℓ = 2 and m ∈ {2, 3} then we have ∆ ≥ 2.
Inequality (3) holds also for ℓ = 1,m ≥ 4. But if ℓ = 1,m ∈ {1, 2, 3} we have
∆ ≥ (m2 + 3m+ 3)/(2m+ 2) implying ∆ = m+ 1 for m ∈ {1, 2}.

Notice that from (3) we can never deduce ∆ = m + 1. Namely this would be
possible exactly if the right-hand side in (3) is strictly larger than m, and this is
equivalent with ℓ < (m+ 1)2/(m2 + 3m) (≤ 1). The two cases (ℓ,m) = (1, 1) and
(1, 2) are the only ones, where we can deduce linear independence results from our
Main Theorem. We still can conclude ∆ ≥ m for any m ∈ N and h ∈ N0 if we
suppose ℓ = 1. But note that in this case ℓ = 1,∆ = m + 1 for any m ∈ N is
known for h = 0, compare Bézivin [1] for an ineffective version, and Väänänen [11]
for an effective one.

In the cases of arbitrary h ∈ N0 and (ℓ,m) = (1, 1) or (1, 2), we are able to
write down the following quantitative versions, both under the hypotheses of the
Main Theorem.

Theorem 3. For every (u, v) ∈ O2
K with |v| > 1, we have

|u+ vfh(1)| > |v|−(4/3)−ε1(|v|).

Theorem 4. For every (u, v1, v2) ∈ O3
K with v := max(|v1|, |v2|) > 1 we have

|u+ v1fh(1) + v2fh(q−1)| > v−12−ε2(v).

In these two theorems, the εj(x) appearing in the exponents are of the shape

γ(log x)−1/2 with γ > 0 independent of u and the v’s. Remark that Theorem 3
was first proved for h = 0 by the present author [2] and later by Popow [9].

The basic ingredient of the proof of the Main Theorem is Nesterenko’s dimension
estimate [8], more precisely, its generalizations to fields of type K. To apply
this tool, one has to construct an infinite sequence of linear forms in 1, fh(1), . . . ,
fh(q−(m−1)) (indexed by N , say), whose absolute values tend sufficiently rapidly to
zero as N → ∞, whereas the maximum of the absolute values of their coefficients
do not increase with N too quickly. To construct such a sequence, we use the
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integrals

(4) I±(N) :=
1

2πi

∮

Γ±(N)

fh(z)dz

zN
∏M

j=0(z − q±j)

with appropriately chosen (large) M = M(N) and suitable circles Γ±(N) around
the origin. By a very careful analysis, the asymptotic relation |I±(N)| ∼ |ch,N+M |
can be established for N → ∞, ch,k being the Taylor coefficients of fh about the
origin. For this asymptotic equality and for the evaluation of |ch,N+M | in terms
of N , one profits by the fact that the analytic growth of the solutions of (1) and
of their Taylor coefficients were studied in the past in very much detail.

In the arithmetic part of the proof, one evaluates I±(N) from (4) and expresses
the arising fh(q±j) by the m numbers fh(q−µ) via iteration of (1). Thus, one is
lead to linear forms in 1 and fh(q−µ), µ = 0, ...,m − 1, with explicit coefficients
in K. These have to be transformed into OK -linear forms by multiplication by
some appropriate Ω±(N) ∈ OK \ {0}, whose growth with N has to be precisely
controlled, and is different in the + and − case, altogether giving rise to the two
cases in (2).

To prove Theorems 3 and 4, we use just the linear forms over OK constructed
before. But to conclude, we apply our quantitative refinements with Töpfer [6],[10]
of the Nesterenko type criterion. Full proofs can be found in [5].
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[6] P. Bundschuh and T. Töpfer, Über lineare Unabhängigkeit, Mh. Math. 117 (1994), 17-32.
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