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Introduction by the Organisers

The present workshop was part of a series with the topic of phase transitions,
designed especially to bridge the gap in notation and notions of phase transition in
different communities, i.e. physics, statistical mechanics, partial differential equa-
tions. Judging from the lively discussions it seem to have achieved its goal at least
in part. This workshop is the last organized by H. W. Alt, S. Luckhaus, E. Presutti
and E.Salje who are handing over to a new team of organizers. An active area of
research discussed in many of the talks was the motion of phase interfaces (Dirr,
Dreyer, Eck, Esposito, Freistuehler, Melcher, Planes, Zimmer) also in hyperbolic
scaling where many questions are still open. The interaction phase interfaces with
crystal structure was another topic (Bismayer, Conti, Janssen) for the physics
and pde community alike. From quantum statistical mechanics the Curie Weiss
model was discussed (Grimmett, Ioffe). Random potentials or environments were
an important topic (Bovier, Dirr, Planes , Orlandi) and models of kinetic type
played a bigger role than in the previous workshops (Bellettini, Esposito, Marra,
Theil). A strength of the workshop were the discussions between the different
groups of participants and the organizers feel that in the field of phase transitions
this interdisciplinary discourse is particularly important.
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Matthias Röger (joint with Luca Mugnai)
The Allen-Cahn Action functional in higher dimensions . . . . . . . . . . . . . . 1627

Jürgen Sprekels (joint with Pavel Krejč́ı)
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Abstracts

Γ-convergence and one-dimensional scalar hyperbolic conservation laws

Giovanni Bellettini

(joint work with Lorenzo Bertini, Mauro Mariani, Matteo Novaga)

In this short note we announce in a simplified way some of the results obtained in
the joint paper [1] (which is still a work in progress). Let us consider the scalar
one-dimensional hyperbolic conservation law

(1) ut + f(u)x = 0

in [0, T ]× R, and let us confine to uniformly bounded solutions. In order to state
the results in a rather simple way, we assume that f(s) = s2/2, even if our theorems
are valid under more general assumptions. It is well known that solutions to (1)
may develop singularities at finite time, even starting from a smooth initial datum.
It is also well established that global existence and uniqueness are recovered by
the notion of entropy solution, obtained by enforcing, beside the weak formulation
of (1), a further condition, namely η(u)t + q(u)x ≤ 0 in the sense of distributions,
for any convex entropy η, and any q = qη satisfying q =

∫
η′ f ′. Entropy solutions

are therefore special distributional solutions (and measure-valued solutions are a
larger class of solutions than the distributional ones).
Remarkably, entropy solutions can be obtained as L1,loc([0, T ] × R)- limits, as
ǫ→ 0, of the solutions to

(2) ut + f(u)x = ǫuxx.

We refer for instance to [2] for the above mentioned definitions and results.
In the recent papers [4], [3], the role of entropic solutions and more generally
of distributional solutions is discussed in the context of large deviations. In the
framework of Γ-convergence, the observations of [4], [3] can be roughly stated as
follows. The idea is to apply the least squares method, namely to define approx-
imating functionals Hǫ that consist (modulo some rescaling) of the space-time
integration of the square of the difference of the left hand side and the right hand
side of (1). Solutions to (1) therefore belong to {Hǫ = 0}. Note that, however,
Hǫ is finite also on certain functions which do not solve any sort of pde; indeed
Hǫ(u) measures the error (or cost) for a function u not to be a solution to (1).
It is clear that, in this procedure, beside the definition of the domain of Hǫ, it
is of crucial importance to declare in which norm one wants to measure the cost.
For the hyperbolic problem of interest in this note, we will choose essentially the
space H−1 norm, integrated further in time. Once chosen the functional Hǫ, the
philosophy is then to try to perform the Γ-limit of Hǫ as ǫ→ 0 (here the choice of
the topology is obvioulsy essential) in order to obtain a functional H, expected to
vanish only on entropic solutions to (1), and to be (positive and) finite on a rather
large class of distributional non-entropic solutions. The value of H on non-entropic
distributional solutions can be considered a measure of how much a distributional
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solution to (1) fails to be entropic. The topology for the Γ-limit must be chosen
in order to possibly gain at the same time equicoercivity of Hǫ, which is not, in
general, an immediate fact.
Define informally

Iǫ(u) :=
1

2

∫ T

0

∥∥E
∥∥2

L2 dt,

where E ∈ L2([0, T ] × R) satisfies

ut + f(u)x − ǫuxx = −Ex, (t, x) ∈ (0, T ) × R.

The first result states the equicoercivity and the Γ-convergence of Iǫ, in a Young
measure setting. The limiting functional has an explicit expression and vanishes
only on measure-valued solutions to (1).
Let us now rescale the functional Iǫ and define

Hǫ :=
1

ǫ
Iǫ.

The main result is related to the asymptotic behaviour of the functionals Hǫ.
First we show that Hǫ are equicoercive (in a suitable topology T ). Then we
show that the Γ(T )-lim infǫ→0 of Hǫ is larger than or equal to the functional H
defined as follows. If u is not a distributional solution to (1) then H(u) = +∞,
otherwise H(u) is the total variation of the positive part of the entropy production
h(u)t + g(u)x, where h(s) = s2/2 and g(s) = s3/3. Note that H vanishes only
on entropic solutions to (1). Finally, we show that, for any function u in a class
X of “well-behaved” functions, the Γ(T )-lim supǫ→0 of Hǫ at u is smaller than or
equal to H(u). The Γ-convergence result is at the moment not complete, since
we miss the proof that given any function u in the domain of H, there exists a
sequence of functions uǫ ∈ X converging to u with respect to T , and such that
H(uǫ) converges to H(u) as ǫ → 0. In particular, we miss the T -density of X in
the domain of H (which may strictly contain the space of functions of bounded
variation).
From the variational point of view, it is worth noticing that, even ignoring the
definitions of entropic solution and of distributional solution of (1), such notions
could be in principle recovered a posteriori by identifying the zero level set and
the domain of H.
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Ferroelastic domains in lead phosphate-type crystals

U. Bismayer

Lead phosphate Pb3(PO4)2 and isostructural mixed crystals of the palmierite-
type undergoe an improper ferroelastic phase transformation from a rhombohe-
dral paraelastic high temperature phase R3m to a monoclinic ferroelastic low
temperature phase C2/c. The order parameter transforms according to the three-
dimensional irreducible representation of a critical point at the boundary of the
Brillouinzone. Salje and Devarajan [1] described the transformation in terms of
a three-states Potts model which could explain the persistence of monoclinic sig-
nals above the ferroelastic transition point. These signals are due to small Pb-
displacements inside dynamic monoclinic clusters in the rhombohedral matrix.
The corresponding Hamiltonian can be separated in an orientational term with
components (Q1, Q2) and a Landau potential in Q3 described by the effective
Gibbs free energy [2]

(1) Θ′ =
α′

2
Q2

3 +
β

4
Q4

3 +
γ

6
Q6

3

(2) Θ′′ = (
α

2
+ L3M

2)(Q2
1 +Q2

2) + L2(Q
2
1 +Q2

2)
2 + wQ1(Q

2
2 −

1

3
Q2

1)

with

(3) M = 〈Q3〉, w =
1√
2
L4〈Q3〉

and constants Li.
At the ferroelastic transformation point the rhombohedral symmetry of the

matrix is broken, preferential orientations of the binary axis are chosen along three
symmetry-allowed directions (Fig. 1) and static macroscopic ferroelastic domais
appear. Following general group theoretical considerations there are twelve C12/c1
subgroups of R3m of index 6 with doubled number of atoms in the unit cells. The
C12/c1 subgroups are distributed into four conjugacy classes of three subgroups
each. They correspond to three orientational domains. Six of the subgroups
are derived via two sub-chains with an intermediate subgroup C12/m1 and R3c,
and can be associated with the one-arm k-vector star T (1/2, 1/2, 1/2) of R3m.
The other six subgroups of C12/c1 which are derived from the subgroup chain
R3m > C12/m1 > C12/c1 are relevant for the transformation observed in lead
phosphate. The corresponding symmetry break is described by the tree-arm k-
vector star L(1/2,0,0; 0,1/2,0; 0,0,1/2). The three maximal translationengleiche
subgroups [C12/m1]k (k=1,2,3) of R3m correspond to three allowed orientations
of the monoklinic axes with respect to the rombohedral high-symmetry group.
Resulting ferroelastic domains can be seen between crossed polarisors under an
optical microscope (Fig. 2). The splitting of the Wyckoff positions for Pb3(PO4)2
and the symmetry mode analysis has been described by Paulmann et al. [3] who
showed that the secondary modes are invariant with respect to R3m and that the
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symmetry break from rhombohedral to monoclinic by the primary mode involves
the displacement of Pb(1) atoms in Wyckoff position 3a.

Figure 1. bc-plane of the lead phosphate structure with three
symmetry equivalent Pb displacement directions

Figure 2. Ferroelastic domains in lead phosphate observed un-
der the optical microscope (area of 2 x 1.5 mm)
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Ageing in spin glass models at intermediate time scales: Universality
of the trap model

Anton Bovier

(joint work with G. Ben Arous,J. Černý)

Aging has become one of the main paradigms to describe the long-time behavior
of complex and/or disordered systems. Systems that have strongly motivated
this research are spin glasses. The theoretical modeling of aging phenomena took
a major leap with the introduction of so-called trap models by Bouchaud and
Dean in the early 1990’ies [BD95] (see [BCKM98] for a review). These models
reproduce the characteristic power law behavior seen experimentally while being
sufficiently simple to allow for detailed analytical treatment. While trap models
are heuristically motivated to capture the behavior of the dynamics of spin glass
models, there is no clear theoretical, let alone mathematical derivation of these
from an underlying spin-glass dynamics. The first attempt to establish such a
connection was made in [BBG03a, BBG03b] where it was shown that starting
from a particular Glauber dynamics of the Random Energy Model (REM), at low
temperatures and at the time scale slightly shorter than the equilibration time
of the dynamics, the aging of the time-time correlation function of the dynamics
converged to that given by Bouchaud’s REM-like trap model.

On the other hand, in a series of papers [BČ05, BČM06, BČ07a, BČ07b] a
systematic investigation of a variety of trap models was initiated. In this process,
it emerged that there appears to be an almost universal aging mechanism based
on α-stable subordinators that governs aging in most of the trap models. It was
also shown that the same feature holds for the dynamics of the REM at shorter
time scales. For a general review on trap models see [BČ06].

In all models considered so far, however, the random variables describing the
quenched disorder were considered to be independent, be it in the REM or in the
trap models. Here we report first results obtained in [BBČ07] that show that the
same mechanisms are at work in correlated spin glasses.

Let us describe the class of models we are considering. Our state spaces will be
the N -dimensional hypercube, SN ≡ {−1, 1}N . RN : SN × SN → [−1, 1] denotes

as usual the normalized overlap, RN (σ, τ) ≡ N−1
∑N
i=1 σiτi. The Hamiltonian of

the p-spin SK-model is defined as
√
NHN , where HN : SN → R is the centered

normal process indexed by SN with covariance

(1) E[HN (σ)HN (τ)] = RN (σ, τ)p,

and p ∈ N, p > 2.
We define the classical trap-model dynamics as a nearest neighbor continuous

time Markov chain σN (·) on SN with transition rates

(2) wN (σ, τ) =

{
N−1e−β

√
NHN (σ), if dist(σ, τ) = 1,

0, otherwise;

here dist(·, ·) is the Hamming distance.
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This dynamics is a time change of a simple random walk on SN : Let YN (k) ∈ SN
be the simple unbiased random walk (SRW) on SN . Define the clock-process by

(3) SN (k) =

k−1∑

i=0

ei exp
{
β
√
NHN

(
YN (i)

)}
,

where {ei, i ∈ N} are i.i.d. standard exponential random variables. Then the
process σN (·) can be written as

(4) σN (t) ≡ YN (S−1
N (t)).

The main result on the dynamics will be the following theorem that provides
the asymptotic behavior of the clock process.

Theorem 1. There exists a function ζ(p) such that for all p ≥ 3 and γ satisfying

(5) 0 < γ < min
(
β2, ζ(p)β

)
,

under the conditional distribution P[·|Y] the law of the stochastic process

(6) S̄N (t) = e−γNSN
(⌊
tN1/2eNγ

2/2β2⌋)
, t ≥ 0,

defined on the the space of càdlàg functions equipped with the Skorokhod M1-
topology, converges, Y-a.s., to the law of γ/β2-stable subordinator Vγ/β2(Kt), t ≥
0, where K is a positive constant depending on γ, β and p.

Moreover, the function ζ(p) is increasing and it satisfies

(7) ζ(3) ≃ 1.0291 and lim
p→∞

ζ(p) =
√

2 log 2.

To control the behaviour of spin-spin correlation functions that are commonly
used to characterize aging, we need to know more on how these jumps occur at
finite N . What we will show, is that if we the slightly coarse-grain the process S̄N
over blocks of size o(N), the rescaled process does converge in the J1-topology.
What this says, is that the jumps of the limiting process are compounded by
smaller jumps that are made over ≤ o(N) steps of the SRW. In other words, the
jumps of the limiting process come from waiting times accumulated in one slightly
extended trap, and during this entire time only a negligible fraction of the spins
are flipped. That will imply the following aging result.

Theorem 2. Let AεN (t, s) be the event defined by

(8) AεN (t, s) = {RN
(
σN

(
teγN

)
, σN

(
(t+ s)eγN

))
≥ 1 − ε

}
.

Then, under the hypothesis of Theorem 1, for all ε ∈ (0, 1), t > 0 and s > 0,

(9) lim
N→∞

P[AεN (t, s)] =
sinαπ

π

∫ t/(t+s)

0

uα−1(1 − u)−α du.

Let us discuss the meaning of these results. eγN is the time-scale at which we
want to observe the process. According to Theorem 1, at this time the random

walk will make of the order of N1/2eNγ
2/2β2 ≪ eγN steps. Since this number is
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also much smaller than 2N (as follows from (7)), the random walk will essentially
visit that number of sites.

If the random process HN was i.i.d., then the maximum of HN along the tra-

jectory would be
(
2 ln(N1/2eNγ

2/2β2

)
)1/2 ∼ N1/2γ/β, and the time spent in that

site would be of order eγN . Since Theorem 1 holds also in the i.i.d. case, that is
in the REM (see [BČ07a]), the time spent in the maximum is comparable to the
total time and the convergence to the α-stable subordinator implies that the total
accumulated time is composed of pieces of order eγN that are collected along the
trajectory. In fact, each jump of the subordinator corresponds to one visit to a
site that has waiting times of that order. In a common metaphor, the sites are
referred to as traps and the mean waiting times as their depths.

The theorem in the general case states that in the p-spin model, the same is
essentially true. The difference will be that the traps here will not consist of
a single site, but consist of a deep valley (along the trajectory) whose bottom
that has approximately the same energy as in the i.i.d. case and whose shape and
width we will be able to describe quite precisely. Remarkably, the number of sites
contributing significantly to the residence time in the valley is essentially finite,
and different valleys are statistically independent.

The proof of Theorem 1 relies on the combination of detailed information on
the properties of simple random walk on the hypercube and comparison of the
process HN on the trajectory of the SRW to a simpler Gaussian process using
interpolation techniques.
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[BBČ07] G. Ben Arous, A. Bovier, and J. Černý, Universality of the REM for dynamics of
mean-field spin glasses, preprint, 2007.

[BBG03a] G. Ben Arous, A. Bovier, and V. Gayrard. Glauber dynamics of the random energy
model. I. Metastable motion on the extreme states. Comm. Math. Phys., 235(3):379–425,
2003.

[BBG03b] G. Ben Arous, A. Bovier, and V. Gayrard. Glauber dynamics of the random energy
model. II. Aging below the critical temperature. Comm. Math. Phys., 236(1):1–54, 2003.
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Domain structures in solid-solid phase transitions

Sergio Conti

The variational modeling of solid-solid phase transition is based on functionals
of the form

I0[u] =

∫

Ω

W (∇u)dx ,

where u : Ω ⊂ Rn → Rn represents the elastic deformation; a typical form for the
energy density W is

W (F ) = dist2(F,K) = inf{|F −G|2 : G ∈ K} .
The set of energy-minimizing deformation gradients K ⊂ Rn×n depends on the
specific phase transformation considered. For cubic-tetragonal phase transitions
in three dimensions K equals K3 = SO(3){U1, U2, U3}, where the Ui are the three
diagonal matrices with eigenvalues (λ, λ, λ−2), λ 6= 1 being a positive parameter.
In two dimensions one uses K2 = SO(2){U1, U2}, with eigenvalues λ and 1/λ.

The theory of convex integration permits to find deformations u such that
W (∇u) = 0 pointwise. The following result was obtained by Müller and Šverák
[14] in two dimensions, and later generalized to three dimensions in [6, 3].

Theorem 3 (From [14, 6, 3]). Let n = 2 or 3. There is r > 0 such that, for all
matrices F ∈ Rn×n with detF = 1 and |F − Id| < r, and all open sets Ω ⊂ Rn,
we can find u ∈ W 1,∞(Ω; Rn) such that u(x) = Fx for x ∈ ∂Ω and ∇u ∈ Kn a.e.
on Ω.

These deformations are however unphysical since they have very low regularity
(precisely, u is Lipschitz but nowhere C1, and its gradient does not have bounded
variation, see [7, 9]).

One is therefore lead to singularly perturbed functionals which include terms
penalizing interfaces, of the form

(1) Iε[u] =

∫

Ω

W (∇u) + ε2|∇2u|2 dx ,

ε being a (small) positive parameter. A first step toward an understanding of the
behavior of such functionals is the analysis of the scaling behavior for small ε; in
some cases a finer Γ-convergence result has been obtained, see, e.g., [5, 4].

We focus here on the two-dimensional situation; after a change of variables we
can assume that

(2) K = SO(2)

{(
1 η
0 1

)
,

(
1 −η
0 1

)}

where η 6= 0 is a parameter, and assume as boundary values u(x) = x for x ∈ ∂Ω.
The domain Ω can for simplicity be taken to be the unit square. It has recently
been shown by Lorent [13] that the scaling behavior of the minimum of Iε over
Sobolev functions is equivalent to the one of the unperturbed functional I0 over
appropriate discretized functions constructed on a grid of mesh size proportional
to ε, hence studying Iε also leads to results on finite-element discretizations.
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A scalar simplification of this problem was considered by Kohn and Müller in
1992-94, see [10, 11]. Precisely, they proposed the functional

Jε[v] =

{∫
Ω
(D1v)

2dx+ ε
∫
Ω
|D2D2v| if |D2v| = 1 a.e.,

∞ otherwise

(the second derivative is here understood distributionally). They have shown that
there is c > 0 such that

(3)
1

c
ε2/3 ≤ min{Jε[v] : v = 0 on ∂Ω} ≤ cε2/3 .

The parallel between Jε and Iε can be heuristically analyzed by considering the
relation u(x) ≃ x+ ηv(x)e1 between the corresponding test functions.

We consider here the full vectorial problem, and obtain a similar result.

Theorem 4 (From [1]). Let n = 2, Iε and K be as in (1) and (2). Then there is
c > 0 such that, for all ε ∈ (0, 1),

(4)
1

c
ε2/3 ≤ min{Iε[u] : u(x) = x on ∂Ω} ≤ cε2/3 .

The key idea in proving the upper bound is to take a mollification of a vectorial
extension of the construction from [10, 11], see [1]. The lower bound requires
instead appropriate rigidity estimates, which can deal with the two-well structure
of K. A first two-well rigidity result was obtained by Lorent [12], who has shown
that there are constants c, γ, θ > 0 such that if

∫
B2

|D2u| < θ (and some other

assumptions hold) then

(5) min
F∈K

∫

B1

dist(∇u, SO(2)F ) dx ≤ c

(∫

B2

dist(∇u,K) dx

)γ

.

It was then shown in [4] that the same holds with the optimal exponent γ = 1.
Combining (5) with the quantitative Friesecke-James-Müller rigidity estimate [8]
permits the use of the strategy developed in [2] to obtain a lower bound for Iε.
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Interfaces in a Heterogeneous Environment

Nicolas Dirr

1. Introduction
I am interested in the macroscopic behavior of gradient flow models which are

perturbed on a smaller scale by periodic or random heterogeneities. This interest is
motivated by models for material behavior in the overdamped limit, where often
the time evolution is modeled by a partial differential equation. These models
should incorporate heterogeneities, which may arise from the periodic structure
of the material or a substrate, or they model impurities which are present in the
material on a very fine scale. These heterogeneities create a very oscillatory energy
landscape and make the qualitative analysis of the dynamics very challenging. In
particular, the large scale limit of the energy, obtained e.g. by the means of Γ-
convergence, (see e.g. [2]) and the large-scale limit of the gradient flow dynamics
may not commute, i.e. the gradient flow of the limiting energy is not the scaling
limit of the gradient flows, because the gradient flow gets stuck in the local minima
created by the heterogeneities, which are averaged out by the Γ-limit. (For more
details see [3].)

Motivated by the evolution of phase boundaries (e.g. in ferromagnetic materi-
als), I choose as energy for the gradient flow models the interfacial energy (area of
a hypersurface). In other words, I consider models which capture the interplay of

• the interfacial energy;
• time-independent random and/or deterministic inhomogeneities on a very

small spatial scale;

A simple, but due to the interaction of nonlinearities and heterogeneities already
quite challenging model is mean curvature flow with periodic forcing, i.e. the
geometric evolution equation

(1) Vx = κx + f(x) + F,



Phase Transitions 1589

where Vx is the normal velocity and κx the mean curvature of the interface Σ(t)
at a point x ∈ Rn ∩ Σ(t), and F a constant driving field.

The question of interest is the effective velocity on a large space-time scale. This
can be phrased as follows: Is there for any direction ν ∈ Sn−1 a speed cν such
that a solution starting from a plane with normal ν stays within bounded distance
from a plane with that normal which moves with normal velocity cν?

Due to the comparison principle it is sufficient to find special solutions with
this property. We look for so-called pulsating wave solutions, i.e. solutions for
which a spatial translation that keeps the periodic environment invariant (lattice
translation) corresponds to a translation in time.

The main technical difficulty (next to the nonlinear nature of the mean curva-
ture flow) lies in the fact that we allow f(x) + F to change sign. For a forcing
which is positive and satisfies additional technical conditions, this problem has been
solved by P.L. Lions and P.E. Souganidis within the framework of homogenization
for viscosity solutions of fully nonlinear pdes, see [4]. Note that the corresponding
homogenization problem becomes “singular” in the sense that the highest order
term (the mean curvature operator) is multiplied by the small parameter ǫ → 0 :
The ǫ-problem is V = ǫκ + f(x/ǫ), while the homogenized problem is V = cν . If
the forcing changes sign, then certain Lipschitz estimates are no longer available.

1. Pulsating Waves for a semilinear PDE (Joint work with Nung Kwan
Yip)

We first considered a slightly simplified situation. We assume that the interface
is a graph (x, u(x, t)) over a coordinate plane (i.e. ν is a unit vector) and make for
small gradients the following (heuristic) approximation of the equation: u(x, t) :
Rn × R+ → R periodic in x,

(2) ut = ∆u+ f(x, u) + F,

f(·, ·) is 1-periodic in both variables, bounded, mean zero, and F ≥ 0 is an external
driving force. We show (see [3]): There exists F∗ > 0 such that for any 0 ≤ F ≤ F∗
there exists a periodic stationary solution of (2), for F > F∗, there exist pulsating
wave solutions UF (x, t) with velocity VF , i.e. UF (·, t + 1/VF ) = UF (·, t) + 1. For
a large class of f(x, u) we show that the velocity of the pulsating wave near the

critical forcing scales like [(F − F∗)+]
1
2 , for details see [3].

2. Pulsating Waves for forced mean curvature flow with weak forcing
(Joint work with Georgia Karali and Nung Kwan Yip)

Forced mean curvature flow is degenerate parabolic, hence it may develop sin-
gularities in finite time and need not stay a graph over a plane, even if the initial
datum is exactly that plane. In order to stay in a parabolic setting, we require
that the forcing f(x) + F is sufficiently small in C1, but we do not require that
f(x) + F has a sign.

Under this assumption we are able to show that for any normal direction ν
there exists a speed cν and a number D > 0 such that a solution of (1) starting
from a plane with normal ν is a graph over that plane for all positive times, and
this graph has a distance of at most D from a plane with normal ν moving with
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normal velocity cν . We use geometric arguments based on ideas of L. Caffarelli
and R. de la Llave, [1]

If cν 6= 0, we show that pulsating waves exist. (Work in preparation).
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Modelling of Nucleation Phenomena

Wolfgang Dreyer

(joint work with Frank Duderstadt, Margarita Naldzhieva)

1. Introduction This is a study on various aspects of nucleation and evolution
of precipitates in a given surrounding.
2. The Becker-Döring (BD) model. The BD model relies on the BD process,
which considers a condensation reaction, where a droplet with α molecules grows
by incorporation of a monomer from the surrounding, and an evaporation reaction
where a droplet shrinks by emitting a monomer into the surrounding. Other
processes, like the appearance of a droplet with α+ β molecules due to a reaction
of a droplet with α > 1 molecules with another droplet with β > 1 molecules, are
not considered within the BD process.

The central quantity of the BD model is the function Z(t, α) ≥ 0, which give at
any time t ≥ 0 the number of droplets with α molecules. The number of monomers
is included here, and it is given by Z(t, 1).

The evolution of Z(t, α) is determined by a system of ordinary differential equa-
tions, that we call nowadays the BD system. It reads for α ∈ {2, ..., ν}

(1)
∂Z(t, α)

∂t
= Jα−1 − Jα with Jα = ΓC

αZ(t, α) − ΓE
α+1Z(t, α+ 1).

Here ν <∞ is an artificial number, which restricts the maximal size of a droplet.
Obviously, we are finally interested in the limit ν → ∞. The evolution law for the
number of monomers Z(t, 1) results from the conservation of the total number of
molecules N =

∑ν
a=1 αZ(t, α) and can be written as

(2)
∂Z(t, 1)

∂t
= −J1 −

ν∑

a=1

Jα.
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The condensation rate ΓC
α and the evaporation rate ΓE

α give the number of reactions
per second, and they must be determined by constitutive laws, which were derived
in [1].
Within the described setting, there are various models available in the literature.
These models mainly differ by different transition rates. Ball, Carr and Penrose,
[2], achieved several important mathematical results for a certain class of transi-
tion rates. In particular we mention here Penrose’s study, [3], on the long time be-
haviour of a many droplet system and its approach to the Lifshitz/Slyosov/Wagner
(LSW) theory in a certain scaling limit. Penrose reasonings were rigorously proved
by B. Niethammer in 2002, [4].

The transition rates of the current study rely on the observation by Dreyer and
Duderstadt, [1], that the ratio ΓE

α+1/Γ
C
α is restricted by the 2nd law of thermody-

namics according to

(3)
ΓE
α+1

ΓC
α

=

∑ν
β=1 Z(t, β)

Z(t, 1
exp

Aα+1 −Aα
kT

.

The newly introduced quantities Aα are available free energies of a system that
contains a single droplet with α molecules in a given surrounding, which is either
pressure or volume controlled. In the Dreyer/Duderstadt model, the condensation
rate ΓC

α is independent of Z(t, α) for fixed external pressure. Thus the nonlinearity
of the BD system is due to the evaporation rates. The mathematical treatment of
this model is found to be in [5].

The available free energy A of the many droplet system is given by

(4) A =

ν∑

α=1

Z(t, α)Aα + kT

ν∑

β=1

Z(t, α) ln (
Z(t, α)∑ν
β=1 Z(t, β)

),

and A is identified as the Lyapunov function of the BD model, i.e. dA/dt ≤ 0.
3. Evolution of a single droplet system at fixed external pressure. Thus
the physics of nucleation and evolution of droplets and bubbles in a given sur-
rounding may be encoded in the available free energy Aα of a system with a single
precipitate. In its domain of definition Aα has an inner maximum and minima
which, depending on the boundary conditions, may be found on the boundary
or in the interior of the domain. The height and the location of the maximum
determines the nucleation regime, whereas the locations of the minima control the
subsequent evolution.

The most simple description of the evolution of a single precipitate ignores its
coupling to a changing temperature in the vicinity of the phase boundary and a
flow field, which is due to the differences of the different mass densities of the
evolving adjacent phases. As an example to illustrate the influence of a flow field
at constant temperature we consider an evolving spherical bubble of vapour with
homogeneous mass density within a large domain of an incompressible liquid, so
that we meet radial symmetry of the process. Mass and momentum balances
within the bulk phases and across the interface, and a kinetic relation, which
relates the change of the bubble mass to the differences of the Gibbs free energies
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across the the interface, yield 3 nonlinear ODE’s for the bubble mass, radius and
interfacial speed. Figure 1 shows the evolution of the bubble radius without (left)
and with the incorporation (middle) of the flow field. The right graph combines
the both cases. We observe a drastic slow down of the interfacial evolution and
conclude that simplified models may fail to describe the process appropriately.

Figure 1. Evolution of a bubble in a liquid for 2 different cases

3. From Becker-Döring to Fokker-Planck. From a numerical point of view,
a BD system containing more than, say, 50000 ODEs is hard to control. For this
reason, the discrete description of nucleation and evolution of droplets will be
stopped for some sufficient large ν, which is the number of molecules in the largest
droplet within the discrete setting. For larger droplets with α > ν we seek for a
continuous description by a single PDE for a continuous variable x which is the
continuous analog of the discrete particle number α. Thus we expect for α > ν
the transition

(5) Z(t, α) → f(t, x) so that
∂Z(t, α)

∂t
= Jα−1 − Jα → ∂f

∂t
= −∂J

∂x
.

This transition confronts us with the problem how to define appropriately the the
continuous flux J . From the literature we find various suggestions. The following
examples are due to Frenkel and Goodrich, respectively.

(6) J = − ∂

∂x
(ΓCf) + (ΓC − ΓE)f and J =

1

2

∂

∂x
((ΓC + ΓE)f) + (ΓC − ΓE)f.

These differences are due to different substitutions of finite differences by deriva-
tives, and in any case the resulting PDE is of Fokker-Planck type. However, it
turns out that the chosen form of J has an enormous impact on the dynamical
behaviour as well as on the possible equilibria. Next we give a suggestion made
by D. Duncan, which reads

(7) J = −∂f
∂x

+ (
∂A

∂x
+ ln(λ(t)))f,
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where λ(t) depends nonlocally on f(t, ·). We have shown that Duncan’s flux is
necessary so that the available free energy of the mixed BD–FP system,

A = kT

ν∑

α=1

Z(t, α) ln (
Z(t, α)

exp (−Aα

kT )
∑ν

β=1 Z(t, β)
)(8)

+kT

∫ ∞

ν+1

f(t, x) ln (
f(t, x)

exp (−A(x)
kT )

∫ ∞
ν+1

f(t, y)dy
)dx,

satisfies

(9)
dA
dt

≤ 0.

References

[1] W. Dreyer and F. Duderstadt: On the Becker/Döring theory of nucleation of liquid droplets
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ties and asymptotic behaviour of solutions, Communications in Mathematical Physics 104

(1986), 657–692.
[3] O. Penrose, The Becker-Doering equations at large times and their connection with the

LSW theory of coarsening, Communications in Mathematical Physics 189 (1997), 305–320.
[4] B. Niethammer, On the Evolution of Large Clusters in the Becker-Döring Model, Journal
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A two–scale model for liquid phase epitaxy

Christof Eck

(joint work with Heike Emmerich)

Epitaxy is a technique to produce thin solid films by the deposition of single
atoms. In liquid phase epitaxy the atoms are solved in a liquid and transported
to the interface by diffusion and convection. There they may attach to the solid
film, where they may diffuse until they reach an existing monoatomar step and
incorporate to the solid phase. The monoatomar steps can be created by nucleation
or they are triggered by existing dislocations.

We consider a model for liquid phase epitaxy that combines standard differential
equations for fluid flow and solute transport in the liquid with a Burton–Cabrera–
Frank model (BCF–model) for the growth of the solid film. The BCF model
[1] combines a continuum mechanical description for the diffusion process of the
attached atoms on the surface in horizontal directions and an atomistic description
of the single atom layers in vertical direction. The boundaries of the monoatomar
steps are modeled as a free surface. In the case of thermodynamic equilibrium, the
conditions at the free surface are similar to those of a Stefan–problem with Gibbs–
Thomson effect. The models are coupled by equations describing the conservation
of mass via a suitable exchange of mass between liquid and solid phase.
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In many experiments one observes characteristic microstructures of e.g step–
wise, pyramidal or spiral morphology. In order to derive a model that is applicable
for a very small scale of this microstructure while still accounting for the macro-
scopic range of the transport processes in the liquid, we perform a homogenization
limit ε → 0 for a microscale parameter ε. This is done for suitable scalings of
the parameters in the model that basically describe a diffusion length of scale ε
for the surface diffusivity and a dilute solution in the liquid. The corresponding
two–scale limit consists of a macroscopic Navier–Stokes system and a macroscopic
convection–diffusion–equation, coupled to microscopic cell problems of BCF-type
for the evolution of single microstructure elements. The existence of solutions to
the two–scale model is proved, and an estimate for the model error is derived. It
is proved that the difference between the solution of the original problem for scale
ε and a macroscopic reconstruction of the solution of the two–scale model scales
as ε1/2, see [2].

Elastic deformations of the solid phase can be included to the model by adding
a system of equations for static linear elasticity. This system is coupled to the
Navier–Stokes system in the liquid phase by conditions describing the conservation
of mass and the equilibrium of forces. Boundary conditions for the elasticity
equations model possible misfit strains at the boundary between the substrate
and the solid phase. A formal two–scale expansion under the assumption that the
elastic displacement scales proportional to ε again leads to a two–scale model. The
elasticity equations enter the microscopic equations while the two–scale limit of
the Navier–Stokes system leads to a microscopic Stokes system and a macroscopic
Navier–Stokes System.

This work has been supported by the DFG Priority Program 1095 “Analy-
sis, Modeling and Simulation of Multiscale Problems” under Ec 151/5-1 and Em
68/13-1
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Kinetic description of phase transitions in binary fluids

Raffaele Esposito

The problem of the phase transitions is a relatively well understood issue in the
framework of the Equilibrium Statistical Mechanics. Much less is known from a
dynamical point of view. Of course, a better understanding of dynamical aspects
of phase transitions is desirable both for theoretical and practical reasons, but the
present state of the theory does not allow a satisfactory dynamical analysis at
microscopic level.
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It is then natural to try to construct models at some mesoscopic scale where
it is possible to analyze in a mathematically rigorous way the dynamics of phase
transitions. The obvious candidate for such a model is a kinetic gas. The classical
Boltzmann equation however only describes ideal gases which do not undergo any
phase transition. As in Equilibrium Statistical Mechanics, it is possible to get a
model exhibiting phase transition by adding suitable weak long range interactions
(Kac potentials) which in kinetic theory give rise to Vlasov-type self consistent
forces. The simplest model one could consider is then a rarefied Boltzmann gas
with an extra long range attraction. This model however is not stable because
nothing would prevent its collapse and in order to stabilize it one should include
some close packing condition, as in the van der Waals gas. Such a mechanism is
not easy to model in a natural way in the kinetic framework.

A slightly more complex model, but better suited to our purposes, is obtained
by considering a binary gas composed of two species of molecules (for simplicity
with the same mass) colliding regardless of the species, but also interacting via
a weak repulsive long range force between molecules of different species. It is
intuitively clear that in this model, at sufficiently low temperature, the molecules
of the two species prefer to stay away from each other, so that the system undergoes
a segregation phase transition. This model is the analog of a binary alloys, but
with extra effects due to momentum and energy transport. It has been introduced
in [1] where it has been studies via Monte Carlo simulations.

The equations describing the model are given in terms of the probability den-
sities on the phase space for the two species, fi(x, v, t), i = 1, 2, x ∈ Ω ⊂ Rd being
the position, v ∈ R3 the velocity and t ≥ 0 the time:

∂tf1 + v · ∇xf1 + F1 · ∇vf1 = J(f1, f1) + J(f1, f2)

∂tf2 + v · ∇xf2 + F2 · ∇vf2 = J(f2, f1) + J(f2, f1)

where the self-consistent forces Fi, i = 1, 2, are

Fi(x, t) = −∇x

∫

Ω

dx′U(|x− x′|)
∫

R3

dvfi+1(mod 2)(x
′, v, t)

and J(f, g) is the usual (non symmetric) Boltzmann collision operator.
The question of the derivation of the model from a microscopic dynamics in

some scaling limit has been addressed in [2], where it is discussed formally. The
rigorous validity is an open problem, due to the topology mismatch between the
proofs of validity of the Boltzmann and Vlasov equations.

Entropy arguments show that the equilibrium solutions are given by Maxwellians

fi(x, v) = ρi(x)
e−v

2/2T

(2πT )3/2
with zero average, the same temperature and densities

possibly depending on x and satisfying the equations:

T log ρi(x) +

∫

Ω

dx′U(|x− x′|)ρi+1(mod 2)(x
′) = Ci.
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Above condition turn out to be the Euler-Lagrange equations for the minimiza-
tion problem to the free energy functional

F(ρ1, ρ2) = T

∫

Ω

dx(ρ1 log ρ1 + ρ2 log ρ2) +

∫

Ω×Ω

dxdx′U(|x− x′|)ρ1(x)ρ2(x
′).

This is the starting point of the analysis in [3], where, in a slightly more general
setup and with the assumption that Ω be a d-dimensional torus, we have studied
the existence and properties of the minimizers of the free energy by means of some
rearrangements inequalities depending on the monotonicity assumption for the
interaction potential U . As a matter of fact, the free energy is not jointly convex
in the couple (ρ1, ρ2) at sufficiently low temperature, implying the non uniqueness
of the minimizers and hence the phase transition. The general picture, at low
temperature is the following: if the total masses of the two species are chosen in a
appropriate interval, and the size of Ω is sufficiently large, compared to the range
of the interaction, then, but for a small region, the densities take values close to
the mean field densities ρ±: ρ1 = ρ± and ρ2 = ρ∓.

The same question can be studied in the case Ω = R, with the conditions
ρ1 → ρ± and ρ2 → ρ∓ as x → ±∞. The solutions (called fronts) are studied in
[4].

They are relevant in particular for the study of the interface between regions
occupied by different phases. Indeed, in the so called sharp interface limit, they can
be used as the lowest order approximation to the densities ρi across the interface
region along the normal direction to the separating surface. This question has been
discussed in [5], [6] where it is shown that the macroscopic equations governing the
motion of the fluid are given by the incompressible Navier-Stokes equations for the
continuous velocity field, with pressure having a jump on the separating surface,
proportional to the curvature of the surface and to the free energy computed in
terms of the microscopic interaction. The normal velocity of the separating surface
on the other hand equals the normal component of the velocity field. This picture
is obtained by bulk and interface matching expansions in the mean free path. The
validity of the expansions is still open.

A very relevant question to be addressed in this context is the dynamical stabil-
ity of the equilibrium solutions and its relation with the thermodynamic stability
expressed by the minimizing property of the free energy. At the moment we have
no answer for the model we have presented above, but we have better under-
standing for a related model where the thermalizing collisions are replaced by the
interaction with a reservoir at temperature T modeled by a Fokker-Plank operator.
This means that we replace the previous evolution equations with

∂tf1 + v · ∇xf1 + F1 · ∇vf1 = Lf1

∂tf2 + v · ∇xf2 + F2 · ∇vf2 = Lf2,

Lf(v) = ∇v

(
MT∇

(
f

MT

))
, MT (v) =

e−v
2/2T

(2πT )3/2
.
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The equilibrium solutions for this model are the same as those of the previous
model and are the minimizers of the same free energy. In particular, one can
study the stability of the fronts with respect to small initial perturbations. This
problem has been faced in [7] by means of an energy method strongly relying on
the free energy minimizing properties of the equilibrium. Indeed, they imply some
spectral gap for the second Frechet derivative of the free energy, used as a partial
norm measuring the size of the perturbation. The asymptotic stability of the front
solution it then proved in L2 both for the perturbation and its spatial and time
derivatives. Assuming spatial decay of the initial perturbation, one can also show
its algebraic decay in time.

In conclusion, the binary gas model presented here seems to be a good labora-
tory to test conjectures and mathematical techniques on the study of the dynamics
of phase transitions. A few mathematical results have been obtained but many
problems are still open.
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Stability of fronts in systems of conservation laws

H. Freistühler

Under certain assumptions, the evolution of fluids and solids including phase
boundaries moving within them can be modeled by systems of conservation laws.
The talk focuses on the sharp-interface case (no higher-order effects present in the
PDE model) and on the question in which way and to which extend discontinuities
in waves modeling phase boundaries can be treated analogously to shock waves.
While shock waves are subsonic-supersonic and the Rankine-Hugoniot jump con-
ditions (solely expressing the effects of conservation at the interface) suffice to
determine the local dynamics, the typical subsonicity of phase boundaries rises a
well-posedness problem, at first sight. Various proposals have been made to rem-
edy the apparent deficiency by adding complementary boundary conditions at the
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free interface, these extra conditions go under the name of ”kinetic rules”. The
speaker’s own results (obtained together with S. Benzoni-Gavage and R. Plaza,
respectively) concern (a) liquid-vapor phase boundaries in a van-der-Walls like
fluid, (b) martensite twins formed in elastic materials. Regarding (a) we have
shown local-in-time persistence for the case of a new kinetic rule that explicitely
incorporates surface tension as a singular measure on the front. Technically this is
a non-standard normal modes analysis/construction of a Kreiss symmetrization.
Regarding (b), again local-in-time persistence is shown to go hand in hand with
certain requirements on the kinetic rule; the later are satisfied e.g. for the speed
driving fraction rule proposed by Abeyaratne and Knowles.

On the variational approximation of second and fourth order
geometric evolution equations

Harald Garcke

(joint work with John Barrett and Robert Nürnberg)

Many phase transition problems lead to situations in which an interface moves
according to a velocity law involving the mean curvature. Typical examples are
the mean curvature flow

(1) V = κ

and the surface diffusion flow

(2) V = −∆sκ .

Here, ∆s is the Laplace-Beltrami operator, V and κ are respectively the normal
velocity and the mean curvature of a smooth evolving hypersurface in Rd which
we denote by Γ = (Γt)t≥0. For closed surfaces (Γt)t≥0 it can be computed that the
above flows are surface area decreasing and the surface diffusion flow in addition
preserves the volume in cases where the evolving surface encloses a volume.

It was the goal of my presentation to introduce a novel finite element approxima-
tion of the above flows which can also handle generalizations including anisotropic
situations and cases in which triple junctions appear. As suggested first by Dziuk
[5] we use the identity

∆s~x = ~κ = κ~ν

as a basis to introduce a finite element method for geometric evolution equations
which involve the mean curvature. Above ~x is the parametrization of the surface, ~κ
is the mean curvature vector and ~ν is a unit normal to Γt. Let me in the following
describe how the above identity can be used to solve the evolution equations

(3) V = f(κ) and V = −∆sκ

numerically. Here we assume that f : (a, b) → R with −∞ ≤ a < b ≤ ∞ is a
strictly monotonically increasing function. The choice f(r) = −r−1 leads to the
inverse mean curvature flow which has applications e.g. in general relativity.
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For parametrizations ~x : Ω × [0, T ] → Rd of Γ, where Ω is a suitable reference
manifold without boundary in Rd we rewrite the equations in (3) as

(4) V := ~xt · ~ν = f(κ) , κ~ν = ∆s~x

and

(5) ~xt · ~ν = −∆sκ , κ~ν = ∆s~x ,

respectively. The idea is to approximate the functions ~x and the mean curvature κ
by piecewise linear continuous finite elements. This leads to an evolution problem
for polyhedral surfaces which can be discretized in time by using a semi-implicit
approach.

Let Γm be a polyhedral surface in R3 approximating the closed surface Γ(tm),
m = 0 → M . Following [5], we now parameterize the new closed surface Γm+1

over Γm. Hence, given ~Xm, a parameterization of Γm, we introduce the following

finite element spaces. Let Γm =
⋃J
j=1 σ

m
j , where {σmj }Jj=1 is a family of mutually

disjoint open triangles with vertices { ~qmk}3
k=1. Then for m = 0 →M − 1, let

(6) V (Γm) := {~χ ∈ C(Γm,R3) : ~χ |σm
j

is linear ∀ j = 1 → J} =: [W (Γm)]3,

where W (Γm) ⊂ H1(Γm,R) is the space of scalar continuous piecewise linear
functions on Γm, with {φmk }Kk=1 denoting the standard basis of W (Γm).

For scalar and vector functions u, v ∈ L2(Γm) we introduce the L2 inner product
〈·, ·〉m over the current polyhedral surface Γm, which is described by the vector

function ~Xm, as follows

〈u, v〉m :=

∫

Γm

u . v ds.

If u, v are piecewise continuous, with possible jumps across the edges of {σmj }Jj=1,

we introduce the mass lumped inner product 〈·, ·〉hm as

(7) 〈u, v〉hm := 1
3

J∑

j=1

|σmj |
2∑

k=0

(u . v)((~qmjk)−),

where {~qmjk}2
k=0 are the vertices of σmj , i.e. σmj = △{~qmjk}2

k=0, and where we define

u((~qmjk)−) := lim
σm

j ∋~p→~qm
jk

u(~p). Here |σmj | = 1
2 |(~qmj1 −~qmj0 )× (~qmj2 −~qmj0 )| is the measure

of σmj . In addition, we introduce the outward unit normal ~νm to Γm; that is,

(8) ~νmj := ~νm |σm
j

:=
(~qmj1 − ~qmj0 ) × (~qmj2 − ~qmj0 )

|(~qmj1 − ~qmj0 ) × (~qmj2 − ~qmj0 )|
,

where we have assumed that the vertices {~qmjk}2
k=0 are ordered anti-clockwise on

the outer surface of σmj . Finally, we set | · |2m(,h) := 〈·, ·〉(h)
m .

We propose the following approximation to (4) using a semi-implicit time dis-

cretization with time step τ > 0: Given Γ0 and the identity function ~X0 ∈ V (Γ0)
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on Γ0, then for m = 0 →M − 1 find { ~Xm+1, κm+1} ∈ V (Γm)×W (Γm) such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm − 〈f(κm+1), χ〉hm = 0 ∀ χ ∈W (Γm),(9a)

〈κm+1 ~νm, ~η〉hm + 〈∇s ~Xm+1,∇s ~η〉m = 0 ∀ ~η ∈ V (Γm);(9b)

where, as noted above, the inner products 〈·, ·〉(h)
m as well as ∇s depend on m.

Moreover, we propose the following approximation to (5): Given Γ0 and the

identity function ~X0 ∈ V (Γ0) on Γ0, then form = 0 →M−1 find { ~Xm+1, κm+1} ∈
V (Γm) ×W (Γm) such that

〈
~Xm+1 − ~Xm

τm
, χ ~νm〉hm − 〈∇s κm+1,∇s χ〉m = 0 ∀ χ ∈ W (Γm),(10a)

〈κm+1 ~νm, ~η〉hm + 〈∇s ~Xm+1,∇s ~η〉m = 0 ∀ ~η ∈ V (Γm).(10b)

For a different approach to approximate surface diffusion we refer to [1].
We can establish the following results for (9a), (9b) and (10a), (10b) respectively

under very mild assumptions on the triangulations:

• There exists a unique solution to the discrete systems.
• The discretizations are stable and in particular surface area decreasing.
• A continuous in time, discrete in space variant of (10a), (10b) preserves

the enclosed volume.
• The schemes have very good properties with respect to the distribution

of mesh points. For curves and a fully implicit discretization this generi-
cally leads to equidistribution of mesh points. For surfaces the good mesh
properties can be explained with the help of conformal mappings.

• Triple and multiple junctions and anisotropy can be included.

For details we refer to [2], [3], [4].
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Competition of Mutation and Selection in Multitype Branching
Processes

Hans-Otto Georgii

(joint work with Ellen Baake)

We consider multitype branching processes in continuous time. Each individual
x has a type σ(x) belonging to a finite set S. It lives for an exponential time
span with parameter aσ(x), after which it splits into a random number of offspring
individuals of possibly different types; the offspring distribution depends on x
only via its type σ(x). Life spans and offspring numbers of different individuals
are independent. Let X(t) denote the set of all individuals living at time t, and
Z(t) =

∑
x∈X(t) δσ(x) the measure on S that counts the individuals of each type

at time t. That is, Zj(t) is the number of j-individuals in X(t).
The basic information on the type evolution is captured in the generator A =

(ai(mij−δij))i,j∈S ; here, mij is the expected offspring of type j of an i-individual,
and δij is Kronecker’s delta. Namely, if Ei denotes the expectation for the process
starting with a single i-individual, then Ei(Zj(t)) = (etA)ij for all i, j ∈ S. We
assume throughout that A is irreducible. The Perron-Frobenius theorem then
implies that

Ei(Zj(t)) e
−λt −→

t→∞
hi πj ,

where λ is the principal eigenvalue of A, π a left eigenvector, and h a right eigen-
vector of λ, both of which are positive and normalised by 〈π, 1〉 = 1 = 〈π, h〉. This
means that λ is the mean growth rate, hi the long-term fertility of type i, and π
the type distribution of the population in the infinite future. It will turn out that
a further distribution of interest is α = (πi hi)i∈S , which plays a role as ancestral
type distribution; see below.

In the following, we confine ourselves to the supercritical case λ > 0, in which
the population survives forever with positive probability. The role of π and α is
then elucidated by the following two almost-sure convergence results. On the one
hand,

Z(t)/|X(t)| −→
t→∞

π Pi-almost surely conditioned on survival.

This means that π is the almost-sure equilibrium type distribution of the popu-
lation when one looks forward from an ancestor into the future, and is part of
the classical Kesten-Stigum theorem; see [4] for the continuous-time version of
the simple argument in [5]. On the other hand, for an individual x ∈ X(t) let

x(s) be its ancestor at time s < t, and Lx(t) = 1
t

∫ t
0
δσ(x(s)) ds the empirical type

distribution along the whole ancestral line. Then

1

|X(t)|
∑

x∈X(t)

δLx(t) −→
t→∞

δα Pi-almost surely conditioned on survival.

That is, α is the type distribution that emerges by looking from a typical individual
x ∈ X(t) backwards into its past; this was proved in [4].



1602 Oberwolfach Report 28/2007

To specify the behaviour of the process in more detail, we now split the generator
A into its mutational part uij = ai (mij − mi δij) (where mi =

∑
i∈Smij is

the expected total offspring of an i-individual), and the reproduction part ri =
ai (mi − 1). That is, A is the sum of the Markov generator U = (uij) and the
diagonal matrix with entries ri. Using a size-biased tree construction analogous to

but different from that in [5], one then finds Ei(|X(t)|) = Ẽi(et〈L
ξ(t),r〉), where ξ(t)

is a continuous-time Markov chain with generator U that describes the mutations
along a particular random lineage. By Varadhan’s lemma of large deviation theory,
it thus follows that

λ := lim
t→∞

1

t
log Ei(|X(t)|) = max

ν
[〈ν, r〉 − IU (ν)] ,

where the maximum extends over all probability measures ν on S, and IU is
the rate function associated with ξ(t). This variational principle describes the
competition of mutation and reproduction that determines the growth rate λ.
The maximum on the right is attained precisely for α. That is, α shows the right
balance of mutation and reproduction that is needed for maximal growth.

In the paper [2], we try to understand this competition in more detail. We fix
a type characteristic ̺ : S → R and consider the constrained growth rate

Λ(z) = lim
ε→0

lim
t→∞

1

t
log Ei(

∑

x∈X(t)

1{|〈Lx(t),̺〉−z|≤ε})

= max
ν: 〈ν,̺〉=z

[〈ν, r〉 − IU (ν)]

that describes the growth rate of the subpopulation with average lineage charac-
teristic z ∈ R. By partial convex conjugation, Λ(z) can be expressed in terms
of the total growth rates for populations with the same mutation matrix U but
reproduction rates of the form r + β̺ with varying β.

We analyse Λ(z) in the particular case of sequence space models. For simplicity,
we consider here only the binary case and let S = {0, 1}N . The natural type

characteristics is then ̺ : ω 7→ 1
N

∑N
k=1 ωk, which can be interpreted as the average

deviation from a wildtype. We assume that the mutation and reproduction rates
depend only on ̺(ω), so that we can project our branching process onto the simpler
type space S = {0, 1

N , . . . , 1}. We assume further that U is reversible. This gives
us an eplicit expression for the rate function IU , and allows us to pass to the
process with the symmetric mutation generator Fij =

√
UijUji for i 6= j, and

reproduction rates Ei := ri +
∑
j∈S

√
UijUji. The latter process has the same λ

and Λ(z). So we can use the results of [1], which present a Laplace approximation
for λ in the limit N → ∞, when the Fij and Ei allow for a smooth approximation
in this limit. This leads us to the following result: If Ei = e(i)+O(1/N) for some
e ∈ C2[0, 1] and the Fij satisfy a similar approximation condition then

Λ(z) = ê(z) +O(N−1/3) as N → ∞

locally uniformly in z ∈ ]0, 1[ , where ê is the concave envelope of e.
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The fact that the concave envelope shows up here is an indication that a phase
transition might occur. We checked this for the so-called quasispecies model of M.
Eigen [3], in which a sequence ω ∈ {0, 1}N creates an offspring with rate b(̺(ω))
and dies with rate d(̺(ω)). On the occasion of birth, each site of the offspring
sequence mutates from 0 to 1 with probability µ/N , and vice versa with probability
ν/N . The symmetrised rates on the projected type space S = {0, 1

N , . . . , 1} then
allow for a natural but subtle Poisson approximation, and the above approximation
of Λ(z) holds with e(z) := b(z)e−g(z) − d(z), where g(z) := (

√
µ(1 − z) −√

νz)2.

The penalisation factor e−g(z) describes the loss of fitness outside a mutationally
balanced region.

For a particular choice of the parameters, the above function e is non-concave.
This means that all z with e(z) < ê(z) do not contribute to the fitness of the
population, and are suppressed during evolution in favour of those subpopulations
for which e(z) = ê(z). In particular, for a proper tuning of the reproduction rates,
the function Λ attains its maximum at two different values of z, which means that
the associated ancestral type distribution α has two distinct peaks. So one can
speak of a “coexistence of phases” . A full understanding of these phenomena still
requires further study.

As a final remark, let me mention that my cooperation with Ellen Baake started
in Oberwolfach, where we met in 2000 for the first time.
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Entanglement entropy in the quantum Ising model

Geoffrey Grimmett

The object of this talk is to explain the relationship (formulated by Aizenman,
Klein, and Newman in [1]) between the quantum Ising model and a classical model
of probability theory termed the continuum random-cluster model, and to indicate
how this may be exploited to obtain an estimate for the entanglement of a one-
dimensional spin chain, in the strong-field regime. This work is joint with Tobias
Osborne and Petra Scudo.

The state space of the quantum Ising model on a finite graph G = (V,E) is the
tensor product H =

⊗
x∈V C2. As basis for the copy of C2 labelled by x, we take
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the two eigenstates |+〉x, |−〉x of the Pauli operator σ
(3)
x at x, with corresponding

eigenvalues ±1. The other two Pauli operators are denoted σ(1) and σ(2). Let D
be the set of 2|V | basis vectors |η〉 for H of the form |η〉 =

⊗
x |±〉x, noting that

D is in one–one correspondence with the space Σ =
∏
x∈V {−1,+1}.

The Hamiltonian of the quantum Ising model with transverse field is

(1) H = − 1
2λ

∑

e=〈x,y〉∈E
σ(3)
x σ(3)

y − δ
∑

x∈V
σ(1)
x ,

generating the operator e−βH where β denotes inverse temperature. Here, λ, δ ≥ 0
are the spin-coupling and transverse-field intensities, respectively. Let

(2) ρG(β) =
1

tr(e−βH)
e−βH .

It is well known (see [1]) that the matrix elements of ρG(β) may be expressed as
a type of ‘path integral’ with respect to the continuum random-cluster model on
G × [0, β] with parameters λ, δ and q = 2. Let Λ = V × [0, β], write ΩΛ for the
configuration space of the latter model, and let φG,β be the appropriate continuum
random-cluster measure on ΩΛ (with free boundary conditions). For ω ∈ ΩΛ, let
Sω denote the space of all functions s : V × [0, β] → {−1,+1} that are constant
on the clusters of ω, and let S be the union of the Sω over ω ∈ ΩΛ. Given ω,
we may pick an element of Sω uniformly at random, denoted σ. For s ∈ S and
W ⊆ V , we write s0 (respectively, sβ) for the vector (s(x, 0) : x ∈ V ) (respectively,
(s(x, β) : x ∈ V )).

Theorem 3. [1] The elements of the density matrix ρG(β) satisfy

(4) 〈η′|ρG(β)|η〉 =
φG,β(σ0 = η, σβ = η′)

φG,β(σ0 = σβ)
, η, η′ ∈ Σ.

This representation may be used to study entanglement in the quantum Ising
model on G. Let W ⊆ V , and consider the reduced density matrix

(5) ρWG (β) = trV \W (ρG(β)).

As above, the matrix elements may be expressed as the ratio of probabilities given
in terms of a continuum random-cluster measure with a certain periodic boundary
condition.

The entanglement of the vertex-set W relative to its complement V \W is inter-
preted here as the entropy SWG = − tr(ρWG log2 ρ

W
G ) where ρWG = limβ→∞ ρWG (β).

We specialise to the one-dimensional case. Letm,L ≥ 0 and take V = [−m,m+
L] and W = [0, L], viewed as subsets of Z. We write ρm(β) for ρG(β), and SLm for
SWG . A key step in the study of SLm for large m is a bound on the supremum norm
of the difference ρLm − ρLn .

Theorem 6. [2] Let λ, δ ∈ (0,∞) and write θ = λ/δ. There exist constants C, α,
γ depending on θ and satisfying γ > 0 when θ < 1 such that:

(7) ‖ρLm − ρLn‖ ≤ min
{
2, CLαe−γm

}
, 2 ≤ m ≤ n <∞.
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One would expect that γ may be taken to satisfy γ > 0 under the weaker
assumption λ/δ < 2, but this has not yet been proved.

Theorem 8. [2] Let λ, δ ∈ (0,∞) and write θ = λ/δ. There exists θ0 ∈ (0,∞) such
that: for θ < θ0, there exists K = K(θ) <∞ such that

(9) SLm ≤ K log2 L, m ≥ 0, L ≥ 2.

The two key properties of the continuum random-cluster model used in the
proof are exponential decay of connectivities and the so-called ratio weak-mixing
property.
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Stochastic approach to the quantum Curie-Weiss model

Dmitry Ioffe

(joint work with Marek Biskup, Lincoln Chayes, Nicholas Crawford, Anna Levit)

Classical Curie-Weiss mean-field Hamiltonian HCW
N is a function on ΩN = {±1}N ,

(1) −HCW

N (ν) =
1

N

∑

(i,j)

νiνj ,

where the summation is over all unordered pairs of i 6= j. The values of the
classical Hamiltonian

{
HCW
N (ν)

}
could be viewed as eigenvalues of the quantum

Hamiltonian HCW
N ,

HCW

N Ψν = HCW

N (ν)Ψν , where −HCW

N =
1

N

∑

(i,j)

σ̂z

i σ̂
z

j ,

where σ̂z is the Pauli matrix

σ̂z =

(
1 0
0 −1

)
.

Given ν ∈ {±1}N he corresponding eigenvector Ψνequals to

Ψν
∆
= ⊗i∈Λψνi ,

and,

ψ+1 =

(
1
0

)
and ψ−1 =

(
0
1

)
.
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Accordingly, for a given value of the inverse temperature β, the distribution of
ν is,

(2) µβN (ν) =
1

ZN
e−βH

CW

N (ν) =

〈
Ψν |e−βH

CW

N (ν)|Ψν

〉

Tr

(
e−βH

CW

N (ν)
) .

One way to pin down phase transition in the CW model is to study statistical
properties of the mean magnetization

ν̄N
∆
=

1

N

∑

i

νi,

under µβN : The probability measure νβN in (2) could be described in the follow-
ing way: Let Q be the uniform (1/2) distribution on {±1} and let ⊗Q be the

corresponding product measure on ΩN = {±1}N . Then,

(3) µβN (ν) =
⊗Q

(
eNβ(ν̄N)2/2; ν

)

⊗Q
(
eNβ(ν̄N )2/2

) .

Then, elementary one-dimensional theory of large deviations implies that µβN ex-
ponentially concentrates around

{
ν : ν̄N is close to argmax

(
β

2
m2 − I(m)

)}
,

where I is the large deviation rate function for ν̄N under ⊗Q,

I(m) = sup
h

{hm− Λ(h)} and Λ(h) = log Q
(
ehν

)
= log

eh + e−h

2
.

It is easy to see that I is strictly convex and differentiable on (−1, 1) with I ′(m) →
±∞ asm→ ±1. In particular, the supremum of βm2/2−I(m) is actually attained
inside (−1, 1) for any β ∈ R+. Furthermore, since I(·)/β is the convex conjugate
of Λ(β·)/β,

(4) argmax

{
m2

2
− 1

β
I(m)

}
= argmax

{
1

β
Λ(βh) − h2

2

}
.

But Λ(β·) is the log-moment generating function of the ±β Bernoulli random
variable. If we use Qβ for the corresponding distribution, then it is straightforward
to check that the maximizers in (4) are of the form ±m∗(β), where m∗(β) > 0 iff,

(5)
1

β
Varβ (ν) =

β2

β
,

is larger than one. We, thereby, recover the critical value β = 1 of the classical
CW model.
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The main objective of this lecture is to explain that a very similar story happens
with the quantum CW model in transverse field,

(6) −HCW

N =
1

N

∑

(i,j)

σ̂z

i σ̂
z

j + λ
∑

i

σ̂x

i ,

where λ ≥ 0 is the strength of the transverse field and,

σ̂x =

(
0 1
1 0

)
.

We associate with quantum Hamiltonian HCW
N in (6) classical probabilities,

(7) µβ,λN (ν) =

〈
Ψν |e−βH

CW

N (ν)|Ψν

〉

Tr

(
e−βH

CW

N (ν)
) .

Let Probλβ be the distribution of the Poisson point process (of holes) on the circle
Sβ with arrival intensity λ. We shall use ⊗Probλβ for the product distribution
of N independent copies ξ = (ξ1, . . . , ξN ). For every i let #(ξi) be the number of
connected components of Sβ \ ξi. Evidently, the number of all compatible ν ∼ ξ

equals to 2
∑

i #(ξi). Define

P̃λβ (dξ) =
2#(ξ)Probλβ (dξ)

Probλβ
(
2#(ξ)

)

Consider probability distribution Qλ
β on piece-wise constant classical one-circle

spin trajectories ν : Sβ 7→ {±1} which is generated by the following two step

procedure: First sample ξ from P̃λβ , and then paint connected components of

Sβ \ ξ into ±1, independently and with probability 1/2 each. Let ⊗Qλ
β be the

corresponding product measure. The path integral approach to (7) reveals that
an analysis of phase diagram of the CW model in transverse filed boils down to
an investigation of asymptotic properties for weighted (path) measures

(8) ⊗Q̃λ
β(dν)

∆
=

⊗Qλ
β

(
exp

{
N
2

∫ β
0 (ν̄N (t))

2
dt

}
; dν

)

⊗Qλ
β

(
exp

{
N
2

∫ β
0

(ν̄N (t))2 dt
}) ,

where,

ν̄N (t) =
1

N

∑

i

νi(t).

This problem belongs to the realm of theory of large deviations. Formally, the
measures (8) are asymptotically concentrated around solutions of

(9) sup
m

{
1

2

∫ β

0

m2(t)dt − I(m)

}
∆
= sup

m
G(m),

where I is the large deviation rate function for the average ν̄N under the product
measures ⊗Qλ

β. If we formulate the large deviation principle in L2(Sβ), then, using
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(·, ·)β for the corresponding scalar product,

(10) I(m) = sup
h

{(h,m)β − Λ(h)} where Λ(h) = log Qλ
β

(
e(h,ν)β

)
.

It happens that the critical curve is implicitly given by

(11) f(λ, β)
∆
=

1

β
Varλβ ((ν,1)β) =

1

λ
tanh(λβ) = 1,

where Varλβ is the variance under the one-circle spin measure Qλ
β. In fact, the vari-

ational problem (9) has constant maximizers ±m∗(λ, β)1, where the spontaneous
z-magnetization m∗ satisfies:

(1) If f(λ, β) ≤ 1, then m∗ = 0.
(2) If f(λ, β) > 1, then m∗ > 0, and, consequently there are two distinct

solutions to (9).

Furthermore, away from the critical curve the solutions ±m∗1 are stable in the
following sense: There exists c = c(λ, β) > 0 and a strictly convex symmetric
function U with U(0) = 0 and U ′′(0) > 0, such that

(12) G(±m∗1)−G(m) ≥ cmin
{
‖m−m∗1‖2

β, ‖m+m∗1‖2
β

}
+

∫ β

0

U(m′(t))dt.

Phase Transitions in Aperiodic Crystals

Ted Janssen

Phase transitions with a change of symmetry from a high-symmetry group G0 to a
low-symmetry group H may be described in the framework of the Landau theory.
This describes the free energy as a polynomial in an order parameter η. The first
terms are

F =
a(T )

2
η2 +

1

4
η4.

The order parameter belongs to an irreducible representation of the group G0. The
new symmetry group then is the subgroup for which the elements are represented
by the unit matrix.

For crystals the symmetry groups are usually the space groups G0 and H . The
order parameter belongs to an irreducible representation which is characterised by
a star of wave vectors k and a representation of the ’little group’ Gk which is the
group of elements which leave k invariant.

However, there are many materials showing a phase transition from a structure
with three-dimensional space group symmetry to an aperiodic structure, where
the latter has equally perfect long range order as the other phase. These materials
have sharp diffraction peaks at positions of a Z-module, called the Fourier module.
The wave vectors are of the form

k =

n∑

i=1

hia
∗
i ,
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where n is larger than the space dimension, and where hi are integers. The num-
ber of rationally independent vectors (n) is the rank of the Fourier module. These
materials do not have three-dimensional space group symmetry. Usually the Eu-
clidean symmetry is rather low. The transition from periodic to aperiodic structure
can still be described using Landau theory, because the new phase belongs to a
representation of the original space group[1, 2]. However, for further transitions
between phases one has to use another technique in order to be able to use Landau
theory.

The vectors k are considered as projections of reciprocal lattice vectors ks in
an abstract n-dimensional space: k = πks. Furthermore, the aperiodic structure,
having a density function ρ(r), is embedded in this n-dimensional ‘superspace’ by

ρs(r, rI) =
∑

ks

ρ(πks) exp(ik.r + ikI .rI).

Because of the construction the n-dimensional density ρs is lattice periodic, and
consequently has n-dimensional space group theory.

Phase transitions from or to such an aperiodic crystal state can now be described
using Landau theory. One has to distinguish two cases. In the first place the rank
of the structures on both sides of the phase transition can be equal. In that case
the groups G0 and H are both n-dimensional space groups. The free energy is
a function of the order parameter, which corresponds to a representation of the
space group. In the case that the ranks are not equal one has to embed the space
of the lower rank system into a space of the higher rank structure. For example,
for the transition from a three-dimensional space group symmetric structure to an
aperiodic crystal of rank n, the transition is described in an n-dimensional space.
The original symmetry group is then the product G0×Ed of the three-dimensional
space group and the Euclidean group in d = n − 3 dimensions. The irreducible
representations of this group are easily constructed. The superspace group after
the transformation is the subgroup of elements represented by the unit operator.

This procedure has been applied to several examples of the four main classes
of aperiodic crystal structures: incommensurate modulated structures, incommen-
surate composites, quasicrystals and incommensurate magnetic structures. In all
the classes examples of transitions between phases with equal or with unequal
rank have been found. For quasicrystals, for example, these are transitions from
aperiodic to an approximant (1st order) and the transtion from quasicrystal to
modulated quasicrystal, where the rank changes from 6 to 12. For composites
there are subsystems showing a change in the unit cell resulting in a different
Fourier module of the same rank, and models showing an increase in the rank at
the phase transition[4]. The symmetries occurring in magnetic phase transitions
may be described in Landau theory using representations of groups, superspace
groups and magnetic symmetry groups with operators combining space transfor-
mations and time reversal[3].
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Nucleation and growth for the Ising model in dimension three or
higher

Francesco Manzo

(joint work with R. Cerf)

The talk concerns the metastable relaxation of the kinetic Ising model (Metrop-
olis dynamics) in the regime of infinite volume and vanishing temperature. It is a
joint work with R. Cerf.

We extend the two dimensional result of Dehghanpour and Schonmann to an
arbitrary dimension.

The formal energy function associated with a configuration η ∈ {−1,+1}Z
d

is

(1) Ed(η) := −1

2

∑

x,y∈Z
d

‖x−y‖=1

η(x)η(y) − h

2

∑

x∈Zd

η(x).

Let −1 (resp. 1) denote the configuration with spin minus in every site of the
d−dimensional lattice Zd. We consider a small positive ‘magnetic’ field h, so that
the minimizer of the energy is 1.

We prove that for sufficiently small positive magnetic field h, for each ǫ > 0
there exists d > 0 such that for sufficiently large inverse temperature β and every
local observable f ,

E(f(σdt )) = f(−1) + o(e−βd) for any t < eβ(κd−ǫ)(2)

E(f(σdt )) = f(1) + o(e−βd) for any t > eβ(κd+ǫ),(3)

σdt denotes the d−dimensional kinetic Ising model starting from −1 and where the
constant κd is related to the i−dimensional ‘communication hights’ Γi by

(4) κd =
1

d+ 1

d∑

i=1

Γi.

In the regime we are considering, the relaxation pattern is characterized by the
formation of suitable ‘critical droplets’ (‘nucleation’) and by their growth.

We follow the strategy developed by Dehghanpour and Schonmann for the two-
dimensional case, using inductive ideas to relate the behavior of the d−dimensional
process with the (d− 1)-dimensional one.
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As regards nucleation, we show that the formation rate is the same as in the
finite-volume case.

In order to get this result, and use the well-developed finite-volume techniques,
we need a bound on the probability that te process in a given point is influenced
by far-away spins.

Unlike in the two-dimensional case, we are unable to characterize geometrically
the metastable cycle and in particular we do not know the inner details of the
‘metastable cycle’ that could help a droplet of pluses to cross a long distance.
Instead, we use the ferromagnetic properties of the energy giving a quite general
description of the cycle structure for attractive systems.

Once the nucleation problem is reconducted to the finite-volume case, we have
to rule out the possibility that the process is trapped in some deep well. Again, our
knowledge of the energy landscape is insufficient in order to follow the standard
strategies.

We take advantage of the attractivity of the dynamics to get uniform bounds
for the nucleation probability within time exp(−β(κd ± ǫ)).

The main difficulty concerns the estimate of the speed of growth of a super-
critical droplet. Heuristically, we can imagine that a big cube of pluses grows
via the formation of a (d − 1)-dimensional critical droplet that grows with the
(d− 1)-dimensional speed. This idea is at the basis of our inductive scheme.

For combinatorial reasons (and complex geometrical problems), we are not able
to use the ‘chronological path’ argument used by Dehghanpour and Schonmann.
Instead, we abandon large deviation techniques and set up a construction that gives
super-exponential bounds on the probability that the droplet grows by exp(βǫ)
within time exp(β(κd−1 − ǫ)).

This construction can be applyed in other contexts like boostrap percolation.

Displacement convexity and minimal fronts at phase boundaries

Rossana Marra

(joint work with E. A. Carlen, M. C. Carvalho, R. Esposito, J.L. Lebowitz )

We consider minimization problems for a type of functional that arises in the study
of phase segregation in statistical mechanical systems. Let F (m) be a function on
the real line that is continuous and strictly positive except at m = a and m = b
with a < b.

Let Ca,b be the set of functions m(x) from R to R such that

lim
x→−∞

m(x) = a and lim
x→+∞

m(x) = b .

The numbers a and b represent the values of the order parameter m in two phases
of a statistical mechanical system. For example, m = a might correspond to a
vapor phase, and m = b to a liquid phase.

Then a function m(x) in Ca,b denotes a possible transition profile across the
boundary segregating the two different phases. The actual profile that one would
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expect to see would be one that minimizes the free energy cost of making such a
transition. Here, the free energy functional F to be minimized on Ca,b is

F(m) =

∫

R

F (m(x))dx +
1

2

∫

R

∫

R

(m(x) −m(y))2J(x− y)dxdy ,

where J(x) is a non-negative integrable function on R.
The term

∫
R
F (m(x))dx is due to short range interactions and entropy effects,

while the term
∫

R

∫
R
(m(x)−m(y))2J(x−y)dxdy is due to long range interactions.

This long range term in the free energy suppresses sharp transitions.
Much useful information can be deduced from the specific form of the minimiz-

ing profiles. In particular, the surface tension at a phase boundary is the minimum
value of F(m) on Ca,b. Hence we ask:

• What is the minimum value of F(m) as m ranges over Ca,b, and the minimizing
profiles, if any, unique up to translation?

Note that the existence of minimizers is relatively simple. Because of the trans-
lation invariance, they are never unique: Any translate of a minimizer is again a
minimizer. It is less simple to show that this is the only degeneracy.

Displacement convexity and uniqueness of fronts.

For a particular choice of F in the free energy functional F , this problem has
been solved in a series of papers [6],[7] by DeMasi, Orlandi, Triolo and Presutti.
Their solution involves the construction of a dynamics that is dissipative for the
free energy functional, and then a careful analysis of limits along the time evolution
for this dynamics.

Another approach that we further develop here has been introduced by Alberti
and Bellettini [2], [1]. They discovered an alternative convex structure which
renders the variational problem for F convex, and used this to study the existence
problem in [2]. Later, Alberti returned to the problem proving in [1] a uniqueness
result that affirmatively answers the question raised above for this one component
model.

Our goal here is to treat certain two component systems. Motivated by this
problem, we were led to reconsider the single component problem from the point
of view of McCann’s notion of displacement convexity [8].

In fact, the minimization problem for F is challenging largely because the func-
tional F is not convex on Ca,b in the usual way: For 0 < λ < 1, and m0 and m1

in Ca,b, define mλ = (1 − λ)m0 + λm1 and note that mλ ∈ Ca,b. However, due
to the non convexity of the potential function F , it is not true in general that
F(mλ) ≤ (1 − λ)F(m0) + λF(m0).

There is however, another convex structure with respect to which F is convex.
This convex structure cannot be defined on all of Ca,b, but only on the subset of
monotone profiles Ma,b. Nothing is lost in this restriction, as a rearrangement
inequality of Alberti [1] shows that minimizers of F on Ca,b must actually lie in
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Ma,b. Any profile m(x) increasing monotonically from a to b can be written as

m(x) = a+ (b− a)

∫ x

−∞
dµ(y)

where µ is a probability measure on R. This identification of Ma,b and the set
of probability measures on R allows us to look at F as a functional defined on
probability measures.

On the set of probability measures on R (or more general domains) there is
an alternative convex structure that was introduced by McCann [8], building on
groundbreaking work of Brenier [3]. It is based on a measurable map T : R → R,
which is used to define a notion of transport of a measure µ0 into another measure
µ1: µ1 = T#µ0, push forward of µ0 under T . A functional on probability measures
is said to be displacement convex if it is convex with respect to this alternative
structure. We show that F , regarded as a functional on probability measures is

in fact displacement convex, and also strictly convex, namely d2

dλ2F > 0 and is
equal to zero unless the map T is a translation. This implies the uniqueness of
the minimizer up to translations. It is easy to show that the local part of the
functional, F (m), is affine, since this new notion of convexity naturally look at
F (m) as a function on the inverse function x(m) [2]. To show that the non local
part is convex we introduce a potential W (x−y) whose second derivative is related
to J(x − y) and use the positivity of J to show the convexity of W .

This solution to the variational problem has the advantage of applying also for
free energy functionals in certain multicomponent systems, introduced in [4] and
[5], describing a binary fluid, in which the determination of the minimizers has not
been previously treated.

Binary fluid functional.

The system is made of two different species of particles and the particle number
densities are denoted by m(x) and n(x). The functional G defined by

G(m,n) =

∫

R

[
m(x) lnm(x) + n(x) lnn(x) + β

∫

R

J̄(x− y)m(x)n(y)dy − gβ,µ

]
dx

is the excess free energy at a front. Here, gβ,µ = infm,n≥0 fβ,µ,µ(m,n) and

fβ,µ1,µ2
(m,n) = m lnm+ n lnn+ βĴmn− µ1m− µ2n

is the thermodynamic free energy. The functional has made of two part: the
entropy and the energy associate to a repulsive interaction between the two species.
The functional is not convex at low temperature, due to the presence of a phase
segregation transition with coexistence of two phases, one richer in one species
and the other richer in the second species. We look for the minimizers of this
functional for β > βc, which represents the phase boundary. The minimum value
gives the surface tension across the phase boundary.

We prove that this functional is displacement convex on the set Mρ−,ρ+ ×
Mρ+,ρ− of the monotone profiles with fixed asymptotic values ρ± at infinity. We
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prove also that it is strictly displacement convex up to translations. As a conse-
quence, we get the following theorem.

Theorem
If (w1, w2) and (v1, v2) are any two critical points of G in Mρ−,ρ+ ×Mρ+,ρ− ,

then there is an a ∈ R so that

(v1(x), v2(x)) = (w1(x− a), w2(x− a)) .

Thus, there is exactly one critical point (w1, w2) such that w1(0) = w2(0). It is
symmetric in the sense that w1(x) = w2(−x) for all x.
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Magnetic domain wall motion

Christof Melcher

(joint work with Antonio Capella and Felix Otto)

We investigate the gyrotropic motion of a magnetic domain wall in a (soft)
magnetic thin film with an applied field H = H(t) pointing along the easy axis.
Our analysis is based on the following Landau-Lifshitz-Gilbert equation

∂tm + αm ∧ ∂tm + ε γm ∧∇E(m) = ε γ H(t)
(
m ∧ e2

)

for parameterized transition layers that are periodic

m(t) : R × T → S2 with m(±∞, t) = (0,±1, 0)

where ∇Eε(m) is the L2 gradient of the reduced domain wall energy

Eε
(
m) =

1

2

∫

R×T

(
Q |∇m|2 + (1 −m2

2) +
(m3

ε

)2
)
dx+

1

2

∫

R×T×R

|∇u|2 dx

where ∆u = div
(
m δ{x3=0}

)
distributionally on R × T × R.
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The parameter ε≪ 1 corresponds to the relative thickness (i.e. thickness/exchange
length) and triggers the effect of anisotropy. We are interested in the singular
limit as ε→ 0, that is the evolution equation for a Néel wall. For this purpose we
consider a sequence of solutions mε of LLG with uniformly bounded initial energy.

Theorem 1. Suppose that α(ε)/ε→ ν and mε ⇀ m weakly in L2
loc(R×T×(0, T )).

Then m = (m, 0) where m(t) : R2 → S1 is a weak solution of
[
∂2
tm+ ν ∂tm+ ∇E0(m)

]
·m⊥ = 0

where

E0(m) =
1

2

∫

R×T

(
Q |∇m|2 +m2

1

)
dx+

1

2

∫

R×T×R

|∇u|2 dx.

Observe that the limiting equation is a geometric wave equations. A related
singular limit for LLG but with fixed damping coefficient α has first been found
by E and Garcia [3]. In their result the gyromagnetic term becomes effectively a
damping term whereas in our result oscillatory features are potentially preserved.
Of particular interest is the case of flat Néel walls, where the stray-field inter-
action reduces to the H1/2 self-interaction of the first component function. The
corresponding variational principle can conveniently expressed as

E0(m) =
1

2

(
Q‖m‖2

Ḣ1 + ‖m1‖2
Ḣ1/2 + ‖m1‖2

L2

)
→ min

for m : R → S1 with m(±∞) = (0,±1).

The problem of a static Néel wall, including its internal two-scale structure, log-
arithmic energy decay, and typical extremely slow logarithmic decay behavior of
Néel wall profiles, has been analyzed, see [6, 7, 2]. In a dynamic context we aim
for a description in terms of a mechanical analog

M q̈ +
1

β
q̇ = H(t)

where q = q(t) is the wall center, at least for small forcing H = H(t). The con-
struction of dynamic solutions near by the static Néel requires stability. It can be
shown that Néel walls indeed strict minimizers modulo translations. Introducing
a phase θ so that m = (cos θ, sin θ) the reduced LLG dynamics of a Néel wall reads

∂2
t θ + ν ∂tθ + ∇E(θ) = H(t) cos θ

where E(θ) = E0(m) is the Néel wall energy. We have the following results:

Theorem 2. For sufficiently small constant field strength H there exists a trav-
eling wave for the reduced Landau-Lifshitz-Gilbert dynamics

c2 θ′′ + c ν θ′ + ∇E(θ) = H cos θ

that connects antipodal states at infinity θ(±∞) = ±π/2 near the static Néel wall
θ0. Moreover, the propagation speed has an expansion

c = βH + o(H)

where the wall mobility is given by β = 1/(Mν) with M = 1
2

∫
|θ′0|2 dx.
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Theorem 3. There exists η > 0 so that whenever T ≥ 1 and H is T -periodic with

−
∫ T

0

|H(t)|2dt+ T 2 −
∫ T

0

|Ḣ(t)|2 dt < η2

then there is an T -periodic solution θ = θ(x, t) for the reduced LLG

∂2
t θ + ν ∂tθ + ∇E(θ) = H(t) cos θ

that connects antipodal states at infinity and so that

θ(x, t) = θ0(x+ q(t)) + ψ(x, t)

where ‖ψ‖ = O(η) and the wall center q = q(t) satisfies

M q̈ +M ν q̇ = H(t) + o(η).
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Interface profile for 1 d ferromagnetic Ising model with long range
interaction

Immacolata Merola

(joint work with Marzio Cassandro, Utikir Rozikov)

It is well known that a one dimensional Ising spin system with ferromagnetic long
range interactions which decay as |x−y|−2+α, α ∈ [0, 1

2 ] exhibits a phase transition
[1],[2].

To study the phase coexistence region we consider a finite volume 2L+ 1 with
mixed boundary conditions (− on the left and + on the right) and use a geometrical
description for the spin configurations σ, introduced in a previous paper [3] that
allows to describe the energy fluctuations as a gas of interacting contours. This
representation is similar to that already introduced by [2] but more transparent
and easier to handle. We define a “phase-separating” point and we study its
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statistical properties. (i.e. the magnetization profile where, say, the boundary
conditions are negative on the left and positive on the right ).
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Γ-convergence for rate-independent processes with
applications to damage

Alexander Mielke

(joint work with G. Bouchitté and T. Roub́ıček)

1. Introduction

We consider an elastic body Ω ⊂ Rd and want to describe the damage evolution
under given Dirichlet boundary conditions in the part ΓDir of the boundary ∂Ω.
In particular, we are interested in the situation that the damage can be complete,
i.e., the material can disintegrate (e.g., into powder) such that the displacement
u : Ω → Rd is no longer defined.

We denote by e(u) = 1
2 (∇u + ∇uT) the infinitesimal strain tensor and by

z : Ω → [0, 1] a scale damage variable with z = 1 in the case of no damage and
z = 0 if everything breakable is broken. The stored-energy functional is given in
the form

(1) Ê(u, z) =

∫

Ω

W (x, e(u)(x), z(x)) +
κ

r
|∇z(x)|rdx,

where W (x, e, ·) decreases with respect to z ∈ [0, 1], since damage weakens the
material. The case of incomplete damage is mathematically described by uniform
coercivity (in z ∈ [0, 1]), whereas in the case of complete damage we usually assume
only

(2) nonuniform coercivity: W (x, e, z) ≥ cz|e|p − C,

i.e., coercivity in e is present as long as the damage is not yet complete.
Loss of coercivity leads to problems in defining the displacement, even when

W (x, ·, z) is convex. We assume that elasticity is always in equilibrium, i.e., u(t)
should be the minimizer of E(·, z(t)) on W1,p(Ω; Rd) under the condition u|ΓD

=
UD(t). However, missing coercivity will lead to nonattainment of the minimum
due to location in the regions of total damage. Nevertheless, it is of practical
interest in civil engineering to model the further development of damage in other
parts of the body where damage is not yet complete.
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We suggest to treat the problem by looking at energy densities and stress dis-
tributions instead of the displacements or the strains. Under the simple assump-
tion |∂eW (x, e, z)| ≤ CW (x, e, z) it is easy to see that bounded energies lead to
bounded stresses in L1(Ω). In particular, we show that introducing a small damage
threshold δ > 0, we obtain solutions (uδ, zδ), and it is possible to show that for a
subsequence we have zδ(t) → z(t), where z solves an appropriate limit problem in
terms of an energy functional obtained as Γ-limit. Moreover, the energies, stresses
and the power of the time-dependent boundary conditions converge to the limit
values.

2. Model for incomplete damage

The model with incomplete damage was studied in [MR06], and we recall the
main ingredients here.

For p ∈ ]1,∞[ assume that the time-dependent boundary conditions satisfy
uD ∈ C1([0, T ]; W1,p(Ω; Rd)). The stored-energy density W : Ω × Ed × [0, 1] → R

is Caratheodory, convex in e and satisfies the uniform coercivity ∀e, z: c|e|p−C ≤
W (e, z) ≤ C|e|p + C as well as the uniform stress control

(3) ∀e, z: |∂eW (e, z)| ≤ CW (e, z).

For the regularizing term in (1) we assume r > d.

The stored-energy potential is given as E(t, u, z) = Ê(u + uDir(t), z) and the

dissipation distance as D(z0, z1) =

{ ∫
Ω
ρ(z0−z1)dx if z1 ≤ z0,

∞ else.
Both are de-

fined on the state space Q = F × Z with F = { u ∈ W1,p(Ω; Rd) | u|ΓD
= 0 } and

Z = { z ∈ W1,r(Ω) | z ∈ [0, 1] a.e. in Ω } ⋐ C0(Ω).

Theorem 5 ([MR06]). For all q0 ∈ S(0) there exists an energetic solution q =
(u, z) : [0, T ] → Q with q(0) = q0, i.e., for all t ∈ [0, T ] the global stability (S) and
the energy balance (E) hold:

(S) ∀wt q = (wt u,wt z) ∈ Q: E(t, q(t)) ≤ E(t,wt q) + D(z(t),wt z)

(E) E(t, q(t)) + DissD(z, [0, t]) = E(0, q(0)) +
∫ t
0
∂τE(τ, q(τ))dτ .

Moreover, we have u ∈ L∞([0, T ]; W1,p(Ω; Rd)) and z ∈ L∞([0, T ]; W1,r(Ω)) ∩
BV([0, T ]; L1(Ω)).

The proof is based on time-incremental minimization problems and used the
abstract methods developed in [MM05, DFT05, Mie05].

3. Complete damage

We eliminate the displacement u by minimization with respect to u. However,
this only works properly as long as we have some coercivity. We assume now
only the nonuniform coercivity (2) and assume further that W (·, z) is convex
on Ed = Rd×dsym and still satisfies the uniform stress control (3). We define the
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functionals Eδ(t, u, z) = E(t, u, z + δ) and Iδ(t, z) = minu∈F E(t, u, z + δ). Using
the strain space Lp(Ω,Ed) with Ed = Rd×dsym we define Hδ : Lp(Ω,Ed)×Z → R via

Hδ(ê, z) = Gδ(ê, z) +

∫

Ω

κ

r
|∇z|rdx with Gδ(ê, z) = min

u∈F

∫

Ω

W (ê+e(u), z+δ)dx.

Clearly, we have Iδ(t, z) = Hδ(eD
(t), z) and ∂tIδ(t, z) = 〈DeGδ(eD

(t), z), ė
D
(t)〉,

where e
D

= e(uDir). Note that σ = DeHδ(e, z) = DeGδ(e, z) ∈ Lp
′

(Ω;Ed) defines
an equilibrium stress.

The previous section allows us to construct solutions qδ associated with (Eδ,D).
The limit δ → 0 is obtained using the abstract Γ-convergence for rate-independent
processes developed in [MRS07]. Using the monotonicity in δ the Γ-limits

I(t, ·) = Γ-lim
δ→0

Iδ(t, ·), G(ê, ·) = Γ-lim
δ→0

Gδ(e, ·).

The following universal way of calculating the Γ-limit is very useful:

G(e, z) = lim
ǫց0

(
lim
δց0

Gδ(e, (z−ǫ)+)
)
.

As a consequence we find that G(·, z) : Lp(Ω;Ed) → [0,∞[ is convex and that
I(t, z) = G(e

D
(t), z) +

∫
Ω
κ
r |∇z|rdx. For quadratic W (·, z), i.e.

W (e, z) =
1

2
e:C(z):e,

it can then be shown that I(·, z) ∈ C1([0, T ]) and

zδ ⇀ z and Iδ(t, zδ) → I(t, z) =⇒ ∂tIδ(t, zδ) → ∂tI(t, z).

Thus, all the assumption of the abstract theory in [MRS07] are satisfied and the
following result is established.

Theorem 6 ([BMR07]). Under the above assumptions (including the restrictive
assumption that W is quadratic) the energetic limit problem associated with (I,D)
has for each stable initial condition a solutions.

Moreover, if zδ:[0,T ] → Z are energetic solutions associated with (Iδ,D) and
the initial data satisfy zδ(0) ⇀ z0 and Iδ(0, zδ(0)) → I(0, z0), then there exists a
subsequence (zδk

)k∈N and wt z : [0, T ] → Z such that wt z is an energetic solution
for (I,D) with wt z(0) = z0 and for all t ∈ [0, T ] we have

(1) zδk
(t) → wt z(t) in W1,r(Ω) (strong!),

(2) Iδ(t, zδk
(t)) → I(t,wt z(t)), DissD(zδk

, [0, t]) → DissD(wt z, [0, t]),

(3) σk(t) = DeGδk
(e

D
(t), zδk

(t)) ⇀ wtσ(t) = DeG(e
D
(t),wt z(t)) in L2(Ω;Ed),

(4) ∂tIδ(t, zδ) → ∂tI(t, z).

It remains open to generalize the above result to more general densities W
allowing for nonquadratic cases and to reducing the exponent r to 1 ≤ r ≤ d.



1620 Oberwolfach Report 28/2007

References
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Traffic jams, symmetry breaking and ordering far from thermal
equilibrium

David Mukamel

It is well known that phenomena like breaking of ergodicity, spontaneous symmetry
breaking and condensation do not take place in one dimensional systems in thermal
equilibrium. This is true provided the system is at finite temperature and the
interaction between particles is short range.

In the present talk we consider the steady state of driven systems. It is demon-
strated that these steady states can exhibit phase transitions, ergodicity breaking
and spontaneous symmetry breaking when the dynamics is local and noisy. This
is done by a detailed analysis of specific models of driven one dimensional systems.

A simple model of a driven system in one dimension, introduced some time
ago, is the ABC model [1, 2]. This is a lattice model where each lattice point
is occupied by one of three types of particles, A, B or C. The model evolves
under local dynamical rules, whereby a randomly chosen pair of nearest neighbor
particles are exchanges with some rates which do not obey detailed balance. The
dynamics is local and conserves the three densities. A simple argument suggesting
that the model should phase separate and break the translational symmetry is
given. It is also shown that for the special case where the three densities are equal
the steady state distribution is governed by an effective Hamiltonian with long
range interactions. This provides a simple mechanism for breaking of ergodicity
in one dimension. Here, although the dynamics is local, the resulting effective
Hamiltonian is long ranged which makes symmetry breaking possible.

Following this demonstration, a criterion for the existence of phase separation in
driven density conserving one dimensional systems is discussed [3]. It is suggested
that phase separation is related to the size dependence of the steady-state currents
of domains in the system. A quantitative criterion for the existence of phase
separation is conjectured using a correspondence made between driven diffusive
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models and zero-range processes. Several driven diffusive models are discussed in
light of the conjecture.

A class of models of driven diffusive systems which is shown to exhibit phase
separation in one dimension is introduced [4]. Unlike all previously studied models
exhibiting similar phenomena, here the phase separated state is fluctuating in
the bulk of the macroscopic domains. The nature of the phase transition from
the homogeneous to the phase separated state is discussed in view of a criterion
introduced above for phase separation in one-dimensional driven systems.

The question of existence of phase separation in one dimensional systems is
closely related that that of traffic jams. Thus the studies discussed above have
been used to consider the jamming phenomena. It is suggested that the ques-
tion of existence of a jamming phase transition in a broad class of single-lane
cellular-automaton traffic models may be studied using a correspondence to the
asymmetric chipping model [5]. In models where such correspondence is applica-
ble, jamming phase transition does not take place. Rather, the system exhibits
a smooth crossover between free-flow and jammed states, as the car density is
increased.
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Hydrodynamics of a disordered lattice gas with random reservoir.

Enza Orlandi

(joint work with Mustapha Mourragui)

We consider a lattice gas interacting by the exclusion rule in the presence of
a quenched random field given by i.i.d. bounded random variables in a bounded
domain in contact with random reservoirs. We show that the rescaled density field
almost sure, with respect to the random field, converges to the unique weak solu-
tion of a d- dimensional parabolic equation with boundary conditions. This type of
problem is motivated by the recent developments on the non-equilibrium processes
based on the analysis of stationary measures and large deviations properties.

In the last years there has been several papers devoted in understanding macro-
scopic properties of non equilibrium systems. Typical examples are systems in
contact with two thermostats at different temperature or with two reservoirs at
different densities, see [1] and references there in. In this paper we focus on the
first step, namely on the derivation of macroscopic limit (hydrodynamic limit) for
a particles system evolving according to local- conservative dynamics (Kawasaki)
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with hard core exclusion rule and with rates depending on a quenched random
field in a cylinder domain d ≥ 3 in which the basis, denoted Γ are kept at different
densities. The rates are chosen so that the system satisfies a detailed balance con-
dition with respect to a family of random Bernoulli measures (the random field
Ising model at infinite temperature). To model the presence of the reservoirs as in
previous papers one superimposes on the boundary to the local-conservative dy-
namics a jump dynamics (creation and destruction of particle). The rates which
we considered depend on the quenched random field as well and are chosen so that
the random Bernoulli measure with a suitable choice of the chemical potential is
reversible for the dynamics of birth and death process. This latter dynamic is of
course not conservative and keeps the fixed value of the density on Γ. There is a
flow of density through the full system and the full dynamic is not reversible. Such
systems have been used to model electron transport in doped crystals. In this case
the exclusion rule is given by the Pauli principle and the presence of impurities in
the crystals is the origin of the presence of quenched random field, see [5]. The
presence of the random field together with the exclusion rule makes the problem
high not trivial. The transport properties of such systems in the case of periodic
boundary condition on Γ has been studied by Faggionato and Martinelli [2]. They
derived in d ≥ 3, the hydrodynamic limit and a variational formula for the bulk
diffusion D(·), which is equivalent to the Green-Kubo formula. They proved that
the bulk diffusion depends on the statistical properties of the quenched random
field but not on the randomness itself. So far there are no results in such direction
for dimension d = 1 and d = 2. Dynamical large deviations for the same model
and always with periodic boundary conditions have been derived in [7] as special
case of a more general system discussed there. The bulk dynamics turns out to be
of the so-called nongradient type. Roughly speaking, the gradient condition says
that the microscopic current is already the gradient of a function of the density
field. Further it is not translation invariant, for a given disorder configuration.
To model the interaction with the reservoirs we superimpose at the boundary a
birth and death process in which the rates depend still by the quenched random
field. In order to prove the hydrodynamic behavior of the system, we follow the
entropy method introduced by Guo, Papanicolau and Varadhan [3]. It relies on
an estimate of the entropy of the states of process with respect to a reference
invariant state. The main problem is that in the model considered the reference
invariant state is not explicitly known. To overcome this difficulty we compute the
entropy of the state of the process with respect to a product measure with slowly
varying profile. Obviously, since this measure is not invariant, the entropy does
not need to decrease and then we need to estimate the rate at which it increases.
This type of strategy has been used in previous papers dealing with the same type
of problems, see [4] and [6], which considered generalized exclusion process of non
gradient type. The main difference with the mentioned papers is the presence of
the randomness in the model we are considering. This forces to take random birth
and death rates. Then, we need to apply an ergodic theorem to obtain the final
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result. The equation we obtain for the local particles density is the following:

∂tρ = ∇ ·
(
D(ρ)∇ρ

)
,

ρ(0, ·) = ρ0 ,

ρ(t, ·)
∣∣
Γ

= b(·) for t > 0 ,

(1)

where b(·) ∈ (0, 1) is a smooth function and ρ0 ∈ L∞[Λ; (0, 1)] is the initial profile.
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Avalanches in first-order phase transitions

Antoni Planes

(joint work with Erell Bonnot, Eduard Vives, and Llúıs Mañosa)

Many different materials undergoing a first-order phase transition need to be driven
by an external field (intensive parameter) for the transition to occur. Thus, the
transition extends over a certain range of the driving field and usually takes place
through a sequence of discontinuous steps or avalanches of the order parameter.
These avalanches reflect the fact that the system relaxes from a (marginally stable)
metastable state towards another metastable state with an associated energy dissi-
pation (responsible for the hysteresis observed in these transitions). Typically, the
metastable minima are separated by very high energy barriers and, therefore, the
transition kinetics is not dominated by thermal fluctuations (athermal behaviour).
The configuration of metastable minima determines a complex free-energy land-
scape which is at the origin of the properties of these systems: the noisy nature of
response to the driving field and mesoscale phase separation reflected in a poly-
variant structure [1]. Martensitic materials are typical examples of this class of
systems. In these materials avalanches are related to sudden changes in the local
strain field. These changes give rise to acoustic emission (AE) waves in the range
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from kHz to MHz which can be detected by means of adequate transducers [2].
The study of these transient acoustic waves is of great interest since they provide
relevant information related to the relaxation kinetics from one metastable state
to another. It is worth noting that the AE in martensitic (elastic) systems is the
analog of Barkhausen noise in magnetic materials, which is associated with sudden
changes of the local magnetization. Furthermore, the phenomenology is typical of
a broad class of systems characterized by a complex free-energy landscape with
many metastable local minima, a consequence of the existence of disorder and
also of long-range (anisotropic) interactions which are operative during the tran-
sition. In addition to magnetic and elastic systems, other examples where similar
phenomenology has been reported include ferroelectric [3] and superconductor [4]
systems. The existence of long-range interactions is the essential ingredient to un-
derstand the formation of the polyvariant structures observed in these materials.
In elastic systems, the physical cause of these interactions is the coherency strain
between the parent and martensitic phases, which can be conveniently expressed
by taking into account the long range coupling between the strain tensor compo-
nents resulting from elastic compatibility constraints [5]. Disorder is important
for the nucleation of the product phase and thus in determining the specific path
followed by the system at the transformation.

An interesting feature regarding AE is the power-law behaviour of the distri-
bution of amplitudes and duration of the emitted acoustic signals. This reveals
a lack of characteristic scales related to size and duration of the avalanches and
therefore to some kind of criticality. This criticality can be understood within the
framework of lattice models with (different kinds of) quenched disorder following
athermal (T = 0 K) dynamics corresponding to local energy relaxation [6]. Due
to this local character, the evolution of the system when driven by an external
field will not, in general, follow an equilibrium path, but rather evolve through
metastable states. By numerical simulations one obtains hysteresis loops consist-
ing of a sequence of avalanches. The corresponding avalanche size (and duration)
distribution changes from supercritical to subcritical by increasing the amount of
disorder. Interestingly, criticality is found for a given amount of disorder which
suggests the existence of disorder induced criticality. In magnetic systems this has
been confirmed from scaling analysis of hysteresis loops in systems with controlled
amounts of disorder [7]. In martensitic transitions this has been checked by taking
advantage of the fact that dislocations are formed during the transformation pro-
cess. Therefore, the amount of disorder can be modified by cycling through the
transition. Thus, starting with a virgin sample (suitably heat treated), it has been
shown that the distribution of the amplitudes of the acoustic signals (avalanches)
evolves from supercritical to critical with the number of cycles [8]. This feature
is expected to be a consequence of a combined effect of the amount and distri-
bution of disorder and of the long-range interactions that determine the suitable
free-energy landscape to enable criticality.
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Translation invariance of Gibbsian point processes in two dimensions

Thomas Richthammer

Gibbs measures or Gibbsian point processes serve as a model for equilibrium states
of interacting particle systems in statistical physics. (For an introduction to the
lattice version of this model we refer to the book of H.-O. Georgii [3].) Here a
particle is described by a point in Rd×S, where d is the number of spatial dimen-
sions and S is a set describing internal properties of the particle. The interaction
is given in terms of a two-body potential U and a chemical potential − log z, where
the so called activity parameter z > 0 can be thought of regulating the particle
density. In general it is a difficult problem to find all equilibrium states for a
particle system with given interaction U and activity z, and often one has to be
satisfied with finding out interesting properties of the set of all equilibrium states.
An important example for such a property is the conservation of a symmetry: A
symmetry g is defined to be a transformation on the particle space such that U
is g-invariant. The symmetry is said to be conserved if all equilibrium states are
g-invariant, otherwise it is said to be broken. As the breaking of a symmetry
forces the system to exhibit a phase transition, there is a strong motivation to
investigate these properties. Our aim is to find conditions on U and z which imply
the conservation of a given symmetry g of U . We will restrict ourselves to the
case of the symmetry of spatial translations. Here the most interesting case is the
one of d = 2 spatial dimensions. The first results in this case were obtained by
J. Fröhlich and C.-E. Pfister ([1],[2]), their arguments relying on the smoothness
of the potential U . In [5] and [6] we showed how the conservation of translational
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symmetry can also be shown for discontinuous and hard core potentials. In this
extended abstract we will focus on describing how to deal with hard cores and
for clarity we will restrict ourselves to the simplest interaction with a hard core,
namely pure hard core repulsion or the hard sphere model.

In the hard sphere model the interaction takes the simple form

Uhc(x1, x2) :=

{
∞ for |x1 − x2| ≤ r
0 for |x1 − x2| > r,

where x1, x2 ∈ R2, |.| is a norm on R2 and r > 0. Having a Boltzmann factor in
mind, the form of U implies that any two particles are forced to keep a distance > r
from one another (hard core condition). Thus here a particle can be considered
to be a sphere of radius r/2 such that any two of these spheres are forbidden to
overlap. We note that Uhc is translation invariant. In spite of the simple form
of Uhc not much is known about this model, see the article of H. Löwen [4]. Our
result is the following:

Theorem 7. For any activity z > 0 all equilibrium states corresponding to Uhc
and z are translation invariant, i.e. in the two-dimensional hard sphere model the
translational symmetry is conserved.

In the following we consider a translation in a fixed direction ~e ∈ R2 by a
fixed translation distance τ ∈ R. The main idea of the the proof in the smooth
case is to replace this constant translation by a position dependent translation
transformation x 7→ x+τn(x)~e, where τn = τ in some neighbourhood of the origin,
τn = 0 far away (at distance n) from the origin and such that τn is a suitably chosen
interpolation for positions in between. In the hard core case however, this kind of
independent transformation does not work, because here the transformation has to
respect the hard core property: Every configuration of particles satisfying the hard
core condition has to be transformed in such a way that after the transformation
the condition still holds. Thus the transformation of a certain particle affects the
transformation of all particles in its neighbourhood. The most important tool
in the proof of Theorem 1 is thus a transformation Tn on the set of all particle
configurations such that in the construction of Tn(X) for a configuration X every
particle x ∈ X is translated a certain distance tn,X(x) in direction ~e and we have
the following properties:

(1) Every particle x near the origin is translated the distance τ .
(2) Every particle x far from the origin (at distance n) is translated by 0.
(3) Tn respects the hard core.
(4) Tn is bijective and the transformation of the Poisson point process by Tn

admits a density ϕn.
(5) We have a suitable estimate on this density.

However, it turns out that these properties are conflicting: E.g. properties (1),(2)
and (3) cannot all be satisfied if X is a configuration of densely packed hard-sphere
particles. Hence the idea is to construct a transformation Tn with some of these
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properties, namely (2),(3) and (4) and then to show that Tn also has the other
properties for all X from a set of good configurations Gn of probability close to 1.
The construction of Tn can be given in a natural way by a recursive modification of
the independent transformation mentioned above, where the hard core condition
is implemented by local distortions around particles already considered. The set
Gn can be described in terms of geometric properties of the configurations. For
example, condition (1) can be seen to be equivalent with the statement that a
certain percolation cluster starting from a neighbourhood of the origin is bounded,
which can be shown to have probability close to 1 if n is chosen big enough. Similar
arguments can be applied to other properties required of good configurations.
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The Allen-Cahn Action functional in higher dimensions

Matthias Röger

(joint work with Luca Mugnai)

The (renormalized) Allen–Cahn action functional is given by

Sε(u) :=

∫ T

0

∫

Ω

(√
ε∂tu+

1√
ε

(
− ε∆u+

1

ε
W ′(u)

))2

dx dt.

This functional arises in the analysis of the stochastically perturbed Allen–Cahn
equation and is, by large deviation theory, related to the probability of rare events.
Kohn, Reznikoff, and Tonegawa [3] and Kohn, Otto, Reznikoff, and Vanden–
Eijnden [2] suggested a reduced action functional in the sharp interface limit ε→ 0.
For phase indicator functions u : (0, T ) × Ω → {−1, 1} such that ∂{u = 1} ∩ Ω is
apart from a countable set of singular times given as smooth evolution of smooth
hypersurfaces Σ := ∪t∈(0,T ){t} × Σt the reduced action is defined by

S0(u) := c0

∫ T

0

∫

Σt

∣∣v(t, ·) −H(t, ·)
∣∣2 dHn−1dt + 8c0

∑

i

Hn−1(Σi).

Here Σi denotes the ith component of Σ at the time of creation, v denotes the
normal velocity of the evolution (Σt)t∈(0,T ), H(t, ·) denotes the mean curvature
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vector of Σt, and c0 :=
∫ 1

−1

√
2W . In [2] lower and upper bounds that match in

terms of scaling were constructed and the lower estimate was shown for sequences
(uε)ε>0 such that the associated ‘energy-measures’ have equipartitioned energy and
single multiplicity as ε→ 0.

Our goal is a compactness result for sequences with uniformly bounded action
and a sharp lower-bound of the functional Sε in space dimensions n = 2, 3 without
any additional restrictions on the approximate sequences. To circumvent problems
with cancellations of interfaces we analyze the limit of the diffuse energy measures
and generalize the reduced action functional S0 to a suitable class of evolving
measures. In particular we introduce a generalized formulation of velocity.

Definition 1. Let Ω be an open bounded subset of Rn, T > 0 and ΩT := (0, T )×Ω.
Choose W to be the quartic double-well potential W (r) = 1

4 (1 − r2)2. We define
for ε > 0, t ∈ (0, T ), the energy measures

µtε :=
(ε

2
|∇uε|2(t, ·) +

1

ε
W (uε(t, ·))

)
Ln.

Assumption 1. Let n = 2, 3 and let a sequence (uε)ε>0 of smooth functions be
given that satisfies for all ε > 0

Sε(uε) ≤ Λ,(1)

uε(0, ·) = −1, uε(T, ·) = 1,(2)

∇uε · νΩ = 0 on [0, T ]× ∂Ω.(3)

The restriction to the ‘switching scenario’ (2) is for simplicity and not essential
for our analysis. The uniform bound on the action and (2), (3) imply that

∫

ΩT

(
ε(∂tuε)

2 +
1

ε

(
− ε∆uε +

1

ε
W ′(uε)

)2
)
dLn+1 + 2 max

0≤t≤T
µtε(Ω) ≤ Λ.

The first Proposition is an application of [4].

Proposition 8. There exists u ∈ BV (ΩT , {−1, 1}) ∩ L∞(0, T ;BV (Ω)) such that
for a subsequence ε→ 0

uε → u in L1(ΩT ),

uε(t, ·) → u(t, ·) in L1(Ω) for almost all t ∈ (0, T ).

Next we basically repeat [3, Theorem 1.1].

Proposition 9. There exists a countable set S ⊂ (0, T ), a subsequence ε → 0,
and Radon measures µt, t ∈ [0, T ] \ S, such that for all t ∈ [0, T ] \ S

µtε → µt as Radon measures on Ω,

such that µtε dt → µt dt, and such that for all ψ ∈ C1(Ω) the map t 7→ µt(ψ) is of
bounded variation in (0, T ) and has no jumps in (0, T ) \ S.

We use the lower bound [5] to prove that the measures µt are up to a constant
integer-rectifiable with a weak mean curvature satisfying an appropriate lower
estimate.
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Theorem 10. For almost all t ∈ (0, T ) we obtain that c−1
0 µt is an integral (n−1)-

varifold, that µt has weak mean curvature H(t, ·) ∈ L2(µt), and that
∫ T

0

∫

Ω

|H(t, ·)|2 dµt dt ≤ lim inf
ε→0

∫

ΩT

1

ε

(
− ε∆uε +

1

ε
W ′(uε)

)2

dLn+1.

We next obtain the existence of a generalized velocity of (µt)t∈(0,T ).

Theorem 11. Let (µt)t∈(0,T ) be the limit measures obtained in Proposition 9.

Then there exists a vector field v ∈ L2(µ,Rn) that satisfies

sup
η

{∣∣∣
∫ T

0

∫

Ω

(
∂tη + ∇η⊥ · v

)
dµtdt

∣∣∣ : η ∈ C1
c ((0, T ) × Ω), |η| ≤ 1

}
< ∞.(4)

Moreover we have the lower bound∫

ΩT

|v|2 dµ ≤ lim inf
ε→0

∫

ΩT

ε(∂tuε)
2 dLn+1.

We also prove that (4) determines uniquely the normal component of v in almost
all points where µ is rectifiable and that v gives the distributional derivative of
the phases in the sense that for all η ∈ C1

c (ΩT )
∫ T

0

∫

Ω

v(t, x) · ∇u
|∇u|(t, x)η(t, x) d|∇u(t, ·)|(x)dt = −

∫

ΩT

u∂tη dLn+1.

As our main result we obtain the lower estimate for Sε.
Theorem 12. Let Assumption 1 hold, and let (µt)t∈[0,T ] and S be as in Proposi-
tion 9. Define the nucleation cost Snuc(µ) by

Snuc(µ) :=
∑

t0∈S
sup
ψ

(
lim
t↓t0

µt(ψ) − lim
t↑t0

µt(ψ)
)

+ sup
ψ

lim
t↓0

µt(ψ),

where the sup is taken over all ψ ∈ C1(Ω) with 0 ≤ ψ ≤ 1. Then

lim inf
ε→0

Sε(uε) ≥
∫

ΩT

|v −H |2 dµ+ 4Snuc(µ).

For the proof of our results we use tools from Geometric Measure Theory,
in particular varifold theory, arguments from [5], and the measure–function pair
convergence introduced by Hutchinson [1]. As in [5] the equipartitioning of energy
in the limit ε → 0 is one important property that has to be proved. We consider
the diffuse velocity vectors vε and diffuse mean curvatures Hε defined by

vε := − ∂tuε
|∇uε|

∇uε
|∇uε|

, Hε :=
1

ε
wε

∇uε
|∇uε|2

.

We then show that

(ε|∇uε|2dLn+1, Hε) → (µtdt,H),

(ε|∇uε|2dLn+1, vε) → (µtdt, v)

in the sense of measure-function-pair convergence. From this result we deduce
the lower estimates of the mean curvature and generalized velocity, and derive
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the equation (4) that identifies v as a velocity in a generalized sense. Our results
allow us to conclude the Gamma convergence of Sε to a relaxed version of S0 in a
restricted class of ‘nice’ indicator functions. To achieve a full Gamma-convergence
result one has in particular to analyze the class of function for which the limsup-
estimate can be derived. For a precise statement of our results and details of the
proofs we refer to [6].
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Elastic-ideally plastic beams and 1D Prandtl–Ishlinskii hysteresis
operators

Jürgen Sprekels

(joint work with Pavel Krejč́ı)

This note is concerned with modeling small strain transversal oscillations of lower-
dimensional mechanical structures. Here, we confine ourselves to one-dimensional
beams that have been studied in [6], [7]; corresponding results for elastoplastic
Kirchhoff plates have recently been established in [3]. The aim of this study is to
demonstrate that there are close connections between two seemingly quite different
models for elastoplasticity: the von Mises plasticity criterion, which is frequently
used by engineers, and the hysteresis model that was introduced in [8], [4], and is
known as the Prandtl–Ishlinskii hysteresis operator.

The surprising result of the analysis is that, using the classical scaling hypotheses
that can be found in [2], the three-dimensional single-yield von Mises approach
leads after the dimensional reduction to a one-dimensional multi-yield Prandtl–
Ishlinskii hysteresis operator. This can be explained by the fact that in the 1D
model only deformations of longitudinal fibers parametrized by the transversal
coordinate are taken into account, and the individual fibers do not switch from
the elastic to the plastic regime simultaneously; more precisely, the eccentric fibers
look alike as if they had a higher modulus of elasticity and lower yield points than
the central ones. Another surprise is that the weight function of the Prandtl–
Ishlinskii operator can be explicitly determined; this fact is particularly relevant
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from the viewpoint of applications, since previously the practical use of Prandtl–
Ishlinskii operators in elastoplasticity was hampered by the fact that their weight
functions had to be identified from measurements.

More specifically, it turns out from the analysis that the small strain transversal
oscillations of a one-dimensional beam of length L > 0 can be described as a
partial differential equation of the form

(1) ρwtt −
ρ h2

3
wxxtt + P [wxx]xx = g in (0, L) × (0, T ) .

Here, ρ > 0 is the mass density, 2h > 0 the thickness of the beam, g the distributed
load, and P a Prandtl–Ishlinskii operator of the form

(2) P [v](t) =

∞∫

R3

E2 h

q−4 Sq[v](t) dq .

In this formula,R > 0 stands for the yield limit of the von Mises plasticity criterion,
E is Young’s modulus, and Sq is the stop operator with thresholds ±q, which is
defined as follows: it is well known (see [5]) that for every input function v ∈
W 1,1(0, T ) and every initial value χ0 ∈ [−q,+q] there is a unique solution χ ∈
W 1,1(0, T ) to the variational inequality

χ(t) ∈ [−q,+q] ∀ t ∈ [0, T ] , χ(0) = χ0 ,

(χ̇(t) − v̇(t), χ(t) − w) ≤ 0 a.e. in (0, T ) , ∀w ∈ [−q,+q] .(3)

The solution operator

Sq : [−q,+q] ×W 1,1(0, T ) →W 1,1(0, T ); (χ0, v) 7→ χ ,

is just the stop operator with thresholds ±q. In the terminology of elastoplasticity,
it is also called Prandtl’s elastic-ideally plastic element. It is well known (see
[1], [5]) that Sq can be extended by a density argument for fixed initial datum
χ0 ∈ [−q,+q] to a globally Lipschitz continuous mapping from C[0, T ] into itself.
Moreover, the operator Sq enjoys the dissipation property (see [1], [5]):

(4)
1

2

d

dt

(
Sq[v](t)

)2 ≤ Sq[v](t) v̇(t) a.e. in (0, T ) , ∀ v ∈ W 1,1(0, T ) .

In addition to that, it holds the second-order energy estimate (which follows from
the fact that the hysteresis loops generated by the stop operator are convex), cf.
[1], [5]):

(5)
d

dt
Sq[v](t) v̈(t) ≤

d

dt

(
1

2

d

dt
Sq[v](t) v̇(t)

)
a.e. in (0, T ) , ∀ v ∈W 2,1(0, T ) ,

in the sense of distributions. The above inequalities are of fundamental importance
to show that certain initial-boundary value problems associated with the above
partial differential equation admit a unique solution. For a detailed statement and
proof of these results, we refer to the papers [6], [7], [3]. In these papers, also a
complete account of the corresponding modeling issues is given.
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[5] P. Krejč́ı, Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Gakuto Int. Series
Math. Sci. & Appl., Vol. 8, Gakkōtosho, Tokyo, 1996.
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Elastic biomembranes with lateral phase separation

Björn Stinner

(joint work with Charles M. Elliott)

Subject of our research are bi-layer lipid membranes with coexisting intermem-
brane domains. The energy of such membranes involves an elastic bending part
and a line part arising from the boundaries of the different fluid domains. Current
approaches go back to works of Canham, Evans, and Helfrich (see for example [2])
and model the membrane as a smooth hypersurface Γ ⊂ R3. To leading order an
elastic energy is of the form

Fbending =

∫

Γ

k

2
(κ− κ̄)2.

Here, k is the bending rigidity, κ the curvature, and κ̄ a given spontaneous cur-
vature. Intermembrane domains separating two phases with different lipid com-
position have been considered by Jülicher and Lipowsky [4]. In their model the
domains are separated by smooth curves γ on the membrane, and the line energy
is given by Fline =

∫
γ σ with a line energy density coefficient σ.

In biophysics, equilibrium shapes of membranes with sphere-like topology are of
interest in dependence of the total membrane area |Γ|, the volume of the enclosed
domain, the surface area ratio of the two phases, and the coefficients k, κ̄, and σ.
So far existing analytical studies [4, 3] are restricted to (more or less) symmetric
cases. Numerical studies are restricted to membranes close to a sphere [5] or are
based on diffuse interface models for the membrane [1]. Our goal has therefore
been to provide a numerical tool based on a finite element discretization of the
membrane in order to study (local) minima or, respectively, the gradient flow
dynamics of the membrane energy.
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For the phase separation a diffuse interface approach has been applied. An
order parameter c : Γ → [0, 1] ⊂ R represents one of the phases. The line energy
is replaced by a Ginzburg- Landau functional

FGL =

∫

Γ

f, f =
σε

2
|∇Γc|2 +

σ

ε
ψ(c)

where ∇Γ stands for the surface gradient and ψ(c) is a double-well potential with
minima in 0 and 1 corresponding to the two phases. The constraint on the surface
area ratio of the two phases becomes a constraint of the form

∫
Γ h(c) with a

monotone function h satisfying h(0) = 0, h(1) = 1, and h′(0) = h′(1) = 0.
In order to set up the gradient flow dynamics we need a variation of the energy

with respect to Γ which is based on a deformation of the domain with a vector
field w. Setting y = (κ − κ̄)ν with the unit normal ν on Γ the variation of the
bending part of the energy is 〈δΓFbending,w〉 =

∫
Γ
(k2 |y|2∇Γ · w + ∂•τy · y) where

∂•τ can be seen as material derivative when interpreting w as velocity field and the
deformation parameter τ as time. To compute the last term an idea of Dziuk has
been used. Denoting by x : Γ → Γ the identity and by ∆Γ the surface Laplacian
the curvature vector fulfills the identity κν = ∆Γx. Hence for test functions b

0 =

∫

Γ

y · b + ∇Γx : ∇Γb + κ̄ν · b,

which also holds on the deformed membranes. Differentiating this identity with
respect to the deformation parameter τ and, after, replacing b by y yields an
identity for the term

∫
Γ ∂

•
τy · y.

To compute the variation of the Ginzburg-Landau energy with respect to Γ
it turns out to be necessary to state a law for ∂•τ c. The simplest case would be
to demand no changes to c when deforming Γ, but the value

∫
Γ h(c) needs to

be kept constant. This is taken into account with a Lagrange multiplier, hence
∂•τ c := −λch′(c) with λc =

∫
Γ
h(c)∇Γ · w/

∫
Γ
(h′(c))2.

The evolution of the surface is defined by the L2 gradient flow, taking the con-
straints CA on surface area and CV on enclosed volume with Lagrange multipliers
into account. This results in

∫

Γ

∂tx · w = − k

∫

Γ

−1

2
|y|2∇Γ · w −∇Γ · y∇Γ · w −∇Γy : ∇Γw

− k

∫

Γ

(∇Γy)⊥ : ∇Γw + P∇Γy : ∇Γw

− k

∫

Γ

−κ̄
(
∇Γ · y n · w −∇Γy : n ⊗ w

)

−
∫

Γ

(−
∫
µh′(c)∫

(h′(c))2
h(c) + f

)
∇Γ · w − σε∇Γc⊗∇Γc : ∇Γw

− λV

∫

Γ

n · w − λA

∫

Γ

κ · w.
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Here, the potential

µ = δcFGL = −σε∆Γc+
σ

ε
ψ′(c)

appears. It is also used to define the evolution of the order parameter c:

∂•t c := −Kµ− λch
′(c)

where again a Lagrange multiplier appears subject to keeping
∫
Γ h(c) constant.

The above equations is of Allen-Cahn type with an additional forcing term due to
the constraint.

It can be shown that the membrane energy indeed decreases. It holds that

0 =

∫

Γ

|∂tx|2 +
d

dt

(
Fbending + FGL

)
+

∫

Γ

K

2

(
µ− λµh

′(c)
)2

+
σ

2K

(
∂•t c− λvh

′(c)
)2

where λµ =
∫
(µh′(c))/

∫
(h′(c))2 and λv =

∫
(∂•t c h

′(c))/
∫

(h′(c))2.
There are certainly other possibilities to define the evolution of the order param-

eter such that the energy decreases and the ratio of the phase areas is maintained,
e.g., an evolution according to a Cahn-Hilliard type equation, c being a conserved
quantity. Since we only have a restriction to the total surface area of the mem-
brane the surface can locally stretch or compress. In a pure phase, i.e., c constant
close to 0 or 1, a conserved order parameter would develop gradients, whence also
line energy contributions appear in the pure phases. This has a re-impact on the
evolution of the surface, and in numerical simulation we observed that the mesh
properties became very worse necessitating a rearrangement of the grid points.
Such effects can be avoided by trying to maintain the value of c in the pure phases
which motivates the above setup. In particular, the choice of h with the properties
h′(0) = h′(1) = 0 ensures that an adaption of c to keep

∫
Γ h(c) constant only takes

place in the interfacial regions.
The presented approach is easily accessible to a discretization with linear finite

elements since only first order derivatives appear in the governing equations. The
new approach for the bending energy based on Dziuk’s idea leads to an astonishing
good mesh behavior. In the example in Fig. 1 the membrane suffers a drastic
deformation without requiring any re-meshing.
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Figure 1. Evolution of a prolate membrane with random initial
field c. The deformation is drastic but a rearrangement of the
vertexes was not necessary. The lower figures show the mesh at
the final time revealing some very elongated triangles in the neck
region. In the pure phase the triangles should be refined.

Long-time validity of the gainless homogeneous Boltzmann equation

Florian Theil

(joint work with Karsten Matthies)

This paper introduces new results which establish the validity of a continuum
description for the deterministic dynamics of many interacting particles. Here the
many particle evolution is analyzed for a hard sphere flow with the addition that
after a collision the collided particles are removed from the system (ballistic anni-
hilation). The initial conditions are assumed to be iid random variables whose law
is a spatially homogeneous velocity density f0(v) that has finite mass and variance
(kinetic energy) and does not concentrate mass on lines. Under these assumptions
it is proven rigorously in that in the Boltzmann-Grad limit the evolution of the
particle density is described by the homogenous Boltzmann equation without gain
term for arbitrary long times.

We consider a simplified version of hard-ball dynamics where n balls with di-
ameter a > 0 move along straight lines until they collide and are removed after
the collision. This case is usually referred to as ballistic annihilation. The initial
positions of the centers of the balls (u0(i), v0(i)) ∈ Td × Rd, i = 1 . . . n are iid
random variables with law 1Td ⊗ f0 ∈ PM(Td × Rd). We send n to infinity and
prove rigorously that the weak-* limit of the empirical densities satisfies a simple
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mean-field theory, provided that f0 ∈ M+(Rd) has finite total mass and kinetic
energy

(1)

∫

Rd

(1 + |v|)2 df0(v) = K <∞

and does not concentrate mass on single velocity directions, i.e.

(2)

∫

ρ(v,ν)

df0(v
′) = 0 for all v ∈ Rd, ν ∈ Sd−1,

where ρ(v, ν) = v + R ν. Assumption (2) seems to be new. If the initial distri-
bution f0 satisfies assumptions (1) and (2), then as the particle number n tends
to infinity, the particle density converges to a solution of the Boltzmann equation
(Theorem 13). On the other hand, if assumption (2) is not satisfied, then it can-
not be expected that the particle density converges to a solution of the Boltzmann
equation, cf Theorem 14.

The kinetic annihilation dynamics has attracted considerable attention for two
reasons. It models some growth and coarsening processes [KS88] and in some cases
can be can be solved exactly. The questions we are asking have been addressed
before, mainly in the physics-literature. It is well-known that if d = 1 the kinetic
annihilation dynamics cannot be described by a simple Boltzmann-type mean-
field theory, cf [EF85]. A derivation (based on the BBGKY-hierarchy) of the
gainless Boltzmann equation as a scaling limit of the annihilation dynamics can
be found in [PTD02], however no explicit assumption concerning the regularity
of the initial distribution f0 is made. Hence, our Theorem 14 would constitute a
counterexample.

Theorem 13. (Justification of the gainless Boltzmann equation)
Let f0 ∈ PM+(Rd), d ≥ 2 be a momentum density that satisfies (1, 2) and let
for each N ∈ N the initial values (u0(i), v0(i)), i = 1 . . . n be such that ω =
{(u0(i), v0(i)) | i = 1 . . . n} ⊂ Td × Rd is a Poisson point process with intensity
N(1Td ⊗ f0). Let ut(i) = u0(i) + tv0(i), vt(i) = v0(i) and βt(i) ∈ {0, 1} be the
indicator function of particles that haven’t collided yet. If the diameter of the
particles a depends on N such that

Nad−1 = 1,

then for each t ∈ [0,∞), ε > 0, measurable Ω ⊂ Td × Rd

lim
N→∞

Prob

(∣∣∣∣
1

N
#

{
i ∈ {1 . . . n} | (u

(N)
t (i), v

(N)
t (i)) ∈ Ω and β

(N)
t (i) = 1

}

−
∫

Ω

du dft(v)

∣∣∣∣ > ε

)
= 0,

where f : [0,∞) → M+(Rd) is the unique solution of the gainless, homogeneous
Boltzmann equation

(3) ḟ = Q−[f, f ], ft=0 = f0,
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Figure 1. Comparison between the empirical probability of
colliding and the mean-field prediction. The dashed line is the
cubic parabola t 7→ 1

9 t
3, the signs ’+’ mark the difference between

the number of non-collided particles at time t divided by N and
the mean-field prediction 1

1+t .

and Q−[f, f ](v) = −
∫

Rd df(v′)κd|v − v′| f(v) is the loss term. The number κd is
the volume of d− 1 dimensional unit-ball, in particular κ2 = 2, κ3 = π.

We illustrate that the mean field theory does not capture the many-particle
dynamics if the initial distribution f0 exhibits strong concentrations and violates
(2). Explicit results can be obtained for d = 2, but a similar phenomena are
expected to hold in the case d = 3.

Theorem 14. Let v ∈ R2 be nonresonant (α · v 6∈ Z for all α ∈ Zd) such that

|v| = 1
4 and set f0 = 1

2 (δ(· − v) + δ(· + v)). If Q̂(t) = limk,N→∞ Prob(βt(1) = 1)
denotes the empirical probability that a tagged particle does not collide, then

(4) lim
t→0

1

t3

∣∣∣∣
∫

R2

dft(v) − Q̂(t)

∣∣∣∣ =
1

9
,

where ft = 1
1+tf0 is the unique solution of the Boltzmann equation (3) which

satisfies the initial condition ft=0 = f0.

A numerical simulation (fig. 1) confirms the prediction (4).
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Rate independent plasticity and criticality

Lev Truskinovsky

Singular dissipative potential of the phenomenological rate independent plas-
ticity is obtained by homogenization of a micro-model with quadratic dissipation.
The essential ingredient making this reduction possible is a rugged energy land-
scape at the micro-scale, generating under external loading a regular cascade of
subcritical bifurcations. Such landscape appear as a result of a sufficiently strong
pinning or jamming of defects. The criticality of the resulting process is revealed
by the power law acoustic emission.

The main objective of this resume, summarizing some recent results obtained in
collaboration with A. Vainchtein, G. Puglisi, F. J, Pérez-Reche and. G. Zanzotto,
is to demonstrate that classical plasticity can be derived from a model with viscous
dissipation as a result of a judicial elimination of small spatial scales and fast times.
The singular dissipative structure emerges in this approach as a consequence of
time averaging and spatial homogenization in a system with regular dissipative
behavior. The main idea, which dates back to L. Prandtl, is to consider rate
independence as a limit of rate dependence with zero and unbounded strain rates
finely mixed.

Experimentalists know that during quasi-static plastic deformation of metals
the dislocation dynamics is not continuous but intermittent in space and time
with rest periods interrupted by brief moments of energetic activity. During these
isolated bursts, associated with depinning or nucleation of defect micro-structures,
the instantaneous strain rate may exceed the imposed strain rate by several orders
of magnitude. Since practically all conversion of mechanical energy into heat
takes place during these fast events, the overall dissipation depends only on the
number of unstable episodes which is invariant under time re- parametrization.
The physical picture behind the quasi-static behavior of shape memory alloys is
similar with a replacement of a dislocation by a phase or domain boundary as a
carrier of an inelastic deformation.

To illustrate the general idea we analyze in some detail a simple mechanical sys-
tem whose microscopic dynamics is of a gradient flow type and whose homogenized
macroscopic behavior is rate independent plastic. The basis of the model is a one
dimensional lattice of interacting elastic elements with non-convex energies; the
analytic transparency is due to the (mean field type) assumption that the elements
interact exclusively through the average strain. The elemental bi-stability reflects
the presence of two states – jammed and released; an additional assumption of
piece-wise linearity allows for an explicit separation of the motion into adiabatic
and jump parts. The main conceptual limitation of this preliminary model is its
low-dimensionality and the neglect of disorder.

We then show that the uneven distribution of the elemental metastability
thresholds produces hardening and replaces already in 2D a regular stick slip mo-
tion with a random distribution of avalanches revealed by power-law- distributed
acoustic signals. We illustrate those effect with an example of a rate indepen-
dent hysteresis associated with transformational plasticity in martensites. During
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martensitic phase transformations the macroscopic discontinuity of the order pa-
rameter typically splits into a set of bursts indicating transitions between neigh-
boring metastable states. The individual avalanches can be detected through the
measurement of the intermittent acoustic and calorimetric signals. For instance,
experiments in Cu-based memory alloys (CuAlNi, CuZnAl, CuAlMn) show that
the amplitudes of these avalanches exhibit a power-law distribution. The steady
state hysteresis profile with critical properties emerges in these systems only after
multiple thermal cycling through the transition.

In spite of the substantial theoretical effort, the process of self- organization to-
wards a scale-free behavior in martensites, emphasized by the necessity of ’training’
for these materials, has never been fully understood. By applying our model we
were able to show that the dislocation activity is a crucial factor of this self organi-
zation. We developed a 2D extension of the model which incorporates the intrinsic
periodicity of the energy landscape and allows one to deal simultaneously with
phase boundaries and dislocations. From this basis we derived a self-organizing
discrete model with threshold dynamics, equivalent to a sandpile automaton. De-
spite its ultimate simplicity, the model reproduces all principal observations in
thermally and mechanically cycled martensites including training induced power-
law behavior, plastic shakedown, characteristic asymmetry of the acoustic signals
and the absence of the scaling collapse. The model predicts self organized de-
velopment of the highly correlated disorder which the system retains after full
unloading.
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Rigid interfaces via Reflection Positivity

Yvon Vignaud

(joint work with Senya Shlosman)

Since the seminal work of Dobrushin [2] on the interface of 3D Ising model at
low temperature in 1972, several results on rigid interfaces have been rigorously
obtained for various models. In a joint work with Senya Shlosman we used the
method of Reflection Positivity to derive such results for a model with infinitely
many ground states.

I will start by giving the motivations which led us to study such a model and
briefly recall the state of the art as regards rigid interfaces and Dobrushin states.
Then I will state our result and explain the main line of the proof. It is remarkable
that our method actually applies to Ising and Potts models, leading to drastic
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simplifications in the proofs which used cluster expansions techniques. All models
below are considered on the lattice Zd whose edges are denoted 〈i, j〉.

1. Motivations and known results

The main result of Dobrushin’s paper [2] is the construction of a Gibbs state
which describes the coexistence of phases in 3D Ising model at low temperatures.
In such a state, the configurations exhibit a rigid interface separating the plus
phase from the minus phase; this interface is a deterministic horizontal plane with
small random perturbations.

Such states have been constructed for other models. Namely,

• critical Potts model for high q (Messager et al., 1991) [6]
• supercritical bond percolation (Gielis–Grimmett, 2002) [5]
• critical random-cluster model (Černý–Kotecký, 2003) [1]

These models have in common that their symmetry group is discrete. Since
some models with continuous symmetry exhibit phase transition as well [4], it
is relevant to ask the following question: is it possible to construct Dobrushin
states for a 3D model with continuous symmetry? We conjecture that it is indeed
possible, and suggest the following Hamiltonian as a plausible candidate:

(1) H(σ) =
∑

〈i,j〉
U(|σi − σj |),

where spins σi take values in the circle S1 = R/Z and U(r) = −
(

1+cos r
2

)p
, p being

a large integer. In [7, 8], the auhors proved that this model undergoes a phase
transition from order to disorder provided that the dimension of the lattice is at
least two. We conjecture that the interface between the ordered phase and the
disordered phase of the model (1) is rigid when d ≥ 3.

2. New results

In this section we present our results, which support the conjecture above.
The first result derives the rigidity property of an order/disorder interface for
a toy model of the model (1), in a partial thermodynamic limit. The second
result derives the rigidity property for a clock version of the toy model, in the full
thermodynamic limit.

We fix a (small) parameter ε > 0 and consider the toy model given by the
following Hamiltonian

(2) H(σ) =
∑

〈i,j〉
U(|σi − σj |),

where spins σi take values in S1 and U(r) = −1{r≤ε}.
The clock version of this toy model is given by the following Hamiltonian

(3) H(σ) =
∑

〈i,j〉
U(|σi − σj |),
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where spins σi take values in Z/qZ and U(r) = −1{r≤1}, q being a (large) positive
integer.

A straightforward adaption of the techniques developed in [7, 8] shows that
when d ≥ 2, both models undergo a first-order phase transition between order and
disorder, provided that ε < ε0(d) and q > q0(d) respectively.

Considering any configuration σ with ordered b.c. on the top of our box, dis-
ordered b.c. on the bottom and periodic b.c. on vertical boundaries, it is possible
to define the order–disorder interface I(σ), which is a (random) object separating
a disordered phase (below) from and ordered phase (above). In a standard way,
one can define ceilings of I as the ”flat pieces” of I. The rigidity set of I is the
ceiling of I with largest area; we denote it by R = R(I(σ)).

Denoting by µN,L the Gibbs measure in the box ΛN,L with the b.c. described
above and at coexistence temperature T = Tc, our main result is the following:

Theorem 15 (d = 3).

• If ε < ε1 then there exists c = c(ε) > 0 such that uniformly in L ≤ L(ε),

lim
N→∞

µεN,L

(
R has area at least

N2
≥ c

)
= 1,

where c(ε) → 1 and L(ε) → ∞ as ε→ 0.
• If q > q1 then there exists c = c(q) > 0 such that

lim
N,L→∞

µqN,L

(
R has area at least

N2
≥ c

)
= 1,

where c(q) → 1 as q → ∞.

The first part of the above theorem is still in preparation [12], while the second
part will be published soon [13].

3. Ideas of the proof

The rigidity property is a direct consequence of the following Peierls estimate:

(4) µ·
N,L (I(σ) = Γ) ≤ δw(Γ),

where δ = δ(ε), δ(q) is a (small) positive constant, Γ is any fixed shape of interface
with weight w(Γ) = |Γ| −N2.

To show (4) uniformly in N,L ≤ L(ε) in the toy model, or uniformly in N,L in
its clock version, we use chessboard estimates coming from the reflection positivity
property [3, 9] shared by both models. Actually, the boundary conditions we use
are not fully periodic so that RP holds only for reflections with respect to vertical
hyperplanes.

4. Perspectives

Eventually, we state some possible extensions of this work. First of all, the
rigidity property is a good step towards the construction of Dobrushin states but
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is unfortunately not sufficient. To properly obtain theses states, one has to lo-
calize the interface. This localization might be obtained by entropic repulsion
considerations [11].

Then, one can try to derive similar results for other models. The application
of this method to double wells or large entropy/small energy models is a work in
progress [10].
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[1] J. Černý and R. Kotecký: Interfaces for random cluster models. J. Stat. Phys., 111, pp.
73–106, 2003.

[2] R. L. Dobrushin.: Gibbs state, describing the coexistence of phases in the three-dimensional
Ising model. Th. Prob. and its Appl., 17, pp. 582–600, 1972.
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Travelling waves in atomic models for phase-transforming materials
and kinetic relations

Johannes Zimmer

(joint work with Hartmut Schwetlick)

The aim is to prove the existence of travelling waves for discrete models of phase-
transforming materials and derive so-called kinetic relations. The motivation is as
follows. Consider the equations of motions of an elastic material,

(1) utt(x) = Div(σ(Du(x))).

Here, u is the displacement field u : Ω → Rm, with Ω ⊂ Rn; σ is the stress tensor.
Let V denote the elastic energy density, then σ(F ) = ∂V

∂F . For phase transitions, V



Phase Transitions 1643

is commonly assumed to be non-convex, and σ is thus non-monotone. Equation (1)
is consequently of elliptic-hyperbolic type. Our understanding of this ill-posed
equation is at present very limited.

From an engineering viewpoint, this is not surprising. The ill-posed nature of
Equation (1) is related to the motion of an interface between stable phases. There
is no physical law describing the motion of such an interface as a function of the
relevant forces.

It thus seems reasonable to study the motion of a single interface between two
phases in detail. A moving interface is exposed to the so-called configurational
force f , and we denote the velocity of the interface by c. A kinetic relation is a
functional relationship between f and c, and will be expressed here in the form
f = f(c). We refer the reader to [6, 1] for more information on kinetic relations.

A number of successful models in engineering postulate a phenomenological
kinetic relation to resolve the problem of being ill-posed. This obviously raises the
question whether kinetic relations can be derived rigorously. A natural starting
point is the atomic scale. Truskinovsky and Vainchtein obtained for such a model
the existence of travelling waves [7] and derived quasicontinuum models from the
microscopic picture [8]. The existence argument for waves on a bi-sided infinite
chain of atom commonly relies on the so-called causality principle for a steady-state
solution [5].

We aim to develop a simple approach for proving the existence of travelling
waves in lattices, and derive kinetic relations. The precise setting is as follows. We
consider a one-dimensional chain of atoms {qj}j∈Z on the real line. Neighbouring
atoms are linked by a bistable spring with elastic potential V . The deformation
of atom k is given by uk : R → R. The argument of the elastic potential V is the
discrete strain, which is given by the difference of the deformations, uk+1(t)−uk(t).
The equations of motion are assumed to be governed by Newton’s law. In suitable
units, Newton’s law reads

(2) ük(t) = V ′(uk+1(t) − uk(t)) − V ′(uk(t) − uk−1(t))

for every k ∈ Z. This is a spatially discretized, one-dimensional version of Equa-
tion (1). Since the quest for rigorous kinetic relations requires a detailed un-
derstanding of the existence of travelling waves, we switch the travelling wave
formulation

(3) uk(t) = u(k − ct) for k ∈ Z.

Then Equation (2) becomes

(4) c2ü(x) = V ′(u(x+ 1) − u(x)) − V ′(u(x) − u(x− 1)).

We remark that this is the Euler-Lagrange function for the action functional

φ(u) :=

∫

R

[
1
2c

2u̇(t)2 − V (u(t+ 1) − u(t))
]

dt.

To describe martensitic phase transitions, the interaction potential V is assumed
to be nonconvex. So far, a rigorous analysis seems to be confined to special form
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of V , namely a piecewise quadratic energy,

(5) V (ǫ) :=
1

2
min{(ǫ+ 1)2, (ǫ− 1)2}

(here and below, we write ǫ := u(t+ 1) − u(t) for the discrete strain).
The aim is to investigate the existence of solutions to (4) with V given by (5). To

ensure that both wells of the energy V are visited, we concentrate on heteroclinic
waves with the strain distribution

ǫ > 0 for x > 0 and ǫ < 0 for x < 0

(other ratios are possible, as discussed below). Of particular interest are subsonic
waves, since kinetic relations can be shown to be relevant in this case. For V given
in (5), the wave speed is 1. We develop a method to prove rigorously the existence
of a solution to (4) for sufficiently large velocities below the wave speed 1. The
main difficulty is that Fourier methods are not readily available, since singularities
stemming from zeros of the dispersion relation have to be taken into account.

We remark that it is not hard to see that on a torus of length L, the existence
of solutions with the strain distribution

(6) ǫ > 0 on (0, L2 ) and ǫ < 0 on (L2 , L)

depends on the wave speed c: for some velocities c, a solution exists, while for other
velocities nonexistence of a solution with strain distribution (6) can be proved.

For waves on the real line, it is possible to show that the solution satisfies the
Rankine-Hugoniot conditions. Furthermore, the configurational force f can be
shown to be zero, so that f(c) = 0 is the desired kinetic relation. A closer analysis
reveals that the symmetry of the solution, imposed by the sign condition (6), leads
to the vanishing configurational force. It is expected that asymmetric distributions
will give rise to non-vanishing kinetic relations; the waves with asymmetric sign
distribution are likely to have an interpretation as suitable limits of waves on a
torus as L→ ∞, as in the symmetric case.

We close this report by pointing out that the interest in lattice models such as
Equation (4) goes beyond the realm of phase transitions. Indeed, Equation (4) is
an instance of a so-called lattice differential equation. Many problems, such models
of crystal lattices, photonic structures, and Josephson junctions, can be described
by lattice differential equations as well. There are a number of mathematical
problems associated with lattice differential equations in general. A number of
interesting papers [2, 3, 4] give a good insight into this field.
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