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Introduction by the Organisers

Multidimensional processes in sciences and engineering are usually formulated in
terms of partial differential equations. With the incorporation of more and more
complete physics these models become increasingly complex. Their accurate nu-
merical simulation requires the use of efficient methods which exploit concepts of
adaptivity in setting up the models and their discretization. Over the last two
decades these approaches have been developed from simple model situations to-
wards real-life applications, in most cases with striking success. The conference
“Adaptive Numerical Methods for PDEs” had its focus on basic questions related
to the rigorous mathematical understanding of these methods and to their practi-
cal use.

The use of automatic adaptivity has become common in the simulation of all kind
of PDE models even in situations where a solid theoretical justification is lack-
ing. Examples are the nonlinear Navier-Stokes equations in fluid mechanics, the
nonlinear Lamé-Navier equations in large-strain elasticity, the Maxwell equations,
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and combinations of these models in nonstationary fluid-structure interaction and
magneto-hydrodynamics. Such approaches are usually based on a posteriori in-
formation in terms of local quantities such as approximate gradients or residuals
obtained from the computed solution. The extension of quantitative mathematical
analysis of adaptive methods to such complicated models is a challenging problem.

The existing methods of a posteriori error estimation and mesh adaptation are
based on several heuristic technical assumptions. These are assumptions about
the convergence of higher-order difference quotients, the relative “smallness” of
linearization errors, “sharpnes” of stopping criteria of algebraic iterations, the
“safe” control of error accumulation in long-time calculations, etc. These aspects
are fundamental to adaptive methods and still need rigorous mathematical analysis
for a better understanding of the underlying mechanisms.

Recently, several new directions of adaptivity have evolved, e.g., “spectral-adaptiv-
ity” in wavelet analysis, “hp-adaptivity” in high-order FE-methods, “anisotropic”
refinement in the approximation of layers, adaptivity in the solution of “optimal
control” problems, “model adaptivity” for example in spatial dimension reduction
or the complexity reduction in diffusion models, and “multi-scale” adaptivity in
problems with micro- and macro-scales reaching even towards adaptive turbulence
modeling. The latter are the really “hot” topics in current Numerical Analysis
research. The mathematical analysis of these approaches has to combine concepts
of a posteriori error estimation with techniques from PDE theory. The talks given
at this conference were concerned with the following subjects:

• Concepts of model adaptivity;
• Adaptive multi-scale analysis;
• Adaptivity in optimal control;
• Error control in iterative solution processes;
• Anisotropic mesh adaptation;
• Higher-order adaptive FE hp-methods;
• Error control of linearization and stabilization;
• Local “goal-oriented” versus global “norm-based” error estimation;
• Mathematical analysis of a posteriori error estimates;
• Convergence of adaptive algorithms.
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Abstracts

Error estimation and adaptivity for inverse problems

Wolfgang Bangerth

(joint work with Amit Joshi)

Inverse problems are an important class of PDE-constrained optimization prob-
lems that attempt to reconstruct unknown material properties from measurements
of how a system responds to a known external force. In their most general, nonlin-
ear form they are usually posed as an optimization problem in which one wants to
minimize the difference between actual measurements z and prediction measure-
ments Mu, where u satisfies a partial differential equation L(q)u = f in which the
operator depends on a set q of a priori unknown parameters, and f is a known
forcing term. M is an operator that extracts from the predicted response of the
system, u, those aspects that are physically measured in the experiment. The
problem to be solved can then be stated as follows (more general formulations for
nonlinear forward problems or more than one measurement can be found in [2]):

min
u,q

1

2
‖Mu− z‖2

subject to L(q)u = f.

A common approach for solving this is to introduce a Lagrangian

L(u, q, λ) =
1

2
‖Mu− z‖2 + 〈L(q)u− f, λ〉

and seeking the solution of the orginal problem as a stationary point of this La-
grangian. This leads to a set of coupled, nonlinear partial differential equations
that have to be solved simultaneously.

By choosing appropriate discrete subspaces for the variables u, q, λ, this problem
can be solved by applying a Newton method to a discrete version of the optimality
condition, or better even to apply Newton’s method to the optimality condition
and separately discretizing each Newton step using the finite element method on
a sequence of meshes that become finer as Newton iterations proceed. However,
given the size of practical inverse problems, which often ranges into millions of
unknowns, the actual solution of realistic problems is computationally very ex-
pensive. Efficient adaptive finite element methods based on error estimates are
therefore important tools to allow the solution of such problems.

Deriving error estimates for inverse problems is complicated by the fact that
they are typically ill-posed, i.e. there is continuous relationship between data and
solution. Consequently, the typical way of using stability estimates of solutions
(for energy estimates) or solutions to dual problems (in the case of goal-oriented
estimates) does not work: the stability constant is very large or infinite. This
observation in itself is of only academic interest since it also prevents the problem
from being solved at all, and forces us to introduce regularization terms into the
objective function, i.e. to minimize 1

2‖Mu − z‖2 + β‖q‖2, where the two norms
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are appropriately chosen to make the problem well-posed. This regularized for-
mulation is stable, and error estimates using stability estimates have been derived
in the past. However, they are mostly useless for practical purposes: the stability
constant is proportional to 1

β , but one would like to choose β as small as possible

since the original goal was to minimize the misfit Mu − z, not the regularization
term. In practice, stability-based error estimates are therefore of little value and
hopelessly overestimate the errors by orders of magnitude.

We therefore propose an alternative approach in which we numerically compute
a dual solution as well, following the general methodology outlined in [4, 10, 3].
In this approach, called the dual-weighted residual (DWR) method, stability is
not considered in the worst-case scenario as a constant, but as a sensitivity func-
tion obtained by linearizing the problem around the current solution. They are
therefore much more accurate (with efficiency factors between 0.5 and 3 in some
situations). Furthermore, if the goal functional happens to be the objective func-
tion of the optimization problem, then the dual solution turns out to be equal
to the primal one, and no additional problem has to be solved. The evaluation
of such error estimates is therefore no more expensive than that of more tradi-
tional estimates that weight a norm of the residual with a stability constant and
appropriate powers of the local mesh size.

In the talk, we present the derivation of this approach as previously shown in
[3, 1] as well as numerical results obtained for a variety of inverse problems. In
particular, we will show results from an optical tomography application in biomed-
ical imaging [7, 6, 8, 9, 2]. For these realistic inverse problems, the equations are
often very lengthy and complicated, and actually implementing DWR error es-
timates becomes a challenge. We therefore extract the essential features of the
DWR method, namely of weighing primal residuals with dual solutions and vice
versa, and apply it to the problem at hand. Examples will illustrate that this prob-
lem is not solvable at all using uniformly refined meshes within realistic time and
memory requirements, but can be solved on workstations within clinically almost
acceptable 10-20 minutes using adaptive finite element meshes derived through
the DWR method.
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Adaptive Methods and Near-Best Tree Approximation

Peter Binev

Large scale problems require fast and efficient ways of processing. Computational
tractability can often be guaranteed only by methods that are nonlinear in nature
and at the same time support efficient data structures. Tree approximation is a
paradigm that takes up both issues. It provides an efficient way of storing the
coefficients in wavelet expansions while essentially preserving the optimal rate of
the N-term approximation. It is also a natural way of representing the partitions
generated by adaptive solvers for PDEs.

Previously known results (see [3]) provide optimality of asymptotic rates over
a whole class of functions. The corresponding algorithms which realize such an
approximation have only theoretical significance. The question is: Can we achieve

instance optimality in the sense of recovering the best N-term rate for each individ-

ual function? To answer this question we outline a specific approximation scheme
which achieves just that.

We represent the adaptively generated partitions as proper subtrees of an in-
finite master tree T . The master tree T is fixed and corresponds to a particular
subdivision procedure used in the adaptive process which produces the partitions.
Here “proper” means that T corresponds to a partition, namely that it contains
the subtree T0 which corresponds to the initial partition and if a node ∆ of T is
not a leaf, then the set C(∆) of all its children is contained in T . We assume that
at each node ∆ of T it is given an error e(∆) which can be calculated using a fixed
number of operations. The total error E(T ) of the partition corresponding to the
tree T can be calculated as the sum of the errors at the leaves L(T ) of T

E(T ) :=
∑

∆∈L(T )

e(∆) .

Often in practice it is impossible to calculate the actual error and one has to use
some local quantities to represents the local errors e(∆). A necessary condition to
these quantities is the subadditivity property

(1) e(∆) ≥
∑

∆′∈C(∆)

e(∆′) .
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Sometimes it is desirable to relax the above condition by requiring that there exists
a constant C0 > 0 such that

(2) e(∆) ≥ C0

∑

∆′∈L(T∆)

e(∆′)

for every subtree T∆ ⊂ T rooted at ∆.
Let N0 be the number of leaves of the initial tree T0 and let N(T ) be the number

of subdivisions performed consecutively to T0 in order to receive T . Evidently,
N(T ) = #(T )−#(L(T ))−#(T0) +N0 is the number of new internal nodes of T .
Using this notation we can introduce the best n-term tree approximation by

σn = σn(T ) := min
T :N(T )≤n

E(T )

and ask the question whether there exists an O(n) algorithm that finds a tree
which complexity and error are within (small) multiplicative constants from the
ones of σn. The answer to this question is given in [1]. The algorithm proposed
there defines modified errors by the following rules

(3) ẽ(∆) := e(∆) for ∆ ∈ T0 and ẽ(∆) :=

∑

∆′′∈C(∆′)

e(∆′′)

e(∆′) + ẽ(∆′)
for ∆ ∈ C(∆′) .

Then the tree T is received adaptively from T0 by subdividing at each step the
current leaf node ∆ with the largest modified error. (Alternatively, to avoid sorting
we can group the modified errors into bins based on their values and choose one
which is within a small multiplicative constant from the largest.) Here we shall
refer to the above algorithm as old tree algorithm. The main result for it is the
following

Theorem 1 [1] Let the number of the children at each node of T be limited by a
constant K. Then there exists a constant C > 0 such that at each step the output
tree T of the old tree algorithm satisfies

E(T ) ≤ Cσn(T )

whenever n ≤ N(T )/(2K+2). To create T the algorithm uses less than C(N(T )+
N0) arithmetic operations and computations of e.

The constant C in the above theorem is given explicitly and depends on K and
C0. It is interesting to know whether this constant can be arbitrarily close to 1.
In the case C0 = 1 we have the following result
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Theorem 2 If T is a binary tree (i.e. K = 2) and the errors e(∆) in it satisfy
the subadditivity condition (1), then the output tree T of the old tree algorithm
satisfies

E(T ) ≤
(

1 +
2(n+N0)

N(T )− n+ 1

)
σn(T )

whenever n ≤ N(T ).

Using the above theorem the following variant of Corollary 5.4 from [1] can be
derived

Corollary 3 Let T be a binary tree and the errors e(∆) satisfy the subadditivity
condition (1). If the tree Tµ is the first tree from the sequence of outputs of old
tree algorithm that satisfies E(Tµ) ≤ µ, then

N(Tµ) ≤
2(1 + c1)

1− c1
N(T )

for 0 < c1 < 1 and any proper subtree T of T with E(T ) ≤ c1µ.

The performance of old tree algorithm can be improved by replacing the defi-
nition of the modified errors in (3) with the following one

(4) ẽ(∆) := e(∆) for ∆ ∈ T0 and ẽ(∆) :=

(
1

e(∆)
+

1

ẽ(∆′)

)−1

for ∆ ∈ C(∆′).

We shall refer to that algorithm as new tree algorithm. The following theorem
shows that the constant C no longer depends on K. However, the complexity of
the algorithm still depends on K via the total number of nodes in T which can be
estimated by KN(T ).

Theorem 4 Let the errors e(∆) in T satisfy the subadditivity condition (1). Then
at each step of the new tree algorithm the output tree T satisfies

E(T ) ≤
(

1 +
n+ min{n,N0}
N(T )− n+ 1

)
σn(T )

whenever n ≤ N(T ).

To illustrate the fact that the greedy approach cannot give a near-best perfor-
mance, we consider a simple example of finding the best L2-approximation via
piecewise constants on dyadic partitions for the function f(x) = (

√
x ln(x/1.02)).

For this example the performance of the greedy algorithm is worse by a logarithmic
factor.

In the figure the errors of the described algorithms for the first 1000 iterations
are presented: the greedy algorithm is the top graph (in blue), in the middle (in
green) is the algorithm proposed in [1], while the best performance has the new
tree algorithm represented by the bottom graph (in red).

We conclude with indicating some consequences of the results about near-best
tree approximation. In particular, we compare the adaptive schemes for solving
elliptic PDEs and consider the conditions needed to establish instance optimality
of the solution. The overwhelming majority of these methods is based on local
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error estimates which sum gives reliable information about the total error. The
method is often described with the iterated scheme

(5) MARK → REFINE → SOLVE ←֓ .

The most popular among the marking strategies is the bulk chasing [4]. However,
these strategies apply the greedy approach in choosing the elements for subdivision
which does not give much hope for instance optimality results. A convergence
result together with an error reduction property was first derived in [5] for a
variant of (5) with the bulk chasing strategy in the case of Poison equation and
the newest vertex bisection subdivision procedure. Optimal convergence rates
were first received in [2] based on the error reduction property from [5]. The
paper [2] establishes the theoretical justification of all the steps in the algorithm.
It also shows that the sparsity of the solution is necessary for the optimality of the
algorithm and to secure it adds the COARSENING step to (5). The inclusion of
this step gives the freedom to use any error reduction procedure (and in particular
the one consisting of several loops of (5)). Then, the obtained approximation
should be checked for sparsity and a certain action should be taken so that the
approximate solution will stay sparse. In general, the idea of the algorithm can be
summarized in the scheme

(6) ERROR REDUCTION → SPARSITY ADJUSTMENT ←֓ .

This approach is able to give instance optimality results in the following sense:
given the differential equation Lu = f , if the differential operator L and the
function f are approximated with tolerance ε > 0, then the approximate solution
is near-best or the error is below ε. In comparison, it was shown in [6] that the
optimal rates of convergence can be achieved using a variant of the bulk chasing
method with carefully selected (small) bulk constant. In some sense this method
combines the steps in (6). However, its optimality is only in terms of asymptotic
behavior. Thus, the performance can be very poor in terms of an individual
functions and a fixed number of degrees of freedom. Note that in the example for
tree approximation the greedy approach also has optimal rates, but the constants
are growing as logn.
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In conclusion, the tools provided by near-best adaptive tree approximation can
be used to obtain methods fitting the scheme (6) which can give instance optimality
results for a wide range of problems.
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Unified a posteriori error analysis of nonstandard finite element

methods

Carsten Carstensen

General strategies are discussed to derive a posteriori error estimates for con-
forming, mixed, and nonconforming finite element methods in energy norms which
also cover discontinuous Galerkin schemes or Mortar finite elements for second or-
der elliptic problems. The unifying approach provides reliable error estimates
which can be shown to be efficient as well. The goal is to prove that all nonstan-
dard schemes allow for (some) a posteriori error control, there is no finite element
method known to the author where there is no error control.

Surprisingly, there remains one type of residuals R for different problems, such
as, the Laplace problem, the Stokes problem, and Navier-Lamé problem, with con-
forming, nonconforming, and mixed finite element method. One key observation
is that

Res(v) :=

∫

Ω

g · vdx+

∫

∪E

gE · vds for v ∈ V := H1
0 (Ω; Rm)

is the same (or at least very similar) for all those schemes. Based on some Galerkin
property, the kernel of the residual Res ∈ V ∗ = H−1(Ω; Rm) includes a space V NCh .
This space V NCh can be mapped onto some first- order conforming finite element
space V Ch ⊂ V := H1

0 (Ω; Rm). In all cases the author is aware of, there exists some
operator Π : V Ch → V NCh with some elementwise properties such that a unifying
analysis is possible.

Some nonconforming elements [1,2,3] for the Poisson problem, the Stokes prob-
lem, and linear elasticity in two dimensions are depicted in the following tables.
The point is that the analysis simultaneously discusses all of those (and even more).
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Particular application to discontinuous Galerkin methods from [4] are outlined.
The conclusion of this presentation is sparsity in the mathematical research of

a posteriori error control. The reduction is to two parts. (a) Analyze the PDE in
such a way that the error is equivalent to the dual norm of the residual ‖Res‖∗ and
analyze Vh ⊂ kerRes. (b) Design general a posteriori error estimates for ‖Res ‖∗
independently of the PDE.

The presentation summarises joint work with Jun Hu, Antonio Orlando, Max
Jensen and T. Gudi.
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Pointwise estimators and pollution on polyhedral domains

Alan Demlow

Adaptive methods for controlling pointwise errors are desirable in many situations.
In order to motivate our talk, we give two examples in the case of elliptic problems.
First, mixing problems were studied in the recent Ph.D. thesis [6] of E. Svensson.
The goal there was to track particle trajectories satisfying ~x(t) = ~u(~x), where ~u
is the velocity field determined by the stationary Stokes equation. A “shadowing
estimator” for ~x developed by Svensson requires bounds for ‖∇(~u − ~uh)‖L∞(Ω),
where ~uh is a finite element approximation to ~u. If Ω here is a nonconvex polyhedral
domain, then one must seek bounds for ∇(~u − ~uh) on some subset D of Ω not
abutting reentrant corners. Another class of examples involves computations in
which the goal output is a subset of the overall computational domain rather than
some norm or functional of the solution. In the context of elliptic problems, one
such problem is the determination of the location and volume of the region where
the stresses in a material exceed a given threshold; cf. [4]. Note that in both of
these examples, the information desired from the calculation is potentially local
(involving solution properties only on some subset of the overall computational
domain) as well as pointwise.

In this talk we concentrate on a simple model problem. Let Ω be a polyhedral
domain in R2 or R3, and let u solve−∆u = f in Ω with u = 0 on ∂Ω. Also let Th be
a shape-regular triangulation of Ω with associated Lagrange finite element space
Sk of polynomial degree k. Finally, let uh ∈ Sk be the finite element approximation
to u.

Residual-type estimates for ‖u − uh‖L∞(Ω) were first proved in [5] and sub-
sequently improved and expanded by various authors. In this talk we present
residual-type estimates for global pointwise gradient errors ‖∇(u−uh)‖L∞(Ω) and
for local pointwise errors ‖∇(u−uh)‖L∞(D) and ‖u−uh‖L∞(D), whereD is any sub-
set of Ω. It is well known that bounding local errors requires controlling “pollution
effects” of global solution quality upon local solution properties. One thus seeks
to define adaptive algorithms that control pollution effects but that require signif-
icantly less computational resources than algorithms for controlling corresponding
global norms of the error. It should also be noted that if Ω is a non-convex poly-
hedral domain, then global pointwise control of ∇(u − uh) is not possible as ∇u
is generally unbounded near reentrant corners.
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Singularities arising at vertices of polyhedral domains Ω are a well-known source
of pollution in the finite element method. Singularities may in fact pollute not
only solution quality (leading to a suboptimal rate of convergence even in areas
removed from reentrant corners), but they may also destroy the quality of a pos-
teriori error estimators. To illustrate this point, we note that in order to bound
‖u − uh‖L2(Ω) on nonconvex polyhedral domains, one may not simply use the
natural residual estimator, but must instead use the more complicated estimator
(
∑

T∈Th
W (T )2η(T )2)1/2. Here W (T ) is a weight depending on the distance to

reentrant corners and the precise nature of the corner singularities, and η(T ) is
the natural L2-type residual indicator. The construction of W (T ) is not difficult
(if slightly inconvenient) for simple problems in R2, but is rather complicated for
vertex singularities on polyhedral domains in R3. Thus one would like to avoid
using estimators that require such explicit information about corner singularities.

We explore the use of two templates for controlling pollution and bounding
local errors: classical Nitsche-Schatz type local estimates which split the error
into a local approximation term and a global pollution term, and sharply local
pointwise estimates (proved by Schatz in 1998) which provide smoother control
of the pollution error. We first discuss a posteriori counterparts to the latter
type of estimate in the case that Ω is convex. Given a subset D of Ω, define
σD(T ) = hT

hT +dist(D,T ) . Here T ∈ Th and hT = diam(T ). We then define

ED,m = max
T∈Th

σD(T )mη∞(T ),

where η∞(T ) = hT ‖f+∆uh‖L∞(T ) +‖[∇uh]‖L∞(∂T ) is a standard W 1
∞-type resid-

ual indicator.
Our results require the following nondegeneracy assumption.

Nondegeneracy assumption AD: Let D ⊆ Ω. The assumption AD holds if
there exists a point x1 ∈ D and ρ > 0 such that |Dγu(x1)| ≥ C∗ > 0 fom some
multiindex γ with |γ| = k + 1 and ‖u‖Wk+2

∞ (Bρ(x1))
≤ C∗∗ < ∞. We also define

the associated logarithmic factor

(1) ℓh,u,D,d = ln



max




(
C∗∗ + |u|C1,α(D)

C∗

) k+1
α

,

(
d

hmin

) k+1

α

,

(
1

ρ

) k+1

α







 ,

where hmin = minT∈Th
hT . We then have the following result.

Theorem 1. Assume that Ω is convex and polyhedral, and let D ⊂ Ω. Let also

the nondegeneracy assumption AΩ hold. Then

‖∇(u− uh)‖L∞(Ω) ≤ C(k,Ω)ℓh,u,Ω,1EΩ,0,
‖∇(u− uh)‖L∞(D) ≤ ‖σD∇(u − uh)‖L∞(Ω) ≤ C(k,Ω)ℓh,u,D,1ED,1,

and if k ≥ 2,

‖∇(u− uh)‖L∞(D) ≤ C(k,Ω)ℓh,u,D,1ED,2.
Here C(k,Ω) depends on Ω and k. In addition, let ωT be the patch of elements shar-

ing a face with the element T , and let RT be any piecewise polynomial of degree k.



Adaptive Numerical Methods for PDEs 1677

We then have the a posteriori lower bound

max
T∈Th

σD(T )m(η∞(T )− hT ‖f + ∆uh −RT ‖L∞(ωT ) ≤ C‖σmD∇(u − uh)‖L∞(Ω),

where C does not depend on any essential quantities.

Similar results to Theorem 1 above are contained in [1], but they are only valid
for k = 1 and are not as sharp. One can in addition show that

‖u− uh‖L∞(D) ≤ C(k,Ω) ln
1

h
max
T∈Th

σD(T )hT η∞(T ).

Note that this estimate is valid without assuming that a nondegeneracy condition
holds.

The analysis of local error estimators is more difficult on nonconvex polyhedral
domains. Here we instead use ideas from classical Nitsche-Schatz type local finite
element analysis. The following result is contained in [2]. Given a set D ⊂ Ω and
d > 0, we let Dd = {x ∈ Ω : dist(x,D) < d}.
Theorem 2. Let Ω ⊂ Rn, n = 2, 3, be polyhedral. Assume that D ⊂ Ω and d > 0
are such that Dd does not abut any reentrant corners. In addition, assume that the

nondegeneracy condition AD holds. Finally, assume that u ∈ C1,α(Dη̃) for some

0 < α < 1 and η̃ > 0. Then for j ≥ 0 and 1 ≤ p ≤ ∞,

‖∇(u− uh)‖L∞(D) ≤Capp(k)ℓh,u,D,d max
T∩Dd 6=∅

σD(T )η∞(T )

+ Cpold
−1−j− n

p ‖u− uh‖W−j
p (Dd),

‖∇(u− uh)‖L∞(D) ≤Capp(k)ℓh,u,D,d max
T∩Dd 6=∅

σD(T )η∞(T )

+ Cpol(ln
1

hmin
)2d−1 max

T∈Th

hT η∞(T ).

The local bound above is rigorous, but somewhat unwieldy because it involves
working with two different norms. Based on Theorem 2, we thus conjecture that
even on nonconvex polyhedral domains, ‖∇(u−uh)‖L∞(D) ≤ C(k,Ω)ℓh,u,D,1ED,1.
Note that both ED,1 and the final local estimator in Theorem 2 employ η∞ as their
basic building block, with a weight de-emphasizing residual contributions from
elements not lying in D. These weights are similar, but not the same. Preliminary
computational tests indicate that indeed ‖∇(u−uh)‖L∞(D) ≤ C(k,Ω)ℓh,u,D,1EE,1.

In the context of pointwise estimation of function values, it was shown in [5]
and subsequent papers that ‖u − uh‖L∞(Ω) ≤ C(ln 1

hmin
)2 maxT∈Th

hT η∞(T ) on
both nonconvex and convex polyhedral domains. We have used computations and
heuristics to explore whether a more local estimator can be established that does
not require explicit singularity information. First, computational tests indicate
that the estimate

‖u− uh‖L∞(D) ≤ C max
T∈Th

σD(T )hT η∞(T )

does not hold on nonconvex polyhedral domains (recall that we have proved that
this estimate does hold on convex polyhedral domains). Thus the estimator is “pol-
lluted” by strong corner singularities. However, final computational tests indicate
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that ‖u − uh‖L∞(D) ≤ CmaxT∈Th
σD(T )1/2hT η∞(T ). Heuristics involving the

maximum strength of corner singularities also indicate that this estimate should
hold.
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Adaptive finite element methods for fluid-structure interaction

problems based on an Eulerian variational formulation

Thomas Dunne

Computational fluid dynamics and computational structure mechanics are two
major areas of numerical simulation of physical systems. With the introduction
of high performance computing it has become possible to tackle systems with a
coupling of fluid and structure dynamics. General examples of such fluid-structure
interaction (FSI) problems are flow transporting elastic particles (particulate flow),
flow around elastic structures (airplanes, submarines) and flow in elastic structures
(haemodynamics, transport of fluids in closed containers). In all these settings the
dilemma in modeling the coupled dynamics is that the fluid model is normally
based on an Eulerian perspective in contrast to the usual Lagrangian approach
for the solid model. This makes the setup of a common variational description
difficult. However, such a variational formulation of FSI is needed as the basis
of a consistent approach to residual-based a posteriori error estimation and mesh
adaptation as well as to the solution of optimal control problems by the Euler-
Lagrange method.

Combining the Eulerian and the Lagrangian setting for describing FSI involves
conceptional difficulties. On the one hand the fluid domain itself is time-dependent
and depends on the deformation of the structure domain. On the other hand, for
the structure the fluid boundary values (velocity and the normal stress) are needed.
In both cases values from the one problem are used for the other, which is costly
and can lead to a drastic loss of accuracy. A common approach to dealing with
this problem is to separate the two models, solve each one after the other, and so
converge iteratively to a solution, which satisfies both together with the interface
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conditions Solving the separated problems serially multiple times is referred to as
a ‘partitioned approach’. For advanced examples of this approach see [BuSc+06].

A basic partitioned approach does not contain a variational equation for the
fluid-structure interface. To achieve this, usually an auxiliary unknown coordinate
transformation function ζf is introduced for the fluid domain. With its help the
fluid problem is rewritten as one on the transformed domain, which is fixed in
time. Then, all computations are done on the fixed reference domain and as part
of the computation the auxiliary transformation function ζf has to be determined
at each time step.

Such, so-called ‘arbitrary Lagrangian-Eulerian’ (ALE) methods are also treated
in the authors doctoral dissertation [Du07a]. Multiple good examples and quanti-
tative results can be found in [BuSc+06], e.g. [HronTurek206, TuHr06].

Both, the partitioned and the transformation approach overcome the Euler-
Lagrange discrepancy by explicitly tracking the fluid-structure interface. This
is done by mesh adjustment or aligning the mesh to match the interface and is
generally referred to as ‘interface tracking’. Both methods leave the structure
problem in its natural Lagrangian setting.

We follow the alternative (and to our knowledge new) way of posing the fluid
as well as the structure problem in a fully Eulerian framework. In the Eulerian
setting a phase variable is employed on the fixed mesh to distinguish between the
different phases, liquid and solid. This approach to identifying the fluid-structure
interface is generally referred to as ‘interface capturing’, a method commonly used
in the simulation of multiphase flows, [JoRe93a, JoRe93b]. Examples for the use
of such a phase variable are the Volume of Fluid (VoF) method [HiNi81] and the
Level Set (LS) method [OsherSethian, Sethian99]. In the classical LS approach
the distance function has to continually be reinitialized, due to the smearing effect
by the convection velocity in the fluid domain. This makes the use of the LS
method delicate for modeling FSI problems particularly in the presence of cornered
structures. To cope with this difficulty, we introduce a variant of the LS method
that makes reinitialization unnecessary and which can easily cope with cornered
structures.

The method we describe does not depend on the specific structure model. The
key variable in structure dynamics is the deformation, and since this depends on
the deflection, it is understandable why structure dynamics is preferably described
in the Lagrangian frame. To be able to describe the deformations in the Eulerian
frame, we introduce the ‘Initial Positions set’ (IP set) of all structure points. This
set is then transported with the structure velocity in each time step. Based on
the IP set points and their Eulerian coordinates the displacement is now available
in an Eulerian sense. Also its gradient has to be rewritten appropriately. Since
the fluid-structure interface will be crossing through cells, we will have to also
transport the IP set in the fluid domain.

If we were to use the fluid velocity for the convection of the IP set, this would
lead to entanglement of the respective displacements, which would ‘wreak havoc’
on the interface cells. This is a known problem with LS approaches. A common
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way for fixing this problem has been to occasionally fix the LS field between the
time steps. The problem with this approach is that the variational formulation is
no longer consistent. As an alternative, we harmonically continue the structure
velocity into the fluid domain. In the fluid domain we then use this velocity for
the convection of the IP set. Since an IP set is available in both domains, we can
always at each point determine if it belongs to the fluid or solid part of the model.

Again, this approach is similar to the LS approach. But when developing a
complete variational formulation the two key characteristics of the LS approach
also become the main cause of concern: reinitialization and the signed distance
function. Although the problem of reinitialization here can also be avoided by using
an harmonically extended velocity, the trouble concerning corner approximation
persists. In contrast to this, by using an initial position set, we are deforming a
virtual mesh of the structure, which is extended into the whole domain.

Based on the Eulerian variational formulation of the FSI system, we use the
‘dual weighted residual’ (DWR) method, described in [BeRa95, BeRa01], to derive
‘goal-oriented’ a posteriori error estimates. The evaluation of these error estimates
requires the approximate solution of a linear dual variational problem. The result-
ing a posteriori error indicators are then used for automatic local mesh adaption.
The full application of the DWR method to FSI problems requires a Galerkin
discretization in space as well as in time. Due to the use of a difference scheme
in time, we are limited to ‘goal-oriented’ mesh adaptation in computing steady
states or (somewhat heuristically) to quasi-steady states within the time stepping
process.

The method for computing FSI described is validated at a stationary model
problem that is a lid-driven cavity involving the interaction of an incompressible
Stokes fluid with an incompressible neo-Hookean solid. Then, as a more challeng-
ing test the self-induced oscillation of a thin elastic bar immersed in an incom-
pressible fluid is treated (FLUSTRUK-A benchmark described in [TuHr06] and
[HronTurek206]). For this test problem, our fully Eulerian method is also com-
pared against a standard ‘arbitrary Lagrangian-Eulerian’ (ALE) approach. The
possible potential of the fully Eulerian formulation of the FSI problem is indicated
by its good behavior for large structure deformations.

Further details and results concerning Eulerian and ALE-Formulations of FSI
problems as well as adaptivity for FSI problems can be found in the authors
doctoral dissertation [Du07a] as well as in [DuRa06, BuSc+06]. All computations
and visualizations were done using the flow-solver package GASCOIGNE [Ga] and
the graphics package VISUSIMPLE [BeDu06, Vi].
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[BuSc+06] H.-J. Bungartz, M. Schäfer (Eds.), Fluid-Structure Interaction Modelling, Simula-
tion, Optimization, Springer Series: Lecture Notes in Computational Science and Engi-
neering, Vol. 53 2006, VIII, 394 p., 251 illus., Softcover ISBN-10: 3-540-34595-7, ISBN-13:
978-3-540-34595-4

[Du06a] Th. Dunne An Eulerian approach to fluid-structure interaction and goal-oriented mesh
refinement, Proc. ”Finite Elements for Flow Problems (FEF05)”, IACM Special Interest
Conference supported by ECCOMAS, April 4-6, 2005, Swansea, Wales, UK, appeared in
Int. J. Numer. Meth. Fluids 2006; 51: 1017-1039.

[Du06b] Th. Dunne Adaptive Finite Element Approximation of Fluid-Structure Interaction
Based on an Eulerian Variational Formulation, Proc. ”European Conference on Computa-
tional Fluid Dynamics (ECCOMAS CFD 2006)”, September 5-8, 2006, Egmond aan Zee,
The Netherlands.

[Du07a] Th. Dunne. Adaptive Finite Element Approximation of Fluid-Structure Interaction
Based on Eulerian and Arbitrary Lagrangian-Eulerian Variational Formulations Institute
of Applied Mathematics, University of Heidelberg, doctoral dissertation, 2007.

[DuRa06] Th. Dunne., R. Rannacher, Adaptive finite element simulation of fluid structure
interaction based on an Eulerian variational formulation, p. 371-386, in H.-J. Bun-
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Functional majorants for distributed optimal control problems with

control constraints

Alexandra Gaevskaya

(joint work with Ronald H.W. Hoppe and Sergey Repin)

We present a new approach to the a posteriori analysis of distributed optimal
control problems associated with elliptic type partial differential equations with
control constraints. In resent years, this question has been actively developed in
the framework of the residual based and goal-oriented approaches for a posteriori
control of the associated PDE (see, e.g., [1, 3, 5]). Our results are based on
functional type a posteriori estimates that provide sharp bounds for the error
with respect to any feasible approximation of the state (see, e.g., [6, 7]). Some
of the results for the a posteriori analysis of optimal control problems based on
functional type error estimates are presented in [2] and [4].

Let Ω ∈ Rn be a bounded Lipschitz domain. We consider the optimal control
problem of the following form:

Problem P. Given yd ∈ H1
0 (Ω), ud ∈ L2(Ω), f ∈ L2(Ω), ψ ∈ L∞(Ω), and

a > 0, consider the distributed control problem

minimize J(y, u) :=
1

2
‖∇(y − yd)‖2 +

a

2
‖u− ud‖2

over (y, u) ∈ H1
0 (Ω)× L2(Ω),

subject to −∆ y = u+ f a.e. in Ω,

u ∈ K = {v ∈ V | v ≤ ψ a.e. in Ω} .
Let yu+f be the state of the system corresponding to the conrol u, i.e.,

−∆yu+f = u+ f in Ω,
yu+f = 0 on ∂Ω.

By (y∗, u∗) (with y∗ := yu∗+f ) we denote the exact solution of Problem P.
Using the functional type a posteriori estimates, we derive guaranteed and com-

putable two-sided estimates for the optimal value of the cost functional. In par-
ticular, for any conforming approximation of the state and the control (y, u) ∈
H1

0 (Ω)×K there holds

J⊖(y;w) ≤ J(y∗, u∗) ≤ J(yu+f , u) ≤ J⊕(y, u;β; τ),(2)

where the auxiliary functions w ∈ H1
0 (Ω), τ ∈ Hdiv(Ω,R

n) and parameter β > 0
can be taken arbitrary.

The two-sided estimates for the cost functional (2) give rise to guaranteed and
computable upper estimate for the error in the solution of the optimal control
problem measured in the combined norm

|[u− u∗]|2 :=
1

2
‖∇yu+f −∇yu∗+f‖2 +

a

2
‖u− u∗‖2.

Namely, for any control u ∈ K and state y ∈ H1
0 (Ω) there holds

|[u− u∗]|2 ≤ J⊕(y, u;β; τ)− J⊖(y;w),(3)
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with arbitrary τ ∈ Hdiv(Ω,R
n), w ∈ H1

0 (Ω) and β > 0.
The functionals J⊕(y, u;β; τ) and J⊖(y;w) (’the majorant’ and ’the minorant’

for the cost functional, respectively) are quadratic with respect to the auxiliary
arguments τ and w. They involve only known functions and parameters and can
be evaluated in the discrete setting. Therefore, the estimate (2) can be used to
find guaranteed and computable two-sided bounds for the cost functional when
the optimization problem is solved by known methods.

The estimate (3) allows to compute a guaranteed bound for the error in the
solution of the optimal control problem measured in combined norm and provides
information about distribution of the error over the computational domain.
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A posteriori error estimates for viscous flow problems with rotation

Elena Gorshkova

(joint work with Pekka Neittaanmäki and Sergey Repin)

In this work we consider linear incompressible viscous flow problem with rota-
tion. Such problem are physically motivated, e.g., by geophysics, when movement
of the oceanic mass has to be calculated. Certainly, this model is rather con-
tracted and does not take into account nonlinear effects. However, we believe that
the present work is a necessary step in the creation of reliable methods for more
complicated system in the theory of rotation fluids (see [1], [2]).

Consider the following system

−ν△u+ Ω× u = f −∇p in D,(1)

divu = 0 in D,(2)

u = u0 on ∂D.(3)
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Here ν > 0 is the viscosity parameter, f ∈ L2(D,Rn) is a given vector-valued
function, p is the pressure function and u0 ∈ H1(D,Rn) defines the Dirichlet
boundary conditions on ∂D. It is assumed that divu0 = 0.

The new a posteriori error estimate for the system (1-3) was recently obtained in
[5]. The error error estimate was obtained with the help of the functional method
of analysis of the boundary value problem. Such approach was first presented in
[6].

Assume that

v ∈
o

H
1(D,Rn) + u0 :=

{
w ∈ H1(D,Rn) || w = w̃ + u0, w̃ ∈

o

H
1(D,Rn)

}

is some approximate solution obtained by any numerical method. Then the dif-
ference between exact and approximate solution can be estimated in the following
way:

(4) ν‖∇(u− v)‖ ≤ ‖τ − ν∇v‖+ cD‖f + div τ − Ω× v −∇q‖+

+ (2ν + |Ω|cD)
1

CLBB
‖div v‖.

Here cD is the constant from the Friedrichs inequality and CLBB is the constant
from Ladyzhenskaya-Babuška-Brezzi (inf-sup) inequality.

Let us note, then if rotation parameter is equal to zero, then the problem (1-3)
coincides with the Stokes problem, and the error estimate (4) coincide with the a
posteriori error estimate for the Stokes problem obtained in [7]. In our previous
research we have numerically tested the estimate (see [3]) and compared with other
types of a posteriori error estimate (see [4]).

The functional in the right hand side of (4) majorize the deviation of the ap-
proximate solution from the exact one, therefore it is called the error majorant.

For practical purposes, it is more convenient to use the above error majorant
in a somewhat different form. Let us square both parts of the (4) and use the
Young’s inequalities with positive scalar parameters α1, α2, α3. Thus, we obtain

(5) ν2‖∇(u− v)‖2 ≤ (1 + α1 + α2)‖ν∇v − τ‖2+

+ (1 +
1

α1
+ α3)C

2
Ω‖div τ + f −∇q − Ω× v‖2+

+ (1 +
1

α2
+

1

α3
)(2ν + |Ω|cD)2

1

C2
LBB

‖div v‖2.

Optimal value for scalar parameters αi can be stated analytically.
We note that the right-hand sides of (5) contain only known data (v, ν, f , Ω, D)

and the functions (αi, τ , q), which are in our disposal. Therefore, they are directly
computable. It is clear, that (αi, τ , q) should be selected in order to minimize the
right-hand side of the error majorant.

Minimization of the right-hand side of (5) is a problem of minimization of
quadratic functional, that is reduced to a system of linear simultaneous equations.
We would like to underline, that it is not necessary to find the exact minimizer of
this system. Starting from the initial approach we can use some iterative numerical
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procedure. On the each iteration step, the value of the error majorant give an
upper bound of the error. A function obtained at the end of minimization process
yield an error indicator.

Finally in this work, we present a series of numerical tests and demonstrate
efficiency of the error estimate proposed in estimation overall accuracy of the
approximate solution as well as the the error indication, necessary for the further
mesh adaptation.
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Model adaptivity for plates

Peter Hansbo

(joint work with Mats G. Larson)

The Reissner plate model is described by the following partial differential equa-
tions:

(1)
−∇ · σ(θ)− κ t−2 (∇u− θ) = 0 in Ω ⊂ R2,

−∇ ·
(
κ t−2 (∇u− θ)

)
= g in Ω,

where u is the transverse displacement, θ is the rotation of the median surface, t
is the thickness, t3 g is the transverse surface load, and

σ(θ) := 2µε(θ) + λ∇ · θ 1

is the moment tensor. Here, 1 is the identity tensor and ε is the curvature tensor
with components

εij(θ) =
1

2

(
∂θi
∂xj

+
∂θj
∂xi

)
.

The constitutive parameters are given by the relations κ = E k/(2(1 + ν)), µ :=
E/(6(1 + ν)), and λ := νE/(12(1− ν2)), where E and ν are the Young’s modulus
and Poisson’s ratio, respectively, and k ≈ 5/6 is a shear correction factor.

The differential equations describing the Reissner plate model can be derived
from minimization of the sum of the bending energy, the shear energy, and the
potential of the surface load,

(2) R(u,θ) =
1

2
a(θ,θ) + b(∇u − θ,∇u− θ)−

∫

Ω

g u dΩ

where

a(θ,ϑ) =

∫

Ω

σ(θ) : ε(ϑ) dΩ and b(θ,ϑ) =

∫

Ω

t−2θ · ϑ dΩ.
In the limit t → 0 we obtain the Kirchhoff model which corresponds to mini-

mization of

(3) K(u) =
1

2
a(∇u,∇u)−

∫

Ω

g u dΩ.

Note that in this case θ = ∇u.
Our goal is to deduce a posteriori error estimates for both the discretization

error and the model error between the Kirchhoff and the Reissner model. We then
need a finite element method that can be used in both cases. To define such a
method we introduce a tirangulation T of Ω into affine simplices T , as well as the
set of edges in the mesh, E = {E}, and we split E into two disjoint subsets

E = EI ∪ EB,
where EI is the set of edges in the interior of Ω and EB is the set of edges on the
boundary. Further, with each edge we associate a fixed unit normal n such that
for edges on the boundary n is the exterior unit normal. We denote the jump of
a function v at an edge E by [v] = v+ − v− for E ∈ EI and [v] = v+ for E ∈ EB,
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and the average 〈v〉 = (v+ + v−)/2 for E ∈ EI and 〈v〉 = v+ for E ∈ EB, where
v± = limǫ↓0 v(x∓ ǫn) with x ∈ E.

Our method can now be formulated as follows: find (uh,θh) ∈ Vh×W h, where

Vh = {v ∈ H1
0 (Ω) ∩ C0(Ω) : v|T ∈ P 2(T ) for all T ∈ T },

and
W h := {ϑ ∈ [L2(Ω)]2 : ϑ|T ∈ [P 1(T )]2 for all T ∈ T },

such that

(4) ah(θh,ϑ) + b(∇uh − θh,∇v − ϑ) = (g, v)

for all (v,ϑ) ∈ Vh ×W h. In (4) the bilinear form ah(·, ·) is defined on W h ×W h

as follows

ah(θ,ϑ) =
∑

T∈T

(σ(θ), ε(ϑ))T −
∑

E∈EI∪EB

(〈n · σ(θ)〉, [ϑ])E + (〈n · σ(ϑ)〉, [θ])E

+ (2µ+ 3λ) γ
∑

E∈EI∪EB

h−1
E ([θ], [ϑ])E

for all θ,ϑ ∈W h. Here γ is a positive constant and hE is defined by

(5) hE =
(
|T+|+ |T−|

)
/(2 |E|) for E = ∂T+ ∩ ∂T−,

with |T | the area of T , on each edge.
Setting θh = ∇uh and ϑ = ∇v we get the following method: find uh ∈ Vh such

that

(6) ah(∇uh,∇v) = (g, v)

for all v ∈ Vh. It is possible to show that the suggested finite element method is
stable and convergent in both cases (cf. [1, 2]).

Using a posteriori analysis, together with a priori stability of the continuous
problem, we can deduce an estimate of the type

(u− uh, ψ)

‖ψ‖H−1(Ω) + t‖ψ‖L2(Ω)
≤ C

(
(h3 + th2)‖R1(θ

h)‖L2(Ω)

+ th‖R2(θ
h −∇uh)‖L2(Ω) + t‖R2(θ

h −∇uh)‖H−1(Ω)

)

(for ψ arbitrary) where R1 describes the imbalance between moments and external
load andR2 the imbalance between moments and shear forces. Details will be given
in a forthcoming paper.
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DG discretizations for compressible flows: Adjoint consistency

analysis, error estimation and adaptivity

Ralf Hartmann

1. Adjoint consistency - in addition to consistency - is the key requirement for
discontinuous Galerkin (DG) discretizations to be of optimal order in L2 as well as
measured in terms of target functionals J(·). If the primal and adjoint solutions
are sufficiently smooth, the order of convergence in J for an adjoint consistent
discretization is twice the order of an adjoint inconsistent discretization (order
doubling). In this talk we provide a general framework, see [3, 4], for analyzing the
adjoint consistency of DG discretizations. We collect several conclusions which can
be drawn from analyzing the adjoint consistency property of DG discretizations of
the linear advection equation, Poisson’s equation and the compressible Euler and
Navier-Stokes equations. Consider the linear problem and linear target functional

Lu = f in Ω, Bu = g on Γ,(1)

J(u) =

∫

Ω

jΩ u dx +

∫

Γ

jΓ Cu ds,(2)

where L denotes a linear differential operator on Ω, and B and C denote linear
differential (boundary) operators on Γ. The target functional J(·) in (2) is said to
be compatible with (1), provided following compatibility condition holds

(3) (Lu, z)Ω + (Bu,C∗z)Γ = (u, L∗z)Ω + (Cu,B∗z)Γ,

where L∗, B∗ and C∗ denote the adjoint operators to L, B and C. Then the
(continuous) adjoint problem associated to (1), (2) is given by

L∗z = jΩ in Ω, B∗z = jΓ on Γ.(4)

Let (1) be discretized as follows: find uh ∈ Vh such that

(5) B(uh, vh) = F(vh) ∀vh ∈ Vh,

Then, the discretization (5) is consistent if the exact solution u ∈ V to the primal
problem (1) satisfies: B(u, v) = F(v) for all v ∈ V . Similarly, the discretization (5)
is adjoint consistent if the exact solution z ∈ V to the continuous adjoint problem
(4) satisfies: B(w, z) = J(w) for all w ∈ V .

Analoguously, for a nonlinear problem and nonlinear target functional

Nu = 0 in Ω, Bu = 0 on Γ,(6)

J(u) =

∫

Ω

jΩ(u) dx +

∫

Γ

jΓ(Cu) ds,(7)

where N is a nonlinear differential operator and B is a (possibly nonlinear) bound-
ary operator, the continuous adjoint problem is given by

(N ′[u])∗z = j′Ω[u] in Ω, (B′[u])∗z = j′Γ[Cu] on Γ.(8)
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Let N : V × V → R be a semi-linear form, such that the nonlinear problem (6) is
discretized as follows: find uh ∈ Vh such that

(9) N (uh, vh) = 0 ∀vh ∈ Vh.
The corresponding discrete adjoint problem is given by: find zh ∈ Vh such that

(10) N ′[uh](wh, zh) = J ′[uh](wh) ∀wh ∈ Vh,
where N ′[u] denotes the Fréchet derivatives of N (u, v) with respect to u. The
discretization (9) is consistent if the exact solution u ∈ V to the primal problem
(6) satisfies following equation:

(11) N (u, v) = 0 ∀v ∈ V.
Furthermore, the discretization (9) is adjoint consistent if the exact solution z ∈ V
to the adjoint problem (8) satisfies following equation:

(12) N ′[u](w, z) = J ′[u](w) ∀w ∈ V,
In other words, a discretization is adjoint consistent if the discrete adjoint problem
is a consistent discretization of the continuous adjoint problem.

For analysing adjoint consistency we rewrite the discrete adjoint problem (10)
in element-based adjoint residual form: find zh ∈ Vh such that

(13)
∑

κ∈Th

∫

κ

whR
∗[uh](zh) dx+

∑

κ∈Th

∫

∂κ\Γ

wh r
∗[uh](zh) ds+

∫

Γ

wh r
∗
Γ[uh](zh) ds = 0,

for all wh ∈ Vh, where R∗[uh](zh), r
∗[uh](zh) and r∗Γ[uh](zh) denote the adjoint el-

ement, interior face and boundary residuals, respectively. Then, the discretization
(9) is adjoint consistent if (13) holds also for the exact solutions u and z which is
true provided u and z satisfy

R∗[u](z) = 0 in κ, r∗[u](z) = 0 on ∂κ \ Γ, κ ∈ Th, r∗Γ[u](z) = 0 on Γ.(14)

The adjoint problem and consequently the adjoint consistency of a discretization
depends on the specific target functional J(·) under consideration. Given a target
functional of the form (7), we see that R∗[u](z) depends on jΩ(·), and r∗Γ[u](z)
depends on jΓ(·). For obtaining an adjoint consistent discretization, it is in some

cases necessary to replace J(·) by a modified target functional J̃(·) which is consis-

tent if J(u) = J̃(u) holds for the exact solution u. Furthermore, requiring adjoint
consistency may have consequences on the discretization of boundary conditions.
In the following we give several examples, see [3].

Linear advection-reaction equation: We consider the linear advection-
reaction equation and a compatible target functional of the form:

∇ · (bu) + cu = f in Ω, u = g on Γ−,

J(u) =

∫

Ω

jΩ udx +

∫

Γ+

jΓ uds
(15)

The discontinuous Galerkin discretization of this problem based on upwind is
adjoint consistent and the error J(u)− J(uh) in the target functional is O(h2p+1)
for sufficiently smooth primal and adjoint solutions.
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Poisson’s equations: We consider the following elliptic model problem and a
compatible target functional of the form:

−∆u = f in Ω, u = gD on ΓD, n · ∇u = gN on ΓN ,

J(u) =

∫

Ω

jΩ udx +

∫

ΓD

jD n · ∇u ds+

∫

ΓN

jN uds.
(16)

The non-symmetric interior penalty DG (NIPG) discretization of this problem is
adjoint inconsistent and hence the error J(u) − J(uh) in the target functional is

O(hp). In contrast to that the error J(u)− J̃(uh) of the symmetric version (SIPG)
together with following modified target functional, see also [1],

(17) J̃(uh) = J(uh)−
∫

ΓD

δ(uh − gD)jD ds.

is O(h2p). We note, that without this so-called IP modification of J(·) the dis-
cretization is adjoint inconsistent and O(hp), only. Here, again, all orders of con-
vergence hold provided the primal and adjoint solutions are sufficiently smooth.

The compressible Euler equations: We consider the compressible Euler
equations with slip wall boundary conditions and a compatible target functional:

∇ · Fc(u) = 0 in Ω, v · n = 0 on ΓW ,

J(u) =

∫

ΓW

p(u)n · ψΓW
ds.

(18)

Examples of J(·) are the drag and lift coefficient with ψΓW
= 1

C∞

ψ and ψ =

ψd = (cos(α), sin(α))⊤ for the drag and ψ = ψl = (− sin(α), cos(α))⊤ where
α is the angle of attack and C∞ is a constant depending on freestream quanti-
ties. DG discretizations of the compressible Euler equations include numerical
flux functions H(u+

h ,u
−
h ,n) approximating a Riemann problem connecting the

states u+
h and u−

h between neighboring elements. The standard approach of tak-
ing the same numerical flux HΓ = H on the boundary Γ as in the interior domain
and replacing the exterior value u−

h by a boundary value function uΓ(u+
h ) like in∫

Γ
HΓ(u+

h ,uΓ(u+
h ),n)v ds and computing the target functional like given in (18)

is adjoint inconsistent. The adjoint consistency analysis reveals that instead using

HΓ(u+
h ,uΓ(u+

h ),n) = n · Fc(uΓ(u+
h )), and J̃(uh) = J(uΓ(u+

h )),(19)

see also [8], leads to an adjoint consistent discretization.
The compressible Navier-Stokes equations: We consider the compress-

ible Navier-Stokes equations with noslip wall isothermal (T = Twall on Γiso) or
adiabatic (n · ∇T = 0 on Γadia) boundary conditions and a compatible target
functional:

∇ · (Fc(u)−Fv(u,∇u)) = 0 in Ω, v = (v1, v2)
⊤ = 0 on ΓW = Γiso ∪ Γadia,

J(u) =

∫

ΓW

(pn− τ n) ·ψΓW
ds.(20)

Examples of J(·) are the total (i.e. pressure induced plus viscous) drag or lift coffi-
cient with ψΓW

as defined (18). For obtaining an adjoint consistent discretization,
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here the boundary terms must be modified analoguous to the boundary terms of
the compressible Euler equations. Additionally, if the target functional J(·) in
(20) is modified as follows, see [3],

(21) J̃(uh) = J(uΓ(u+
h )) +

∫

ΓW

δ
(
u+
h − uΓ(u+

h )
)
· zΓ ds

where zΓ is the boundary value of the continous adjoint problem then the dis-
cretization is adjoint consistent. This modification corresponds to the IP modi-
fication of J for Poisson’s equation in (17). If, however, the target functional is
evaluated as in (20) then the discretization is adjoint inconsistent.

To summarize: Only in combination with target functionals which are compat-
ible with the primal equations we can expect a DG discretization to be adjoint
consistent. It can be shown that only the target functionals given in (15), (16),
(18) and (20) are compatible with the respective primal equations and may lead to
an adjoint consistent discretization. Additionally, as shown for the compressible
Euler and Navier-Stokes equations, special care is required in the discretization of
boundary conditions as otherwise adjoint consistency and order doubling is lost.

2. Error estimation and adaptivity: Given a discretization (9) the error
J(u) − J(uh) can be represented by J(u) − J(uh) = −N (uh, z) where z is the
exact (and in general unkown) solution to the continuous adjoint problem (8).

Replacing z by the solution z̃h ∈ Ṽh to the discrete adjoint problem (9) we ob-
tain an approximate error representation J(u) − J(uh) ≈ −N (uh, z̃h) =

∑
κ ηκ

which can be decomposed as a sum of local dual-weighted-residual or adjoint-
based indicators ηκ. The approximate error representation and the adjoint-based
indicators have been successfully applied in the a posteriori error estimation and
goal-oriented mesh refinement for discontinuous Galerkin discretizations of invis-
cid and viscous laminar sub-, trans- and supersonic compressible flows, [2, 4, 5, 6],
also in combination with anisotropic mesh refinement [7].
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hp–adaptive discontinuous Galerkin FEMs on isotropic and

anisotropically refined meshes

Paul Houston

(joint work with Manolis Georgoulis and Edward Hall)

We present an overview of some recent developments concerning the a posteri-

ori error analysis and adaptive mesh refinement of non-conforming discontinuous
Galerkin (DG) finite element methods for the numerical solution of second-order
PDEs with non-negative characteristic form. Here, we shall be particularly con-
cerned with the derivation of a posteriori bounds on the error measured in terms of
certain output functionals of the solution of practical interest; relevant examples
include the lift and drag coefficients for a body immersed into a fluid, the local
mean value of the field or its flux through the outflow boundary of the computa-
tional domain, and the pointwise evaluation of a component of the solution.

By employing a duality argument we derive so–called weighted or Type I a pos-

teriori estimates which bound the error between the true value of the prescribed
functional, and the actual computed value. In these error estimates, the element
residuals of the computed numerical solution are multiplied by local weights in-
volving the solution of a certain dual or adjoint problem. On the basis of the
resulting a posteriori error bound, we design and implement an hp–adaptive fi-
nite element algorithm to ensure reliable and efficient control of the error in the
computed functional with respect to a user–defined tolerance. Here, the adap-
tive algorithm employed will be based on a combination of local isotropic and
anisotropic refinement of the computational mesh and local polynomial degrees.
Numerical experiments highlighting the performance of the proposed anisotropic
hp-adaptive strategy will be presented.
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Computational Thermodynamics

Claes Johnson

We present an alternative to Statistical Mechanics as basis of Thermodynam-
ics, based on finite precision computation in the form of stabilized finite element
methods for the Euler equations. For more material see the webpage [1].
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Convergence of an adaptive finite element methods for the p-Laplace

equation

Christian Kreuzer

(joint work with Lars Diening)

We report on the recent work [DK07], where we analyze linear convergence of an
adaptive finite element mathod for the p-Laplace equation. In particular let Ω be
a polyhedral, bounded domain in Rd, d ∈ N. We consider the following system of
nonlinear structure

− div(A(∇u)) = f in Ω,

u = 0 on ∂Ω.
(1)

Our considerations include in particular the case of the p-Laplacian, where

A(∇u) = (κ+ |∇u|)p−2∇u,(2)

with 1 < p <∞, κ ≥ 0, f ∈ Lp′(Ω), and 1
p + 1

p′ = 1.

For computing numerical approximations to the solution of (1) we use a stan-
dard adaptive finite element method (AFEM). It consist of the basic loop

Solve→ Estimate→Mark→ Refine(AFEM)

starting from a initial triangulation of Ω. To be more specific, the finite element
problem on the current mesh is solved, then the aposteriori error estimator is com-
puted and finally with its help elements are marked for refinement. The marking
strategy resorts to Dörfler’s marking introduced in [Dör96]. The algorithm uses
piecewise linear, continuous finite elements, whereas the refinement is realized by
newest vertex bisection. This produces a sequence of weak finite element solu-
tions uk of (1) in nested finite element spaces Vk.

The main result states linear convergence of uk to the weak solution u of (1).
In particular, we show that there exists α ∈ (0, 1), C > 0 with

‖F(∇uk)− F(∇u)‖22 + osc2k(f) ≤ α2kC,

where the vector field F arises from the vector field A by F(a) := |A(a)| 12 |a|− 1
2 a.

The L2 norm of the error ‖F(∇uk) − F(∇u)‖22 measured in terms of F is equiv-
alent to the so called quasi norm ‖∇uk − ∇u‖2(p) introduced by Barrett and Liu,
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cf. [BL94a]. The quasi norm was a breakthrough in the numerical investigation
of (1). In particular, Barrett and Liu obtained the best approximation property
of the conforming, finite element solution uh ∈ Vh in terms of quasi norms, i.e.

‖∇v −∇vh‖2(p) ≤ c min
ψh∈Vh

‖∇v −∇ψh‖2(p),

In [EL05] it has been proved by Ebmeyer and Liu that for piecewise linear, contin-
uous finite elements and p > 2d

d+2 the best approximation error can be estimated
as

min
ψh∈Vh

‖∇v −∇ψh‖2(p) ≤ c h2

∫

Ω

(κ+ |∇u|)p−2 |∇2u|2 dx.(3)

Recently, Diening and Růžička improved these results in [DR06] to the case p > 1
admitting also more general finite element spaces. In particular, they showed

‖F(∇v)− F(∇vh)‖22 ≤ c min
ψh∈Vh

‖F(∇v)− F(∇ψh)‖22
and

‖F(∇v)− F(∇Πhv)‖22 ≤ c h2 ‖∇F(∇u)‖22,(4)

where Πh is a suitable interpolation operator, e.g. the Scott-Zhang operator. We
want to mention that the right hand sides of (3) and (4) are proportional. They
express the natural regularity of a strong solution of (1) (cf. [Giu03], [BL93a],
[ELS05], [Ebm05]).

The technique of quasi-norms founds its way into a posteriori analysis in the
work of Liu and Yan [LY01, LY02]. They show that

c η2
h − C osc2h(f) ≤ ‖∇u−∇uh‖2(p) ≤ C

(
η2
h + η̃2

)

for residual based estimators ηh. Numerical experiments [LY01, CK06] indicate,
that these new estimators are indeed sharper and lead to more efficient meshes
than existing ones. However for convergence analysis the additional term η̃2 causes
problems, since it forms a gap between the left and the right hand side. In this
talk we present estimators that overcome this drawback:

c η2
h − C osc2h(f) ≤ ‖F(∇u)− F(∇uh)‖22 ≤ C η2

h.(5)

Recently a posteriori error estimators by gradient recovery have been studied in
[CLY06].

Dörfler was the first who proved in [Dör96] linear error reduction of (AFEM) for
the linear Laplacian, if the data oscillation is small enough. Later, this additional
assumption has been removed by Morin, Nochetto, and Siebert in [MNS00] by
additional marking for oscillation. The first convergence result for the nonlinear
Laplacian is stated by Veeser [Ve02]. There residual based estimators for the W 1,p

norm are used. Since there appears a gap in the power between the upper and
lower estimates this prevents to prove linear convergence.

The convergence results in the linear case are heavily based on Galerkin orthog-
onality and the Pythagorean Theorem which yield

|||uh − u|||2 = |||uH − u|||2 − |||uH − uh|||2.(6)
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in the energy norm. To overcome the lack of orthogonality in the non-linear case
we proceed as follows: We show that the energy difference of weak solutions in
nested spaces V1 ⊂ V2 is proportional to the quasi-norm distance, i.e.

J (u1)− J (u2) ∼ ‖∇u1 −∇u2‖2(p) ∼ ‖F(∇u1)− F(∇u2)‖22,

where J (u) is the energy functional of (1), u1 ∈ V1, and u2 ∈ V2. This property
and the trivial equality

J (uh)− J (u) =
(
J (uH)− J (u)

)
−
(
J (uH)− J (uh)

)

is our substitute for the orthogonality of the error (6).
In the linear, symmetric case it is possible to consider the reduction of the

error and the oscillation independently, since the oscillation is solely dependent on
the data f . Mekchay and Nochetto showed linear reduction of the sum of error
and oscillation for non-symmetric second order linear elliptic PDE in [MN05]. In
this case oscillation and error are coupled. A similar effect appears in our non-
linear setting. We introduce a new proof for error reduction, which enables us to
manage without extra marking for oscillation. Our proof permits to use the fact
that oscillation is dominated by the error indicator. Moreover, we show a strict
reduction of the difference of energies plus the oscillation in each step.

An essential tool in our calculations in the use of shifted N-functions, namely
φa. They are closely related to the quasi-norms, which is best expressed by the
relation

(
A(a)−A(b)

)
· (a− b) ∼

∣∣F(a)− F(b)
∣∣2 ∼ φ|a|(|a − b|)

for a,b ∈ R
d. The shifted N-functions enable us to handle even more general

non-linear equations than the p-Laplacian. But most important, the shifted N-
functions simplify and clarify the calculations significantly also in the case of the
p-Laplacian.
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[DR06] L. Diening and M. Růžička, Error estimates for interpolation operators in Orlicz-Sobolev
spaces and quasi norms, Preprint, Mathematische Fakultät, Albert-Ludwigs-Universität
Freiburg (2006).

[Dör96] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer.
Anal. 33 (1996), no. 3, 1106–1124.

[Ebm05] C. Ebmeyer, Gobal regularity in Sobolev spaces for elliptic problems with p-structure on
bounded domains, Trends in partial differential equations of mathematical physics, Progr.
Nonlinear Differential Equations Appl., vol. 61, Birkhäuser, Basel, 2005, pp. 81–89.
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Adaptive methods for stationary variational problems from a wavelet

perspective

Angela Kunoth

When designing adaptive methods for stationary PDEs in variational form, the
perhaps mostly used criterion to steer adaptivity is based on controlling the error
between the solution and its approximation with respect to some norm. Choos-
ing the energy norm, a corresponding paradigm based on wavelets was developed
in a series of papers [4, 5, 6], covering also nonsymmetric and nonlinear elliptic
PDEs, see also [7] for a survey. There not only a convergence theory was developed
based on perturbation arguments to approximate solutions in infinite-dimensional
spaces but, most importantly, also optimal complexity estimates were provided in
the following sense: if the solution can be approximated by N terms in a wavelet
expansion up to approximation order N−s for some s > 0, then the designed
schemes recover this approximation with optimal complexity O(N). The realiza-
tion of these schemes relies on iterative procedures in infinite-dimensional spaces
and a sophisticated approximate matrix-vector multiplication in wavelet coordi-
nates. I presented a variant of these schemes based on inexact conjugate gradient
iterations combined with a nested iteration scheme [2, 3].
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Moreover, in my talk I discussed an extension of these concepts to optimal
control problems with distributed or Neumann boundary control constrained by
an elliptic PDE [8], and to problems with Dirichlet boundary control [12]. The
corresponding adaptive schemes have been shown to converge, yielding for each of
the involved variables (state, costate, control) its own refinement with asymptotical
optimal complexity. An important feature of an efficient implementation of these
schemes are absolute small uniformly bounded condition numbers of the resulting
saddle point matrices [15], see also the survey [11].

Steering adaptivity with respect to some functional of the solution, see [1, 10],
the issue of convergence and convergence rates has been studied recently based on
finite elements in [13, 14]. Here I have also presented some results on goal-oriented
error estimation based on wavelets together with optimal convergence rates and
corresponding numerical experiments from [9].
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Fully automatic hp-adaptivity for acoustic and electromagnetic

scattering in three dimensions

Jason Kurtz

(joint work with Leszek Demkowicz)

We present an algorithm for fully automatic hp-adaptivity for finite element ap-
proximations of elliptic and Maxwell boundary value problems in three dimen-
sions. The algorithm automatically generates a sequence of coarse grids, and a
corresponding sequence of fine grids (obtained by a global hp-refinement of the
coarse grids), such that the energy norm of the error decreases exponentially with
respect to the number of degrees of freedom (d.o.f.) in either sequence. At each
step, we employ a discrete optimization algorithm to determine the refinements
for the current coarse grid such that the projection-based interpolation error for
the current fine grid solution decreases with an optimal rate with respect to the
number of d.o.f. added by the refinement. The refinements are restricted only by
the requirement that the resulting mesh is at most 1-irregular, but they may be
anisotropic in both element size h and order of approximation p.

1. Projection-based interpolation

Our method is based on the theory of conforming hp discretizations of the
function spaces H1, H(curl), H(div) and L2, and the corresponding projection-
based interpolation operators [1]. For our present purpose, we only recall the
definition of the H(curl) interpolant.

On a hexahedral element K the projection based interpolant ΠcurlE of a func-

tion E ∈Hǫ(curl,K) ∩H1/2+ǫ(K) is defined in four stages:

ΠcurlE = E0 +E1 +E2 +E3

∈ Qp−1,p,p(K)×Qp,p−1,p(K)×Qp,p,p−1(K)

(1) Edge averages: for each edge e, find constant E0 such that
∫

e

(E − E0)t ds = 0

(2) Edge projections: find E1 such that

‖
∫ s

0

(E − E0 − E1)t‖0,e → min

(3) Face projections: for each face f , find E2 such that

‖curlf (E − E0 − E1 − E2)t‖−1/2,f → min
((E − E0 − E1 − E2)t,∇fφ)−1/2,f = 0 ∀φ ∈ Qp−1(f)

(4) Interior projection: find E3 such that

‖∇× (E −E0 −E1 −E2 −E3)‖0,K → min
(E −E0 −E1 −E2 −E3,∇φ)0,K = 0 ∀φ ∈ Qp−1(K)
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For the computations below, the fractional face norm is replaced by a weighted
L2-norm.

2. The hp-algorithm

The basis of the hp algorithm is that we project the fine grid solution separately
onto each coarse grid element and onto a nested sequence of meshes that is locally
imbedded in the fine grid. For each coarse grid element, this sequence is built
dynamically by testing all possible types of local h-refinement, and keeping the
one that delivers the fastest decay in the projection error with respect to the
number of d.o.f. added. By not enforcing the global conformity of the interpolant
we obtain a dramatically simplified implementation (compare [2]). The algorithm
follows the natural hierarchy in the projection-based interpolation, and so consists
of three steps, dealing in turn with edges, faces and element interiors. The optimal
refinement from each step provides the minimal refinement (starting point) for the
next. The final optimal refinements for elements are then possibly upgraded to
maintain 1-irregularity, and applied to the current coarse grid to obtain the next
optimal coarse grid, and the whole procedure is repeated.

Here, we only describe the first step, dealing with edges. We use a two-stage
discrete optimization algorithm. In stage one, the fine grid solution is projected
onto each coarse grid edge, the edge resulting from p-enrichment, and a nested
sequence of edges resulting from h-refinement and built dynamically by enriching
the order of the son with largest projection error (the so-called largest son error
refinement path). A local competition between p-enrichment (which adds one
local d.o.f.), and the h-refinement that also adds one d.o.f., determines the optimal
direction (p or h) of investment for the edge. The decision whether any investment
should occur is postponed until stage two.

During stage one, we keep track of the global maximum error decrease rate
with respect to the number of local d.o.f. added, relative to the coarse grid, for all
refinements tested. In stage two (a global competition), all edges that deliver rates
within some tolerance (70%) of the global max are flagged for investment, in the
optimal direction determined in stage one. If the optimal direction is h-refinement,
we re-trace the largest son error refinement path until the rate drops below 70%
of the global max, possibly adding more than one d.o.f.

The discrete optimization for faces and element interiors is similar to that for
edges. For a detailed description of the algorithm and enabling high performance
technologies, please see [3].

3. Numerical Example

Consider the electromagnetic scattering from a perfectly electrically conduct-
ing (PEC) box in an infinite square PEC waveguide. The box occupies Ωint =
(1/3, 2/3)2 × (−.05, .05) and the waveguide Ω∞ = (0, 1)2 × (−∞,∞). The fre-

quency ω is midway between the first (ωc10 = ωc01 = π) and second (ωc11 =
√

2π)

cutoff frequencies, and we use the incident waveEinc = E+
10 = (0, sinπx, 0)e−iβ10z ,

traveling in the +z direction (β10 =
√
ω2 − π2).
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Figure 1. Convergence for the sequence of hp coarse grids for
the waveguide (left) and real and imaginary parts of Ey in the
plane y = 1/2 (right)

We truncate Ω∞ with an impedance boundary condition at z = ±1 (denoted
ΓC) and solve for the scattered electric field E in the truncated exterior domain
Ω = (0, 1)2 × (−1, 1) \ Ωint. With ΓD denoting the lateral walls of the waveguide
and boundary of Ωint, E satisfies,

∇×∇×E − ω2E = 0 in Ω

n×E = −n×Einc on ΓD

n×∇×E = iβ10E on ΓC

and the standard variational formulation reads,

(1)






Find E ∈ −Einc + V :∫

Ω

{
∇×E ·∇× F − ω2E · F

}
dx + iβ10

∫

ΓC

E · F dΓ = 0 ∀F ∈ V

where V = {F ∈H(curl,Ω) : n× F = 0 on ΓD}.
From an initial coarse grid with 26 elements and p = 2, we were able to execute

five steps of hp adaptive refinement, with the estimated percent relative error
for the sequence of coarse grids shown in Figure 1 (left). The convergence is
exponential, with a steeper pre-asymptotic rate. Real and imaginary parts of Ey
from the final fine grid (653K dof) are shown in Figure 1 (right). Cross sections
of the final coarse grid orders along the y-axis are shown in Figure 2.
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On global error control for parabolic PDEs

Jens Lang

(joint work with Kristian Debrabant and Jan Verwer)

Let us first suppose that we are given the initial value problem for the system of
ODEs in Rm

(1) w′ = F (t, w) , w(0) = w0 , 0 < t ≤ T ,
and a sequence of approximations v(tn) to its exact solution values w(tn) computed
by a numerical integration method at a certain time grid

(2) 0 = t0 < t1 < · · · < tn < · · · < tN−1 < tN = T .

Hereby the major research concerns are efficiency: how to get the v(tn) at minimal
CPU costs (if m≫ 1), and reliability: how large is the global error

(3) e(t) = v(t)− w(t),

where v(t) is calculated by a suitable interpolation method provided by the inte-
grator.

Existing popular codes focus on efficiency by adaptively optimizing time grids
(2) in accordance with local error control. Such a control makes sense if solutions
exhibit sharp changes at local intervals much smaller than the total interval [0, T ]
and are smooth elsewhere. However, local errors (errors made within a single
integration step) may substantially differ from the global ones (3). This largely
depends on the conditioning (stability) of the system (1) at hand (sensitivity to
growth in time of perturbations of w0 and F (t, w)). If a system is well-conditioned,
a well designed local error control [5, 6] will work out reliably. But if the condi-
tioning is bad, even the best designed local error control should not be trusted.

For global error control it is necessary to take into account the conditioning
of system (1). Herewith it is desirable to avoid strict a priori error bounds as
these can be overly pessimistic, e.g. when fortunate cancellation effects occur.
Taking into account the conditioning of system (1) is best done during actual
computation. This requires at least two full integrations over [0, T ], both in the
classical (forward-forward) approach [7] based on the first variational equation and
the adjoint (forward-backward) approach based on the adjoint method combined
with a small sample statistical initialization [1]. Numerical experiments in [4] for
ODE systems have shown, using the 3rd-order, A-stable Runge-Kutta-Rosenbrock
method ROS3P as example integrator, that classical global error estimation is
remarkably reliable.

With the residual error defined by

r(t) = v′(t)− F (t, v(t)),

the global error fulfills the initial value problem

e′(t) = F (t, v(t)) − F (t, w(t)) + r(t), 0 < t ≤ T, e(0) = 0.
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The mean value theorem for vector functions yields

(4) e′(t) = F ′(t, v(t))e(t) + r(t) +O(e(t)2).

Apparently, by implementing a proper choice of the defect r(t) solving this equa-
tion will in leading order provide approximations to the true global error. To do so,
we define v(t) by piecewise cubic Hermite interpolation. By Taylor expansion one
can show that the cubic Hermite defect halfway the step interval can be used to
retrieve in leading order the local error of any one step method of order 1 ≤ p ≤ 3.

Following the arguments given in [4], Section 2.1, we consider instead of (4) the
step size frozen version

e′(t) = F ′(tn, v(tn)) e(t) + 2
3r(tn+ 1

2
), t ∈ (tn, tn+1], n = 0, . . . , N−1,

e(0) = 0

to approximate the global error e(t). In addition, working for the local error with

Est =
2

3
(I − γτnF ′(tn, v(tn)))−1r(tn+1/2) ,

where γ is the stability coefficient of ROS3P, the property of tolerance proportion-
ality [5] is asymptotically ensured, that is, there exists a linear relationship between
the global error and the local accuracy tolerance. Thus, e(t) can be successfully
controlled by a second run with an adjusted local tolerance.

This approach can be extended to parabolic initial boundary value problems

∂tu(t, x) = f(t, x, u(t, x), ∂xu(t, x), ∂xxu(t, x)) , t ∈ (0, T ] , x ∈ Ω ⊂ R
d ,

with appropriate initial and boundary conditions. Application of the Method of
Lines on a spatial mesh Ωh, h > 0, gives

(5)
Mh U

′
h(t) = Fh(t, Uh(t)) , t ∈ (0, T ] ,

Uh(0) = Uh,0 ,

Let Rh : u(t, · )→ Rhu(t) be the restriction operator which maps u(t) to its spatial
degrees of freedom. Defining the spatial discretization error by

ηh(t) = Uh(t)−Rhu(t) ,
the vector of overall global errors Eh(t) = Vh(t)− Rhu(t) may be written as sum
of the global time and spatial error, that is,

Eh(t) = eh(t) + ηh(t) .

Since the global time error can be controlled as in the ODE case, it remains to
estimate the global spatial error. By making use of the restriction operator Rh,
the spatial truncation error is defined by

(6) αh(t) = Mh (Rhu)
′(t)− Fh(t, Rhu(t)) .

From (5) and (6), it follows that the global spatial error ηh(t) representing the
accumulation of the spatial discretization error, is the solution of the initial value
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problem

Mh η
′
h(t) = Fh(t, Uh(t))− Fh(t, Rhu(t))− αh(t) , t ∈ (0, T ] ,

ηh(0) = 0

where we have used Uh,0 = Rhu0, which bears no restriction. Again, the mean
value theorem for vector functions yields

Mh η
′
h(t) = ∂Uh

Fh(t, Uh(t)) ηh(t)− αh(t) +O(ηh(t)
2), t ∈ (0, T ],

ηh(0) = 0 .

Apparently, implementing a proper choice of αh(t) will in leading order provide
approximations of the global spatial error. To estimate αh(t) by Richardson ex-
trapolation [2], we consider a second semi-discretization on Ω2h

M2hU
′
2h(t) = F2h(t, U2h(t))

and assume that ηh(t) is of order q with respect to h. Then by Taylor expansion
we obtain

α2h(t) =
2q

2q − 1

(
M2h(V

c
h )′(t)− F2h(t, V

c
h (t))

)
+O(τp) +O(hq+1),

where V ch (t) is the vector Vh(t) restricted to the coarser grid Ω2h. Finally, an
approximation α̃h(t) of the spatial truncation error on the (original) fine mesh is
obtained by interpolation respecting the order of accuracy, which serves to compute
an estimate of ηh(t). The control of ηh(t) is obtained through (uniform) mesh
refinement.

Based on the control of both the global spatial and global time error, one can
now use an adequate control strategy to balance them in order to achieve an
accuracy imposed by the user. Our numerical examples confirm the reliability of
the estimation and control strategies [3].
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A basic convergence result for conforming adaptive finite element

methods

Pedro Morin

(joint work with Kunibert G. Siebert and Andreas Veeser)

A quite popular, natural adaptive version of classical finite element methods con-
sists of the loop

(1) SOLVE → ESTIMATE → MARK → REFINE,

that is: solve for the finite element solution on the current grid, compute the
a posteriori error estimator, mark with its help elements to be subdivided, and
refine the current grid into a new, finer one. While there is a rather elaborated
theory for the derivation of a posteriori error estimators, see e.g. [1, 3, 18], the
theoretical understanding of the convergence and complexity of such methods is
in the early stages.

Babuška/Vogelius [2] give an analysis of (1) for linear, elliptic, and symmetric
problems in 1d. The first multidimensional result is Dörfler [8]. It ensures with
pathbreaking ideas that, after a pre-adaptation to data, (1) reduces the error
below any prescribed tolerance. Proper convergence without conditions on the
initial grid was proved by Morin/ Nochetto/Siebert [10]. The latter work was
generalized in various directions by, e.g., [5, 6, 7, 9, 11, 14, 15, 17]. Relying on
techniques from Binev/Dahmen/DeVore [4] and new ideas, Stevenson [16] gives
an important complexity result for an algorithm that is quite close to (1).

Without any doubts, these results are an important progress in the theoretical
understanding of (1). Nevertheless, a critical review reveals the following limita-
tions:

• Symmetric elliptic problems. Except for [6, 9], all aforementioned results
are within a coercive elliptic variational framework. Carstensen/Hoppe [6]
treat a mixed formulation for the Poisson problem by exploiting a close
relationship to the direct discretization with Crouzeix-Raviart elements.
Mekchay/Nochetto [9] allow for a non-symmetric operator, at the price
that the initial grid has to be sufficiently fine – a condition of a priori
spirit, the necessity of which is not supported by numerical experiments
even for convection-dominated diffusion problems.
• Conforming discretizations and Galerkin solutions. In all results the dis-

crete space(s) are included in the continuous one(s) and the discrete solu-
tion is the Galerkin approximation.
• Dörfler’s strategy and special marking for oscillation. Except for [14],

all convergence and complexity results assume Dörfler’s strategy. How-
ever, numerical results strongly suggest that, for instance, the maximum
strategy is competitive with Dörfler’s. Results with the standard residual
error estimator require a special treatment like marking or pre-adaptation
for (data) oscillation, although the standard residual estimator dominates
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oscillation and algorithms without special treatment of oscillation also
converge.
• Artificial conditions for refinement. All results require a certain, non-

minimal subdivision depth for patches associated with marked elements,
e.g., the creation of interior nodes is often required. Computational evi-
dence does not support the necessity of these requirements for convergence
or quasi-optimal complexity. In addition, such requirements complicate
the implementation and, if the required subdivision depth is quite big,
yield (1) non-practical.

We presented a new, basic convergence result for (1) applied to linear boundary
value problems. The convergence result holds for very general assumptions that
are fulfilled by most of the problems analyzed in practice. These assumptions
involve the problem itself, the refinement framework, the finite element spaces,
the approximate solution, the a posteriori error estimator, the marking strategy
and the step REFINE. They ensure the convergence in the following sense:

Let u be the exact solution and let ‖ · ‖ be the norm of the trial space. For

each iteration k, denote the approximate solution by uk and the a posteriori error

estimator by Ek. Then both error and estimator converge to 0:

(2) ‖uk − u‖ → 0 and Ek → 0 as k →∞.

Our assumptions are sufficiently general and applicable to a wide variety of
problems, they hold in particular for:

• Saddle point problems, non-symmetric problems without assuming a suf-
ficiently fine initial grid;
• various types of a posteriori error estimators, including the ZZ one and

estimators where the (discrete) lower bound requires a very fine, local
extension of the finite element trial space;
• the maximum and equidistribution strategy, without extra marking for

oscillation;
• a minimal rule for REFINE, which does not necessarily entail the creation

of interior nodes.

Our proof differs from the aforementioned ones in the following aspects:

• Without strict error reduction and without extra regularity. Except for
[14], all previous convergence proofs for linear problems use a quasi-or-
thogonality result to prove the following: if oscillation is relatively small,
then one iteration of (1) provides a uniformly strict error reduction. To
compensate for the missing quasi-orthogonality result for nonlinear po-
tential operators, Siebert/Veeser [15] and Veeser [17] control the residual
by the energy reduction in one iteration of (1) and then exploit the fact
that the energy reduction vanishes in the limit. Here, we use a similar
argument that covers also non-potential operators which neither assumes
nor implies regularity of the exact solution beyond the trial space.
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• Estimator convergence first. With the strict error reduction, convergence
of error and estimator are shown simultaneously. Here and in [14, 15, 17],
the convergence of the estimator is first derived by exploiting the (discrete)
local lower but not the upper bound. The upper bound is then used to
obtain the convergence of the error.
• Without residual control in one iteration. The strict error reduction and

the residual control by the energy reduction share the following features:
they involve two successive approximate solutions and they split the esti-
mator into marked and non-marked indicators. These features entail the
aforementioned artificial conditions for refinement. Here we avoid this by
means of a new splitting of the estimator, and a local lower bound for the
difference of a discrete solution and one limiting solution that is known to
exist.

Since the strict error reduction is used in the complexity result [16], one may
consider its absence as a disadvantage. On the other hand, for solutions of non-
coercive problems with, e.g., layers, such a result appears to be unrealistic when
starting from a coarse initial grid.

Two corollaries can be deduced from this result, which can be found in detail in
[13]. The first one provides necessary and sufficient conditions on marking for (2),
while the second gives such a condition for reaching any prescribed tolerance in a
finite number of iterations. Another corollary from the convergence proof, namely
the convergence of algorithms adapting for a (semi)norm that is weaker than the
one of trial space, is given in [12].
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Optimal multilevel methods on graded bisection grids

Ricardo H. Nochetto

(joint work with Long Chen and Jinchao Xu)

Adaptive finite element methods (AFEM) are now widely used in scientific and
engineering computation to optimize the relation between accuracy and degrees
of freedom. They use a posteriori error estimators to gather information about
the approximation quality and lead to highly graded meshes that are far from
quasiuniform.. This talk deals with the optimal solution of the resulting linear
algebraic systems by multilevel methods.

We design additive BPX-type preconditioners and multiplicative V-cycle multi-
grid methods on graded bisection grids. Early work on the convergence analysis of
multigrid methods relies on two rather restrictive regularity assumptions [3]. The
first one is an H2-regularity assumption on the solution of elliptic equations. The
second assumption is on the grid geometry: the underlying grids are obtained by
uniform refinement from an initial grid. These two regularity assumptions do not
hold in applications of AFEM.

We use the framework of subspace correction methods developed by J. Xu [6]
to remove the H2-regularity assumption of the solution and a novel decomposition
of bisection grids to remove the quasi-uniform assumption on the grids.

The existing analysis of adaptive multilevel methods relies on some restrictive
assumptions on the refinement region. For instance, the adaptive grids considered
by Bramble el al in [1] are defined in terms of a given sequence of nested subdomains

(1) ΩJ ⊆ ΩJ−1 ⊆ · · · ⊆ Ω0 = Ω.

The grid of Ωk is obtained by refining elements of Ωk−1 that belong to the region
Ωk; this is called nested refinement. It implies that if an element τ is not refined in
k-th level, then it cannot be refined afterwards. The assumption (1), unfortunately,
does not hold for practical AFEM using a posteriori error estimates because a
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coarse element can be subsequently refined after very fine elements are added
around the singularity region.

Wu and Chen [5] have recently given a refined analysis of adaptive multigrid
methods on grids obtained by the newest vertex bisection in two dimensions. Their
analysis uses a complicated geometric structure of bisection grids and thus its
generalization to three or higher dimensions seems difficult.

Our algorithm and analysis are based on a novel decomposition of bisection
grids which are essentially different from [5] and other existing mutlilevel methods
on adaptive grids. Roughly speaking, for any triangulation TN obtained by a
suitable bisection method from an initial triangulation T0, we write

(2) TN = T0 + B,
where B = {b1, b2, · · · , bN} denotes N compatible bisections. Each bisection bi is
restricted to a small region ωi with quasi-uniform meshsize and its application pre-
serves mesh conformity. This decomposition serves as a general bridge to transfer
results from quasi-uniform grids to graded bisection grids. In particular, our main
contributions are as follows:

(1) We provide a unified analysis for any spatial dimensions; in particular,
we prove uniform convergence of V-cycle multigrid for H1 systems on
bisection grids in three dimensions.

(2) Our methods suggest a new way to implement multilevel methods by find-
ing the decomposition of bisection grids via coarsening from the finer mesh
[2].

(3) We present our analysis in a general framework that extends to other
problems; in fact we comment on the design and analysis of adaptive
multigrid methods for theH(curl) andH(div) systems in three dimensions.

We now briefly present our approach. Let Ω ⊂ Rd, d ≥ 2 be a polyhedral
domain and a(u, v) :=

∫
Ω
∇u·∇v. Given a triangulation T of Ω, we choose a linear

finite element space V(T ) ⊂ H1
0 (Ω) and consider the finite element approximation

u ∈ V(T ) of the second order elliptic equations

(3) a(u, v) = 〈f, v〉, ∀v ∈ V(T ).

where f ∈ H−1(Ω) and 〈·, ·〉 is the usual duality pairing. For simplicity, we assume
that Ω is triangulated exactly and the triangulation T of Ω is shape regular and
conforming. However, we do not impose that T is quasi-uniform since T is obtained
through bisection methods and could thus be highly non-uniform.

On the basis of the novel decomposition (2) of bisection grids, we give a multi-
level space decomposition for finite element spaces V = V(TN ). We let V0 = V(T0)
and, for each compatible bisection bi with i = 1, · · · , N , we define a local space
Vi ⊂ V. We then have a space decomposition

(4) V =

N∑

i=0

Vi.

We prove the following two key properties for the space decomposition (4):
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• For any v ∈ V, there exist vi ∈ Vi, i = 0, · · · , N such that v =
∑N
i=0 vi

and

(5)
N∑

i=0

h−2
i ‖vi‖2 . |v|21.

• For any ui, vi ∈ Vi, i = 0, · · · , N , we have

(6)
∣∣∣
N∑

i=1

N∑

j=i+1

(ui, vj)1

∣∣∣ .

(
N∑

i=1

|ui|21

)1/2( N∑

i=1

h−2
i ‖vi‖2

)1/2

.

With the help of (5) and (6), we are able to obtain optimal multilevel methods
including BPX preconditioner and V-cycle multigrid methods for solving algebraic
systems arising from (3) on graded bisection grids. In addition, we use these results
in conjunction with the relation between H1(Ω), H(curl; Ω) and H(div; Ω), along
with regular decomposition of functions in these spaces, to extend the multilevel
methods recently proposed by Hiptmair and Xu [4] for H(curl; Ω) and H(div; Ω)
to graded bisection grids.
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A posteriori existence in numerical computations

Christoph Ortner

Let X,Y be Banach spaces and let F : X → Y be Fréchet differentiable. We
wish to solve the nonlinear equation F (u) = 0. A point u of the domain of
definition of F is called regular if F ′(u) is an isomorphism, i.e., F ′(u)−1 is a
bounded linear operator (see [1, Proposition 2.1]). A posteriori error estimates
for non-monotone nonlinear problems are typically formulated in the following
way (see e.g. [1, Proposition 2.1]): If u is a regular solution to F (u) = 0
and U is a numerical solution which is sufficiently close to u then ‖u − U‖X ≤
c‖F (U)‖Y ‖F ′(u)−1‖L(Y,X).

In this talk, I develop the following simple observation: the approximation U ,
which we may have computed numerically, solves the equation G(U) = 0, where
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G(v) = F (v) − F (U). Thus, by reversing the role of approximate and exact
solution, we see that a solution u satisfying F (u) = 0 could be considered the
approximate solution to the new problem G(U) = 0 and its residual is again
‖F (U)‖Y . In contrast to the previous situation, however, we now need to assume
that U is regular rather than a ‘nearby exact solution’ u which we often do not
know to exist. More precisely, we shall prove that, if a regular point U ∈ X has a

sufficiently small residual ‖F (U)‖Y then there exists a nearby exact solution u to

the equation F (u) = 0 such that ‖u− U‖X ≤ c‖F (U)‖Y ‖F ′(U)−1‖L(Y,X).

In the abstract Banach space setting, I present the following result, which sim-
ply requires a tracking of the constants in a suitably chosen proof of the Inverse
Function Theorem.
Theorem. Suppose that U ∈ X is a regular point and that F is Fréchet dif-

ferentiable in a sufficiently large neighbourhood of U . Let σ ≥ ‖F ′(U)−1‖, let

η ≥ ‖F (U)‖Y , and let L be an upper bound for the Lipschitz constant of F ′ in

B(U,R), where R = 2ησ. If, in addition, the a posteriori existence condition

(1) 2σ2ηL < 1

is satisfied, then there exists a unique u ∈ B(U,R) such that F (u) = 0. Further-

more, we have the error estimate

(2) ‖u− U‖X ≤ 2ση.

I then proceed by showing the applicability of the idea at the nonlinear Laplace
equation

−∆u+ f(x, u) = 0 in Ω, u = 0 on ∂Ω,

which is posed in its weak form, setting X = H1
0 (Ω), Y = H−1(Ω) and

(3) 〈F (u), ϕ〉 =

∫

Ω

∇u · ∇ϕ+ f(x, u)ϕdx.

Under suitable growth hypotheses on f , and assuming that fu is globally Lips-
chitz continuous, F is well-defined and differentiable and, moreover, F ′ is globally
Lipschitz continuous.

Let Sk0 (T ) ⊂ H1
0 (Ω) be a Lagrange finite element space over a tetrahedral mesh

T , and let U ∈ Sk0 (T ) be the corresponding finite element Galerkin approximation
to (3). In order to apply the above theorem, we need to estimate the residual and
the stability of the linearized equation. The estimation of the residual ‖F (u)‖H−1

is standard,

‖F (u)‖2H−1 ≤ η = C
∑

T∈T

(
h2
T ‖ −∆U + f(x, U)‖2L2(T ) + hT ‖[∇U ]‖2L2(∂T\∂Ω)

)
,

where C depends only on the mesh quality and hT is a measure of the local mesh
size.

The stability constant ‖F ′(U)−1‖, on the other hand, can be computed using
an eigenvalue estimate. Namely, it holds that ‖F ′(U)−1‖ = 1/λ, where λ is the
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smallest H1
0 eigenvalue of F ′(U), i.e.,

λ = inf
ϕ∈H1

0 ,‖∇ϕ‖L2=1

∫

Ω

[
|∇ϕ|2 + fu(x, U)ϕ2

]
dx.

This eigenvalue may be estimated via

Λ = inf
Φ∈H1

0 ,‖∇Φ‖L2=1

∫

Ω

[
|∇Φ|2 + fu(x, U)Φ2

]
dx.

If Ω is convex, then it can be shown that, either λ ≥ 1/2, or

λ ≥ Λ− C(1 + Λ)‖fu(x, U)‖2L∞h2
T ,

where hT is the global mesh size and C depends only on the mesh quality and the
diameter of Ω. Generalizations to non-convex domains are in principle straight-
forward but the determination of the constants is more difficult in that case.

Using these constructions we can (up to round-off errors) rigorously justify
the existence of exact solutions near a computed Galerkin approximation. Some
numerical examples are given that demonstrate further practical aspects of the
approach. An earlier version of these results, as well as an application to an
interesting quasilinear problem in one dimension, can be found in [2].

With somewhat different aims, the ideas presented in this talk have been de-
veloped previously for weak as well as strong solutions of the nonlinear Laplace
equation in convex and non-convex domains. For a fairly recent overview article
see [3]. For dynamical systems similar ideas can also be employed (see for example
[4]). I thank Willy Dörfler, Mats Larson and Stig Larssen for pointing me to the
relevant literature.
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Adaptive finite elements with large aspect ratio

Marco Picasso

Adaptive finite elements with large aspect ratio allow complex finite element sim-
ulations to be performed with fewer vertices. The refinement and coarsening crite-
ria are based on anisotropic a posteriori error estimates which rely on anisotropic
interpolation estimates. The goal of such estimates is to circumvent the usual reg-
ularity assumption (or equivalently the smallest angle condition), see for instance
the papers of Kunert and co-workers or those of Formaggia and Perotto.
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Anisotropic error estimates are nowadays available for various academic prob-
lems such advection-diffusion, Stokes, the heat equation but also for more chal-
lenging problems such as CFD or crystal growth [1, 2]. Due to recent developments
in anisotropic mesh generation, three dimensional anisotropic adaptive algorithms
have been implemented, showing that complex simulations can be performed on
workstations.

In this workshop, I presented the error estimator and the adaptive strategy
for the Laplace problem [3]. Then, I presented numerical results obtained in the
framework of supersonic flows around aircrafts [4]. This is a collaboration with
Dassault aviation and INRIA.

We are also working on more academic contributions, namely an anisotropic
error estimator for the Crank-Nicolson scheme, and anisotropic adaptive elements
for the wave equation.
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Adaptive modeling for atomistic-to-continuum coupling methods

Serge Prudhomme

(joint work with J. Tinsley Oden, Paul T. Bauman, Leszek Demkowicz, Grant
Willson, Hachmi Ben Dhia, and Nadia Elkhodja)

In this talk, we presented our preliminary work on adaptive modeling for multi-
scale problems involving coupling of atomistic/molecular and continuum models.
The basic idea builds upon the estimation and adaptive control of modeling error
as advanced in [1, 2] for general systems. These techniques were previously ap-
plied to problems of molecular statics and dynamics in [3, 5]. Extensions of the
theory and methodology to complex molecular-continuum systems such as those
encountered in polymer materials of interest to the nano-manufacturing industry
are described here. The main ingredients involved in this approach consist of four
major components:

a) A fine-scale model of a physical event is defined. Formally, one seeks a
solution u to a general problem of the type

(1) B(u; v) = F (v), ∀v ∈ V
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B(·, ·) being a semilinear form, V a space of test vectors, and F (·) a linear
functional characterizing source terms or boundary data. This problem (1)
is not necessarily solved or even fully available, but should be known to
the extent that it can provide a datum with respect to which other models
are compared.

b) Rather than the solution u to (1), it is assumed that one is interested in
specific outputs of u, which mathematically consist of (linear or nonlinear)
functionals Q depending on u.

c) Instead of (1), families of coarse-scale problems are constructed in the form

(2) B0(u0; v) = F0(v), ∀v ∈ V
which are solvable and which should provide reasonable approximations
to the solutions of the base problem (1) with respect to the quantity of
interest.

d) Using theoretical estimates derived in [1, 3], one can compute estimates of
the modeling error in the quantity of interest E = Q(u)−Q(u0).

These steps provide the basis for adaptive control algorithms which successively
upgrade the surrogate models so as to systematically reduce the modeling error E .
These algorithms are called goal-oriented adaptive methods. The key to the success
of such algorithms rests on two factors: the construction of appropriate coarse-scale
surrogates (typically using methods of homogenization or ensemble averaging)
and the construction of appropriate interfaces between models of different scales.
As an example, we showed results of a modeling error calculation for a problem
of nanoindentation of an aluminum crystalline lattice interfacing a coarse-scale
surrogate model obtained using a quasicontinuum approach [4]. The remarkable
accuracy of the estimated error in replacing the crystalline lattice by an adaptive
quasicontinuum model is shown in [5]. The quantity of interest in this case was
chosen as the force supplied by the indenter.

We also described, briefly, an ongoing study of the application of these ideas to
polymer materials used in semiconductor manufacturing. The base model for the
polymer chains are constructed in a two-step manner: polymerization on lattices is
obtained using a pseudo Monte Carlo approach and the deformation of the lattices
is calculated using a molecular statics model in which the displacements of the
monomers are the degrees of freedom. The continuum model is generated based
on the Mooney-Rivlin theory for a hyperelastic polymer and obtained through
virtual experiments of the polymer. Finally, surrogate problems are implemented
using the Arlequin framework [6] that allows the coupling of the molecular model
and continuum model. The objective of the adaptive approach is to predict the
position and size of the interface region between the two models. Only preliminary
results were shown in which estimates of the error in the Arlequin solution were
calculated.
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Functional a posteriori estimates for mixed formulations of elliptic

type boundary value problems

Sergey Repin

A posteriori error estimators are widely applied in adaptive numerical methods.
In the majority of cases, they are derived by the residual or dual–weighted residual

methods or with the help of post–processing procedures (see, e.g., [AiOd, BaSt,
BaRa, BeRa, CaBa, Ra, Ve, ZiZh]). Usually, these methods attract an advanced
information on properties of exact and approximate solutions in order to construct
efficient error indicators.

In the report, we give a short overview of the results obtained in the framework
of a different (functional) approach whose main goal is to obtain guaranteed and

computable error bounds that do not involve mesh dependent constants and are
valid for any approximation from the energy space.

Functional a posteriori error estimates are derived on purely functional grounds
without attracting any specific properties of approximations or method used (such
as, e.g., Galerkin orthogonality, higher regularity, superconvergence effects). They
have one common form

(1) M (D, v) ≤ ‖u− v‖V ≤M (D, v) ∀v ∈ V,
where u is the exact solution of a problem, v is an approximation from the admis-
sible (energy) space V , D denotes the set of known data of a problem and other
functions and parameters which are in our disposal. The functionals M (error
majorant) and M (error minorant) must be directly computable and such that

M (D, u) = M (D, u) = 0,(2)

M (D, vk)→ 0, M (D, vk)→ 0 as k → +∞.(3)

Two–sided functional a posteriori estimates establishes guaranteed error bounds

for conforming approximations of all the types. If (1) is obtained for a class of
boundary–value problems, then approximations computed for a problem in the
class are fully controllable.

First a posteriori error estimates valid for any approximation in the energy space
were presented in [PrSy, Mikh] (see also later publications [GaGrZa, MoMy]).
However, these estimates suffer from the necessity to exactly satisfy a certain dif-
ferential relation (e.g., equilibrium equation) what may lead to serious technical
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difficulties. In the estimates discussed, the variables are not subject to addi-
tional differential relations and can be approximated by standard (e.g., piecewise–
polynomial) functions. Originally, functional a posteriori estimates were derived
for convex variational problems with the help of the duality methods in the calcu-
lus of variations (see [Re97a, Re97b, ReXa, ReENUMATH97, Re99]). As a simple
example, we can consider the problem divA∇u + f = 0 in Ω, u = 0 on ∂Ω. The
majorant of the error is given by the estimate

‖∇(u− v)‖ ≤
(∫

Ω

(A∇v · ∇v +A−1y · y −∇v · y)dx
)1/2

+ CF

(∫

Ω

divy + f)2dx

)1/2

,

(4)

where ‖z‖2 :=
∫
Ω
Az · z dx, CF is a constant in the Friederichs inequality, and

y is an arbitrary function in H(Ω, div). A similar estimate holds for the Stokes
problem, but in the case of non–solenoidal approximations it contains an additional
term with the constant from the Babuška-Aziz-Ladyzhenskaya-Solonnikov lemma
(see [LaSo]). A consequent exposition of this a posteriori error control theory can
be found in [Re00] and in the book [NeRe04] .

In [Re03a], it was introduced another method based on transformations of in-

tegral identities. It was shown that for linear elliptic problems derived by the
variational and non–variational methods approach lead to identical a posteriori es-
timates. New method was applied to linear parabolic problems in [Re02b, GaRe],
to the Maxwell’s equation in [Re07a, Re07b], to the reaction–diffusion problem in
[ReSa], and to mixed formulations of elliptic problems [Re07b].

If a solution is approximated with the help of a mixed scheme, then in (1)–(3)
u is replaced by a pair (u, p) and v by (v, q), where p is the exact solution of the
dual formulation and q is its approximation (see [ReSm, ReSaSm05, Re06]).

Estimates for the Stokes problem were derived in [Re02a, Re04b] and for the
generalized Stokes problem in [ReSt]. Estimates for flow problems in the rotating
coordinate system were derived in [GoMaNeRe07] and for generalized Newtonian
fluids in [BiFuRe, FuRe06, Re04b].

In [Re01], functional a posteriori estimates were applied to the estimation of the
error of the 2D plane stress model with respect to a 3D model of linear elasticity.
Dimension reduction errors for the diffusion elliptic problem has been studied
in [ReSaSm04]. The errors caused by data indeterminacy were investigated in
[Re03b].

Functional a posteriori estimates for variational inequalities were obtained in
[BuRe, Re00a, ReVa]. Functional methods are also applicable to the analysis of
local norms or other nonnegative quantities (see [Re04a, Re06]) and for noncon-

forming approximations (see [ReSaSm03], [LaReTo]).
In the report, a functional approach to the derivation of a posteriori error

estimates for elliptic problems in mixed form was presented. Two main classes of
problems considered are as follows:
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• Problems whose main part is presented as Λ∗AΛ, where Λ is a linear
bounded operator and Λ∗ is its conjugate (examples are presented by dif-
fusion, elasticity, and Maxwell problems);
• Elliptic problems whose solutions are defined in a subspace formed by the

kernel of a linear bounded operator (examples are given by problems in
the theory of incompressible viscous fluids).

For the dual mixed formulation we can extract them directly from the respective
mixed formulation. We discuss the mathematical properties of the estimates and
show that the functional majorant M is equivalent to the error computed in a

combined primal–dual norm. In particular, for the above considered diffusion
problem this combined norm is ‖∇(u − v)‖ + ‖y − p‖div, where p is the exact
flux and the second term is a norm in H(Ω, div). Similar a posteriori estimates
were recently derived for the elliptic Maxwell problem [Re07a].
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Optimal cardinality of an adaptive finite element method

Kunibert G. Siebert

(joint work with J. Manuel Cascon, Christian Kreuzer, and Ricardo H. Nochetto)

We report on the recent work [2] where we analyze convergence and optimal
cardinality of the standard adaptive finite element method (AFEM)

SOLVE → ESTIMATE → MARK → REFINE

for solving adaptive approximations to the weak solution of the symmetric, elliptic
problem

(1) − div(A∇u) + c u = f in Ω, u = 0 on ∂Ω.

Hereafter, Ω is a bounded, polyhedral domain in Rd, d ≥ 2, that is triangulated by
some conforming triangulation T0, A : Ω 7→ R

d×d is piecewise Lipschitz over T0 and
uniformly symmetric positive definite, c ∈ L∞(Ω) is nonnegative, and f ∈ L2(Ω).
We denote given data of (1) by D = (A, c, f).

Even though adaptivity has been a fundamental tool of engineering and scien-
tific computing for about three decades, the convergence analysis is rather recent.
It started with Dörfler [5], who introduced a crucial marking, from now on called
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Dörlfer marking, and proved strict energy error reduction for the Laplacian pro-
vided the initial mesh T0 satisfies a fineness assumption. Morin, Nochetto, and
Siebert [7, 8] showed that such strict energy error reduction cannot be expected
in general. Introducing the concept of data oscillation, the interior node property,
and separate Dörlfer marking for estimator and oscillation, they proved conver-
gence of AFEM without restrictions on T0. The latter result, however, is only
valid for A being piecewise constant on T0 and vanishing c. Inspired by the work
by Chen and Feng [3], Mekchay and Nochetto [6] extended this result to general
second order elliptic operators upon dealing with the new concept of total error,
namely the sum of energy error plus oscillation. They proved that AFEM is a
contraction for the total error, a property that will turn out to be here essen-
tial as well. Recently, Diening and Kreuzer [4] proved a similar property for the
p-Laplacian but avoiding marking for oscillation.

Quasi-optimal convergence rates for AFEM, expressing energy error decay in
terms of number of degrees of freedom (DOFs) as dictated by nonlinear approxi-
mation theory, were first proved by Binev, Dahmen and DeVore [1]. They resorted
to a crucial, but somewhat artificial coarsening step. Coarsening was later removed
by Stevenson [11], who developed an optimality theory for a much more realistic
AFEM but still including an inner loop to deal with oscillation. Both papers are
restricted to the Laplace operator and rely on the the interior node property and
a suitable marking for oscillation.

When marking with respect to two quantities such as estimator and oscillation
in the algorithm by Morin, Nochetto, and Siebert, the role of marking becomes
critical for proving optimality. The comparison of separate and collective marking
for two quantities in a simplified scenario reveals that an appropriate choice of
marking parameters becomes critical. Indeed, separate marking might be sub-
optimal and should thus be avoided, whereas collective marking leads to optimal
convergence rates. This insight explains why Binev, Dahmen, and DeVore[1] use
a coarsening step to recover optimal cardinality, and Stevenson [11] separates
marking for estimator and oscillation by the additional inner loop.

Relying on the exact Ritz-Galerkin solutions Uk to (1) in a sequence of con-
forming and nested finite element spaces Vk ⊂ H1

0 (Ω) over triangulations Tk, the
standard residual estimator Ek(Uk,D), minimal Dörfler marking solely for the es-
timator, and minimal refinement by bisection of marked elements, we show that
AFEM is a contraction for the sum of energy error and scaled estimator, namely

(2) |||u− Uk+1|||2Ω + γ2E2
k+1(Uk+1,D) ≤ α2

(
|||u− Uk|||2Ω + γ2E2

k (Uk,D)
)

with suitable constants α ∈ (0, 1) and γ > 0. Even though the energy error is
monotone, strict error reduction fails when Uk+1 = Uk and thus |||u− Uk|||Ω =
|||u− Uk+1|||Ω, compare with [7, 8] for details. Although the residual estimator is
not monotone in general, in this situation it exhibits a strict reduction, this is
Ek+1(Uk,D) ≤ δEk(Uk,D) with δ ∈ (0, 1). The contraction property (2) is then
a consequence of the scenario described above or a strict reduction of the energy
error in combination with local Lipschitz-continuity of the estimator.
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Realizing that contraction of AFEM solely relies on the upper bound, we utilize
the continuous lower bound to see

|||u− Uk|||2Ω + E2
k(Uk,D) ≈ |||u− Uk|||2Ω + osc2

k(Uk,D).

Hence, the sum of energy error plus oscillation, the so-called total error, is equiv-
alent to the quantity being strictly reduced by AFEM and it satisfies a Cea’s
Lemma. This motivates the definition of the approximation class As which states
that (u,D) belongs to As, if the total error can be approximated within any tol-
erance ǫ > 0 with O(ǫ−s) degrees of freedom. Even for a linear PDE with variable
coefficients like (1), oscillation and solution couple in a nonlinear fashion. As an
outcome, an important pending issue is a complete characterization of As.

Assuming certain restrictions on the initial triangulation [12] and that the mark-
ing parameter of Dörfler marking is sufficiently small, we finally show that AFEM
achieves for (u,D) ∈ As the asymptotic decay rate s in terms of degrees of freedom
as described by the membership in As, this is

(3)
(
|||u− Uk|||2Ω + osc2

k(Uk,D)
)1/2 ≤ C

(
#Tk −#T0

)−s
.

In contrast to former optimality proofs [1, 11], the presented analysis stays within
the class of conforming meshes, which is necessary when dealing with oscillation in
the jump residual. Using the ideas of Stevenson [11], in the proof of (3) we combine
the contraction property of AFEM, a quasi-monotonicity property of oscillation,
a localized upper bound with an optimal complexity of refinement by bisection
[1, 11].

In the talk we have analyzed a standard AFEM as it is used in practice and
provide a theory for convergence and optimality. The first convergence result for
such a standard AFEM is due to Morin, Siebert, and Veeser [10]. They recently
proved for a larger problem class and more general marking strategies plain con-
vergence of AFEM but without an error reduction property. Relying on Dörfler
marking we are able to prove a stronger result for selfadjoint elliptic operators of
the form (1), namely contraction of the quasi-error and quasi-optimal cardinality.

In all other convergence and optimality results, the standard form of AFEM is
first altered and then the modified algorithms are analyzed. Because of theoretical
needs additional ingredients, such as the interior node property and marking for
oscillation [6, 7, 8, 9], a coarsening step [1], or an additional inner loop to decrease
oscillation relative to the estimator [11], are added to AFEM. We would like to
stress that removing these ingredients is very important from a practical point
of view. The interior node property enforces six bisections of marked elements
in three space dimensions and thus increases the number of DOFs between two
iterations drastically. In fact, computational resources can be used more efficiently
with fewer element refinements. Last but not least, in contrast to modified ver-
sions of AFEM, the standard form only needs one single parameter, namely the
parameter of Dörfler marking. Hence, it is not necessary to fit several parameters,
which in turn makes the resulting algorithm more robust.
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Optimal adaptive finite element and wavelet methods

Rob Stevenson

(joint work with Christoph Schwab)

In this talk, we discuss optimal convergence of adaptive finite element and
adaptive wavelet methods for solving operator equations.

Adaptive finite element methods for solving elliptic boundary value problems
have the potential to produce a sequence of approximations to the solution that
converges with a rate that is optimal in view of the polynomial order that is
applied, also in the, common, situation that finite element approximations with
respect to uniformly refined partitions exhibit a reduced rate due to a lacking
(Sobolev) regularity of the solution. The basic idea of an adaptive finite element
method is, given some finite element approximation, to create a refined partition
by subdividing those elements where local error estimators indicate that the error
is large, and then, on this refined partition, to compute the next approximation,
after which the process can be repeated. Although, because of their success in
practice, during the last 30 years the use of these adaptive methods became more
and more widely spread, apart from results in the one-dimensional case by Babuška
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and Vogelius ([1]), their convergence was not shown before the work by Dörfler
([9]), that was later extended by Morin, Nochetto and Siebert ([11]).

Although these results meant a break through in the theoretical understanding
of adaptive methods, they do not tell anything about the rate of convergence, and
so, in particular, they do not show that adaptive methods are more effective than,
or even competitive with non-adaptive ones in the situation that the solution has
a lacking regularity.

In [2], Binev, Dahmen and DeVore developed an adaptive finite element method
which they showed to be of optimal computational complexity. Whenever for some
s > 0, the solution is in the approximation class As, meaning that there exists
a sequence of partitions of the domain into n elements such that the best finite
element approximation with respect to this partition has an error in energy norm
of order n−s, then the adaptive method produces a sequence of approximations
that converge with the same rate, where, moreover, the cost of computing such
an approximation is of the order of the number of elements in the underlying
partition. A combination of the (near) characterization of As in terms of Besov
spaces from [3], and Besov regularity theorems from [7, 6], indicate that under
very mild conditions the value of s is indeed only restricted by the polynomial
order.

The key to obtain the optimal computational complexity result was the addition
of a so-called coarsening or derefinement routine to the method from [11], that has
to be applied after each fixed number of iterations, as well as, in view of the cost,
to replace the exact Galerkin solvers by inexact ones.

In this talk, we show that the addition of coarsening can be avoided. We
present an adaptive finite element method, that, except that we solve the Galerkin
systems inexactly, is very similar to the one from [11], and show that it has optimal
computational complexity. In doing so, we restrict ourselves to the model case of
the Poisson equation in two space dimensions, linear finite elements, and partitions
that are created by newest vertex bisection ([15]). Our results, however, generalize
to any space dimension ([14]), finite elements of any order, and to differential
operators ∇ ·A∇ with A symmetric positive definite, and piecewise constant with
respect to the initial partition.

Adaptive wavelet method for solving well posed operator equations were in-
troduced by Cohen, Dahmen and DeVore in [4, 5]. So far the most promising
numerical results were obtained with the method from [4]. In this talk, we present
some modifications of this method that result in quantitative improvements. Most
importantly, as with adaptive finite element methods we show that coarsening can
be avoided ([10]).

In the last part of this talk, we discuss the application of the adaptive wavelet
method for solving PDEs in high space dimensions. When solving elliptic PDEs of
say second order in n space dimensions, using (adaptive) wavelet or finite element
methods of order d, the best possible rate in energy norm is O(N−d/n), with N
being the number of degrees of freedom. When applying hyperbolic cross approxi-
mation (sparse grids), the curse of dimensionality can be avoided in the sense that
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a rate O(N−d) can be realized. This, however, requires L2 boundedness of certain
mixed derivatives of the solution, which is satisfied actually in exceptional cases
only. In [12], it was shown that best N -term approximations in tensor product
wavelet bases realize this rate O(N−d) under very mild regularity conditions.

The rate of best N -term approximation can be realized computationally with
adaptive wavelet methods, assuming that the operator in wavelet coordinates, i.e.,
the (infinite) stiffness matrix is sufficiently close to a computable sparse matrix.
Due to the higher rates of N -term approximations, for tensor product wavelets the
requirements concerning near-sparsity are much stronger. Nevertheless, we were
able to show that these requirements are satisfied for general partial differential
operators with sufficiently smooth coefficients (cf. [13]).

A point of concern is the behaviour of the “hidden constant” in front of the rate.
Without taking special care, one easily ends up with a constant that grows expo-
nentially with n, making the method unpractical except for small n. Restricting
ourselves to operators with constant coefficients, we present an adaptive wavelet
method that produces approximations of length N that up to some absolute con-
stant are as good as best N -term approximations, at the cost of CnN operations,
with C being another absolute constant ([8]).
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Optimal control to determine a continuum phase change model from

molecular dynamics

Anders Szepessy

(joint work with Erik von Schwerin)

The dynamics of dendritic growth of a crystal in an undercooled melt is determined
by macroscopic diffusion-convection of heat and capillary forces acting on length
scales compared to the nanometer width of the solid-liquid interface. Its modeling
is useful for instance in processing techniques based on casting.

The phase field method is widely used to study evolution of such microstructures
of phase transformations on a continuum level; it couples the energy equation to a
phenomenological Allen-Cahn/Ginzburg-Landau equation modeling the dynamics
of an order parameter determining the solid and liquid phases, including also
stochastic fluctuations to obtain the qualitative correct result of dendritic side
branching and nucleation. This lecture presented ideas and computational results
to derive stochastic phase field models from atomistic formulations by coarse-
graining molecular dynamics.

The phase field model for modeling a liquid solid phase transformation is an
Allen-Cahn/Ginzburg-Landau equation coupled to the energy equation

∂tφ = div(k1∇φ) − k0

(
f ′(φ) + g′(φ)k4T

)
+ noise

∂t
(
cvT + k2g(φ)

)
= div(k3∇T )

(1)

with a double well potential f having local minima at ±1, smoothed step function
g, temperature T and specific heat cv. The phase field variable φ : R

d × [0,∞)→
[−1, 1] interprets the solid and liquid phases as the domains {x ∈ Rd : φ(x) > 0}
and {x ∈ Rd : φ(x) < 0} respectively. To have such an implicit definition of
the phases, as in the level set method, is a computational advantage compared
to a sharp interface model, where the necessary direct tracking of the interface
introduce computational drawbacks. This phenomenological phase-field model,
with free energy potentials motived by thermodynamics, has therefore become a
popular and effective computational method to solve problems with complicated
microstructures of dendrite and eutectic growth. The phase-field model has math-
ematical wellposedness and convergence to sharp interface results.

Assuming that the reaction term in the Allen-Cahn equation takes a given form,
e.g. a standard choice is

f(φ) := (1− φ2)2

g(φ) :=
15

16
(
1

5
φ5 − 2

3
φ3 + φ) +

1

2
,

then the parameters k0, k1, k2, k3, k4 in the phase-field model has been determined
from atomistic molecular simulations [1]. The evolution of the phase interface
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depends on the orientation of the solid crystal; this is modeled by an anisotropic
matrix k1. Added noise to system (1) is also important, e.g. to obtain sidebranch-
ing dendrites [2].

Phase changes can be modeled on an atomistic level by molecular dynamics or
kinetic Monte Carlo methods. This lecture presented results combining compu-
tations and analysis to derive a stochastic phase field model by directly coarse-
graining molecular dynamics, in an adaptive model approach, to determine also the
reaction term (i.e. f and g) and the noise. This is made in three steps presented
in [3] and [4]:

• to give a precise quantitative atomistic definition of the phase-field variable
based on the local potential energy,
• to introduce an atomistic molecular dynamics model based on Smolu-

chowski dynamics, and
• to derive and compute the dynamics for the coarse-grained phase-field

based on optimal control approximation of the atomistic model.
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A posteriori error estimation and adaptivity for PDE-constrained

optimization

Boris Vexler

(joint work with Dominik Meidner, Winnifried Wollner, and Olaf Benedix)

We present a general approach for error estimation and adaptivity for optimiza-
tion problems governed by partial differential equations. We treat this topic for
a large class of optimization problems involving optimal control and parameter
identification problems governed by either elliptic or parabolic partial differential
equations.

An abstract optimization problem is given by minimization of a cost functional
J(q, u) which depends on the state variable u ∈ V and the control (parameter)
variable q ∈ Q, with Hilbert spaces V and Q. These variables are coupled through
the state equation

A(q, u) = f,
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where A denotes a (nonlinear) differential operator and f represents the given
data. The optimization problem is then formulated as follows:

{
Minimize J(q, u), u ∈ V, q ∈ Qad,

A(q, u) = f,

where Qad ⊂ Q denotes the set of admissible controls, which is usually given
through some box constraints.

For numerical treatment this infinite dimensional optimization problem has to
be discretized using a suitable discretization scheme for the state equation and
a discrete subspace for the control variable. Let (qσ, uσ) be a solution of the
discretized optimization problem. Our aim is to derive a posteriori error estimates
for the error between the solutions to the continuous and the discrete problem. A
crucial point for our error analysis is the choice of a quantity, which describes the
goal of the computation. If this quantity coincides with the cost functional, we
have to estimate the error

J(q, u)− J(qσ, uσ).

In a more general case, we suppose I : Q × V → R to be a given functional
describing the quantity of interest. Then, the error to be estimated is

I(q, u)− I(qσ, uσ).
The consideration of quantities of interest is important, for instance, in the context
of parameter identification and model calibration problems.

In the first part of this talk we present a posteriori error estimators for opti-
mization problems governed by parabolic equations. This is an extension of the
work in [1, 2, 3, 4], where stationary optimization problems were considered. The
state equation is discretized by discontinuous finite elements in time and usual
conforming finite elements in space. In order to set up an efficient adaptive algo-
rithm we separate the influences of the time and space discretizations on the error
in the quantity of interest. This allows to balance different types of errors and
successively to improve the accuracy by construction of locally refined meshes for
time and space discretizations, see [5]. Moreover, this concept enables separate re-
finement of the spatial meshes in different times steps (so called dynamic meshes),
which is important for numerical treatment of problems with complex dynamical
behavior, see [6].

In the second part of the talk we discuss a posteriori error estimation for op-
timization problems involving inequality constraints. The presence of pointwise
inequality constraints on the control variable leads to an optimality condition
which is either a variational inequality or involves an additional Lagrange mul-
tiplier. Another difficulty in deriving error estimates is the fact that the control
variable is not expected to be sufficiently smooth (due to inequality constrains),
and therefore the approximation of (interpolation) weights involved in the error
estimator can not be treated in a usual way. To cope with this problem we employ
a post-processing step for the control variable based on the optimality condition
formulated via a projection formula. This allows us to derive error estimates for
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the error with respect to the cost functional as well as for the error with respect
to a given quantity of interest, see [7]. For the error estimation with respect to a
quantity of interest an additional (dual) linear-quadratic optimal control problem
is utilized describing the sensitivity with respect to this quantity.

In the last part of the talk we discuss our recent results on a posteriori error
estimation for optimal control problems with inequality constraints on the state
variable. The presence of such state constraints introduces strong singularities at
the boundary between active and inactive sets. The Lagrange multipliers associ-
ated to the state constraints are usually regular Borel measures, i.e. in the dual
space of the space of continuous functions C(Ω̄). We derive an error representation
formula which contains usual terms involving residuals and weights for the state
and the adjoint variable as well as an additional term involving the duality product
of the Lagrange multiplier and the discretization error in the state variable. For
the last term we suggest an approximation exploiting the adjoint equation.

Different numerical examples illustrate the behavior of our method.
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Adaptive finite element methods for optimal control problems with

control constraints

Winnifried Wollner

(joint work with Boris Vexler)

The talk is about posteriori error estimation for optimization problems subject to
an elliptic partial differential equation and pointwise inequality constraints on the
control variable, so called box constraints. For a posteriori error estimates with
respect to natural norms we refer to [1, 6, 7, 8, 9]. Here we show how to extend
the ideas of the DWR-method to estimate the error in an arbitrary functional
introduced in [2, 3, 4], details may be found in [12]. A similar approach can be
found in [5] where only the error in the cost functional is considered.
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To introduce notation we consider the following model optimization problem:

min
Qad×V

J(q, u) =
1

2
‖u− ud‖2L2(Ω) +

α

2
‖q‖2L2(Ω)(1a)

s.t. a(q, u)(φ) = f(φ) ∀φ ∈ V(1b)

with α > 0, ud ∈ L2(Ω), V = H1
0 (Ω) and

a(q, u)(φ) = f(φ) ∀φ ∈ V
being the weak formulation of an elliptic PDE, here we consider

−∆u+ u3 + u = f + q on Ω,

u = 0 on ∂Ω,

and the admissible set is given as

Qad = {q ∈ L2(Ω) | a ≤ q(x) ≤ b a.e.}
with a, b ∈ R, a < b. However more general problems can be considered, for
instance other types of cost functionals are possible, for details see [12].

We introduce the Lagrangian associated with the PDE, and inequality con-
straints:

L(q, u, z, µ−, µ+) = J(q, u)+ f(z)−a(q, u)(z)+ (µ−, q−a)L2(Ω) +(µ+, b− q)L2(Ω).

Than we can derive by standard arguments, cf. [11] that a solution (q, u) of (1)
fulfills the following KKT-system:
There exists z ∈ V , µ−, µ+ ∈ L2(Ω) such that:

L′q(q, u, z, µ−, µ+) = 0 ∀ ∂q ∈ L2(Ω),(2a)

L′u(q, u, z, µ−, µ+) = 0 ∀ ∂u ∈ V,(2b)

L′z(q, u, z, µ−, µ+) = 0 ∀ ∂z ∈ V,(2c)

µ−(x), µ+(x) ≥ 0 a.e.,(2d)

µ−(x)(q(x) − a) = µ+(x)(b − q(x)) = 0 a.e.,(2e)

provided that L is partial differentiable with respect to the variables q, u and z
and the state and adjoint equation (2c) and (2b) are solvable. The multipliers µ−

and µ+ are given as negative or positive part of

αq − a′q(q, u)(·, z).
It follows from the KKT-system (2) that the control q fulfills the following (point-
wise) equality:

(3) q(x) = max
(
a,min

(
b,

1

α
a′q(q, u)(·, z)

))

where a′q(q, u)(z, ·) is understood as a Riesz representative of the functional

a′q(q, u)(z, ·) : L2(Ω)→ R.
To simplify the presentation we discretize the state and adjoint equation using

continuous piecewise linear finite elements, and the control variable q is discretized
using cellwise constant functions.
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Then following standard arguments [3, 12] we derive the following:

Theorem 1 Let χ = (q, u, z, µ−, µ+) be a solution to the KKT-system (2) and

χh = (qh, uh, zh, µ
−
h , µ

+
h ) be its Galerkin approximation, then the following holds:

(4) J(q, u)− J(qh, uh) =
1

2

(
L′(χh)(ẽ) + (êµ− , q − a)L2 + (êµ+ , b− q)L2 +R

)

with a remainder term

R =

∫ 1

0

L′′′(χh + se)(e, e, e)s(s− 1) ds

and the abbreviations e = χ− χh, ẽ = χ− χ̃h, êµ− = µ̂− − µ−
h , êµ+ = µ̂+ − µ+

h .

With χ̃h = (q̃h, ũh, z̃h, µ̃
−
h , µ̃

+
h ), where q̃h, ũh and z̃h are arbitrary discrete func-

tions, µ̃−
h is an arbitrary discrete function whose support is contained in the set

where qh(x) = a and µ̃+
h is an arbitrary discrete function whose support is con-

tained in the set where qh(x) = b. The function µ̂− is an arbitrary L2 function

whose support is contained in the set where q(x) = a, and analogous for µ̂+.

For the error with respect to an arbitrary functional I : (q, u) → R one has
to consider an auxiliary linear quadratic optimization problem for given χ =
(q, u, z, µ−, µ+):

min
P ad×V

K(χ, p, v)(5a)

s.t. L′′uz(χ)(v, φ) + L′′qz(χ)(p, φ) = 0 ∀φ ∈ V(5b)

where the cost functional is given as

K(χ, p, v) = I ′u(q, u)(v)+I
′
q(q, u)(p)+L′′uq(χ)(v, p)+

1

2
L′′uu(χ)(v, v)+

1

2
L′′qq(χ)(p, p)

and the admissible set P ad is defined by the lower and upper bound

p−(x) =

{
0 µ+(x)− µ−(x) 6= 0 orq(x) = a

−∞ else
,

p+(x) =

{
0 µ+(x) − µ−(x) 6= 0 orq(x) = b

∞ else
.

For the discretization and the corresponding KKT-systems we refer to [12].
Then using the Lagrangian

M(χ, ψ) = I(q, u) + L′(χ)(ψ) :

one obtains an equality for the error in the the quantity of interest similar to the
one in Theorem 1.

These identities can be used to obtain local indicators for mesh refinement by
using cell wise integration by parts. For the state u we approximate the difference
u− ũh using a piecewise bilinear interpolant on a mesh with cell diameter 2h the

Interpolation operator is denoted by I
(2)
2h and then setting u − ũh ≈ I

(2)
2h uh − uh.
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The same is done for the variables z, v and y. Unfortunately is not appropriate
for the other variables due to the following reasons:

• Such an approach is not possible for finite dimensional control occurring
for example in parameter identification.
• q, µ− and µ+ are at most Lipschitz continuous and the dual variables p,
ν− and ν+ are at most bounded due to the constraints imposed on those
variables.

To overcome these difficulties we suggest to utilize the projection formulas, e.g,
for q − q̃h we substitute

q − q̃h ≈ max
(
a,min

(
b,

1

α
a′q(qh, I

(2)
2h uh)(·, I

(2)
2h zh)

))
− qh

and similar but more complex formulas for the other variables. That the ad-
ditional error introduced by this substitution is of higher order is indicated by
superconvergence results obtained by [10].

Finaly some numerical results are shown.
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Gradient recovery and adaptive finite element methods

Zhimin Zhang

1. Introduction. While the convergence behavior of residual type error esti-
mators is well understood, e.g., see [2, 5, 6, 7, 9, 10, 11, 15], much less is known
about recovery type error estimators in theoretical aspects [14]. In this project,
we study Gradient recovery techniques and their usage in adaptive finite element
methods. We focus on adaptive finite element methods for elliptic problems with
domain corner singularities. Our model problem is the two-dimensional Poisson
equation. Results here are twofold. First, we prove that there exists an adap-
tive mesh (gauged by a discrete mesh density function) under which the recovered
gradient by the Polynomial Preserving Recovery [19] (PPR) is superconvergent.
Second, we demonstrate by numerical examples that an adaptive procedure with
an a posteriori error estimator based on PPR does produce adaptive meshes that
satisfy our mesh density assumption, and the recovered gradient by PPR is indeed
superconveregent in the adaptive process [17].

Furthermore, we utilize the recovered gradient by PPR to enhance the eigen-
value approximation of the Laplace operator under adaptive meshes. Supercon-
vergence rate is established and numerical tests on benchmark problems support
our theoretical findings.

2. Mesh Conditions. We assume that O is a re-entrant corner of the domain
Ω where the solution u has a leading term rδφ(θ). For a given mesh Mh, let τ
and τ ′ be two adjacent triangles that share a common edge e. We denote he the
length of e, hτ the diameter of τ , Ωe = τ ∪ τ ′ the patch of e, re the distance
from the singular point O to the midpoint of e, and rτ the distance from O to the
barycenter of τ .

�
�
�
�
�
�
�

e+ 1

e− 1
@

@
@

@
@

@
@

e

θe

���
nnne

��	nnn′
e

q

q

O
HHHHHHHHHHHH

re

PPPPPPPPPPPPPP

rτ

τ

�
�
�
�
�
�
�

τ ′
θ′e

Condition (α, σ, µ): If there exist constants α > 0, σ ≥ 0, and µ > 0 such that
the interior edges can be separated into two parts Eh = E1,h ⊕ E2,h: Ωe forms an

O
(
h1+α
e

/
r
α+µ(1−α)
e

)
parallelogram for e ∈ E1,h and the number of edges in E2,h

satisfies #E2,h . Nσ, where N is the total number of degrees of freedom.

Let us elaborate on this mesh condition.
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• Roughly, the edges can be grouped into “good” (E1,h) and “bad” (E2,h), where
the number of bad edges are much smaller than that of good edges. The ratio is

#E2,h
#E1,h

.
Nσ

N
=

1

N1−σ
.

• When re = O(1), i.e., an edge e is far away from the singular point O, the
mesh condition requires that Ωe is allowed to distortO(h1+α

e ) from a parallelogram,
which is the same as in previous works [12, 13, 18].

• When e is in a neighborhood of O, where r
1+µ(1−α)/α
e . he, the condition

O(he) implies O
(
h1+α
e

/
r
α+µ(1−α)
e

)
. In other words, Ωe is allowed to distort O(he)

from a parallelogram, which imposes no restriction.
• Number of edges in E1,h that have no restriction imposed are O(N1−α) if

hτ h r1−µτ hµ for any τ ∈Mh. Here h and µ are positive constants.
• The closer we are to the singular point, the less restriction is imposed on the

mesh. Indeed, for an adaptively refined mesh, the closer we are to the singular
point, the worse the mesh quality is in terms of forming parallelogram triangular
pairs.

3. Recovery Operators. Let V hk be a C0 finite element space of degree k. Given
approximation uh ∈ V hk of u, the goal is to obtain a better gradient Ghuh by some
post-processing techniques based on the computed data uh, such that

‖∇u−Ghuh‖ << ‖∇u−∇uh‖
Here are some popular recovery methods: 1) Simple or weighted averaging [1, 4];
2) Local or semi-local L2-projections [16]; 3) Zienkiewicz-Zhu Superconvergence
Patch Recovery (SPR) [20, 21]; and 4) Polynomial Preserving Recovery (PPR)
[12, 19].

We assume that the recovery operator Gh satisfies the following hypotheses:
a) ‖Ghvh‖L2(Ω) . ‖∇vh‖L2(Ω), ∀vh ∈ V hk ;
b) (Ghp)(z) = ∇p(z) if p ∈ Pk+1(ωz);

c) |(Ghφ)(z)| . 1

hτ
max

z′∈Nh∩ωz

|φ(z′)|;
for any nodal point z ∈ Nh and an element patch ωz surrounding z.

4. Superconvergence Results. In the following theorem, we assume that the
leading singularity term is Krδφ(θ).
Theorem. Let uh ∈ V hk be the finite element approximation of u, the solution
of the Poisson equation. Assume that a sequence of adaptive meshes Mh satisfy
Condition (α, σ, δ/(k + 1)) with 0 < α ≤ 1 and 0 ≤ σ < 1, and that hτ h

r
1−δ/(k+1)
τ hδ/(k+1) for any τ ∈Mh. Then

‖Ghuh −∇u‖L2(Ω) .
1 + (lnN)1/2

Nk/2+ρ
, ρ = min(

α

2
,
1− σ

2
).

Comparing with the optimal order O(N−k/2) [5] for the adaptive methods, we
see that the above theorem is a superconvergence result.
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• Numerical examples indicate that an adaptive procedure with an a posteriori

error estimator based on PPR does produce adaptive meshes that satisfy our mesh
density assumption.
• The recovered gradient by PPR is indeed superconvergent in the adaptive

process.

5. Eigenvalue Enhancement. In addition to the gradient recovery Ghuh, we
further reconstruct a new approximation wh (different from uh) for the eigenfunc-
tion u such that ∇wh = Ghuh. Then we define an enhanced eigenvalue approxi-
mation

λ∗h =
‖Ghuh‖2L2(Ω)

‖wh‖2L2(Ω)

.

Note: Usually, wh belongs to a finite dimensional space that is larger than the
original finite element space. However, we do not require ‖u − wh‖L2(Ω) <<
‖u − uh‖L2(Ω). The same order approximation ‖u − wh‖L2(Ω) ≈ ‖u − uh‖L2(Ω)

would be sufficient for the eigenvalue enhancement.
The following identity by Babuška-Osborn [3] provides the error estimate

‖∇wh‖2L2(Ω)

‖wh‖2L2(Ω)

− λ =
‖∇(wh − u)‖2L2(Ω)

‖wh‖2L2(Ω)

− λ
‖u− wh‖2L2(Ω)

‖wh‖2L2(Ω)

.

Recall

Ghuh = ∇wh, ‖wh − u‖L2(Ω) = O(hk+1).

Then

λ∗h − λ =
‖Ghuh −∇u‖2L2(Ω)

‖wh‖2L2(Ω)

+O(h2(k+1)).

Therefore, if

‖Ghuh −∇u‖L2(Ω) ≤ Chk+ρ,
we do have the “double order” gain in the enhanced eigenvalue approximation

λ∗h − λ = O(h2(k+ρ)),

as we have observed from numerical experiments [13].

Further Extension. The recovery can be applied to general eigenvalue problems

a(u, v) = λb(u, v),

where the identity

λh − λ = ‖u− uh‖2a − λ‖u− uh‖2b
is hold.

Suggestion: Applying gradient recovery whenever it is possible.
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