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Introduction by the Organisers

The conference brought together researchers from Europe, the US, and Japan who
reported on various recent and ongoing developments in algebraic number theory
and related fields. As at previous meetings, organized by Deninger, Schneider and
Scholl, one of the clearest themes was the prevalence of p-adic methods across a
range of areas. A notable difference with previous years was the number of younger
people both as speakers and participants.

Colmez reported on his work relating unitary admissible GL2(Qp)-representa-
tions to local Galois representations. This realizes a program of Breuil and stands
at the crossroads of p-adic Hodge theory, representations of p-adic reductive groups
and explicit reciprocity laws, as well as having applications to modularity of global
Galois representations. Related talks were given by Schneider who explained on
going work with Vigneras, attempting to generalize some of Colmez’ constructions
to higher rank, as well as Orlik who discussed the construction of locally analytic
representations from equivariant vector bundles on symmetric spaces.

L. Berger reported on an extension of his earlier work on classification of local
Galois representations. Hartl explained how these ideas could be used to give
a description of the image of the Rapoport-Zink period morphism. This was a
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satisfying complement to his talk at the previous meeting where he had sketched
some of these ideas.

There were several talks related to Iwasawa theory and reciprocity laws. Zerbes
reported on her work on reciprocity laws for higher dimensional local fields. Fukaya
reported on joint work with Coates, Kato, Sujatha and Venjakob in non-abelian
Iwasawa theory, and Ochiai discussed the Iwasawa theory of ordinary Hida fami-
lies. The talk by Sharifi was also related to this area. It described a fascinating
relation between Galois cohomology and modular symbols, which seems to be
closely related to the Main conjecture of Iwasawa theory.

There were a number of talks dealing with congruences between automorphic
forms, and applications. The most exciting of these was by Fujiwara who outlined
how Taylor-Wiles systems could be used, in certain circumstances, to prove the
Leopoldt conjecture for totally real fields. Sorensen discussed his work on level
raising for GSp4 and some applications to Selmer groups. T. Berger explained
how to construct Galois representations attached to cusp forms on GL2 over an
imaginary field. These had been constructed by Taylor about 15 years ago, but
were previously known to have the correct L-factors only at a set of primes of
density 1. Berger also explained ongoing work on modularity lifting theorems in
this situation. This would be an exciting advance since such theorems are currently
available only over totally real fields.

There were two talks on polylogarithms. Blottiere explained his results on
the Eisenstein classes on Hilbert modular varieties and applications to special
values of L-functions. Bannai discussed the crystalline realization of the elliptic
polylogarithm. Somewhat related to this was the talk of Huber on the p-adic Borel
regulator.

Other talks were given by Yoshida who explained a computation of vanishing
cycles on Shimura varieties, realizing the local Langlands and Jacquet-Langlands
correspondences, Görtz who spoke on affine Deligne-Lusztig varieties, Saito who
outlined his construction of the characteristic cycle of an l-adic sheaf, and Schmidt
who discussed his work on integer rings of type K(π, 1).
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Abstracts

B-pairs and (ϕ,Γ)-modules

Laurent Berger

The goal of the talk was to present some of the results from my article [1]. Let
K be a p-adic base field, for example some finite extension of Qp. One of the
aims of p-adic Hodge theory is to describe some of the p-adic representations of
GK = Gal(K/K), namely those which “come from geometry”, in terms of some
more amenable objects. The most satisfying result in this direction is Colmez-
Fontaine’s theorem which states that the functor V 7→ Dst(V ) gives rise to an
equivalence of categories between the category of semistable p-adic representations
and the category of admissible filtered (ϕ,N)-modules.

If D is a filtered (ϕ,N)-module coming from the cohomology of a scheme X ,
then the underlying (ϕ,N)-module only depends on the special fiber of X (it
is its log-crystalline cohomology) and the filtration only depends on the generic
fiber of X (it is its de Rham cohomology). If D1 and D2 are two filtered (ϕ,N)-

modules and Be = B
ϕ=1
cris then the (ϕ,N)-modules D1 and D2 are isomorphic if

and only if (Bst⊗K0 D1)
N=0,ϕ=1 and (Bst⊗K0 D2)

N=0,ϕ=1 are isomorphic as Be-
representations of GK . Similarly, the filtered modules K⊗K0D1 and K⊗K0D2 are

isomorphic if and only if Fil0(BdR⊗K0 D1) and Fil0(BdR⊗K0 D2) are isomorphic
as B+

dR-representations of GK .
The main idea of [1] is to separate the phenomena related to the special fiber

from those related to the generic fiber by considering not just p-adic representations
but B-pairs W = (We,W

+
dR) where We is a Be-representation of GK and W+

dR is

a B+
dR-representation of GK and BdR ⊗Be We = BdR ⊗B

+
dR
W+
dR. If V is a p-adic

representation, then one associates to it W (V ) = (Be⊗Qp
V,B+

dR⊗Qp
V ) and this

defines a fully faithful functor from the category of p-adic representations to the
category of B-pairs. One can extend the usual definitions of p-adic Hodge theory
from p-adic representations to all B-pairs. For example, we say that a B-pair
W is semistable if Bst ⊗Be We is trivial and it is easy to see that the functor
D 7→ W (D) which to a filtered (ϕ,N)-module D assigns the semistable B-pair

W (D) = ((Bst ⊗K0 D)N=0,ϕ=1,Fil0(BdR ⊗K0 D)) is an equivalence of categories.
One of the main general purpose tools which we have for studying p-adic rep-

resentations is the theory of (ϕ,Γ)-modules. There is an equivalence of categories
between the category of p-adic representations and the category of étale (ϕ,Γ)-
modules over the Robba ring. The main result of [1] is that one can associate to
every B-pair W a (ϕ,Γ)-module D(W ) over the Robba ring and that the resulting
functor is then an equivalence of categories.

The article [1] includes some other results which were not discussed in the
lecture, among which: a description of isoclinic (ϕ,Γ)-modules, an answer to a

question of Fontaine regarding B
ϕ=1
cris -representations, and a description of finite

height (ϕ,Γ)-modules.
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Weight spectral sequence and non-abelian Lubin-Tate theory

Teruyoshi Yoshida

This is a continuation of my talk in the same workshop two years ago about
my joint work with R. Taylor on the compatibilty of local and global Langlands
correspondences. In order to compute the local monodoromy of the Galois repre-
sentation attached to conjugate self-dual cuspidal automorphic representation of
GLn over CM field, we studied the semistable reduction of certain unitary Shimura
varieties with Iwahori level structure ([TY]). There, the weight spectral sequence
([RZ], [S]) corresponding to the cuspidal automorphic reprsentation was shown
to degenerate at E1-terms by somewhat mysterious vanishing of dimensions ex-
pressed as binomial coefficients. This was done by forgetting the action of local
Hecke algebra (affine Iwahori Hecke algebra), because we did not need it to deduce
the degeneration of the weight spectral sequence. In this talk we determine this
action completely, using a general intersection-theoretic formula to compute the
action of algebraic correspondences on weight spectral sequences. This leads to an
observation that the computation was entirely of local nature – it suggests that
the same method will compute purely locally the Hecke action on the cohomology
of Lubin-Tate spaces with Iwahori level structure, partially recovering the results
of Boyer obtained by global methods ([B]).

First we explain our formula on the action of algebraic correspondences on
weight spectral sequences. Let K be a complete discrete valuation field with a
finite residue field k and the ring of integers OK . Let X be a proper strictly
semistable scheme of relative dimension n − 1 over OK . Then its special fiber
Y := X ×OK

k is written as Y =
⋃
i∈∆ Yi with ∆ := {1, ..., t} and Yi proper

smooth over k, where Yi and Yj intersect transversally for i 6= j. Let YI :=
⋂
i∈I Yi

for I ⊂ ∆, which is proper smooth over k of dimension n − |I| if not empty, and
Y (m) :=

∐
|I|=m YI for 1 ≤ m ≤ n. For a prime ℓ 6= chark, the weight spectral

sequence reads

Ei,j1 :=
⊕

s≥max(0,−i)

Hj−2s
(
Y (i+2s+1) ×k k, Qℓ(−s)

)
=⇒ Hi+j(X ×K K, Qℓ).

Now let Γ be an algebraic correspondence on X (namely an n-dimensional
cycle on X ×OK

X) such that two projection maps Γ → X are both finite. We
are interested in the action [ΓK ]∗ := pr1∗ ◦ ([ΓK ]∪) ◦ pr∗2 of ΓK := Γ ×OK

K on
H∗(X ×K K,Qℓ). Let YI,J := YI ×k YJ for I, J ⊂ ∆, and write Yi,j := Y{i},{j}.
Let (X ×OK

X)sm be the smooth locus of the morphism X ×OK
X −→ SpecOK ,

and let Y 0
i,j := Yi,j ∩(X×OK

X)sm. Then Y 0
i,j is a Cartier divisor of (X×OK

X)sm.
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Theorem A. There is a unique collection {ΓI,J} of cycles ΓI,J on YI,J for all
pairs (I, J) with |I| = |J |, satisfying the following two conditions.

(i) Γi,j is the closure of the cycle Γ0
i,j := Y 0

i,j · Γ|(X×OK
X)sm in Yi,j .

(ii) When |I| = |J | + 1 = m and I = {i1, ..., im}, J = {j1, . . . , jm−1} are in
increasing order, there is an equality:

m∑

h=1

(−1)h YI,J · ΓI\{ih},J =
∑

j∈∆\J

(−1)h(j) ΓI,J∪{j}

of (n−m)-dimensional cycles on YI,J , where 1 ≤ h(j) ≤ m is determined
by jh(j)−1 < j < jh(j) (set jm :=∞).

Then setting Γ(m) :=
∐
|I|=|J|=m ΓI,J as an (n−m)-dimensional cycle on Y (m)×k

Y (m) for 1 ≤ m ≤ n, the action ⊕[Γ(i+2s+1)]∗ on Ei,j1 is compatible with the action

[ΓK ]∗ on Hi+j(X ×K K,Qℓ).

For the proof of this theorem, we build on the construction of [S], except that
we eliminate the semistable resolution of X ×OK

X from the description of the
cycles ΓI,J , in order to apply the formula to the Shimura varieties where the cycles
have concrete moduli interpretation. For this we also need the cycles, not only
cycle classes.

Now we introduce a class of Shimura varieties containg those studied in [HT].
Let F be a CM field, with complex conjugation c, of the form F = EF+, where
F+ ⊂ F is the fixed field of c and E/Q is imaginary quadratic. Let B be a
simple algebra with center F and dimF B = n2, with a positive involution ∗ with
∗|F = c and an alternating form 〈, 〉 : B × B → Q such that 〈bx, y〉 = 〈x, b∗y〉 for
∀b ∈ B. Let G be the Q-similitude group of (B, 〈, 〉). Then G0 := Ker(G → Q×)
is the restriction of scalars from a unitary group over F+. We choose 〈, 〉 so
that G0(R) ∼= U(1, n − 1) × U(0, n)d−1, where d := [F+ : Q]. For each open

compact subgroup U ⊂ G(A∞) small enough (where A∞ := Ẑ⊗Q), we define the
Shimura variety XU/F as a moduli of isogeny classes of quadruples (A, λ, i, ηU)
of an abelian variety A of dimension dn2, a polarization λ : A → A∨, a ring
homomorphism i : B → End(A) ⊗ Q, satisfying the Kottwitz conditon on LieA
corresponding to G (see [K]) and λ ◦ i(b) = i(b∗)∨ ◦ λ for ∀b ∈ B, and a right

U -orbit ηU of B ⊗ A∞-isomorphisms η : B ⊗ A∞ −→ V A :=
(
lim
←N

A[N ]
)
⊗ Q

which sends 〈, 〉 to the λ-Weil pairing. Then XU/F is a quasi-projective smooth
variety of dimension n−1, which is projective if d > 1 or if B is a division algebra.
We choose a place v of F lying over a prime p which splits in E. Then G(Qp) is a
product of GLn(Fv) and other factors, so set G(A∞) = G(A∞,v)×GLn(Fv). We
set U = Uv × Iwn where Uv ⊂ G(A∞,v) and Iwn is the open compact subgroup of
GLn(Ov) consisting of matrices which reduce to upper triangluar matrices modulo
v. For U0 := Uv × GLn(Ov) the XU0 extends to a smooth scheme over Ov with
a universal abelian scheme A/XU0 . Then G := diag(1, 0, . . . , 0)A[v∞] is a 1-
dimensional Barsotti-Tate Ov-module of Ov-height n, i.e. G[v] is a finite flat group
scheme of degree |k(v)|n, and the moduli of chain of n isogenies each of degree
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|k(v)| factoring G → G/G[v] gives a regular strictly semistable model of XU over
Ov, which is finite flat over XU0 .

Now the special fiber Y := XU ⊗Ov
k(v) is written as Y =

⋃
1≤i≤n Yi, where

Yi, smooth over k(v), is the locus where the i-th isogeny in the chain induces zero
map on the Lie algebra. This moduli interpretation allows us to apply Theorem
A to XU , when it is proper, and the Hecke correspondences generating the local
Hecke algebra Hn := Qℓ

[
Iwn\GLn(Fv)/Iwn

]
. It is generated by the generators

w1, . . . , wn−1 and T±1 , . . . , T
±
n of the extended affine Weyl group, subject to certain

relations (Bernstein-Zelevinsky presentation). It naturally contains the Iwahori
Hecke algebra of Levi subgroups, say Hm ⊗ Hn−m of GLm × GLn−m, which is
generated by the above set of generators minus wm, and makes Hn into a finite
Hm ⊗ Hn−m-algebra of dimension

(
n
m

)
. Now we refine the computation done in

[TY]: we compute H∗(Y (m)) as Hn-module. By dividing it into open strata, we
see that H∗(Y (m)) (the alternating sum in the Grothendieck group) is the sum of
Hn⊗H∗c (Y 0

Is
) for m ≤ s ≤ n, where Is := {1, . . . , s} and Y 0

Is
:= YIs

−⋃
Is⊂I 6=Is

YI
is the open stratum of YIs

, and the tensor product is over Hm ⊗ Hs−m ⊗ Hn−s.
Now, the action of Hm⊗Hs−m⊗Hn−s on H∗c (Y

0
Is

) is given as follows: the action
of Hm ⊗ Hs−m is computed locally by Theorem A, and the action of Hn−s is
computed by counting of points on Igusa varieties via trace formula ([HT], this is
where we need global assumptions). The action of Hm⊗Hs−m is roughly given by
Stm⊗Trs−m, with some unramified twists corresponding to the Frobenius action,
where Stn is a 1-dimensional Hn-module given by wi 7→ −1 and Ti 7→ 1, similarly
Trn is a 1-dimensionalHn-module given by wi 7→ q := |k(v)| and Ti 7→ qi(n−i), and
⊗ denotes the product corresponding to non-normalized induction. When we look
at the E1-termH∗(Y (m)) of the weight spectral sequence after taking the limit with

respect to Uv, making H∗(Y (m)) into a G(A∞,v)×Hn × FrobZ-module, its π∞,v-
isotypic component, where π = π∞,v×πv is a cuspidal automorphic respresentation
of G(A∞), recovers πIwv

v as Hn-module and is pure of weight n − m as FrobZ-
module. Two things are used: (1) the global result on the cohomology of Y 0

Is
shows

that as Hn−s-module H∗(Y 0
Is

)[π∞,v] is essentially the (Iwahori invariants of) the

Jacquet module of πv to GLs×GLn−s, and (2) the cancellation
∑s

m=0(−1)mStm⊗
Trs−m = 0 in the Grothendieck group of Hs-modules.

Acknowledgement: My travel was supported by a grant from Kyoto University.
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Wild ramification and the characteristic cycle of an ℓ-adic sheaf

Takeshi Saito

We measure the wild ramification of an l-adic etale sheaf by introducing blow-ups
of the self-product at the ramification locus in the diagonal.

Using the geometric construction, we define the characteristic cycle of an ℓ-adic
sheaf as a cycle on the logarithmic cotangent bundle and prove that the intersection
with the 0-section gives the characteristic class, under a certain condition.

1. Ramification along a divisor

Let k be a perfect field of characteristic p > 0, X be a smooth scheme of
dimension d over k and U = X \D be the complement of a divisor D with simple
normal crossings. We consider a smooth ℓ-adic sheaf F on U .

We construct a diagram

X ×X ←−−−− (X ×X)∼ ←−−−− (X ×X)(R),

where R = r1D1+· · ·+rmDm is a linear combination of the irreducible components
D1, . . . , Dm of D with rational coefficients ri ≥ 0, ri ∈ Q. For simplicity in this
note, we will assume ri > 0, ri ∈ Z.

We define the log blow up (X × X)′ → X × X to be the blow-up at D1 ×
D1, D2 ×D2, . . . , Dm ×Dm. We define the log product (X ×X)∼ ⊂ (X ×X)′ to
be the complement of the proper transforms of D ×X and X ×D. The diagonal
map δ : X → X×X is uniquely lifted to the log diagonal map δ̃ : X → (X×X)∼.
The conormal sheaf NX/(X×X)∼ is canonically identified with the locally free OX -

module Ω1
X(logD) of rank d.

We define (X × X)[R] → (X × X)′ to be the blow-up at the divisor R ⊂ X
in the log diagonal X ⊂ (X ×X)′. We define an open subscheme (X ×X)(R) ⊂
(X ×X)∼ ×(X×X)′ (X ×X)[R] to be the complement of the proper transforms of
the exceptional divisors of (X ×X)∼. The log diagonal map δ′ : X → (X ×X)′

is uniquely lifted to a closed immersion δ(R) : X → (X ×X)(R). The projections
(X × X)(R) → X are smooth. The conormal sheaf NX/(X×X)(R) is canonically

identified with the locally free OX -module Ω1
X(logD)(R).

We consider the commutative diagram

U × U j(R)

−−−−→ (X ×X)(R)

δU

x
xδ(R)

U
j−−−−→ X

of open immersions and the diagonal immersions.
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Definition 1.1. Let F be a smooth sheaf on U = X \ D. We define a smooth
sheaf H on U ×U by H = Hom(pr∗2F , pr∗1F). Let R =

∑
i riDi ≥ 0 be an effective

divisor with rational coefficients.
We say that the log ramification of F along D is bounded by R+ if the identity

1 ∈ EndU (F) = Γ(U, EndU (F)) = Γ(X, j∗EndU (F)) is in the image of the base
change map

(1) Γ(X, δ(R)∗j
(R)
∗ H) −−−−→ Γ(X, j∗EndU (F)) = EndU (F).

Definition 1 is related to the filtration by ramification groups in the following
way. Let Di be an irreducible component and Ki be the fraction field of the

completion ÔX,ξi
of the local ring at the generic point ξi of Di. We will often drop

the index i in the sequel. The sheaf F defines an ℓ-adic representation Fη̄i
of the

absolute Galois group GKi
= Gal(Ki/Ki). The filtration GrK,log ⊂ GK , r ∈ Q, r >

0 by the logarithmic ramification groups is defined. We put Gr+K,log =
⋃
q>r G

q
K,log.

Lemma 1.2. The following conditions are equivalent.
(1) There exists an open neighborhood of ξi such that the log ramification of F

along D is bounded by R+.
(2) The action of Gri+

Ki,log
on Fη̄i

is trivial.

The open subscheme U × U ⊂ (X × X)(R) is the complement of the inverse
image E = (X ×X)(R) ×X D. The inverse image E is canonically identified with
the vector bundle V(Ω1

X(logD)(R))×X D.

Proposition 1.3. Assume that the log ramification is bounded by R+. Then,
for every geometric point x̄ of D, the restriction (j∗H)|Ex̄

on the geometric fiber

is isomorphic to the direct sum
⊕

f L
⊕nf

f where Lf is a smooth rank one sheaf
defined by the Artin-Schreier equation T p−T = f and f denotes a linear form on
the vector space Ex̄.

Proposition 1.3 has the following consequence. Let Di be an irreducible compo-
nent of D. The graded piece Grri

logGKi
= Gri

K,log/G
ri+
K,log is abelian. The restriction

of Fη̄i
to Gri

K,log is decomposed into direct sum of characters
⊕

χ χ
nχ . The fiber

Θ
(ri)
log = E+ ×D+ ξi at the generic point ξi is a vector space over the function field

Fi of Di. The restriction of j∗H on the geometric fiber Θ
(ri)

log,F i
is decomposed as⊕

χ EndIi
(Fη̄i

) ⊗ Lχ where Lχ is a smooth rank one sheaf defined by the Artin-

Schreier equation T p−T = fχ where fχ = rsw χ is a linear form on Θ
(ri)

log,F i
called

the refined Swan character of χ.

Theorem 1.4. The graded quotient GrrlogGK is annihilated by p and the map

(2) Hom(GrrlogGK ,Fp) −−−−→ HomF i
(Θ

(r)
log, F i)

sending a character χ to the refined Swan character fχ = rsw χ is an injection.
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2. Characteristic cycle

For a non-trivial character χ : GrrlogGK → Fp, the refined Swan character

rsw χ : Θ
(r)
log → F i defines an F i-rational point [rsw χ] : Spec F i → P(Ω1

X(logD)∗).

We define a reduced closed subscheme Tχ ⊂ P(Ω1
X(logD)∗) to be the Zariski

closure {[rsw χ](Spec F i)} and let Lχ = V(OTχ
(1)) be the pull-back to Tχ of the

tautological sub line bundle L ⊂ T ∗X(logD) ×X P(Ω1
X(logD)∗). The inclusion

Tχ → P(Ω1
X(logD)∗) corresponds to a surjection Ω1

X(logD)∗ ⊗ OTχ
→ OTχ

(1)
and hence defines a commutative diagram

(3)

Lχ −−−−→ T ∗X(logD)×X Di −−−−→ T ∗X(logD)= V(Ω1
X(logD)∗)

y
y

y

Tχ
πχ−−−−→ Di −−−−→ X.

We put SSχ = 1
[Tχ:Di]

πχ∗[Lχ] in Zd(T
∗X(logD)×X Di)Q.

Let F be a smooth ℓ-adic sheaf on U = X \D and R =
∑

i riDi be an effective
divisor with rational coefficients ri ≥ 0. In the rest of talk, we assume that F
satisfies the following conditions:

(R) The log ramification of F along D is bounded by R+.
(C) For each irreducible component Di of D, the closure SF × Fi is finite over

Di and the intersection SF × Fi ∩Di with the 0-section is empty.

The conditions imply Fη̄i
= F (ri)

η̄i
for every irreducible component Di of D.

Definition 2.1. Let F be a smooth Λ-sheaf on U = X\D satisfying the conditions
(R) and (C).

For an irreducible component Di of D with ri > 0, let Fη̄i
=

∑
χ nχχ be the

direct sum decomposition of the representation induced on Grri

logGKi
. We define

the characteristic cycle by

(4) CC(F) = (−1)d


rank F · [X ] +

∑

i,ri>0

ri ·
∑

χ

nχ · [SSχ]




in Zd(T ∗X(logD))Q.

Theorem 2.2. Let X be a smooth scheme over k and D be a divisor with simple
normal crossings. Let F be a smooth ℓ-adic sheaf on U = X \ D satisfying the
conditions (R) and (C).

Then we have

(CC(F), X)T∗X(logD) = C(j!F)

where the right hand side denotes the characteristic cycle of j!F . In particular, if
X is proper, we have (CC(F), X)T∗X(logD) = χc(Uk̄,F).
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Iwasawa theory and non-abelian class field theory

Kazuhiro Fujiwara

After the breakthrough by A. Wiles ([4]), there has been a substantial progress
in the class field theory for GL2. At this meeting, the author has explained the
project to understand Leopoldt’s conjecture in algebraic number theory via the
class field theory for GL2.

For a totally real number field F , GF denotes the absolute Galois group, and
OF denotes the integer ring. For a prime number p, Leopoldt’s conjecture asserts
that the kernel of the p-adic regulator map

O×F ⊗Z Zp →
∏

v|p

(O×Fv
)p

has Zp-rank zero (where (·)p denotes the pro-p completion). The conjecture is
known if F is a subfield of an abelian extension of an imaginary quadratic number
field by a method from transcendental number theory ([1]).

Here is the attempt from GL2-class field theory viewpoint:

Theorem 1. Assume p ≥ 3, and assumption A(F,p) is satisfied. Then Leopoldt’s
conjecture for (F, p) is true.

Assumption A(F,p), which will be explained later, is known to be true under
mild conditions.

For the proof of the theorem, we make use of the nearly ordinary deformation
rings of a two dimensional reducible and indecomposable representation.

Now we explain the assumption A(F, p). Take a p-adic field E℘ with the ring of
the integers o℘ and the residue field k℘. A character of finite order χ : GF → o×℘
is nice if

• χ is totally odd, of order prime to p.
• χ is unramified at ∀v|p, χ(Frv) 6= 1.
• H1

f (F, χ̄
±1) = 0 (⇔ the relative class number of Fχ/F is prime to p if χ

is quadratic).

Here χ̄ = χ mod ℘, and H1
f denotes the finite part. Then A(F, p) is described as

follows:

Assumption A(F, p): there is at least one nice character χ.

Note that A(F,p) is satisfied if p is sufficiently large ([3]), or if p = 3 (and is
conjectured to be true for p ≥ 3).
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We briefly explain the GL2-set up. Assume A(F, p), and fix a nice character
χ. Construct an indecomposable reducible ρ̄ : GF → GL2(k℘) by the following
conditions:

• ρ̄ takes a form

0→ 1→ ρ̄→ χ̄→ 0.

• ρ̄|IFv
is split except one finite place y s.t. χ(Fry)

−1 ≡ qy 6≡ 1 mod p.

ρ̄ is unique up to isomorphisms. Σ = {v|p} ∪ {ramification set of ρ̄}.
To start the analysis of deformation rings of ρ̄, we need the following modularity

theorem.

Theorem 2. Assume [F : Q] > 1, and qy = ♯k(y) is sufficiently large. Then ρ̄ is
(minimally) modular in the following sense:

• There exists a cuspidal representation π of GL2(AF ) which is unramified
outside Σ ∪ {v|∞} and of parallel weight 2,
• π is nearly ordinary at ∀v|p,
• ρ̄ ≃ ρπ,℘ mod ℘.

Using ρ̄, we define a universal deformation ring RDS
and Hida’s nearly ordinary

(cuspidal) Hecke algebra TDS
depending on a finite set S of finite places of F .

After showing RDS
= TDS

by the standard method (cf. [2]), we prove Theorem
1 by a closer analysis of Eisenstein ideal of TDS

: first by counting the exact number
of generators for a well-chosen S, then by relating it to the tangent space of RDS

.
A deeper understanding of the relation between the global and local tangent spaces
is needed. In these arguments, we make essential uses of Taylor-Wiles systems.

References

[1] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121–124.
[2] K. Fujiwara, Galois deformation and arithmetic geometry of Shimura varieties, Proceedings

of the International Congress of Mathematicians Madrid 2006, (2006),347–371.
[3] H. Naito, Indivisibility of class numbers of totally imaginary quadratic extensions and their

Iwasawa invariants, J. Math. Soc. Japan 43 (1991), 185–194.
[4] A. Wiles, Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141 (1995),

443–551.

The appearance of modular symbols in Galois cohomology

Romyar T. Sharifi

Let p be an odd prime, and for any positive integer r, let Fr = Q(ζpr ) be the
cyclotomic field of prth roots of unity. We are interested in comparing the following
two sorts of objects for integers u and v prime to p:

1. cup product values (1− ζupr , 1− ζvpr )r in H2
ét(Z[ζpr , 1/p],Zp(2)),

2. the projections ξr(u : v) of Manin symbols to the ordinary part of the
homology group H1(X1(p

r);Zp) of the closed modular curve X1(p
r).
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The relationship between these objects is explored in [S2], and we briefly describe
a conjecture relating them here.

The aforementioned cup product values were studied by McCallum and the
speaker, and we refer the reader to [McS, S1] for details. As for Manin symbols,
briefly, we define [u : v]r to be the class in homology of X1(p

r) relative to the
cusps of the geodesic from −a

cpr to −b
dpr , where the matrix

A =

(
a b
c d

)

lies in SL2(Z), a ≡ u mod pr, and b ≡ v mod pr (compare with [Mn]). We project
[u : v]r to H1(X1(p

r);Qp) using the Manin-Drinfeld splitting, and further project
to the ordinary part of said group, i.e., the part on which Up acts invertibly.
The resulting element ξr(u : v) lies in the ordinary part of homology with Zp-
coefficients.

We define an Eisenstein ideal of the weight 2 cuspidal Zp-Hecke algebra at level
pr by

Ir = ({Tl − 1− l〈l〉, l 6= p prime} ∪ {Up − 1}).
To make things canonical, we consider a complex embedding ι of an algebraic
closure of Q and use it to fix ζpr = ι−1(e2πi/p

r

). We put a Galois action on
H1(X1(p

r);Zp) using ι (arising, e.g., from the action on the abelianization of the
étale fundamental group).

We then make the following conjecture [S2].

Conjecture 1. There exists an isomorphism

νr : H2
ét(Z[ζpr , 1/p],Zp(2))+ → H1(X1(p

r);Zp)
+/Ir,

of Zp[Gal(Fr/Q)]-modules such that we have

νr((1 − ζupr , 1− ζvpr )+r ) = ξr(u : v)+ (mod Ir),

where we use + to denote fixed parts under complex conjugation.

Remark. The map νr is to be defined naturally from ι in such a way that the
equality in the conjecture does not depend on its choice.

We can reword this in terms of Iwasawa theory and Hida theory. Let K denote
the field of all p-power roots of unity. Let UK denote the group of universal norm
sequences in K, let XK denote the Galois group of the maximal abelian p-ramified
pro-p extension of K, and let XK denote its maximal abelian quotient. Using a
coboundary that arises in a long exact sequence of inverse limits of cohomology
groups, one obtains a reciprocity map

ΨK : UK → XK ⊗Zp
XK

that interpolates certain inverse limits of cup products [S2]. We are particularly
interested in the values of this on the universal norm sequence 1− ζ = (1 − ζpr ).
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Let Λ denote the Iwasawa algebra Zp[[Gal(K/Q)]]. We may define

L = lim
←

pr−1∑

j=1
(j,p)=1

U−rp ξr(j : 1)⊗ [j] ∈ (lim
←
H1(X1(p

r);Zp)
ord) ⊗̂Zp

Λ,

where ⊗̂ denotes completed tensor product and [j] the group element attached
to j ∈ Z×p

∼= Gal(K/Q). This is essentially the p-adic L-function of Mazur and
Kitagawa [K].

We may also define a map ψ : XK → Λ given by

ψ(σ) = lim
←

pr−1∑

j=1
(j,p)=1

π1−ζj

pr
(σ)[j],

where π1−ζj

pr
: XK → Zp is the Kummer character attached to 1− ζjpr using ζ.

We define I in Hida’s ordinary Zp-Hecke algebra using the same generators as
for Ir, and we define Y to be the resulting Eisenstein part of the inverse limit over
r of the twist by Zp(1) of the H1(X1(p

r);Zp) with the above-mentioned Galois
actions. (Equivalently, we may consider étale cohomology groups without the
twist.)

We have the following equivalent form of Conjecture 1.

Conjecture 2. There exists an isomorphism φ : X−K → Y−/IY− of Λ-modules
such that, letting

Ξ = φ⊗ ψ− : X−K ⊗Zp
X−K → Y−/IY− ⊗Zp

Λ−,

we have
Ξ(ΨK(1− ζ)−) = L− (mod IY− ⊗Zp

Λ−),

where we use − to denote (tensor products of) (−1)-parts under complex conjuga-
tion.

Remark. The twist by Zp(1) of the map φ in Conjecture 2 will be the inverse limit
of the νr in Conjecture 1.

We can also give a third form of this conjecture, which asserts a certain cor-
respondence between cup products of limits of cyclotomic p-units in cohomology
groups with various odd (p-adic) twists H1

ét(Z[1/p],Zp(i)) and specific values of
the two-variable p-adic L-function given by specializing at a certain weight and
character.

The difficulty in proving the conjecture is found in the construction of the cor-
rect map φ. We may construct one good candidate as follows. The action of Galois
on Y provides a map b : GK → Hom(Y+,Y−) that is trivial on a decomposition
group at p fixing Y+. It then induces a homomorphism

b̄ : X−K → Hom(Y+/IY+,Y−/IY−)

which is known to be an isomorphism under a fairly mild condition on Bernoulli
numbers [O2, S2]. Using a certain twisted version of Poincaré duality [O1, S2], we
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may define a generator α of Y+/IY+ as a Hecke module, canonical up to ι. The
map σ 7→ b̄(σ)(α) then provides one candidate for φ. As desired, the question of
the validity of Conjecture 2 using this map for φ is independent of ι.
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Rings of integers of type K(π, 1)

Alexander Schmidt

Let Y be a connected locally noetherian scheme and let p be a prime number.
We say that Y is a K(π, 1) for p if the higher homotopy groups of the p-completion

Y
(p)
et of its étale homotopy type Yet vanish. In this talk we consider the case of an

arithmetic curve, i.e. Y is an open subscheme of Spec(Ok), where k is a number
field. Here the K(π, 1)-property is linked to open questions in the theory of Galois
groups with restricted ramification of number fields:

Let k be a number field, S a finite set of non-archimedean primes of k and p
a prime number. For simplicity, we assume that p is odd or that k is totally
imaginary. Let kS(p) denote the maximal p-extension of k unramified outside
S and put GS(p) = Gal(kS(p)|k). A systematic study of this group had been
started by Šafarevič, and was continued by Koch, Kuzmin, Wingberg and many
other people. See [NSW], VIII, §7 for basic properties of GS(p). In geometric
terms (and omitting the base point) we have

GS(p) ∼= π1

(
(Spec(Ok) r S)

(p)
et

)
.

As is well known to the experts, if S contains the set Sp of primes dividing p,
then Spec(Ok) r S is a K(π, 1) for p. In particular, if S ⊃ Sp, then GS(p) is of
cohomological dimension less or equal to 2.

The group GS(p) is most mysterious in the tame case, i.e. if S∩Sp = ∅. In this
case, examples when Spec(Ok) rS is not a K(π, 1) are easily constructed. On the
contrary, until recently not a single K(π, 1)-example was known. The following
properties of the group GS(p) were known so far

• GS(p) is a ‘fab-group’, i.e. the abelianization of each open subgroup
is finite.
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• GS(p) can be infinite (Golod-Šafarevič, 1964).
• GS(p) is a finitely presented pro-p-group (Koch, 1965).

A conjecture of Fontaine and Mazur ([FM], 1994) asserts that GS(p) has no infinite
p-adic analytic quotients.

In 2005, Labute considered the case k = Q and found finite sets S of prime
numbers (called strictly circular sets) with p /∈ S such that GS(p) has cohomologi-
cal dimension 2. In [S1] the author showed that, in the examples given by Labute,
Spec(Z) r S is a K(π, 1) for p. We show that in the tame case rings of integers of
type K(π, 1) are cofinal in the following sense:

Theorem 1. Let k be a number field and let p be a prime number such that

(∗) ζp /∈ k and p ∤ #Cl(k).

Let S be a finite set of primes of k with S ∩ Sp = ∅. Let, furthermore, T be
any set of primes of Dirichlet density δ(T ) = 1. Then there exists a finite subset
T1 ⊂ T such that Spec(Ok) r (S ∪ T1) is a K(π, 1) for p.

We conjecture that condition (∗) can be removed from Theorem 1. Explicit
examples of rings of integers of type K(π, 1) can be found in [La], [S1] (k = Q)
and in [Vo] (k imaginary quadratic).

The K(π, 1)-property has strong consequences. We write X = Spec(Ok) and
assume in all results below that p 6= 2 or k is totally imaginary, and that we are
in the tame case S ∩ Sp = ∅. Primes p ∈ S with ζp /∈ kp are redundant in S

in the sense that removing these primes from S does not change (X r S)
(p)
et . We

therefore restrict our considerations to sets of primes whose norms are congruent
to 1 modulo p. These are the results.

Proposition 2. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. Then X r S is p-contractible (i.e. X r S is a K(π, 1)
for p and GS(p) = 1) if and only if S = {p} consists of a single prime and one of
the following cases occurs.

(a) p = 2, k 6= Q(
√
−1) is imaginary quadratic, 2 ∤ hk and N(p) 6≡ 1 mod 4,

(b) p = 2, k = Q(
√
−1) and N(p) 6≡ 1 mod 8,

(c) p = 3, k = (Q
√
−3) and N(p) 6≡ 1 mod 9.

Theorem 3. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. If X r S is a K(π, 1) for p and GS(p) 6= 1, then the
following holds.

(i) cdGS(p) = 2, scdGS(p) = 3.
(ii) GS(p) is a duality group.

The dualizing module D of GS(p) is given by D = torpCS(kS(p)), i.e. it is the
subgroup of p-torsion elements in the S-idèle class group of kS(p).

Remark: In the wild case S ⊃ Sp, where X r S is always a K(π, 1) for p,
GS(p) is of cohomological dimension 1 or 2. The strict cohomological dimension
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is conjecturally equal to 2 (=Leopoldt’s conjecture for each finite subextension of
k in kS(p)). In the wild case, GS(p) is often, but not always a duality group, cf.
[NSW] Prop. 10.7.13.

Allowing ramification at a prime p does not mean that the ramification is re-
alized globally. Therefore it is a natural and interesting question how far we get
locally at the primes in S when going up to kS(p). See [NSW] X, §3 for results in
the wild case. In the tame case, we have the following

Theorem 4. Let S be a finite non-empty set of primes of k whose norms are
congruent to 1 modulo p. If X r S is a K(π, 1) for p and GS(p) 6= 1, then

kS(p)p = kp(p)

for all primes p ∈ S, i.e. kS(p) realizes the maximal p-extension of the local field kp.

The similar question for primes p /∈ S is open. We do not know whether or
not a prime p /∈ S can split completely in kS(p) if X r S is a K(π, 1) for p and
GS(p) 6= 1.

The next result addresses the question of enlarging the set S without destroying
the K(π, 1)-property.

Theorem 5. Let S ⊂ S′ be finite non-empty sets of primes of k whose norms
are congruent to 1 modulo p. Assume that X r S is a K(π, 1) for p and that
GS(p) 6= 1. If each q ∈ S′ r S does not split completely in kS(p), then X r S′

is a K(π, 1) for p. Furthermore, in this case, the arithmetic form of Riemann’s
existence theorem holds: the natural homomorphism

∗
p∈S′\S(kS(p))

Tp(kS′(p)|kS(p)) −→ Gal (kS′(p)|kS(p))

is an isomorphism, i.e. Gal(kS′(p)|kS(p)) is the free pro-p product of a bundle of
inertia groups.

Proofs of the results above can be found in [S2]. The proof of Theorem 1 uses
at an essential point Labute’s results on mild pro-p-groups [La].
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On period spaces for p-divisible groups

Urs Hartl

In our talk we explained our results from [5] on the image of the Rapoport-Zink
period morphism.

Fix a Barsotti-Tate group X0 over Falg
p of height h and dimension d. Let

W := W (Falg
p ) be the ring of Witt vectors and let K0 := W [ 1p ]. We consider

Barsotti-Tate groups X over complete, rank one valued extensions OK of W ,
K := FracOK , such that there exists an isogeny

ρ : X ⊗OK
OK/pOK −→ X0 ⊗Falgp

OK/pOK .
The theory of Grothendieck-Messing [7] associates to X an extension

0 // (LieX∨)∨K
// D(X)K // LieXK

// 0

where D(X)K is the crystal of Grothendieck-Messing evaluated on K, and the

isogeny ρ defines an isomorphism of crystals D(ρ)K : D(X)K −∼−→ D(X0)K . The
K-subspace D(ρ)K(LieX∨)∨K defines a K-valued point in the Grassmannian F :=

Grass(h−d,D(X0)K0) of h−d-dimensional subspaces of D(X0)K0 . In [4] Grothen-
dieck posed the following

Problem. (A. Grothendieck, 1970)
Describe the subset of F formed by the points D(ρ)K(LieX∨)∨K for varying K,X, ρ.

A first solution to this problem was given by Rapoport-Zink [8] who constructed
a rigid analytic period domainF rig

wa for Barsotti-Tate groups consisting of all weakly
admissible filtrations on the isocrystal D(X0)K0 . In our talk we firstly showed that
only in rare cases the Rapoport-Zink period domain is the correct answer, by ex-
hibiting weakly admissible filtrations defined over infinite extensions K/K0 which
do not correspond to Barsotti-Tate groups X over OK . Secondly we described the
correct solution of Grothendieck’s problem as the open Berkovich subspace Fa of
F consisting of those points for which the associated ϕ-module over the (“alge-
braic closure” of the) Robba ring is unit root. The space Fa is contained in the
Berkovich subspace Fwa corresponding to the Rapoport-Zink period domain. The
inclusion Fa ⊂ Fwa induces an étale morphism of the associated rigid analytic
spaces, which is a bijection on rigid analytic points by the theorems of Colmez-
Fontaine [2], Breuil [1, Theorem 1.4] and Kisin [6]. The rational Tate module
TpXK ⊗Zp

Qp of X gives rise to a local system of Qp-vector spaces on Fa, whose
associated space of Zp-lattices is the generic fiber of the Rapoport-Zink space,
which parametrizes pairs (X, ρ) of Barsotti-Tate groups X over OK and isogenies
ρ as above.

These results are proved in [5]. They were independently obtained in a recent
article by Faltings [3].
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Higher exponential maps and explicit reciprocity laws

Sarah L. Zerbes

1. Motivation

Let p be an odd prime, and let F be a finite extension of Qp with absolute Galois
group GF . Let (Fn)n≥1 be the cyclotomic tower, so Fn = F (µpn), and let F∞ =⋃
n Fn. Define the Galois groups HF = Gal(F̄ /F∞) and Γ = Gal(F∞/F ), and

note that Γ is isomorphic to an open subgroup of Z∗p via the cyclotomic character.
Let V be a de Rham representation of GGF with (φ,Γ)-module D(V ). Using
the results of [6], which describes the GF -cohomology of V in terms of D(V ), one
can construct a natural map ι : H1(Γ,D(V )ψ=1) → H1(GF , V ) (c.f.Lemma I.5.2
in [4]. More precisely, Cherbonnier and Colmez show in [4] that for n≫ 1 we have
a commutative diagram

H1(Γ,D(V )ψ=1)

ι

��

φ−n

// H1(Γ, (BdR ⊗ V )HF )

��
H1(GF , V ) // H1(GF ,BdR ⊗ V )

Here, the map H1(K,V ) → H1(Γ,BdR ⊗ V ) is induced from the natural map
V → BdR ⊗ V .

In [5], Fontaine has constructed a short exact sequence of GF -modules

(1) 0→ V → Bφ=1
max ⊗Qp

V → BdR/B
+
dR ⊗Qp

V → 0.

Taking GF -cohomology of (1) gives a connection map δ : DdR(V )/Fil0DdR(V )→
H1(GF , V ).

Definition (c.f. [2]). The Bloch-Kato exponential is the map expV,F : DdR(V )→
H1(GF , V ) obtained by composing δ with the natural quotiend map DdR(V ) →
DdR(V )/Fil0DdR(V ).
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One of the main results of [4] gives an explicit description of an element y ∈
H1(Γ,D(V )ψ=1) in terms of the image of ι(y) under twists of the dual exponential
map exp∗V,F .

2. Main results

In [9], we generalize the above results for higher dimensional local fields. Let
K be a (d + 1)-dimensional local field of mixed characteristic (0, p) with residue

field kK , and let X1, . . . , Xd be a p-basis of K. Let Kn = K(µpn , X
1

pn

1 , . . . , X
1

pn

d )
for n ≥ 1. Then K∞ =

⋃
nKn is a (d + 1)-dimensional p-adic Lie extension of

K whose Galois group GK is isomorphic to Zdp(1) ⋊ Z∗p. Define the Galois groups

GK = Gal(K̄/K) and HK = Gal(K̄/K∞). Using the tower (Kn)n≥1 - which is
the analogue of the tower (Fn)n≥1 in the 1-dimensional situation - Andreatta [1]
and Scholl [8] have developed the theory of higher (φ,GK)-modules: If V is a
p-adic representation of GK , then one associates to it a (φ,GK)-module DK(V ),
which is a finitely generated étale AK-module with continuous actions of φ and
GK . Kato [7] and Brinon [3] have constructed a higher dimensional analogue BdR

of the ring BdR, which is equipped with a connection ∇ : BdR → BdR ⊗K Ω1
K .

Theorem. Let V be a de Rham representation of GK . Then for n ≫ 0 and for
all 1 ≤ i ≤ d, we have a commutative diagram

Hi(GK ,D(V )ψ=1)

ι(i)

��

φ−n

// Hi(GK , (B
∇=0
dR ⊗ V )HK )

inf

��

Hi(GK , V ) // Hi(GK ,B
∇=0
dR ⊗ V )

Here, the map Hi(GK , V ) → Hi(GK ,B
∇=0
dR ⊗ V ) is induced by the natural map

V → B∇=0
dR ⊗ V , and the map ι(i) is defined using the description of the Galois

cohomology groups Hi(GK , V ) in terms of the (φ,GK)-module D(V ).

In the higher-dimensional situation, the short exact sequence (1) is replaced by
the long exact sequence of GK-modules

0→ V → Bφ=1
max ⊗Qp

V → BdR/B
+
dR ⊗Qp

V

→∇ V ⊗BdR/Fil−1B+
dR ⊗ Ω1

K →∇ V ⊗BdR/Fil−2B+
dR ⊗ Ω2

K →∇ . . . ,
which gives rise to the spectral sequence Em,n1 ⇒ Hm+n(K,V ), where

Em,n1 =

{
Hm(K,Bφ=1

max ⊗Qp
V ) when n = 0

Hm(K,V ⊗BdR/Fil1−nB+
dR ⊗ Ωn−1

K ) when n ≥ 1

We use this spectral sequence to define higher Bloch-Kato exponentials exp(i),K,V

for 1 ≤ i ≤ d, and we prove a higher-dimensional analogue of the explicit reci-
procity law of Cherbonnier and Colmez:- If y ∈ Hi(GK ,D(V )ψ=1), then y has an
explicit description in terms of the image of ι(i)(y) under the higher dual expo-
nential map exp∗(d+1−i),V,F .
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A p-adic Borel regulator

Annette Huber

(joint work with Guido Kings)

1. Motivation

Let F be a finite field extension of Q with ring of integers OF . The Dirichlet
regulator is the map

L : O∗F →
⊕

v|∞

R

u 7→ (log |u|v)v .

It is used to prove:

(1) Dirichlet’s unit theorem: The rank of O∗F is #{v|∞} − 1.
(2) The class number formula:

ζF (0)∗ = −hR
w

where the left hand side means the leading coefficient of the Taylor expan-
sion; h is the class number, w the number of roots of unity in F , and R is
the regulator, ie. the determinant of L.

This was generalized by Borel. He first defines higher regulator maps for n ≥ 1

K2n−1(OF )→
⊕

v|∞

Kn(Fv)
b∞−−→

⊕

v|∞

R .

He then proves:

(1) computation of the rank of K2n−1(OF ) (see [1]);
(2) formula for ζF (1− n)∗ up to a factor in Q∗ (see [2]).
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Our (long-term) aim is to correct his formula by a p-adic contribution and thus
prove the conjecture of Bloch and Kato for number fields.

2. Borel’s regulator

We recapitulate Borel’s definition for C. (The experts will realize that we
simplify the truth somewhat.)

K2n−1(C)
b∞ //

Hur
((QQQQQQQQQQQQ

C

H2n−1(GL(C),Q)

88qqqqqqqqqqqq

Defining the map b∞ is equivalent to defining a system of elements in group coho-
mologyH2n−1(GLN (C),C) for all N . Borel uses the van Est isomorphism between
Lie algebra cohomology and continuous groups cohomology.

H2n−1(glN ,C) ∼= H2n−1
cont (GLN (C),C)→ H2n−1(GLN (C),C)

Here Lie algebra cohomology of a Lie algebra g can easily be defined as cohomology
of the complex

∧∗
g with differential induced by the Lie bracket. It is obviously

finite dimensional and of course well known for g = glN . In fact, H∗(glN ,Q) is an
exterior algebra on certain elements

pn ∈ H2n−1(glN ,Q)

for 1 ≤ n ≤ N called primitive elements.

Definition 2.1. The Borel regulator b∞ is defined as the image of pn.

3. The p-adic version

Let p be a fixed prime. Let K/Qp be a finite extension with ring of integers R.
We want to define a p-adic regulator map

bp : K2n−1(R)→ K

or equivalently a system of elements in H2n−1(GLN (R),K). Note that GLN (R) is
a topological group and even a K-Lie group. Hence we can consider group coho-
mology with (locally) analytic cochains, i.e. maps which can be locally expressed
by converging K-power series. We denote it H2n−1

la (GLN (R),K). We use the map

Φ : H2n−1(glN ,K)→ H2n−1
la (GLN (R),K)

f1 ⊗ . . . f2n−1 7→ (df1)e ∧ · · · ∧ (df2n−1)e

where (df)e is the differential of a locally analytic function f in the cotangent
space at e ∈ GLN (R).

Theorem 3.1. (1) For K = Qp and the subgroup 1 + pMN(Zp) ⊂ GLN (Zp)
this map agrees with Lazard’s ([4]). In particular, it is an isomorphism in
this case.

(2) It is an isomorphism for all K.
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Hence we can consider the composition

H2n−1(glN ,K) ∼= H2n−1
la (GLN (R),K)→ H2n−1(GLN (R),K)

Definition 3.2. The p-adic Borel regulator bp is defined as the image of pn.

4. The main result

Why is this the right map to consider? We see the following result as a good
indication.

Theorem 4.1. The p-adic Borel regulator agrees with Soulé’s regulator under the
Bloch-Kato exponential. More precisely, for n ≥ 1

H2n−1(GLN (R),K)
expBK−−−−→ H2n−1(GLN (R), H1(K,Qp(n))

maps bp to the étale Chern class cn.

This proves in particular that the étale Chern classes are continuous and even
analytic.

We first give the reason why the Theorem actually holds: under the suspension
map

H2n
DR(BG)→ H2n−1

DR (G) ∼= H2n−1(glN ,K)

(with G = GLN,K) the universal Chern class in de Rham cohomology is mapped
to pn. This is nothing but the theory of characteristic classes and can in fact be
seen as a definition of the Chern class.

In order to prove the theorem, we proceed as follows.

• Relate the de Rham Chern class to the étale Chern class via p-adic Hodge
theory. Hence syntomic cohomology comes into play.
• Syntomic cohomology is viewed as a p-adic analogue of absolute Hodge

cohomology.
• Now copy Beilinson’s proof of the comparison isomorphism between the

(infinite) Borel regulator and the Beilinson regulator, ie., the Chern class
in absolute Hodge cohomology.

Some key points of the argument were explained in more detail in the talk. The
complete argument is given in the preprint [3].
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On the Eisenstein classes of Hilbert-Blumenthal modular varieties

David Blottière

The sheaf theory of polylogarithms, first developed for the multiplicative group,
provides an interpretation of special values of the zeta function in terms of Hodge
theory (Part 1). Such a theory of polylogarithms exists also for complex abelian
schemes (Part 2). For elliptic curves the objects of this theory have been intensely
studied (see e.g. Results R1, R2 and R3 below). In the higher dimensional case,
some results have been proven (see e.g. Results R1’, R2’), but no link between
this theory and some special values of L-functions was known. Specializing the
geometric context to Hilbert-Blumenthal modular families of abelian varieties, we
establish such a link (see Result R3’) and obtain a geometric proof of the Klingen-
Siegel Theorem (Part 3).

1. Review of the classical case

Beilinson’s conjectures hold for Spec(Q) (Borel, Rapoport, . . . ) and one may
interpret this result as follows. The subspace ζ(3)Q of R = Ext1MHSR

(R(0),R(3)),
where MHSR denotes the category of polarizable real mixed Hodge structures,
compares extensions of motives and extensions of real mixed Hodge structures.
Thus

(∗) ζ(3)Q is a canonical subspace of Ext1MHSR
(R(0),R(3)).

The sheaf theory of polylogarithms for Gm (Beilinson, Deligne, Ramakrish-
nan) provides an explanation of the assertion (∗) using only Hodge theory. Let
VMHS(X) be the category of admissible polarizable variations of rational mixed
Hodge structures over X , for X a smooth complex algebraic variety. The objects
of this theory are

• the logarithm (a pro-object of VMHS(Gm,C)), denoted by Log,
• the polylogarithm (an element of Ext1VMHS(Gm,C\{1})

(Q(0),Log|Gm,C\{1}),

• the Eisenstein classes (elements of Ext1MHS(Q(0),Q(k)) for some k ≥ 0,
where MHS denotes the category of polarizable rational mixed Hodge
structures).

All of these objects can be described explicitly, e.g. the polylogarithm corre-
sponds to a pro-matrix in which appear all the multivalued functions Lik, k ≥ 1.
It turns out that the Eisenstein classes are related to some special values of the
zeta function and this provides the desired explanation of the assertion (∗) using
only Hodge theory.
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2. The abelian case

This sheaf theory of polylogarithms is defined in a more general geometric set-
ting (cf. [13]) and gives some special elements (the Eisenstein classes) which should
have remarkable properties. For instance, such a theory exists for complex abelian
schemes.

Fix a smooth complex algebraic variety S and a complex abelian scheme π : A→
S of pure relative dimension g. Let U be the complement of the zero section and let
H := (R1π∗Q)∨ (polarizable variation of rational pure Hodge structures of weight
−1 over S). For X a smooth complex algebraic variety, we denote by MHM(X)
the category of algebraic mixed Hodge modules over X and we recall that one can
see VMHS(X) as a full subcategory of MHM(X) in a canonical way. As in the
case of the mupltiplicative group, one can define (see e.g. Sections 3–5 of [4])

• the logarithm (a pro-object of VMHS(A)), denoted by Log,
• the polylogarithm (an element of Ext2g−1

MHM(U)((π
∗H)|U ,Log|U (g)),

• the Eisenstein classes (elements of Ext2g−1
MHM(S)(Q(0), (SymkH)(g)) for some

k ≥ 0).

For the elliptic case (g = 1), the definition and the study of these objects are due
to Beilinson and Levin. For the universal elliptic curve over the modular curve, we
have the following properties. We refer the reader to [1] for precise formulations
and proofs (see also [11] for R3).

R1 The Eisenstein classes have a motivic origin.
R2 The polylogarithm is a 1-extension of admissible polarizable variations of

rational mixed Hodge structures which can be explicitly described by a
pro-matrix in which appear the Debye polylogarithms.

R3 The residues of the Eisenstein classes at the ∞ cusp of the modular curve
are related to some values of Bernoulli polynomials.

Later the definitions have been extended to any complex abelian schemes (this
follows from the content of [13]) and the following results have been proven.

R1’ The Eisenstein classes have a motivic origin (see [6]).
R2’ The currents constructed by Levin in [9] provide an explicit description

of the polylogarithm at the topological level. This result had been con-
jectured by Levin and is announced in the Note [2]. We refer to [4] for a
proof (see the proof of Théorème 4.5 and Corollaire 4.7 in loc. cit.). We
note that if the relative dimension of the abelian scheme is greater than 2,
the polylogarithm is not an extension of admissible polarizable variations
of rational mixed Hodge structures (cf. Theorem III-2.3 b) of [13]).
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3. The Hilbert-Blumenthal case

If one specializes the geometric setting to Hilbert-Blumenthal modular families
of abelian varieties, we show, using the result R2’, the following generalization of
the result R3.

R3’ The Eisenstein classes degenerate at the ∞ cusp of the Baily-Borel com-
pactification of the base in special values of an L-function associated to
the underlying totally real number field. This result is stated in the Note
[3] and the reader may consult [5] for a proof (see the proof of Théorème
5.2 in loc. cit.).

We mention that there exists a different proof of the result R3’ (see [7]). Since
the residues at the ∞ cusp are rational numbers, we can deduce from the result
R3’ the Klingen-Siegel Theorem. We note that our proof presents some analogy
with the original one (cf. [8]). We also point out that there exist two other proofs
due to Sczech [12] and Nori [10] which use rational cohomology classes to deduce
the Theorem. Thus our proof has also some analogy with both of them.
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On the p-adic elliptic polylogarithm and the two-variable p-adic

L-function for CM elliptic curves

Kenichi Bannai

(joint work with Shinichi Kobayashi and Takeshi Tsuji)

We explicitly calculate the p-adic realization of the elliptic polylogarithm for
CM elliptic curves and relate it to special values of the two-variable p-adic L-
function of the elliptic curve, when the elliptic curve has good ordinary reduction
at p ≥ 5. This extends previous results [1] which dealt with the one-variable
case. Our result is based on my work with Shinichi Kobayashi [2] concerning a
new method of constructing the two-variable p-adic L-function for CM elliptic
curves, and we were able to give a very explicit description of the coherent module
with connection underlying the elliptic polylogarithm sheaf. We expect that our
method extends to when the elliptic curve has supersingular reduction at p, and
we are hoping for similar results in this case.

0.1. Background. The classical polylogarithms are defined on the open unit disc
|t| < 1 as the power series

Lik(t) =

∞∑

n=1

tn

nk
.

This function may be extended as a multi-valued function on C as iterated integrals

Lik+1(s) :=

∫ s

0

Lik(t)
dt

t
(k ≥ 0),

with Li0(t) = t/(1− t). These functions were interpreted by Beilinson and Deligne
(See for example [4]) as periods of a certain pro-variation of mixed Hodge struc-
tures, called the polylogarithm sheaf, on the projective line minus three points.
Moreover, the construction of the Beilinson and Deligne works for any reason-
able theory of mixed sheaves, including the conjectural category of mixed motivic
sheaves. Hence one may consider various realizations of the polylogarithm sheaf,
including the Hodge, the ℓ-adic, and the p-adic realizations.

Extending this construction, Beilinson and Levin [3] defined an analogous sheaf
on an elliptic curve minus the identity. Let Γ ⊂ C be a lattice corresponding
to the elliptic curve, A the fundamental volume of Γ divided by π, and χw(γ) =
exp((γw−γw)/A). Beilinson and Deligne explicitly describe the Hodge realization
of this sheaf, and prove that the period of this sheaf is given by the Eisenstein-
Kronecker-Lerch series, of the form

Ea,b(w) :=
∑

γ∈Γ\{0}

γa

γb
χw(γ)

for integers a < 0 and b ≥ 0. Note that the series converges only if b > a+ 2, but
one may give meaning to the function for any a, b ≥ 0 by analytic continuation.
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0.2. p-adic case. In our research, we constructed the p-adic elliptic polylogarithm
as a (pro-) filtered overconvergent F -isocrystal on an elliptic curve minus the iden-
tity, using the construction of Beilinson and Levin. In order to describe the p-adic
elliptic polylogarithm, we assume that the elliptic curve has complex multiplication
in an imaginary quadratic field K. Assume for simplicity that the class number
of K is one. By the theory of complex multiplication, there exists a model of this
elliptic curve defined over K. Let Γ ⊂ C be the period lattice corresponding to
this model. Then for z0, w0 ∈ Γ⊗Q, we define the Eisenstein-Kronecker number
to be special values of Eisenstein-Kronecker-Lerch series, defined by the formula

e∗a,b(z0, w0) :=
∑

γ∈Γ\{−z0}

(z0 + γ)a

(z0 + γ)b
χw0(γ).

Again, one can give meaning to these numbers for any integer a, b by analytic
continuation. The classical theorem of Damerell asserts that e∗a,b(z0, w0)/A

a is
algebraic if a, b ≥ 0, hence we may interpret these numbers as p-adic numbers
through a fixed embedding Q →֒ Cp. In order to obtain p-adic numbers for a < 0,
we use p-adic interpolation. Suppose now that the elliptic curve has good ordinary
reduction at p ≥ 5. Since p is ordinary, p splits as p = pp∗ in K. Manin-Vishik,
Katz, Yager, de Shalit and others defined a p-adic measure µz0,w0 on Zp × Zp for
z0, w0 6∈ p−∞Γ such that for any a, b ≥ 0, we have

∫

Zp×Zp

xaybdµz0,w0(x, y) =
(−1)a+bb!

Ωa+bp Aa
e∗a,b+1(z0, w0)

where Ωp is a certain p-adic period. A similar measure is constructed even when
z0 or w0 ∈ Γ. This is precisely the measure used in the construction of the two-
variable p-adic L-function associated to algebraic Hecke characters ofK. We define
the p-adic Eisenstein-Kronecker number by the formula

e
(p)
a,b+1(z0, w0) :=

∫

Z×
p ×Zp

xaybdµz0,w0(x, y).

Note that the above numbers are defined even for a < 0. The importance of these
numbers is that they are connected to special values of the two-variable p-adic
L-function. Our main result is as follows.

Theorem 1. Consider an elliptic curve with complex multiplication in an imagi-
nary quadratic field, and assume that the elliptic curve has good ordinary reduction
at the primes above p. Then the Frobenius structure of the p-adic elliptic polylog-
arithm sheaf restricted to a torsion point w0 of order prime to p is expressed by

the p-adic Eisenstein-Kronecker numbers e
(p)
a,b(0, w0) for a < 0, b ≥ 0.

The above theorem is a p-adic analog of the result of Beilinson and Levin, for a
single CM elliptic curve. Since the p-adic elliptic polylogarithm is the realization

of a motivic sheaf, and e
(p)
a,b(0, w0) are numbers related to p-adic L-functions, the

above result is a p-adic Beilinson conjecture type result.



1770 Oberwolfach Report 30/2007

In the supersingular case, similar p-adic distribution interpolating Eisenstein-
Kroenecker numbers in one variable has been constructed by Boxall, Schneider-
Teitelbaum, Fourquaux and Yamamoto, and we expect the p-adic elliptic polylog-
arithm to be related to special values of such distribution in a similar fashion. I
am also currently working with Shinichi Kobayashi in an attempt to construct cer-
tain two-variable distribution interpolating Eisenstein-Kronecker numbers in the
supersingular case.

0.3. Main Tool. The main tool used in the proof of the main theorem is the
two-variable generating function of Eisenstein-Kronecker numbers. Let Γ ⊂ C
be a lattice, and let θ(z) be the reduced theta function on C/Γ associated to
the divisor (0), normalized so that θ′(0) = 1. It may be given explicitly as
θ(z) = exp(−e∗2z2/2)σ(z), where σ(z) is the Weierstrass sigma function and e∗2 :=
e∗0,2(0, 0). We define the Kronecker theta function Θ(z, w) as follows.

Θ(z, w) :=
θ(z + w)

θ(z)θ(w)
.

This function differs by an exponential factor from the two-variable Jacobi
theta function studied by Zagier. The Kronecker theta function is a reduced theta
function associated to the Poincaré bundle on the elliptic curve.

Theorem 2 (Kobayashi, B– [2]). For any z0, w0 ∈ C, let

Θz0,w0(z, w) := exp

[
−z0w0

A

]
exp

[
−zw0 + wz0

A

]
Θ(z + z0, w + w0).

Then we have

Θz0,w0(z, w) =
δz0
z
χw0(z0) +

δw0

w
+

∑

a,b≥0

(−1)a+b
e∗a,b+1(z0, w0)

a!Aa
zbwa,

where δx = 1 if x ∈ Γ and δx = 0 otherwise.

The exponential factors are algebraic translations which appear in Mumford’s
theory of algebraic theta functions. This function was used in [2] to give a new
construction of the measure µz0,w0 .

For application to the calculation of the elliptic polylogarithm, we use rational
functions derived from Θ(z, w) to describe the elliptic polylogarithm sheaf, and
relate it to special values of Eisenstein-Kronecker numbers.
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On the p-adic local Langlands correspondence for GL2(Qp)

Pierre Colmez

We described a functor V 7→ Π(V ) attaching a unitary representation of GL2(Qp)
to a 2-dimensional representation of GQp

. The construction goes through Fon-
taine’s theory of (ϕ,Γ)-modules and gives a description locally analytic vectors of
Π(V ).

Smooth representations and (ϕ,Γ)-modules in characteristic p

Peter Schneider

(joint work with Marie-France Vigneras)

The classical local Langlands correspondence (proved by Harris/Taylor and
Henniart) establishes a distinguished bijection between n-dimensional discrete
semisimple representations of the Weil-Deligne group of the nonarchimedean lo-
cal field Qp on the one hand and irreducible smooth representations of the group
GLn(Qp) on the other hand. The Weil-Deligne group is a modification of the abso-
lute Galois group of the field Qp and its discrete representations are closely related
to the ℓ-adic Galois representations where ℓ is any prime number different from
p. If we consider p-adic Galois representations instead then the picture becomes
much more complicated. On the other hand one can reduce it modulo p. By a the-
orem of Fontaine the category of p-adic Galois representations is equivalent to the
category of etale (ϕ,Γ)-modules. So it seems a natural attempt to relate smooth
representations of GLn(Qp) with torsion coefficients to etale (ϕ,Γ)-modules. In
spectacular recent work Colmez has managed to do exactly this, and surprisingly
even in a functorial way, in the special case of the group GL2(Qp).

In this talk I describe the general construction of a functor from the category of
finitely presented smooth representations of G(Qp) where G is any split reductive
group over Qp to the category of etale (ϕ,Γ)-modules but which are not required
to be finitely generated. The crucial technique consists in introducing a much
more general noncommutative analog of (ϕ,Γ)-modules.

Level-raising for GSp(4)

Claus M. Sorensen

In this talk we provide congruences between unstable and stable automorphic
forms for the symplectic similitude group GSp(4). More precisely, we raise the level
of certain CAP representations Π of Saito-Kurokawa type, arising from classical
modular forms f ∈ S4(Γ0(N)) of square-free level and root number ǫf = −1. We
first transfer Π to a suitable inner form G such that G(R) is compact modulo
its center. This is achieved by viewing G as a similitude spin group of a definite
quadratic form in five variables, and then θ-lifting the whole Waldspurger packet

for S̃L(2) determined by f . Thereby we obtain an automorphic representation π of
G. For the inner form we prove a precise level-raising result, inspired by the work
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of Bellaiche and Clozel, and relying on computations of Schmidt. Thus we obtain
a π̃ congruent to π, with a local component that is irreducibly induced from an
unramified twist of the Steinberg representation of the Klingen Levi subgroup. To
transfer π̃ back to GSp(4), we use Arthur’s stable trace formula and the exhaustive
work of Hales on Shalika germs and the fundamental lemma in this case. Since
π̃ has a local component of the above type, all endoscopic error terms vanish.
Indeed, by Weissauer, we only need to show that such a component does not
participate in the θ-correspondence with any GO(4). This is an exercise in using
Kudla’s filtration of the Jacquet modules of the Weil representation. Thus we get a
cuspidal automorphic representation Π̃ of GSp(4) congruent to Π, which is neither
CAP nor endoscopic. In particular, its Galois representations are irreducible by
work of Ramakrishnan. It is crucial for our application that we can arrange for Π̃
to have vectors fixed by the non-special maximal compact subgroups at all primes
dividing N . Since G is necessarily ramified at some prime r, we have to show
a non-special analogue of the fundamental lemma at r. Fortunately, by work of
Kottwitz we can compare the involved orbital integrals to twisted orbital integrals
over the unramified quadratic extension of Qr. The inner form G splits over this
extension, and the comparison of the twisted orbital integrals can be done by hand.
Finally we give an application of our main result to the Bloch-Kato conjecture.
Assuming a conjecture on the rank of the monodromy operators at the primes
dividing N , we construct a torsion class in the Selmer group of the motive Mf (2).

Modular forms and Galois representations over imaginary quadratic

fields

Tobias Berger

(joint work with Gergely Harcos, Krzysztof Klosin)

1. Associating Galois representations to cuspforms

Let F be an imaginary quadratic field with non-trivial automorphism c, and
let π be a cuspidal automorphic representation of GL2(AF ) with central char-
acter ω. If π∞ has Langlands parameter WC = C× → GL2(C) given by z 7→
diag(z1−k, z1−k) for some integer k ≥ 2, then by the Langlands philosophy π
should give rise (for any prime number ℓ) to a continuous irreducible ℓ-adic rep-
resentation ρ = ρπ,ℓ of the Galois group Gal(F/F ) such that the associated L-
functions agree. In other words, at each prime v of F the Frobenius polynomial
of ρ at v agrees with the Hecke polynomial of π at v. Under the assumption that
ω = ωc it is possible to relate π to holomorphic Siegel modular forms via theta
lifts and deduce (using ℓ-adic cohomology on Siegel threefolds) some weak version
of this predicted correspondence. In fact Taylor [10] managed to obtain the above
equality of Frobenius and Hecke polynomials for all v outside a zero density set of
places (under some technical assumptions that can be removed using the results
of Friedberg and Hoffstein on the non-vanishing of certain central L-values).
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I presented joint work with Gergely Harcos describing how the results of Laumon
[5, 6] and Weissauer [12] on associating Galois representations to Siegel modular
forms enable one to simplify Taylor’s proof and conclude the statement for all v
outside an explicit finite set:

Theorem 1. Assume that ω = ωc. Let S denote the set of places in F which
divide ℓ or where F/Q or π or πc is ramified. There exists a continuous irreducible
representation ρ : Gal(F/F )→ GL2(Qℓ) such that if v is a prime of F outside S
then ρ is unramified at v and L(s, ρv) = L(s, πv).

The proof of Theorem 1 can be briefly outlined as follows. The initial strategy
is that of Taylor [10]. We can assume that π is neither a twist of a base change
from Q nor a theta lift from a Grössencharakter of a quadratic extension of F ,
because the theorem is known in these cases. Using the deep results of [4] and [2]
we construct a nonzero theta lift on GSp4(AQ) of the twist π ⊗ µ for a dense set
of quadratic idèle class characters µ of F . We call a setM of quadratic characters
of F dense if it has the following property. If µ̃ is a quadratic character of F and
M is a finite set of rational primes then there is a character µ ∈ M such that
µv = µ̃v for all v ∈M .

The irreducible constituent Πµ of such a lift is generated by a vector-valued
holomorphic semi-regular cusp form on the Siegel three-space. Using Hasse invari-
ant forms and the theory of pseudo-representations developed by Wiles [13] and
Taylor [8, 9], Taylor had shown that one can associate a 4-dimensional representa-
tion to Πµ if one could associate 4-dimensional Galois representations to regular
holomorphic Siegel cusp forms. This is now possible by work of Laumon [5, 6] and
Weissauer [12]. We obtain therefore, for each µ in some dense set, a 4-dimensional
representation of Gal(Q/Q) with the same partial L-function as the one associated
to Πµ, and we prove that it is induced from some 2-dimensional representation ρµ

of Gal(F/F ). By exploring global compatibility relations among the various ρµ we
show that they can be replaced by quadratic twists ρ⊗µ of a single 2-dimensional
representation ρ of Gal(F/F ), and we verify that this ρ has the required property
of Theorem 1.

2. Towards characterizing such Galois representations

I also reported on joint work in progress with Krzysztof Klosin studying defor-
mations of a reducible residual representation of Gal(F/F ).

Let p > 3 be a rational prime which splits in OF . Fix embeddings F →֒ Q →֒
Qp →֒ C and let p be the corresponding prime ideal of F over p. Fix a set Σ
of primes of F containing {p, p}. Let GΣ be the Galois group of the maximal
extension of F unramified outside Σ. Consider an unramified Hecke character
φ : F ∗\A∗F → C∗ such that φ∞(z) = z

z and φc = φ−1. Write Ψ : GΣ → O∗ for the
p-adic Galois character associated to φ, where O is the ring of integers in some
finite extension E of Qp. Let k be the residue field of O. Put χ = Ψ : GΣ → k×.
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Let

ρ0 =

(
1 ∗
0 χ

)
: GΣ → GL2(k)

be a continuous Galois representation with scalar centralizer. We impose condi-
tions that ensure that ρ0 is unique up to isomorphism.

We study deformations of ρ0 with the goal of showing that under appropriate
conditions all deformations are modular, i.e., arise from Galois representations
attached to cuspforms of GL2(AF ).

As a first step we show that some modular deformations exist. Let T be the
ordinary part of the O-algebra generated by the Hecke operators Tv, v /∈ Σ acting
on S2(Kf , ω), the weight 2 cuspidal automorphic forms on GL2(AF ) of a certain
level Kf and character ω depending on φ and Σ. (To simplify the exposition
we actually twist these forms in the following by an auxiliary Hecke character
of infinity type z.) Define the Eisenstein ideal I ⊂ T as the ideal generated by
{Tv − (1 + φ(πv))|v /∈ Σ}.
Theorem 2 ([1, Theorem 6.3]).

valp#T/I ≥ valp#(O/Lint(1, φ)).

Corollary 3. If p | Lint(1, φ) then there exists an ordinary cuspidal automorphic
representation π and a Galois representation ρ : GΣ → GL2(O) equivalent to (a
twist of) ρπ,p such that ρ = ρ0.

Urban [11, Corollaire 2] proves that the Galois representation ρπ,p associated
to an ordinary π is ordinary at v | p. Corollary 3 therefore provides us with
irreducible ordinary deformations of ρ0 and we obtain:

Corollary 4. ρ0 splits when restricted to Dp.

Definition 5. For T a finite set of places of F let LΨ(T ) be the maximal abelian
pro-p extension of F (Ψ) unramified outside T such that Gal(F (Ψ)/F ) acts on
Gal(LΨ(T )/F (Ψ)) by Ψ−1.

We deduce from a result of Greenberg [3]:

Proposition 6. (1) Gal(LΨ(Σ\{p})/F (Ψ)) is Zp-torsion.
(2) The Zp-rank of Gal(LΨ(Σ)/F (Ψ)) is 1.

Note that Ψ|Ip
= ǫ−1|Ip

and Ψ|Ip
= ǫ|Ip

, where ǫ is the p-adic cyclotomic
character. This means that there exists no reducible ordinary deformation of ρ0,

since an ordinary representation of the form

(
1 ∗
0 Ψ

)
has to split when restricted

to Ip. However, we can define a reducible deformation of ρ0 of the form

ρEis =

(
1 ∗
0 Ψ

)

which does not split when restricted to Ip. It is nearly ordinary with respect to

the Borel of upper-triangular matrices B, i.e., ρEis(Dv) ⊂ B(O) for v = p, p.
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We are hoping to find suitably restrictive deformation conditions that are satis-
fied by both the irreducible ordinary deformations and the reducible deformation
ρEis. Then the method of [7] would give an R = T theorem, i.e., prove the modu-
larity of residually reducible Galois representations.

Acknowledgement: My travel was supported by EU grant MF02007.
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Root numbers, Selmer groups, and non-commutative Iwasawa theory

Takako Fukaya
1

(joint work with John Coates, Kazuya Kato, Ramdorai Sujatha)

Let F be a finite extension of Q, A an abelian variety of dimension g defined over
F , and p a prime number. We consider ’parity conjecture’ for A and p. First we
recall what the parity conjecture is.

Conjecture 1 (Birch and Swinnerton-Dyer). The L-function L(A/F, s) of A has
an analytic continuation to s = 1, and

(1) ords=1L(A/F, s) = rankA(F ).

Parity conjecture considers mod 2 of (1) using root numbers and p-Selmer
coranks.

First we consider the left hand side of (1). Let w(A/F ) =
∏
v wv(A/F ), the

root number, where v runs though all places of F and for each v, wv(A/F ) ∈ {±1}
1The author is supported by the JSPS Postdoctoral Fellowships for Research Abroad
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is the local root number which is 1 for almost all v. The root number w(A/F )
appears in conjectural functional equation of L(A/F, s), and is conjectured to
satisfy (proved in some cases) w(A/F ) = (−1)ords=1L(A/F, s).

We consider the right hand side of (1). Let K be an algebraic extension of
F . Put S(A/K) = Ker (H1(K,Ap∞) → ∏

vH
1(Kv, A(K̄v))), the p-primary part

of the Selmer group, where v runs over all places of K. From the definition
it may be seen that S(A/F ) is cofinitely generated module over Zp, and we put
s(A/F ) = Zp-corank of S(A/F ). If the Tate-Shafarevich group Xp(A/F ) is finite,
which is conjectured to be true always, we have s(A/F ) = rankA(F ).

Conjecture 2 ((p-)parity conjecture). We have

w(A/F ) = (−1)s(A/F ).

The following is our main theorem on Conjecture 2.

Theorem 3 ([1]). Conjecture 2 holds for A and p when the conditions (i)–(iii)
are satisfied: (i) For the Galois module A[p] of p-division points on A, there is a
subgroup C of A[p] of order pg, stable under Gal(F̄ /F ), and an isogeny ψ : A →
A∗, where A∗ is the dual abelian variety, of degree prime to p, such that the dual

isogeny ψ∗ : A = (A∗)∗
ψ∗

→ A∗ coincides with ψ, and also such that the Weil pairing
〈 , 〉A,p annihilates C × ψ(C); (ii) Either p ≥ 2g + 2, or p ≥ g + 2 and A has
semistable reduction at each finite place v of F ; (iii) For each place v of F dividing
p, either A is potentially ordinary at v, or A achieves semistable reduction over a
finite abelian extension of Fv.

By potentially ordinary at v, we mean that there is a finite extension L of Fv
such that A has semistable reduction over L, and the connected component of
the special fiber of the Néron model of A ⊗F L is an extension of an ordinary
abelian variety by a torus. If A is an elliptic curve, A is potentially ordinary at v
if and only if either A has potentially good ordinary reduction at v, or potentially
multiplicative reduction at v.

Corollary 4 ([1]). Assume p is an odd prime number, and that E/F is an elliptic
curve admitting an F -isogeny of degree p. If p = 3, assume that E has semistable
reduction at each finite place of F. If p > 3, suppose that for each prime v of
F dividing p, either E has potentially good ordinary reduction at v, or E has
potentially multiplicative reduction at v, or E achieves good supersingular reduction
over a finite abelian extension of Fv. Then the parity conjecture 2 holds for E and
p.

Remark 5. T. and V. Dokchitser proved a slightly weaker version of Corollary 4
by a similar method with ours. Nekovář, Kim, T. and V. Dokchitser, and other
people have obtained results on Conjecture 2.

The method of the proof of Theorem 3 is a generalization of the methods of
Cassels, Fisher, Shuter, T. and V. Dokchitser, which reduce s(A/F ) to a local
problem. We then compare those local factors of s(A/F ) with local root numbers
wv(A/F ) in local levels. Namely, Theorem 3 is reduced to the following results.
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Theorem 6. Let A/F be an abelian variety satisfying (i) of Theorem 3, with p
an odd prime number. Then

s(A/F ) ≡
∑

v

h(v) mod 2,

where the sum is taken over all places of F , and h(v) = ordp♯(Coker (φv)/Ker (φv))
with the homomorphism φv : A(Fv) → A′(Fv) induced by the isogeny φ : A →
A′ := A/C.

Theorem 7. Assume that A satisfies the hypotheses of Theorem 3. Let h(v) be
as in Theorem 6. For any place v of F , we have

(−1)h(v) = wv(A/F )χC,v(−1).

Here χC,v : F×v → (Z/pZ)× is a character corresponding via class field theory
to the determinant det(αC,v) : Gal(F ab

v /Fv) → (Z/pZ)× of the homomorphism
αC,v : Gal(F̄v/Fv) → Aut(C) which is the restriction to the decomposition group
at v of the homomorphism αC : Gal(F̄ /F )→ Aut(C) ≃ GLg(Z/pZ) given by the
action of Gal(F̄ /F ) on C.

By the reciprocity law of global class field theory, we have
∏
v χC,v(−1) = 1.

Hence Theorem 3 follows from Theorems 6 and 7.

In what follows, we consider Artin twist version of the parity conjecture 2.
We suppose p ≥ 5. Let E/F be an elliptic curve, and put F∞ = F (Ep∞),
G = Gal(F∞/F ), and H = Gal(F∞/F

cyc), here F cyc denotes the cyclotomic
Zp-extension of F . Let ρ : G→ GLdρ

(Q̄p) be an irreducible self-dual Artin repre-
sentation of G. We denote by w(E, ρ) the root number occurring in the conjectural
functional equation of L(E, ρ, s) (↔ L(E, ρ∗, 2 − s) = L(E, ρ, 2 − s)). We write
s(E, ρ) for the number of the copies of ρ occurring in X(E/K)⊗Zp

Q̄p, where K
is any finite extension of F such that ρ factors through Gal(K/F ) and X(E/K)
is the Pontryagin dual of S(E/K).

Conjecture 8 (ρ-parity conjecture).

w(E, ρ) = (−1)s(E,ρ).

We define uG to be the order of the image of G under a composition G →
GL2(Zp) → PGL2(Fp), where the first map is given by the action of G on the
p-adic Tate module of E.

Now we assume (i) E admits an isogeny of degree p defined over F . Under
this assumption, Rohrlich [2] has shown that there exist irreducible self-dual Artin
representaions of G of dimension > 1 if and only if uG is even. We assume for the
rest of this abstract that uG is even and the dimension dρ of ρ is > 1.

Concerning the root number w(E, ρ), Rohrlich has shown the following.
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Theorem 9 (Rohrlich [2]). Assume (i) above, and (ii) E has potential good ordi-
nary reduction at any place v of F above p. Then

w(E, ρ) = (−1)
uG[F :Q]/2+

∑
v:finite, ordv(jE ) < 0

〈χv ,ρv〉

,

where jE denotes the j-invariant of E, χv is a character of Gal(F∞,v/Fv) such
that χv = 1 if E has split multiplicative reduction at v and a non-trivial quadratic
character corresponding by class field theory to the quadratic extension of Fv at
which E achieves split multiplicative redution otherwise. Moreover, ρv is the re-
striction of ρ to the decomposition group at v, 〈χv, ρv〉 denotes the multiplicity of
χv occurring in ρv.

We study s(E, ρ). Let MH(G) be the category of all finitely generated Zp[[G]]-
modules M such that M/M(p), where M(p) is the p-primary part of M , is finitely
generated over Zp[[H ]].

Theorem 10 ([1]). Assume the conditions (i)–(ii) in Theorem 9. Assume fur-
thermore (iii) X(E/F∞) ∈MH(G) ; (iv) ρ is orthogonal. Then

s(E, ρ) ≡ uG[F : Q]/2 +
∑

v:finite, ordv(jE) < 0

〈χv, ρv〉 mod 2.

That is, under the hypotheses (i)–(iv), the ρ-parity conjecture 8 holds for E, p,
and ρ.

For the proof of Theorem 10, we use non-commutative Iwasawa theory.

Finally the author would like to express her sincere gratitude to the organizers
of the conference for inviting her to the conference and giving her an opportunity
to give a talk.
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Iwasawa Theory for Hida deformations with complex multiplication

Tadashi Ochiai

(joint work with Kartik Prasanna)

My subject of research is closely related to Greenberg’s conjectural program on
generalizing Iwasawa theory to families of Galois representations. In his article [G],
he proposes the study of Iwasawa theory for families of nearly ordinary Galois rep-

resentations T̃ finite over deformation algebras R̃. Though his plan is a tentative
conjecture where the (conjectural) definition of the analytic p-adic L-functions for

such T̃ is still vague, he nevertheless indicates a fascinating direction of research.
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In previous work on this subject, I focused on the first non-trivial example with
which Greenberg’s plan is concerned, namely two-variable Hida deformations. The
articles [O1], [O2] and [O3] established Iwasawa theory for Hida deformations T
without complex multiplication. A Hida deformation T is roughly associated to
p-adic family of elliptic cuspforms fk where the weight k of fk varies in a p-adic
parameter space. In the process one discovers new phenomena which do not arise
in the usual cyclotomic Iwasawa theory for ordinary motives. For instance, one
finds that a detailed study of complex and p-adic periods in families is essential
to even cogently formulate the definition of analytic p-adic L-functions in general
situations, a fact that does not seem to have been observed before. A consequence
of this work is a formulation of Iwasawa theory for general nearly ordinary families
of Galois representation that is more precise than before (cf. [O4]) especially with
regards the analytic p-adic L-function.

In this work, based on this motivation, we study Iwasawa theory also for Hida
deformations T with complex multiplication by an imaginary quadratic field K.
For the associated family of fk, T with complex multiplication the one where fk
is a lift of a grossencharacter ρk of weight k − 1 on K for each k. Note that
grossencharacters are modular forms on the group GL(1)/K . From this point of
view, Iwasawa theory has been studied previously by Katz, Coates-Wiles, Colmez,
Yager, de Shalit, Rubin, Tilouine and other authors using tools from the theory of
complex multiplication (eg. the Euler system of elliptic units and the evaluation of
Eisenstein series at CM points). On the other hand, forgetting about the complex
multiplication, fk itself is a modular form on the group GL(2)/Q. From such
another point of view, we have other tools such as modular symbols and the
Beilinson-Kato Euler system, as is also taken in [O1], [O2] and [O3] (Note however
that Beilinson-Kato elements cannot be used to bound the size of Selmer group
in the CM case because the image of rank two Galois representation for a CM
modular form is two small). Thus, there are two completely different approaches
to Hida families with complex multiplication and it seems to us that the relation
between the approach via GL(1)/K and that via GL(2)/Q is not so obvious. The
purpose of this article is to clarify some aspects of this relation.

More precisely, we will compare the algebraic and analytic p-adic L-functions
as well as Iwasawa Main Conjecture for them from these two points of view. The
situation is summarized in the following diagram which shows the relations of

ideals in a two-variable Iwasawa algebra A[[Γ̃]] with Γ̃ ∼= Zp the Galois group of

Z2
p-extension of K and A a finite extension of Ẑur

p :

(1) (Lalg
p (GL(1)/K))

(a)

(c)

(Lanal
p (GL(1)/K))

(d)

(Lalg
p (GL(2)/Q))

(b)
(Lanal

p (GL(2)/Q)).

Two objects on the left are algebraic p-adic L-functions, which are defined to be the
characteristic ideals of Selmer groups in each context. The ideal (Lalg

p (GL(1)/K))
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is the characteristic ideal of the Galois group of certain infinite Galois extension
over Z2

p-extension of K. The ideal (Lalg
p (GL(2)/Q)) is the characteristic ideal of the

Pontrjagin dual of the Selmer group SelT . Two objects on the right are analytic
p-adic L-functions which interpolate critical values of L-functions. The analytic
p-adic L-function Lanal

p (GL(1)/K) is constructed Katz, Yager, de Shalit, Tilouine.

The analytic p-adic L-function Lanal
p (GL(2)/Q) is constructed by Kitagawa, Green-

berg, Panchishkin, Fukaya and the first author. However, for certain reasons, we
have to take the one by Kitagawa which is the best candidate for the Iwasawa
Main conjecture.

The relations in the diagram are explained below:

(a) The upper line is two-variable Iwasawa Main Conjecture from the point
of view of GL(1)/K . The equality is shown by Rubin (cf. [Ru1], [Ru2])
under fairly general conditions.

(b) The lower line is two-variable Iwasawa Main Conjecture from the point of
view of GL(2)/Q which was first formulated in [G, Chapter 4] and later re-
fined by the first author in [O3, Conj. 2.4]. Note that the lower line makes
sense for any Hida family, not just the CM ones. In fact, in [O3], we ob-
tained the inequality (Lalg

p (GL(2)/Q)) ⊃ (Lanal
p (GL(2)/Q)) but only in the

non-CM case. However, no equality was known between (Lalg
p (GL(2)/Q))

and (Lanal
p (GL(2)/Q)) for the CM case.

(c) In the algebraic side, it is not difficult to show (Lalg
p (GL(1)/K)) =

(Lalg
p (GL(2)/Q)) by calculation of Galois cohomology.

Now there rests the part (d) the main theme in this paper. (Lanal
p (GL(1)/K))

is constructed via the theory of complex multiplication; (Lanal
p (GL(2)/Q)) via the

theory of modular symbols. These analytic p-adic L-functions are a priori different
but we conjecture as follows:

Conjecture . We have the equality of ideal (Lanal
p (GL(1)/K)) = (Lanal

p (GL(2)/Q))
at (d) in the diagram.

Note that, according to (a), (b) and (c), in most cases, Conjecture is equivalent
to the Iwasawa main conjecture (b) for CM Hida deformations. The main result
is the following theorem.

Main Theorem . The above conjecture is true under certain assumptions, namely
the irreducibility of the associated mod p representation and the vanishing of a
certain µ-invariant.

As seen from the diagram (1), we have an immediate corollary as follows.

Corollary . Iwasawa Main Conjecture (Lalg
p (GL(2)/Q)) = (Lanal

p (GL(2)/Q)) at
(b) in the diagram is true for CM Hida deformations satisfying assumptions in
the theorem and the assumption required in Rubin’s results ([Ru1], [Ru2]).

Here we give some idea of the principal difficulties involved. Indeed, it may
seem at first sight that Conjecture should be more or less immediate, since after
all, the two p-adic L-functions interpolate the same set of L-values. However,
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there are two main obstructions to making such a conclusion. The first is that
the periods that occur in the two interpolation formulae are not the same and
need to be related to each other. Such “p-integral period relation” is uaually
requires a hard work as is done in [Pr1] and [Pr2] recently. First, we estab-
lished the requisite period relation up to p-adic units. But having done that,
one is faced with a second difficulty which may be more formally described as
follows. We explain briefly about the second difficulty as well as the argument
of the proof. We are given two different elements F (X1, X2) and G(X1, X2) in

A[[X1, X2]] (A[[X1, X2]] should be A[[Γ̃]] and F (X1, X2), G(X1, X2) should be
Lanal
p (GL(1)/K) and Lanal

p (GL(2)/Q) in the diagram (1)). A priori, we know no
divisibility between F (X1, X2) and G(X1, X2). If we have established the period
relation up to p-units above, Weierstrauss preparation shows that the elements
F (X1, X2)|X2=(1+p)n−1, G(X1, X2)|X2=(1+p)n−1 ∈ A[[X1]] is equal modulo multi-
plication by a unit un in A for each n ≥ 0 ( Note, however, that there seems to
be no systematic choice of the constant un for varying n since there will be no
canonical choice of modular symbol period). This is not sufficient to deduce the
divisibility between F (X1, X2) and G(X1, X2) and we will can construct a counter
example by an example similar to the one we explain below for the specialization of
power series algebras in one-variable. Hence, we has developed an argument which
allows us to deduce the desired divisibility under the assumption on the Iwasawa
µ-invariant for F (X1, X2)|X2=(1+p)n−1 or G(X1, X2)|X2=(1+p)n−1 ∈ A[[X1]]. This
proves our main theorem. The work is written in our paper [OP], which is available
quite soon.
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Equivariant vector bundles on Drinfeld’s upper half space

Sascha Orlik

Let K be a finite extension of Qp. We denote by

X = PdK \
⋃

H Kd+1
P(H)

Drinfeld’s upper half space of dimension d ≥ 1 over K. Here H runs through all
K-rational hyperplanes in Kd+1. Drinfeld [3] conjectured that the étale coverings
of X realize the supercuspidal spectrum of the local Langlands correspondence
for G = GLd+1(K) by considering the ℓ-adic cohomology of these spaces. In [6]
Schneider studies the cohomology of local systems on projective varieties which are
uniformized by X . For this purpose, he defines the notion of a p-adic holomorphic
discrete series representation. These representations can be realized by the space
of rigid analytic holomorphic sections F(X ) of GLd+1-equivariant vector bundles
F on PdK . They are reflexive K-Fréchet spaces with a continuous G-action. The
strong dual F(X )′ is a locally analytic G-representation in the sense of Schneider
and Teitelbaum [8]. Those representations come up in the p-adic Langlands theory
of Breuil and Schneider [2] as the locally analytic part of certain Banach space
representations. On the other hand, Schneider and Stuhler computed in [9] the
étale and the de Rham cohomology of X . It turns out that the cohomology groups
are duals of certain generalized Steinberg representations. It is desirable to have
knowledge on the individual contributions of the de Rham complex, which are
holomorphic discrete series representations. In the case of the canonical bundle,
Schneider and Teitelbaum construct in [7] a G-equivariant decreasing filtration by
closed subspaces

Ωd(X )0 ⊃ Ωd(X )1 ⊃ · · · ⊃ Ωd(X )d−1 ⊃ Ωd(X )d ⊃ Ωd(X )d+1 = {0}
on Ωd(X )0 = Ωd(X ). The definition of the filtration involves the geometry of
X being the complement of an hyperplane arrangement. Further they construct
isomorphisms

I [j] : (Ωd(X )j/Ωd(X )j+1)′
∼−→ Can(G,Pj ;V

′
j )

�j=0

of locally analytic G-representations. Here, Pj=P(j,d+1−j) ⊂ G is the (lower)

standard-parabolic subgroup attached to the decomposition (j, d+1− j) of d+ 1.
The right hand side is a locally analytic induced representation. The Pj-repre-

sentation V ′j is a locally algebraic representation. It is isomorphic to the tensor

product Symj(Kd+1−j) ⊗ Std+1−j of the irreducible algebraic GLd+1−j-represen-

tation Symj(Kd+1−j) and the Steinberg representation Std+1−j of GLd+1−j(K).
The action of GLj(K) is given by the inverse of the determinant character. The
operation of the unipotent radical of Pj on V ′j is trivial. Finally, �j denotes a
system of differential equations which is here a submodule of a generalized Verma
module. In particular, the case j = 0, i.e., the first subquotient of the above
filtration is isomorphic to Hd

dR(X ) and yields the Steinberg representation of G.
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Finally, we want to point out that a similar construction was given by Pohlkamp
[5] for the structure sheaf Ω0 = O on PdK .

In the talk we presented a decreasing G-equivariant filtration on F(X ) for all
G-equivariant vector bundles F on X , which are induced by restriction of a ho-
mogeneous vector bundle on PdK

∼= G/P(1,d). Our approach is different from [7],
[5]. We use local cohomology of coherent sheaves on rigid analytic varieties as a
technical ingredient. In fact, F(X ) = H0(X ,F) appears in an exact sequence

0→ H0(PdK ,F)→ H0(X ,F)→ H1
Y(PdK ,F)→ H1(PdK ,F)→ 0.

We consider the K-Fréchet space H1
Y(PdK ,F), where Y ⊂ PdK is the ”closed”

complement of X in PdK . We use the acyclic resolution of the constant sheaf Z on

Yad constructed in [4], where Yad i→֒ (PdK)ad is the closed complement of the adic
space X ad in (PdK)ad. By applying the functor Hom(i∗( − ),F) to this complex,
we get a spectral sequence converging to H1

Yad((PdK)ad,Fad) = H1
Y(PdK ,F). The

canonical filtration on H1
Y(PdK ,F) coming from this spectral sequence gives rise to

a decreasing filtration by closed K-subspaces

F(X )0 ⊃ F(X )1 ⊃ · · · ⊃ F(X )d−1 ⊃ F(X )d = H0(Pd,F)

on F(X )0 = F(X ). Our first main theorem is:

Theorem 1: Let F be a homogeneous vector bundle on PdK . For j = 0, . . . , d− 1,
there are extensions of locally analytic G-representations

0 → vG
P(j+1,1,...,1)

(Hd−j(Pd
K ,F)′) → (F(X )j/F(X)j+1)′ → Can(G, Pj+1; U

′

j)
dj=0

→ 0.

Here the module vGP(j+1,1,...,1)
(Hd−j(PdK ,F)′) is a generalized Steinberg representa-

tion with coefficients in the finite-dimensional algebraic G-module Hd−j(PdK ,F)′.
The Pj+1-representation U ′j is a tensor product N ′j ⊗ Std−j of an algebraic Pj+1-

representationN ′j and the Steinberg representation Std−j. The symbol dj indicates
again a system of differential equations depending on Nj. Indeed, the represen-
tation Nj is not uniquely determined. It is characterized by the property that it

generates the kernel of the natural homomorphism Hd−j

Pj

K

(PdK ,F)→ Hd−j(PdK ,F)

as a module with respect to the universal enveloping algebra U(g) of the Lie alge-
bra of G.

In the case where F arises from an irreducible representation of the Levi sub-
group L(1,d), we can make our result more precise. Let λ′ = (λ1, . . . , λd) ∈ Zd be a

dominant integral weight of GLd and a let λ0 ∈ Z. Set λ := (λ0, λ1, . . . , λd) ∈ Zd+1.
Denote by Fλ the homogeneous vector bundle on PdK such that its fibre in the
base point is the irreducible algebraic L(1,d)-representation corresponding to λ.
Put wj := sj · · · s1, where si ∈ W is the (standard) simple reflection in the Weyl
group W ∼= Sd+1 of G. By Bott [1] we know that there is at most one integer i ≥ 0
with Hi(PdK ,F) 6= 0. Denote this integer by i0 if it exists. Otherwise, there is an
i0 ≤ d − 1 with wi0 ∗ λ = wi0+1 ∗ λ, where ∗ is the dot operator of W on the set
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of weights. For j = 1, . . . , d, we set

µj,λ :=

{
wj−1 ∗ λ : j ≤ i0
wj ∗ λ : j > i0

.

Write µj,λ = (µ′, µ′′) with µ′ ∈ Zj and µ′′ ∈ Zd−j+1. For j = 1, . . . , d, let

Ψj,λ =

|µ′′|⋃

k=0

{ (
µ′′ + (c1, . . . , cd−j+1), µ

′ − (dj , . . . , d1)
)
|∑lcl =

∑
ldl = k,

c1 = 0 or d1 = 0, cl+1 ≤ µ′′l − µ′′l+1, l = 1, . . . , d− j,
dl+1 ≤ µ′j−l − µ′j−l+1, l = 1, . . . , j − 1

}
.

Here |µ′′| = µ′′1 − µ′′d−j+1. The elements in the finite set Ψj,λ are dominant with

respect to the Levi subgroup L(d−j+1,j) and (µ′′, µ′) is its highest weight. Hence,
for µ ∈ Ψj,λ, we may consider the irreducible algebraic L(d−j+1,j)-representation
Vµ attached to it.

Theorem 2: Let F = Fλ be the homogeneous vector bundle on PdK with respect
to the dominant integral weight λ ∈ Zd+1 of L(1,d). Then we can choose Nj to be
a quotient of

⊕
µ∈Ψd−j,λ

Vµ.

Our filtration coincides with the filtration of Schneider and Teitelbaum. More
precisely, their filtration is related to ours by a shift, i.e., we have F(X )i =
Ωd(X )i+1 for i ≥ 1. For i = 0, we get an extension

0→ Ωd(X )1/Ωd(X )2 → F(X )0/F(X )1 → Ωd(X )0/Ωd(X )1 → 0.

The dual sequence coincides with the corresponding one of Theorem 1.
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Affine Deligne-Lusztig varieties

Ulrich Görtz

(joint work with Thomas Haines, Robert Kottwitz, Daniel Reuman)

1. Introduction

The notion of (generalized) affine Deligne-Lusztig variety was defined in [14]
by Rapoport; see also [15]. Affine Deligne-Lusztig varieties are analogs, in the
setting of an affine root system, of usual Deligne-Lusztig varieties [2], [3], which
are defined as follows: Let G be a connected reductive group over a finite field
k, let k be an algebraic closure of k, and denote by σ the Frobenius on k. Let
A ⊆ B ⊆ G be a maximal torus and a Borel subgroup. For an element w ∈ W of
the Weyl group, we define the Deligne-Lusztig variety associated with w by

Xw = {g ∈ G/B; g−1σ(g) ∈ BwB}
(in [2], this variety is denoted by X(w)). Then Xw is a locally closed subvariety
of G/B which is smooth of dimension ℓ(w) (the length of w as an element of
W ). The finite group G(Fq) acts on Xw and hence on its cohomology. Nowadays
Deligne-Lusztig varieties play an important role in the representation theory of
such groups. If we replace B with a parabolic subgroup P , we obtain the notion
of generalized Deligne-Lusztig variety.

In the affine case, we fix a split reductive group G over a p-adic field (the
arithmetic case), or over k((ǫ)), where k, as before, is a finite field (the function
field case). Let us assume for simplicity that we work in the function field case,
and write L = k((ǫ)), o = k[[ǫ]]. Write K = G(o). Denote the Frobenius on
L (acting on the coefficients) also by σ. The Cartan decomposition says that
G(L) =

∐
µ∈X∗(A)dom

KǫµK, where A is a fixed split maximal torus, and for a

coweight µ, ǫµ ∈ A(L) ⊆ G(L) is the image of ǫ ∈ L× = Gm(L) under µ.

Definition. Fix an element b ∈ G(k((t))) and a dominant coweight µ ∈ X∗(A)dom.
The affine Deligne-Lusztig variety associated with b and µ is

Xµ(b) = {g ∈ G(L)/K; g−1bσ(g) ∈ KǫµK}.
The affine Deligne-Lusztig variety Xµ(b) is a locally closed subset of the affine

Grassmannian G(L)/K, an ind-scheme over k, and hence carries a natural (re-
duced) scheme structure. It is locally of finite type over k, but usually has in-
finitely many connected components. Again, there is an obvious variant, if we
replace the maximal parahoric subgroup K with a general parahoric subgroup.

The affine case is more complicated than the previous one in several respects.
For one thing, we have fixed in addition to the element w an element b ∈ G(L).
It is easy to see that Xµ(b) depends only on the σ-conjugacy class of b; since by

Lang’s theorem all elements of the group G(k) are σ-conjugate, in the case of
usual Deligne-Lusztig varieties this parameter does not matter. In the affine case,
however, there are usually infinitely many different σ-conjugacy classes, and in par-
ticular Xµ(b) is empty for certain pairs (µ, b). In fact, the question which affine
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Deligne-Lusztig varieties are non-empty, and which dimension the non-empty ones
have, leads to difficult combinatorial questions about the Bruhat-Tits building of
G and in the general case is insufficiently understood so far. Apart from these com-
binatorial difficulties, the geometric structure of affine Deligne-Lusztig varieties is
more complicated than that of usual Deligne-Lusztig varieties. For instance, they
are only locally of finite type and are not smooth in general.

Let us sketch the relation to Shimura varieties: The Newton strata in the special
fiber are roughly (i. e. up to a finite morphism) the product of the central leaf (in
the sense of Oort [13]) and a (truncated) Rapoport-Zink spaceM, that is a certain
moduli space of p-divisible groups. There is a natural bijection between the points
of M and the corresponding affine Deligne-Lusztig variety. This establishes a
connection to the work of Harris and Taylor [7], Fargues [4] and Mantovan [11],
[12] on the local Langlands correspondence.

2. The hyperspecial case

For affine Deligne-Lusztig varieties for the hyperspecial parahoric subgroup K
as above, Rapoport in [14] and Rapoport and Kottwitz [9] established criteria for
the non-emptiness of affine Deligne-Lusztig varieties. Rapoport and Fontaine [5]
discuss the relation to non-archimedean period domains. There is also a close
relation to the converse of Mazur’s inequality. The results of [9] concerning this
converse have been generalized by Lucarelli [10] and by Wintenberger [19]; cf. also
Kottwitz’ article [8].

Theorem 1. Assume that Xµ(b) 6= ∅. Then dimXµ(b) = 〈ρ, µ− ν〉 − 1
2 def(b).

Here, ν is the Newton vector of b, def(b) is the defect of b, i. e. the difference
of the k((ǫ))-ranks of G and of the σ-centralizer of b, and ρ denotes half the sum
of the positive roots. This formula was conjectured in [15]. In [6], the proof
of the theorem is reduced to the so-called superbasic case, which is proved in
Viehmann’s paper [18]. In some cases (when the affine Deligne-Lusztig varieties
can be interpreted as moduli spaces of p-divisible groups), more information about
the geometric structure has been obtained in [17]. Both papers of Viehmann use,
and refine, techniques introduced by de Jong and Oort [1].

3. The Iwahori case

Now consider affine Deligne-Lusztig varieties for the standard Iwahori subgroup

I ⊂ K. We have G(L) =
∐
w∈W̃

IwI, where W̃ is the extended affine Weyl group.

We say that x is in the shrunken Weyl chambers, if Uα ∩ xIx−1 6= Uα ∩ I for

all root subgroups Uα. Denote by η1 : W̃ → W the projection to the finite Weyl

group, by η2 : W̃ → W the map sending x to the finite Weyl chamber it lies in,

and by ℓ the length function on W̃ . There is ample computational evidence for
the following conjecture; see [16], [6].
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Conjecture 1. Let b be basic, e. g. b = 1. Let x ∈ W̃ lie in the shrunken
Weyl chambers. Then Xx(b) is non-empty if and only if η2(x)

−1η1(x)η2(x) is not
contained in any proper parabolic subgroup of W . In this case,

dimXx(b) =
1

2

(
ℓ(x) + ℓ(η2(x)

−1η1(x)η2(x)) − def(b)
)

By recent joint work of Haines, Kottwitz and myself, a conjectural criterion for

non-emptiness for all x ∈ W̃ can be given. Furthermore, we can prove one half of
this criterion (namely that all affine Deligne-Lusztig varieties that are expected to
be empty, are in fact empty), and correspondingly, one direction of the conjecture
above.
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U.F.R. de Mathematiques
Case 7012
Universite de Paris VII
2, Place Jussieu
F-75251 Paris Cedex 05

Prof. Dr. Takeshi Saito

Department of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Alexander Schmidt

Naturwissenschaftliche Fakultät I
Mathematik
Universität Regensburg
93040 Regensburg

Prof. Dr. Peter Schneider

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Prof. Dr. Anthony J. Scholl

Dept. of Pure Mathematics and
Mathematical Statistics
University of Cambridge
Wilberforce Road
GB-Cambridge CB3 OWB

Prof. Dr. Ehud de Shalit

Institute of Mathematics
The Hebrew University
Givat-Ram
91904 Jerusalem
ISRAEL

Prof. Dr. Romyar Sharifi

Department of Mathematics and
Statistics
McMaster University
1280 Main Street West
Hamilton , Ont. L8S 4K1
CANADA

Prof. Dr. Claus M. Sorensen

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton , NJ 08544-1000
USA

Dr. Ramadorai Sujatha

Tata Institute of Fundamental
Research
School of Mathematics
Homi Bhabha Road, Colaba
400 005 Mumbai
INDIA

Georg Tamme

Naturwissenschaftliche Fakultät I
Mathematik
Universität Regensburg
93040 Regensburg

Prof. Dr. Jeremy Teitelbaum

Dept. of Mathematics, Statistics
and Computer Science, M/C 249
University of Illinois at Chicago
851 South Morgan
Chicago , IL 60607-7045
USA



Algebraische Zahlentheorie 1791

Prof. Dr. Takeshi Tsuji

Department of Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Takahiro Tsushima

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Prof. Dr. Otmar Venjakob

Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 288
69120 Heidelberg

Prof. Dr. Annette Werner

Institut für Algebra und
Zahlentheorie
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart

Prof. Dr. Kay Wingberg

Mathematisches Institut
Universität Heidelberg
Im Neuenheimer Feld 288
69120 Heidelberg

Prof. Dr. Jean-Pierre Wintenberger

Institut de Mathematiques
Universite Louis Pasteur
7, rue Rene Descartes
F-67084 Strasbourg Cedex

Malte Witte

Mathematisches Institut
Universität Leipzig
Johannisgasse 26
04103 Leipzig

Prof. Dr. Teruyoshi Yoshida

Dept. of Mathematics
Harvard University
Science Center
One Oxford Street
Cambridge MA 02138-2901
USA

Prof. Dr. Sarah Zerbes

Department of Pure Mathematics
Imperial College London
South Kensington Campus
GB-London SW7 2AZ




