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Introduction by the Organisers

The workshop Complexity Theory was organized by Joachim von zur Gathen (Uni-
versität Bonn), Oded Goldreich (Weizmann Institute), and Madhu Sudan (MIT).
The workshop was held on June 24th–30th 2007, and attended by approximately 50
participants spanning a wide range of interests within the field of Computational
Complexity. The plenary program, attended by all participants, featured eight
long lectures as well as short (10-minute) reports by almost all participants. In
addition, extensive interaction took place in smaller groups.

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on algebraic and
Boolean complexity, the meeting has continuously evolved to cover a wide variety
of areas, most of which were not even in existence at the time of the first meeting
(in 1972). While inviting many of the most prominent researchers in the field, the
organizers try to identify and invite a fair number of promising young researchers.

Computational complexity (a.k.a. complexity theory) is a central field of com-
puter science with a remarkable list of celebrated achievements as well as a vibrant
research activity. The field is concerned with the study of the intrinsic complex-
ity of computational tasks, and this study tends to aim at generality: it focuses
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on natural computational resources, and considers the effect of limiting these re-
sources on the class of problems that can be solved. Computational complexity is
related to and has substantial interaction with other areas of mathematics such as
number theory, algebra, combinatorics, coding theory, and optimization.

The workshop focused on several sub-areas of complexity theory and its nature
may be best illustrated by a brief survey of some of the meeting’s highlights.

Connections to the Theory of Error-Correcting Codes. The interplay
between coding theory and complexity theory first emerged in the context of “hard-
ness amplification” (almost two decades ago) and other connections are less than
a decade old (e.g., the connection to probabilistic checking of proofs and extrac-
tion of pure randomness). Several applications of the known connections were
presented in the current meeting, and in addition a new connection to algebraic
complexity was presented.

While previous applications of the aforementioned connections went in the di-
rection of coding theory to complexity theory, a recent result reported by Venkat
Guruswami goes in the opposite direction. This work, by Guruswami and his
graduate student (Rudra), resolves a decades-old central problem in coding the-
ory by presenting an explicit error-correcting code of constant-size alphabet that
approaches the capacity bound (under worst-case errors, using list decoding).

Extracting randomness. Extracting almost-perfect randomness from weak
sources of (imperfect) randomness is crucial for the actual use of randomized pro-
cedures. Typical analyses of randomized procedures assume that the procedures
have access to a perfect random source. However, in reality one only has access
to sources of weak randomness (e.g., having constant entropy rate). Indeed, the
problem has attracted a lot of attention in the last couple of decades.

In the meeting, Chris Umans has presented recent work with Guruswami and
Vadhan, which utilizes recent algebraic and coding theoretic techniques to the con-
struction of (single-source) randomness extractors. This construction meets (and
actually improves) the best known parameters for the problem (which are almost
optimal), but does so by a relatively simple construction rather than by a complex
combination of numerous constructs (as done in prior work). Furthermore, the
new work introduces improved constructions for an intermediate primitive (called
randomness condenser), which is of independent interest.

While single-source randomness extractors must utilize an auxiliary random
seed (which may be very short), some applications do not allow for such a seed.
In this case, extraction from several (e.g., two) independent sources of weak ran-
domness is called for. An important step in the study of this direction was made
by Anup Rao, and presented by him in the meeting.

Algebraic complexity and modular polynomial composition. An im-
portant task in algebraic computation is modular polynomial composition; that
is, given three univariate polynomials f, g and h, one is required to obtain the
coefficients of the polynomial f ◦ g mod h. This task has many applications, most
notably as an ingredient in algorithms for polynomial factorization. The previously
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best algorithm was presented 30 years ago and uses O(n1.7) arithmetic operations,
where n denotes the maximum degree of the polynomials.

In the meeting, Chris Umans presented significant progress on this celebrated
open problem in the form of an almost linear-time algorithm that works for fields
of small characteristic. This major progress on a purely algebraic problem is es-
sentially based on methods that were introduced into coding theory by Guruswami
and Rudra, and then applied to complexity theory in the context of randomness
extractors (see foregoing paragraphs). All three results, which are major achieve-
ments in their respective areas, were presented at the meeting.

Cryptography and Zero-Knowledge. Zero-knowledge proofs are fascinating
concepts and extremely useful constructs. Their fascinating nature is due to their
seemingly contradictory definition that mandates that they be convincing and yet
yield nothing beyond the validity of the assertion being proved. Their applicability
in the domain of cryptography is vast; they are typically used to force malicious
parties to behave according to a predetermined protocol. In addition to their
direct applicability in cryptography, zero-knowledge proofs serve as a good bench-
mark for the study of various problems regarding cryptographic protocols. Zero-
knowledge proofs come in many flavors, and it is of great theoretical and practical
importance to investigate the relationship among them.

A central problem in this area, which has been open since 1986, refers to the
gap between the known results regarding two dual notions: the notion of gen-
eral zero-knowledge proofs (in which the secrecy condition holds with respect to
feasible adversaries) and the notion of statistical zero-knowledge arguments (in
which the soundness condition holds with respect to feasible adversaries). This
gap was bridged in a recent work of Salil Vadhan, jointly with his graduate students
(Nguyen and Ong), and was presented by Vadhan in this meeting.

A problem related to both cryptography and coding theory is the problem of
constructing private information retrieval schemes and/or locally decodable codes.
In the context of error-correcting codes, such schemes should allow the recovery of
any bit in the original message based on a constant number (e.g., three) probes to
the corrupted codeword. For more than a decade it was believed that the length of
such codewords must be (weakly) exponential in the length of the message. In the
meeting, Sergey Yekhanin (PhD student) presented his recent result that refutes
this belief.

Delegating your work to an untrusted entities. Needless to say, it is nice
to delegate your work to others, but what if you don’t trust the others? The very
definition of a proof system refers to such a possibility – the hard task of finding
a proof is delegated to the outside while you make sure that the proof is valid by
performing the easier task of verification. However, facilitating verification may
mean making the task of finding adequate proofs even harder. In the context of
program checking this phenomenon is explicitly disallowed: wishing to solve some
problem you may use an untrusted program that supposedly solves this problem
(but not a program that solve more complex problems). Needless to say, the aim
is allowing the delegator, called a checker, to use significantly fewer resources than
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any program that correctly solves the problem. In the meeting, Shafi Goldwasser
presented a recent result that achieves this goal for a natural complexity measure
(circuit depth) and for a wide class of problems (i.e., NC).

A characterization of testable graph properties. The area of property test-
ing is concerned with promise problems that call for distinguishing those objects
that have a predetermined property from objects that are “far” from any object
having this property. The focus is on sub-linear time algorithms that probe the
given object at few (randomly selected) locations. In some cases, one may perform
the task by using a number of probes that only depends on the proximity param-
eter (and is independent of the size of the object). In the meeting, Noga Alon
presented a recent result that characterizes the class of graph properties (where
graphs are represented by their adjacency matrices) for which such a phenomenon
holds.

The rest of this report. This report contains extended abstracts of the eight
plenary lectures as well as abstracts of forty short reports.
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Abstracts

Characterizing the testable graph properties via the regularity lemma

Noga Alon

(joint work with Eldar Fischer, Ilan Newman, Asaf Shapira)

A graph G on n vertices is ǫ-far from satisfying a property P , if one needs to add
and/or delete at least ǫn2 edges to G in order to turn it into a graph satisfying P .
A tester for P should distinguish with high probability, say 2/3, between the case
that G satisfies P and the case that G is ǫ-far from satisfying P . Here we assume
that the tester can query some oracle whether a pair of vertices, i and j, are
adjacent in the input graph G.

Definition 1 (Testable). A graph property P is testable if there is a randomized
algorithm T , that can distinguish for every ǫ > 0 and with probability 2/3, between
graphs satisfying P and graphs that are ǫ-far from satisfying P , while making a
number of edge queries which is bounded by some function q(ǫ) that is independent
of the size of the input.

This notion was introduced by Goldreich, Goldwasser and Ron [2] and received
a considerable amount of attention by various researchers. The problem of charac-
terizing the testable graph properties was naturally one of the main open problems
in the study of the area and was raised already in this paper and mentioned in
several subsequent ones. Here we give such a characterization. It is based on the
regularity lemma of Szemerédi [3].

For every two nonempty disjoint vertex sets A and B of a graph G, we define
e(A, B) to be the number of edges of G between A and B. The edge density of the
pair is defined by d(A, B) = e(A, B)/(|A||B|).
Definition 2 (γ-regular pair). A pair (A, B) is γ-regular, if for any two subsets
A′ ⊆ A and B′ ⊆ B, satisfying |A′| ≥ γ|A| and |B′| ≥ γ|B|, the inequality
|d(A′, B′) − d(A, B)| ≤ γ holds.

Definition 3 (γ-regular equipartition). An equipartition B = {Vi | 1 ≤ i ≤ k}
of the vertex set of a graph is called γ-regular if all but at most γ

(
k
2

)
of the pairs

(Vi, Vj) are γ-regular.

An equipartition is said to refine another if every set of the former is contained
in one of the sets of the latter. Szemerédi’s regularity lemma can be formulated
as follows.

Lemma 4 ([3]). For every m and γ > 0 there exists T = T4(m, γ) with the
following property: If G is a graph with n ≥ T vertices, and A is any equipartition
of the vertex set of G of order at most m, then there exists a refinement B of A
of order k, where m ≤ k ≤ T and B is γ-regular. In particular, for every m and
γ > 0 there exists T = T4(m, γ), such that any graph with n ≥ T vertices has a
γ-regular equipartition of order k, where m ≤ k ≤ T .
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It seems natural to define a graph property, which states that a graph has a
given γ-regular partition, that is, an equipartition which is γ-regular and such that
the densities between the sets Vi belong to some predefined set of densities.

Definition 5 (Regularity-Instance). A regularity-instance R is given by an error-

parameter 0 < γ ≤ 1, an integer k, a set of
(
k
2

)
densities 0 ≤ ηij ≤ 1 indexed by

1 ≤ i < j ≤ k, and a set R of pairs (i, j) of size at most γ
(
k
2

)
. A graph is said to

satisfy the regularity-instance if it has an equipartition {Vi | 1 ≤ i ≤ k} such that
for all (i, j) 6∈ R the pair (Vi, Vj) is γ-regular and satisfies d(Vi, Vj) = ηi,j. The
complexity of the regularity-instance is max(k, 1/γ).

The first main result in this work is the following:

Theorem 6. For any regularity-instance R, the property of satisfying R is testable.

Definition 7 (Regular-Reducible). Graph property P is regular-reducible if for
any δ > 0 there exists an r = rP (δ) such that for any n there is a family R of at
most r regularity-instances each of complexity at most r, such that the following
holds for every ǫ > 0 and every n-vertex graph G:

(1) If G satisfies P then for some R ∈ R, G is δ-close to satisfying R.
(2) If G is ǫ-far from satisfying P , then for any R ∈ R, G is (ǫ − δ)-far from

satisfying R.

Observe that in the above definition the value of δ may be arbitrarily close
to 0. If we think of δ = 0 then we get that a graph satisfies P if and only if it
satisfies one of the regularity instances of R. With this (rough) interpretation in
mind, in order to test P one can test the property of satisfying any one of the
instances of R. Therefore, in some sense we “reduce” the testing of property P to
the testing of regularity-instances. We are now ready to state the characterization
of the testable graph properties.

Theorem 8. A graph property is testable if and only if it is regular-reducible.

The detailed proofs, applications, discussions and further references can be
found in [1].
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A (De)constructive Approach to Program Checking (or How to
Delegate Work to Your Very Own Adversary)

Shafi Goldwasser

(joint work with Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy
Rothblum)

One of the main challenges in software engineering is verifying the correctness
of software. In the eighties Blum and Kannan [1] proposed the methodology of
program “result checking”, which focuses on correctness of the code per input
rather than full program verification. The methodology associates every function
to be computed with a new piece of code called the checker. Then, given any
possibly buggy program for the function and any input, the checker “checks”
whether the program on this input computes the function correctly. The work of
Blum, Luby, and Rubinfeld [2] further introduced the notion of program testers and
correctors. A tester determines whether a given program for a function is correct
on random inputs (with relatively high probability). A corrector of a function is
given an input and a program that is guaranteed to compute the function correctly
on random inputs (but may be buggy on some inputs), and computes (with high
probability) the correct output for the given input.

The focus of the rich body of work in the result checking field has been the
design of efficient checkers (and tester/correctors) for many specific functions, by
exploiting either their algebraic or combinatorial properties. Most notably, these
functions include arithmetic operations, matrix operations, and certain graph and
group operations. By and large, these are function families which possess random
and downwards self-reducibility properties.

This body of work has also found applications beyond the field of program
checking. The techniques introduced were pivotal in showing the expressive power
of IP and PCP proof systems, and the notion of testers in and of itself has evolved
into the successful field of property testing.

Since a correct algorithm for a given function is also trivially a checker for the
function, [1] required, in order to avoid triviality, that checkers have the little-oh
time property: the running time of the checker must be little-oh of the running
time of the most efficient known program that computes the function. An analogue
little-oh parallel time property was considered by Rubinfeld [3]: a checker’s parallel
running time should be little-oh of the parallel running time of the most efficient
known program that computes the function. (Throughout, the standard complex-
ity measure of oracle algorithms is used, where the complexity of the algorithm is
measured without the complexity of the oracle’s computations.)

New Work

The work demonstrates new checkers, testers and correctors that are all prov-
ably more efficient than the optimal program in terms of circuit depth for the
functions at hand. These are designed using a new composition methodology for



1804 Oberwolfach Report 31/2007

improving the circuit depth of checkers, testers and correctors. This approach
may, in principal, also be useful to improve other complexity measures.

The idea is the following. We observe that a checker for a function f has access
to a potentially powerful resource: the (allegedly correct) program P it is checking,
which can often compute a complex function. Our goal is thus to delegate compu-
tations from the checker to the program being checked, all the while verifying that
the results returned by the delegated computations are correct. To achieve this
we start with a checker C for the function at hand – this C may be a previously
designed checker, or even just a correct program for the function (which trivially
gives a checker) – and then to decompose this checker into sub-computations. The
work of these sub-computations is in turn replaced by calls to P , the potentially
faulty program being checked, on appropriate inputs. This is done by applying
a reduction that maps sub-computations to instances of the function f being al-
legedly computes. The correctness of these delegated sub-computations performed
by P is finally verified by checkers for the sub-computations. When the checkers
for the sub-computations are more efficient than the sub-computations themselves,
this results in a new checker with improved efficiency.

The composition methodology provides a simple way to design checkers that is
very similar to the top-down approach of algorithm design: break down the solu-
tion of a complex problem into the solution of smaller (and easier) sub-problems,
and then combine these solutions, all the while ensuring errors are kept under
control. In particular, this approach enables us to construct checkers for functions
that do not necessarily have the type of self-reducibility or completeness properties
exploited in previous works of [1, 2, 4, 5, 6] as follows.

We first use the Composition Theorem to build checkers that are provably
more efficient than the functions they check (in terms of circuit depth) for en-
tire complexity classes, and not just specific functions with special algebraic or
combinatorial properties.

Theorem 1. For every i ≥ 1, every language in RNC i that is NC1-hard under
NC0-reductions has a checker in RNC i−1. Every language in RNC i that is NC1-
hard under AC0 reductions has a tester and corrector that are in RAC i−1.

The requirement of being NC1-hard under NC0 reductions turns out to not
be very restrictive. Examples of natural functions and languages that satisfy the
theorem requirements include graph connectivity (in its many variants), deciding
whether a given graph has a prefect matching and bounded-degree graph isomor-
phism, computing the determinant of a matrix, matrix exponentiation, and more.

Next, we turn to the design of parallel depth checkers for matrix functions.
Blum, Luby, and Rubinfeld [2] considered the problem of testing and correcting

matrix functions such as multiplication, inverse, determinant and rank. However,
they suggested a non-standard model in which the checker/tester/corrector can
access (with unit cost) not only the program to be checked, but also a library of
(possibly faulty) programs that allegedly compute other related functions. Within
this extended model, they show how to test and correct (and thus check) programs
for the above matrix functions.
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Here, we present standard checkers, testers and correctors for matrix multi-
plication, inversion, rank and determinant, removing altogether the need for the
matrix library model. These checkers/testers/correctors can be implemented in
AC0 (and for some ranges of parameters even in NC0). They are provably more
efficient than the optimal program for computing these functions in terms of circuit
depth. Furthermore, we note that the checkers we build for matrix multiplication
and matrix inversion are optimal up to constant factors in every parameter: depth
(or parallel time), size (or number of processors) and number of queries.

Theorem 2. Matrix multiplication, inversion, determinant and rank have all
probabilistic AC0 checkers, testers and correctors. For rank the result holds only
over fields that are of size polynomial in the input length. Over a field of cardi-
nality 2s for a constant s, matrix multiplication and inversion have probabilistic
NC0 checkers, testers and correctors that perform a constant number of calls to
the program.

A few additional remarks are in order.
Important building blocks used in applying our composition methodology are

efficient checkers for complete languages for low-level complexity classes. Our work
shows for the first time how to leverage checkers for complete-problems toward the
design of checkers for other non-complete problems in the class. Unlike other prop-
erties of functions (or languages), the existence of checkers for complete languages
did not previously seem to imply or be related to the existence of checkers for non-
complete language. Indeed, likely for this reason past work was more concerned
with checkers for useful and practical functions and less with checkers for complete
languages.

Finally, the paradigm of delegating computation to an untrusted component,
which originated in this work, has yielded applications in other settings. In [8] we
present new interactive proof systems where very efficient (NC0) verifiers delegate
their work to the provers, and new error correcting codes, where much of the
decoder’s work is delegated to the encoder (and embedded in the codeword itself).
This once again illustrates the fruitful interplay between program checking and
other areas in complexity theory.
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Reed-Solomon codes, low-degree automorphisms, and Error-correction
with optimal rate

Venkatesan Guruswami

(joint work with Atri Rudra)

1. Introduction

A fundamental trade-off in coding theory is the one between the percentage of
redundancy built into codewords and the fraction of errors that can be corrected.
In this talk, we describe an explicit construction of codes that achieves the optimal
trade-off between these parameters, along with polynomial time algorithms for
performing the error-correction. Formally, for every 0 < p < 1 and ε > 0, we
present an explicit construction of codes with rate (1 − p − ε) (i.e., which encode
(1−p−ε)n information symbols into n codeword symbols) that can be list decoded
in polynomial time from up to a fraction p of errors.1 Note that the trade-off we
achieve is information-theoretically the best possible, since if the proportion of
corectly received symbols is less than the rate, then we have less information at
the receiving end than is contained in the message and error-correction is therefore
not possible. For low noise levels (small p), our codes require almost a factor 2
less redundancy over the best previous result. We stress that our result holds in
a worst-case noise model where the channel can corrupt the codeword arbitrarily
subject to the bound p on the proportion of errors.

Our codes are simple to describe: they are certain ”folded” Reed-Solomon (RS)
codes, which are obtained from the classical RS codes via a bundling together of
codeword symbols (the resulting encoding is treated as a string over a larger al-
phabet). A central algebraic idea used in our work is that certain automorphisms
of rational function fields induce a low-degree map on the residue of polynomials
modulo a certain large degree irreducible. Discovering a similar phenomenon over
more general function fields, with the space of sections of some bounded-degree

1Under list decoding, the decoder must output a list of all possible messages that could have
been transmitted given that up to a fraction p of errors could have occurred. In order to decode
to achieve a rate exceeding (1−2p), it is known that the decoder’s worst-case output list size must
exceed one. Allowing even moderate sized lists, however, opens up the possibility of achieving
a much larger rate, and in particular approaching the information-theoretically optimal bound
of 1 − p.



Complexity Theory 1807

divisor replacing polynomials, and their evaluations at a large degree “place” re-
placing residues modulo an irreducible, could lead to exciting new algebraic codes,
and perhaps also progress towards achieving list decoding capacity over small,
fixed alphabets.

The talk introduced and motivated the problem of list decoding, and then
gave a peek into the technical ideas underlying the above result. The algebraic
ideas behind these codes, and specifically their precursor, the Parvaresh-Vardy
codes [5], have since yielded a new, simple construction of unbalanced bipartite
expanders with expansion close to the degree [4]. In turn, this has led to the best
known constructions (to date) of randomness extractors. These applications of the
Parvaresh-Vardy codes in pseudorandomness were presented in detail in another
talk by C. Umans.

We now present some technical details about the folded Reed-Solomon code
construction and a formal statement of our main result.

2. Code description and Main result

Consider a Reed-Solomon code CRS consisting of evaluations of degree k polyno-
mials over a finite field F at the set F∗ of nonzero elements of F. Let q = |F| = n+1.
Let γ be a generator of the multiplicative group F∗, and let the evaluation points
be ordered as 1, γ, γ2, . . . , γn−1. Using all nonzero field elements as evaluation
points is one of the most commonly used instantiations of Reed-Solomon codes.

Let m ≥ 1 be an integer parameter called the folding parameter. For conve-
nience, let us assume that m divides n = q − 1.

Definition 1 (Folded Reed-Solomon Code). The m-folded version of the RS code
CRS is a code of block length N = n/m over Fm. The encoding of a message
f(X), a polynomial over F of degree at most k, has as its j’th symbol, for 0 ≤
j < n/m, the m-tuple (f(γjm), f(γjm+1), · · · , f(γjm+m−1)). In other words, the
codewords of the m-folded RS code are in one-one correspondence with those of the
RS code CRS and are obtained by bundling together consecutive m-tuple of symbols
in codewords of CRS.

The folded version of a RS code thus carries the same information, just “bun-
dled” differently. It is a code of exactly the same rate as the original RS code, but
is defined over a larger alphabet. At a high level, folding restricts the flexibility in
the subset of evaluation points that an adversary can corrupt.

We now state the main concerning decoding these codes from [2]. In the be-
low statement, the parameter r governs the number of multiplicities at each point
imposed during the interpolation (similar to the list decoding algorithm for Reed-
Solomon codes from [6, 3]). The parameter s corresponds to the number of dimen-
sions in the interpolation, and the stated bound is obtained through (s+1)-variate
interpolation.
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Theorem 2. For every integer r ≥ 1, every integer m ≥ 1 and integer s, 1 ≤ s ≤
m, the folded RS code with the parameters q, n, N, k from Definition (1) can be list
decoded up to a radius

(1) N −
(
1 +

s

r

) (ksn)1/(s+1)

m − s + 1
+ 2 ,

in time at most (nr)O(s), and the list size output by the decoder will be at most qs.

By picking r, m large enough compared to s, and noting that the rate R =
k/n and n = Nm, the fraction of decoded errors can be made larger than 1 −
(1 + ζ)Rs/(s+1) for any desired ζ > 0. In the limit of large s (specifically, for
s = Θ(ε−1 log(1/R))), the decoding radius approaches the list decoding capacity
1 − R, leading to the main conclusion of this work:

Theorem 3 (Explicit capacity-approaching codes). For every ε > 0 and 0 <
R < 1, there is a family of folded Reed-Solomon codes which have rate at least
R and which can be list decoded up to a fraction 1 − R − ε of errors in time

(N/ε2)O(ε−1 log(1/R)) where N is the block length of the code. The alphabet size of

the code as a function of the block length N is (N/ε2)O(1/ε2).

3. Few words on the proof

We now describe at a very high level the key ingredients in proving the above
results. For the full details, the reader is referred to [2, 1].

Let us focus on the statement of Theorem 2. By a rather straightforward
extension of the bivariate interpolation based decoding paradigm from [6, 3] to
the multivariate case, one can compute a non-zero (s + 1)-variate polynomial
Q(X, Y1, Y2, . . . , Ys) over F = Fq such that any degree k polynomial f(X) whose
folded RS encoding is within the radius (1) from the received word must satisfy

(2) Q(X, f(X), f(γX), . . . , f(γs−1X)) = 0 .

The central algebraic step is then to find all degree k polynomials f(X) for
which (2) holds in an efficient manner, and in the process also prove that there
cannot be too many solutions f(X) to (2). The key insight here is to note the
following two facts: (i) The (trivial) identity f(γX) ≡ f(X)q (mod (Xq−1 − γ))
that holds for all polynomials, and (ii) The polynomial E(X) = Xq−1 − γ is ir-
reducible over Fq. For k < q − 1, all solutions f(X) of degree at most k to (2)

can thus be found by solving the equation Q(X, T, T q, T q2

, . . . , T qs−1

) = 0 over
G = Fq[X ]/(E(X)) for T . This amounts to finding the roots of a univariate
polynomial over the extension field G, a task that can be performed efficiently.

The algebraic crux above was that the automorphism Γ of the function field
K = Fq(X) induced by X 7→ γX satisfied the identity Γ(f) mod E(X) = f q

mod E(X) for all polynomials f . That is, the automorphism Γ induces a low-
degree map w.r.t the evaluations of polynomials at the “place” corresponding
to E(X).
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Extractors for Independent Sources

Anup Rao

The use of randomness is widespread in computer science. Many of the best
performing algorithms and protocols in many different areas of computer science
are randomized. To guarantee their performance these algorithms usually rely on
a perfect source of uncorrelated uniformly random bits, yet such a source may not
be easy to obtain. We might instead have access to an imperfect random source
where the bits are correlated and not uniformly random.

This motivates the study of objects called extractors. Informally, an extractor
is an explicit efficiently computable function Ext : {0, 1}n → {0, 1}m that takes
as input bits from an imperfect random source and produces bits that are close
to uniformly random (the distance of the output distribution from the uniform
distribution is called the error of the extractor). If we had access to such a function,
we could use it to extract truly random bits from an imperfect random source.
We would then use the extracted bits in our application. Thus we could achieve
performance guarantees even with imperfect sources of randomness.

The most general model for a defective source of randomness that has been
considered to date is what we will call a weak source [CG88]. The only constraint
on a weak source that supplies n total bits is that the probability of getting any
particular string from the source is at most 2−k, where k is called the min-entropy
of the source. Such a source is called an (n, k)-source. Unfortunately it can be
shown that there is no deterministic extractor that can extract from general weak
sources.

A natural model for a source that would allow extraction to be feasible is to
assume that the source consists of two or more independent parts, each with
sufficient entropy. We say that a function Ext is a C-source extractor for entropy k
if given any C independent sources with entropy k, X1, . . . , XC, Ext(X1, . . . , XC)
is close to being uniformly random.
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Definition 1. A function IndepExt : ({0, 1}n)C → {0, 1}m is an extractor for C

independent sources with min-entropy k and error ǫ if for any independent (n, k)
sources X1, . . . , XC we have that IndepExt(X1, . . . , XC) is ǫ-close to the uniform
distribution in terms of statistical distance.

Another way to view 2-source extractors is as boolean matrices that look ran-
dom in a strong sense: Every 2-source extractor for entropy k gives an N × N
boolean matrix in which every K × K minor has roughly the same number of 1’s
and 0’s, with N = 2n, K = 2k.

The independent sources model is one of the earliest models studied [SV86,
Vaz85, CG88]. The probabilistic method shows that most functions are 2-source
extractors requiring entropy that is just logarithmic in the total length of each of
the sources. Explicit constructions are still very far from achieving this kind of
performance. The classical Lindsey Lemma gives a 2-source extractor for sources
on n bits with entropy n/2. No significant progress was made in improving the
entropy requirements over this, until recently. In the last few years, sparked by new
results in arithmetic combinatorics [BKT04], there were several results [BIW04,
BKS+05, Raz05, Bou05].

Construction Min-Entropy k Output Error Ref

poly(1/δ)-
source extractor

δn Θ(n) 2−Ω(n) [BIW04]

3-source extrac-
tor

δn, any constant δ Θ(1) O(1) [BKS+05]

3-source extrac-
tor

One source: δn, any con-
stant δ. Other sources
may have polylog(n)
min-entropy.

Θ(1) O(1) [Raz05]

2-source extrac-
tor

One source: (0.5 +
α)n, α > 0. Other
source may have k =
polylog(n) min-entropy.

Θ(k) 2−Ω(k) [Raz05]

2-source extrac-
tor

(0.5−α0)n for some uni-
versal constant α0 > 0

Θ(n) 2−Ω(n) [Bou05]

O(1/δ)-source
extractor

nδ Θ(k) k−Ω(1) [Rao06]

O(1/δ)-source
extractor

nδ Θ(k) 2−kΩ(1)

[BRSW06]

3-source extrac-
tor (with con-
straints on input
lengths)

nδ for any constant δ
(additional constraints
apply)

k − o(k) 2−kΩ(1)

[LRZ07]

Table 1. Performance of recent extractors for independent sources
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Results in the Talk. We give a polynomial time computable extractor that
extracts k random bits from O( log n

log k ) independent (n, k)-sources with error k−c for

any k(n) > log4 n and some universal constant c > 1. An interesting setting of
parameters is when k = nγ for some 0 < γ < 1. In this case we get an extractor
for a constant number of sources that extracts a constant fraction of the total
min-entropy with exponentially small error.

Techniques. Many extractor constructions in the past have been based on the
paradigm of iterative condensing [RSW00, TUZ01, CRVW02, LRVW03, BIW04].
The idea is to start with some distribution that has low min-entropy and ap-
ply a function (called a condenser) whose output has a better min-entropy rate.
Repeating this process, we eventually obtain a distribution which has very high
min-entropy rate. Then we can apply some other extractor which works for such
a high min-entropy rate to obtain random bits. The extractor in this paper can
also be viewed as an example of this paradigm, with a slight twist.

We make progress by considering a more restricted model for sources called
somewhere random sources [TS96]. A source is somewhere random if it samples
from some distribution on boolean matrices, such that at least one of the rows
of the matrix is distributed uniformly. An important concept that we introduced
in that chapter is that of aligned somewhere random sources. Two somewhere
random sources with the same number of rows are said to be aligned if there is
an i such that the ith row of both sources are distributed uniformly.

We think of the number of rows of a somewhere random sources as a measure
of the quality of the source. The fewer the number of rows, the better the quality
is. Our construction works by iteratively improving the quality (reducing the
number of rows) of the somewhere random sources that we are working with until
extracting randomness from them becomes easy.
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Unbalanced Expanders and Randomness Extractors from
Parvaresh-Vardy Codes

Chris Umans

(joint work with Venkatesan Guruswami, Salil Vadhan)

A long line of work has been devoted to obtaining explicit constructions of ran-
domness extractors, defined below:

Definition 1. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ǫ) extractor if
for every X with minentropy at least k, E(X,Y) is ǫ-close to uniform, when Y

is uniformly distributed on {0, 1}d
. An extractor is explicit if it is computable in

polynomial time.

Many applications have been found for these objects in a diverse range of
settings, and consequently a lot of effort has been spent trying to find explicit
constructions. An extractor construction matching the non-constructive bounds
would have a seed length of d = log n + 2 log(1/ǫ) + O(1) and an output length
of m = k + d − 2 log(1/ǫ) − O(1). We still do not have explicit constructions of
optimal extractors; the best construction prior to this work was by Lu, Reingold,
Vadhan, and Wigderson [LRVW03], who get within constant multiplicative factors
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of optimal in both the seed length and the output length (for ǫ that is not too
small).

In this talk we describe a new explicit construction of extractors that matches
[LRVW03], and also handles small ǫ. One of the main advantages of our result is
the simplicity of the construction and its proof.

The construction works by first building an intermediate object called a lossless
condenser, defined below:

Definition 2. A function C : {0, 1}n×{0, 1}d → {0, 1}m
is an k →ǫ k′ condenser

if for every X with minentropy at least k, C(X,Y) is ǫ-close to a distribution with

minentropy k′, when Y is uniformly distributed on {0, 1}d
. A condenser is explicit

if it is computable in polynomial time. A condenser is called lossless if k′ = k + d.

Nonconstructively, there exist lossless condensers with seed length d = log n +
log(1/ǫ) + O(1) and output length m = k + d + log(1/ǫ) + O(1). The best previ-
ous constructions of lossless condensers were by Ta-Shma, Umans, and Zuckerman
[TUZ01], with a further improvement in [TU06]. These construction get within
a constant multiplicative factor of optimal in either of the two parameters (seed
length and output length), at the expense of being a super-constant multiplica-
tive factor away from optimal in the other. Our main construction achieves a
lossless condenser that is within a constant factor of optimal in both parameters
simultaneously.

It is most natural to describe our main construction as an explicit construction
of yet another object, an (unbalanced, bipartite) expander graph, defined below:

Definition 3. A bipartite (multi)graph G = (U, V, E) is a (K, A) expander if for
every set S ⊆ U of size K, we have |Γ(S)| ≥ A · K.

It turns out that a (K = 2k, (1 − ǫ)2d) expander is equivalent to a k →ǫ k + d
(lossless) condenser with seed length d [TUZ01]. In the language of expanders, our
main construction achieves expansion (1− ǫ)D while the degree D is a polynomial
in the optimal O(log N/ǫ) (for the unbalanced case), and the right-hand side has
size that is also a polynomial in the optimal O(KD/ǫ).

Our main construction is based on Parvaresh-Vardy codes [PV05], and its proof
essentially amounts to a tight analysis of the so-called “list-recovering” properties
of these codes, which follows the list-decoding analysis of [PV05] closely. Let Fq be
the field with q elements, and let h < q be a parameter we will set later. Let E(Y )
be a degree n polynomial that is irreducible over Fq. We identify the left-hand-side
of the bipartite graph with the set of degree n− 1 univariate polynomials over Fq.

Given such a polynomial f(Y ), define fi(Y ) to be f(Y )hi

mod E(X). For each
field element y ∈ Fq, the y-th neighbor of f is (y, f0(y), f1(y), . . . , fm(y)) ∈ Fm+1

q .
This is just y prepended to the y-th coordinate of the Parvaresh-Vardy codeword
corresponding to f .

The natural way to prove expansion would be to fix a subset of size K of the
left-hand-side, and argue that its neighbor set has size at least AK. An equivalent
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proof strategy, that will be useful here, fixes a subset T of size AK−1 of the right-
hand-side, and argues that that the set LIST (T ), consisting of all left-hand-side
vertices whose neighbor set is entirely contained within T , has size at most K − 1.

Now we can present the proof, which is algebraic, short, and self-contained.
The main lemma is:

Lemma 4. For A = q − nmh, and K = hm, if T ⊆ Fm+1
q has size AK − 1 then

LIST (T ) ⊆ Fn
q has size at most K − 1.

Proof. Fix a set T ⊆ Fm−1
q . Let Q(Y, Z0, . . . , Zm−1) be a non-zero polynomial

that vanishes on T , with deg(Y ) ≤ A − 1, and deg(Zi) ≤ h − 1. We assume that
E(Y ) does not divide Q, without loss of generality.

Now consider a degree n− 1 polynomial f in LIST (T ). By definition all of its
neighbors are in T , and so ∀y Q(y, f0(y), . . . , fm−1(y)) = 0. But this univariate
polynomial in y has degree less than q, and it vanishes on q points, so it must be
the zero polynomial. Substituting the definition of the fi, we have

Q(Y, (f(Y ) mod E(Y )), (f(Y )h mod E(Y )), . . . , (f(Y )hm−1

mod E(Y ))) ≡ 0.

and the same holds after taking the left-hand-side modulo E(Y ).
Thus, over the extension field Fq[Y ]/E(Y ) (in which f(Y ) is a field element),

we have Q(Y, f(Y ), f(Y )h, . . . , f(Y )hm−1

) = 0, or equivalently, that f is a root

of the univariate polynomial Q∗(Z) = Q(Y, Z, Zh, . . . , Zhm−1

) mod E(Y ). Finally,
the degree of Q∗ is at most (h − 1)(1 + h + h2 + . . . + hm−1) = hm − 1, which is
an upper bound on the size of LIST (T ). �

A minor tweak to this proof gives an upper bound of K ′ − 1 on |LIST (T )|,
given a T of size AK ′ − 1, for any K ′ ≤ K. Setting h = (nm/ǫ)1/α and q = h1+α

delivers the promised expansion, degree, and right-hand-side size.
Viewed as a condenser, this construction condenses an arbitrary source losslessly

into one with entropy rate any constant arbitrarily close to 1. We can apply known
extractors [Zuc97] to such a source to extract a constant fraction of the minentropy;
for constant ǫ, we can even use the well-known “expander-walk” extractor which
is very simple to describe and analyze with Chernoff-type bounds for expander
walks [Gil98].

Other ideas from list-decodable error-correcting codes are useful in our setting as
well. The “repeated roots” idea from [GS99] can be used to reduce the seed length
(at the expense of some entropy loss). Ideas from [GR06] can be used to show that
a very natural construction based on Reed-Solomon codes yields a good condenser.
Specifically, the y-th neighbor is now (f(y), f(αy), . . . , f(αm−1y)) ∈ Fm

q , where α
is a generator of F∗

q , and essentially the same proof technique shows that this is a
condenser whose output retains a (1 − δ) fraction of the entropy, for any δ > 0.

In summary, we give the best explicit constructions of randomness extractors
and unbalanced bipartite expander graphs (a.k.a. “lossless condensers”) to date,
using a simple construction and proof technique based on Parvaresh-Vardy codes.
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Statistically Hiding Commitments from Any One-Way Function

Salil Vadhan

(joint work with I. Haitner, M. Nguyen, S.J. Ong, O. Reingold)

As first discovered by Shannon [22] for the case of encryption, most interesting
cryptographic tasks are impossible to achieve with absolute, information-theoretic
security. Thus, modern cryptography aims to design protocols that are computa-
tionally intractable to break. Specifically, following Diffie and Hellman [5], this is
typically done by showing that breaking the protocol is as hard as some intractable
problem from complexity theory. Unfortunately, proving lower bounds of the sort
needed seems beyond the reach of current techniques in complexity theory, and
indeed would require at least proving P 6= NP.

Given this state of affairs, research in the foundations of cryptography has
aimed to design cryptographic protocols based on complexity assumptions that
are as weak and general as possible. This project was enormously successful in the
1980’s. In a beautiful sequence of works, it was shown that many cryptographic
primitives, such as pseudorandom generators, pseudorandom functions, private-
key encryption and authentication, digital signatures, (computationally hiding)
bit commitment, and (computational) zero-knowledge proofs could be constructed
from any one-way function [12, 6, 21, 16, 8], and moreover this complexity assump-
tion is minimal in the sense that each of these primitives (and indeed almost any
cryptographic task) implies the existence of one-way functions [13, 20]. Moreover,
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it was shown that many of the remaining primitives, such as public-key encryp-
tion, collision-resistant hashing, and oblivious transfer, could not be reduced to
the existence of one-way functions in a “black-box” manner [14, 23].

However, a few important primitives have resisted classification into the above
categories. That is, it is only known how to build these primitives from seemingly
stronger assumptions than the existence of one-way functions, yet there is no black-
box separation between these primitives and one-way functions. In this work, we
are interested in statistically hiding and computationally binding commitment
schemes.

Statistically Hiding Commitments. A commitment scheme defines a two-
stage interactive protocol between a sender S and a receiver R; informally, after
the commit stage, S is bound to (at most) one value, which stays hidden from R,
and in the reveal stage R learns this value. The two security properties hinted
at in this informal description are known as binding (namely, that S is bound to
at most one value after the commit stage) and hiding (namely, that R does not
learn the value to which S commits before the reveal stage). In a statistically hid-
ing computationally-binding commitment scheme the hiding property holds even
against all-powerful receivers (i.e., hiding holds information-theoretically), while
the binding property is required to hold only for polynomially-bounded senders.

Statistical commitment schemes can be used as a building block in construc-
tions of statistical zero-knowledge arguments [3, 17] and certain coin-tossing proto-
cols [15]. It therefore implies, via standard reduction, a way to transform a large
class of protocols that are secure assuming an all powerful honest-but-curious
party, into one that is secure even when this party maliciously deviates from the
protocol. More generally, when used within protocols in which certain commit-
ments are never revealed, statistical commitments have the following advantage
over computationally-hiding commitment schemes: in such a scenario, it needs
only be infeasible to violate the binding property during the period of time the
protocol is run, whereas the committed values will remain hidden forever (i.e.,
regardless of how much time the receiver invests after completion of the protocol).

Perfectly-hiding1 commitment schemes were first shown to exist based on spe-
cific number-theoretic assumptions [1, 3] or, more generally, based on any collection
of claw-free permutations [9] with an efficiently-recognizable index set [7]. Statis-
tical commitment schemes can also be constructed from collision-resistant hash
functions [4, 18]. Naor et al. [17] showed a construction of a perfectly-hiding com-
mitment scheme based on any one-way permutation. Haitner et. al. [10] make
progress by constructing statistical commitment based on regular one-way func-
tions and also on the so called approximable-size one-way functions. The question
of whether one-way functions imply statistical commitments, however, was left
open.

1Very informally, in a statistically-hiding commitment scheme the receiver learns only a neg-
ligible amount of information about the sender’s committed value, whereas in a perfectly-hiding
commitment scheme the receiver learns nothing. Note that any perfectly-hiding scheme is triv-
ially also statistically hiding.
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We mention that the complementary notion of commitment schemes, where the
hiding is computational and the binding holds even w.r.t. an all powerful sender,
was already known to be implied by the existence of one-way functions [12, 16].

Our result. Our main result is that the existence of one-way functions is a
sufficient condition for the existence of statistical commitment. Namely, we prove
the following theorem.

Theorem 1. Assuming that one-way functions exist, then there exists a statisti-
cally-hiding and computationally-binding commitment scheme.

By Impagliazzo and Luby [13], the existence of statistical commitment schemes
implies the existence of one-way functions and thus the above result is tight.

One of the main applications of statistically hiding commitments are statistical
zero-knowledge arguments [2, 8, 3]. These are zero-knowledge protocols for proving
membership in any NP language where the zero knowledge property is statistical
(i.e. even a computationally unbounded verifier learns nothing from the protocol)
and the soundness is computational (i.e. no polynomial-time prover can convince
the verifier of a false assertion, except with negligible probability). Thus, we also
deduce:

Theorem 2. Assuming that one-way functions exist, then every language in NP
has a statistical zero-knowledge argument system.
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Norms, XOR lemmas, and lower bounds for GF (2) polynomials and
multiparty protocols

Avi Wigderson

(joint work with Emanuele Viola)

A natural measure of agreement between two functions is their correlation, which
measures the agreement on a random input. Formally, the correlation between
two functions f, p ∈ {0, 1}n → {−1, 1} is defined as

Cor(f, p) := |Ex[f(x) · p(x)]| =
∣∣∣Pr

x
[f(x) = p(x)] − Pr

x
[f(x) 6= p(x)]

∣∣∣ ∈ [0, 1].

For a complexity class C (e.g., circuits of size s on n bits), we denote by Cor(f, C)
the maximum of Cor(f, p) over all functions p ∈ C. In other words, Cor(f, C)
captures how well on average can we compute f using a function from C.

Correlation bounds are fundamental in computational complexity. Proving that
Cor(f, C) < 1 is equivalent to establishing that f 6∈ C, but what is far more
desired is proving that Cor(f, C) is very close to zero, for natural functions f and
complexity classes C. Such bounds yield pseudorandom generators that “fool”
the class C (e.g. [10, 11, 9, 16]), and they also imply lower bounds for richer
classes related to C (e.g., if Cor(f, C) < 1/t then f cannot be computed exactly
by any function which is the majority of any t functions from C [4]). For these
applications, we would like to prove correlation bounds as close to zero as possible.

A celebrated way of decreasing correlation (a.k.a. amplifying hardness) is via an
XOR lemma, first suggested by Yao in his seminal paper [18] (cf. [3]). One starts
with a function f of nontrivial correlation with C, and constructs a new function
f⊕m (on n ·m bits), which is the exclusive-OR of the value of f on m independent
inputs. The hope is that the correlation will decay exponentially with m. This
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idea is best demonstrated in the information-theoretic setting, in which we try to
compute the value of a biased coin. In our language, take C to be the class of
constant functions, and f any function with |Ex[f(x)]| = Cor(f, C) = ǫ. Then it
is easy to see that Cor(f⊕m, C) = ǫm for every m.1 So the decay of the correlation
in this trivial scenario is purely exponential in the number of copies m.

Yao’s XOR lemma deals with the most studied computational model, namely
polynomial-size circuits, and goes as follows. Let C be the class of Boolean circuits
of size s, and let f be any function on n bits with Cor(f, C) ≤ ǫ. Then for any
large m and small α > 0, if C′ is the class of circuits of size s · (α/nm)2 then
Cor(f⊕m, C′) ≤ ǫm + α. Many proofs of this XOR lemma were given, starting
with Levin [8, 5, 3, 6]. All in fact show that that this lemma holds in more general
circumstances, namely as long as C can compute the majority of functions in C′.
However, none of these proofs can be applied to the computational models for
which we actually can establish the existence of functions with non-trivial correla-
tion (i.e. prove lower bounds), such as low-degree GF (2) polynomials, multiparty
protocols, or constant-depth circuits (cf. [14, Chapter 6]). Specifically, none of the
above proofs can be applied to obtain a correlation bound of 1/n for a function
on n bits. Another weakness of the results in [8, 5, 3, 6] is their loss in resources
(e.g., circuit size) in C′ with respect to C (cf. [3]).

Our results. In this paper we prove new XOR lemmas for two models: low-degree
polynomials over GF (2), and low-communication multiparty protocols.

We show that if a Boolean function has correlation at most ǫ ≤ 1/2 with any
of these models, then the correlation of the parity of its values on m independent
instances drops exponentially with m. More specifically:

• For GF (2) polynomials of degree d, the correlation drops to exp
(
−m/4d

)
.

No XOR lemma was known even for d = 2.
• For c-bit k-party protocols, the correlation drops to 2c · ǫm/2k

. No XOR
lemma was known for k ≥ 3 parties.

Another contribution in this paper is a general derivation of direct product
lemmas from XOR lemmas. In particular, assuming that f has correlation at
most ǫ ≤ 1/2 with any of the above models, we obtain the following bounds on
the probability of computing m independent instances of f correctly:

• For GF (2) polynomials of degree d we again obtain a bound of exp
(
−m/4d

)
.

• For c-bit k-party protocols we obtain a bound of 2−Ω(m) in the special case
when ǫ ≤ exp

(
−c · 2k

)
. In this range of ǫ, our bound improves on a direct

product lemma for two parties by Parnafes, Raz, and Wigderson [12].

We also give improved (or just simplified) lower bounds in these models. In
particular we give a new proof that the Modm function on n bits, for odd m, has
correlation at most exp(−n/4d) with degree-d GF (2) polynomials.

Both proofs of our XOR lemmas use a common approach, very different from
the one used for circuits. To each of these complexity classes C we associate a real

1Strictly speaking, now C denotes the constant functions on n · m bits.
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norm N on all Boolean functions which has the following properties (informally
stated):

(1) N captures correlation with C. For every function f , N(f) ≈
Cor(f, C).

(2) N commutes with XOR. Let f, g be two functions on disjoint inputs,
then N(f · g) = N(f) · N(g).

Given such a norm N , the proof of an XOR lemma for C is straightforward:

Cor(f⊕m, C) ≈ N(f⊕m) = N(f)m ≈ Cor(f, C)m.

Of course, the challenge is to find the appropriate norm and prove their prop-
erties. We explain how such norms are related to the basic question of “Property
Testing,” where the problem being tested is how close is the given function f to
the class C.

We also explain how such norms suggest themselves when the class C in question
is a linear space. This is the case with GF (2) polynomials, in which case indeed
the well-known Gowers’ norms are used. For multi-party protocols, which are not
a linear space, we explain how they can be “approximated” by a linear space, for
which a natural norm is implicit in previous papers.
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Towards 3-Query Locally Decodable Codes of Subexponential Length

Sergey Yekhanin

1. Abstract

A q-query Locally Decodable Code (LDC) encodes an n-bit message x as an
N -bit codeword C(x), such that one can probabilistically recover any bit xi of the
message by querying only q bits of the codeword C(x), even after some constant
fraction of codeword bits has been corrupted.

We give new constructions of three query LDCs of vastly shorter length than
that of previous constructions. Specifically, given any Mersenne prime p = 2t − 1,
we design three query LDCs of length N = exp

(
n1/t

)
, for every n. Based on the

largest known Mersenne prime, this translates to a length of less than exp
(
n10−7

)
,

compared to exp
(
n1/2

)
in the previous constructions.

2. Introduction

Classical error-correcting codes allow one to encode an n-bit string x into in
N -bit codeword C(x), in such a way that x can still be recovered even if C(x) gets
corrupted in a number of coordinates. For instance, codewords C(x) of length
N = O(n) already suffice to correct errors in up to δN locations of C(x) for
any constant δ < 1/4. The disadvantage of classical error-correction is that one
needs to consider all or most of the (corrupted) codeword to recover anything
about x. Now suppose that one is only interested in recovering one or a few bits
of x. In such case more efficient schemes are possible. Such schemes are known as
locally decodable codes (LDCs). Locally decodable codes allow reconstruction of
an arbitrary bit xi, from looking only at q randomly chosen coordinates of C(x),
where q can be as small as 2. Locally decodable codes have found numerous
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applications in complexity theory and cryptography. See [10], [5] for a survey.
Below is a slightly informal definition of LDCs:

A (q, δ, ǫ)-locally decodable code encodes n-bit strings to N -bit codewords C(x),
such that for every i ∈ [n], the bit xi can be recovered with probability 1 − ǫ, by
a randomized decoding procedure that makes only q queries, even if the codeword
C(x) is corrupted in up to δN locations.

One should think of δ > 0 and ǫ < 1/2 as constants. The main parameters of
interest in LDCs are the length N and the query complexity q. Ideally we would
like to have both of them as small as possible. The notion of locally decodable
codes was explicitly discussed in various places in the early 1990s. Katz and
Trevisan [6] were the first to provide a formal definition of LDCs and prove lower
bounds on their length. Further work on locally decodable codes includes [2, 7,
11]. The length of optimal 2-query LDCs was settled by Kerenidis and de Wolf
in [7] and is exp(n). The length of optimal 3-query LDCs is unknown. The best
upper bound prior to our work was exp

(
n1/2

)
due to Beimel et al., and the best

lower bound is Ω̃(n2) [7, 14]. For general (constant) q the best upper bound
was exp

(
nO(log log q/(q log q))

)
due to Beimel et al. [2] and the best lower bound is

Ω̃
(
n1+1/(⌈q/2⌉−1)

)
[7, 14].

3. Our results

We give new families of locally decodable codes whose length is vastly shorter
than that of previous constructions. We show that every Mersenne prime p (i.e.,
a prime of the form p = 2t − 1) yields a family of three query locally decod-
able codes of length exp

(
n1/t

)
. The largest Mersenne prime known currently

has t = 32, 582, 657 > 107. Substituting this prime into our theorem we con-
clude that for every n there exists a three query locally decodable code of length
exp

(
n1/32,582,657

)
.

It has often been conjectured that the number of Mersenne primes is infinite. If
indeed this conjecture holds, our constructions yield three query locally decodable

codes of length N = exp
(
nO( 1

log log n)
)

for infinitely many n. Finally, assuming that

the conjecture of Lenstra, Pomerance and Wagstaff [12, 9, 13] regarding the density
of Mersenne primes holds, our constructions yield three query locally decodable

codes of length N = exp

(
n

O
(

1

log1−ǫ log n

))
for all n, for every ǫ > 0.

4. Our technique

All previously known constructions of locally decodable codes and private infor-
mation retrieval schemes are (implicitly or explicitly) centered around the idea of
representing a message x by an evaluation of a certain low degree polynomial over
a finite field. Our constructions take a completely different approach. We start
by reducing the problem of constructing locally decodable codes to the problem of
designing certain families of sets with restricted intersections. We use elementary
algebra over finite fields to design such families.
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The heart of our construction is the design of a set S ⊆ F∗
p for a prime p that

simultaneously satisfies two properties: (1) There exist two large sequences of
vectors u1, . . . , un, v1, . . . , vn in some low dimensional space Fm

p , such that the dot
products (ui, vi) = 0 for all i, and the dot products (uj , vi) ∈ S for all i 6= j. We
refer to this property as the combinatorial niceness of S; (2) For a small integer q
there exists a q sparse polynomial φ(x) ∈ F2[x] such that the common GCD of all
polynomials of the form φ(xβ), β ∈ S and the polynomial xp−1 is non-trivial. We
refer to this property as the algebraic niceness of S. Our notion of combinatorial
niceness is related to the notion of set families with restricted intersections in [1].

Our construction of locally decodable codes thus comes in three steps: First we
show that a set S exhibiting both combinatorial and algebraic niceness leads to
good locally decodable codes. In particular the length n of the sequences u1, . . . , un

and v1, . . . , vn corresponds to the number of message bits we can encode, while
the length of the codewords we build is N = pm. So the longer the sequence
and the smaller the dimension the better. The query complexity of our codes
is given by the parameter q from the definition of algebraic niceness of S. This
step of our construction is quite general and applies to vectors u1, . . . , vn and
subsets S over any field. It leads us to the task of identifying good sets that are
both combinatorially and algebraically nice, and these tasks narrow our choice of
fields. As our second step we focus on combinatorial niceness. In general big sets
tend to be “nicer” (allow longer sequences) than small ones. We show that every
multiplicative subgroup of a prime field is combinatorially as nice as its cardinality
would allow. This still leaves us with a variety of fields and subsets to work with.
Finally as the last step we attempt to understand the algebraic niceness of sets. We
focus on the very narrow case of Mersenne primes p and the subgroup generated
by the element 2 in F∗

p. We manage to show that this subgroup is nice enough to
get 3-query locally decodable codes, leading to our final result. A formal treatment
of our constructions can be found in [15].
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Cryptography with Constant Input Locality

Benny Applebaum

(joint work with Yuval Ishai, Eyal Kushilevitz)

We study the following natural question: Which cryptographic primitives (if any)
can be realized by functions with constant input locality, namely functions in which
every bit of the input influences only a constant number of bits of the output? This
continues the study of cryptography in low complexity classes. It was recently
shown [1] that, under standard cryptographic assumptions, most cryptographic
primitives can be realized by functions with constant output locality, namely ones
in which every bit of the output is influenced by a constant number of bits from
the input.

We (almost) characterize what cryptographic tasks can be performed with con-
stant input locality. On the negative side, we show that primitives which require
some form of non-malleability (such as digital signatures, message authentication,
or non-malleable encryption) cannot be realized with constant input locality. On
the positive side, assuming the intractability of certain problems from the domain
of error correcting codes (namely, hardness of decoding a random linear code or
the security of the McEliece cryptosystem), we obtain new constructions of one-
way functions, pseudorandom generators, commitments, and semantically-secure
public-key encryption schemes whose input locality is constant. Moreover, these
constructions also enjoy constant output locality. Therefore, they give rise to cryp-
tographic hardware that has constant-depth, constant fan-in and constant fan-out.
As a byproduct, we obtain a pseudorandom generator whose output and input lo-
cality are both optimal (namely, 3).
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Lower Bounds on Signatures From Symmetric Primitives

Boaz Barak

(joint work with Mohammad Mahmoody-Ghidary)

We show that every black-box construction of one-time signature schemes from a
random oracle achieves security at most poly(q)2q, where q is the total number
of queries to the oracle by the generation, signing, and verification algorithms.
That is, any such scheme can be broken with probability close to 1 by a (compu-
tationally unbounded) adversary making poly(q)2q queries to the oracle. This is
tight up to a constant factor in the number of queries, since a simple modification
of Lamport’s scheme [2] achieves 2(2/3−o(1))q security using q queries. Our result
provides the first lower bound on the efficiency of constructing signature schemes
using a random oracle. A previous result by Gennaro et al [1] gave a lower bound
on such constructions using (highly non-random) one-way functions.

Our results extend (with a loss of a constant factor in the number of queries)
also to the random permutation and ideal-cipher oracles, and so can be taken as
evidence of an inherent efficiency gap between signature schemes and symmetric
primitives such as block ciphers, hash functions, and message authentication codes.
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Lower Bounds for Randomized Read/Write Stream Algorithms

Paul Beame

(joint work with T. S. Jayram, Atri Rudra)

Motivated by the capabilities of modern storage architectures, we consider the fol-
lowing generalization of the data stream model where the algorithm has sequential
access to multiple streams. Unlike the data stream model, where the stream is read
only, in this new model (introduced in [1, 2]) the algorithms can also write onto
streams. There is no limit on the size of the streams but the number of passes
made on the streams is restricted. On the other hand, the amount of internal
memory used by the algorithm is scarce, similar to data stream model.

We resolve the main open problem in [3] of proving lower bounds in this model
for algorithms that are allowed to have 2-sided error. Previously, such lower
bounds were shown only for deterministic and 1-sided error randomized algo-
rithms [2, 3]. We consider the classical set disjointness problem that has proved
to be invaluable for deriving lower bounds for many other problems involving data
streams and other randomized models of computation. For this problem, we show
a near-linear lower bound on the size of the internal memory used by a randomized
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algorithm with 2-sided error that is allowed to have o(log N/ log log N) passes over
the streams. This bound is almost optimal since there is a simple algorithm that
can solve this problem using logarithmic memory if the number of passes over the
streams is allowed to be O(log N).

Applications include near-linear lower bounds on the internal memory for well-
known problems in the literature: (1) approximately counting the number of dis-
tinct elements in the input (F0); (2) approximating the frequency of the mode of
an input sequence (F ∗

∞); (3) computing the join of two relations; and (4) deciding
if some node of an XML document matches an XQuery (or XPath) query.

Our techniques involve a novel direct-sum type of argument that yields lower
bounds for many other problems. Our results asymptotically improve all previ-
ously known bounds for problems in the read/write streams model even in deter-
ministic and 1-sided error models of computation.
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On the complexity of graph polynomials

Markus Bläser

(joint work with Holger Dell, Mahmoud Fouz, Christian Hoffmann,
Johann A. Makowsky)

A graph polynomial P maps graphs to polynomials PG over some ring R such
that isomorphic graphs are mapped to the same polynomial. If we now fix some
point ξ and map G to PG(ξ), we get a new graph invariant that maps graphs to
elements of R. We deal with the following question: What is the complexity of this
mapping in dependence on ξ? A famous result by Jaeger, Vertigan and Welsh [2]
says that for almost all points (in the Zariski sense), it is #P-hard to evaluate the
Tutte polynomial at this point. We show a similar result for cover polynomial, an
equivalent of the Tutte polynomial for directed graphs (see also [1]), and for the
interlace polynomial. Since all these polynomials are definable in monadic second
order logic, this gives rise to the following “difficult point conjecture”, cf. [3]:
For every graph polynomial that is definable in monadic second order logic and
that is #P-hard to evaluate for at least one point, its evaluation is #P-hard for
almost all points. Finally, we propose that one should study graph polynomials
in an algebraic model a la Blum, Shub, and Smale, since most graph polynomials
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are defined over C. Prior studies usually looked only at fields that have discrete
representations like algebraic field extensions of Q.
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Sampling methods for shortest vectors, closest vectors and successive
minima

Johannes Blömer

(joint work with Stefanie Naewe)

We study four problems from the geometry of numbers, the shortest vector problem
(Svp), the closest vector problem (Cvp), the successive minima problem (Sivp),
and the shortest independent vectors problem (Sivp). Extending and generalizing
results of Ajtai, Kumar, and Sivakumar we present probabilistic single exponential
time algorithms for all four problems for all ℓp norms. The results on Smp and
Sivp are new for all norms. The results on Svp and Cvp generalize previous
results of Ajtai et al. for the Euclidean ℓ2 norm to arbitrary ℓp norms. We
achieve our results by introducing a new lattice problem, the subspace avoiding
problem (Sap). We describe a single exponential time algorithm for Sap. We
also describe polynomial time reductions from Svp,Cvp,Smp, and Sivp to Sap,
establishing the single exponential time algorithm for the four classical lattice
problems. This approach leads to a unified algorithmic treatment of the lattice
problems Svp,Cvp,Smp, and Sivp.
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Pseudorandom generators for low degree polynomials

Andrej Bogdanov

(joint work with Emanuele Viola)

We present a new approach to constructing pseudorandom generators that fool
low-degree polynomials over finite fields, based on the Gowers norm. Using this
approach, we obtain the following main constructions of explicitly computable
generators G : Fs → Fn that fool polynomials over a prime field F:

(1) a generator that fools degree-2 polynomials to within error 1/n, with seed
length s = O(log n),

(2) a generator that fools degree-3 polynomials to within error ǫ, with seed
length s = 3 · log|F| n + f(ǫ, F) where f depends only on ǫ and F,

(3) assuming the “Gowers inverse conjecture,” a generator that fools degree-d
polynomials to within error ǫ, with seed length s = d · log|F| n + f(d, ǫ, F)
where f depends only on d, ǫ, and F.

The results in (1) and (2) are unconditional, i.e. do not rely on any unproven
assumption. Moreover, the results in (3) rely on a special case of the conjecture
which may be easier to prove.

Our generator for degree-d polynomials is the component-wise sum of d gener-
ators for degree-1 polynomials (on independent seeds).

Prior to our work, generators with logarithmic seed length were only known
for degree-1 polynomials [NN90]. In fact, over small fields such as F2 = {0, 1},
our results constitute the first progress on these problems since the celebrated
generator by Luby, Veličković and Wigderson [LVW93], whose seed length is much
bigger: s = exp

(
Ω(

√
log n)

)
, even for the case of degree-2 polynomials over F2.
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On defining integers and proving arithmetic circuit lower bounds

Peter Bürgisser

Let τ(n) denote the minimum number of arithmetic operations sufficient to build
the integer n from the constant 1. We prove that if there are arithmetic circuits of
size polynomial in n for computing the permanent of n by n matrices, then τ(n!) is
polynomially bounded in log n. Under the same assumption on the permanent, we
conclude that the Pochhammer-Wilkinson polynomials

∏n
k=1(X−k) and the Tay-

lor approximations
∑n

k=0
1
k!X

k and
∑n

k=1
1
kXk of exp and log, respectively, can



Complexity Theory 1829

be computed by arithmetic circuits of size polynomial in log n (allowing divisions).
This connects several so far unrelated conjectures in algebraic complexity.

An extended abstract of this work appeared in Proc. 24th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2007), Lecture Notes in
Computer Science 4393, pp. 133–144, Springer, 2007. The full paper is accepted
for Computational Complexity.
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On subexponentiality of the discrete logarithm problem in elliptic
curves over extension fields

Claus Diem

Let us consider the discrete logarithm problem in the groups of rational points
of elliptic curves over finite fields: Given an elliptic curve E/Fq and two points
P, Q ∈ E(Fq) such that Q ∈ 〈P 〉, find some x ∈ N with Q = x · P !

We are concerned with the complexity of this algorithmic problem as a func-
tion of log(q). (Note that #E(Fq) ∼ q, and the input length (of an appropriate
representation) is in Θ(log(q)).)

The problem can obviously be solved in a running time of Õ(q) by “brute-force”
on a Turing machine (or on a random access machine). No (randomized) algorithm
is however known which solves the problem in subexponential time. (On a random

access machine the best known running time is Õ(elog(q)/2); this result follows from
Shanks’ Baby-Step-Giant-Step algorithm which applies to the discrete logarithm
problem in every finite group.)

This motivates the following tasks:
Find families of elliptic curves over finite fields such that the discrete logarithm

problem can be solved in an expected time which is

• subexponential, that is, in O(qo(1))
• bounded by a subexponentiality function, that is, bounded by a function

of the form elog(q)α

for some α < 1.

Our result is as follows:

Theorem 1. There exists some c > 0 such that the following holds: The discrete
logarithm problem in E(Fqn), where n ≤ c log(q) and E is any elliptic curve over
Fqn , can be solved an an expected time which is polynomial in q.

Corollary 2. Let c be as above. Then the discrete logarithm problem in E(Fqn),
where 1

2 log(q)c ≤ n ≤ log(q)c and E is any elliptic curve over Fqn , can be solved

in an expected time which is polynomial in elog(qn)
1

1+c
.

The corollary follows from the theorem because under the assumptions of the

corollary q = e(log(q)c log(q))
1

1+c ≤ e(2n log(q))
1

1+c
.

Previously some families of elliptic curves for which the discrete logarithm prob-
lem is subexponential where already known. Also, using the so-called GHS attack
one can prove (unpublished) that there exists a sequence of finite fields (of strictly
increasing size) such that the discrete logarithm problem in all elliptic curves over
these fields is subexponential. It was however not known if there exists a family
of finite fields (of strictly increasing size) such that the discrete logarithm problem
in all elliptic curves over these fields is bounded by a subexponentiality function.
(See definitions above for the distinction of these two questions).

The algorithm used for the proof of the theorem is essentially an algorithm given
by P. Gaudry (P. Gaudry: Index calculus for abelian varieties and the elliptic curve
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discrete logarithm problem, preprint). As the title indicates, it is an algorithm of
“index calculus” type. The relations are thereby collected by solving systems of
multivariate polynomial equations over Fq. The main difficulty of the proof of the
theorem relies in analyzing the algorithm for varying extension degrees n.

Extractors and Rank Extractors for Polynomial Sources

Zeev Dvir

(joint work with Ariel Gabizon, Avi Wigderson)

In this work we construct explicit deterministic extractors from polynomial sources,
namely from distributions sampled by low degree multivariate polynomials over
finite fields. This naturally generalizes previous work on extraction from affine
sources (which are degree 1 polynomials) [BKSSW05, Bou05, GR05]. A direct
consequence is a deterministic extractor for distributions sampled by polynomial
size arithmetic circuits over exponentially large fields.

The steps in our extractor construction, and the tools (mainly from algebraic
geometry) that we use for them, are of independent interest:

The first step is a construction of rank extractors, which are polynomial map-
pings which ”extract” the algebraic rank from any system of low degree polynomi-
als. More precisely, for any n polynomials, k of which are algebraically indepen-
dent, a rank extractor outputs k algebraically independent polynomials of slightly
higher degree. The rank extractors we construct are applicable not only over finite
fields but also over fields of characteristic zero.

The next step is relating algebraic independence to min-entropy. We use a
theorem of Wooley to show that these parameters are tightly connected. This
allows replacing the algebraic assumption on the source (above) by the natural
information theoretic one. It also shows that a rank extractor is already a high
quality condenser for polynomial sources over polynomially large fields.

Finally, to turn the condensers into extractors, we employ a theorem of Bombieri,
giving a character sum estimate for polynomials defined over curves. It allows ex-
tracting all the randomness (up to a multiplicative constant) from polynomial
sources over exponentially large fields.
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Counting reducible and singular bivariate polynomials

Joachim von zur Gathen

We investigate four “accidents” that can happen to a bivariate polynomial over
a finite field: it can have a nontrivial factor, or a square factor, or a factor over
an extension field (but none over the ground field), or a singular root, where all
partial derivatives also vanish. The main results are quantitative versions of the
intuition that a random polynomial is unlikely to suffer an accident.

In the set Bn(F ) ⊆ F [x, y] of bivariate polynomials with total degree at most
n, we have sets An(F ) ⊆ Bn(F ) of such “accidents”. We have geometric and
combinatorial results, namely bounds on the (minimal) codimension of An in Bn

(over an algebraically closed field), or functions αn(q) and βn(q) so that
∣∣∣∣
#An(Fq)

#Bn(Fq)
− αn(q)

∣∣∣∣ ≤ αn(q) · βn(q).

The following hold for large enough n.

accident codim αn(q) βn(q)
reducible n − 1 (q + 1)q−n 2q−n+3

squareful 2n − 1 q−2n+1(1+q−1)(1−q−n+1)
1−q−n−1 6q−2n+6

rel. irreducible εn(q) 2q−n+l+1

singular 1 (1 − q−3)q2

0

In the third line, we use l for the largest prime divisor of n, and

εn(q) =
q−n2(l−1)/2l(1 − q−1)

l(1 − q−l)(1 − q−n−1)
.

Previous work on this question includes Carlitz (1963, 1965), Cohen (1968, 1970),
Wan (1992), Ragot (1997, 1999), Gao & Lauder (2002), Bodin (2006). Ragot’s
results were improved by Hendrik Lenstra. An Extended Abstract appears in the
Proc. ISSAC’07.
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On the Approximation Resistance of a Random Predicate

Johan Håstad

Consider a predicate P which takes as input k Boolean variables and outputs
true/false. Suppose P accepts tP of the 2k possible input strings.

For the Max-CSP connected with P an instance is given by a k-tuple of literals.
For each assignment we can observe the number of k-tuples of Boolean variables
that satisfy P and the goal is to maximize this number.

This problem is NP-hard for almost all P and we look at algorithms that approx-
imate this number. There is a natural algorithm that approximates this number
within tP 2−k which simply picks a random assignment. We say that a predicate is
approximation resistant if it is hard to getter a significantly stronger approxima-
tion guarantee. To be more precise P is approximation resistant if, for any ǫ > 0,
it is NP-hard to approximate the maximal number of simultaneously satisfiable
constraints within a factor tP 2−k + ǫ.

We prove that, assuming the unique games conjecture [1], for sufficiently large k
a random predicate is approximation resistant with high probability.

The result builds on a recent result by Samorodnitsky and Trevisan [2] that
if 2d is the smallest power of two larger than k, there is predicate PST of width k
that only accepts 2d strings and is approximation resistant.

Our proof shows that any predicate implied by PST , or a predicate obtained
from PST by permuting the inputs and negating some input bits also is approxi-
mation resistant. Using a second moment method we then show that this criteria
applies to a random predicate.

This paper will be published at the Approx07-conference to be held in Au-
gust 2007.
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The Black-Box Query Complexity of Polynomial Summation

Valentine Kabanets

(joint work with Ali Juma, Charles Rackoff, Amir Shpilka)

For any given Boolean formula φ(x1, . . . , xn), one can efficiently construct (using
arithmetization) a low-degree polynomial p(x1, . . . , xn) that agrees with φ over all
points in the Boolean cube {0, 1}n; the constructed polynomial p can be inter-
preted as a polynomial over an arbitrary field F. The problem #SAT (of counting
the number of satisfying assignments of φ) thus reduces to the polynomial summa-
tion

∑
x∈{0,1}n p(x). Motivated by this connection, we study the query complexity

of the polynomial summation problem: Given (oracle access to) a polynomial
p(x1, . . . , xn), compute

∑
x∈{0,1}n p(x). Obviously, querying p at all 2n points in

{0, 1}n suffices. Is there a field F such that, for every polynomial p ∈ F[x1, . . . , xn],
the sum

∑
x∈{0,1}n p(x) can be computed using fewer than 2n queries from Fn? We

show that the simple upper bound 2n is in fact tight in the black-box model where
one has only oracle access to the polynomial p, for any field F. We prove these
lower bounds for the adaptive query model, where the next query can depend on
the values of p at previously queried points. Our lower bounds hold even for poly-
nomials that have degree at most 2 in each variable. In contrast, for polynomials
that have degree at most 1 in each variable (i.e., multilinear polynomials), we show
that a single query is sufficient over any field of characteristic other than 2.

On probabilistic analysis of randomization in hybrid symbolic-numeric
algorithms

Erich Kaltofen

(joint work with Zhengfeng Yang, Lihong Zhi)

Algebraic randomization techniques can be applied to hybrid symbolic-numeric
algorithms, that is, algebraic algorithms where the scalars in the inputs have nu-
merical errors. We consider the problem of solving highly over- and underdeter-
mined systems of linear equations by essentially optimal randomized algorithms
(e.g., solving a linear system with n equations and p = O((n log(n))0.72) variables
in O(pn log(n)) field operations) and interpolating a sparse rational multivariate
function from noisy values. We show that Zippel’s original sparse polynomial in-
terpolation technique applies to numerically perturbed data and we give an exact
and hybrid algorithm for interpolating sparse rational functions. We discuss the
expected condition numbers of the arising randomized linear systems, and observe
that certain randomized projections can lead to ill-conditioned systems [1].
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Understanding parallel repetition requires understanding foams

Guy Kindler

(joint work with Uri Feige, Ryan O’Donnell)

The parallel repetition theorem, proven by Raz in 1995, is a fundamental result
that in addition to its philosophical appeal, plays a key role in complexity theory.
The theorem studies the behavior of success probabilities of two prover games,
when many copies of such a game are played in parallel. It shows that the success
probability decreases exponentially in the number of repetitions, but the param-
eters given by the theorem do not seem tight. It is natural to ask what are the
best parameters for which the theorem holds, and improving them would have
complexity theoretic implications.

This talk describes an attempt to improve the parameters in a very special
case of the parallel repetition theorem. Our attempt had only limited success, but
it turns out that the reason we got stuck was that the following seemingly hard
question from the geometry of ”foams” was hidden in the special case that we
were trying to solve: What is the least surface area of a cell that tiles Rd by the
lattice Zd? Very little about this foam problem is known. It is interesting to see
such a geometric question encoded inside the problem of parallel repetition in two
prover games.

Interpolation in Valiant’s theory

Pascal Koiran

(joint work with Sylvain Périfel)

The starting point of this work is a question raised by Christos Papadimitriou in
a personal communication to Erich Kaltofen:

Question (*)
If a multivariate polynomial P is computable by a (boolean)
polynomial-time algorithm on rational inputs, does that imply that P
can be computed by a polynomial-size arithmetic circuit? In such a
circuit, the only allowed operations are additions, subtractions, and
multiplications.

As pointed out by Papadimitriou, Strassen’s ”Vermeidung von Divisionen” shows
that that for evaluating a low-degree polynomial P , divisions would not increase
exponentially the power of arithmetic circuits. It is indeed a natural question
whether, more generally, all boolean operations can be replaced efficiently by ad-
ditions, subtractions and multiplications.

In my talk I explained why it seems difficult to answer this question either way.
Obtaining a positive answer seems difficult because it would imply the following
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transfer theorem: FP = ♯P ⇒ VP = VNP (assuming that FP = ♯P, the permanent
must be in FP; a positive answer to question (*) would therefore imply that the
permanent is in VP, and that VP = VNP by completeness of the permanent).
Unfortunately, in spite of all the work establishing close connections between the
boolean model of computation and the algebraic models of Valiant and of Blum,
Shub and Smale no such transfer theorem is known. In fact, we do not know
of any hypothesis from boolean complexity theory that would imply the equality
VP = VNP (but transfer theorems in the opposite direction were established [1]).

A natural strategy for obtaining a negative answer to question (*) would be
to exhibit a family of polynomials that are easy to evaluate on rational inputs
but hard to evaluate by arithmetic circuits. Unfortunately, there seems to be a
lack of candidate polynomials. Another difficulty is that a negative answer would
imply the separation of the algebraic complexity classes VP0 and VNP0. This
observation is our main contribution to the study of question (*). The classes
VP0 and VNP0 are constant-free versions of the classes VP (of “easily computable
polynomial families”) and VNP (of “easily definable polynomial families”) defined

by Valiant. The separation VP
0 6= VNP

0 seems very plausible, but it also seems
very difficult to establish.

The full paper will contain a few additional results.
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Subspace polynomials and List Decoding of Reed-Solomon Codes

Swastik Kopparty

(joint work with Eli Ben-Sasson, Jaikumar Radhakrishnan)

We show combinatorial limitations on efficient list decoding of Reed-Solomon codes
beyond the Johnson and Guruswami-Sudan bounds [Joh62, GS99]. In particular,
we show that for arbitrarily large fields FN , |FN | = N , for any δ ∈ (0, 1), and
K = N δ:

• Existence: there exists a received word wN : FN → FN that agrees with

a super-polynomial number of distinct degree K polynomials on ≈ N
√

δ

points each;
• Explicit: there exists a polynomial time constructible received word w′

N :
FN → FN that agrees with a super-polynomial number of distinct degree

K polynomials, on ≈ 2
√

log NK points each.

In both cases, our results improve upon the previous state of the art, which
was ≈ N δ/δ points of agreement for the existence case [JH01], and ≈ 2N δ points
of agreement for the explicit one [GR05b]. Furthermore, for δ close to 1 our

bound approaches the Guruswami-Sudan bound (which is
√

NK) and implies
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limitations on extending their efficient Reed-Solomon list decoding algorithm to
larger decoding radius.

Our proof method is surprisingly simple. We work with polynomials that vanish
on subspaces of an extension field viewed as a vector space over the base field.
These subspace polynomials are a subclass of linearized polynomials that were first
studied by Ore [Ore33, Ore34] in the 1930s, and later by coding theorists. For
us their main attraction is their sparsity and abundance of roots, virtues that
recently won them pivotal roles in probabilistically checkable proofs of proximity
[BSGH+04, BSS05] and sub-linear proof verification [BSGH+05].
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Constructing Boolean Functions of Maximal Algebraic Immunity

Matthias Krause

(joint work with Hellen Altendorf, Frederik Armknecht)

We construct boolean functions f : {0, 1}n −→ {0, 1}m, for which the graph
gr(f) = {(x, f(x)), x ∈ {0, 1}} ⊆ {0, 1}n+m has maximal algebraic immunity.
Hereby, the algebraic immunity AI(S) of a subset S of the boolean cube is defined
to be the minimal d for which there is a nontrivial degree-d polynomial (over
GF (2)) which annihilates S, i.e. which outputs 0 for all x ∈ S. Consequently, if
the algebraic immunity of a given boolean function is d then nontrivial relations
in the input/output bits of degree smaller than d do not exist.

The study of the algebraic immunity of boolean functions in the context of sym-
metric cryptography was initiated by Meier, Pasalic, Carlet in [10]. It is motivated
by the need for appropriate boolean functions serving as building blocks of sym-
metric ciphers.Such functions should have large algebraic immunity for preventing
vulnerability of the cipher against algebraic attacks. For several practically used
cryptosystems, building blocks with low algebraic immunity open the door to ex-
press the bits of the secret key by a overdefined system of low degree equations
(see, e.g. [2], [6], [7], [8], [13]), which then can be solved by nontrivial methods
([4], [5], [12]).

In [3] we completely solve the problem of constructing explicitely defined single-
output functions of maximal algebraic immunity. For even number of input bits
it can be easily shown that majority has this property. For odd number of input
bits the situation is more complicated.

For multi-output functions no explicite construction of a function family of
maximal algebraic immunity is known. We present an efficient algorithm, based
on the matroid union algorithm of Edmonds [9], which computes for given m, n, d,
if existent, the table of a function h : {0, 1}n −→ {0, 1}m of algebraic immunity d.
To the best of our knowledge, this is the first systematic method for constructing
multi-output functions of high algebraic immunity.

A natural upper bound d∗(n, m) for the algebraic immunity of a boolean func-

tion f : {0, 1}n −→ {0, 1}m is the minimal number d such that
∑d

i=0

(
n+m

i

)
> 2n.

We conjecture that for all 1 ≤ m ≤ n there are functions f : {0, 1}n −→ {0, 1}m of
algebraic immunity d∗(n, m). Experiments show that this is true for all 1 ≤ m ≤
n ≤ 20 [1]. The proof of this conjecture remains as an open problem.
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All Natural NPC Problems Have Average-Case Complete Versions

Noam Livne

In 1984 Levin put forward a suggestion for a theory of average case complexity [1].
In this theory a problem, called a distributional problem, is defined as a pair
consisting of a decision problem and a probability distribution over the instances.
Introducing adequate notions of “efficiency-on-average”, simple distributions and
efficiency-on-average preserving reductions, Levin developed a theory analogous
to the theory of NP-completeness. In particular, he showed that there exists a
simple distributional problem that is complete under these reductions. But since
then very few distributional problems were shown to be complete in this sense.
In this paper we show a simple sufficient condition for an NP-complete decision
problem to have a distributional version that is complete under these reductions
(and thus to be “hard on the average” with respect to some simple probability
distribution). Apparently all known NP-complete decision problems meet this
condition.
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The probability that a small perturbation of a numerical analysis
problem is difficult

Martin Lotz

(joint work with Peter Bürgisser, Felipe Cucker)

The condition number of a numerical computation problem measures the sensitiv-
ity of the output to small perturbations of the input. Condition numbers occur in
many instances of round-off analysis, and they also appear as a parameter in com-
plexity bounds for a variety of iterative algorithms for solving numerical problems.
In the work underlying this talk [1], we prove a general result providing smoothed
analysis estimates for conic condition numbers. Our probability estimates depend
only on geometric invariants of the corresponding sets of ill-posed inputs.

A condition number C is conic if there exists a semi-algebraic cone Σ ⊆ Rp+1,
the set of ill-posed inputs, such that for all input data a ∈ Rp+1 \ {0}, C (a) =

‖a‖
dist(a,Σ) holds. Since Σ is a cone, we may restrict to data lying in the unit sphere

Sp, and then the conic condition number C be characterized as the inverse distance
to ill-posedness on the sphere. Our main result is the following (in the statement,
z ∈ B(a, σ) means that z is uniformly distributed in a spherical cap of radius
arcsinσ around a).

Theorem 1. Let C be a conic condition number with set of ill-posed inputs Σ,
and assume Σ is contained in the zero set of homogeneous polynomials of degree
at most d. Then, for all σ ∈ (0, 1] and all t ≥ (2d + 1) p

σ ,

sup
a∈Sp

Probz∈B(a,σ){C (z) ≥ t} ≤ 26 dp
1

σt
.

and

sup
a∈Sp

Ez∈B(a,σ)(ln C (z)) ≤ 2 ln p + 2 lnd + 2 ln
1

σ
+ 5.

While many condition numbers are not conic themselves, they can often be
bounded by such. Several applications to linear and polynomial equation solving
show that the estimates obtained in this way are easy to derive and quite accurate.

The main theorem is based on a volume estimate of ε-tubular neighborhoods
around a real algebraic subvariety of a sphere, intersected with a disk of radius σ.
Besides ε and σ, this bound depends only the dimension of the sphere and on the
degree of the defining equations.
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Combinatorial Construction of Locally Testable Codes

Or Meir

An error correcting code is said to be locally testable if there is a test that can check
whether a given string is a codeword of the code, or rather far from the code, by
reading only a constant number of symbols of the string. Locally Testable Codes
(LTCs) were first explicitly studied by Goldreich and Sudan [4] and since then few
constructions of LTCs were suggested (see [3] for a survey of those constructions).

LTCs are connected with Probabilistically Checkable Proofs (PCPs) and can
be seen as the ”Combinatorial counterparts” of PCPs. Since they are simpler
objects then PCPs, one might expect that constructing LTCs would be easier
than constructing PCPs. However, all the known constructions either use PCP as
a building block, or imply directly the existence of a PCP.

In this work we present a new and simpler construction of LTCs that seems
to be strictly weaker than PCP. Another important feature of our construction is
that it is purely combinatorial, while previous constructions were very algebraic.
Finally, our construction matches the parameters of the best known construction
of LTCs by Ben-Sasson and Sudan [1] (in both cases, these constructions are
combined with Dinur’s gap amplification technique [2] in order to achieve the best
possible parameters). However, unlike the construction of [1], our construction is
not entirely explicit.
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Sub-Constant Error Low Degree Test and PCP of Almost-Linear Size

Dana Moshkovitz

(joint work with Ran Raz)

The PCP theorem [2, 1] is one of the most important theorems proven in Theo-
retical Computer Science. The PCP theorem states that any mathematical proof
can be written in a different format, such that the proof can be (probabilistically)
verified by querying only a constant number of places in it. The PCP theorem im-
plies hardness of approximation problems, as well as yields constructions of codes
with local testing and decoding properties. Two parameters of a PCP that play a
central role are the size of the PCP and its probability of error.

In 1997 researchers managed to construct PCPs with polynomial size and sub-
constant probability of error [11, 3, 7]. In the last 6 years, many researchers got
extremely interested in PCPs of almost linear size and managed to construct such



1842 Oberwolfach Report 31/2007

PCPs [8, 5, 4, 6]. However, these last constructions of PCPs with almost linear size
only achieve constant (and not sub-constant) probability of error. The bottleneck
for constructing PCPs that have both sub-constant error and almost linear size
was the construction of low degree tests that have both sub-constant error and
almost linear size. We constructed such tests [9] and proved a corresponding PCP
theorem [10].
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The Cryptographic Applications of Compressibility With Respect to
Solutions

Moni Naor

(joint work with Danny Harnik)

We study compression that preserves the solution to an instance of a problem
rather than preserving the instance itself. Our focus is on the compressibility
of NP decision problems. We consider NP problems that have long instances but
relatively short witnesses. The question is, can one efficiently compress an instance
and store a shorter representation that maintains the information of whether the
original input is in the language or not. We want the length of the compressed
instance to be polynomial in the length of the witness and polylogarithmic in the
length of original input. We discuss the differences between this notion and similar
notions from parameterized complexity.

Our motivation for studying this issue stems from the vast cryptographic im-
plications such compressibility has. For example, we say that SAT is compressible
if there exists a polynomial p, so that given a formula consisting of m clauses
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over n variables it is possible to come up with an equivalent (w.r.t satisfiability)
formula of size at most p(n, log m). Then, given a compression algorithm for SAT
we provide a construction of: (i) A one-way function from a distributionally-hard
problem. (ii) Collision resistant hash functions from any one-way function. The
latter task was shown to be impossible via black-box reductions by Simon [4], and
indeed the construction presented is inherently non-black-box. Another applica-
tion of SAT compressibility is a cryptanalytic result concerning the limitation of
everlasting security in the bounded storage model (see [1, 2]) when mixed with
(time) complexity based cryptography.
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Two problems related to the Max-Cut and the Unique Games
Conjecture

Ryan O’Donnell

This talk is in two parts.
In the first part we report on recent work with Yi Wu [1]. In this work, we com-

plete a long line of research into SDP algorithms and hardness results for the Max-
Cut problem. Specifically, we explicitly identify a certain curve S : [12 , 1] → [12 , 1]

with the following properties: For each c ∈ [12 , 1], there is a graph with Max-Cut
at most S(c) but SDP relaxation at least c. On the other hand, every graph with
SDP relaxation at least c has a cut of value at least S(c), and further, this cut is
findable via an efficient “RPR2” SDP algorithm. Furthermore, we connect SDP
analysis to Long Code test analysis and show the following: Among all (Max-
Cut) Long Code tests with completeness at least c, the lowest possible achievable
soundness is S(c). Further consequences of these results for algorithmic hardness
are also derived.

In the second part of the talk, we discuss a certain aspect of the Unique Games
Conjecture we feel is overlooked. Namely, we do not know any distribution on
Unique-Label-Cover instances — natural or not — for which it seems harder to
approximate solutions better than the extent for which we know NP-hardness. Or
more concretely, we do not know a distribution on Max-2Lin(2) instances with
value 1 − ǫ for which finding 1 − 5

4ǫ solutions even “seems” hard — whereas the
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Unique Games Conjecture predicts that even finding 1−Θ(
√

ǫ) solutions should be
hard. This is in contrast to, say, Max-3Lin(2), where for the most natural random
planted 1−ǫ instances, finding 1

2 +ǫ empirically seems very hard. We propose as an
open problem looking for distributions on Max-2Lin(2) or Max-2Lin(q) instances
that seem hard to approximate.
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Tight Integrality gaps for Vertex Cover SDPs in the Lovasz-Schrijver
hierarchy

Toniann Pitassi

(joint work with Konstantinos Georgiou, Avner Magen, Iannis Tourlakis)

Linear and semidefinite programming are highly successful approaches for obtain-
ing good approximations for NP-hard optimization problems. For example, break-
through approximation algorithms for Max Cut and Sparsest Cut use semidefinite
programming.

Perhaps the most prominent NP-hard problem whose exact approximation fac-
tor is still unresolved is Vertex Cover. PCP-based techniques of Dinur and Safra
show that it is not possible to achieve a factor better than 1.36; on the other hand
no known algorithm does better than the factor of 2 achieved by the simple greedy
algorithm. Furthermore, there is a widespread belief that SDP techniques are the
most promising methods available for improving upon this factor of 2.

Following a line of study initiated by Arora, Bollobas, Lovasz and Tourlakis,
our aim is to show that a large family of LP and SDP based algorithms fail to
produce an approximation for Vertex Cover better than 2. Lovasz and Schrijver
introduced the LS systems that naturally capture large classes of LP and SDP
relaxations. The strongest of these systems, LS+, captures the celebrated SDP-
based algorithms for Max Cut and Sparsest Cut mentioned above.

We prove an integrality gap of 2 for Vertex Cover SDPs resulting from tightening
the standard LP relaxation with Ω(

√
log n/ log log n) rounds of LS+. While tight

integrality gaps for Vertex Cover were known for the weaker LS system previous
results did not preclude a polynomial-time 2−Ω(1) approximation algorithm based
on LS+, even when restricted to only two rounds of LS+ tightenings.
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Quantum Frege proofs and a problem on quantum computing

Pavel Pudlák

In this talk I shall address the question whether quantum circuits could help
us prove theorems of the classical propositional calculus faster than conventional
devices. I shall propose a class of proof systems, Quantum Frege Proof Systems.
This is based on a generalization of the concept of a Frege deduction rule to
the quantum setting. A quantum Frege rule is roughly a linear superposition of
classical Frege rules. Given a finite set of quantum deduction rules, a quantum
Frege proof is a sequence of proof lines, the first line being empty and each next
line is obtained from the previous one by applying one of the quantum deduction
rules. Thus each proof line is a quantum superposition of strings of formulas. We
say that the proof proves a given proposition φ if φ occurs in the last proof line
with amplitude α, |α|2 ≥ 1/2 (ie., if we measure the last state we shall see a string
of propositions which includes φ with probability ≥ 1/2). We represent a quantum
Frege proof by a string of quantum circuits that compute the transitions defined
by the quantum Frege rules.

Given a quantum Frege proof P of a tautology φ, one can easily show that there
exists a classical Frege proof with the same number of steps and the same bound
on the size of formulas involved. However, if we are given a representation of P
by the string of quantum circuits, we do not know how to construct this classical
proof. We can show that a classical proof cannot be constructed in polynomial
time, if factoring is not computable in polynomial time. The proof of this result is
based on tautologies formalizing a bit commitment schema. What remains open
is whether one can construct the classical proof using polynomial size quantum
circuits. This is closely related to the following problem about histories.

Let B be the basis of the Hilbert space of n qubits consisting of the 2n strings of
0-1 bits. Let K = (U1, . . . , Ut) be a string of unitary operators. For a0, a1, . . . , at ∈
B, we shall say that (a0, a1, . . . , at) is a history of K, if for all i = 1, . . . , t,
〈ai|Ui|ai−1〉 6= 0. Let U = Ut . . . U1 denote the product of a string of the uni-
tary transformations. If a, b ∈ B are such that 〈b|U |a〉 6= 0, then there exists a
history of the form (a = a0, a1, . . . , at = b).

Problem. Suppose the unitary transformations Ui are given by quantum cir-
cuits Ci. Let also a ∈ B be given and assume that measuring the first bit of
|U |a〉 gives 0 with probability at least 1/2. Is it possible to construct a history
(a = a0, a1, . . . , at) such that the first bit of at is 0 using polynomial size quantum
circuits?

Related questions have been studied in [1].
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Randomness versus Hardness and Lower Bounds for Constant-Depth
Arithmetic Circuits

Ran Raz

I gave a short description of the main results in [R].
We present simple-to-describe problems, that seem natural-to-study in the con-

text of pseudorandomness and explicit constructions of combinatorial objects, and
are seemingly unrelated to arithmetic circuit complexity, and whose solution would
give strong (up to exponential) lower bounds for the size of general arithmetic cir-
cuits. We then prove lower bounds of n1+Ω(1/d) for the size of arithmetic circuits
of depth d for explicit polynomials of degree O(d).

Our main results are as follows: Let F be a field and let n be an integer.

(1) Let s = s(n), m = m(n), r = r(n) be integers s.t. nω(1) ≤ s < m = nr.
(Think of r as relatively small, say r = log log n).

Can one give an explicit polynomial-mapping f : Fn → Fm of total-
degree at most 2n, such that, the image of f is not contained in the image
of any polynomial-mapping Γ: Fs → Fm of total-degree at most r ?

We show that for any F of characteristic different than 2, and any s, m, r
as above, the existence of an explicit f as above (with the right notion
of explicitness) implies super-polynomial lower bounds for computing the
permanent over F.

(2) Let s = s(n), m = m(n), r be integers s.t. s < m = nr+1, and 2 ≤ r ≤
O(1).

Given (as input) a polynomial-mapping Γ: Fs → Fm of total-degree at
most 2r − 1, can one output (in polynomial time) an explicit polynomial-
mapping f : Fn → Fm of total-degree at most poly(n), such that, the image
of f is not contained in the image of Γ ?

We show that for any F and any s, m, r as above, a positive solution
for this problem implies an explicit lower bound of Ω(

√
s) for the size of

arithmetic circuits over F.
(3) For any d = d(n), we give an explicit example for an n-variate polynomial

of total-degree O(d), with coefficients in {0, 1}, such that, any depth d
arithmetic circuit for this polynomial (over any field) is of size ≥ n1+Ω(1/d).
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Flag Algebras and Density of Triangles in Graphs

Alexander Razborov

This talk is devoted to the part of Extremal Combinatorics that, in the asymp-
totic form, studies with which densities “template” combinatorial structures (like
graphs, digraphs, hypergraphs or tournaments) may or may not appear in unknown
(large) structures of the same type. It is worth noting that the whole subject of
Extremal Combinatorics originated in the seminal paper by Turán (1941) devoted
to problems of exactly this type (this is why the densities in question are also called
Turán densities). And, although by now the subject has definitely outgrown these
boundaries, it would be fair to say that Turán-like problems still make its core.

Consider for example three problems of a very similar flavour. What is the
minimal edge density of a graph that guarantees the existence of at least one copy
of K3 in this graph? Supposing the edge density is greater than this critical value,
what is the minimal possible density of triangles guaranteed to exist in such a
graph (as a function of the edge density)? How about the analogous questions for
3-hypergraphs (with K3 replaced by K3

4 , the complete 3-graph on 4 vertices)?
Of these three questions, the first one was completely solved in the seminal

paper by Turán (in fact, for more general case of Kr, where r ≥ 3 is an arbitrary
constant). The second question is answered in our work, but its generalization to
Kr is still open for any r > 3. The third question is widely open: this is one of
the most intriguing, famous and notoriously difficult problems in the whole field
of Combinatorics.

Except for the above-mentioned concrete result, we also try to understand and
explicitly extract the mathematical structure underlying and unifying many com-
mon techniques existing in the “asymptotic” Extremal Combinatorics and find for
them a common denominator. The backbone of our framework is made by cer-
tain associative commutative algebras over the reals that we call “Flag Algebras”;
most of the standard ideas in the area can be then expressed as simple computa-
tions in these algebras using a small set of pre-defined homomorphisms and linear
mappings between them. This framework captures, among other things, various
inductive arguments existing in the area, and, after some routine technical work
(done once and for all) it becomes completely free of the ǫ/δ stuff. In this sense it
can be viewed as an extremely goal-oriented fragment of the non-standard anal-
ysis; another related feature is that computations in the flag algebras are very
easy to program, which substantially enhances the search for right relations and
techniques useful for any given concrete problem.

The talk is based on two preprints: “Flag Algebras” (to appear in Journal of
Symbolic Logic) and “On the Minimal Density of Triangles in Graphs” (to appear
in Combinatorics, Probability and Computing); both are available from my home
page http://www.mi.ras.ru/˜razborov/.
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A Hypercontractive Inequality for Matrix-Valued Functions

Oded Regev

(joint work with Avraham Ben-Aroya and Ronald de Wolf)

The Bonami-Beckner hypercontractive inequality is a powerful tool in Fourier
analysis of real-valued functions on the Boolean cube. We present a version of
this inequality for matrix-valued functions on the Boolean cube. We also present
a number of applications of this. In particular, we analyze maps that encode n
classical bits into m qubits, in such a way that each set of k bits can be recovered
with some probability by an appropriate measurement on the quantum encoding;
we show that if m < 0.7n, then the success probability is exponentially small
in k. This may be viewed as a direct product version of Nayak’s quantum random
access code bound. It in turn implies strong direct product theorems for the
one-way quantum communication complexity of Disjointness and other problems.
We also slightly strengthen and simplify a result about 3-party communication
complexity of Disjointness due to Beame et al.
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Partial Exposure and Correlated Types in Large Games

Omer Reingold

(joint work with Ronen Gradwohl)

In this work we introduce the notion of partial exposure, in which the players of
a simultaneous-move Bayesian game are exposed to the realized types and chosen
actions of a subset of the other players. We show that in any large simultaneous-
move game, each player has very little regret even after being partially exposed to
other players. Additionally, in any extensive version of the game in which a player
is partially exposed to other players, her original strategy is very likely still a best
response.

Furthermore, we generalize the recent results of Kalai (2004, 2005) [3, 4], and
show that the equilibria of large continuous games with many semi-anonymous
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players are ex post Nash and structurally robust even when the types are corre-
lated. Two forms of correlation are permitted: local dependencies, in which each
player’s type can depend arbitrarily on some fixed set of other players, and “peer-
pressure” dependencies, in which any set of k or more players may be mutually
dependent (but any k − 1 are independent).

Finally, we combine the above and show a robustness result for all large games,
even with correlated types.

In the talk we aimed to discuss a central notion to our work, which is the effect
of random variables on a function [1, 2]. We aimed at discussing the similarity
and differences between the effect and the influence of random variables.
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Designing Boolean Sorting Circuits with Optimal Average Delay

Rüdiger Reischuk

(joint work with A. Jakoby, M. Lískiewicz, C. Schindelhauer)

In previous work we have introduced an average case measure for the time com-
plexity of Boolean circuits – that is the delay between feeding the input bits into
a circuit and the moment when the results are ready at the output gates – and
analysed this complexity measure for prefix computations. Here we consider the
problem to sort large integers that are given in binary notation. Contrary to a
word comparator sorting circuit C where a basic computational element, a com-
parator, is charged with a single time step to compare two elements, in a bit
comparator circuit C′ a comparison of two binary numbers has to be implemented
by a Boolean subcircuit CM called comparator module that is built from Boolean
gates of bounded fanin. Thus, compared to C, the depth of C′ will be larger by a
factor up to the depth of CM.

Our goal is to minimize the average delay of bit comparator sorting circuits. The
worst-case delay can be estimated by the depth of the circuit. For this worst-case
measure two topologically quite different designs seem to be appropriate for the
comparator modules: a tree-like one if the inputs are long numbers, otherwise a
linear array working in a pipelined fashion. Inserting these into a word comparator
circuit we get bit level sorting circuits for binary numbers of length m for which
the depth is either increased by a multiplicative factor of oder log m or by an
additive term of order m.
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We show that this obvious solution can be improved significantly by construct-
ing efficient sorting and merging circuits for the bit model that only suffer a con-
stant factor time loss on the average if the inputs are uniformly distributed. This
is done by designing suitable hybrid architectures of tree compaction and pipelin-
ing. These results can also be extended to classes of nonuniform distributions if
we put a bound on the complexity of the distributions themselves.
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Some Specific Derandomizations

Nitin Saxena

1. Towards Depth 3 Identity Testing and Lower Bounds

We study depth-3 arithmetic circuits (ΣΠΣ circuits) of the form:

C(x1, . . . , xn) =

k∑

i=1

ℓ
ei,1

i,1 · · · ℓei,c

i,c

where, ℓi,1, . . . , ℓi,c are linear functions over a field F, c is a constant and say
(e1,1 + · · · + e1,c) =: d which is the total degree of the polynomial C(x1, . . . , xn).
We show that identity testing of such circuits can be done in

poly (maxi{(ei,1 + 1) · · · (ei,c + 1)} , k, n)

many field operations. This immediately gives a poly(2d, k, n) time identity test for
general depth 3 circuits. We also show exponential lower bounds for determinant
and permanent for circuits of the above form. Our lower bounds hold over any
field F. Proving such lower bounds for general depth 3 circuits over fields of
charactersitic 0 is an important open problem [2].
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2. Towards Polynomial Factoring over finite fields (assuming GRH)

Finding a nontrivial factor of a given univariate polynomial over a finite field is a
fundamental algebraic problem. It has a randomized polynomial time algorithm
but its deterministic complexity is open. There are many partial results known
using the Generalized Riemann Hypothesis, see [1] for references. We extend all
these approaches and relate the problem of polynomial factoring (assuming GRH)
with the existence of some combinatorial objects called association schemes. We
conjecture that certain anti-symmetric association schemes do not exist which
would then imply that polynomial factoring is in P (assuming GRH).
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On the Complexity of Counting Components of Algebraic Varieties

Peter Scheiblechner

(joint work with Peter Bürgisser)

We consider complex algebraic varieties V = Z(f1, . . . , fr) ⊆ Cn given by finitely
many polynomials f1, . . . , fr ∈ C[X1, . . . , Xn]. A standard argument shows that
the complexity of the following problems does not essentially change when changing
the input data structure from dense to sparse or straight-line program representa-
tion.

For simplicity we state our results in the Turing model only, where we restrict
ourselves to rational polynomials. We consider the following problems:

#CC Given f1, . . . , fr, compute the number of connected components of V .

#IC Given f1, . . . , fr, compute the number of irreducible components of V .

#Betti(k) Given f1, . . . , fr, compute the kth topological Betti number of V .

Furthermore, we denoty by #IC(r) the problem #IC restricted to a fixed num-
ber r of equations. Our main results are summarised in the following table.

#Betti(k) #CC #IC #IC(r)
PSPACE hard complete contained

#P hard
P

Random NC contained

We note that in the algebraic model one can derandomise the result for #IC(r)
at the cost of good parallelisation, i.e., the problem can be solved in deterministic
sequential polynomial time in the algebraic model.
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Cryptography Based on the Equivalence of Quadratic Forms

Claus Peter Schnorr

(joint work with R.J. Hartung)

Notation. A symmetric matrix A = At ∈ Zn×n defines the quadratic form ~xtA~x.
The forms A0, A1 ∈ Zn×n are equivalent if T tA0T = A1 holds for some T ∈
GLn(Z).
References. [Ca78] presents the classical theory of rational quadratic forms, for
LLL-reduction of quadratic forms see [S07, Si05] and for lattice based cryptography
see [MG02].

We present public key identification and digital signatures based on the compu-
tational equivalence problem (CEP) of n-ary quadratic forms, n ≥ 3. We present
proofs of knowledge of an equivalence transform T ∈ GLn(Z). Small dimension n
yields short private and public keys and efficient protocols.

Lattices correspond to positive definite quadratic forms. However, lattice based
cryptography requires lattices of high dimension n because the lattice problems
SVP and CVP are in polynomial time for any fixed dimension n and get slowly
harder as n increases. Importantly, solving CEP for a small T such that T tA1T =
A0 is NP-hard for indefinite forms A1, A0 ∈ Zn×n for every fixed n ≥ 3. This
follows from the NP-hardness proof of binary quadratic equations over the integers
of [MA78]. This NP-hardness proof requires that det A has a large square factor.
However CEP is polynomial time for isotropic, ternary forms with odd, squarefree
determinant. For isotropic forms A an isotropic vector y 6= 0, such that ytAy = 0
can be found in polynomial time given the factorization of detA [Si05]. Given an
isotropic vector y the equation xtAx = c can be solved in polynomial time for
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every c ∈ Z if detA is odd and squarefee.

Proof of knowledge. Prover P proves to verifier V knowledge of S such that
StA1S = A0 by iterating:

1. P computes and sends an LLL-reduced form A′ := T tA0T for a randomized
T ∈ GLn(Z), see [HS07].
2. V sends a random one-bit challenge b ∈R {0, 1},
3. P sends the reply Rb := SbT ∈ GLn(Z), and V checks that Rt

bAbRb = A′.

If a fraudulent P̃ succeeds with Ã′ and replies R̃b for both R̃0, R̃1 he gets an

equivalent private key S′ := R̃1R̃
−1
0 satisfying S′tA1S

′ = A0. This protocol is
statistical zeroknowledge under reasonable heuristics.

Another proof of knowledge uses, long challenges and can be transformed into
an efficient public key signature scheme by replacing V through a cryptographic
hash function. This proof represents some c ∈ Z as xtAbx = c = ytA′y. Here x,y
must and can be chosen such that the problem to extend x,y to an equivalence
transform T ∈ GLn(Z) still requires exponential time by known algorithms. In
fact the reconstruction of T requires to represent the determinant of some (n−1)-

dimensional subform of A′ by the (n− 1)-dimensional, adjoint form A#
b of Ab. No

subexponential algorithm is known for this latter problem for any fixed n ≥ 4.
Most instances of this problem are subexponential for n = 3.
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Low-end uniform hardness versus randomness tradeoffs for
Arthur-Merlin games

Ronen Shaltiel

(joint work with Chris Umans)

In 1998, Impagliazzo and Wigderson [IW98] proved a hardness vs. randomness
tradeoff for BPP in the uniform setting, which was subsequently extended to give
optimal tradeoffs for the full range of possible hardness assumptions by Trevisan
and Vadhan [TV02] (in a slightly weaker setting). In 2003, Gutfreund, Shaltiel and
Ta-Shma [GSTS03] proved a uniform hardness vs. randomness tradeoff for AM,
but that result only worked on the “high-end” of possible hardness assumptions.

In this work, we give uniform hardness vs. randomness tradeoffs for AM that
are near-optimal for the full range of possible hardness assumptions. Follow-
ing [GSTS03], we do this by constructing a hitting-set-generator (HSG) for AM
with “resilient reconstruction.” Our construction is a recursive variant of the
Miltersen-Vinodchandran HSG [MV99], the only known HSG construction with
this required property. The main new idea is to have the reconstruction procedure
operate implicitly and locally on superpolynomially large objects, using tools from
PCPs (low-degree testing, self-correction) together with a novel use of extractors
that are built from Reed-Muller codes [SU01] for a sort of locally-computable
error-reduction.

As a consequence we obtain gap theorems for AM (and AM ∩ coAM) that
state, roughly, that either AM (or AM ∩ coAM) protocols running in time t(n)
can simulate all of EXP (“Arthur-Merlin games are powerful”), or else all of AM
(or AM ∩ coAM) can be simulated in nondeterministic time s(n) (“Arthur-Merlin
games can be derandomized”), for a near-optimal relationship between t(n) and
s(n). As in [GSTS03], the case of AM ∩ coAM yields a particularly clean theorem
that is of special interest due to the wide array of cryptographic and other problems
that lie in this class.
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Towards Universal Semantic Communication

Madhu Sudan

(joint work with Brendan Juba)

Consider the following fantastic scenario: Earth has just started receiving some
signals from outer space. These signals don’t seem like usual cosmic noise. Poten-
tially an intelligent alien civilization is trying to make contact. How should Earth
respond? How can we (earthlings) tell if the aliens are receiving our response
and reacting to it? Are they really intelligent, or are we talking to sunspots? If
they are intelligent, will we ever be able to achieve meaningful interaction in this
setting?

Can these questions be tacked mathematically? The classical theory of com-
munication, while founded solidly in mathematics, typically ignores the issue of
semantics of communication, and has focussed principally on quantitative mea-
sures in syntactic settings. Increasingly, however, it is becoming clear that practi-
cal challenges to communication arise due to semantic gaps between senders and
receivers. The fictional problem above, merely, carries this gap to the extreme.

In this work, we attempt to describe how the theory of computational complex-
ity can shed light on such interactions. The principal goal is to figure out how
some of the nebulous notions, such as intelligence and understanding, should be
defined in this setting. We assert that in order to communicate “successfully”, the
communicating players should be explicit about their goals - what the communica-
tion should achieve. We show that when the goals are explicit the communicating
players can achieve meaningful interaction, provided the players are capable of sat-
isfying the goals, and cooperative, under reasonable, mathematical, definitions of
these notions.
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Integrality Gaps for Vertex Cover in Lovasz-Schrijver Hierarchies

Luca Trevisan

(joint work with Grant Schoenebeck, Madhur Tulsiani)

We study linear and semidefinite programming relaxations of Vertex Cover arising
from repeated applications of the “lift-and-project” method of Lovasz and Schri-
jver [5] starting from the standard linear programming relaxation.

For linear programs (LS), Arora, Bollobas, Lovasz and Tourlakis [1] prove that
the integrality gap remains at least 2 − ǫ after Ωǫ(log n) rounds, where n is the
number of vertices, and Tourlakis [6] proves that integrality gap remains at least
1.5 − ǫ after Ωǫ((log n)2) rounds. We prove that the integrality gap remains at
least 2 − ǫ after Ωǫ(n) rounds.
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For semidefinite programs (LS+), Goemans and Kleinberg [4] prove that after
one round the integrality gap remains arbitrarily close to 2. Charikar [2] proves
an integrality gap of 2 for a stronger relaxation that is, however, incomparable
with two rounds of LS+ and is strictly weaker than the relaxation resulting from
a constant number of rounds. Georgiou et al. [3] show that the integrality gap

remains 2 − o(1) after Ω(
√

log n/ log log n) rounds. We prove that the integrality
gap remains at least 7/6 − ǫ after Ωǫ(n) rounds.
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Evolvability

Leslie G. Valiant

We suggest a quantitative model of evolution for the purpose of studying how
representations of complex functions can evolve from simpler ones within realistic
population sizes and numbers of generations [1]. Evolution is treated as a form of
computational learning, in which the course of learning depends only on the fit-
ness of the hypothesis on the aggregate of the examples, and not otherwise on the
examples. We formulate a notion of evolvability for different classes of functions.
It is shown that in any one phase of evolution monotone Boolean conjunctions
and disjunctions are evolvable over the uniform distribution, while Boolean parity
functions are not. The framework also suggests how a wider range of issues in evo-
lution might be quantified. We also suggest that the process of biological evolution
over multiple phases should be viewed as evolvable target pursuit, which consists
of a series of evolutionary phases, each one pursuing a target that is evolvable
in our technical sense, each target being rendered evolvable by the serendipitous
combination of the environment and the outcome of previous evolutionary phases.
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One-way multi-party communication lower bound for pointer jumping
with applications

Emanuele Viola

(joint work with Avi Wigderson)

In this paper we study the one-way multi-party communication model, in which
every party speaks exactly once in its turn. For every fixed k, we prove a tight
lower bound of Ω

(
n1/(k−1)

)
on the probabilistic communication complexity of

pointer jumping in a k-layered tree, where the pointers of the i-th layer reside on
the forehead of the i-th party to speak. The lower bound remains nontrivial even
for k = (log n)1/3 parties. Previous to our work a lower bound was known only
for k = 3, and in very restricted models for k > 3. Our results have the following
consequences to other models and problems, extending previous work in several
directions.

The one-way model is strong enough to capture general (non one-way) multi-
party protocols of bounded rounds. Thus we generalize to this multi-party model
results on two directions studied in the classical 2-party model (e.g. [PS, NW]).
The first is a round hierarchy: We give an exponential separation between the
power of r and 2r rounds in general probabilistic k-party protocols, for any fixed k
and r. The second is the relative power of determinism and nondeterminism:
We prove an exponential separation between nondeterministic and deterministic
communication complexity for general k-party protocols with r rounds, for any
fixed k, r.

The pointer jumping function is weak enough to be a special case of the well-
studied disjointness function. Thus we obtain a lower bound of Ω

(
n1/(k−1)

)
on

the probabilistic complexity of k-set disjointness in the one-way model, extend-
ing a similar lower bound for the weaker simultaneous model, in which parties
simultaneously send one message to a referee [BPSW].

Finally, we infer an exponential separation between the power of different orders
in which parties send messages in the one-way model, for every fixed k. Previous
to our work such a separation was only known for k = 3 [NW].

Our lower bound technique, which handles functions of high discrepancy, may
be of independent interest. It provides a “party-elimination” induction, based on a
restricted form of a direct-product result, specific to the pointer jumping function.

This work will appear in FOCS 2007.
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Nechiporuk Bounds for the Middle Bit of Multiplication

Ingo Wegener

(joint work with Philipp Woelfel)

Other results on restricted branching programs for MMN , the middle bit of multi-
plication, have revealed a lot about the subfunction structure of this function. This
leads to the aim to investigate the best possible bounds on the branching program
size and the formula size of MMN obtainable by Nechiporuk’s lower bound tech-
nique. We prove bounds of size Ω(n3/2/ logn) and Ω(n3/2) respectively and prove
that these bounds can be improved by not more than an n1/6-factor. The results
have been presented at the conference Computational Complexity (2005) and the
full version is accepted for publication in the journal Computational Complexity.

Network Extractor Protocols and Three-Source Extractors

David Zuckerman

(joint work with Xin Li, Anup Rao)

We design several efficient one-round network extractor protocols, which extract
private randomness over a network with faulty players when each player has a
single, weak random source of sufficient min-entropy. As a corollary, we derive
efficient protocols for Byzantine agreement and leader election (and hence the
equivalent collective coin-flipping) in the full information model. Our robust pro-
tocols run in just one more round than the corresponding protocols with perfect
randomness. Our results significantly improve those of Goldwasser, Sudan, and
Vaikuntanathan [1].

In a synchronous network, if each of p players has a weak source with min-
entropy rate greater than 1/2, then we essentially match the bounds for perfect
randomness: Byzantine agreement tolerating a 1/3 − α fraction faulty players in
O(log p) rounds, and leader election tolerating a 1/2−α fraction faulty players in
log∗ p + O(1) rounds, for any constant α > 0. In a synchronous network, if each
player’s n-bit source of randomness has nΩ(1) min-entropy, then the bounds drop
to 1/4−α and 1/3−α, respectively. In an asyncrounous network, if each player has
access to a source with polynomial min-entropy (though 1/3 of the players need
shorter sources than the others), then our Byzantine agreement protocol tolerates
a 1/18 − α fraction of faulty players.

Extractors for independent sources are crucial to our results. In particular, our
results for asynchronous protocols rely on a new extractor for three independent
sources. Two of the sources must have n bits with min-entropy at least nγ ; the

third must have nγ2/c bits with min-entropy at least log10 n. (Here c is an absolute
constant and γ > 0 is arbitrary.) Previously, extractors for independent sources
with min-entropy nγ required O(1/γ) sources [2].
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Fakultät EIM - Elektrotechnik,
Informatik und Mathematik
Universität Paderborn
Warburger Str. 100
33098 Paderborn

Dr. Andrej Bogdanov

DIMACS
Rutgers University
96 Frelinghuysen Road
Piscataway NJ 08854
USA

Prof. Dr. Peter Bürgisser

Fakultät EIM - Elektrotechnik,
Informatik und Mathematik
Universität Paderborn
Warburger Str. 100
33098 Paderborn

Prof. Dr. Claus Diem

Mathematisches Institut
Universität Leipzig
Johannisgasse 26
04103 Leipzig

Zeev Dvir

Faculty of Mathematics and
Computer Science
The Weizmann Institute of Science
POB 26
Rehovot 76100
Israel

Prof. Dr. Joachim von zur Gathen

Universität Bonn
B-IT
Dahlmannstrasse 2
53113 Bonn



Complexity Theory 1861

Prof. Dr. Oded Goldreich

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL

Prof. Dr. Shafi Goldwasser

MIT CSAIL
The Stata Center
32 Vassar Street
Cambridge MA 02139
USA

Prof. Dr. Venkatestan Guruswami

Department of Computer Science
& Engineering
University of Washington
Box 352350
Seattle WA 98195-2350
USA

Prof. Dr. Johan Hastad

Dept. of Numerical Analysis and
Computing Science
Royal Institute of Technology
S-100 44 Stockholm

Dr. Valentine Kabanets

School of Computing Science
Simon Fraser University
8888 University Drive
Burnaby , B.C. V5A 1S6
CANADA

Prof. Dr. Erich Kaltofen

Department of Mathematics
North Carolina State University
Campus Box 8205
Raleigh , NC 27695-8205
USA

Prof. Dr. Guy Kindler

Department of Mathematics
The Weizmann Institute of Science
P. O. Box 26
Rehovot 76 100
ISRAEL

Prof. Dr. Pascal Koiran

LIP
Ecole Normale Superieure de Lyon
46, Allee d’Italie
F-69364 Lyon Cedex 07

Swastik Kopparty

MIT CSAIL
The Stata Center
32 Vassar Street
Cambridge MA 02139
USA

Prof. Dr. Matthias Krause

Fakultät für Mathematik und
Informatik
Universität Mannheim
68131 Mannheim

Noam Livne

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL

Martin Lotz

Department of Mathematics
City University of Hong Kong
83 Tat Chee Avenue, Kowloon
Hong Kong
P.R. China



1862 Oberwolfach Report 31/2007

Or Meir

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL

Dana Moshkovitz

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL

Prof. Dr. Moni Naor

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL

Prof. Dr. Ryan O’Donnell

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh , PA 15213-3890
USA

Prof. Dr. Toniann Pitassi

Dept. of Computer Science
University of Toronto
10 King’s College Road
Toronto Ontario M5S 3G4
CANADA

Dr. Pavel Pudlak

Institute of Mathematics of the
AV CR
Zitna 25
115 67 Praha 1
CZECH REPUBLIC

Prof. Dr. Anup Rao

Computer Science Department
University of Texas
1 University Station C0500
Austin TX 78712
USA

Prof. Dr. Ran Raz

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL

Prof. Dr. Alexander Razborov

Steklov Mathematical Institute
Department of Mathematical Logic
Gubkina Str. 8
119991 Moscow
RUSSIA

Dr. Oded Regev

Department of Computer Science
Tel Aviv University
Ramat Aviv
69978 Tel Aviv
ISRAEL

Dr. Omer Reingold

Department of Computer Science
and Applied Mathematics
The Weizmann Institute of Science
P.O.Box 26
Rehovot 76100
ISRAEL
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