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Introduction by the Organisers

The workshop was organized by Francis Comets (Paris 7) and Martin Zerner
(Tübingen). It was attended by fifty participants of about twenty different na-
tionalities. Among the participants was a relatively large number of young re-
searchers, some of which were supported by the European Union within the Marie
Curie Conferences Programme and by the National Science Foundation.

The title of the workshop was Non-Classical Interacting Random Walks. The
study of random walks (RWs) goes back to the beginnings of probability theory in
the seventeenth century. Some of the first probabilists like Bernoulli and Pascal
investigated the properties of coin tossing sequences and other simple games of
chance, which nowadays are modeled by RWs. Such a RW takes steps at fixed
time intervals, and at each step a random direction is chosen, which gives a chaotic
trajectory. So in their most stringent definition, RWs come up as sums of inde-
pendent and identically distributed random variables with real or often integer
lattice values. A somewhat wider definition includes time-homogeneous Markov
chains whose transition probabilities are in some way adapted to a given geometric-
algebraic-combinatorial structure of the underlying state space. In this context,
many tools from potential theory, graph theory, harmonic analysis and Fourier
analysis are available.
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The focus of this workshop was on a quite different area of current research on
RWs. This is what the term “non-classical” in the title refers to. Some of the
RWs, which are currently heavily investigated, are quite “irregular”: Some are
not Markovian, but are influenced by their own past. Others are Markovian, but
interact with a possibly random environment, which influences the transitions of
the walk. Many of the tools used in the more traditional settings of RWs fail in
this context.

The main models considered in this workshop were RWs in random environ-
ments (RWRE) with talks mainly on Monday, RWs in random potential and ran-
dom polymers on Tuesday, excited RWs on Wednesday morning, followed by an
exciting open problem session in the evening, reinforced RWs on Thursday and
various other RWs on Friday. The programme consisted in total of 23 talks of
about 50 minutes each and the open problem session. On most days a long lunch
break from 12:30 to 16:00 gave plenty of opportunity for interaction between the
participants. Following the reinforcement by previous workshops and in spite of
the title of the current workshop, on Wednesday afternoon most participants took
part in the classical interacting non-random walk to St. Roman.
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Abstracts

Quenched Invariance Principle for ballistic RWRE in d ≥ 4 dimensions

Ofer Zeitouni

(joint work with Noam Berger)

We prove that every nearest neighbor random walk in i.i.d. environment in dimen-
sion greater than or equal to 4 that has an almost sure positive speed in a certain
direction, an annealed invariance principle and some mild integrability condition
for regeneration times also satisfies a quenched invariance principle. The argument
is based on intersection estimates and a theorem of Bolthausen and Sznitman from
[2].

Let d ≥ 1. A Random Walk in Random Environment (RWRE) on Zd is defined
as follows. Let Md denote the space of all probability measures on Ed = {±ei}d

i=1

and let Ω =
(
Md

)Z
d

. An environment is a point ω = {ω(x, e)}x∈Zd, e∈Ed
∈ Ω. Let

P = QZ
d

be an i.i.d. probability measure on Ω, with Q a uniformly elliptic law
such that there exists a κ > 0 such that for every e ∈ Ed,

Q({ω(0, ·) : ω(0, e) < κ}) = 0.

For an environment ω ∈ Ω, the Random Walk on ω is a time-homogenous Markov
chain with transition kernel

Pω (Xn+1 = x+ e|Xn = x) = ω(x, e).

The quenched law P x
ω is defined to be the law on

(
Z

d
)N

induced by the transition
kernel Pω and P x

ω (X0 = x) = 1. Let Px = P ⊗ P x
ω be the joint law of the

environment and the walk, and the annealed law is defined to be its marginal

P
x(·) =

∫

Ω

P x
ω (·)dP (ω).

We say that the RWRE {X(n)}n≥0 satisfies the law of large numbers with
deterministic speed v if Xn/n → v, P-a.s. We say in addition that it satisfies the
annealed invariance principle with deterministic variance σ2 > 0 if the processes

(1) Bn(t) =
X([nt]) − [nvt]√

n
, t ≥ 0

converge in distribution as n → ∞, under the measure P, to a Brownian motion
of variance σ2. We say the process {X(n)}n≥0 satisfies the quenched invariance
principle with variance σ2 if for P -a.e. ω, the above convergence holds under the
measure P 0

ω .
Recall the regeneration structure for random walk in i.i.d. environment, de-

veloped by Sznitman and Zerner in [3]. We say that t is a regeneration time (in
direction e1) for {X(·)} if

〈X(s), e1〉 < 〈X(t), e1〉 whenever s < t
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and
〈X(s), e1〉 ≥ 〈X(t), e1〉 whenever s > t .

When ω is distributed according to an i.i.d. P such that the process

{〈X(n), e1〉}n≥0

is P-almost surely transient to +∞, it holds by [3] that, P-almost surely, there
exist infinitely many regeneration times for {X(·)}. Let

t1 < t2 < . . . ,

be all of the regeneration times for {X(·)}.
Theorem: Let d ≥ 4 and let Q ∈ Md be a uniformly elliptic distribution. Set

P = QZ
d

. Assume that the random walk {X(n)}n≥0 satisfies the law of large
numbers with a positive speed in the direction e1, that is

(2) lim
n→∞

X(n)

n
= v ,P − a.s with v deterministic such that 〈v, e1〉 > 0 .

Assume further that the process {X(n)}n≥0 satisfies an annealed invariance prin-
ciple with variance σ2.

Assume that there exists an ǫ > 0 such that E(t1)ǫ <∞ and, with r = 1 + ǫ,

(3) E[(t2 − t1)r] <∞ .

If d = 4, assume further that (3) holds with r > 8. Then, the process {X(·)}
satisfies a quenched invariance principle with variance σ2.

For d = 1, the conclusion of the Theorem does not hold, and a quenched
invariance principle, or even a CLT, requires a different centering.

The proof of the Theorem is available in [1].

References
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Subdiffusivity of the quenched mean and the quenched central limit
theorem for random walk in random environment

Firas Rassoul-Agha

(joint work with Timo Seppäläinen)

We first sketch a strategy for proving the quenched invariance principle for random
walk in random environment when one can produce a “suitable” invariant measure
(as seen from the particle). We then show how this strategy gives a necessary and
sufficient condition in the case of a space-time environment. This leads to the
necessary regularity condition when more general environments are considered.
The second part of the talk discusses the situation when this regularity condition
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fails to hold, in which case the quenched central theorem degenerates into two
central limit theorems, one for the walk with random centering and one for the
random centering itself.

Here is a more precise description of the model and results. The walk lives
on the integer lattice Zd. An environment ω is a configuration of probability
vectors ω = (ωx)x∈Zd ∈ Ω on Zd. The natural transition group {Tz} is defined by
(Tzω)x = ωx+z. On Ω we put a probability measure P. Transition probabilities
of the walk are given by πx,y(ω) = ωx,y−x. Under environment ω and with initial
state z ∈ Zd, the random walk (Xn)n≥0 is the Markov chain on Zd whose path
measure Pω

z satisfies

Pω
z {X0 = z} = 1 and Pω

z {Xn+1 = y|Xn = x} = πx,y(ω).

The averaged distribution Pz of the walk is obtained by integrating out the envi-
ronment: Pz{·} =

∫
Pω

z {·}P(dω). In general Pz is no longer Markovian. However,
the crucial observation is that the process (TXnω) is a Markov chain with transition
kernel

Πf(ω) =
∑

z

π0z(ω)f(Tzω).

When P is ergodic for this Markov process, one has the following theorem.

Theorem 1. [1] If P is a probability measure that is ergodic for the Markov
process with kernel Π, E0|X1|2 <∞, and there exists an η > 0 such that

E|Eω
0 [Xn] − E0[Xn]|2 = O(n1−η),

then the processes Bn(t) = 1
n{X[nt] − ntv} and B̃n(t) = 1

n{X[nt] − Eω
0 [X[nt]]}

converge weakly to the same Brownian motion (with a deterministic diffusion
matrix) under the quenched measure Pω

0 , for P-a.e. environment ω.

When P is not ergodic for (TXnω), a possible strategy to prove the quenched
invariance principle is to find a probability measure P∞ that would satisfy the
conditions of Theorem 1 and if P∞ is “close” to P, then one transfers the a.s.
result back to P.

Applying this strategy one can prove the following theorem about space-time
random environments.

Theorem 2. [1] Let e (the “time direction”) be an element of the canonical
basis of Rd, d ≥ 2. If P is a product probability measure on Ω and P{X1 ·e = 1} =
1, then the process Bn(t) = n−1/2{X[nt] − ntv} converges weakly to a Brownian
motion (with deterministic diffusion matrix) under the quenched measure Pω

0 , for
P-a.e. environment ω, if and only if E0|X1|2 < ∞ and P{∃z : π0z = 1} < 1. The

same holds for the process B̃n(t) = n−1/2{X[nt] − Eω
0 [X[nt]]}.

The diffusion matrix in Theorem 2 is, of course, the same as that of the averaged
invariance principle, which is nothing but Donsker’s invariance principle.
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When P{X1 · e1 = 1} < 1, the above regularity condition becomes: the walk
must not live in a one-dimensional subspace and P{∃z : π0,0 + π0,z = 1} < 1.

If this regularity condition is violated the quenched central limit theorem de-
generates into two. We do not cover the case d = 1 and, for convenience, we
assume bounded steps. P is still a product measure.

Theorem 3. [2] Assume P is product, there exists a deterministic constant
M such that P{π0z = 0} = 1 if |z| > M , and P{∃z : π0,0 + π0,z = 1} = 1. Then

a) There exists a deterministic vector v such that P0{n−1Xn → v} = 1.
Moreover, the process Bn(t) = n−1/2{X[nt] − ntv} converges weakly to a
Brownian motion under the averaged measure P0.

b) The process B̃n(t) = n−1/2{X[nt]−Eω
0 [X[nt]]} converges weakly to a Brow-

nian motion (with deterministic diffusion matrix) under the quenched mea-
sure Pω

0 , for P-a.e. environment ω.
c) The process n−1/2{Eω

0 [X[nt]] − ntv} converges weakly to a Brownian mo-
tion (with deterministic diffusion matrix) under the measure P.

d) If P{Eω
0 [X1] = v} < 1, then the process Bn(t) = n−1/2{X[nt] − ntv} is

not tight under the quenched measure Pω
0 , for P-a.e. environment ω.

One also has explicit formulæ for the diffusion matrices in Theorem 3; see [2].

References
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Almost sure functional central limit theorem for ballistic random walk
in random environment

Timo Seppäläinen

(joint work with Firas Rassoul-Agha)

We consider a multidimensional random walk in a product random environment
with bounded steps, transience in some spatial direction, and high enough mo-
ments on the regeneration time. We prove an invariance principle, or functional
central limit theorem, under almost every environment for the diffusively scaled
centered walk. The main point behind the invariance principle is that the quenched
mean of the walk behaves subdiffusively.

Here is a more precise description of the model and the result. The walk lives
on the integer lattice Zd in dimensions d ≥ 2. An environment ω is a configuration
of probability vectors ω = (ωx)x∈Zd ∈ Ω on Zd. On Ω we put an i.i.d. product
measure P. Transition probabilities of the walk are given by πx,y(ω) = ωx,y−x.
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Under environment ω and with initial state z ∈ Z
d, the random walk (Xn)n≥0 is

the Markov chain on Z
d whose path measure Pω

z satisfies

Pω
z {X0 = z} = 1 and Pω

z {Xn+1 = y|Xn = x} = πx,y(ω).

The averaged distribution Pz of the walk is obtained by integrating out the envi-
ronment: Pz(·) =

∫
Pω

z (·) P(dω).
We need the following specific assumptions for the theorem. We assume direc-

tional transience: namely, there exists a vector û ∈ Zd such that

P0{Xn · û→ ∞} = 1.

Define the first regeneration time as the first time τ1 at which

sup
n<τ1

Xn · û < Xτ1 · û = inf
n≥τ1

Xn · û.

Our main assumption is a moment bound on τ1: E0(τ
p
1 ) <∞ for some p > 176d.

Some minimal regularity on the environments is necessary: the walk must not live
in a one-dimensional subspace, and P{∃z : π0,0 + π0,z = 1} < 1. For convenience
we assume also bounded steps.

Under these assumption a limiting velocity v = limn−1Xn exists and we have
the following result on fluctuations.

Theorem. The centered and diffusively scaled process Bn(t) = n−1/2{X[nt] −
ntv} converges weakly to a Brownian motion under the quenched measure Pω

0 , for
P-a.e. environment ω. The diffusion matrix of the limiting Brownian motion is
independent of ω and nondegenerate in some spatial directions.

Quenched Limits for Transient, Zero Speed One-Dimensional Random
Walk in Random Environment

Jonathon Peterson

(joint work with Ofer Zeitouni)

We consider the model of a random walk in random environment (RWRE) in one
dimension. An environment is an element ω = (ωx)x∈Z ∈ [0, 1]Z. Let P be a
distribution on the space of environments. In this talk we assume that P is a
product measure (i.i.d. environments).
The quenched law P x

ω for a random walk Xn in the environment ω is defined by

P x
ω (X0 = x) = 1, and P x

ω (Xn+1 = j|Xn = i) =

{
ωi if j = i+ 1,

1 − ωi if j = i− 1.

Expectations under the law P x
ω are denoted Ex

ω.
The annealed law for the random walk in random environment Xn is defined by
averaging the quenched law over all environments:

P
x(·) =

∫
P x

ω (·)P (dω).
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Expectations under the law P will be written E.
We assume the following conditions on the law of the environment:
Assumption 1. P is a product measure on Ω such that

EP log ρ < 0 and EPρ
s = 1 for some s ∈ (0, 1).

Assumption 2. There exists ρmax < ∞ such that P (ρ < ρmax) = 1, and the
distribution of log ρ is non-lattice under P . Due to Assumption 1 and the well
known results of Solomon [6], the random walkXn is transient to the right but with
zero speed (i.e. limn→∞

Xn

n = 0). Assumption 2 contains technical assumptions
needed for our proofs.
Under Assumptions 1 and 2 Kesten, Kozlov, and Spitzer analyzed the annealed
law of Xn. They derived the limiting distributions for the walk by first establishing
a stable limit law of index s for the hitting times Tn := min{t ≥ 0 : Xt = n}. In
particular, they showed that when s < 1 there exists a b > 0 such that

lim
n→∞

P

(
Tn

n1/s
≤ x

)
= Ls,b(x) ,

and

(1) lim
n→∞

P

(
Xn

ns
≤ x

)
= 1 − Ls,b(x

−1/s),

where Ls,b is the distribution function for a stable random variable with charac-
teristic function

L̂s,b(t) = exp

{
−b|t|s

(
1 − i

t

|t| tan(πs/2)

)}
.

We study the quenched limiting distributions of the random walk and show
that the behavior is very different from the annealed behavior. In particular,
the stable behavior seen in the annealed results comes from fluctuations in the
environment and not the random walk. In particular we prove that n−1/sEωTn is
approximately a stable random variable. We then use this to prove the following
two theorems which show that P −a.s. there exist two different random sequences
of times (depending on the environment) where the random walk has different
limiting behavior. These are the main results of the talk.
Theorem 1. Let Assumptions 1 and 2 hold, and let s < 1. Then P -a.s. there
exist random subsequences tm = tm(ω) and um = um(ω), such that for any δ > 0,

lim
m→∞

Pω

(
Xtm − um

(log tm)2
∈ [−δ, δ]

)
= 1.

Theorem 2. Let Assumptions 1 and 2 hold, and let s < 1. Then P -a.s. there

exists a random subsequence nkm = nkm(ω) of nk = 22k

and a random sequence
tm = tm(ω), such that

lim
m→∞

log tm
lognkm

=
1

s
,
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and

lim
m→∞

Pω

(
Xtm

nkm

≤ x

)
=

{
0 if x ≤ 0
1
2 if 0 < x <∞

.

Note that Theorems 1 and 2 preclude the possiblity of a quenched analogue of
the annealed statement (1).
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On the asymptotic velocity of diffusions in random environment

Laurent Goergen

Within the rich field of random motions in random media, my interest is directed
towards diffusions in random environment which are closely related to the discrete
random walks in random environment. Although much progress has been made
in the last decade, see [12] for a concise overview, the multidimensional setting
remains poorly understood. Let alone a few specific situations where for instance
the drift is divergence-free or the gradient of a stationary potential, the lack of
knowledge about an invariant measure for the so called process of the environment
viewed from the particle prevents us from using the highly developed methods
from homogenization theory, see for instance [6], [5]. Instead, we build up on more
recent techniques that proved successful in the discrete setting of random walks in
random environment such as the renewal-type arguments introduced by Sznitman
and Zerner, see [16] and also [9] and the so called condition (T ) which guarantees
the existence of a non-vanishing limit velocity (ballistic behaviour), see [13], [7].
In particular, we obtain in the general framework of multidimensional diffusions in
random environment, see below, the existence of a limiting velocity taking at most
two values as well as certain zero-one laws, see [2]. Moreover, we prove an effective
criterion for ballistic behaviour in the spirit of [14] and use it to construct new
examples of ballistic diffusions, see [3]. Before we present our results in greater
detail and discuss possible future developments and open questions, let us give the
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Definition of the model. The set of random environments is a probability space
(Ω,A,P) endowed with a jointly measurable group of transformations (tx)x∈Rd

preserving the probability measure P. The diffusion in the random environment
ω ∈ Ω with starting point x ∈ Rd, whose law is denoted by Px,ω, is then the
solution of the following stochastic differential equation:

(1)
dXt = σ(Xt, ω)dβt + b(Xt, ω)dt,
X0 = x, Px,ω-a.s.,

where βt is a d-dimensional Brownian motion. The local characteristics, i.e. the
diffusion matrix σ(·, ·) and the drift b(·, ·) are jointly measurable functions on
Rd × Ω. We assume that they are stationary, bounded and Lipschitz-continuous.
Moreover we require σ to be uniformly elliptic, in the sense that for some ν > 0,
ν|x|2 ≤ x ·σ(x, ω)x, for all ω ∈ Ω, x ∈ Rd. Finally we impose a finite range depen-
dence condition: there exists some R > 0, such that whenever two sets A,B ⊂ Rd

lie at a mutual distance at least R > 0, then the σ-fields generated by the restric-
tion of σ(·, ·) and b(·, ·) to A respectively B are independent under P. Since we
are interested in the typical macroscopic behaviour of the diffusion, we introduce
the annealed measures Px = P×Px,ω. While they restore some stationarity to the
model, they typically destroy the Markov property, which constitutes one of the
challenges of the model.
Recent results. In [2], we show the existence of a limiting velocity as well as
certain zero-one laws for the annealed process. For any unit vector ℓ ∈ Rd, let
Aℓ denote the event that the diffusion escapes to infinity in direction ℓ. We then
obtain for dimension d ≥ 1, the weak zero-one law P0(Aℓ ∪ A−ℓ) ∈ {0, 1} and
the existence of a deterministic unit vector ℓ∗ and two deterministic numbers
v+, v− ≥ 0 such that

(2) lim
t→∞

Xt

t
=

(
v+1Aℓ∗

− v−1Aℓ∗

)
ℓ∗, P0-a.s.

When d = 2, we prove in addition the stronger zero-one law P0(Aℓ) ∈ {0, 1}, for
all unit vectors ℓ ∈ R2, by following a similar strategy as in [17]. Together with
(2), we therefore obtain a strong law of large numbers when d = 2. Although
[1] constitutes in the discrete setting a recent step into the direction of a general
zero-one law or law of large numbers, their validity for d ≥ 3 remains a challenging
open question.

To prove (2), we show the existence of a limiting velocity for the projections
Xi ·ei, i = 1, . . . , d on basis vectors ei. In the one case in accordance with the weak
zero-one law where P0(Aei ∪ A−ei) = 0, we follow a similar strategy as in [18] to
show that the asymptotic speed of Xt ·ei vanishes. In the other possible case, that
is P0(Aei ∪ A−ei) = 1, we use a certain sequence of regeneration times τk, k ≥ 0,
introduced by Shen [9] in the spirit of [16], which yields a renewal structure for the
diffusion under a certain extended annealed measure. We are also able to prove
that Xτ1 · ei has a finite first moment, which is essential for exploiting the renewal
structure.

In [3], we show that the so called condition (T ′) introduced by Sznitman in
[13] and by Schmitz in [7] respectively in the discrete and continuous settings
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is equivalent to an effective condition that can be checked by inspection of the
environment in a finite box. Condition (T ′) is today the most general condition
for the existence of a deterministic non-vanishing limit velocity with Gaussian
corrections under the annealed measure when d ≥ 2, see for instance [8]. We now
recall the definition of (T ′). For any unit vector ℓ ∈ Rd and any u ∈ R, let T ℓ

u and

T̃ ℓ
u denote the stopping times where Xt · ℓ first goes above respectively below u.

We say that condition (Tγ) | ℓ holds if for all unit vectors ℓ′ in a neighbourhood
of ℓ and for all b > 0,

(3) lim sup
L→∞

L−γ logP0

[
T̃ ℓ′

−bL < T ℓ′

L

]
< 0.

Condition (T ′) relative to ℓ is then the requirement that (Tγ) | ℓ holds for all
γ ∈ (0, 1). Because of its asymptotic nature (and the difficulty of the exit prob-
lem under a non-Markovian measure contained in (3)), basically all examples of
diffusions in random environment satisfying (T ′) originated from a stronger, more
handy condition going back to Kalikow, see [4]. On the other hand, the effective
condition is essentially the requirement that a certain quantity linked to the exit
problem from some finite box is smaller than a deterministic polynomial in the
size of that box. For an exact definition, we refer to [3], (1.14) therein. With the
help of this criterion we are then indeed able to provide new examples of ballistic
diffusions that come as special perturbations of Brownian motion when d ≥ 4.

Moreover, the effective criterion enables us to show that (T ′) is equivalent to
(Tγ) when γ ∈ (1

2 , 1). We believe that an improved version of the effective condition
should yield the equivalence between all the conditions (Tγ), γ ∈ (0, 1]. Such
a version should also allow us to relax the assumptions on the above mentioned
perturbation of Brownian motion in view of further examples of ballistic diffusions.

We already pointed out that (T ′) implies ballistic behaviour when d ≥ 2. In
addition, it is conjectured that the converse statement also holds. If this is the
case, the effective criterion would become the multidimensional counterpart of
Solomon’s characterization of ballistic behaviour in one dimension, see [11]. On
the other hand, when d = 1, it is known that (T ′) is equivalent to transience and
that it does not imply ballistic behaviour since one can construct examples that
are transient with vanishing velocity. In this context, it is an interesting question
whether such examples also exist in higher dimensions.
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Central Limit Theorem for Branching Random Walk in Random
Environment

Nobuo Yoshida

Let p(·, ·) be a transition probability for a Markov chain with a countable state
space Γ. We write N = {0, 1, 2, ...}, N∗ = {1, 2, ...} and Z = {±x ; x ∈ N} in the
sequel. To each (t, x) ∈ N × Γ, we associate a distribution

qt,x = (qt,x(k))k∈N ∈ [0, 1]N,
∑

k∈N

qt,x(k) = 1

on N. Then, the branching random walk (BRW) with offspring distribution q =
(qt,x)(t,x)∈N×Γ is described as the following dynamics:

• At time t = 0, there is one particle at the origin x = 0.
• Suppose that there are Nt,x particles at each site x ∈ Γ at time t. At time
t+ 1, the ν-th particle at a site x (ν = 1, .., Nt,x) jumps to a site y = Xν

t,x

with probability p(x, y) independently of each other. At arrival, it dies,
leaving Kν

t,x new particles there.

We formulate the above description more precisely. The following formulaiton
is analogue of [2, section 4.2], where non-random offspring distributions are con-
sidered. See also [1, section 5] for the random offspring case.
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• Spatial motion: A particle at time-space location (t, x) is supposed to jump to
some other (t + 1, y) to be replaced by its children there. Therefore, the spactial
motion should be described by assignning the destination of the each particle at
each time-space location (t, x). So, we are guided to the following definition. We

define the measurable space (ΩX ,FX) as the set ΓN×Γ×N
∗

with the product σ-field,
and ΩX ∋ X 7→ Xν

t,x for each (t, x, ν) ∈ Γ × N × N
∗ as the projection. We define

PX ∈ P(ΩX ,FX) as the product measure such that

(1) PX(Xν
t,x = y) = p(x, y) for all (t, x, ν) ∈ N × Γ × N∗ and y ∈ Γ.

Here, we interpret Xν
t,x as the position at time t+ 1 of the children born from the

ν-th particle at time-space location (t, x).

• Offspring distribution: We set Ωq = P(N)N×Γ, where P(N) denotes the set of
probability measures on N:

P(N) = {q = (q(k))k∈N ∈ [0, 1]N ;
∑

k∈N

q(k) = 1}.

Thus, each q ∈ Ωq is a function (t, x) 7→ qt,x = (qt,x(k))k∈N from N × Γ to P(N).
qt,x is interpretted as the offspring distribution for each particle which occupies
the time-space location (t, x). The set P(N) is equipped with the natural Borel
σ-field induced from that of [0, 1]N. We denote by Fq the product σ-field on Ωq.

We define the measurable space (ΩK ,FK) as the set NN×Γ×N
∗

with the product
σ-field, and ΩK ∋ K 7→ Kν

t,x for each (t, x, ν) ∈ N× Γ×N∗ as the projection. For

each fixed q ∈ Ωq, we define P q
K ∈ P(ΩK ,FK) as the product measure such that

(2) P q
K(Kν

t,x = k) = qt,x(k) for all (x, t, ν) ∈ Γ × N × N
∗ and k ∈ N.

Hence, Kν
t,x is interpretted as the number of the children born from the ν-th

particle at time-space location (t, x).
We now define the branching random walk in random environment. We fix a

product measure Q ∈ P(Ωq,Fq), which describes the i.i.d. offspring distribution
assigned to each time-space location. Finally, we define (Ω,F) by

Ω = ΩX × ΩK × Ωq, F = FX ⊗FK ⊗Fq,

and P q, P ∈ P(Ω,F) by

P q = PX ⊗ P q
K ⊗ δq, P =

∫
Q(dq)P q.

We denote by Nt,x the population at time-space location (t, x) ∈ N × Γ, which is
defined inductively by N0,x = δ0,x for t = 0, and

(3) Nt,x =
∑

y∈Γ

Nt−1,y∑

ν=1

δx(Xν
t−1,y)Kν

t−1,y
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for t ≥ 1. The total population at time t is then given by

(4) Nt =
∑

x∈Γ

Nt,x =
∑

y∈Γ

Nt−1,y∑

ν=1

Kν
t−1,y.

We write

(5) m = Q[mt,x] with mt,x =
∑

k∈N

kqt,x(k).

More generally, for p > 0,

(6) m(p) = Q[m
(p)
t,x ] with m

(p)
t,x =

∑

k∈N

kpqt,x(k)

We set

(7) N t,x = Nt,x/m
t and N t = Nt/m

t.

N t = Nt/m
t is a martingale, and therefore the following limit always exists:

(8) N∞ = lim
t
N t, Q-a.s.

Before we state our result, we fix our notation for simple random walk.

• The random walk: ({St}t∈N, P
x
S ) is a simple random walk on the d-dimensional

integer lattice Z
d starting from x ∈ Z

d. More precisely, we let (ΩS ,FS) be the
path space (Zd)N with the cylindrical σ-field, and ΩS ∋ S 7→ St, t ∈ N be the
projection. We define p : Zd × Zd 7→ {0, 1

2d} by

(9) p(x, y) =

{
1
2d if |x− y| = 1,
0 if |x− y| 6= 1,

where |x| = (|x1|2 + ..+ |xd|2)1/2 for x ∈ Zd. We consider the unique probability
measure P x

S on (ΩS ,FS) such that St − St−1, t = 1, 2, .. are independent and

P x
S {S0 = x} = 1, P x

S{St−St−1 = y} = p(0, y), for y ∈ Zd.

In the sequel, P x
S [X ] denotes the P x

S -expectation of a r.v.(random variable) X on
(ΩS ,FS , P

x
S ),and P 0

S will be simply written by PS . We define

(10) πd = PS(St = 0 for some t ≥ 1).

As is well-known, π1 = π2 = 1, and πd < 1 for d ≥ 3.
To state the central limit theorem for the BRWRE, we assume that Γ = Zd and

that p(·, ·) is given by (9).

Theorem Suppose that

(11) m > 1, m(2) <∞, and d ≥ 3.

Then, the following are equivalent:

(a):
Q[m2

t,x]

m2
<

1

πd
, where πd ∈ (0, 1) is defined by (10).

(b): lim
t
N t = N∞ in L2(P ).
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(c): lim
t

∑

x∈Zd

N t,xf
(
t−1/2x

)
= N∞

∫

Rd

f(x)ρ1(x)dx in L
2(P )

for all f ∈ Cb(R
d), where

(12) ρt(x) =

(
d

2πt

)d/2

e−
d|x|2

2t for t > 0.

Corollary Suppose that

m > 1, m(2) <∞, d ≥ 3, and
Q[m2

t,x]

m2
<

1

πd
.

Then, P (N∞ > 0) > 0 and

lim
t
P




∣∣∣∣∣∣
1

Nt

∑

x∈Zd

Nt,xf
(
t−1/2x

)
−

∫

Rd

f(x)ρ1(x)dx

∣∣∣∣∣∣
≥ ε

∣∣∣∣∣∣
N∞ > 0


 = 0

for all ε > 0 and f ∈ Cb(R
d).
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Coincidence of Lyapunov exponents for random walks in weak random
potentials

Markus Flury

Let S = (S(n))n∈N0 be a nearest-neighbor random walk on Zd, with start at the
origin and drift h into the direction of the first axis, evolving under the influence
of a random potential given by a family V = (Vx)x∈Zd of nonnegative i.i.d. random
variables, independent of the random walk itself and with EV d

x <∞.
We distinguish between the so-called quenched setting, where the path measures

depend on the concrete realization of the potential V, and the annealed setting,
where the measures depend on averaged values of the potential only. The quenched
path measures are defined by means of the density functions

dQqu
V,h,β,N

dPh

def
=
e−β

∑ N
n=1 VS(n)

ZV,h,β(N)
, N ∈ N ,

ZV,h,β(N)
def
= Eh

[
e−β

∑N
n=1 VS(n)

]
, N ∈ N ,

at what the inverted temperature β ≥ 0 indicates the strength of the potential. The
quenched setting defines a discrete-time model for a particle moving in a random
media. Here, the path measure is random itself, the randomness coming from the
random potential V. Under a concrete realization of the path measure, the walker
jumps from site to site, thereby trying to stay in regions where the potential takes
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on small values. The drift, however, implies a restriction in the search of such an
“optimal strategy” by imposing a particular direction to the walk.

While the main interest lies in the quenched setting, the annealed model no
longer depends on the realizations of the potential, and is thus easier to handle.
The annealed path measures are defined by means of the density functions

dQan
h,β,N

dPh

def
=

E e−β
∑ N

n=1 VS(n)

EZV,h,β(N)
, N ∈ N .

A walker under the annealed measure finds himself in a similar situation as in the
quenched setting. To see this, we define

ϕβ(t)
def
= − log E exp(−tβVx) , t ∈ R

+.

A short calculation using the independence of the potential then reveals

dQan
h,β,N

dPh
=
e−

∑
x∈Zd ϕβ(ℓx,N )

EZh,β,V(N)
, N ∈ N ,

EZh,β,V(N) = Eh

[
e−

∑
x∈Zd ϕβ(ℓx,N )

]
, N ∈ N ,

at what ℓx,N denotes the number of visits to the site x ∈ Zd by the random walk S
up to time N ∈ N. The concavity of ϕβ implies that the probability is the smaller
the more often the random walk intersects its own path. Therefore, on the one
hand, it is convenient for the walker to return to places he already visited before,
while, on the other hand, he is urged to proceed in the direction of the drift.
In a similar model, namely Brownian motion in Poissonian potential, the contrary
influence of drift and potential on the long-time behavior of the walk was first
studied by A.S. Sznitman. By means of the powerful method of enlargement of
obstacles, he established a precise picture in both quenched and annealed settings
(see Chapter 5 of [7]). Among his results there is an accurate description of a
phase transition from localization for large β to delocalization for small β. In
the delocalized phase, the random walk is ballistic, i.e. the displacement of S(N)
from the origin is of order O(N), while in the localized phase, the walk behaves
sub-ballistic, i.e. the displacement is of order o(N). The analogous results in the
discrete setting have been established by M.P.W. Zerner in [8] and M. Flury in [4].

The above results on the transition from sub-ballistic to ballistic behavior are
based on large deviation principles for the random walks under the path measures,
and on phase transitions for the quenched, respectively annealed free energies

logZV,h,β(N) and log EZV,h,β(N) .

The free energies are important values for the study of the path measures. For a
motivation in the context of random branching processes, and a thorough study
of the one-dimensional case, we refer to [5] by A. Greven and F. den Hollander.



Non-Classical Interacting Random Walks 1539

We are interested in the long-time behavior of the free energies, measured by
the quenched, respectively annealed Lyapunov exponents

mqu(h, β)
def
= − lim

N→∞

1

N
logZV,h,β(N) ,

man(h, β)
def
= − lim

N→∞

1

N
log EZV,h,β(N) ,

for which the existence ( P-almost surely and in L1(P) for the quenched setting)
is derived by subadditive limit arguments. Our main result concerns the ballistic
regime in high dimensions:

Theorem. Suppose d ≥ 4 and h > 0. Then there exists β0 > 0, such that

mqu(h, β) = man(h, β)

for all β ≤ β0. Moreover, when Vx is bounded, then there exists K <∞, such that

E
∣∣ logZV,h,β(N) − log EZV,h,β(N)

∣∣ ≤ K
(
1 + β

√
N

)

for all N ∈ N and β ≤ β0.

The crucial result for the proof the theorem is the following: For d ≥ 4 and
h > 0, there exist β0 > 0 and K <∞, such that for all N ∈ N and β ≤ β0,

E
(
ZV,h,β(N)

)2 ≤ K
(
EZV,h,β(N)

)2
.

In order to achieve a heuristic understanding of this result, we consider two
independent copies S1,S2 of the walk S, and we set

(1) Ψβ,N
def
=

∑
x∈Zd

ϕan
β

(
ℓ1x,N

)
− ϕan

β

(
ℓ2x,N

)
− ϕan

β

(
ℓ1x,N + ℓ2x,N

)
, N ∈ N ,

where ℓjx,N with j ∈ {1, 2} denotes the number of visits to the site x ∈ Zd by the

random walk Sj up to time N ∈ N. A simple calculation then shows that

(2)
E

(
ZV,h,β(N)

)2

(
EZV,h,β(N)

)2 = Ean
h,β,N

[
exp (Ψβ,N)

]
, N ∈ N ,

where Ean
h,β,N stands for the expectation with respect to Qan

h,β,N ⊗Qan
h,β,N . Observe

furthermore that the only non-vanishing summands in (1) are the ones associated
to those x ∈ Zd, that are visited by both random walks up to time N . From the
concavity of ϕβ , we therefore obtain

(3) Ψβ,N ≤ ϕβ

(
1)

∑

x ∈ R
d: ℓ1x,N > 0, ℓ2x,N > 0

(
ℓ1x,N + ℓ2x,N

)
, N ∈ N .

This finally gives us the following picture of the situation: In the ballistic regime,
S1 and S2 under the annealed path measure obey the drift and evolve into the
direction of the first axis. Thereby, one expects them to move away from each
other in the (d − 1)-dimensional “vertical” direction, as soon as the dimension of
the lattice is large enough. The condition d ≥ 4 appears to be the right one since
the “vertical distance” then is transient. As a consequence, the paths of S1 and S2
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are supposed to intersect only finitely many times. For β small enough, the right-
hand side of (2) then should stay bounded because of (3) and limβ↓0 ϕβ(1) = 0.

Coincidence of Lyapunov exponents has been conjectured by A.S. Sznitman in
[7]. It emerged from the fact that an analogous result is true for the much sim-
pler case of directed polymers in random potentials. There, (S(n))n∈N is replaced
by ((ξ(n), n))n∈N, where (ξ(n))n∈N is a standard d-dimensional walk. The coinci-
dence of quenched and annealed Lyapunov exponents for d ≥ 3 and small disorder
has first been proved by J. Imbrie and T. Spencer in [6] using cluster expansion
techniques, and then by E. Bolthausen in [2] and S. Albeverio and X. Y. Zhou in
[1] using martingale techniques. Martingale arguments are also used in the more
recent work on directed polymers in [3] by F. Comets, T. Shiga and N. Yoshida.

The situation considered here is much more delicate and it seems not possible to
implement martingale techniques. We therefore take recourse to different methods,
mainly renewal techniques and arguments from Ornstein-Zernike theory.
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Strong localization for directed polymers in random environment

Vincent Vargas

Directed polymers in random environment is a model of statistical mechanics
(introduced by Huse and Henley in [3]) in which stochastic processes interact with
a random environment, depending on both time and space: one studies the path
of the stochastic process under a random Gibbs measure depending on the tem-
perature (as the temperature increases, the influence of the random environment
decreases). More precisely, let ((ωn)n∈N, P ) denote the simple random walk start-
ing from 0 on Zd. The random environment on each lattice site is a sequence
η = (η(n, x))(n,x)∈N×Zd of real valued, non-constant and i.i.d. random variables
defined on a probability space (H,G, Q).
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For any n > 0, we define the (Q-random) polymer measure µn on (Ω,F) by:

µn(dω) =
1

Zn
exp(βHn(ω))P (dω)

where β ∈ R+ is the inverse temperature,

Hn(ω)
def.
=

n∑

j=1

η(j, ωj)

is the hamiltonian and

Zn = P (exp(βHn(ω)))

is the partition function.
In this talk, we presented strong localization results for the endpoint measure

µn−1(ωn ∈ .) (cf. [4]). These results are natural extensions of the favorite point
localization theorem established in [1] and [2]. Roughly, these results assert that
at ”low temperature” the polymer measure is asymptotically concentrated at a
few points of macroscopic mass (we call these points ǫ-atoms). Unfortunately,
it remains an open problem to caracterize geometricaly these points where the
polymer measure concentrates. In particular, in dimension d = 1, it is conjectured
that:

µn(| ωn |) ≈ n2/3.
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Minimal position and critical martingale convergence in branching
random walks, and directed polymers on disordered trees

Yueyun Hu

(joint work with Zhan Shi)

1. Branching random walk and martingale convergence

We consider a branching random walk on the real line. Initially, a particle sits
at the origin. Its children form the first generation; their displacements from the
origin correspond to a point process on the line. These children have children
of their own (who form the second generation), and behave – relative to their
respective positions – like independent copies of the initial particle. And so on.
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We write |u| = n if an individual u is in the n-th generation, and denote its
position by V (u). (In particular, for the initial ancestor e, we have V (e) = 0.)
We assume throughout the paper that there exists a constant C > 0 such that
sup|u|=1 |V (u)| ≤ C. For technical reasons, we also assume that

(1) E
{( ∑

|u|=1

1
)1+δ }

<∞, for some δ > 0.

Let us define ψ(t) := logE
{∑

|u|=1 e
−t V (u)

}
and assume

(2) ψ(0) > 0, ψ(1) = ψ′(1) = 0.

In the study of the branching random walk, there is a fundamental martin-
gale, defined as follows: Wn :=

∑
|u|=n e

−V (u), n = 0, 1, 2, · · · . Since Wn ≥ 0, it

converges almost surely.
When ψ′(1) < 0, it is proved by Biggins and Kyprianou (1997) that there

exists a sequence of constants (an) such that Wn

an
converges in probability to a

non-degenerate limit which is (strictly) positive upon the survival of the system.
The case ψ′(1) = 0 is more delicate. In this case, it is known (Lyons (1996)) that

Wn → 0 almost surely. The following question is raised in Biggins and Kyprianou
(2005): are there deterministic normalizers (an) such that Wn

an
converges?

We aim at answering this question.

Theorem 1. Assume (1) and (2). There exists a deterministic positive sequence

(λn) with 0 < lim infn→∞
λn

n1/2 ≤ lim supn→∞
λn

n1/2 < ∞, such that conditionally
on the system’s survival, λnWn converges in distribution to W , with W > 0 a.s.

2. The minimal position in the branching random walk

A natural question in the study of branching random walks is about the position
of the leftmost individual in the n-th generation. In the literature, the concentra-
tion (in terms of tightness or even weak convergence) of inf |u|=n V (u) around its
median/quantiles had been studied by many authors. See for example Bachmann
(2000), Bramson and Zeitouni (2006), as well as Section 5 of the survey paper by
Aldous and Bandyopadhyay (2005). We also mention the recent paper of Lifshits
(2007+), where an example of branching random walk is constructed such that
inf |u|=n V (u) − median({inf |u|=n V (u)}) is tight but does not converge weakly.

We are interested in the asymptotic speed of inf |u|=n V (u). Under assumption
(2), it is known from the classical “law of large numbers” (Hammersley (1973),
Kingman (1975), Biggins (1976)) that, conditionally on the system’s survival,
1
n inf |u|=n V (u) → 0, a.s. Refinements are obtained by McDiarmid (1995) by as-
suming for e.g.

(3) E
{( ∑

|u|=1

1
)2 }

<∞, .
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Theorem 2. Assume (2) and (3). Conditionally on the system’s survival, we have

lim sup
n→∞

1

logn
inf

|u|=n
V (u) =

3

2
, a.s.(4)

lim inf
n→∞

1

logn
inf

|u|=n
V (u) =

1

2
, a.s.(5)

lim
n→∞

1

logn
inf

|u|=n
V (u) =

3

2
, in probability.(6)

Remark. (i) The most interesting part of Theorem 2 is (4)–(5). It reveals,
surprisingly, the presence of fluctuations of inf |u|=n V (u) on the logarithmic level,
which is in contrast with known results of Bramson (1978) and Dekking and Host
(1991) stating that for a class of branching random walks, 1

log log n inf |u|=n V (u)

converges almost surely to a finite and positive constant.
(ii) For a general branching random walk (without assuming (2)), if t∗ψ′(t∗) =

ψ(t∗) has a solution t∗ ∈ (0, ∞), then the study will boil down to the case (2)
after a linear transformation.

(iii) Under suitable assumptions, Addario-Berry (2006) obtains a very precise
asymptotic estimate of E[inf |u|=n V (u)], which implies (6).

3. Directed polymers on a disordered tree

Following Derrida and Spohn (1988), we study the associated partition function:
Wn,β :=

∑
|u|=n e

−βV (u), β > 0.

If 0 < β < 1, the study of Wn,β boils down to the case ψ′(1) < 0 which was
investigated by Biggins and Kyprianou (1997). In particular, conditionally on the

system’s survival,
Wn,β

E{Wn,β} converges almost surely to a (strictly) positive random

variable. We study the case β ≥ 1:

Theorem 3. Assume (1) and (2). Conditionally on the system’s survival, we have

Wn = n−1/2+o(1), a.s.

Theorem 4. Assume (2) and (3), and let β > 1. Conditionally on the system’s
survival, we have

lim sup
n→∞

logWn,β

logn
= −β

2
, a.s.

lim inf
n→∞

logWn,β

logn
= −3β

2
, a.s.

Wn,β = n−3β/2+o(1), in probability.

The remark stated after Theorem 2, applies to Theorems 3 and 4 as well.
The paper has been put in http://arxiv.org/abs/math/0702799
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Copolymers in Emulsion

Frank den Hollander

(joint work with Nicolas Pétrélis, Stu Whittington)

In this talk we consider a two-dimensional directed self-avoiding walk model of
a random copolymer in a random emulsion. The copolymer is a random con-
catenation of monomers of two types, A and B, each occurring with density 1

2 .
The emulsion is a random mixture of liquids of two types, A and B, organised
in large square blocks occurring with density p and 1 − p, respectively, where
p ∈ (0, 1). The copolymer in the emulsion has an energy that is minus α times
the number of AA-matches minus β times the number of BB-matches, where
without loss of generality the interaction parameters can be taken from the cone
{(α, β) ∈ R2 : α ≥ |β|}. To make the model mathematically tractable, we as-
sume that the copolymer can only enter and exit a pair of neighbouring blocks at
diagonally opposite corners.

In a recent paper with Stu Whittington, a variational expression was derived for
the quenched free energy per monomer in the limit as the length n of the polymer
tends to infinity and the blocks in the emulsion have size Ln such that Ln → ∞ and
Ln/n → 0. Under this restriction, the free energy is self-averaging with respect
to both types of randomness. It was found that in the supercritical percolation
regime p ≥ pc, with pc the critical probability for directed bond percolation on
the square lattice, the free energy has a phase transition along a curve in the cone
that is independent of p. At this critical curve, there is a transition from a phase
where the polymer is fully delocalized into the A-blocks to a phase where it is
partially localized near the interface in AB-blocks of which it diagonally crosses
the A-block. In a recent preprint with Nicolas Pétrélis, it shown that: (1) the
critical curve is strictly increasing; (2) the phase transition is second order; (3) the
free energy is infinitely differentiable throughout the partially localized phase.

In the subcritical regime p < pc, the phase diagram is more complex and de-
pends on p. There are three critical curves, separating four phases, with two
tricritical points. In one of the delocalized phases, the copolymer is fully delocal-
ized into the A-blocks and into the B-blocks, but never inside a neighboring pair,
while in the other delocalized phase it is fully delocalized into the A-blocks and
into the B-blocks, sometimes inside a neighboring pair. In one of the localized
phases, the copolymer is partially localized near the interface in blocks of which it
diagonally crosses the B-block rather than the A-block, while in the other localized
phase it is partially localized near the interface in both types of blocks. Very little
is known so far about the fine details of the four critical curves. Some progress is
underway in a forthcoming paper with Nicolas Pétrélis.
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Random walk in random environment with asymptotically zero
perturbation

Mikhail V. Menshikov

(joint work with Andrew R. Wade)

1. Introduction

The problems of random walk in random environment and stochastic processes
with asymptotically zero mean drifts have separately received considerable at-
tention. We describe results for a model combining these two classical models:
one-dimensional random walk in a perturbed random environment. This model
exhibits behaviour that is significantly different to that of those previously studied
systems.

We give criteria for recurrence and transience of the model, and also mention
results on the ‘speed’ of the random walk (i.e., how far the particle is from the
origin after a long time).

Given an infinite sequence ω = (p0, p1, p2, . . .) such that pi ∈ (0, 1) for all
i ∈ Z+, we consider Ξ = (ηt; t ∈ Z+) the nearest-neighbour random walk on Z+

under probability measure Pω defined as follows. Set η0 = 0, and for n ∈ N,

Pω[ηt+1 = n− 1|ηt = n] = pn,

Pω[ηt+1 = n+ 1|ηt = n] = 1 − pn =: qn,(1)

and Pω [ηt+1 = 0|ηt = 0] = p0, Pω[ηt+1 = 1|ηt = 0] = 1 − p0 =: q0.
We call a sequence of jump probabilities ω an environment. For any such ω, Ξ

is an irreducible, aperiodic Markov chain (under the ‘quenched’ measure Pω).
Here, we take ω itself to be random — then Ξ is a random walk in random

environment (RWRE). More precisely, p0, p1, . . . will be random variables on a
probability space (Ω,F ,P). We describe our particular model in the next section.

An important case in which the random environment is homogeneous and in
some sense critical is the so-called Sinai’s regime [6]. Here (p0, p1, p2, . . .) is a se-
quence of i.i.d. random variables satisfying the condition E[log(p1/q1)] = 0, where
E is expectation under P. In this case, a result dating back to Solomon [7] says
that Ξ is null-recurrent for P-almost every ω. Solomon’s result shows that Sinai’s
regime is critical in the sense that, for an i.i.d. random environment, Ξ is respec-
tively ergodic (that is positive-recurrent, here) or transient as E[log(p1/q1)] > 0 or
E[log(p1/q1)] < 0.

A notable property of the RWRE in Sinai’s regime is its speed — roughly speak-
ing ηt is of order (log t)2 for large t [6]. One way to state this more precisely is in
terms of ‘almost sure’ behaviour, i.e. results that hold P -almost surely (a.s.) for
P-almost every (a.e.) ω. Sharp results of this type are given by Hu and Shi in [1].
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The results we describe here are of two kinds: (i) qualitative characteristics:
specifically, criteria for recurrence, transience and positive-recurrence (ergodicity,
here), derived in [4] using the method of Lyapunov functions; and (ii) quantitative
behaviour: specifically, results on speeds (more formally, almost sure bounds)
derived in [5].

We study two particular cases of random environment. In the first, our envi-
ronment will be a perturbation of the i.i.d. environment of Sinai’s regime. In the
second, our environment will be a random perturbation of the simple symmetric
random walk.

2. Model and results

We now describe the particular RWRE model of the form of (1) that we study.
Fix δ ∈ (0, 1/2). Let (ξi, Yi), i ∈ N, be a sequence of i.i.d. random vectors on some
probability space (Ω,F ,P), such that Y1 takes values in [−1, 1] and the (technical)
ellipticity condition P[δ ≤ ξ1 ≤ 1 − δ] = 1 holds. Note that we allow Y1 and ξ1 to
be dependent.

We fix α > 0. For a particular realization of the sequence (ξi, Yi), i ∈ N, we
define p0 = q0 = 1/2 and the quantities pn and qn, n = 1, 2, 3, . . . as follows:

pn :=






ξn + Ynn
−α if (δ/2) ≤ ξn + Ynn

−α ≤ 1 − (δ/2)
δ/2 if ξn + Ynn

−α < (δ/2)
1 − (δ/2) if ξn + Ynn

−α > 1 − (δ/2)

qn := 1 − pn.(2)

A particular realization of (pn;n ∈ N) specifies our random environment ω. We
have that there exists n0 ∈ N such that, for a.e. ω,

pn = ξn + Ynn
−α, qn = 1 − ξn − Ynn

−α, (n ≥ n0).

2.1. Perturbation of random walk in random environment in Sinai’s
regime. Now we describe our first version of the model in (2). For n ∈ N set

ζn := log

(
ξn

1 − ξn

)
, Zn :=

Yn

ξn(1 − ξn)
.

With E denoting expectation under P, suppose that E[ζ1] = 0 and Var[ζ1] > 0 (so
our environment is truly random).

This model was introduced in more generality in [4]. In this case, the random
environment described in (2) corresponds to a perturbation of Sinai’s regime, in
the sense that, in the limit as n → ∞, we have E[log(pn/qn)] → 0. Despite this,
the behaviour of this model may be strikingly different to that of Sinai’s RWRE,
and is highly dependent on the nature of the perturbation.

Of separate interest are the two cases E[Z1] = 0 and E[Z1] 6= 0. The first result

deals with the special case in which Y1/ξ1
d
= −Y1/(1 − ξ1) (so that E[Z1] = 0).

Theorem 1. Suppose Y1/ξ1
d
= −Y1/(1 − ξ1), P[Y1 = 0] < 1, E[ζ1] = 0, and

Var[ξ1] > 0. Then Ξ is null-recurrent for a.e. ω.
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Our next result deal with the case E[Z1] 6= 0.

Theorem 2. Suppose E[Z1] 6= 0, P[Y1 = 0] < 1, E[ζ1] = 0, and Var[ξ1] > 0. For
a.e. ω, Ξ is

(i) null-recurrent if α ≥ 1/2;
(ii) transient if α < 1/2 and E[Z1] < 0;
(iii) ergodic if α < 1/2 and E[Z1] > 0.

This result quantifies the fact that in some sense a random environment is more
stable than a homogeneous one, in that a much larger perturbation is required to
disturb the null-recurrent situation than in the non-random environment case (see
[2, 3]).

Theorem 2 is in fact a corollary to a much more refined result in [4], which deals
with more general forms of the perturbation in (2).

In [5] almost sure upper and lower bounds for ηt are given (cf [1] for the RWRE
in Sinai’s regime). For example, the next result deals with the transient case when
E[Z1] < 0 and α ∈ (0, 1/2), and gives a striking example of logarithmic transience.

Theorem 3. Suppose E[ζ1] = 0, Var[ξ1] ∈ (0,∞), E[Z1] < 0, Var[Y1] ∈ [0,∞),
and α ∈ (0, 1/2). For a.e. ω, for any ε > 0, we have, Pω-a.s., for all but finitely
many t,

(log log t)−(1/α)−ε <
ηt(ω)

(log t)1/α
< (log log t)(2/α)+ε.

2.2. Simple random walk with random perturbation. Our second model
again fits into the framework of (2) above, but we now take P[ξ1 = 1/2] = 1 and
Var[Y1] > 0. In this case we have p0 = q0 = 1/2 and for a.e. ω, for all n ≥ n0

pn =
1

2
+ Ynn

−α, qn =
1

2
− Ynn

−α, (n ≥ n0).

Thus in the limit n→ ∞, we coincide with the symmetric SRW on Z+.

Theorem 4. Suppose P[ξ1 = 1/2] = 1 and Var[Y1] > 0.

(i) If Y1
d
= −Y1, then ηt is null-recurrent for a.e. ω.

(ii) Suppose E[Y1] 6= 0.
(a) If β ∈ (0, 1) and E[Y1] > 0 then Ξ is ergodic for a.e. ω.
(b) If β > 1 then Ξ is null-recurrent for a.e. ω.
(c) If β ∈ (0, 1) and E[Y1] < 0 then Ξ is transient for a.e. ω.

Corresponding results on speeds appear in [5].
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Rate of growth of a transient cookie random walk

Arvind Singh

(joint work with Anne-Laure Basdevant)

The model of the excited random walk introduced by Benjamini and Wilson [3]
in 2003 is a particular case of self-interacting random walk. It consists of a nearest
neighbour random walk on Zd which has a bias towards a specific direction upon
its first visit to a site but moves like a symmetric random walk on subsequent
visits. Benjamini and Wilson [3] proved that the walk is recurrent in dimension
d = 1 but becomes transient in dimension d ≥ 2. In the one-dimensional case,
if multiple excitations are allowed (i.e. there is a bias, not only on the first visit
but also on some subsequent visits), then the walk exhibits some interesting new
features. It can for instance be recurrent or transient, depending on the strength
of the bias.

We here consider the model of the ‘cookie random walk’ which is a particular
case of the model of the multi-excited random walk described by Zerner [8] in
2005. Let us fix an integer M which represents the initial number of cookies
per site and a vector p̄ = (p1, . . . , pM ) ∈ [12 , 1[M . We say that pj represents the
strength of the jth cookie initially placed at each site of Z. The cookie random
walk X = (Xn, n ∈ N) is a random walk on Z starting from the origin and ‘eating’
the cookies it finds along its path in the following way:

P{|Xn+1 −Xn| = 1} = 1,

P{Xn+1 = Xn+1 | X1, . . . , Xn} =

{
pj if j = ♯{0 ≤ i ≤ n, Xi = Xn} ≤M,
1/2 otherwise.

Thus, at each step, the walk eats the first cookie available at its present site if
there remains any and then moves with a bias depending on the strength of the
cookie it has just eaten. If there was no more cookie to be eaten, the walk just
performs a symmetric random walk.

An important parameter for this model is the total displacement provided by
the cookies initially placed at a site:

α =

M∑

i=1

(2pi − 1).

According to Zerner [8], the cookie random walk is recurrent if α ≤ 1 and becomes
transient towards +∞ when α > 1. In particular, a cookie random walk can be
transient with just two cookies per site. Zerner also proved that the limiting speed
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of the walk is well defined. Moreover, he showed that the speed is always zero when
there are at most two cookies per site. On the other hand, Mountford, Pimentel
and Valle [5] showed that it is possible to obtain a strictly positive speed if the
initial number M of cookies per site is large enough.

The first result gives a criterion to decide whether or not the speed is zero:
Theorem 1. Let X be a p̄-cookie random walk with limiting speed v. We have

the equivalence

v > 0 ⇐⇒ α > 2.

Moreover, for each M , the speed v is a continuous function of p̄ in the set of
environment with at most M cookies per site.

In particular, a positive speed may be achieved with as few as three cookies per
site. However, the calculation of the exact value of the speed in term of the initial
cookie distribution p̄ seems a challenging problem.

We also have the following result concerning the rate of transience of the walk
in the sublinear regime:

Theorem 2. Let X be a transient p̄-cookie random walk with zero speed (i.e.
1 < α ≤ 2).

• If 1 < α < 2,

Xn

nα/2

law−→
n→∞

Mα/2

where Mα/2 is a Mittag-Leffler distribution with index α/2.
• If α = 2, there exists a constant c > 0 such that

logn

n
Xn

prob.−→
n→∞

c.

These results also hold with supi≤n Xi and infi≥n Xi in place of Xn.
The proofs of both theorems are based on precise studies of the hitting times

of the walk. It is well known that, given a classical simple random walk, one can
define a Galton-Watson process closely connected with its hitting times. In the
same spirit, Kesten, Kozlov and Spitzer [4] constructed a branching process with
immigration in random environment associated to a transient random walk in a
random environment. More recently, Tóth used the same approach for the study
of reinforced random walks. Here, we use again a similar method: we construct
a positive recurrent Markov process Z closely related to the hitting times of the
cookie random walk. It turns out that the resulting process is, in our setting, a
branching process with random migration i.e. a branching process which allows
(random) immigration and (random) emigration.

The study of the invariant probability of the process Z is achieved using the
tools of probability generating functions and enables to prove Theorem 1. The
proof of Theorem 2 relies on a precise estimate of the tail distribution of the total
progeny of the branching process over an excursion away from 0. To this end, we
use a martingale argument which may also be found of interest when dealing with
general branching processes with migration.
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Central limit theorem for the excited random walk in dimensions d ≥ 2

Alejandro F. Raḿırez

(joint work with Jean Bérard)

Let {e1, . . . , ed} be the canonical unit vectors on the lattice Zd. The excited
random walk with bias parameter p ∈ (1/2, 1] on Zd is defined as the discrete time
random walk that jumps with probability 1/(2d) to its nearest neighbors when it
is at a site that it visited previously, whereas otherwise it jumps with probability
1/(2d) to all nearest neighbor sites in a direction orthogonal to e1, with probability
p/d to the nearest neighbor site in the direction e1 and probability (1 − p)/d to
the nearest neighbor site in the direction −e1.

The excited random walk was introduced by Benjamini and Wilson in 2003
[1]. They proved that it is transient in the direction e1 in any dimension d ≥ 2.
Furthermore, they showed that a.s.

lim inf
n→∞

Xn · e1
n

> 0,

in dimensions d ≥ 4. Subsequently, Kozma extended this result to dimensions
d = 3 and d = 2 [3, 4]. Variations of the excited random walk, like for example
the multi-excited random walk have also been studied (see Zerner [5]). Recently,
den Hofstad and Holmes [2], proved using the lace expansion that when the bias
parameter p is sufficiently small, a law of large numbers is satisfied for d > 5 and
a central limit theorem for d > 8. Here we prove the following result.
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Theorem 1. Let p ∈ (1/2, 1] and d ≥ 2.

(i) There exists a v(d, p) > 0 such that a.s.

lim
n→∞

Xn · e1
n

= v.

(ii) There exists a σ(d, p) > 0 such that

n−1/2(X[nt] · e1 − [nt]v)

converges in law to a Brownian motion with variance σ2.

The proof of this result is based on regeneration time techniques as used in
the context of Random Walks on Random Environments. Indeed, we define a
sequence {κn : n ≥ 1} of random times, which form a sequence of independent
random variables. Furthermore {κn : n ≥ 2} forms a sequence of i.i.d. random
variables. Similarly, {X·∧κ1, X(·+κ1)∧κ2

−Xκ1 , . . .}, is a sequence of independent
random variables i.i.d. except for the first term. Our definition of κ is the standard
one

κ := min{n ≥ 0 : max
0≤k≤n−1

Xk · e1 < Xn · e1 ≤ min
k≥n

Xk · e1}.

The main difficulty of the proof of theorem 1, is showing that

(1) E[κ2] <∞.

One of the key steps to establish (1) is the inclusion

{κ > n} ⊂ An ∪Bn ∪ Cn,

valid for every natural n, where An := {Xn · e1 ≤ na1}, Bn := ∪⌊na2⌋
k=1 {Dk < ∞}

and Cn := ∪⌊na2 ⌋
k=1 {na3 < Dk < ∞} and a2 + a3 < a1 < 3/4. Here D1 = min{n ≥

1 : Xn · e1 < 1} and for k ≥ 2, Dk is the first time the random walk visits site
rk−1 − 1, where rk−1 is the record of Xn · e1 between times 0 and Dk−1. To
show that the probabilities of the events An and Cn are small, we use the concept
of tan points (introduced by Benjamini and Wilson), which give a useful lower
bound estimate on the range of the excited random walk. The idea is to couple
the excited random walk with a simple symmetric random walk {Yn : n ≥ 0} in
such a way that the difference (Xn−Yn) ·e1 is non decreasing. In dimension d = 2,
a tan point for {Yn : n ≥ 0} is defined as any time n ≥ 0 such that Yn · e1 > Yk · e1
for all 0 ≤ k ≤ n − 1 such that Yn · e2 = Yk · e2. I turns out that any tan point
is necessarily a time when the excited random walk visits a site for the first time.
This provides a lower bound for the range of the excited random walk in terms
of the tan points. In fact, it can be shown that if Jn is the range of the excited
random walk up to time n, then the probability of the event {Jn < na1} with

a1 < 3/4, decays like e−nδ

for some δ > 0.
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Problem session

Gady Kozma

We stated 4 problems originating from our Weizmann group’s work around excited
random walk.

(1) “Excited to the center”. For this model we were able to show recurrence
in all dimensions regardless of the exact details of how one interprets the
name “excited to the center”. The problem suggested to the audience
was to find a shape theorem for the set of visited vertices, and it was
conjectured that this set is a ball of radius n1/(d+1).

(2) “The H-walk”. In this model, the walker is again on Zd with a cookie at
every site, but this time the drift he gets from eating a cookie alternates
between left and right. In a formula,

driftt =

{
0 ∃i < t s.t. R(i) = R(t)

(−1)#range(R[0,t]) · e1 otherwise

We noted that this process is the sum of a martingale and an error bounded
by 1. We asked: is it recurrent in two dimensions? Is it transient in 3? We
noted that we do have a bound on the number of returns in 3 dimensions
which is poly-log-log.

(3) “The Y-walk”. In this model the walker decides whether to be excited to
the left or to the right by examining the last vertical move and deciding
to drift to the left if that last move was up and to the right if that last
move was down. Questions are as for the H-walk.

(4) “Slugs”. In this two dimensional model, there are two walkers walking
simultaneously. Each one gets a drift to the right when it steps over the
path of the other walker. We conjectured that the walks are diffusive and
transient.
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What is the difference between a square and a triangle?

Pierre Tarrès

(joint work with Vlada Limic)

Edge-Reinforced Random Walk (ERRW), introduced by Coppersmith and Diaco-
nis [1] in 1986, is a process evolving in an environment constantly modified by its
own behaviour: at each step, the probability to move along an edge is proportional
to a function - called the weight function - of the number of visits to this edge. A
similar notion of Vertex-Reinforced Random Walk [6] (VRRW) favours the more
visits to vertices instead.

Sellke proved in 1994 that, if the weight function is reciprocally summable then
on any graph of bounded degree without odd cycles, the (strongly) ERRW ends up
visiting the same (random) edge back and forth. The Rubin construction he used
towards the proof could not carry on to other graphs, even in the ”simple” case of a
triangle, thus introducing the ”triangle conjecture” that the same behaviour should
occur in general. A simple linear algebra argument [5] illustrates the difference in
this respect between odd and even cycles.

Sellke’s conjecture for nondecreasing weight functions was proved in a joint work
with V. Limic [4]. However, our method requires a more detailed analysis of the
behaviour of the walk.

The purpose of this talk is to give an introduction to this question, as well
as a general overview of the subject and its techniques: martingales methods,
Pólya urn models, a correspondence with random walks in random environment
[2, 3, 7], Ray-Knight local time analysis [10]. The above variety of techniques
reflects a large range of behaviours for reinforced random walks. It is worth noting
in particular that, although VRRW and ERRW have analogous definitions, they
show significantly different behaviours in the case of linear weight on the integer
lattice: VRRW eventually gets stuck on five (random) consecutive sites almost
surely [9], whereas the ERRW visits all sites of the lattice infinitely often, almost
surely [1] .
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Recurrence of Edge-Reinforced Random Walk
on a two-dimensional Graph

Franz Merkl, Silke Rolles

e consider linearly edge-reinforced random walk on a class of two-dimensional
graphs with constant initial weights. The graphs are obtained from Z

2 by replacing
every edge by a sufficiently large, but fixed number of edges in series. We prove that
linearly edge-reinforced random walk on these graphs is recurrent. Furthermore,
we derive bounds for the probability that the edge-reinforced random walk hits
the boundary of a large box before returning to its starting point. The details are
given in [MR07].

About twenty years ago, Diaconis asked whether linearly edge-reinforced ran-
dom walk on Z2 is recurrent. This turned out to be a hard problem which is
unsolved up to the present day. However, we solve a variant of the problem posed
by Diaconis. For a class of fully two-dimensional translationally symmetric graphs
und sufficiently small constant initial weights, we show that edge-reinforced ran-
dom walk visits every vertex infinitely often with probability one.

More specifically, given a natural number r ∈ N, we consider the graph Gr =
(Vr, Er) with vertex set

Vr = {(x1, x2) ∈ Z
2 : x1 ∈ rZ or x2 ∈ rZ}

and edge set

Er = {{u, v} ⊂ Vr : |u− v| = 1}.
Here |x| denotes the Euclidian norm of x. Note that the edges are undirected.

Let 0 := (0, 0). Linearly edge-reinforced random walk (ERRW) on Gr with
constant initial weights a > 0 and starting point 0 is a stochastic process (Xt)t∈N0

with law P = PGr
0,a defined as follows: At every discrete time t ∈ N0, every edge

e ∈ Er is assigned a strictly positive number wt(e) as a weight. Initially, all weights
are equal to a:

w0(e) = a for all e ∈ Er.

The edge-reinforced random walker starts in the vertex 0 at time 0:

P [X0 = 0] = 1.
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At each discrete time t ∈ N0, the random walker jumps randomly from its current
position Xt to a neighboring vertex v with probability proportional to the current
weight of the connecting edge {Xt, v}:

P [Xt+1 = v|X0, X1, . . . , Xt] =
wt({Xt, v})
wt(Xt)

1{Xt,v}∈Er
,

where wt(Xt) :=
∑

e∈Er:e∋Xt
wt(e). The weight of the traversed edge is immedi-

ately increased by 1, whereas all other weights remain unchanged:

wt+1(e) = wt(e) + 1{Xt,Xt+1}=e for all e ∈ Er.

Thus, the weight of edge e at time t equals the initial weight increased by the
number of times the reinforced random walker has traversed e up to time t:

wt(e) = a+

t−1∑

s=0

1{Xs,Xs+1}=e.

We realize P as a probability measure on the set Σ ⊆ V N0
r of admissible paths

in Gr, not necessarily starting in 0, endowed with the σ-field generated by the
canonical projections Xt : Σ → Vr, t ∈ N0.

We prove:

Theorem 1 [Recurrence] For all r ∈ N with r ≥ 130 and all a ∈ (0, (r −
129)/512), linearly edge-reinforced random walk on Gr with constant initial weights
w0 ≡ a visits all vertices infinitely often with probability one.

In order to prove recurrence, we derive bounds for the probability that the
edge-reinforced random walk hits the boundary of a large box before returning to
its starting point. Let us introduce some notation before we state the result: For
A ⊆ Vr, let

τA := inf{t ≥ 1 : Xt ∈ A}
be the first time ≥ 1, the random walk visits the set A. If A = {v} contains just
one vertex, we simply write τv instead of τ{v}. Let

Lr := rZ2

be the set of “four-way-crossings” in the graph Gr. For (v1, v2) ∈ Vr, set
|(v1, v2)|∞ := max{|v1|, |v2|}.

We prove:

Theorem 2 [Hitting probabilities] For all r ∈ N with r ≥ 130 and all initial
weights a ∈ (0, (r − 129)/512), there exist constants l0 = l0(r, a) ∈ N and ξ =
ξ(r, a) > 0, such that the following hold:

(a) For all ℓ ∈ Lr with |ℓ|∞ ≥ l0, the probability that the edge-reinforced
random walker hits ℓ before returning to its starting point satisfies

P [τℓ < τ0] ≤
(

r

|ℓ|∞

)1+ξ

.
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(b) As a consequence, for all l ≥ l0, the probability that the edge-reinforced
random walker hits a vertex in the set Vl := {v ∈ Vr : |v|∞ = rl} (or
equivalently a vertex in the boundary of the box Vr ∩ [−rl, rl]2) before re-
turning to 0 can be bounded as follows:

P [τVl
< τ0] ≤ 8l−ξ.
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Waiting for the attracting edge to appear

Vlada Limic

(joint work with Codina Cotar)

The talk is based on a joint work [1].
Let G be a locally finite connected graph with the edge set E(G) and the vertex

set V (G). Any two vertices u, v connected by an edge are called adjacent, in this
case we write u ∼ v and denote by {u, v} = {v, u} the edge connecting them.
Finally, denote by D(G) = supv∈V (G) degree(v) the degree of G, where for any

v ∈ V (G) degree(v) equals the number of edges incident to v.
Let (ℓe0, e ∈ E(G)) be given integers, and assume ℓe0 ≥ 0, e ∈ E(G). Given

a reinforcement weight function w : {0, 1, 2, . . . , } 7→ (0,∞), the edge-reinforced
random walk (ERRW) on G makes nearest neighbor step transitions in V (G). We
will denote by In the (random) position of the edge reinforced random walk at
time n. If G is a finite graph it seems natural from the point of notation to
construct and study the edge reinforced random walk started at the initial time
t0 :=

∑
e∈E(G) ℓ

e
0 ≥ 0, a process starting at time 0 is obtained by a time shift. If G

is an infinite graph, just set t0 := 0. Then It0 ∈ V (G) is the initial position, and
{In, In+1} ∈ E(G) for all n ≥ t0, almost surely. Moreover, the dynamics of the
edge reinforced random walk is prescribed according to the rule:

P (In+1 = v|Fn)1{In=u} =
w(X

{u,v}
n )

∑
y∼uw(X

{u,y}
n )

1{In=u,u∼v},

where for any e ∈ E(G),

(1) Xe
n = ℓe0 +

∑

i≤n−1

1{{Ii,Ii+1}=e}

equals the initial weight ℓe0 incremented by the total number of traversals of edge e
prior to time n. Note that t0 is chosen so that, whenever V (G) <∞,

∑
e∈E(G)X

e
k =

k for all k ≥ t0, almost surely.
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We denote by G1 be the random subgraph of G spanned by edges traversed at
least once, i.e. edges e ∈ E(G) such that

sup
n
Xe

n > ℓe0.

Pemantle [5] made a recent survey of stochastic reinforcement processes. Apart
from the behavior analogous to recurrence or transience of Markov chains (see, for
example, [6] or [4] or [5] theorems 5.2 and 5.6), ERRW may exhibit a very different
asymptotic behavior as time increases. For example, it is easy to see, [7], [2] that
the following assumption

(A0)
∑

k

1

w(k)
<∞

is sufficient (and necessary if w is non-decreasing) for the event

{G1 is a finite graph}
to have probability 1, whenever D(G) <∞.

In a recent work, Limic and Tarrès [3] obtained a general result conjectured by
Sellke [7] and partially resolved by Limic [2]: for a fairly general class of reinforce-
ment weights (in particular, whenever w is a non-decreasing function satisfying
(A0)) on any graph of bounded degree the walk eventually keeps traversing a
single (random) edge for all large times.

Our work assumes (A0) with w non-decreasing, and is devoted to the study of
the tail behavior of the time of attraction

(2) T = inf{k ≥ 0 : ∀n ≥ k, {In, In+1} = {In+1, In+2}}.
This random variable is an important statistic, useful for applications.

In particular, we obtain exact (up to multiplicative constant) asymptotics of
P (T > k), as k → ∞, if the underlying graph has two edges. Let us denote the law
of the ERRW on the graph with two edges by P 2. Next we show some extensions
in the setting of finite and bounded degree infinite graphs. In particular, we obtain
that for any G finite graph, P (T > k) is up to a multiplicative constant of the same
order as P 2(T > k), where the multiplicative constant depends on w, ℓe0, e ∈ E(G)
and, in the case of upper bound, exponentially on the size of G. Therefore, we
are able to obtain only partial results on the asymptotics of P (T > k) on infinite
graphs. A nice corollary of our analysis is that if the reinforcement weight has the
form W (k) = kρ, ρ > 1, then (universally over finite graphs) the expected time to

attraction is infinite if and only if ρ ≤ 1 + 1+
√

5
2 .
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Trap Models for Spin Glass Dynamics

Gérard Ben Arous

(joint work with A. Bovier, J. Cerny)

We consider trap dynamics for (mean-field) p-spin glasses. We show a REM dy-
namical universality in the following sense. The clock process properly normalized
converges to an α-stable subordinator as for the REM dynamics. This implies the
same aging formula than for REM. These facts are valid in time scales exp(cN)
for c smaller than a constant c(p), and for p ≥ 3 (i.e. not for the Sherrington
Kirkpatrick model).

The important feature of the proof is to show that along the trajectory of a
standard random walk on the hypercube {−1, 1}N with exp(cN) steps, the point
process of the extreme values of energies is Poisson like for the REM, i.e. that
the correlations are irrelevant. This reminds of the statics (equilibrum) REM
conjectureof Bauke-Mertens, as proved by J. Chayes et al., A. Bovier - I. Kurkova.
The same striking difference between SK model (p = 2) and p-spin models (p ≥ 3)
has been discovered recently in a joint work with A. Kuptsov.

Scaling limit for trap models in the complete graph

Luiz Renato Fontes

(joint work with Pierre Mathieu)

Generally speaking, what we mean by a trap model is a simple symmetric random
walk on a regular graph G = (V,E) in continuous time, where the jump rate at
x ∈ V is given by τ−1

x , with

(1) τ := {τx, x ∈ V } i.i.d. and

such that P(τx > 0) = 1 and

(2) P(τx > t) = L(t)/tα, t > 0,

where 0 < α < 1 and L : (0,∞) → (0,∞) is slowly varying at ∞, so that τx is in
the basin of attraction of a positive α-stable law.

They have been considered as models for processes exhibiting localization and/or
aging. For example, let X be the trap model on Z, starting at say the origin. Then
one can show that [1]

(3) lim
t→∞

E

∑

k

[P(Xt = k|τ)]2 > 0,
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and thus localization takes place (since the above sum is bounded above by
maxk P(Xt = k|τ)). The following is an aging result for X [1]

(4) lim
t→∞

P(Xt = Xt+θt) = R(θ),

where R is a non-trivial function of θ. (This says that in order to have a reasonable
chance to make a different observation ofX after t, whenXt was observed, we must
wait for a time of the order of t — notice that R(0) = 1 —; this ever longer times
to make reasonably uncorrelated observations are characteristic of aging.) Both
results above can be/are obtained from the scaling limit of X under the proper
rescaling of space and time. Indeed, let us for simplicity of notation assume that
L(t) → const as t→ ∞ (see (2)), and make

(5) Z
(ε)
t = εXε−(1+α)/αt, t ≥ 0, ρ(ε) = {ε1/ατε−1x, x ∈ εZ}.

Then (Z(ε), ρ(ε)) converge in distribution to the pair (Z, ρ), where ρ is the random
measure whose distribution function is an α-stable process (with positive incre-
ments), and, given ρ, Z is a (one dimensional) diffusion with speed measure ρ.
See [1] for more details, including for the general L case. The convergence is strong
enough so that the limits in (3) and (4) can be expressed as E

∑
x[P(Z1 = x|ρ)]2

and P(Z1 = Z1+θ), respectively. (Notice that these are nonzero/nontrivial, since,
although Z is a process with almost every path continuous, its single and double
(deterministic) time distribution is (purely) atomic.) Similar aging and scaling
limit results have been obtained in Zd, d ≥ 2 [2, 3], and for a variant of the trap
model in Z [4].

Trap models on large finite graphs, like the complete graph and the hypercube,
have been considered in the study of aging. They can be seen as a simplified
model of a dynamics for a spin glass at low temperature. Indeed, let us consider
the simplest spin glass, the Random Energy Model (REM), and the set of its
configurations, CN = {−1,+1}N , seen as hypercube, and the Random Hopping
Times (RHT) dynamics for it. This is a simple symmetric random walk in CN in
continuous time with inverse jump rate at σ ∈ CN given by the the Gibbs factor of

the REM, e−β
√

NH(σ), where {H(σ), σ ∈ CN} is a family i.i.d. standard Gaussian
random variables, and β > βc =

√
2 log 2, which indicates low temperature. This

model looks a lot like the trap model in the hypercube. The difference is that in
the latter model the analogue of the τ variables don’t quite have the same mar-
ginal distribution. However, in times of the scale of their maxima, the (properly
rescaled) REM Gibbs factors behave in the same way as the rescaled τi’s, namely
as an α-stable positive-increment process (where α = βc/β for the RHT dynam-
ics). Furthermore, both models in the hypercube, at diverging time scales, should
be close to the respective models in the complete graph with n = 2N vertices. This
is based in the assumption that the time spent by the processes between visits to
the few vertices with large inverse jump rates (traps) is negligible in comparison
to the time spent at the traps. Bouchaud and Dean [5] departed from this ansatz
to study the trap model in the complete graph, and derive aging results for it.
Then Ben Arous, Bovier and Gayrard [6] obtained the same aging results for the
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RHT dynamics in the hypercube, thus establishing the ansatz as far as aging is
concerned

Motivated by the above mentioned scaling limit approach to aging, we consider
the trap model in the complete graph in the time scale of the deepest traps. Let
us again assume L(t) → const as t → ∞. Let us first (re)label the set of vertices

of the complete graph with n vertices as {1, . . . , n}, such that τi = τ
(n)
i is the i-th

order statistic of τ in decreasing order. Let now

(6) Y
(n)
t = Xn−1/αt, t ≥ 0, γ(n) = {n−1/ατ

(n)
i , 1 ≤ i ≤ n}.

Then (Y (n), γ(n)) converges in distribution to the pair (Y, γ), where γ = {γi, i ≥ 1}
are the increments of an α-stable subordinator in [0, 1] in decreasing order, and,
given γ, Y is a K(γ, 0) process [7], or K process, for short. The latter is a
process in N̄∗ = N∗ ∪ {∞}, where N∗ = {1, 2 . . .}, characterized by the following
properties [7]: (i) Y is càdlàg and strongly Markovian; (ii) starting from any
i ∈ N∗, Y waits for an exponential time of mean γi, and then jumps to ∞; (iii)
starting from ∞, for any finite A ⊂ N

∗, we have that TA <∞ almost surely, where
TA = inf{t ≥ 0 : Y (t) ∈ A} is the entrance time of Y in A, and the law of Y (TA)
is uniform on A; and (iv) the set of times spent by Y at ∞ is a Cantor set of
vanishing Lebesgue measure. See [7] for more details, including a construction.

The K(γ, 0) process belongs to a larger class of Markov processes in N̄∗, the
K(γ, c) processes, where γ = {γi, i ≥ 1}, with

∑
i γi < ∞, and c ≥ 0 are param-

eters. They also satisfy (i-iii) above, but not (iv) if c > 0; an example of such a
case was proposed in [8]. See [7] for more details.

The properly rescaled trap model in the hypercube, as well as the RHT dy-
namics for the REM both in the hypercube and the complete graph, also converge
to K processes [9]. The latter processes and variants thereof should show up in
dynamics associated to other mean field spin glasses, like the Generalized Random
Energy Model (GREM).
Y exhibits aging as follows. Y is ergodic, and thus at order 1 or larger times,

it is close to or at equilibrium. Since aging is a far from equilibrium phenomenon,
in order to move away from that, we take limt→0 of an aging function similar to
the one in (4), and get the following result [7]. For almost every γ

(7) lim
t→0

P∞(Yt = Yt+θt|γ) = Π(θ) :=
sin(πα)

π

∫ 1

θ
1+θ

s−α(1 − s)α−1 ds, θ ≥ 0.

This is the same limit obtained in [5] in a different regime: the n-limit is taken
first (as above, where it is implicit) without rescaling time (above, time is rescaled
in the order of the deepest traps); then the limt→∞ is taken.

In [10], a yet different regime is considered, with the n limit taken together with
time rescaled in an order short of the one of the deepest traps. This is obtained
from the the scaling limit of the clock process, with the same rescaling, given by
an α-stable subordinator.

The K process also has a clock process, and similarly as in the just mentioned
result, it should also have a scaling limit, but for vanishing times as in (7), given
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by an α-stable subordinator. This would imply the aging result in (7). That
aging result would also follow from a scaling limit of Y itself, for example, in the

following form. Let W
(ε)
t = ε−1γYεt , t ≥ 0. Then there’s reason to conjecture that

W (ε) converges in distribution as ε→ 0 to a nontrivial process W for almost every
γ. W should be related in a simple form to an α-stable subordinator.
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[10] Ben Arous, G.; Cerný, J. (2006), The arcsine law as a universal aging scheme for trap

models, to appear in Comm. Pure Appl. Math.

Exploring near-critical percolation

Wendelin Werner

(joint work with Pierre Nolin)

We consider site percolation on the triangular planar lattice. Recall that this
can be viewed as a random coloring of the hexagonal cells of a honeycomb lattice,
where the color (black or white) of each cell is chosen independently: each of these
cells has a probability p to be black and 1 − p to be white, for some parameter p
between 0 and 1. One is then interested in the connectivity properties of the set of
black hexagons. They can be regrouped into connected components (or clusters).
Percolation on this lattice presents a phase transition at p = 1/2: when p < 1/2
we observe (a.s.) an infinite cluster of white sites (subcritical regime), and when
p > 1/2 an infinite cluster of black sites (supercritical regime). The intermediate
regime, when p = 1/2, is called the critical regime.

A lot of progress has been made recently in the understanding of the large-scale
behavior of critical percolation. In particular, Smirnov [5] proved the conformal
invariance of the connection probabilities, which allowed to make the link with the
Schramm-Loewner Evolution (SLE) with parameter 6 introduced by Schramm [4],
and to use the SLE technology and computations of [2] to derive further properties
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of critical percolation, such as the value of certain critical exponents describing
the asymptotic behavior of the probabilities of certain exceptional events (arm
exponents), see for instance [6].

One precise relation to SLE goes as follows: Consider the large equilateral
triangle TN with side length N on the triangular grid such that the middle of the
bottom part is the origin and the top point is the point at distance

√
3N/2 above

the origin. We decide to color all cells on the boundary of the triangle, in white
if their x-coordinate in positive and in black if their x-coordinate is negative, and
we perform percolation in the inside of TN . Then, we consider the interface γN

between the set of black clusters attached to the left part of the triangle and the
set of white clusters connected to the right part of the triangle. When N → ∞
and p = 1/2, the law of γN/N converges (in an appropriate topology, see e.g. [1])

to that of the SLE(6) process from (0, 0) to (0,
√

3/2) in the equilateral triangle
with unit side length.

For each p and N , we call R(p,N) the probability that γN hits the right side
of the triangle before the left side. Note that this can be expressed as a cross-
ing probability (from the lower-left side to the right side). This is an increasing
function of p, and R(1/2, N) = 1/2 because of symmetry.

Understanding the behavior of critical percolation allows also to derive some
properties of percolation when the parameter p is very close to 1/2 thanks to the
scaling relations (or hyperscaling relations) that were first developed in the physics
literature, and later rigorously derived in the case of percolation by Kesten [3]. For
any ε > 0, one can define

p∗(N) = p∗(ε,N) = inf{p : R(p,N) > 1/2 + ε}.
For this choice of p = p∗(N), if one looks at the possible limiting behavior of
γN/N , it is clear that it can not be exactly SLE(6) anymore, because it will hit
the right side of the triangle before the left side with probability strictly larger
than 1/2. It is therefore natural to ask what can happen to the scaling limit of
this curve in this regime, and to see how it is related (or not) to SLE(6): will
its law be absolutely continuous with respect to the law of SLE(6) (just as the
appropriate limit of biased random walk is absolutely continuous with respect to
Brownian motion)?

One can define the so-called correlation length L(p) = L(p, ε) in such a way
that p∗(ε, L(p)) ≃ p. In other words, for p > 1/2,

L(p) = L(p, ε) = sup{N : R(p,N) < 1/2 + ε}.
(recall that R(p,N) → 1 as N → ∞ because one is in the supercritical regime).
Kesten has shown that it is possible to deduce from the exponents of critical
percolation the behavior of L(p) as p→ 1/2. Intuitively, it is in fact clear that the
“four-arm exponent” will be essential i.e. one has to flip at least a “pivotal” site to
increase the crossing probability. More precisely, combining Kesten’s results with
the exponents computed using SLE, one gets (see [6]) that

L(p) = (p− 1/2)−4/3+o(1)
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when p→ 1/2+, for any fixed choice of ε > 0.
Note that in order to get a non-trivial limit for γN/N (i.e. neither SLE(6) nor

a process that hits the right-hand side before the left one with probability one),
one has to take p(N) in such a way that N is of the order of the correlation length
L(p) i.e. that for some ε i.e. n such a way that p(N) and p∗(ε,N) are very close for
some fixed ε. Letting p(N) go to the critical value in order to get non-trivial limits
is often referred to as “finite-size scaling” and has been the subject of numerous
and interesting works in the physics and mathematics community.

Russo-Seymour-Welsh type arguments show that when the family of laws of
γN/N for N ≥ 2 and p(N) = p∗(ε,N) is relatively compact. Suppose now that γ
is a (subsequential) limit. Then:

• The law of γ is singular with respect to that of SLE(6)
• It is still a random curve with dimension 7/4.

The fact that the random curve is still of the same dimension (and more gen-
erally has the same critical exponents) follows from arguments similar to those
of Kesten in [3]. One way to explain the fact that the law of γ is singular with
respect to SLE(6) is the following. In the finite-size scaling regime, one sees on
a macroscopic scale a difference between the law of the interface and that of the
critical percolation interface (i.e. the non-critical interface is more to the “right”
for instance). If one zooms in by a factor λ, one still sees a difference, but this dif-
ference tends to disappear, because one is not looking at a picture of size ca. L(p)
any more, but at a picture of size L(p)/λ. The question is whether this difference
disappears sufficiently fast when λ→ ∞ or not. Note that one can show that (just
as for the critical interface) the number of boxes of size N/λ visited by the path
is of order λ7/4 when λ is large (and N very large). Either this difference vanishes
fast with λ and one is not able to almost surely detect a difference between the
two macroscopic interfaces, or the difference between these two behaviors can be
detected by averaging them out over the λ7/4 parts of the path. In the end, one
has to compare certain critical exponents to decide which scenario is correct and
it turns out that for percolation, the second scenario holds. The “flavor” of super-
critical percolation introduced by considering the correlation length is therefore
still present in the scaling limit, and this regime can be considered as a truly in-
termediate regime between critical and super-critical percolation. The goal of the
talk is to give an outline of the proof, and to explain what asymetry feature one
is able to detect.

Seemingly, this surprises some theoretical physicists on this topic. Recall that
one important aspect of the SLE approach to critical systems was precisely to show
that critical conformally invariant models in the same “universality class” give rise
to exactly the same curves in the scaling limit. For near-critical models that are
not strictly conformally invariant such as the near-critical percolation here, this
strong “universality” can fail to be true. If one encodes the curve via its Loewner
driving function, then this driving function is probably much more complicated
than Brownian motion. On the other hand, one can see that some important
properties (such as the dimension of the curve) are shared by the critical interface
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and the near-critical interfaces in the scaling limit, so that the technology based
on conformal invariance of the critical model still provide the correct description
of the near critical interfaces in terms of exponents.

We emphasize that we do not really use any fine SLE technology to derive our
results. They follow from general considerations based on Kesten’s scaling ideas
and the knowledge of the exact value of the critical exponents (the derivation of
which however used SLE).
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On the disconnection of a discrete cylinder by a biased random walk

David Windisch

We consider a variation on the problem of “the termite in a wooden beam”, intro-
duced by Dembo and Sznitman [2] (see also [1], [3], [6], [7] for related work).

To this end, we define the discrete cylinder E = Td
N × Z, d ≥ 3, where Td

N

denotes the d-dimensional integer torus (Z/NZ)d. The cylinder E is equipped
with the Euclidean distance |.| and the natural product graph structure, for which
all vertices x1, x2 ∈ E with |x1 −x2| = 1 are connected by an edge. The (discrete-
time) random walk with drift N−dα (α > 0) is the Markov chain (Xn)n≥0 on E
with starting point x ∈ E and transition probability

pX(x1, x2) =
1 +N−dα(πZ(x2 − x1))

2d+ 2
1{|x1−x2|=1}, x1, x2 ∈ E,

where πZ denotes the projection from E onto its Z-component. In particular,
under P 0

0 , X is the ordinary simple random walk on E. We say that a set K ⊆ E
disconnects E if Td

N × (−∞,−M ] and Td
N × [M,∞) are contained in two distinct

components of E \ K for large M ≥ 1. The central object of interest is the
disconnection time

T disc
N = inf{n ≥ 0 : X([0, n]) disconnects E}.

We consider drifts of the form N−dα = |Td
N |−α, α > 0. Our main result shows that

the asymptotic behaviour of T disc
N as N → ∞ is the same as in the case without

drift considered in [2] as long as α > 1, and becomes exponential in N when α < 1:
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α

1 − α− ϕ(α) ≤ . ≤ 1 − α

α∗ 1
d

1 − 2α

1 − α

1 − 1
d − α

d−1

1 − α− 1−α
(d−1)2

1

1

Figure 1. The shaded region lies between the exponents of the
upper and lower bounds in Theorem 1 for α ∈ (0, 1).

Theorem 1. (d ≥ 3, α > 0, ǫ > 0)

For α > 1, N2d−ǫ ≤ T disc
N ≤ N2d+ǫ,

for α < 1, exp{Nd(1−α−ϕ(α))−ǫ} ≤ T disc
N ≤ exp{Nd(1−α)+ǫ},(1)

with probability tending to 1 as N → ∞, where the continuous function ϕ : (0, 1) →(
0, 1

d−1

)
satisfies limα→0 ϕ(α) = limα→1 ϕ(α) = 0 (see Figure 1 for an illustration

of the region between 1 − α− ϕ(α) and 1 − α).

We give a brief outline of the ideas entering the proof of this result. The proof
of the upper bounds on T disc

N is based on the simple observation that the cylinder
E is disconnected as soon as a slice of the form Td

N × {z} ⊆ E is completely
covered by the walk. We thus show that the trajectory of the random walk X up
to time N2d+ǫ (for α > 1), respectively exp{Nd(1−α)+ǫ} (for α < 1), does cover
such a slice with probability tending to 1 as N → ∞. To this end, we exploit
the Markovian structure of the locations of successive visits to the slice Td

N × {z}
made by the random walk, and then apply a coupon-collector-type estimate on
the cover time to the process recording these visits.

The derivation of the lower bounds is substantially more delicate, since one has
to rule out the occurrence of any, and not just one particular kind of, interface in
the trajectory of the random walk up to a certain time with high probability. We
reduce the problem of finding a lower bound on T disc

N to a large deviations problem
concerning the disconnection of a certain finite subset of E by excursions of an
unbiased simple random walk, and then derive estimates on this large deviations
problem. Let us describe this problem in a little more detail. For any subsets
K, B ⊆ E, B finite, we say that K 1

3 -disconnects B if K contains the relative

boundary in B of a subset of B with relative volume between 1
3 and 2

3 . The set
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whose disconnection concerns us is

B(α) =

[
−

[
N

4

]
,

[
N

4

]]d

×
[
−

[
Ndα∧1

4

]
,

[
Ndα∧1

4

]]
⊆ S2[Ndα∧1].

We define U as the first time when the trajectory of the random walk 1
3 -disconnects

B(α), that is

U = inf

{
n ≥ 0 : X ([0, n])

1

3
-disconnects B(α)

}
.(2)

The random walk excursions featuring in the large deviations problem are excur-
sions in and out of slices of the form

Su = T
d
N ×

[
−[u], [u]

]
⊆ E (u > 0).

Let us suppose there is a non-negative function f on (0,∞)2 with the following
property: For (Rn)n≥1, (Dn)n≥1, the times of the successive returns to S2[Ndα∧1]

and departures from S4[Ndα∧1] and the stopping time defined in (2) one has

(3) lim
N→∞

1

N ξ
log sup

x∈S
2[Ndα∧1]

P 0
x

[
U ≤ D[Nβ ]

]
< 0, for any 0 < ξ < f(α, β).

One can then show that, if the above function f additionally satisfies f(α, β) > 0
for all α > 1, β ∈ (0, d− 1), then the lower bound for α > 1 in (1) holds, while the
lower bound for α < 1 holds with the exponent supβ>0

(
β − (dα− 1)+

)
∧ f(α, β).

We then show that indeed (3) does hold for a function f such that the lower
bounds of Theorem 1 follow (with a separate and rather straightforward argument
for α < 1

d). The key techniques in the reduction of the lower bounds to the large
deviations problem (3) are a geometric lemma in the spirit of [2], a Girsanov-type
control to get rid of the drift and elementary estimates on one-dimensional biased
random walk. In order to prove that (3) does hold for a certain function f , we
use more geometric lemmas employing an isoperimetric inequality from [4]. These
lemmas show that any trajectory 1

3 -disconnecting B(α) must have substantial
presence in many small subcubes of B(α). The key control on an event of this
form essentially follows from a tail estimate on the number of points inside the
small subcubes visited by the random walk stopped when exiting a large set. In
order to show this tail estimate, we apply Khaśminskii’s Lemma (see [5]) to infer
that if one divides the number of visited points by its expectation, one obtains a
random variable whose exponential moment is uniformly bounded with N . The
expected number of visited points can then be bounded with standard estimates
on the Green function of the simple random walk.

An obvious question arising from Theorem 1 is whether one can prove the same
result with ϕ ≡ 0 in (1). We show that this would follow directly from an estimate
of the form (3) with a certain function f∗, larger than the f we currently have. In
fact, the required function f∗ can be shown to be the correct exponent associated
to a large deviations problem (possibly) similar to (3), where one replaces the time
U by U ′, defined as the first time when the trajectory of X covers Td

N × {0} (and
thereby in particular 1

3 -disconnects B(α).
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Lamplighter random walks

Wolfgang Woess

Suppose that we have some (infinite, connected) graph where a lamp is located at
each vertex, which may be in one of the two states “off” or “on”. In the simplest
model, a “lamplighter” performs a random walk along the graph; at each step,
he can choose at random whether to move to a neighboring vertex or to change
the state of the lamp at the current position (or he can combine different random
choices of this type). Initially, all lamps are “off”, so that after a finite number
of steps, one observes (1) the actual position of the “lamplighter”, and (2) the
current configuration of the lamps that are “on” [=finite set of vertices]. All pairs
(position, configuration) of this type constitute the state space of a Markov chain,
and the successive random configurations are driven by a random walk on the
base graph. [The underlying algebraic construction is that of the wreath product
of groups.]

The main interest is in the interplay between geometrical properties of the
underlying graph and the behaviour of the process.

In the talk, I have given an introductory survey, mentioning results by various
authors [Pittet, Saloff-Coste, Erschler, and others], including hints at work of
myself with Bartholdi, Brofferio, and Karlsson, respectively.

Random billiards and random chords in general domains

Serguei Popov

(joint work with Francis Comets, Gunter M. Schütz, Marina Vachkovskaia)

In [1], we consider a stochastic process that can be informally described as follows.
A particle moves with constant speed inside some d-dimensional domain. This
domain is supposed to be bounded, with a.e. continuously differentiable Lipschitz
boundary. When the particle hits the domain boundary, it is reflected in some



1568 Oberwolfach Report 27/2007

random direction, not depending on the incoming direction, and keeping the ab-
solute value of its speed. The law of the reflection is supposed to be absolutely
continuous and supported on the corresponding half-sphere. We denote by ξi,
i = 0, 1, 2, . . . the successive locations of the particle at the moments it hits the
boundary, the process ξ is referred to as the random walk. Also, let Xt be the
position of the particle at time t, and Vt be the corresponding direction (or vector
speed). We refer to the process (Xt, Vt) as the stochastic billiard.

Let K(x, y) be the transition density of the random walk, so that

P[ξn+1 ∈ A | ξn = x] =

∫

A

K(x, y).

When considering the specific case of the cosine law of reflection (i.e., the re-
flection density is proportional to the cosine of the angle with the normal vector),

we write ξ̃, X̃ instead of ξ,X , and we call these processes Knudsen random walk
(KRW) and Knudsen stochastic billiard (KSB); K̃ stands for the transition density
of the Knudsen random walk.

Define µ̂0 to be the “uniform” probability measure on ∂D: µ̂0(A) = |A|
|∂D| . It

can be easily seen that K̃(x, y) is symmetric, and so we immediately obtain that

the KRW ξ̃ is reversible, with the reversible (and thus invariant) measure µ̂0. For
other reflection laws it is usually not easy to find the exact form of the invariant
measure (except for some particular cases, see [2]), but nevertheless we prove that
such a measure exists and is unique, the random walk converges to it exponentially
fast.

Theorem 1. (i) There exists a unique probability measure µ̂ on ∂D which is
invariant for the random walk ξn. Moreover, there exists a function ψ :
∂D → R+ such that µ̂(A) =

∫
A
ψ(x) dx which satisfies

(1) ψ(x) =

∫

∂D
ψ(y)K(y, x) dy.

Finally, the density ψ can be chosen in such a way that inf∂D ψ > 0.
(ii) There exist positive constants β0, β1 (not depending on the initial distri-

bution of ξ0) such that

(2) ‖P[ξn ∈ ·] − µ̂‖v ≤ β0e
−β1t,

where ‖ · ‖v is the total variation norm.
In particular, for the KRW, (2) holds with µ̂ = µ̂0.

Next, we show that the stochastic billiard converges exponentially fast to equi-
librium, and we characterize the stationary measure (which is explicit for KSB).
Let µ0 be the uniform measure on D and ν0 be the uniform measure on the (d−1)-
dimensional sphere.

Theorem 2. There exist a probability measure χ on D × Sd−1 and positive con-
stants β′

0, β
′
1 (not depending on the initial distribution of position and direction)

such that

(3) ‖P[Xt ∈ ·, Vt ∈ ·] − χ‖v ≤ β′
0e

−β′
1t,
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Figure 1. A random chord on D′ induced by a random chord on D

for all t ≥ 0. The invariant measure χ is absolutely continuous with respect to
µ0 ⊗ ν0, and is given by

χ(dx, dv) = ψ(z)
γ̄(U−1

z v)

cosφz(v)
dx dv,

where z is the point on the boundary which sees x in the direction v, and γ̄(U−1
z v)

is the density of the outgoing velocity, suitably rotated, see [1] for details. In

particular, the product measure µ0 ⊗ ν0 is invariant for KSB (X̃t, Ṽt).

For a domain D, we construct the random chord as follows: take a point on ∂D
uniformly at random, and draw a line from there using the cosine probability
distribution. Formally:

Definition 3. The random chord for a bounded domain D is a pair of random
variables (Ξ1,Ξ2), in ∂D, with the joint density |∂D|−1K̃(x, y).

Let m be the mean chord length, we prove the following fact: the area (volume,
. . . ) of the domain is always proportional to the product of its perimeter (surface
area, . . . ) and m:

(4) |D| =
m|∂D|
κd

,

where κd :=
π1/2Γ( d+1

2 )d

Γ( d
2 +1)

.

If D′ ⊂ D is convex, a chord of D which intersects D′ defines a unique chord
on D′ by its intersection (see Figure 1). Let us generate independent random
chords (Ξ1(i),Ξ2(i)) of D, i = 1, 2, . . . , till the chord hits the domain D′, and then
denote by (Ξ′

1,Ξ
′
2) the intersection. We call (Ξ′

1,Ξ
′
2) the induced chord on D′. Like

in the “acceptance-rejection” algorithm (or “hit or miss”) for random variable
simulation, we easily check that (Ξ′

1,Ξ
′
2) has the same law as the endpoints of

[Ξ1,Ξ2] ∩D′ given that these sets intersect.

Theorem 4. Let D′ ⊂ D be convex. Then, the chord induced on D′ by the random
chord of D is the random chord of D′ in the sense of Definition 3.
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A similar result (with suitable modifications), can be proven for the case of
nonconvex D′ as well. Namely, the expected value of the measure giving unit
weight to each chord induced on D′ by the D-random chord, given it intersects
D′, is the product of the expected number of induced chords given there is one at
least, and the probability distribution for the (ordered) endpoints of the random
chord of D′. Also, if ι is the number of the induced chords, we have

E[ι| ι ≥ 1] =
|∂D′|

|∂ConvD′| , E[ι] =
|∂D′|
|∂D| ;

in particular, the number ι of induced chords is integrable, a property which does
not seem easy to prove directly.
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