
Mathematisches Forschungsinstitut Oberwolfach

Report No. 25/2007

Algorithm Engineering

Organised by

Giuseppe F. Italiano (Roma) Petra Mutzel (Dortmund) Peter Sanders (Karlsruhe)

Martin Skutella (Dortmund)

May 6th – May 12th, 2007

Abstract. Algorithm Engineering is concerned with the design, theoreti-
cal analysis, implementation, and experimental evaluation of algorithms. It
provides methodologies and tools for designing, developing and engineering
efficient algorithms, and aims at bridging the gap between theory and prac-
tice in the field of algorithmic research. Algorithm Engineering is by now an
emerging discipline, gaining momentum and credibility throughout the whole
research community.

Mathematics Subject Classification (2000): 68W01, 68W40, 68Q10, 68Q25.

Introduction by the Organisers

The workshop Algorithm Engineering, organized by Giuseppe Italiano (Roma),
Petra Mutzel (Dortmund), Peter Sanders (Karlsruhe), and Martin Skutella (Dort-
mund) was held May 6th – May 12th, 2007. The goal of the workshop was to
bring together researchers with different background, e.g., from combinatorial op-
timization, algorithmic theory, and algorithm engineering, in order to strengthen
and foster collaborations in the area of algorithm engineering and to identify key
research directions for the future. There were 47 international participants out of
which 23 mainly work in the area of algorithm engineering, 11 in algorithm the-
ory, and 13 in combinatorial optimization. A considerable number of participants
visited the Oberwolfach Institute (MFO) for the first time.

In five survey talks given by renowned specialists in the field, the state of the
art in selected areas of high interest was demonstrated. The introductory talk
was presented by Giuseppe Italiano (Roma) who gave “a personal and historical
perspective” of algorithm engineering. Bill Cook (Atlanta) presented the newest
results as well as engineering efforts for solving huge TSP instances. Friedhelm
Meyer auf der Heide (Paderborn) suggested new algorithmic challenges in the area
of Computer Graphics. Ian Munro (Waterloo) introduced the audience into the

1378 Oberwolfach Report 25/2007

area of succinct data structures which is getting increasingly important with huge
data sets. In this context, also external memory and cache-oblivious algorithms
are getting growing interest. The survey talk by Gerth Brodal (Aarhus) presented
theory and practice for these type of algorithms.

In addition, we organized a series of sessions containing shorter contributions of
roughly 30 minutes. Here, we particularly encouraged young researchers to present
their recent results. The focus of the program lay on recent developments in vari-
ous areas that are relevant for the broad topic of algorithm engineering. Examples
are mathematical programming, external memory algorithms, succinct data struc-
tures, resilient data structures, dynamic data structures, online algorithms, graph
algorithms, geometric computation, analysis of local search algorithms, and algo-
rithmic game-theory. In total, we had 32 talks of which 15 can be assigned to the
area of algorithm engineering, 8 to the area of algorithmic theory, and 7 to the
area of combinatorial optimization, which we think was an ideal mixture for the
purpose of this workshop. We found it encouraging that after the talks a lot of
discussion took place between the participants.

We also like to mention that Peter Sanders (Karlsruhe) introduced the new DFG
Priority Program 1307 Algorithm Engineering, which will start in fall 2007. As the
coordinator of this program he pointed out the specific goals of the program and
the chances for the area of algorithm engineering. All of the participants had the
chance to discuss different aspects of algorithm engineering in the open problem
session on Thursday evening.

In our view, and as expressed by many of the participants, the workshop was
a great success. We (including many participants) have learned a lot during this
week, also from the three different research communities present at the workshop,
and got many new ideas for exciting research projects. The program of the work-
shop was well-received by the participants as the good quality of presentations
and the enthusiasm of the speakers and the audience gave raise to joint research
among the participants. In particular exchange between young researchers and
experienced scientists was promoted.

We wish to thank Oberwolfach for this unique opportunity to bring together
the three different research groups at this great place in order to strengthen the
area of algorithm engineering.

The following collection of abstracts in chronological order gives a more detailed
overview of the program.

Algorithm Engineering 1379

Workshop: Algorithm Engineering

Table of Contents

Giuseppe F. Italiano
Algorithm Engineering: A Personal and Historical Perspective 1383

Ingo Wegener
Simulated Annealing versus Metropolis and the Black-Box Complexity of
Search Problems . 1384

Rajeev Raman (joint with O’Neil Delpratt, Naila Rahman)
Engineering Succinct DOM . 1385

Peter Sanders (joint with Kurt Mehlhorn, Rolf Möhring, Burkhardt
Monien, Petra Mutzel, and Dorothea Wagner)
Algorithm Engineering — An Attempt at a Definition 1386

Dominik Schultes (joint with Peter Sanders)
Engineering Route Planning Algorithms . 1387

Markus Chimani (joint with Maria Kandyba and Petra Mutzel)
An ILP Formulation for 2-Root-Connected Prize-Collecting Steiner
Networks using Directed Cuts . 1389

Thorsten Koch
Software Engineering for Mathematical Software? 1390

William Cook (joint with David Applegate, Robert Bixby, Vasek Chvátal,
Sanjeeb Dash, Daniel Espinoza, Ricardo Fukasawa, Marcos Goycoolea,
and Keld Helsgaun)
The TSP and Exact Computation . 1393

Susanne Albers (joint with Tobias Jacobs)
An Experimental Study of New and Known Online Packet Buffering
Algorithms . 1394

Friedrich Eisenbrand (joint with Thorsten Bernholt and Thomas Hofmeister)
Constrained Minkowski Sums . 1397

Ulrich Pferschy (joint with Jakob Puchinger and Günther R. Raidl)
The Core Concept and Collaborative Approaches for the Multidimensional
Knapsack Problem . 1399

Joachim Reichel (joint with Martin Skutella)
Evolutionary Algorithms for Matroid Optimization Problems 1402

Heiko Röglin (joint with Matthias Englert and Berthold Vöcking)
Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the
TSP . 1403

1380 Oberwolfach Report 25/2007

Leonor Frias (joint with Jordi Petit and Salvador Roura)
Efficient Data Structure Libraries . 1404

Jyrki Katajainen
Stronger Guarantees for Standard-Library Containers1 1407

Friedhelm Meyer auf der Heide (joint with Matthias Fischer)
Algorithm Engineering: Some Challenges in Computer Graphics 1412

Paul G. Spirakis (joint with Panagiota N. Panagopoulou)
The Importance of Experiments in Game Theory via some Case Studies 1412

Rolf Fagerberg (joint with Gerth Stølting Brodal, Allan Grønlund
Jørgensen, Gabriel Moruz, and Thomas Mølhave)
Optimal Resilient Dynamic Dictionaries . 1413

Rolf H. Möhring (joint with Ewgenij Gawrilow, Ekkehard Köhler, Ines
Spenke, and Björn Stenzel)
Routing in Graphs with Applications to Real Time Material Flow
Problems . 1417

Irene Finocchi (joint with Umberto Ferraro-Petrillo, Fabrizio Grandoni,
and Giuseppe F. Italiano)
The Price of Resiliency: A Case Study on Sorting with Memory Faults . 1419

Alberto Caprara (joint with Juan-José Salazar-González)
Bandwidth Minimization: Human Stupidity still Beats Artificial
Intelligence . 1421

Christian Sohler (joint with Gereon Frahling)
Clustering Large Data Sets . 1423

Michael A. Bender (joint with Mart́ın Farach-Colton, Haodong Hu, and
Bradley C. Kuszmaul)
Engineering B-trees and Cache-Oblivious B-trees on Real Memory
Hierarchies (Ignorance is Bliss) . 1424

J. Ian Munro
Succinct Data Structures: A Survey . 1424

Stefan Näher (joint with Martin Taphorn)
Exact and Efficient Geometric Computing using Structural Filtering . . . 1426

Ulrich Meyer (joint with Deepak Ajwani and Vitaly Osipov)
Improved External-Memory Breadth-First Search . 1427

Dorothea Wagner (joint with Marco Gaertler and Robert Görke)
Significance-Driven Graph Clustering . 1428

Gerth Stølting Brodal
External-Memory and Cache-Oblivious Algorithms:
Theory and Experiments . 1429

Algorithm Engineering 1381

Henning Meyerhenke (joint with Burkhard Monien, Stefan Schamberger,
and Thomas Sauerwald)
Graph Clustering based on Disturbed Diffusion . 1430

Gabriel Moruz (joint with Allan G. Jørgensen and Thomas Mølhave)
Resilient priority queues . 1432

Luca Allulli (joint with Fabrizio d’Amore and Enrico Puddu)
A Platform for Engineering Cache-Oblivious Algorithms and Data
Structures: The Architecture . 1434

Riko Jacob (joint with Mark Cieliebak, Alexander Hall, and Marc Nunkesser)
Sequential Vector Packing . 1437

Algorithm Engineering 1383

Abstracts

Algorithm Engineering: A Personal and Historical Perspective

Giuseppe F. Italiano

In the last decades, we have witnessed an impressive progress in the field of com-
puter algorithms. Many important and widely recognized achievements in several
areas, including advanced data structures, computational geometry, cryptographic
protocols, optimization algorithms, string searching and computational biology,
were obtained. Despite this wealth of theoretical results, however, the transfer of
algorithmic technologies has not experienced a comparable growth.

One reason for this may be that some of the algorithms designed are very hard to
implement, and often suffer from large asymptotic constants: two characteristics
which can make the effective deployment of algorithms somewhat problematic.
Furthermore, measures of running times may be insufficient to design and analyze
algorithms which are meant to be used in real applications. Toward this end,
algorithm designers are starting to pay more attention to the details of the machine
model that they use and to investigate new and more effective computational
measures. Classical computational models, although effective, seem too idealized
in many cases and are getting far apart from the recent developments in today’s
architectures. More detailed considerations seem to be needed to improve the
actual running time of computations, such as external memory effects, caching,
locality of data, pointer dereferencing, etc... etc...

As a result, more attention has been devoted to the engineering of algorithms,
following an approach which has been largely referred to as Algorithm Engineering.
Algorithm engineering consists of the design, analysis, experimental testing, tun-
ing and characterization of robust algorithms: it is mainly concerned with issues
of realistic algorithm performance, and studies algorithms and data structures by
carefully combining traditional theoretical methods together with thorough exper-
imental investigations.

There are many potential benefits involved in this approach. First of all, it
promotes and fosters bridges toward key algorithmic applications. Furthermore,
experimenting with algorithms and data structures has already proven to be a
crucial step in many circumstances, such as in the case of heuristics for very hard
combinatorial problems, design of test suites for a variety of problems, and for
proposing new conjectures that may be of theoretical interest as well. Indeed, ex-
perimentation can provide guidelines to realistic algorithm performance whenever
standard theoretical analyses fail. In our experience, experimentation is a very im-
portant step in the design and analysis of algorithms, as it tests many underlying
assumptions and tends to bring algorithmic questions closer to the problems that
originally motivated the work. Last, but not least, providing leading edge imple-
mentations of algorithms is also a key step for a successful technology transfer of
algorithmic research.

1384 Oberwolfach Report 25/2007

Simulated Annealing versus Metropolis and the Black-Box
Complexity of Search Problems

Ingo Wegener

Randomized search heuristics including simulated annealing, Metropolis algorithm,
tabu search, and all variants of evolutionary and genetic algorithms find many ap-
plications in engineering and optimization, in particular, if the function to be
optimized cannot be described in closed form. Algorithm engineering is necessary
to find good values for their free parameters like the temperature of the Metropolis
algorithm. For simulated annealing, a general convergence result is known leading
only to exponential upper bounds for the expected optimization time even of quite
simple problems. General tools to prove large lower bounds for certain instances
are known. This fact leads Jerrum and Sinclair [4] to the following statement: “It
remains an outstanding open problem to exhibit a natural example in which sim-
ulated annealing outperforms the Metropolis algorithm at a carefully fixed value
of α.” This open problem is solved by investigating the minimum spanning tree
problem which is a natural problem of combinatorial optimization. In particular,
it is proven that simulated annealing finds minimum spanning trees for a large
class of instances with overwhelming probability. For many of these instances, the
Metroplis algorithm needs exponential time with overwhelming probability.

Much monographs on evolutionary algorithms claim that these algorithms are
particularly efficient in unimodal problems. This claim is disproved by showing
that no randomized search heuristic can be efficient on all unimodal functions
on {0, 1}n. A new brand of complexity theory, called black-box complexity, is
developed for this purpose. The lower bound is based on Yao’s minimax principle.
The results have been published on ICALP ’05 [1], FOGA ’02 [2], and in Theory
of Computing Systems [3].

References

[1] I. Wegener, Simulated annealing beats Metropolis in combinatorial optimization, ICALP
2005, LNCS 3580 (2005), 589–601.

[2] S. Droste, T. Jansen, K. Tinnefeld, and I. Wegener, A new framework for the valuation of
algorithms for black-box optimization, FOGA 2002, Foundations of Genetic Algorithms 7

(2003), 253–270.
[3] S. Droste, T. Jansen, K. Tinnefeld, and I. Wegener, Upper and lower bounds for randomized

search heuristics in black-box optimization, Theory of Computing Systems 4 (2006), 525–
544.

[4] M. Jerrum and A. Sinclair, The Markov chain Monte Carlo method: An approach to ap-
proximate counting and integration, Chapter 12 of D. Hochbaum (Ed.) Approximation Al-
gorithms for NP-hard Problems (1996), 482–522.

Algorithm Engineering 1385

Engineering Succinct DOM

Rajeev Raman

(joint work with O’Neil Delpratt, Naila Rahman)

XML is a standard format for data exchange and storage. XML documents are
processed by a number of applications in the following manner: the XML docu-
ment is parsed, and a tree representation of the XML document is created within
the memory of the computer. This representation is then accessed through the
standard DOM (Document Object Model) interface, which allows a variety of nav-
igational operations on the XML document. The DOM interface is very flexible,
and is very commonly used for XML processing. Our focus is on static XML docu-
ments — while DOM does have functionality that allows (fairly arbitrary) changes
to the XML document, this functionality not very frequently used. Indeed, there
are a few DOM implementations for static documents.

A major disadvantage of most implementations of DOM is a high memory re-
quirement, referred to as “XML bloat”. The in-memory DOM representation of
an XML document can be many times larger than the file storing the XML docu-
ment (which in turn is a somewhat verbose representation of the underlying data
and its relationships). This means that even moderately large XML documents
cannot be processed within the main memory of a reasonably high-end machine.
A primary cause for the “XML bloat” is that the DOM implementations use a
largely pointer-based representation of the associations between the various data
elements. For example, a single node in the tree representation of an XML doc-
ument may have pointers to its parent, first- and last- children, and its next and
previous siblings, among others.

We describe a DOM implementation that does not require the use of point-
ers, and is based upon succinct data structures. Succicnt data structures use the
information-theoretically minimum number of bits to encode a object. For exam-
ple, an ordinal tree on n nodes is a rooted tree, where the children of a node are
ordered from left-to-right (XML documents are essentially ordinal trees). Since
there are tn = 1

n

(

2n−2
n−1

)

n-node ordinal trees, it follows that an ordinal tree on n

nodes must be represented in lg tn = 2n − O(log n) bits (lg x = log2 x). On the
other hand, representing the tree structure of an XML document using pointers
(as described above) would use asymptotically 5n lg n bits; from a practical per-
spective, each pointer would require either 32 or 64 bits, so one would require 160n
or 320n bits for the tree structure for practical values of n.

We use a succinct tree representation developed in [2, 1]. We also use suc-
cinct data structures in place of explicit pointers to replace pointers to lists of
attributes [3], and to textual data associated with text nodes. However, the final
data structure turned out not to be a simple assembly of these components. A
number of XML-motivated optimizations were included, including fast tests for
leaf nodes, so-called double-numbering of nodes, consideration of the distributions
of the lengths of textual data in text nodes, attributes and comment nodes, and
fast “shortcuts” for node iterators.

1386 Oberwolfach Report 25/2007

We tested a preliminary version of succinct DOM by reading and storing an
XML document in main memory, and traversing it. Excluding textual data from
consideration, the size of the XML document is reduced by usually a factor of 10
relative to the file size (and is even smaller relative to the in-memory representation
size), while traversals are only about 3-4 times slower, relative to a pointer-based
XML representation.

References

[1] O. Delpratt, N., and R. Raman, Engineering the LOUDS Succinct Tree Representation,
Proc. WEA ’06, LNCS 4007 (2006), 134–145.

[2] R.F. Geary, N. Rahman, R. Raman, and V. Raman, A simple optimal representation for
balanced parentheses, Theor. Comput. Sci. 368(3), (2006), 231–246.

[3] Compressed Prefix Sums, O. Delpratt, N. Rahman, and R. Raman, Compressed Prefix Sums,
Proc. SOFSEM 2007, LNCS 4362 (2007), 235–247.

Algorithm Engineering — An Attempt at a Definition

Peter Sanders

(joint work with Kurt Mehlhorn, Rolf Möhring, Burkhardt Monien, Petra
Mutzel, and Dorothea Wagner)

Algorithm Engineering (AE) is a methodology for algorithmics (the subdiscipline
of computer science devoted to the development of efficient algorithms) summa-
rized in Figure 1. The core of AE is a cycle consisting of design, analysis, im-
plementation and experimental evaluation of algorithms. In addition, we need
realistic models, reusable algorithm libraries and all this allows a closer coupling
to applications. Implementations can be used in applications — directly or via
algorithm libraries. In turn, applications contribute real world problem instances
and motivations for realistic models.

The term AE was first used in the end of the 1990s (e.g. call for papers of
WAE 1997) in the algorithm theory community. The background is, that begin-
ning in the early 1990s, it was observed that there was a growing gap between
algorithm theory and the algorithms actually used in practice. (Complicated algo-
rithms for simple machine and problem models designed for good asymptotic worst
case performance versus simple algorithms for real world machines and problems
whose performance evaluation was mostly experimental and where constant fac-
tors matter.) As a consequence, it was more and more frequently demanded that
algorithmics should include also implementation of algorithms and experimental
evaluation using real world problem instances. AE is sometimes viewed as a syn-
onym for experimental algorithmics. However, even in the earliest references, it is
stressed that experiments can influence models and design and that also algorithm
analysis might look at different questions like average case performance, families
of easy problem instances, or constant factors in the execution time. Therefore,
the wider view proposed here that views AE as a methodology containing all of
algorithmics, seems to be a more apt definition.

Algorithm Engineering 1387

There are regular scientific conferences dedicated to algorithm engineering:
WEA (Workshop on Algorithm Engineering, now ESA applied track) since 1997,
Alenex (Algorithm Engineering and Experimentation) since 1999 and WEA (Work-
shop on Experimental Algorithms) since 2001. A longer version of this text (in
German) can be found at the home page of the DFG focus project on algorithm
engineering www.algorithm-engineering.de.

Engineering Route Planning Algorithms

Dominik Schultes

(joint work with Peter Sanders)

The computation of shortest paths in a graph is a well-known problem in graph
theory. One of the most obvious practical applications is route planning in a road
network, i.e., finding an optimal route from a start location to a target location.
It is often assumed that a given road network does not change very often and that
there are many source-target queries on the same network so that it pays to invest
some time for a preprocessing step that accelerates all further queries. Based on
this assumption, we developed various speedup techniques for route planning.

Highway hierarchies [1, 2, 3] exploit the hierarchy inherent in real-world road
networks. In a preprocessing step, we investigate the given road network in order
to extract and prepare a hierarchical representation. Our route planning algorithm
then takes advantage of this data. It is an adaptation of the bidirectional version
of Dijkstra’s algorithm, massively restricting its search space.

In several experiments, we concentrate on the computation of fastest routes in
Western Europe and the USA. Both networks consist of about 20 million nodes

realistic
models

design

implementation

libraries
algorithm−

perf.−
guarantees

ap
p

licatio
n

s

6

2

4

1
8

deduction

falsifiable

induction
hypotheses 53analysis experiments

algorithm
engineering real

Inputs 7

Figure 1.

1388 Oberwolfach Report 25/2007

each. Our algorithm preprocesses these networks in 20 minutes using linear space.
Queries then take less than one millisecond to produce optimal routes. This is
more than 7 000 times faster than using Dijkstra’s algorithm.

A combination [4] with a goal-directed approach, namely landmark-based A∗-
search, yields a slight reduction of the query times. In particular, such a combi-
nation is useful when we deal with approximate queries or with a distance metric
(instead of the usual travel time metric).

A many-to-many variant [5] of the highway hierarchies is capable of computing
distance tables that contain for given source and target node sets the shortest path
distances between all source-target pairs. For example, a 10 000 × 10 000 table
can be filled in about one minute.

Transit node routing [6, 7, 8] is based on the following observation: “When you
drive to somewhere ‘far away’, you will leave your current location via one of only
a few ‘important’ traffic junctions [transit nodes]”. Distances from each node to all
neighbouring transit nodes and between all transit nodes are precomputed so that
a non-local shortest-path query can be reduced to a small number of table lookups.
That way, average query times can be reduced to around five microseconds, which
is about one million times faster than using Dijkstra’s algorithm.

Highway-node routing [9] is a dynamic technique for fast route planning in
large road networks. For the first time, it is possible to handle the practically rele-
vant scenarios that arise in present-day navigation systems: When an edge weight
changes (e.g., due to a traffic jam), we can update the preprocessed information
in 2–40ms allowing subsequent fast queries in about one millisecond on average.
When we want to perform only a single query, we can skip the comparatively
expensive update step and directly perform a prudent query that automatically
takes the changed situation into account. If the overall cost function changes (e.g.,
due to a different vehicle type), recomputing the preprocessed information takes
typically less than two minutes.

The foundation of our dynamic method is a new static approach that gener-
alises and combines several previous speedup techniques. It has outstandingly low
memory requirements of only a few bytes per node.

References

[1] D. Schultes, Fast and exact shortest path queries using highway hierarchies, Master’s thesis,
Universität des Saarlandes, 2005.

[2] P. Sanders and D. Schultes, Highway hierarchies hasten exact shortest path queries, 13th
European Symposium on Algorithms, LNCS 3669 (2005), 568–579.

[3] P. Sanders and D. Schultes, Engineering highway hierarchies, 14th European Symposium

on Algorithms, LNCS 4168 (2006), 804–816.
[4] D. Delling, P. Sanders, D. Schultes, and D. Wagner, Highway hierarchies star, 9th DIMACS

Implementation Challenge [10], 2006.
[5] S. Knopp, P. Sanders, D. Schultes, F. Schulz, and D. Wagner, Computing many-to-many

shortest paths using highway hierarchies, Workshop on Algorithm Engineering and Experi-
ments, 2007.

[6] P. Sanders and D. Schultes, Robust, almost constant time shortest-path queries in road
networks, 9th DIMACS Implementation Challenge [10], 2006.

Algorithm Engineering 1389

[7] H. Bast, S. Funke, D. Matijevic, P. Sanders, and D. Schultes, In transit to constant time
shortest-path queries in road networks, Workshop on Algorithm Engineering and Experi-
ments, 2007.

[8] H. Bast, S. Funke, P. Sanders, and D. Schultes, Fast routing in road networks with transit
nodes, Science 316(5824) (2007), 566.

[9] D. Schultes and P. Sanders, Dynamic highway-node routing, 6th Workshop on Experimental
Algorithms, 2007.

[10] 9th DIMACS Implementation Challenge, Shortest Paths, http://www.dis.uniroma1.it/

~challenge9/, 2006.

An ILP Formulation for 2-Root-Connected Prize-Collecting Steiner
Networks using Directed Cuts

Markus Chimani

(joint work with Maria Kandyba and Petra Mutzel)

Extending already existing fiber-optics networks by connecting new customers is
an important topic in the design of telecommunication networks. Thereby, we have
an existing infrastructure network I, a set of potential new customers C and a set
of potential new route-segments for laying the fiber cables. As each new customer
v will generate a certain assessable profit p(v) ∈ R

+ and each route-segment e has
a certain laying cost c(v) ∈ R

+, the main task is to connect a subset of C with
I such that the overall profit is maximized. In this paper we consider the real
world problem, where some of the customers, if added to the network, require two
node-disjoint connections to I to increase reliability. We denote these customers
with the set C2, and the other customers with C1.

By representing the infrastructure network by a single root node r, we obtain a
rooted Prize-Collecting Steiner Network problem where certain nodes are required
to be (nodewise) 2-connected with the root. Formally, we are given an undirected
graph G = (V, E), a root node r ∈ V , a set of customer nodes C = C1∪̇C2 ⊂ V ,
a prize function p : V → R

+, and a cost function c : E → R
+. Find a subgraph

N = (VN , EN) of G with r ∈ VN which minimizes
∑

e∈EN
c(e) − ∑

v∈VN
p(v)

and satisfies the following connectivity property: for every node v ∈ Ck ∩ VN

(k ∈ {1, 2}), N contains at least k node-disjoint paths connecting v to r.
We call such a problem a 2-Root-connected Prize-Collecting Steiner Network

problem (2RPCSN). If we require all customers to be included into the solution
network, the resulting problem is called 2-Root-connected Steiner Network problem
(2RSN). Both 2RPCSN and 2RSN are NP-hard, as they contain the Steiner tree
problem as a special case. While we concentrate on the investigation of 2RPCSN,
all results clearly also hold for 2RSN. Furthermore, our approach can be used for
the relaxed version where C2 customers are only required to be 2-edge-connected
with the root.

2RPCSN was already studied by Wagner et al. and two different ILP formu-
lations for this problem were suggested: one based on multi-commodity flow, the
other one using undirected cut inequalities. We report on a transformation of
2RPCSN into the problem of finding an optimal subgraph in a related directed

1390 Oberwolfach Report 25/2007

graph and give a new ILP formulation which uses directed cut inequalities, see [1]
for details. To our knowledge, our formulation is the first which applies such an
approach to a node-disjoint connectivity problem. The central idea is based on
proving that for each 2-node-connected graph G with a given root r, there exists
an orientation of G such that each node lies on a simple directed cycle with r.

Furthermore, we study the polyhedral properties of our ILP and show that our
formulation is stronger than the undirected cut formulation. We solve 2RPCSN
using this new formulation within a Branch-and-Cut framework, utilizing an LP-
based heuristic also presented herein. Our experimental results show that our
approach is superior to those of Wagner et al. for nearly all test instances.

Finally, we briefly describe how this approach for 2RPCSN can be used to
give the first directed formulation for the 2NCON problem, i.e., every customer
has to become connected, and all C2 customers have to become 2-node-connected
with each other: therefore we can select any C2 node as the root, and compute
a network with the property that this root has only a single incoming edge. We
also sketch how to use this approach to solve even the 2PCSN problem, i.e., the
2NCON problem with the prize-collecting property for each customer.

References

[1] M. Chimani, M. Kandyba, P. Mutzel, A New ILP Formulation for 2-Root-Connected Prize-
Collecting Steiner Networks, Technical Report TR07-1-001, University Dortmund, Chair for
Algorithm Engineering, 2007.

Software Engineering for Mathematical Software?

Thorsten Koch

1. Attitudes

Algorithm engineering refers to the process required to transform a pencil-and-paper
algorithm into a robust, efficient, well tested, and easily usable implementation.

– Bader, Moret, Sanders [1]

How much software engineering, especially testing and code tuning is needed in
(mathematical) research software? Several books on testing and software engineer-
ing are among the longest selling books in computer science. The Art of Software
testing [2] has been updated to a second edition after being in print for more than
25 years. The mythical man month [3] is available in a 20 year anniversary edition
since 1995. According to the Wikipedia this book is called the bible of software
engineering, since “everybody reads it, but nobody does anything about it”. The
attitudes towards testing code can be summarized as follows:

Algorithm Engineering 1391

Real Programmers don’t comment their code. If it was hard to write, it should be
hard to understand and harder to modify.

– fortune(6)

Beware of bugs in the above program. I have only proved it correct, not tried it.

– D.E.Knuth

The single most important rule of testing is to do it.

– Kernighan, Pike [4]

How much testing is enough for software developed in research? Empirically,
for research software a program is tested enough if it gives plausible results on all
instances the author regards as indispensable. This might be deemed acceptable
as long as nobody else uses the program. Since advances in research depend on
the ability to build upon the work of others, it is, however, highly favorable to
share the software developed. Unfortunately, this will require you to test. What
are the possibilities?

◮ Use the classical “banana approach” from the software industry:
Product matures at the customer.

◮ Use the open source approach:
Hope users will find bugs and send patches.

◮ Test yourself!

2. Testing

We use the program Zimpl1 [5] has an example. Zimpl has about 10,000 lines
of code. Asserts are used to state pre- and post-conditions and some invariants.
There is one Assert every 6 statements, on average. Currently, more than 150
tests are used to exercise the code. Special care has been taken to write a test for
every error message the program can give. This process led to interesting results as
several bugs were found and error messages were discovered that could not possibly
be produced. Currently, the total test coverage2 is 86%. Hence, about 1,400 lines
of code are never executed by any of the tests. These are usually parts of the code
that handle special situations as, for example, buffer reallocation for very long
input lines. A program tested with normal input typically has a coverage of about
50%. With a wide range of input data up to 70% can often be achieved. Beyond
this, options and error conditions have to be systematically exercised. Tedious
work, indeed! Adding one function means to add at least one functional test,
often there are one or two error conditions, and finally it has to be documented.
Popular estimates state that producing well-tested and documented code requires
about three times as much effort than just “the plain code”. The same factor is
usually attributed to making code reusable. This means if you want to produce
well-tested, documented, and reusable code, then the work needed will be about
one order of magnitude bigger than just writing a program that does the job (at

1http://zimpl.zib.de
2See the gcov command at http://gcc.gnu.org

1392 Oberwolfach Report 25/2007

least sometimes). Nevertheless, if this is the goal, (automated) regression test are
extremely useful. This is true in particular for software that is intended to be
developed further. Regression test that have a high coverage in combination with
the use of automated software testing (like valgrind) can considerable improve the
quality of software.

Note, though, that coverage tests say nothing about correctness of the program.
Also regression tests only verify that the code behaves the same than before any
changes, regardless whether this behavior was correct or not. In any case functional
tests are needed. This is relatively easy for a program such as Zimpl, but can be
very difficult for programs that compute something new. In an ongoing project at
ZIB the goal is to compute all solutions to a binary integer program. Here, the
design of particular tests is necessary as there are only few programs available to
verify the results computed.

3. Tuning

Assuming the theoretically best algorithm is known: How should it be imple-
mented?

◮ Which language? Does this matter?
◮ Use libraries or implement yourself? Especially system libraries are very

sensitive in the sense that their performance might vary considerably be-
tween compilers and operating systems. The push back operator of the
STL can behave very differently between compilers. malloc(3) is well
known to be a performance hazard when porting software.

◮ Implement special cache/hardware aware algorithms?
◮ Use assembler, SSE/2/3, 3DNow, Altivec, etc.? Assembler intrinsics can,

for example, speed up operations on bits considerably if there is an machine
instruction available for the operation. Finding the leftmost bit in a word
can be expressed by a single instruction on many processors, while this is
often cumbersome to program in a higher language.

◮ Parallelize it? How? By hand, OpenMP, MPI, . . .
Architectures that support multi-threading are common today and will
spread further in the future. Making aware of this wealth of computing
power is a major topic. Still, the problems also increase: testing and de-
bugging parallel software is a nightmare, reproducible time measurements
on parallel systems with non-uniform memory access (NUMA) are nearly
impossible to achieve.

◮ Single Instruction Multiple Data (SIMD) processors, like the 8800 GPU,
the Clearspeed accelerator or the Cell processor, promise ten times the
performance of regular processors, provided the problem is suitable and
can be implemented on these rather restricted architectures. Assume a
mediocre implementation of an algorithm would take 1 minute to run. A
better implementation might need only 30 seconds. Using some processor
specific instructions and some tuning, it would be done in 10 s. A multi-
threaded implementation would run in 3 s, and using SIMD hardware it

Algorithm Engineering 1393

would work in half a second. Whether the computation needs a minute
or can be done twice a second often makes a big difference in the possible
applications of the algorithm.

◮ And last but not least, the performance of algorithms depends on the input
data. Analyzing typical instances and test runs can give considerable ideas
for speedup. How data dependent should the program get?

References

[1] D.A. Bader, B.M.E. Moret, and P. Sanders, Algorithm Engineering for Parallel Computa-
tion, in R. Fleischer, B. Moret, E. Meineche Schmidt (Eds.): Experimental Algorithmics,
From Algorithm Design to Robust and Efficient Software, LNCS 2547 (2002), 1–23.

[2] G.J. Myers, C. Sandler, T. Badgett, and T.M. Thomas, The Art of Software Testing, 2nd
Ed., Wiley, 2004.

[3] F.P. Brooks, The Mythical Man-Month: Essays on Software Engineering, 20th Anniversary
Ed., Addison-Wesley, 1995.

[4] B.W. Kernighan, R. Pike, The Practice of Programming, Addison-Wesley, 1999

[5] T. Koch, Rapid Mathematical Programming PhD thesis, Technische Universität Berlin,
2004, http://www.zib.de/Publications/abstracts/ZR-04-58

The TSP and Exact Computation

William Cook

(joint work with David Applegate, Robert Bixby, Vasek Chvátal, Sanjeeb Dash,
Daniel Espinoza, Ricardo Fukasawa, Marcos Goycoolea, and Keld Helsgaun)

The traveling salesman problem asks for the cheapest tour passing through each of
a finite set of cities and returning to the point of departure. We give a brief survey
of the history and applications of the TSP, including work on genome sequencing,
and report on the solution of the full set of TSPLIB challenge problems, the largest
instance having 85,900 cities arising in a VLSI application. We also discuss the
solution of geometric TSP instances with exact (real) Euclidean travel costs and
make an estimation of the Beardwood, Halton, and Hammersley TSP constant.
To treat very large instances of the TSP we describe decomposition techniques
for computing tight upper and lower bounds on optimal tour values. Finally,
we consider the use of Gomory mixed-integer cutting planes for improving TSP
relaxations.

References

[1] D. Applegate, R. Bixby, V. Chvátal, W. Cook, The Traveling Salesman Problem: A Com-
putational Study, Princeton University Press, Princeton, New Jersey, USA, 2006.

[2] D. Applegate, W. Cook, S. Dash, D. Espinoza, Exact solutions to linear programming prob-
lems, Operations Research Letters (2007), to appear.

[3] J. Beardwood, J. H. Halton, J. M. Hammersley, The shortest path through many points,
Proceedings of the Cambridge Philosophical Society 55 (1959), 299–327.

[4] W. Cook, D. Espinoza, M. Goycoolea, Computing with domino-parity inequalities for the
TSP, INFORMS Journal on Computing, accepted in 2006.

[5] K. Helsgaun, An effective implementation of the Lin-Kernighan traveling salesman heuris-
tic, European Journal of Operational Research 126 (2000), 106–130.

1394 Oberwolfach Report 25/2007

[6] G. Reinelt, TSPLIB—A traveling salesman problem library, ORSA Journal on Computing
3 (1991), 376–384.

[7] A. Schaeffer, E. Rice, W. Cook, R. Agarwala, rh tsp map 3.0: End-to-end radiation hybrid
mapping with improved speed and quality control, Bioinformatics (2007), to appear.

An Experimental Study of New and Known Online Packet Buffering
Algorithms

Susanne Albers

(joint work with Tobias Jacobs)

Over the past five years the algorithms community has witnessed tremendous
research interest in packet buffering algorithms. Given a network router or switch
that is equipped with packet buffers of limited capacity, the general goal is to design
strategies for serving these buffers so as to maximize the total packet throughput.
While packet buffering policies have been investigated in the applied computer
science and, in particular, networking communities for many years, only seminal
papers by Aiello et al. [1] and Kesselman et al. [5] have initiated theoretical and
algorithmic studies. These studies aim at analyzing existing algorithms and at
designing new strategies with a provably good performance.

Obviously, packet buffering is an online problem in that data packets arrive
over time and, at any time, future packet arrivals are unknown. Results from
queueing theory cannot be applied as network traffic exhibits so-called self-similar
properties. Therefore, one resorts to competitive analysis [7], comparing an online
algorithm A to an optimal offline algorithm OPT that knows the entire packet
arrival sequence in advance. Algorithm A is called c-competitive if, for all packet
arrival sequences, the throughput achieved by A is at least 1/c times that of OPT.
In the above-mentioned algorithmic body of work, various packet buffering prob-
lems were investigated. The following natural questions arise: Do the competitive
analyses give meaningful results? Are the proposed new algorithms interesting
from a practical point of view? Does optimizing the worst-case behaviour also
improve the practical performance? So far, these issues were not addressed.

In this paper we present the first experimental study of online packet buffering
algorithms. We consider a scenario that is very basic and has been investigated the
most among the proposed models. Specifically, we are given m packet buffers, each
of which is associated with an input port of a switch. Each buffer is organized as a
queue and can simultaneously store up to B data packets. The capacity B is also
referred to as the size of the buffer. Time is assumed to be discrete. Each time step
consists of two phases, namely a packet arrival phase and a packet transmission
phase. At any time, in the packet arrival phase, new packets may arrive at the
buffers. Let bi be the number of packets currently stored in buffer i, and let ai

be the number of newly arriving packets at that buffer. If ai + bi ≤ B, then all
new packets can be accepted; otherwise ai + bi − B packets must be dropped.
Furthermore, at any time, in the packet transmission phase, an algorithm can
select one non-empty buffer and transfer the packet at the head of that queue to

Algorithm Engineering 1395

the output port. We assume w.l.o.g. that the packet arrival phase precedes the
transmission phase. The goal is to maximize the throughput, i.e. the total number
of transferred packets.

The scenario we study here arises, for instance, in input-queued (IQ) switches
which represent the dominant switch architecture today. In an IQ switch with
m input and m output ports packets that arrive at input i and have to be routed
to output j are buffered in a virtual output queue Qij . In each time step, for any
output j, one data packet from queues Qij , 1 ≤ i ≤ m, can be sent to that output.
In our problem formulation the m buffers correspond to queues Qij , 1 ≤ i ≤ m, for
any fixed j. We emphasize that we consider all packets to be equally important, i.e.
all of them have the same value. Most current networks, in particular IP networks,
treat packets from different data streams equally in intermediate switches.

Known algorithms: The most simple and natural packet buffering algorithm
is the Greedy policy: At any time serve the queue currently storing the largest
number of packets. Unfortunately, Greedy has essentially the worst possible com-
petitive ratio. It is easy to show that any work conserving algorithm, which at
any time serves an arbitrary non-empty buffer, is 2-competitive. Obviously, Greedy
belongs to the class of work conserving strategies. It was shown in [4] that the com-
petitive ratio of Greedy is not smaller than 2−1/B, no matter how ties are broken.
Thus Greedy has a competitiveness of exactly 2, for arbitrary buffer sizes. The
first deterministic algorithm that achieved a competitive ratio below 2 was devised
in [4]. The proposed Semi Greedy algorithm deviates from standard Greedy when
the buffer occupancy is low and has a competitive performance of 17/9 ≈ 1.89.
The deterministic strategy with the smallest competitive ratio known is the Wa-

terlevel algorithm [2] with a competitiveness of e
e−1 (1+ ⌊Hm+1⌋

B), where Hm is the
m-th Harmonic number. This ratio is optimal, for large B, as no deterministic
algorithm can have a competitive ratio smaller than e/(e − 1) ≈ 1.58, see [4]. As
for randomized strategies, a Random Schedule algorithm [3] achieves a competitive
ratio of e/(e − 1) while a Random Permutation algorithm is 1.5-competitive [6].
These performance ratios hold against oblivious adversaries and are close to the
best lower bound of 1.46, see [4]. The five algorithms just mentioned comprise all
online strategies known in the literature for our packet buffering problem. As for
the offline problem, a polynomial time algorithm computing optimal solutions was
given in [4].

Our contributions: We first introduce a new online packet buffering algorithm
called HSFOD . It is based on the idea to estimate the packet arrival rate for
each port. In each time step the algorithm transmits a packet from a non-empty
queue that, according to these arrival rates, encounters packet loss earliest in the
future assuming buffers would not be served anymore. We prove that it achieves
a competitive ratio of 2.

The major part of this paper is devoted to an extensive experimental study
of the packet buffering problem under consideration. The main purpose of our
experiments is to determine the experimentally observed competitiveness of all the
proposed online algorithms and to establish a relative performance ranking among

1396 Oberwolfach Report 25/2007

the strategies. As the name suggests, the experimentally observed competitiveness
is the ratio of the throughput of an online algorithm to that of an optimal solution
as it shows in experimental tests. Additionally, we wish to evaluate the running
times and memory requirements of the algorithms as some of the strategies are
quite involved and need auxiliary data structures. Finally, we are interested in
the actual throughput in terms of the total number of successfully transmitted
packets.

In order to get realistic and meaningful results, we have tested the algorithms
on real-world traces. We selected traces from the Internet Traffic Archive, which is
a moderated trace repository sponsored by ACM SIGCOMM. In our experiments
we have studied varying port numbers m as well as varying buffers sizes B. Fur-
thermore, we have investigated the influence of varying the speed of a switch, i.e.
the frequency with which it can forward packets. We have adjusted this parameter
relative to the given data traces. For instance, a speed of value 1 indicates that
the average packet arrival frequency is equal to the frequency with which packets
can be transmitted.

We present a concise description of the five previously known online buffering
algorithms as well as the optimal offline strategy. For all the proposed strategies,
including HSFOD, we describe how the given pseudo-code was indeed implemented
and discuss runtime issues as well as extra space requirements of the strategies.
We implemented the data model and the algorithms using the Java programming
language. One of the most important findings is that the experimentally observed
competitiveness is much lower than the theoretical bounds. Typically, the online
algorithms are at most 3% worse than an optimal offline algorithm. In fact, HS-
FOD shows the best performance, having a gap of less and 0.1%. We remark here
that HSFOD was designed after we had implemented and evaluated the previously
known algorithms. Hence it can be viewed as a result of an algorithm engineering
process. Furthermore, the theoretical competitive ratios are no proper indication
of how the algorithms perform in practice. The randomized algorithms, despite
their low theoretical competitiveness, do not perform better than the deterministic
ones. From a practical point of view Greedy, HSFOD and Semi Greedy are the
algorithms of choice.

References

[1] W. Aiello, Y. Mansour, S. Rajagopolan and A. Rosén, Competitive queue policies for dif-
ferentiated services, Proc. INFOCOM (200), 431–440.

[2] Y. Azar and A. Litichevskey, Maximizing throughput in multi-queue switches, Proc. 12th

Annual European Symp. on Algorithms (ESA), LNCS 3221 (2004), 53–64.
[3] Y. Azar and Y. Richter, Management of multi-queue switches in QoS networks, Proc. 35th

ACM Symp. on Theory of Computing, 2003, 82–89.
[4] S. Albers and M. Schmidt, On the performance of greedy algorithms in packet buffering,

Proc. 36th ACM Symp. on Theory of Computing, 2004, 35–44.
[5] A. Kesselman, Z. Lotker, Y. Mansour, B. Patt-Shamir, B. Schieber and M. Sviridenko, Buffer

overflow management in QoS switches, Proc. 31st ACM Symp. on Theory of Computing,
2001, 520–529.

Algorithm Engineering 1397

[6] M. Schmidt. Packet buffering, Randomization beats deterministic algorithms, Proc. 22nd
Annual Symp. on Theoretical Aspects of Computer Science (STACS), LNCS 3404 (2005),
293–304.

[7] D.D. Sleator and R.E. Tarjan, Amortized efficiency of list update and paging rules, Comm.
of the ACM 28 (2005), 202–208.

Constrained Minkowski Sums

Friedrich Eisenbrand

(joint work with Thorsten Bernholt and Thomas Hofmeister)

The Minkowski sum of two (finite) point-sets P ⊆ R
2 and Q ⊆ R

2 is defined as
P ⊕Q = {p+q | p ∈ P, q ∈ Q}. Convex hulls of Minkowski sums are a fundamental
concept in algorithmic geometry, in particular in robot motion planning [5, 4, 6, 7]
and placement problems [1, 3]. The convex hull of P ⊕ Q can be computed in
linear time [5] if the points in P and Q are sorted w.r.t. the value of a given linear
function, for example the value of their x1-coordinate. The convex hull of P ⊕ Q
has at most N = |P | + |Q| vertices.

In this paper, we introduce the notion of a constrained Minkowski sum. For a
matrix A ∈ R

k×2 and a vector b ∈ R
k, the constrained Minkowski sum (P⊕Q)A x≥b

is defined as the point-set

(P ⊕ Q)A x≥b = {x ∈ P ⊕ Q | Ax ≥ b}.
If k = 1, then the system Ax ≥ b reduces to a linear inequality aT x ≥ β. We call
a constraint aT x ≥ β linearly sortable if each |aT p|, p ∈ P and |aT q|, q ∈ Q is an
integer bounded by O(N).

Our motivation to study constrained Minkowski sums comes from a very prac-
tical application. A large class of subsequence problems from computational bi-
ology can be solved by maximizing a quasiconvex function over the points in a
constrained Minkowski sum. Recall that a function f : D → R is called quasicon-
vex if for all points s1, s2 ∈ D and all λ ∈ [0, 1], one has f(λ · s1 + (1 − λ) · s2) ≤
max{f(s1), f(s2)}, where D ⊆ R

2 is a nonempty convex set. If R ⊆ R
2 is a finite

set of points, then f attains its maximum on one of the vertices of the convex hull
conv(R) of R.

Our main results are as follows:

i) We show that the convex hull of a constrained Minkowski sum which is defined
by one constraint can be computed in time O(N log N). If the constraint
aT x ≥ β is linearly sortable, our algorithm even achieves a running time of
O(N).

ii) We provide a tight upper bound on the number of vertices of the convex hull
of a Minkowski sum with one constraint.

iii) We show that a subset R of (P ⊕ Q)Ax≥b which contains all vertices of
conv ((P ⊕ Q)Ax≥b) can be computed in time O(N log N) if the number of
constraints is fixed. This shows that a quasiconvex function which can be
evaluated in constant time can be maximized over (P ⊕ Q)Ax≥b in time

1398 Oberwolfach Report 25/2007

O(N log N). This running time is best possible in the algebraic decision-
tree model. For a varying number k of constraints we can compute such a set
R in time O(k · log k + k ·N log N). The set R contains O(k ·N log N) points.

iv) We obtain for many subsequence problems from the literature linear time
algorithms and improve upon the best known running times for some of them.
The strength of our approach is that we have one algorithm which can be used
for all of those problems.

Our result iii) for a fixed number of constraints is best possible in the algebraic
decision-tree model. Ben-Or [2] showed that the set-disjointness problem has a
lower bound of Ω(n log n) in this model of computation. Set disjointness is defined
as follows. Given two sets A = {a1, . . . , an} ⊆ R and B = {b1, . . . , bn} ⊆ R,
one has to decide whether A ∩ B = ∅ holds. Set-disjointness can be reduced to
the problem of maximizing a quasiconvex, even linear, function over a constrained
Minkowski sum in linear time as follows. Construct the point-sets P = {(0,−a) |
a ∈ A} and Q = {(0, b) | b ∈ B}. The point (0, 0) is contained in P ⊕ Q if and
only if A and B are not disjoint. Thus the maximum of the objective function −x2

over the constrained Minkowski sum (P ⊕ Q)x2≥0 is equal to 0 if and only if A
and B are not disjoint. This shows that the problem of maximizing a quasiconvex
objective function over the constrained Minkowski sum (P ⊕Q)Ax≥b requires time
Ω(n log n) in the algebraic decision-tree model even if f is a linear function and
Ax ≥ b consists of only one constraint.

References

[1] P. K. Agarwal, N. Amenta, and M. Sharir, Largest placement of one convex polygon inside
another, Discrete Comput. Geom. 19(1) (1998), 95–104. MR MR1486639 (99c:52026)

[2] M. Ben-Or, Lower bounds for algebraic computation trees, Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, STOC’83 (Boston, MA, May 25-27, 1983) (New
York), ACM, ACM Press, 1983, 80–86.

[3] L. Paul Chew and Klara Kedem, A convex polygon among polygonal obstacles: placement
and high-clearance motion, Comput. Geom. 3(2) (1993), 59–89. MR MR1228772 (94i:68283)

[4] Leonidas J. Guibas, Micha Sharir, and Shmuel Sifrony, On the general motion-planning
problem with two degrees of freedom, Discrete Comput. Geom. 4(5) (1989), 491–521.
MR MR1014740 (91a:68268)

[5] L.J. Guibas, L.H. Ramshaw, and J. Stolfi, A kinetic framework for computational geometry,
Proceedings of 24th IEEE Symposium on the Foundations of Computer Science, 1983, 100–
111.

[6] J. C. Latombe, Robot motion planning, Kluver Academic Publishers, Boston, MA, 1991.
[7] T. Lozano-Perez and M. A. Wesley, An algorithm for planning collision-free paths among

polyhedral obstacles, Communications of the ACM 22 (1979), 560–570.

Algorithm Engineering 1399

The Core Concept and Collaborative Approaches for the
Multidimensional Knapsack Problem

Ulrich Pferschy

(joint work with Jakob Puchinger and Günther R. Raidl)

We study the multidimensional knapsack problem (MKP) where a subset of items
with maximum profit has to be selected from a given ground set subject to m
resource constraints. The strongly NP -hard MKP can be defined by the following
integer linear program:

(MKP) maximize

n
∑

j=1

pjxj(1)

subject to

n
∑

j=1

wijxj ≤ ci, i = 1, . . . , m,(2)

xj ∈ {0, 1}, j = 1, . . . , n.(3)

Each item j consumes an amount wij ≥ 0 from each resource i, which is bounded
by the capacity ci. All input values are assumed to be nonnegative integers.
Obviously, for m = 1 the classical knapsack problem (KP) arises as a special case.
Recent surveys on MKP can be found in Kellerer, Pferschy and Pisinger [3] and
Fréville [2].

At first we study the structure of the LP-relaxation where (3) is replaced by
xj ∈ [0, 1]. It follows from linear programming theory that the solution of the LP-
relaxation xLP has at most m fractional values. An empirical study on classical
benchmark instances (all instances can be found in Beasley’s OR-library cf. [1])
shows that the integral part of xLP and the optimal solution of (MKP) denoted by
xILP coincide for roughly 97% of the variables. On the other hand, extending xLP

by a greedy-type heuristic yields solutions with a Hamming distance of 10% from
xILP on average. Therefore, we try to guide the branch and bound approach per-
formed by CPLEX 9.0 to concentrate on a neighbourhood of xLP before exploring
other parts of the solution space. This so-called local branching approach yields
consistently better solutions than running CPLEX in default mode. It turned out
that the neighbourhood should be neither too small nor too large with a bound of
25 on the Hamming distance from xLP exhibiting the best performance.

For the one-dimensional knapsack problem (KP) so-called core algorithms are
the currently most successful solution procedures. They are based on the idea that
items with a very high efficiency ej = pj/wj will always be included in the optimal
solution whereas items with a low efficiency will never be. The remaining items are
usually grouped around the split item which is defined by the only fractional value
of the LP-relaxation. This set of items, where xLP and xILP differ, are defined as
the core of the problem. Since xILP is not known a priori an approximate core has
to be defined by selecting a reasonably large set of items with efficiencies near the

1400 Oberwolfach Report 25/2007

split item and solve the resulting smaller instance of (KP) where all items outside
the approximate core are fixed.

An analogous approach for MKP has not been pursued in the literature before.
A major point of consideration is the required definition of an efficiency measure
to partition the items into highly desirable, possible and unlikely candidates for
the optimal solution. In an experimental study we compare several efficiency
measures suggested in the literature (see [3]). They are all based on different
choices of relevance values ri to weigh the importance of the i-th constraint and
can be written as

(4) egeneral
j =

pj
∑m

i=1 riwij
.

Our computational results clearly indicate that setting ri equal to the optimal
dual solution value of the LP-relaxation yields the best results in the sense that
the core size is much smaller than for all other efficiency values which generate
cores almost twice as large.

To construct an approximate core for KP the split item is a natural center to
start from. For MKP we define a split interval which is bounded (after sorting
by efficiencies) by the fractional variables in xLP with lowest resp. highest index.
With complementary slackness it can be shown that using the dual solution as
relevance values generates the theoretically smallest possible split interval. Our
computational experiments also indicate that the center of the split interval is very
close to the center of the exact core (less than 3 items difference in average) and
that other efficiency values lead to far larger split intervals.

Therefore, we construct approximate cores symmetric around the center of the
split interval. Solving cores of different size to optimality shows that a core contain-
ing 40% of the items yields almost always globally optimal solution but consumes
in average only 40% of the running time required for the solution of the complete
instances. Smaller cores are considerably faster to solve but hardly ever reach the
optimal solution even if their relative deviation remains below 0.1%.

For larger instances, where the optimal solutions cannot be computed anymore
in reasonable time, we ran CPLEX and applied a state-of-the-art evolutionary
algorithm (EA) based on Raidl and Gottlieb [7] both with a time limit of 500
seconds. It turned out that both approaches yield consistently better solutions
than the same algorithms executed on the complete instances which is confirmed
by one-sided Wilcoxon rank tests with extremely low error probabilities. As can be
expected, the restriction to the core problems allows the algorithms to enumerate
more nodes of the branch and bound tree resp. perform more iterations of the EA
and thus yields better solutions.

Combining the advantages of exact methods (CPLEX in our case) and the EA,
we also constructed a collaborative framework running both algorithms in (quasi-)
parallel. Information is exchanged by sending each other any detected new current
best solution which is either incorporated into the population of the EA or used as
a new lower bound by CPLEX. The EA uses greedy-type procedures to perform
repair operations to reach feasibility after recombination or mutation and as a

Algorithm Engineering 1401

local improvement. Since these procedures are based on sorting by efficiencies,
which are computed with the dual solutions of the LP-relaxation, these values are
updated by the respective LP-solution of a branch and bound node whenever a
new current best solution is found by CPLEX.

Extensive computational experiments produce in average the best results if this
exchange of dual variables is indeed performed and if the running time is split by
a 2:1 ratio between CPLEX and the EA (skewed cooperation). However, running
the EA alone yields the highest number of best solutions over all instances but
inferior solutions on some of them. Solving core problems with this collaborative
approach leads to better solutions for small core sizes, but more or less equal
performance on larger cores.

Finally, we compared the best algorithm we developed, namely the collaborative
approach with skewed cooperation, exchange of dual variables and applied to a
larger core problem, with the currently best heuristic by Vasquez and Vimont [8].
Their approach is based on a tabu search framework which partitions the solution
space by a cardinality constraint that is iterated over all feasible numbers of items.

It turns out that for the largest benchmark instances with n = 500 our approach
yields better solutions for m = 5 and solutions of roughly comparable quality for
m = 10. For m = 30 we could not match the results in [8]. However, our approach
was limited to 4 hours of running time whereas [8] consumes 16 hours in average
(on a comparable machine) and up to 80 hours for the m = 30 instances.

A full paper on these investigations is available in [6] while some results were
already published in [5]. Many more details can be found in Puchinger [4].

References

[1] P.C. Chu and J.E. Beasley, A genetic algorithm for the multidimensional knapsack problem,
Journal of Heuristics 4 (1998), 63–86. benchmark instances at:
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html

[2] A. Fréville, The multidimensional 0-1 knapsack problem: An overview, European Journal
of Operational Research 155 (2004), 1–21.

[3] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack Problems, Springer, 2004.
[4] J. Puchinger, Combining Metaheuristics and Integer Programming for Solving Cutting and

Packing Problems, PhD thesis, Vienna University of Technology, 2006.
[5] J. Puchinger, G.R. Raidl and U. Pferschy, The core concept for the multidimensional knap-

sack problem, Proceedings of the 6th European Conference on Evolutionary Computation
in Combinatorial Optimization (EvoCOP 06), LNCS 3906 (2006), 195–208.

[6] J. Puchinger, G.R. Raidl and U. Pferschy, The multidimensional knapsack problem: Struc-
ture and Algorithms, Technical Report TR-186-1-07-01, Vienna University of Technology,
Department of Computer Science, 2007, submitted.

[7] G.R. Raidl and J. Gottlieb, Empirical analysis of locality, heritability and heuristic bias in
evolutionary algorithms: A case study for the multidimensional knapsack problem, Evolu-
tionary Computation 13 (2005), 441–475.

[8] M. Vasquez and Y. Vimont, Improved results on the 0–1 multidimensional knapsack prob-
lem, European Journal of Operational Research 165 (2005), 70–81.

1402 Oberwolfach Report 25/2007

Evolutionary Algorithms for Matroid Optimization Problems

Joachim Reichel

(joint work with Martin Skutella)

Evolutionary algorithms are widely used in practice, however their empirical good
behavior is not well understood from a methodological point of view. Our goal is
to understand what underlying problem structures are promising for evolutionary
algorithms.

We consider two similar evolutionary algorithms, namely (1+1) EA and RLS.
Both algorithms are initialized by a random element s from the search space
{0, 1}m, generate another element s′ and replace s by s′ if the fitness of s′ is better
than that of s. The last two steps are repeated until some termination criterion
is met. (1+1) EA obtains s′ by flipping the bits of s u.a.r. with probability 1/m
whereas RLS chooses one or two bits of s u.a.r. and flips these bits.

In the minimum weight basis problem the task is to find a basis of a given
matroid (E,F) that has minimum weight w.r.t. a weight function w : E 7→ N. This
problem is a generalization of the minimum spanning tree problem. We proof that
the expected number of generations until the considered evolutionary algorithms
find a minimum weight basis is bounded by O(|E|2(log r(E) + log wmax)), where
r(E) denotes the rank of the matroid and wmax the maximum weight. This result
is based on earlier work by Neumann and Wegener [1] who also proved a lower
bound of Ω(|E|2 log r(E)).

Another classic matroid problem is the matroid intersection problem. Here two
matroids (E,F1) and (E,F2) are given and the task is to find a common indepen-
dent set X ∈ F1 ∩ F2 of maximum cardinality. This problem is a generalization
of the bipartite matching problem. Evolutionary algorithms are able to compute
a (1 − ǫ)-approximation of this problem within O(|E|2⌈1/ǫ⌉) generations in expec-
tation. This is an extension of earlier work by Giel and Wegener [2] who also
proved an exponential lower bound to obtain the exact solution.

In the weighted matroid intersection problem an additional weight function
w : E 7→ N is given and the weight of the common independent set has to be
maximized. Here the expected number of generations for a 1

2 -approximation is

given by O(|E|4(log r(E) + log wmax)). This result can be extended to the in-
tersection of p ≥ 3 matroids, which is an NP-hard problem. In this case, the
expected number of generations needed to obtain a 1

p -approximation is bounded

by O(|E|p+2(log r(E) + log wmax)). Note that the approximation ratio of 1
p is

exactly the same ratio as that of the Greedy algorithm.
Our results show that problems whose underlying structure boils down to ma-

troids can successfully be treated by evolutionary algorithms. See [3] for details.

References

[1] F. Neumann and I. Wegener, Randomized local search, evolutionary algorithms and the
minimum spanning tree problem, Proc. of the 6th Genetic and Evolutionary Computation
Conference (GECCO ’04), Seattle, USA, 2004, 713–724.

Algorithm Engineering 1403

[2] O. Giel and I. Wegener, Evolutionary algorithms and the maximum matching problem, Proc.
of the 20th Symp. on Theoretical Aspects of Computer Science (STACS ’03), 2003, 415–426.

[3] J. Reichel and M. Skutella, Evolutionary Algorithms and Matroid Optimization Problems,
Proc. of the 9th Genetic and Evolutionary Computation Conference (GECCO ’07), London,
2007, to appear.

Worst Case and Probabilistic Analysis of the 2-Opt Algorithm for the
TSP

Heiko Röglin

(joint work with Matthias Englert and Berthold Vöcking)

2-Opt is probably the most basic and widely used local search heuristic for the
TSP. This heuristic achieves amazingly good results on “real world” Euclidean
instances both with respect to running time and approximation ratio. There are
numerous experimental studies on the performance of 2-Opt. However, the theo-
retical knowledge about this heuristic is still very limited. Not even its worst case
running time on Euclidean instances was known so far. We clarify this issue by
presenting a family of Euclidean instances on which 2-Opt can take an exponential
number of steps.

Previous probabilistic analyses were restricted to instances in which n points
are placed uniformly at random in the unit square [0, 1]2, where it was shown

that the expected number of steps is bounded by Õ(n10) for Euclidean instances.
We consider a more advanced model of probabilistic instances in which the points
can be placed according to general distributions on [0, 1]2. In particular, we allow
different distributions for different points. We study the expected running time
in terms of the number n of points and the maximal density φ of the probability
distributions. We show an upper bound on the expected length of any 2-Opt im-
provement path of Õ(n4+1/3 · φ8/3). When starting with an initial tour computed
by an insertion heuristic, the upper bound on the expected number of steps im-
proves even to Õ(n3+5/6 · φ8/3). In addition, we prove an upper bound of O(

√
φ)

on the expected approximation factor. Our probabilistic analysis covers as special
cases the uniform input model with φ = 1 and a smoothed analysis with Gaussian
perturbations of standard deviation σ with φ ∼ 1/σ2.

References

[1] B. Chandra, H.J. Karloff, and C.A. Tovey, New results on the old k-Opt algorithm for the
traveling salesman problem, SIAM Journal on Computing, 28(6) (1999), 1998–2029.

[2] M. Englert, H. Röglin, and B. Vöcking, Worst case and probabilistic analysis of the 2-Opt
algorithm for the TSP, In Proc. of the 18th ACM-SIAM Symp. on Discrete Algorithms
(SODA), 2007, 1295–1304.

[3] D. S. Johnson and L.A. McGeoch, The traveling salesman problem: A case study in local
optimization, In E.H.L. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial
Optimization, John Wiley and Sons, 1997.

[4] D.A. Spielman and S.H. Teng, Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time, Journal of the ACM, 51(3) (2004), 385–463.

1404 Oberwolfach Report 25/2007

Efficient Data Structure Libraries

Leonor Frias

(joint work with Jordi Petit and Salvador Roura)

1. Introduction

Modern software design relies on the interaction and extension of well-defined,
robust, highly tuned and flexible predefined software components. This approach
allows system designers to concentrate on the high level logic and so, save money
and time.

Data structures libraries are software components that define interfaces and
implement fundamental data structures and algorithms. Nowadays, they are in-
cluded as part of most programming languages. We focus on the Standard Tem-
plate Library (STL), which is the algorithmic core of the C++ standard library [4].
From a theoretical point of view, the knowledge required to implement the STL
is well laid down on basic textbooks on algorithms and data structures. In fact,
current widely used STL implementations offered by compiler and library vendors
are based on these.

In the last years, there have been great advances in computing technology,
and together the computing needs have evolved with them. On the algorithm
community, new and more realistic models of computation have been introduced
to exploit the available technology. However, most of this research has not yet been
ported to general use software libraries. Though it is true that the requirements
in the theoretical world and in the actual libraries are often quite different, they
are both dealing with the same abstractions.

2. Goal

Our goal is to enhance different STL components with the most up-to-date
knowledge on algorithms and data structures while keeping with STL require-
ments.

Experimentation is the key tool. Nonetheless, a strong knowledge on the library,
data structures in general and some hints on analysis of analysis of algorithms are
required.

We aim to enhance data structures in the following senses. On the one hand,
we want to extend the STL components capabilities while retaining the cost and
functionality bounds of the rest of operations. On the other hand, we want to
improve components performance using recent developments in the field. My most
recent work has focused on performance.

Just following I present some specific topics in which I have been working.

Algorithm Engineering 1405

3. Enhancing STL map with rank operations

A map in the STL corresponds to a dictionary abstract data type with the
following constraints:

• elements must be sorted by key
• query/update operations by key must be logarithmic time
• sequential access with iterators must be provided (each step in amortized

constant time)

However, operations that take into account the cardinal position of the element
in the sorted sequence, such as rank or ith, are not considered. Therefore, any
balanced binary search tree can be used to implement STL maps. What is more,
most existing implementations are based on red-black trees.

If rank operations are to be considered, one could think on simply augmenting
the tree. But instead, our approach uses Logarithmic Binary Search Tree(LBST) [6]
because efficient rank/ith operations can be offered without extra fields. Fur-
thermore, we have used standard iterators notation (random access iterators) to
implement the new operations.

Our experiments have showed that our final implementation achieved the same
or better performance as GCC implementation (based on red-black trees) for al-
most all operations, but with extra functionality. Note, experimentation was key
to successively refine the implementation. Further, we have contributed a new
variant of LBSTs that uses top-down insertion/erase operations.

More information on this work can be found in [1].

4. Improving cache performance of STL lists

Memory hierarchies try to minimize the gap between memory access time and
arithmetic operation time. Their success relies on the common locality property of
data and programs. However, many data structures (specially dynamic memory
based) exhibit poor locality.

As a response, the algorithmic community proposes alternative data struc-
tures/algorithms that organize data such that the logical access pattern is sim-
ilar to the physical memory locations. If cache parameters are used in the actual
algorithm or data structure, the so-called cache-aware approach is followed. In
contrast, if no cache parameters are used at all, a cache-oblivious [3] design is
achieved.

Our work aims to fill the gap between double-linked lists implementations, that
easily cope with standard requirements but have a poor cache locality, and their
cache-conscious counterparts that are designed for very different requirements.
Specifically, the main problem has been keeping both with STL lists iterator
functionality and constant cost operations requirements. In particular, some of
the main issues are that there can be an arbitrary number of iterators and that
operations cannot invalidate them.

Our approach consists on a cache-aware double-linked list of buckets. This
ensures locality inside the buckets, while logically consecutive buckets are let to

1406 Oberwolfach Report 25/2007

be physically far. Moreover, all the iterators referred to an element are identified
with a dynamic node (relayer) that points to it. Given that we expect an small
number of iterators, the best solution is keeping the relayers on a sorted linked
list. Nonetheless, the asymptotic costs hold whatever the number of iterators.

The experiments have showed that our approach is preferable in many (com-
mon) situations to classical double-linked list implementations. Further, our im-
plementation are still competitive with (unusual) big load of iterators and bucket
capacity is not a critical parameter.

More information on this work can be found in [2].

5. Parallel implementation of STL containers bulk operations

Multicore microprocessors consist on 2 or more independent processors into a
single package (integrated circuit). Typically they have 1-2 levels of private cache
and 1 level of shared memory.

Parallel algorithms and data structures is not a new field. However, with mul-
ticore computers parallelism is available at the fingertips of any user. This makes
almost a must to take advantage of it. In particular, data structure libraries should
take advantage of the new technology both offering a parallel implementation of
the operations and supporting the parallel usage of the library components.

Currently, we are working jointly with J. Singler and P. Sanders from Universität
Karlsruhe to implement STL containers bulk operations. See in [5] an overview of
their work on the parallel implementation of the STL.

References

[1] L. Frias, Extending STL maps using LBSTs, Proceedings of the Seventh Workshop on
Algorithm Engineering and Experiments and the Second Workshop on Analytic Algorithmics
and Combinatorics (ALENEX/ANALCO), 2005, SIAM, 155–166.

[2] L. Frias, J. Petit, and S. Roura, Lists Revisited: Cache Conscious STL Lists, Proceedings of
the Fifth International Workshop on Experimental Algorithms (WEA), LNCS 4007 (2006),
121–133.

[3] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms, FOCS
’99, 1999, IEEE Computer Society, 285.

[4] International Standard ISO/IEC 14882, Programming languages — C++, American Na-
tional Standard Institute, 1st edition, 1998.

[5] Felix Putze, Peter Sanders, and Johannes Singler, Mcstl: the multi-core standard template
library, PPoPP ’07: Proceedings of the 12th ACM SIGPLAN symposium on Principles and
practice of parallel programming, 2007, ACM.

[6] S. Roura, A new method for balancing binary search trees, in F. Orejas, P. G. Spirakis,
and J. van Leeuwen, editors, 28th International Colloquium on Automata, Languages and
Programming, LNCS 2076 (2001), 469–480.

Algorithm Engineering 1407

Stronger Guarantees for Standard-Library Containers1

Jyrki Katajainen

The Standard Template Library (STL) [13, 14] is a library of generic algorithms
and data structures that has been incorporated in the C++ standard [1] and ships
with all modern C++ compilers. In the CPH STL project [4] our goal is to imple-
ment an enhanced edition of the STL. Initially, our focus was on time and space
efficiency of the STL components, but now we are also focusing on safety, relia-
bility, and usability of the components. In my talk, I briefly discussed four types
of guarantees our library should be able to provide for its users: time optimality,
iterator validity, exception safety, and space efficiency.

In the CPH STL, every container is a bridge class that calls the functions
available in the actual realization given as a template argument. For example, the
interface of a meldable priority queue looks as follows [11]:

template 〈 // Types:

typename E , // elements stored

typename C = std : :less〈E〉 , // comparator used in element comparisons

typename A = std : :alloctor〈E〉 , // allocator used for memory management

typename R = cphstl : :binary_heap〈E , C , A〉 // underlying realization

〉

class meldable_priority_queue ;

Therefore, if one wants to specify precisely which realization is to be used in a
particular instantiation, four template arguments must be given. If one is satis-
fied with the default settings, just one template argument specifying the type of
elements stored has to be given. Different realizations available at the library can
then provide different guarantees suitable for specific purposes.

“Time” optimality. The fundamental difference between the development of
a generic library and the development of a normal algorithm library is that we op-
erate with semi-algorithms, not with algorithms. Let F be a function or a primitive
whose cost and realization are not known. A component C may depend on F even
if F is unknown at development time of C. In an ideal situation, C should work
well for all potential realizations of F . If this is the case, a semi-algorithm is said to
be primitive oblivious with respect to F . Of course, optimally primitive-oblivious
semi-algorithms are of particular interest. The concept of primitive obliviousness
was implicitly defined in [9].

For a semi-algorithm the unspecified primitives can, for example, be element
reads and writes, element comparisons, element constructions and destructions,
and other primitives whose cost may vary unpredictably (like a branch). Also,
a function argument and template argument can define such a primitive. If the

1Presented at the Algorithm Engineering meeting held in Oberwolfach on May 2007.
Partially supported by the Danish Natural Science Research Council under contract 272-05-0272
(project “Generic programming—algorithms and tools”).

CPH STL Report 2007-3, May 2007.

1408 Oberwolfach Report 25/2007

primitives are reads and writes, we get that the concept of cache obliviousness
is a special case of the concept of primitive obliviousness. If the primitive is
element comparison, we get a link back to the classical comparison complexity.
However, since the cost of individual element comparisons may vary (cf. integer
comparisons vs. string comparisons) it can be difficult to develop semi-algorithms
that are optimally primitive oblivious with respect to element comparisons.

The standard technique used in generic libraries is to provide several special-
izations of a component for some specific data types. However, since there is an
infinite number of data types that could be given as a template argument, it is
impossible to provide all potential specializations in a program library. It would be
nice if a component could be made primitive oblivious, or even optimally primitive
oblivious, with respect to all unspecified primitives at the same time. Next we will
describe one such optimally primitive-oblivious semi-algorithm to show that for
some problems such semi-algorithms exist.

In the 0/1-sorting problem, we are given a sequence S of elements drawn from a
universe E and a characteristic function f : E → {0, 1}. We call an element x zero,
if f(x) = 0, and one, if f(x) = 1. Now the task is to rearrange the elements in S so
that every zero is placed before any one. Moreover, this reordering should be done
stably without altering the relative order of elements having the same f -value. In
the STL, function stable partition() is designed to used for 0/1-sorting.

A trivial semi-algorithm can solve this problem as follows: Scan the input se-
quence S twice, move first zeros and then ones to a temporary area, and copy the
elements back to S. Each element is read and written O(1) times and only sequen-
tial access is involved. That is, this semi-algorithm is optimally cache oblivious.
Additionally, each element is copied O(1) times and, for each element, character-
istic function f is evaluated O(1) times. That is, there exists a semi-algorithm
for 0/1-sorting that is optimally primitive oblivious with respect to all unspeci-
fied primitives. The problem turns out to be much harder, as discussed in [9], if
0/1-sorting should be done in-place using only O(1) words of extra space. The
development of other optimally primitive-oblivious semi-algorithms is left for an
interested reader. Natural candidates would be the other components specified in
the STL.

Iterator validity. A locator (a term adopted from [10]) is a mechanism for
maintaining the association between an element and its location in a data struc-
ture. Technically, locators are objects that can be created, destroyed, copied,
compared, and they provide access to the element stored at the location pointed
to. An iterator is a generalization of a locator that captures the concepts location
and iteration in a container of elements. For example, a bidirectional iterator is
a locator that also supports the operations ++ and -- allowing one to access the
elements next to the current location.

A data structure provides iterator validity if the iterators to the compartments
storing the elements are kept valid at all times. Of the standard containers only
lists and associative containers are required to keep their iterators valid. For other
containers, in the C++ standard there are precise rules stating which iterators are

Algorithm Engineering 1409

kept valid by which operations in which circumstances. For a programmer, it can
be difficult to remember these kinds of rules.

For many data structures, iterator validity can be achieved by storing handles
to the elements instead of the elements themselves. The technique of using han-
dles is described in the textbook by Cormen et al. [3, Section 6.5]. In the CPH
STL project this approach has been used to realize iterator-valid dynamic arrays.
Normally, the extra indirection has a small performance penalty [8], but since
one can loose the spatial locality of elements, in worst-case scenarios the cache
behaviour gets worse. Our target is to provide an iterator-valid realization for
each container class. In most cases an iterator-valid realization requires a bit more
memory compared to a straightforward realization.

Exception safety. An operation on an object is said to be exception safe if
that operation leaves the object in a valid state when the operation is terminated
by throwing an exception [16, Appendix E]. A valid state means a state that allows
the object to be accessed and destroyed without causing undefined behaviour or
an exception to be thrown from a destructor. In addition, the operation should
ensure that every resource that it acquired is (eventually) released.

In the C++ standard, different guarantees provided by a container operation are
classified in four categories [16, Appendix E]:

No guarantee: If an exception is thrown, any container being manipulated
is possibly corrupted.

Strong guarantee: If an exception is thrown, any container being manip-
ulated remains in the state in which it was before the operation started.
Think of roll-back semantics for database transactions!

Basic guarantee: The basic invariants of the containers being manipulated
are maintained, and no resources are leaked.

Nothrow guarantee: In addition to the basic guarantee, the operation is
guaranteed not to throw an exception.

Normally, container operations are known to provide the basic guarantee, but in
some special cases stronger exception-safety guarantees can be given. A program-
mer has to consult the documentation to recall the exact rules.

In general, all user-supplied functions and template arguments can throw an
exception. As an example let us consider the copy constructor for a set:

template 〈typename E , typename C , typename A〉

set〈E , C , A〉 : :set(const set&);

In this particular case, the following operations can throw an exception:

• function allocate() of the allocator (of type A) indicating that no memory
is available,

• copy constructor of the allocator,
• copy constructor of the element (of type E) used by function construct()

of the allocator,
• invocation of the comparator (of type C), and
• copy constructor of the comparator.

1410 Oberwolfach Report 25/2007

On the other hand, any primitive operation for the following types cannot throw
an exception:

• built-in types,
• types without user-defined operations,
• classes with operations that do not throw, and
• functions from the C library unless they take a function argument that

does.

Basically, all classes with destructors that do not throw and which can be easily
verified to leave their operands in valid states are friendly for library writers.
It is the responsibility of library users to ensure that destructors do not throw
exceptions. Without this assumption it would be difficult to write library code
that would provide the strong guarantee of exception safety.

It has turned out to be difficult to write exception-safe code (cf. [16, p. 943]) so
our current prototypes do not yet provide strong exception safety. In theory, there
is no asymptotic efficiency penalty, just more (a lot more) careful programming
is required. Also testing, whether your code is exception safe or not, is tedious.
So far we have done this by visual code inspection. It should be pointed out that
exception-safe components cannot be easily combined. That is, there are some
fundamental problems, which are not algorithmic, that have to be solved to make
exception-safe programming easier.

Space efficiency. In the C++ standard [1] no explicit space bounds are speci-
fied. In widely distributed implementations, like the SGI STL [15], the amount of
space used by all element containers is linear, except that for the dynamic-array
class the allocated memory is freed only at the time of destruction. In the CPH
STL if a data structure stores n elements, it is required to use at most O(n) extra
space (or less if possible). Examples of highly space-efficient data structures that
have been devised in the CPH STL project include dynamic arrays [12], dictionar-
ies and priority queues [2]; the memory overhead is O(

√
n) words and elements for

dynamic arrays, and (1 + ε)n words for dictionaries and priority queues.
Conclusions. In the CPH STL project our focus is not only on time and space

efficiency, but also on safety, reliability, and usability. Ideally, the library should
offer off-the-shelf components that can be used in a plug-and-play manner and that
provide raw speed, iterator validity, exception safety, and space efficiency. Based
on the work with my students—and the complicated programming errors expe-
rienced by them—I firmly believe that safe and reliable components are warmly
welcomed by many programmers.

We have been able to devise several data structures whose performance is close
to absolute minimum with respect to the number of element comparisons per-
formed [5, 6, 7], but unfortunately these data structures are complex and not as
such suited for a practical implementation. To reveal the practical relevance of
the ideas presented, algorithm engineering will be necessary.

The development of generic libraries is challenging (as can be their use, espe-
cially, because of long and incomprehensible error messages provided by contem-
porary compilers). There are several theoretical and practical challenges to be

Algorithm Engineering 1411

taken. In my talk some of the areas requiring further work were identified. Some
of the open questions are not algorithmic so these should be solved together with
experts working in other areas of computing.

Finally, I would like to make you aware that, if you have developed an industry-
strength STL component and feel that it should be a part of a program library,
you are welcome to donate your code to the CPH STL. We promise to consider
all donations seriously. When released, the library will be placed in the public
domain. Even after a release, a donor will share the copyright of his or her code
with the Performance Engineering Laboratory at the University of Copenhagen.

Acknowledgements. I enjoyed the stay at Mathematisches Forschungsinsti-
tut Oberwolfach and I thank the organizers for inviting me to this meeting on
algorithm engineering.

References

[1] British Standards Institute, The C++ Standard: Incorporating Technical Corrigendum 1,
BS ISO/IEC 14882:2003 (2nd Edition), John Wiley and Sons, Ltd., 2003.

[2] H. Brönnimann, J. Katajainen, and P. Morin, Putting your data structure on a diet, CPH
STL Report 2007-1, Department of Computing, University of Copenhagen, 2007.

[3] T.H. Cormen, C.E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 2nd
Edition, The MIT Press, 2001.

[4] Department of Computing, University of Copenhagen, The CPH STL, Website accessible
at http://www.cphstl.dk/, 2000–2007.

[5] A. Elmasry, C. Jensen, and J. Katajainen, A framework for speeding up priority-queue op-
erations, CPH STL Report 2004-3, Department of Computing, University of Copenhagen,
2004.

[6] A. Elmasry, C. Jensen, and J. Katajainen, Two-tier relaxed heaps, Proceedings of the 17th
International Symposium on Algorithms and Computation, LNCS 4288 (2006), 308–317.

[7] A. Elmasry, C. Jensen, and J. Katajainen, Two new methods for transforming priority
queues into double-ended priority queues, CPH STL Report 2006-9, Department of Com-
puting, University of Copenhagen, 2006.

[8] N. Esbensen, The cost of iterator validity, Proceedings of the 6th STL Workshop, CPH STL
Report 2006-9, Department of Computing, University of Copenhagen, 2006, 34–44.

[9] G. Franceschini and J. Katajainen, Generic algorithm for 0/1-sorting, CPH STL Report
2006-5, Department of Computing, University of Copenhagen, 2006.

[10] M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java, John Wiley &
Sons, Inc., 1998.

[11] J. Katajainen, Project proposal: A meldable, iterator-valid priority queue, CPH STL Report
2005-1, Department of Computing, University of Copenhagen, 2005.

[12] J. Katajainen and B.B. Mortensen, Experiences with the design and implementation of
space-efficient deques, Proceedings of the 5th Workshop on Algorithm Engineering, LNCS
2141 (2001), 39–50.

[13] D.R. Musser and A.A. Stepanov, Algorithm-oriented generic libraries, Software—Practice
and Experience 24(7) (1994), 623–642.

[14] P. J. Plauger, A. A. Stepanov, M. Lee, and D.R. Musser, The C++ Standard Template Li-
brary, Prentice Hall PTR, 2001.

[15] Silicon Graphics, Inc., Standard template library programmer’s guide, Website accessible at
http://www.sgi.com/tech/stl/, 1993–2006.

[16] B. Stroustrup, The C++ Programming Language, Special edition, Addison-Wesley, 2000.

1412 Oberwolfach Report 25/2007

Algorithm Engineering: Some Challenges in Computer Graphics

Friedhelm Meyer auf der Heide

(joint work with Matthias Fischer)

We identify some specific problems occurring in Computer Graphics, especially
for rendering and walkthrough, which makes experimental and theoretical runtime
analysis very complicated:

• The underlying machine model has to be extended by the properties of
the graphics hardware, especially their capability to execute very fast,
hardware-supported hidden surface removal.

• Further, input complexity is not sufficiently characterised by the number
of polygons the scene consists of. Rather, we have to take into account
viewpoint-dependent parameters like projected area of all, also occluded,
polygons.

As the main contribution we present strategies to reduce the complexity of the
part of the scene that is sent to the graphics hardware. First we present two
approximation algorithms. They might allow a few pixel errors, but reduce the
influence of the number of triangles on the runtime from linear to logarithmic,
based on two random sampling approaches. The time bounds are supported both
theoretically and experimentally. Then we present the problem of deciding whether
occlusion culling is worthwhile by introducing the aspect graph and a heuristic
strategy.

This is joint work with Matthias Fischer, based, among others, on the Ran-
domized z-Buffer Algorithm (Fischer, MadH, Peter, Straßer, Wand, SIGGRAPH
01) and the SampleTree (Fischer, Krokowski, Klein, MadH, Wand, Wanka, PRES-
ENCE 04).

The Importance of Experiments in Game Theory via some Case
Studies

Paul G. Spirakis

(joint work with Panagiota N. Panagopoulou)

The most important solution concept in game theory is the notion of Nash equilib-
rium [3]. Despite its certain existence, the problem of computing a Nash equilib-
rium was proved to be complete in PPAD [1]. In view of this fact, the experimental
study of games and the simulation of the selfish behavior of the players involved
can help in understanding how an equilibrium is reached.

We focus on the experimental study of weighted, single commodity network
congestion games [4]. In such games, each one of n selfish agents wishes to route
her load over a single-source and single-destination network G so as to minimize
the total delay experienced on the path she chooses. We assume that individual
link delays are equal to the total load of the link.

Algorithm Engineering 1413

In [2] it was shown that such games possess pure Nash equilibria and suggested
an algorithm (which is in fact a potential-based method) for computing a pure
Nash equilibrium. This algorithm converts any given non-equilibrium allocation
into a pure Nash equilibrium by performing a sequence of greedy selfish steps : a
greedy selfish step is an agent’s change of her current pure strategy (i.e. path)
to her best pure strategy with respect to the current allocation of all other users.
A superficial analysis of this algorithm gives an upper bound on its time which
is polynomial in n and the sum of the agents’ loads W , and this bound can be
exponential in n when some weights are exponential.

However, in [4] we provide strong experimental evidence that this algorithm ac-
tually converges to a pure Nash equilibrium in polynomial time. More specifically,
our experimental findings suggest that the running time is a polynomial function
of n and log W for a variety of network topologies (e.g. grid, clique, trees etc) and
distributions of the agents’ loads.

Moreover, our experimental evaluation shows that the initial allocation of agents
to paths significantly affects the convergence time of the algorithm. In particular,
we suggest an initial allocation (the shortest path allocation) that dramatically
accelerates this algorithm and is in fact a few greedy selfish steps far from a pure
Nash equilibrium. While an arbitrary initial allocation does not assure a similarly
fast convergence, the algorithm terminates in polynomial time for this case as well.

In addition, our experimental study suggests that the worst-case input for an
arbitrary initial allocation occurs when all agents’ loads are distinct and some of
them are exponential.

References

[1] X. Chen and X. Deng, Settling the complexity of 2-player Nash equilibrium, Proceedings of
the 47th IEEE Symposium on Foundations of Computer Science (FOCS 2006), 261–272.

[2] D. Fotakis, S. Kontogiannis and P. Spirakis, Selfish unsplittable flows, Proceedings of the
31st International Colloquium on Automata, Languages and Programming (ICALP 2004),
593–605.

[3] J. Nash, Noncooperative games, Annals of Mathematics, 54 (1951), 289–295.
[4] P. Panagopoulou and P. Spirakis, Algorithms for pure Nash equilibria in weighted conges-

tion games, ACM Journal of Experimental Algorithmics, 11 (2006), Article No 2.7.

Optimal Resilient Dynamic Dictionaries

Rolf Fagerberg

(joint work with Gerth Stølting Brodal, Allan Grønlund Jørgensen, Gabriel
Moruz, and Thomas Mølhave)

A wide palette of factors, such as power failures, radiation, and cosmic rays, have
a harmful effect on the reliability of contemporary memory devices, causing soft
memory errors [18, 19]. In a soft memory error, a bit flips and consequently the
content of the corresponding memory cell gets corrupted. As storage technology
develops, memory devices get smaller and more complex, and work at lower volt-
ages and higher frequencies [6]. All these improvements increase the likelihood of

1414 Oberwolfach Report 25/2007

soft memory errors, hence the rate of soft memory errors is expected to increase
for both SRAM and DRAM memories [18]. Memory corruptions are of partic-
ular concern for applications dealing with massive amounts of data, e.g. search
engines, since the large number of memory devices used to manipulate the data
vastly increases the frequency of memory corruptions. Taking into account that
the amount of cosmic rays increases with altitude, soft memory errors are of special
interest in fields like avionics and space research.

Since most software assume a reliable memory, soft memory errors can be ex-
ploited to produce severe malfunctions, such as breaking cryptographic proto-
cols [4, 20], taking control of a Java Virtual Machine [10], or breaking smart-cards
and other security processors [1, 2, 17]. In particular, corrupted memory cells
can have serious consequences for the output of algorithms. For instance, during
binary search in a sorted array, a single corruption in the early stages of the algo-
rithm can cause the search path to end as far as Ω(n) locations from its correct
position.

Memory corruptions have been addressed in various ways, both at the hardware
and software level. At the hardware level, they are tackled using error detection
mechanisms, such as redundancy, parity checking, or Hamming codes. However,
adopting such mechanisms involves non-negligible penalties with respect to perfor-
mance, size, and cost, and therefore memories implementing them are rarely found
in large scale clusters or ordinary workstations. At the software level, several dif-
ferent low-level techniques are used, such as algorithm based fault tolerance [11],
assertions [16], control flow checking [21], or procedure duplication [14]. However,
most of these handle instruction corruptions rather than data corruptions.

Dealing with unreliable information has been addressed in the algorithmic com-
munity in a number of settings. The liar model focuses on algorithms in the
comparison model where the outcome of a comparison is possibly a lie. Several
fundamental algorithms in this model, such as sorting and searching, have been
proposed [5, 12, 15]. In particular, searching in a sorted sequence takes O(log n)
time, even when the number of lies is proportional to the number of compar-
isons [5]. A standard technique used in the design of algorithms in the liar model
is query replication. Unfortunately, this technique is not of much help when mem-
ory cells, and not comparisons, are unreliable.

Aumann and Bender [3] proposed fault-tolerant (pointer-based) data structures.
To incur minimum overhead, their approach allows a certain amount of data,
expressed as a function of the number of corruptions, to be lost upon pointer
corruptions. In their framework memory faults are detectable upon access, i.e.
trying to access a faulty pointer results in an error message. This model is not
always appropriate, since in many practical applications the loss of valid data is
not permitted. Furthermore, a pointer can get corrupted to a valid address and
therefore an error message is not issued upon accessing it.

Finocchi and Italiano [9] introduced the faulty-memory RAM. In this model,
memory corruptions occur at any time and at any place during the execution of an
algorithm, and corrupted memory cells cannot be distinguished from uncorrupted

Algorithm Engineering 1415

cells. Motivated by the fact that registers in the processor are considered uncor-
ruptible, O(1) safe memory locations are provided. The model is parametrized by
an upper bound, δ, on the number of corruptions occurring during the lifetime of
an algorithm. An algorithm is resilient if it works correctly, at least on the set
of uncorrupted cells in the input. In particular, a resilient searching algorithm
returns a positive answer if there exists an uncorrupted element in the input equal
to the search key. If there is no element, corrupted or uncorrupted, matching the
search key, the algorithm returns a negative answer. Otherwise, the answer can
be both positive and negative.

Several problems have been addressed in the faulty-memory RAM. In the orig-
inal paper [9], lower bounds and (non-optimal) algorithms for sorting and search-
ing were given. In particular, it was proved that searching in a sorted array takes
Ω(log n + δ) time, i.e. it tolerates up to O(log n) corruptions while still preserv-
ing the classical O(log n) searching bound. Matching upper bounds for sorting
and randomized searching, as well as a O(log n + δ1+ǫ) deterministic searching
algorithm, were then given in [7]. Recently, resilient search trees that support
searches, insertions, and deletions in O(log n + δ2) amortized time [8] were intro-
duced. Finally, in [13] it was empirically shown that resilient sorting algorithms
are of practical interest.

Our results. We propose two optimal resilient static dictionaries, a randomized
one and a deterministic one, as well as a dynamic dictionary.

Randomized static dictionary: We introduce a resilient randomized stat-
ic dictionary that support searches in O(log n + δ) time, matching the
bounds for randomized searching in [7]. We note however that our dictio-
nary is somewhat simpler and uses only O(log δ) worst case random bits,
whereas the algorithm in [7] uses expected O(log δ · log n) random bits.

Deterministic static dictionary: We give the first optimal resilient deter-
ministic dictionary. It supports searches in a sorted array in O(log n + δ)
time in the worst case, matching the lower bounds from [9].

Dynamic dictionary: We extend this result to a dynamic dictionary sup-
porting searches in O(log n + δ) worst case time, and insertions and dele-
tions in O(log n + δ) amortized time. Also, it supports range queries in
O(log n + δ + k) worst case time, where k is the output size.

References

[1] R. Anderson and M. Kuhn, Tamper resistance - a cautionary note, Proc. 2nd Usenix Work-
shop on Electronic Commerce, 1996, 1–11.

[2] R. Anderson and M. Kuhn, Low cost attacks on tamper resistant devices, International
Workshop on Security Protocols, 1997, 125–136.

[3] Y. Aumann and M. A. Bender, Fault tolerant data structures, Proc. 37th Annual Symposium
on Foundations of Computer Science, IEEE Computer Society, 1996, 580–589.

[4] D. Boneh, R. A. DeMillo, and R. J. Lipton, On the importance of checking cryptographic
protocols for faults, Eurocrypt, 1997, 37–51.

[5] R. S. Borgstrom and S. R. Kosaraju, Comparison-based search in the presence of errors,
Proc. 25th Annual ACM symposium on Theory of Computing, 1993, 130–136.

1416 Oberwolfach Report 25/2007

[6] C. Constantinescu, Trends and challenges in VLSI circuit reliability, IEEE micro, 23(4)
(2003), 14–19.

[7] I. Finocchi, F. Grandoni, and G. F. Italiano, Optimal resilient sorting and searching in the
presence of memory faults, Proc. 33rd International Colloquium on Automata, Languages
and Programming, LNCS 4051 (2006), 286–298.

[8] I. Finocchi, F. Grandoni, and G. F. Italiano, Resilient search trees, Proc. 18th ACM-SIAM
Symposium on Discrete Algorithms, 2007, 547–554.

[9] I. Finocchi and G. F. Italiano, Sorting and searching in the presence of memory faults
(without redundancy), Proc. 36th Annual ACM Symposium on Theory of Computing, 2004,
ACM Press, 101–110.

[10] S. Govindavajhala and A. W. Appel, Using memory errors to attack a virtual machine,
IEEE Symposium on Security and Privacy, 2003, 154–165.

[11] K. H. Huang and J. A. Abraham, Algorithm-based fault tolerance for matrix operations,
IEEE Transactions on Computers, 33 (1984), 518–528.

[12] K. B. Lakshmanan, B. Ravikumar, and K. Ganesan, Coping with erroneous information
while sorting, IEEE Transactions on Computers, 40(9) (1991), 1081–1084.

[13] U. F. Petrillo, I. Finocchi, and G. F. Italiano, The price of resiliency: a case study on
sorting with memory faults, Proc. 14th Annual European Symposium on Algorithms, 2006,
768–779.

[14] D. K. Pradhan, Fault-tolerant computer system design, Prentice-Hall, Inc., 1996.
[15] B. Ravikumar, A fault-tolerant merge sorting algorithm, Proc. 8th Annual International

Conference on Computing and Combinatorics, 2002, 440–447.
[16] M. Z. Rela, H. Madeira, and J. G. Silva, Experimental evaluation of the fail-silent behaviour

in programs with consistency checks, Proc. 26th Annual International Symposium on Fault-
Tolerant Computing, 1996, 394–403.

[17] S. P. Skorobogatov and R. J. Anderson, Optical fault induction attacks, Proc. 4th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems, 2002, 2–12.

[18] Tezzaron Semiconductor, Soft errors in electronic memory - a white paper, http://www.

tezzaron.com/about/papers/papers.html, 2004.
[19] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice, ComTex Pub-

lishing, Gouda, The Netherlands, 1998, ISBN 90-804276-1-6.
[20] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer, An experimental study of security vulnerabili-

ties caused by errors, Proc. International Conference on Dependable Systems and Networks,
2001, 421–430

[21] S. S. Yau and F.-C. Chen, An approach to concurrent control flow checking, IEEE Trans-
actions on Software Engineering, 6(2) (1980), 126–137.

Algorithm Engineering 1417

Routing in Graphs with Applications to Real Time Material Flow
Problems

Rolf H. Möhring

(joint work with Ewgenij Gawrilow, Ekkehard Köhler, Ines Spenke, and Björn
Stenzel)

In modern logistic systems Automated Guided Vehicles (AGVs) are used for
transportation tasks. An appropriate control of these AGVs is crucial for efficient
transportation. They need to be assigned collision free routes in such a way that
the throughput of goods is maximized. The determination of these routes is an
online routing problem (nothing is known about future requests) and also a real-
time problem, because fast answers are required (should be less than one second
in practice).

We present an algorithm for this problem which avoids collisions, deadlocks,
livelocks and other conflicts already at the time of route computation (conflict-
free routes). We thus extend approaches of Huang, Palekar and Kapoor [3] and
Kim and Tanchoco [4], respectively. In particular, we take physical properties of
the AGVs into consideration in a more exact and flexible way.

The time dependent behavior of the AGVs is modeled by time-windows on the
arcs of the routing graph(implicit time-expansion). Each time-window represents
a free time slot at the corresponding arc depending on the routes of the AGVs
that are already computed (see Fig. 1). The real-time computation for each rout-
ing request consists of the determination of a shortest path with time-windows
(routing) and a subsequent readjustment of the time-windows (blocking).

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

1 11

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

1 11

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

1 11

(a) (b) (c)

Figure 1. Real-time computation. (a) shows the situation before
the new request arrives. There is a graph with some blockings
(black) and some time-windows (white). The task is to compute
a quickest path that respects the time-windows. This is illustrated
in (b). The chosen path is blocked afterwards (see (c)).

The Shortest Path Problem With Time-Windows is NP-hard in general [2], but
in this special case where cost correlates with elapsed time (travel time plus waiting
time), our algorithm solves the problem in polynomial time (in the size of the graph
and the number of time-windows) using a generalized Dijkstra algorithm algorithm

1418 Oberwolfach Report 25/2007

that maintains an interval in each label (the expansion of such a label is shown in
Fig. 2). In contrast, we can show in simplified model with constant travel times
that the problem without waiting is weakly NP-hard, while the multicommodity
case turns out to be strongly NP-hard [5]. This is related to the complexity of
packet routing investigated in [1].

21 1

 0

9

6

5

8

1

0

10 10

2

10 10 10 10 10

0 0 0 0 0

21 1

 0

9

2

6

5

10

8

1

0

10 10 10 10

2

10 10

0 0 0 0 0

(a) (b)

21 1

 0

9

2

6

5

10

8

1

0

5

4

8

10 10 10 10

2

10 10

0 0 0 0 0

21 1

 0

9

2

6

5

10

1

0

5

4

5

8

10 10 10 10

8

10 10

0 0 000

8

2

(c) (d)

Figure 2. Label Expansion in the generalized Dijkstra algo-
rithm. The label intervals are represented by gray bars (nodes).
The blockings are colored black (arcs). The white intervals be-
tween these blockings are the time-windows. The figures (a) to
(d) show the successive expansion of the label intervals.

Our routing algorithm shows very good computational times in practice and can
also handle additional features such as a prescribed orientation of the AGVs at
their destination. On a network with more than 30.000 arcs and up to 100 AGVs
routing and blocking together take not more than some hundredth of a second on
the average1 (see Table 1).

In comparison with a static routing approach, in which collision avoidance is
done at run time and not at route computation time, our algorithm shows a clear

1Hardware: AMD-Athlon 2100+ (1,7 Mhz) with 512 MB RAM.

Algorithm Engineering 1419

Table 1. Computational times (in seconds).

Scenarios Comp. per request Search Readjustment

maximal � maximal � maximal �

25-1G-L (25 AGVs) 0.35 0.10 0.32 0.08 0.04 0.02

25-1G-S (25 AGVs) 0.14 0.06 0.11 0.04 0.03 0.02

25-2G-L (25 AGVs) 0.24 0.06 0.24 0.05 0.03 0.01

25-2G-S (25 AGVs) 0.25 0.06 0.24 0.05 0.02 0.01

25-3G-L (25 AGVs) 0.29 0.06 0.27 0.05 0.04 0.01

25-3G-S (25 AGVs) 0.23 0.06 0.18 0.05 0.04 0.01

25-4G-L (25 AGVs) 0.18 0.04 0.16 0.03 0.03 0.01

25-4G-S (25 AGVs) 0.18 0.05 0.16 0.04 0.02 0.01

50-1G-L (50 AGVs) 0.35 0.10 0.31 0.08 0.04 0.02

50-1G-S (50 AGVs) 0.23 0.07 0.20 0.05 0.04 0.02

50-2G-L (50 AGVs) 0.32 0.06 0.30 0.05 0.04 0.01

50-2G-S (50 AGVs) 0.16 0.06 0.13 0.04 0.04 0.01

100G-L (100 AGVs) 0.26 0.06 0.23 0.05 0.05 0.01

100G-S (100 AGVs) 0.23 0.06 0.20 0.04 0.05 0.01

advantage w.r.t. total travel time for high traffic densities. In addition, it can also
cope with unforeseen events occurring at run time and reroute AGVs in real time.

References

[1] C. Busch, M. Magdon-Ismail, M. Mavronicolas, P. Spirakis, Direct routing: Algorithms
and complexity, in Proceedings of the 12th European Symposium on Algorithms (ESA’04),
LNCS 3221 (2004), Springer, 134–45.

[2] Desrosiers et al., Methods for routing with time windows, European Journal of Operational
Research 23 (1986), 236–245.

[3] J. Huang, U.S. Palekar, S. Kapoor, A labeling algorithm for the navigation of automated
guided vehicles, Journal of engineering for industry 115 (1993), 315–321.

[4] Ch.W. Kim, J.M.A. Tanchoco, Conflict-free shortest-time bidirectional AGV routing, Inter-
national Journal of Production Research 29(12) (1991), 2377–2391.

[5] I. Spenke, Complexity and approximation of static k-splittable flows and dynamic grid flows,
PhD Thesis, Technische Universität Berlin, 2006.

The Price of Resiliency: A Case Study on Sorting with Memory Faults

Irene Finocchi

(joint work with Umberto Ferraro-Petrillo, Fabrizio Grandoni, and Giuseppe F.
Italiano)

The inexpensive memories used in today’s computer platforms are not fully safe,
and sometimes the content of a memory unit may be temporarily or permanently
lost or damaged. This may depend on manufacturing defects, power failures,

1420 Oberwolfach Report 25/2007

or environmental conditions such as cosmic radiation and alpha particles. Un-
fortunately, even very few memory faults may jeopardize the correctness of the
underlying algorithms: for instance, if we want to search for a key in a sorted se-
quence subject to memory faults, corrupted keys may lead the search in the wrong
direction.

The quest for reliable computation in unreliable memories arises in an increasing
number of different settings, including large-scale applications that require the
processing of massive data sets and fault-based cryptanalysis. In the design of
reliable systems, when specific hardware for fault detection and correction is not
available or it is too expensive, it makes sense to look for a solution to these
problems at the application level, i.e., to design algorithms and data structures
that are able to perform the tasks they were designed for, even in the presence
of unreliable or corrupted information. Informally, we have a memory fault when
the correct value that should be stored in a memory location gets altered because
of a failure. We say that an algorithm or a data structure is resilient to memory
faults if, despite the corruption of some memory values during its lifetime, it is
nevertheless able to produce a correct output (at least) on the set of uncorrupted
values.

In the talk we address the design of resilient sorting algorithms. Since we do not
want to exploit data replication, our algorithms do not wish to recover corrupted
data, but simply to be correct on uncorrupted data, without incurring any time
or space overhead. More formally, we can state the resilient sorting problem as
follows:

Resilient sorting: we are given a set of n keys that need to be
sorted. The values of some keys may be arbitrarily corrupted
during the sorting process. The problem is to order correctly the
set of uncorrupted keys.

This is the best that we can achieve in the presence of memory faults: we cannot
indeed prevent keys corrupted at the very end of the algorithm execution from
occupying wrong positions in the output sequence.

We first show how to sort resiliently in O(n log n+δ3) time, where n is the num-
ber of keys to be sorted and δ is an upper bound on the number of faults that can
happen throughout the execution of the algorithm. We then experimentally in-
vestigate the impact of memory faults both on the correctness and on the running
times of sorting algorithms. To achieve this goal, we develop a software testbed
that simulates different fault injection strategies, and perform a thorough exper-
imental study using a combination of several fault parameters. Our experiments
give evidence that simple-minded approaches to the resilient sorting problem are
largely impractical, while the design of more sophisticated algorithms seems really
worth the effort.

Algorithm Engineering 1421

Bandwidth Minimization: Human Stupidity still Beats Artificial
Intelligence

Alberto Caprara

(joint work with Juan-José Salazar-González)

The bandwidth problem, calling for a linear layout of a graph in which the maxi-
mum distance between adjacent nodes is minimized, is a classical problem in com-
binatorial optimization that finds its main application in the solution of systems
of linear equations. Specifically, finding a minimum bandwidth layout of a graph
is the same as permuting the rows and columns of a symmetric square matrix so
as to minimize the distance of the nonzero elements from the main diagonal, and
systems of linear equations are easier to solve if this distance is small.

One of the main characteristics of the bandwidth problem is that the methods
which are successful for other important combinatorial optimization problems do
not seem to be particularly useful for its solution. For instance, preliminary com-
putational experiments indicated that some natural integer linear programming
formulations of the problem have extremely weak linear programming relaxations.
A well-known strong lower bound on the minimum bandwidth of a graph intro-
duced in the early 70s [2] is the so-called density lower bound, that was shown
to be on average almost equal to the minimum bandwidth (under an appropriate
distribution of the instances) [4]. On the other hand, it is unclear how to compute
this bound as well as how to use it within an enumerative algorithm to fathom
subproblems for which part of the solution is fixed (typically, the first/last nodes
in the layout). It is also known that the problem can be solved in polynomial time
by dynamic programming if the bandwidth is bounded by a constant [5], but the
exponent of the polynomial for both the time and the space complexity is given
by the bandwidth itself, which makes the method impractical when this value is
not very small.

As a consequence of the above situation, although successful ad hoc heuristics
have been proposed for the problem, no exact algorithms nor strong lower bound-
ing procedures capable of tackling instances of reasonable size can be found in
the literature. The only recent exception is [3], that illustrates an enumerative
algorithm implicitly based on a very simple lower bound that can be computed in
a very effective way. This algorithm works very well for dense graphs, essentially
because for these graphs the simple bound coincides with other stronger bounds,
whereas it is not effective for sparse instances as those that are encountered in
practice. Note that the optimal bandwidth value is unknown for most instances in
the “Matrix Market” collection [1], which is the main source of instances for the
problem.

Although spending long time to minimize the bandwidth of a single system
of linear equations is certainly not worth to speed-up the solution of the system
itself, finding the exact value of the bandwidth for a relevant set of test instances
is a challenging optimization problem in itself, and its outcome can be used to
test the effectiveness of practical heuristics. Moreover, there are cases in which

1422 Oberwolfach Report 25/2007

many systems of linear equations with the same nonzero pattern must be solved,
in which case it is worth investing time in the corresponding (unique) bandwidth
instance since this is going to speed-up the solution of all the systems.

In this work, we first analyze some lower bounds on the minimum bandwidth,
discussing the complexity of their computation and some dominance relations
among them. Specifically, we show that the computation of the density lower
bound is NP-hard, and introduce a new lower bound that can be found efficiently
and is suited for use within an enumerative scheme. Interpreting this latter lower
bound as the optimal value of a suitable integer linear programming relaxation of
the problem leads naturally to a stronger bound to be used within enumeration,
still efficient to compute. We stress that in this relaxation variables are restricted
to be integer (if this condition was relaxed, the model would be useless). We
further tighten this relaxation, showing that a better lower bound can be found
within short time by solving a suitable bilevel integer linear program. The result-
ing branch-and-bound method is quite successful, in that it is capable of solving
to proven optimality 24 out of the 30 instances from the literature associated with
graphs having up to 200 nodes, each within less than one minute, whereas only
the 10 easiest instances can be solved by the method of [3]. We also show how our
method behaves for random instances, confirming its effectiveness when the graph
is sparse. Finally, we devise a simple but effective method to compute the density
lower bound, whose value is reported for all instances in the literature with up to
250 nodes except one.

A closer look at the lower bounds used within enumeration that are mentioned
above shows that their computation boils down to testing if it is feasible to assign
different integer values to a set of variables subject to lower and upper bound
constraints on each value. Although this is what one would expect state-of-the-art
constraint programming solvers to be able to do automatically and effectively, the
solvers that we tested failed miserably even on some toy bandwidth instances, that
are on the other hand solvable within negligible time by the approaches mentioned
above.

References

[1] R. Boisvert, R. Pozo, K. Remington, R. Barrett, and J. Dongarra, Matrix Market:
a web resource for test matrix collections, in R. Boisvert (ed.), The Quality of Nu-
merical Software: Assessment and Enhancement, Chapman and Hall, London, 1997,
http://math.nist.gov/MatrixMarket/.

[2] V. Chvátal, A remark on a problem of Harary, Czechoslovak Mathematics Journal 20

(1970), 95.
[3] G.M. Del Corso and G. Manzini, Finding exact solutions to the bandwidth minimization

problem, Computing 62 (1999), 189–203.
[4] J.S. Turner, On the probable performance of heuristics for bandwidth minimization, SIAM

Journal on Computing 15 (1986), 561–580.
[5] E.M. Gurari and I.H. Sudborough, Improved dynamic programming algorithms for band-

width minimization and the mincut linear arrangement problem, Journal of Algorithms 5

(1984), 531–546.

Algorithm Engineering 1423

Clustering Large Data Sets

Christian Sohler

(joint work with Gereon Frahling)

Clustering is the computational task to partition a given input into subsets of
equal characteristics. These subsets are usually called clusters and ideally consist
of similar objects that are dissimilar to objects in other clusters. This way one
can use clusters as a coarse representation of the data. We loose the accuracy of
the original data set but we achieve simplification (this is somewhat comparable
to lossy compression). When we deal with large data sets clustering the data may
be the only possibility to visualize the structure of the data set as visualizing the
whole set is typically not possible.

Clustering has many other applications in different areas of computer sciences
such as computational biology, machine learning, data mining and pattern recog-
nition. Since the quality of a partition is rather problem dependent, there is no
general clustering algorithm. In this talk we consider k-means clustering, which is
a widely used formulation of clustering. In this problem we are given a set P of n
points in the Euclidean space R

d. The goal is to find a set C of k points (called
centers), such that

∑

p∈P

(d(p, C))2

is minimized, where d(p, C) denotes the distance of point p to the nearest point in
C.

In this talk, we want to develop a simple coreset construction for k-means
clustering [1]. A coreset is a small weighted points sets (point weights stand for
multiplicities of points) such that for any set of k centers the cost of the coreset
is within (1 ± ǫ) times the cost of the original point set. The coreset we compute
has size in O(log n) for constant ǫ and d. We present a dynamic data structure
(e.g., one supporting insertions and deletions) that maintains in poly(log n) space
such a coreset for a sequence of n insertions and deletion of points. Once we
have computed such a coreset we can use an arbitrary algorithm to obtain a good
clustering.

In the second part of this talk we show how to use these coresets to obtain a
fast implementation of Lloyd’s algorithm [4], which is one of the most widely used
heuristic for k-means clustering and clustering in general [2]. We start with a small
coreset and run a variant of this algorithm on it. Then we move to a coreset of
bigger size and run our variant on it using the solution from the previous coreset
as starting solution. We continue this process until our coreset equals the whole
point set. The variant of Lloyd’s algorithm we use is a variant of the KMHybrid
algorithm [3, 5].

References

[1] G. Frahling and C. Sohler, Coresets in Dynamic Geometric Data Streams, Proceedings of
the 37th Annual ACM Symposium on Theory of Computing (STOC’05), 2005, 209–217.

1424 Oberwolfach Report 25/2007

[2] G. Frahling and C. Sohler, A fast k-means implementation using coresets, Proceedings of
the 22nd ACM Symposium on Computational Geometry (SoCG’06), 2006, to appear.

[3] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu, An Efficient
k-Means Clustering Algorithm: Analysis and Implementation, IEEE Trans. Pattern Anal.
Mach. Intell. 24(7) (2002), 881-892.

[4] S. Lloyd, Least Squares Quantization in PCM, IEEE Transactions on Information Theory
28 (1982), 129–137.

[5] D. Mount, A Testbed for k-Means Clustering Algorithms, available at
http://www.cs.umd.edu/mount/Projects/KMeans/km-local-doc.pdf.

Engineering B-trees and Cache-Oblivious B-trees on Real Memory
Hierarchies (Ignorance is Bliss)

Michael A. Bender

(joint work with Mart́ın Farach-Colton, Haodong Hu, and Bradley C. Kuszmaul)

In this talk we report on our experiences implementing B-trees and cache-
oblivious B-trees. We then evaluate the predictive value of two memory models,
the disk access machine (DAM) model, and the cache-oblivious (CO) model. The
common perception is that CO algorithms, while elegant, loose a constant factor
compared to DAM algorithms in order to pay for platform independence. However,
the DAM does not model features of disks, such as prefetching of tracks, whereas
the CO models data locality at all granularities and all levels of the hierarchy. The
result is that for disk-bound data, the CO B-tree achieves comparable or superior
performance even to a highly tuned B-tree.

References

[1] M. A. Bender and H. Hu, An Adaptive Packed-Memory Array, Proceedings of the 25th
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS),
2006, 20–29.

[2] M. A. Bender, M. Farach-Colton, B. C. Kuszmaul, Cache-Oblivious String B-Trees, Proceed-
ings of the 25th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), 2006, 233–242.

Succinct Data Structures: A Survey

J. Ian Munro

Structural information is extremely useful, even crucial, to efficient information
retrieval especially in its large scale forms such as data warehousing. However,
the additional storage overhead of such information is often prohibitive. A recent
approach to this problem has been the consideration of succinct data structures.
The idea is to represent structural information, typicially a combinatorial object,
in a number of bits close to the information theoretic lower bound for such a
structure, but in a manner such that basic navigation opeations can be performed
quickly, say in constant time.

Algorithm Engineering 1425

Consider, for example a binary tree on n nodes. The natural represention
requires left and right pointers, and probably parent pointers. Taking a pointer
as lg n bits, the tree would require 3n lg n bits to represent the tree, so that the
obvious navigation operations of moving to either child or to the parent can be
performed quickly. There are however, only Cn =

(

2n
n

)

/(n+1) or about 4n binary
trees on n nodes, so about 2n bits suffice to identify such a tree. Jacobson seems
to be the first to study such succinct representations upon which one can perform
basic navigation operations, such as moving to a child or parent, quickly. He [1, 2]
proposed an encoding of the binary tree, together with appended external nodes
in all positions at which there are null pointers in the original tree. This gives a
tree on 2n + 1 nodes. Internal nodes, i.e. the those in the original tree, are tagged
with a 1, while the external nodes are tagged with a 0. The representation of the
tree is the binary string of length 2n+1 obtained by listing these tags from left to
right and level by level through the tree. Navigation through the tree is perfomed
with the aid of two auxiliary operations on a bit string: rank(i) gives the number
of 1’s up to and including position i, while select(i) gives the position of the ith

1. Jacobson gave an index of o(n) bits to support these operations in O(lg n) bit
probes, which the author and others refined to a constant number of probes on a
lg n bit RAM.

As the topic has developed, most of the work has focussed on succinct indices
for full text search. Indeed the most natural structure for such searches is a suffix
tree, which is essentially a binary tree with pointers to positions in the text at
the leaves. The structure requires, in addition to the operations noted above, the
ability to jump to an arbitrary leaf in a subtree and also tell subtree size. If, for
example, the text string is over a 4 symbol alphabet, as is a genome, storing the
index in the “naive” form requires about 100 times as much space as the raw text.
Clearly this is not acceptable.

Other structures considered include binary trees on which updates are to be
performed, ordered trees, planar graphs, permutations (with operations including
find inverse) and arbitrary functions from [n] to [n]. Munro and Rao ([3]) is a
recent survey on the topic.

References

[1] G. Jacobson, Space Efficient Static Trees and Graphs, Proc. 30th IEEE Symp. on Founda-
tions of Computer Science, 1989, 549–554.

[2] G. Jacobson, Succinct Data Structures, Technical Report CMU-CS-89-112, Carnegie Mellon
University, 1989.

[3] J. I. Munro and S. S. Rao, Succinct Representations of Data Structures, Chapter 37 of
Handbook of Data Structures and Applications (ed. D. P. Mehta and S. Sahni), Chapman
& Hall/CRC, 2005.

1426 Oberwolfach Report 25/2007

Exact and Efficient Geometric Computing using Structural Filtering

Stefan Näher

(joint work with Martin Taphorn)

Geometric algorithms use geometric predicates in their conditionals. The com-
mon strategy for the exact implementation of geometric algorithms is to evaluate
all geometric predicates exactly and to use floating point filters to make the exact
evaluation of predicates fast. Floating-point filters have proved to be very efficient
both in practice and in theory. The evaluation of a geometric predicate amounts
to the computation of the sign of an arithmetic expression. A floating point fil-
ter evaluates the expression using floating point arithmetic and also computes an
error bound to determine whether the floating point computation is reliable. If
the error bound does not suffice to prove reliability, the expression is re-evaluated
using exact arithmetic. Exact geometric computation incurs an overhead when
compared to a pure floating point implementation. For “easy inputs” where the
floating point computation always yields the correct sign, the overhead consists of
the computation of the error bound. This overhead is about a factor of two for
good filter implementations. For “difficult inputs” where the floating point filter
always fails, the overhead may be much larger, but this is not really relevant, as
the floating point computation will produce an incorrect result.

The challenge is to achieve exact geometric computation at the cost of floating
point arithmetic. Structural filtering is a step in this direction. Structural filtering
views the execution of an algorithm as a sequence of steps and applies filtering
at the level of steps. A step may contain many predicate evaluations, errors are
allowed in the evaluations of predicates, but the outcome of a step is guaranteed
to be correct.

In this work we investigate the potential of structural filtering theoretically
and experimentally. We give a classification of filtering techniques and compare
our approach to filtering at the predicate and at the algorithm level. We show
that predicate filtering is a special case of structural filtering and that structural
filtering has the potential of improving upon predicate filtering for a wide class of
algorithms.

The presented experimental results indicate that in many cases the possible
speed-up of a factor of two can be achieved. This is in particular true for new
implementations of algorithms for sorting, convex hull computations, plane sweep
and point-location. Furthermore structural filtering can considerably improve the
practical running time of range and segment trees.

References

[1] S. Funke, K. Mehlhorn, and S. Näher Structural Filtering: a Paradigm for Efficient and
Exact Geometric Programs, Computational Geometry 31(3) (2005), 179–194.

Algorithm Engineering 1427

Improved External-Memory Breadth-First Search

Ulrich Meyer

(joint work with Deepak Ajwani and Vitaly Osipov)

We consider the problem of breadth first search (BFS) traversal on massive
sparse undirected graphs in external memory. Engineering the algorithm of Muna-
gala and Ranade [5] (MR BFS) and the randomized and deterministic variants of
the o(n) I/O algorithm of Mehlhorn and Meyer [4] (MM BFS R and MM BFS D)
coupled with a heuristic, we discuss the effect of various implementation design
choices on the actual running time of the BFS traversal. Demonstrating the viabil-
ity of our BFS implementations on various synthetic and real world benchmarks,
we show that BFS level decompositions for large graphs (around a billion edges)
can be computed on a cheap machine in a few hours. Concretely speaking, our
contributions are the following (more details are provided in [1]):

• We improve upon the MR BFS and MM BFS R implementation described
in [2] by reducing the computational overhead associated with each BFS
level, thereby improving the results for large diameter graphs.

• We discuss the various choices made for a fast MM BFS D implementa-
tion. This involved experimenting with various available external memory
connected component and minimum spanning tree algorithms. Our par-
tial re-implementation of the list ranking algorithm of [6] adapting it to
the STXXL framework outperforms the other list ranking algorithms for
the sizes of our interest. As for the Euler tour in the deterministic prepro-
cessing, we compute the cyclic order of edges around the nodes using the
STXXL sorting.

• We conduct a comparative study of MM BFS D with other external mem-
ory BFS algorithms and show that for most graph classes, MM BFS D out-
performs MM BFS R. Also, we compare our BFS implementations with
Christiani’s implementations [3], which have some cache-oblivious subrou-
tines. This gives us some idea of the loss factor that we will have to face
for the performance of cache-oblivious BFS.

• We propose a heuristic for maintaining the pool in the BFS phase of
MM BFS. This heuristic improves the runtime of MM BFS in practice,
while preserving the worst case I/O bounds of MM BFS.

• Putting everything together, we show that the BFS traversal can also be
done on moderate and large diameter graphs in a few hours, which would
have taken the implementations of [2] and [3] several days and internal-
memory BFS several months. Also, on low diameter graphs, the time
taken by our improved MR BFS is around one-third of that in [2].

We summarize our results (Table 2) by giving the state of the art implementations
of external memory BFS on different graph classes.

1428 Oberwolfach Report 25/2007

Graph class n m MR BFS MM BFS R MM BFS D

Random 228 230 1.4 7× 6×
Webgraph ∼ 1.4 · 108 ∼ 1.2 · 109 2.6 3.5× 2×

Grid (214 × 214) 228 229 2.5× 1.25× 21

Grid (221 × 27) 228 ∼ 229 >100× >10× 4.0

Grid (227 × 2) 228 ∼ 228 + 227 >500× >25× 3.8

Simple Line 228 228 − 1 0.4 7× 7×
Random Line 228 228 − 1 >1300× >75× 3.6

Max ∼ 1/2 year ∼ 1 week 1 day

Table 2. The best total running time (in hours) for BFS tra-
versal on different graphs with the best external memory BFS
implementations; Entries like > 25× denote that this algorithm
takes more than 25 times the time taken by the best algorithm
for this input instance

References

[1] D. Ajwani, U. Meyer and V. Osipov Improved external memory BFS implementations,
Proc. 9th Workshop on Algorithm Engineering and Experiments (ALENEX), SIAM, 2007,
to appear.

[2] D. Ajwani, R. Dementiev, and U. Meyer, A computational study of external-memory BFS
algorithms, SODA, 2006, 601–610.

[3] Frederik Juul Christiani, Cache-oblivious graph algorithms, Master’s thesis, Department of
Mathematics and Computer Science, University of Southern Denmark, 2005.

[4] K. Mehlhorn and U. Meyer, External-memory breadth-first search with sublinear I/O, ESA,
LNCS 2461, 2002, 723–735.

[5] K. Munagala and A. Ranade, I/O-complexity of graph algorithms, SODA, 1999, ACM-
SIAM, 687–694.

[6] J. F. Sibeyn, From parallel to external list ranking, Technical report, Max Planck Institut
für Informatik, Saarbrücken, Germany, 1997.

Significance-Driven Graph Clustering

Dorothea Wagner

(joint work with Marco Gaertler and Robert Görke)

Modularity, the recently defined quality measure for clusterings, has attained in-
stant popularity in the fields of social and natural sciences. We revisit the rationale
behind the definition of modularity and explore the founding paradigm. This par-
adigm is based on the trade-off between the achieved quality and the expected
quality of a clustering with respect to networks with similar intrinsic structure.
We experimentally evaluate realizations of this paradigm systematically, including
modularity, and describe efficient algorithms for their optimization. We confirm

Algorithm Engineering 1429

the feasibility of the resulting generality by a first systematic analysis of the be-
havior of these realizations on both artificial and on real-world data, arriving at
remarkably good results of community detection.

This paper will appear in Proceedings of 3rd International Conference on Algo-
rithmic Aspects in Information and Management (AAIM’2007), Springer LNCS.

External-Memory and Cache-Oblivious Algorithms:
Theory and Experiments

Gerth Stølting Brodal

Modern computers get more and more complicated memory hierarchies. A typical
computer contains a CPU with a limited number registers, several layers of caching
(L1, L2 and L3), main memory, and secondary storage on disk. The layers are
characterized by having different sizes, access times and block sizes. Traditional
algorithm design ignores these factors when designing algorithms, even that these
parameters can have significant impact on the performance of an algorithm - e.g.
the performance of HeapSort is reduced by several orders of magnitude when data
exceeds main memory size whereas MergeSort does not have this problem. A lot
of experimental work has recently studied these influences on basic algorithmic
problems, and many algorithms have been developed with the aim of reducing the
number of disk I/Os, cache-faults, TLB misses etc.

In the talk examples were presented which show how the hardware parameters
from the memory hierarchy affect the running time of simple algorithms, includ-
ing the influence of TLB misses, prefetching of data, and branch prediction. In
particular we showed experimental results for algorithms designed for the abstract
external-memory model by Aggarwal and Vitter [1] and cache-oblivious model by
Frigo et al. [5], which in a simplified manor try to take the memory hierarchies into
account. Experimental results for cache-oblivious algorithms were presented for
sorting [3], search trees [2], and matrix multiplication [5]. Furthermore experimen-
tal examples were presented for the influence of TLB misses on the performance
of Radix Sort [8], the influence of L2 prefetching versus the cost of cache-faults for
shortest path algorithms [7], and the cost of branch mispredictions versus the cost
of caching for skewed versions of Quicksort [6] and skewed search trees [4].

References

[1] A. Aggarwal and J. S. Vitter, The input/output complexity of sorting and related problems,
Communications of the ACM, 31(9) (1988), 1116–1127.

[2] G. S. Brodal, R. Fagerberg, and R. Jacob, Cache-oblivious search trees via binary trees of
small height, Proc. 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, 39–
48.

[3] G. S. Brodal, R. Fagerberg, and K. Vinther, Engineering a cache-oblivious sorting algorithm,
ACM Journal of Experimental Algorithmics, Special Issue of ALENEX 2004, 12, 2007, 23,
Article No. 2.2.

[4] G. S. Brodal and G. Moruz, Skewed binary search trees, Proc. 14th Annual European Sym-
posium, LNCS 4168 (2006), 708–719.

1430 Oberwolfach Report 25/2007

[5] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms,
Proc. 40th Annual Symposium on Foundations of Computer Science, IEEE Computer Society
Press, 1999, 285–297.

[6] K. Kaligosi and P. Sanders, How branch mispredictions affect quicksort, Proc. 14th Annual
European Symposium, LNCS 4168 (2006), 780–791.

[7] S. Pan, C. Cherng, K. Dick, and R. E. Ladner, Algorithms to take advantage of hardware
prefetching, Proc. 9th Workshop on Algorithms Engineering and Experimentation (ALENEX
’07), 2007.

[8] N. Rahman and R. Raman, Adapting radix sort to the memory hierarchy, J. Exp. Algorith-
mics 6 (2001), 7.

Graph Clustering based on Disturbed Diffusion

Henning Meyerhenke

(joint work with Burkhard Monien, Stefan Schamberger, and Thomas Sauerwald)

Graph clustering refers to the placement of nodes into meaningful groups based
on some similarity measure. It is an important task in a wide variety of applica-
tions, e. g., network analysis for community detection. We address this in general
NP-hard problem by a heuristic algorithm we also use for partitioning graphs
arising in parallel adaptive numerical simulations [1]. Its iterative approach re-
sembles Lloyd’s k-means algorithm [2], but its similarity measure is derived from
a disturbed diffusion scheme called FOS/C instead of geometric distances.

Definition 1. [1] Given an edge-weighted graph G = (V, E, ω) with n nodes and
m edges, a set of source nodes S, and constants 0 < α ≤ (degree(G) + 1)−1 and
δ > 0.1 Let the initial load vector w(0) and the drain vector d (which is responsible
for the disturbance) be defined as follows:

w(0)
v =

{

n
|S| v ∈ S

0 otherwise
dv =

{

δn
|S| − δ v ∈ S

−δ otherwise

Then, the FOS/C diffusion scheme performs the following operations in each iter-
ation:

f
(t)
e=(u,v) = α(w(t)

u − w(t)
v), w(t+1)

v = (w(t)
v +

∑

e={∗,v}

f (t)
e) + dv.

By using FOS/C for measuring distances between nodes within Lloyd’s algo-
rithm, our heuristic focuses on good cluster or partition shapes rather than on
minimizing a classical cut metric. This approach contrasts to most existing graph
partitioning libraries [3, 4, 5]. For graph clustering, however, there are a number
of related graph clustering heuristics [6, 7, 8]. Yet, they have at least one disad-
vantage with respect to efficiency, quality, parameter determination, or theoretical
properties.

In practice the convergence state of an FOS/C system is determined by solv-
ing a linear system with sparse iterative solvers such as conjugate gradient or

1Here, the maximum degree is defined as degree(G) := maxu∈V

∑

e={u,v}∈E ω(e).

Algorithm Engineering 1431

algebraic multigrid. This is reasonably efficient (typically O(n3/2) or better) and
the combination of Lloyd’s algorithm with FOS/C is shown to converge towards
a local optimum of a potential function if no restriction is made on the cluster
sizes [9]. This convergence happens very quickly when a multilevel scheme known
from graph partitioning [10] is used.

Our experiments reveal promising results. The clustering quality on random and
real-world data sets is mostly really good [9], but difficult instances require further
work such as fine-tuned local search. Regarding graph partitioning, our algorithm
computes high-quality partitions: they are connected, have a low diameter and few
boundary vertices [1]. The quality compares very often favorably to the other state-
of-the-art graph partitioning libraries cited above regarding these metrics, while
the edge-cut is comparable or only slightly increased. We also hint at some speedup
techniques [11] in order to overcome the speed difference to these competitors.

Finally, we present a proof-of-concept to use the above ideas for partitioning
dynamic graphs with local knowledge only, i. e., when vertices are only allowed to
access information stored at themselves and their neighbors.

References

[1] H. Meyerhenke, B. Monien, and S. Schamberger, Accelerating shape optimizing load balanc-
ing for parallel FEM simulations by algebraic multigrid, Proc. 20th IEEE Intl. Parallel &
Distrib. Proc. Symp. (IPDPS), 2006, 57 (CD).

[2] S. P. Lloyd, Least squares quantization in PCM, IEEE Trans. on Information Theory, 28(2)
(1982), 129–136.

[3] G. Karypis and V. Kumar, MeTis: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, [...], Version 4.0, 1998.

[4] S. Schamberger, Graph partitioning with the Party library: Helpful-sets in practice, Comp.
Arch. and High Perf. Comp., 2004, 198–205.

[5] C. Walshaw, The parallel JOSTLE library user guide: Version 3.0, 2002.
[6] S. Lafon and A. Lee, Diffusion maps and coarse-graining: A unified framework for dimen-

sionality reduction, graph partioning and data set parametrization, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 28(9) (2006), 1393–1403.

[7] I. S. Dhillon, Y. Guan, and B. Kulis, Weighted graph cuts without eigenvectors: A multilevel
approach, IEEE Trans. on Pattern Analysis and Machine Intelligence, to appear.

[8] L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen, and M. Saerens, Clustering using a
random-walk based distance measure, Proc. 13th European Symposium on Artificial Neural
Networks (ESANN), 2005, 317–324.

[9] H. Meyerhenke, B. Monien, T. Sauerwald, Efficient k-means-type Clustering of Sparse
Graphs with Provable Convergence, 2007, submitted.

[10] B. Hendrickson and R. Leland, A multi-level algorithm for partitioning graphs, Supercom-
puting’95, 1995.

[11] H. Meyerhenke and S. Schamberger, A parallel shape optimizing load balancer, Proc. Euro-
Par 2006, 2006, 232–242.

1432 Oberwolfach Report 25/2007

Resilient priority queues

Gabriel Moruz

(joint work with Allan G. Jørgensen and Thomas Mølhave)

Abstract. In the faulty-memory RAM model, the content of memory cells can
get corrupted at any time during the execution of an algorithm, and a constant
number of uncorruptible registers are available. A resilient data structure in this
model works correctly on the set of uncorrupted values. In this paper we intro-
duce a resilient priority queue. The deletemin operation of a resilient priority
queue returns either the minimum uncorrupted element or some corrupted ele-
ment. Our resilient priority queue uses O(n) space to store n elements. Both
insert and deletemin operations are performed in O(log n + δ) time amortized,
where δ is the maximum amount of corruptions tolerated. Our priority queue
matches the performance of classical optimal priority queues in the RAM model
when the number of corruptions tolerated is O(log n). We prove matching worst
case lower bounds for resilient priority queues storing only structural information
in the uncorruptible registers between operations.
Motivation. Memory devices continually become smaller, work at higher fre-
quencies and lower voltages, and in general have increased circuit complexity [2].
Unfortunately, these improvements come at the cost of reliability [8, 6]. A number
of factors, such as alpha particles, infrared radiation, and cosmic rays, can cause
soft memory errors where a bit flips and as a consequence the value stored in the
corresponding memory cell is corrupted. Many modern computing centers consist
of relatively cheap of-the-shelf components, and the large number of individual
memories involved in these clusters substantially increase the frequency of mem-
ory corruptions in the system. Hence it is crucial that the software running on
these machines is robust. Since the amount of cosmic rays increases dramatically
with altitude, soft memory errors are of special concern in fields like avionics or
space research. Furthermore, soft memory error rates are expected to rise for both
DRAM and SRAM memories [8].

Traditionally, the work within the algorithmic community has focused on models
where the integrity of the memory system is not an issue. In these models, the
corruption of even a single memory cell can have a dramatic effect on the output.
For instance, a single corrupted value can induce as much as Θ(n2) inversions in
the output of a standard implementation of mergesort [3]. Replication can help
in dealing with corruptions, but is not always feasible, since the time and space
overheads are not negligible.
Faulty-memory RAM.. Finocchi and Italiano [3] introduced the faulty-memory
random access machine, which is a random access machine where the content of
memory cells can get corrupted at any time and at any location. Corrupted cells
cannot be distinguished from uncorrupted cells. The model is parametrized by an
upper bound δ on the number of corruptions occurring during the lifetime of an
algorithm. It is assumed that O(1) reliable memory cells are provided, a reasonable
assumption since CPU registers are considered reliable. Also, copying an element

Algorithm Engineering 1433

is considered an atomic operation, i.e. the elements are not corrupted while being
copied. An algorithm is resilient if it is able to achieve a correct output at least for
the uncorrupted values. This is the best one can hope for, since the output can get
corrupted just after the algorithm finishes its execution. For instance a resilient
sorting algorithm guarantees that there are no inversions between the uncorrupted
elements in the output sequence.

Several important results have been achieved in the faulty-memory RAM. In
the original paper, Finocchi and Italiano [3] proved lower bounds and gave (non-
optimal) resilient algorithms for sorting and searching. Algorithms matching the
lower bounds for sorting and searching(expected time) were presented in [4]. An
optimal resilient sorting algorithm takes Θ(n log n + δ2) time, whereas optimal
searching is performed in Θ(log n + δ) time. Furthermore, in [5] a resilient search
tree that performs searches and updates in O(log n + δ2) time amortized was
developed. Finally, in [7] it was shown that resilient sorting algorithms are of
practical interest.
Our contributions. In this paper we design and analyze a priority queue in
the faulty-memory RAM model. A resilient priority queue is a data structure
that maintains a set of elements under the operations Insert and Deletemin as
follows. An Insert adds an element and a Deletemin deletes and returns the
minimum uncorrupted element or a corrupted one.

Our priority queue uses O(n) space for storing n elements and supports both
Insert and Deletemin in O(log n + δ) time amortized. It matches the bounds
for an optimal comparison based priority queue in the RAM model while tolerat-
ing O(log n) corruptions. It is a significant improvement over using the resilient
search tree in [5] as a priority queue, since it uses O(log n+δ2) time amortized per
operation and thus only tolerates O(

√
log n) corruptions to preserve the O(log n)

bound per operation. Our priority queue is the first resilient data structure allow-
ing O(log n) corruptions, while still matching optimal bounds in the RAM model.
Our priority queue does not store elements in reliable memory between opera-
tions, only structural information like pointers and indices. We prove that any
comparison based resilient priority queue behaving this way requires worst case
Ω(log n + δ) time for either Insert or Deletemin.

The resilient priority queue is based on the cache-oblivious priority queue by
Arge et al. [1]. The main idea is to gather elements in large sorted groups of
increasing size, such that expensive updates do not occur too often. The smaller
groups contain the smaller elements, so they can be retrieved faster by Deletemin

operations. We extensively use the resilient merging algorithm in [4] to move
elements among the groups. Due to the large sizes of the groups, the extra work
required to deal with corruptions in the merging algorithm becomes insignificant
compared to the actual work done.

References

[1] L. Arge, M.A. Bender, E.D. Demaine, B. Holland-Minkley, J.I. Munro, Cache-oblivious
priority queue and graph algorithm applications, Proc. 34th Annual ACM Symposium on
Theory of Computing, 2002, 268–276.

1434 Oberwolfach Report 25/2007

[2] C. Constantinescu, Trends and challenges in VLSI circuit reliability, IEEE micro 23(4)
(2003), 14–19.

[3] I. Finocchi, G.F. Italiano, Sorting and searching in the presence of memory faults (without
redundancy), Proc. 36th Annual ACM Symposium on Theory of Computing, 2004, 101–110.

[4] I. Finocchi, F. Grandoni, G.F. Italiano, Optimal resilient sorting and searching in the pres-
ence of memory faults, Proc. 33rd Int. Colloquium on Automata, Languages and Program-
ming, 2006, 286–298.

[5] I. Finocchi, F. Grandoni, G.F. Italiano, Resilient search trees, Proc. 18th ACM-SIAM Sym-
posium on Discrete Algorithms, 2007, to appear.

[6] A.J. van de Goor, Testing Semiconductor Memories: Theory and Practice, ComTex Pub-
lishing, Gouda, The Netherlands, 1998, ISBN 90-804276-1-6.

[7] U.F. Petrillo, I. Finocchi, G.F. Italiano, The price of resiliency: a case study on sorting with
memory faults, Proc. 14th Annual European Symposium on Algorithms, 2006, 768–779.

[8] Tezzaron Semiconductor, Soft errors in electronic memory - a white paper,
http://www.tezzaron.com/about/papers/papers.html, 2004.

A Platform for Engineering Cache-Oblivious Algorithms and Data
Structures: The Architecture

Luca Allulli

(joint work with Fabrizio d’Amore and Enrico Puddu)

Cache-oblivious algorithms [6] are designed to be executed on the ideal-cache
machine, an abstract machine which faithfully models real-world machines with
hierarchical memory. Algorithms for the ideal-cache machine, as well as algorithm
for the RAM, work with a semi-infinite memory space. But while in the uniform
RAM model it is assumed that every memory access has the same cost, which is
incorrect for large data sets, the semi-infinite memory of the ideal-cache machine
models the virtual memory space of a computer, and block transfers to a faster
memory level are taken into account by the model. Nevertheless, implementing
cache-oblivious algorithms and data structures is not an easy task, because they
use peculiar techniques that are not (easily) supported by general purpose pro-
gramming languages and environments such as C, C++, or Java. For example,
consider the following issues, that arise when implementing a cache-oblivious al-
gorithm:

• Memory management. General-purpose memory managers, such as
common implementations of the malloc() function, keep linked lists of
the memory areas containing deallocated memory elements. When a new
memory element is allocated, the memory manager uses a linked list to
find a free large enough memory area. If the element pointed by the linked
list is not in cache, the allocation provokes one cache miss.

• Usage of pointers to perform elaborated tasks. In C++ only simple
tasks can be performed without using pointers. Allocating an array whose
size is not known at compile time, or creating a record-like structure which
“contains” an object whose size is not known at compile time, is normally
achieved through pointers. Pointers are problematic for cache-oblivious
algorithms and data structures, because following a pointer may cause

Algorithm Engineering 1435

Figure 1. Architecture of the platform

a cache miss. The solution is to build complex memory layouts, often
described by recursive definitions; but these layouts are difficult to obtain
using standard C++ only.

To find a solution to the mentioned issues, and since a library of cache-oblivious
algorithms and data structures did not exist, we decided to create a platform
for engineering cache-oblivious algorithms and data structures. The purpose of
our platform is twofold: to facilitate the implementation of algorithms, so that
they should be usable in real-world applications; and to support the engineering
through experimental analysis of such algorithms. The architecture of our platform
is depicted in Fig. 1.

Operating System - Virtual Memory System. We consider UNIX-like oper-
ating systems, in particular Linux. If we ignore memory areas used by the run-time
system (such as the function stack, the executable code etc.), a process can reserve
the areas of its memory space it wants to use (so that they get paged) using two
system functions: the brk() function, by which the process sets the limit of the
prefix of its memory space it wants to use; and the mmap() function, which allows
it to reserve arbitrary areas of the memory space.

Memory Management Layer. The memory management layer hosts several
memory managers. A memory manager is an object that provides the following
functions: Allocate(size t size), which allocates a new memory element of size
size; Deallocate(long memel) and Resize(long memel, size t newsize), re-
spectively deallocating and resizing a memory element. The reason why several
memory managers are provided is that each manager is characterized by a peculiar
allocation/deallocation policy, and by a way of requesting memory.

Memory can be requested directly to the operating system via the brk() func-
tion or the mmap() function: in this way, we can logically separate the algorithms
and data structures which compose the cache-oblivious algorithm to be engineered,
and separately analyze the memory usage (including cache misses) of each com-
ponent. Alternatively, a memory manager may use any implementation of the C

1436 Oberwolfach Report 25/2007

malloc() function to get memory. Finally, a memory manager may allocate the
memory it needs from another memory manager.

We now exemplify some of the memory allocation policies. One of these is a
stack-like policy: the memory manager “simulates” the function stack, in the
sense that memory elements are allocated in an “activation record”, and deallo-
cated as soon as the function in which they were allocated terminates. In this
way, algorithms can easily allocate on a stack arrays whose size is known only
at run time. With a non-deallocating policy the manager never tries to reuse
deallocated memory space: this solution does not increase the asymptotic I/O cost
of algorithms, and may be adopted to “simulate” preallocation, using a constant
factor of the time, space and I/O’s that would be used by preallocation. In order
to save space, compacting memory managers can be used, which recover unused
reserved space when a constant fraction of the reserved space has been deallocated.
The I/O cost of moving data in memory is amortized on the cost of accessing ev-
ery allocated element at least once; but there is an additional cost, for updating
pointers, that in general cannot be amortized. Notice, however, that even internal-
memory allocators in general cause additional costs that are not considered in the
theoretical analysis of internal memory algorithms.

Layout Management Layer. In order to create complex memory layouts, the
programmer should define enhanced classes that, differently from ordinary classes,
may have a size determined at run time. For each enhanced class C, a factory class
is defined; its factory objects are in charge of creating objects of class C. A factory
object is fed with information known only at run time, such as the factory objects
of the sub-objects of the enhanced object to be created, the size of arrays, etc.;
with this information it computes the size of the enhanced object, asks for space
to a memory manager, creates the enhanced object, and invokes a build function
on the factory objects of its sub-objects.

Library of Cache-Oblivious Algorithms and Data Structures; Target
Algorithm. The first motivation of our platform was an effort to engineer the
cache-oblivious single source shortest paths algorithms of Allulli et al. [1]. In order
to implement it, we developed a library of cache-oblivious algorithms and data
structures that currently includes tools for scanning and sorting, median selection
[6], a priority queue [2], tools for the time-forward processing [5], list ranking [5],
the minimum spanning forest [3], and the Euler tour computation.

Performance Meters, Profiler, and Experiment Manager. Our platform
can be compiled in two modes: a simulated mode, where every memory access is
tracked, and a real mode, where this does not happen. In the former it is possible
to simulate an arbitrary memory hierarchy. In the latter it is still possible to get
several useful cost measures from the system, such as time, number of page faults
etc. An optional profiler allows to attribute each measured cost to the function
that generated it. An experiment manager runs experiments in batch.

Algorithm Engineering 1437

Status. All the mentioned layers, algorithms and data structures have been im-
plemented. As a sorting algorithm, we currently use Mergesort. Before releasing
our code we need to (1) improve the generality of a portion of the library w.r.t. the
memory management layer; (2) implement Funnelsort [6], or integrate the imple-
mentation of Brodal et al. [4] into our platform; and (3) perform a first engineering
step in order to improve memory usage.

References

[1] L. Allulli, P. Lichodzijewski, and N. Zeh, A faster cache-oblivious shortest-path algorithm
for undirected graphs with bounded edge lengths, SODA07, 2007, Society for Industrial and
Applied Mathematics.

[2] L. Arge, M.A. Bender, E.D., Demaine, B. Holland-Minkley, and J.I. Munro, Cache-oblivious
priority queue and graph algorithm applications, STOC02, 2002, ACM Press, 268–276.

[3] L. Arge, G.S. Brodal, and L. Toma, On external-memory MST, SSSP and multi-way planar
graph separation, J. Algorithms 53(2) (2004), 186–206.

[4] G.S. Brodal, R. Fagerberg, and K. Vinther, Engineering a cache-oblivious sorting algorithm,
ACM J. of Experimental Algorithmics 12(2.2), 2007.

[5] Y.J. Chiang, M.T. Goodrich, E.F. Grove, R. Tamassia, D.E. Vengroff, and J.S. Vitter,
External-memory graph algorithms, SODA95, 1995, Society for Industrial and Applied Math-
ematics, 139–149.

[6] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran, Cache-oblivious algorithms,
FOCS99, 1999, IEEE Computer Society Press, 285–297.

Sequential Vector Packing

Riko Jacob

(joint work with Mark Cieliebak, Alexander Hall, and Marc Nunkesser)

We introduce a novel variant of the well known d-dimensional bin (or vector)
packing problem. Given a sequence of non-negative d-dimensional vectors, the
goal is to pack these into as few bins as possible of smallest possible size. In the
classical problem the bin size vector is given and the sequence can be partitioned
arbitrarily. We study a variation where the vectors have to be packed in the order
in which they arrive and the bin size vector can be chosen once in the beginning.
This setting gives rise to two combinatorial problems: One in which we want to
minimize the number of used bins for a given total bin size and one in which
we want to minimize the total bin size for a given number of bins. We prove
that both problems are NP-hard and propose an LP based bicriteria (1

ε , 1
1−ε)-

approximation algorithm. We give a 2-approximation algorithm for the version
with bounded number of bins. Furthermore, we investigate properties of natural
greedy algorithms, and present an easy to implement heuristic, which is fast and
performs well in practice.

This work was presented at the ESCAPE conference in 2007, and appears in
the proceedings published in the LNCS series of Springer.

Reporters: Carsten Gutwenger and Joachim Reichel

1438 Oberwolfach Report 25/2007

Participants

Prof. Dr. Susanne Albers

Institut fuer Informatik
Lehrstuhl Paralleles und Verteiltes
Rechnen, Albert-Ludwigs-Universität
Georges-Köhler-Allee 79
79110 Freiburg

Luca Allulli

Dipartimento di Scienze
dell’ Informazione
Universita di Roma ”La Sapienza”
Via Salaria 113
I-00198 Roma

Prof. Dr. Michael Bender

Department of Computer Science
State University of New York at
Stony Brook
Stony Brook , NY 11794-4400
USA

Vincenzo Bonifaci

Dipartimento di Informatica e
Sistemistica
Universita di Roma ”La Sapienza”
Via Salaria 113
I-00198 Roma

Prof. Dr. Gerth Brodal

Dept. of Computer Science
University of Aarhus
IT-Parken, Aabogade 34
DK-8200 Aarhus N

Prof. Dr. Alberto Caprara

DEIS
Universita di Bologna
Viale Risorgimento, 2
I-40136 Bologna

Markus Chimani

Fachbereich Informatik LS11
Universität Dortmund
Otto-Hahn-Straße 14
44227 Dortmund

Prof. Dr. William J. Cook

Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta , GA 30332-0205
USA

Dr. Camil Demetrescu

Dipartimento di Informatica e
Sistemistica
Universita di Roma ”La Sapienza”
Via Salaria 113
I-00198 Roma

Dr. Andreas Döring

Institut für Informatik
Freie Universität Berlin
Takustr. 9
14195 Berlin

Prof. Dr. Friedrich Eisenbrand

Institut für Mathematik
Universität Paderborn
33095 Paderborn

Prof. Dr. Rolf Fagerberg

Department of Mathematics and
Computer Science
University of Southern Denmark
Campusvej 55
DK-5230 Odense M

Prof. Dr. Irene Finocchi

Dept. of Computer Science
Universita ”La Sapienza”
Via Salaria 113
I-00198 Roma

Algorithm Engineering 1439

Leonor Frias Moya

Dept. de Llenguatges i Sist. Informatics
Universitat Politecnica de Catalunya
Campus Nord-Edifici, Omega, s109
Jordi Girona Salgado, 1-3
E-08034 Barcelona

Carsten Gutwenger

Fachbereich Informatik LS11
Universität Dortmund
Otto-Hahn-Straße 14
44227 Dortmund

Prof. Dr. Giuseppe F. Italiano

Dipartimento di Informatica,
Sistemi e Produzione
Universita di Roma ”Tor Vergata”
via del Politecnico 1
I-00133 Roma

Riko Jacob

Institut für theoretische
Informatik
ETH-Zentrum
Universitätstr.6
CH-8092 Zürich

Prof. Dr. Michael Jünger

Institut für Informatik
Universität zu Köln
Pohligstr. 1
50969 Köln

Prof. Dr. Jyrki Katajainen

Dept. of Computer Science
University of Copenhagen
Universitetsparken 1
DK-2100 Copenhagen

Dr. Thorsten Koch

Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB)
Takustr. 7
14195 Berlin

Dr. Luigi Laura

Dipartimento di Scienze
dell’ Informazione
Universita di Roma ”La Sapienza”
Via Salaria 113
I-00198 Roma

Prof. Dr. Friedhelm Meyer auf der

Heide

Heinz-Nixdorf Institut &
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Dipl.Inf. Henning Meyerhenke

Fakultät EIM - Elektrotechnik,
Informatik und Mathematik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Prof. Dr. Ulrich C. Meyer

Fachbereich Mathematik/Informatik
J.W.Goethe-Universität
Robert-Mayer-Str. 11-15
60325 Frankfurt/M.

Prof. Dr. Rolf Möhring

Institut für Mathematik - Fak. II
Technische Universität Berlin
Sekr. MA 6-1
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Burkhard Monien

Heinz-Nixdorf Institut &
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

1440 Oberwolfach Report 25/2007

Gabriel Moruz

BRICS, Dept. of Computer Science
University of Aarhus
Ny Munkegade, Building 540
DK-8000 Aarhus C

Prof. Dr. Ian Munro

Dept. of Computer Science
University of Waterloo
Waterloo, Ontario N2L 3G1
CANADA

Prof. Dr. Petra Mutzel

Fachbereich Informatik LS11
Universität Dortmund
Otto-Hahn-Straße 14
44227 Dortmund

Prof. Dr. Stefan Näher

Abteilung Informatik
Fachbereich IV
Universität Trier
54286 Trier

Prof. Dr. Ulrich Pferschy

Institut für Statistik und
Operations Research
Universität Graz
Universitätsstraße 15
A-8010 Graz

Prof. Dr. Tomasz Radzik

Department of Computer Science
King’s College London
Strand
GB-London WC2R 2LS

Prof. Dr. Rajeev Raman

Department of Computer Science
University of Leicester
University Road
GB-Leicester LE1 7RH

Dr. Joachim Reichel

Fachbereich Mathematik
Universität Dortmund
44221 Dortmund

Prof. Dr. Gerhard Reinelt

Institut für Informatik
Ruprecht-Karls-Universität
Heidelberg
Im Neuenheimer Feld 368
69120 Heidelberg

Prof. Dr. Giovanni Rinaldi

Istituto di Analisi dei Sistemi ed
Informatica
CNR
Viale Manzoni 30
I-00185 Roma

Heiko Röglin

Lehrstuhl für Informatik I
RWTH Aachen
Ahornstr. 55
52074 Aachen

Prof. Dr. Peter Sanders

Universität Karlsruhe
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Dominik Schultes

Institut für Informatik
Universität Karlsruhe
76128 Karlsruhe

Johannes Singler

Institut für Informatik
Universität Karlsruhe
76128 Karlsruhe

Prof. Dr. Martin Skutella

Fachbereich Mathematik
Universität Dortmund
44221 Dortmund

Algorithm Engineering 1441

Prof. Dr. Christian Sohler

Heinz-Nixdorf Institut &
Institut für Informatik
Universität Paderborn
Fürstenallee 11
33102 Paderborn

Prof. Dr. Paul Spirakis

University of Patras & (RA) CTI
Dept. of Comp. Eng. and Informatics
University Campus
N. Kazantzakis str.
26500 Rio, Patras
GREECE

Prof. Dr. Dorothea Wagner

Universität Karlsruhe
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

Prof. Dr. Ingo Wegener

Lehrstuhl für Informatik II
Universität Dortmund
44221 Dortmund

Prof. Dr. Christos Zaroliagis

University of Patras & (RA) CTI
Dept. of Comp. Eng. and Informatics
University Campus
N. Kazantzakis str.
26500 Rio, Patras
GREECE

Prof. Dr. Norbert Zeh

Faculty of Computer Science
Dalhousie University
6050 University Avenue
Halifax , N.S. B3H 1W5
CANADA

