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Abstract.

The meeting continued the biannual conference series Differentialgeome-
trie im Großen at the MFO which was established in the 60’s by Klingenberg
and Chern. Global Riemannian geometry with its connections to topology,
geometric group theory and geometric analysis remained an important fo-
cus of the conference. Special emphasis was given to the Ricci flow and its
applications and to the geometry of metric spaces with curvature conditions.
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Introduction by the Organisers

The meeting continued the biannual conference series Differentialgeometrie im
Großen at the MFO which was established in the 60’s by Klingenberg and Chern.
Traditionally, the conference series covers a wide scope of different aspects of global
differential geometry and its connections with topology, geometric group theory
and geometric analysis. The Riemannian aspect is emphasized, but the inter-
actions with the developments in complex geometry, symplectic/contact geome-
try/topology and mathematical physics play also an important role. Within this
spectrum each particular conference gives special attention to two or three topics
of particular current relevance.

The scientific program consisted of 22 (almost) one hour talks leaving ample
time for informal discussions.

This time, a main focus of the workshop were geometric evolution equations.
6 talks discussed the Ricci flow and its applications to the geometrization of 3-
manifolds, the Ricci flow in arbitrary dimension and applications to Riemannian



1866 Oberwolfach Report 32/2007

manifolds of positive curvature, the Kähler-Ricci flow and the (inverse) mean cur-
vature flow.

A second focus was the geometry of singular spaces (5 talks), that is, metric
spaces with sectional curvature bounds (in the sense of Aleksandrov), Gromov-
hyperbolic spaces and Carnot spaces with connections to geometric group theory.
One of the talks discussed the theory of collapse with lower curvature bound which
is another ingredient (independent of Ricci flow) in the argument for geometriza-
tion in dimension 3.

Other talks covered results about geometric structures on manifolds (hyper-
bolic geometry and representation varieties), from geometric analysis (Dirac oper-
ators, metrics of positive scalar curvature), symplectic and contact geometry (open
book decompositions, confoliations, construction of special Lagrangian submani-
folds with isolated conical singularities), and complex geometry (extremal metrics
on Kähler manifolds, Kähler-Ricci flow).

There were 52 participants from 8 countries, more specifically, 23 participants
from Germany, 12 from France, 6 from other European countries, and 11 from
North-America. 6% of the participants were women. More than half of the par-
ticipants (about 27) were young researchers (less than 10 years after diploma or
B.A.), both on doctoral and postdoctoral level.

The organizers would like to thank the institute staff for their great hospital-
ity and support before and during the conference. The financial support of the
European Union (in particular for young participants) is gratefully acknowledged.
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Abstracts

Dimensional reduction and the long-time behavior of Ricci flow

John Lott

Let M be a compact orientable 3-manifold. Let (M, g(·)) denote a Ricci flow
with surgery on M , in the sense of Perelman, defined for t ∈ [1,∞). In between

surgeries, g(·) satisfies the Ricci flow equation dg
dt = −2Ric. Put ĝ(t) = g(t)

t .
Perelman showed that for large t, (M, ĝ(t)) decomposes into a nearly hyperbolic
piece and a graph manifold piece. Along with the incompressibility of the cuspidal
tori, this was enough to prove the geometrization conjecture. However, it is an
open question whether by running the Ricci flow, one actually sees the asymptotic
appearance of the geometric pieces in Thurston’s geometric decomposition.

In the known examples of Ricci flow, there is a finite number of surgeries and
after the surgeries are over, the Ricci flow evolves smoothly with sectional cur-
vatures that decay like O(t−1). We show that with these assumptions, and a
diameter bound, the Ricci flow does become more and more homogeneous as time
evolves.

To state the result, we define certain special Ricci solutions on R3, which are
expanding solitons.
1. (R3) g(t) = gflat.
2. (H3) g(t) = 4tghyp.
3. (H2 × R) g(t) = 2tghyp + gR.
4. (Sol) g(t) = e−2zdx2 + e2zdy2 + 4tdz2.
5. (Nil) g(t) = 1

3t1/3 (dx+ 1
2ydz −

1
2zdy)

2 + t1/3(dy2 + dz2).
Given a Ricci flow solution g(·) and a parameter s > 0, define a rescaled Ricci

flow solution gs(·) by gs(t) = 1
sg(st).

Theorem 1. Let (M3, g(·)) be a smooth Ricci flow solution on a compact ori-
entable 3-manifold M , defined for all t ∈ [1,∞). Suppose that |Rm(g(t))|∞ =
O(t−1) and diam(M, g(t)) = O(t1/2). Then for any sequence sj tending toward

infinity, limj→∞ g̃sj (·) exists on the universal cover M̃ and is one of the above

expanding soliton solutions, provided that the Thurston type of M is R3, H3,

H2 × R, Sol or Nil. If the Thurston type of M is ˜SL2(R) then there is some
sequence sj tending toward infinity so that limj→∞ g̃sj (·) is the H2 ×R expanding
soliton solution.

When defining limj→∞ g̃sj (·), we allow s-dependent pointed diffeomorphisms to

be performed. The role of the diameter assumption diam(M, g(t)) = O(t1/2) is to
ensure that there is only one piece in the Thurston decomposition of M .
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Ricci flow, simplicial volume and aspherical 3-manifolds

Sylvain Maillot

(joint work with Laurent Bessières, Gérard Besson, Michel Boileau, Joan Porti)

G. Perelman [10, 11, 12] recently proved W. Thurston’s geometrization conjec-
ture. Various authors [7, 8, 9, 6] have given more detailed expositions of some
of Perelman’s arguments or alternative arguments for various parts of the proof.
My talk was based on the preprint [2], which is to be included as the last part
of a forthcoming book [3]. The purpose was to outline a proof of the geometriza-
tion conjecture in the aspherical case assuming a black box containing most of
Perelman’s results on the Ricci flow.

Modulo known results, the geometrization conjecture can be stated as follows:
if M is a closed, orientable, irreducible smooth 3-manifold, then M is hyper-
bolic, Seifert-fibered, or contains an incompressible torus. The bulk of the proof
consists in showing that for any riemannian metric g0 on M , one can construct a
1-parameter family {g(t)}t∈I of riemannian metrics on M which satisfies R. Hamil-

ton’s Ricci flow equation dg
dt = −2Ricg(t) in a weak sense, and such that g(0) = g0.

We shall call those 1-parameter families surgical solutions.
When M is aspherical, one shows that for every initial condition there is a

surgical solution defined on I = [0; +∞) satisfying various geometric conditions.
In particular, when one picks any sequence of times tn going to infinity, and
defines a sequence gn of riemannian metrics on M by putting gn := (4tn)−1g(tn)
for n ≥ 1, then the sequence {gn}n≥0 (where g0 is the initial condition we started
with) has four properties, which can be loosely described as follows : the volume-

rescaled minimum of the scalar curvature R̂ := (minR)vol2/3 is nonpositive and
nondecreasing; the volume is uniformly bounded; if one can find a thick sequence
of basepoints xn in (M, gn), then the pointed sequence (M, gn, xn) subconverges
to a pointed hyperbolic manifold of finite volume; lastly, the curvature is locally
controlled (for precise definitions, see [2].)

In the talk I explained a way to deduce the conclusion of the geometrization
conjecture from this information. This part of the proof does not require any
knowledge of Perelman’s results on the Ricci flow, and can be summarized as
Theorem 1 below. Let V0(M) denote the minimal volume of a hyperbolic link
complement in M . Such links are known to exist by a theorem of Myers, and
since the set of volumes of hyperbolic 3-manifolds is well-ordered, the minimum is
attained.

Theorem 1. Let M be a closed, orientable, irreducible, aspherical 3-manifold.
Assume that M carries a sequence of riemannian metrics gn such that:

(1) lim inf R̂(gn) > −6V0(M)2/3;
(2) sup vol(gn) <∞;
(3) For every thick sequence of basepoints there is a hyperbolic pointed limit;
(4) The curvature is locally controlled.

Then M is Seifert-fibered or contains an incompressible torus.
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To deduce the geometrization of aspherical 3-manifolds from Theorem 1, we
argue as follows: ifM is not hyperbolic, letH0 be a minimal volume hyperbolic link
complement. Following [1], put a metric on M with R̂(gǫ) > R̂(H0). Then by (a
slight variant of) Perelman’s construction produce a surgical solution to the Ricci
flow equation with initial metric g0 = gǫ. As explained above, extract a sequence
of metrics gn from the rescaled solution. By monotonicity of R̂, this sequence will
satisfy the hypotheses of Theorem 1, which gives the required conclusion.

To prove Theorem 1, we first cover the thick part by (compact cores of) hy-
perbolic manifolds. The two main issues are: (1) the question whether the tori
arising as cusp cross-sections of those hyperbolic manifolds are incompressible or
compressible in M ; (2) to recognize the topology of the thin part. In particular, if
the manifold (M, gn) becomes thinner and thinner, hypothesis (3) of Theorem 1
is vacuous, and one needs to show that M is a graph manifold. This is sometimes
referred to as the collapsing case.

To deal with the incompressibility of tori, we use hypothesis (1) connecting

R̂(gn) and V0(M). This approach stems from [11, Section 8], where Perelman’s

invariant λ̂ is used instead of R̂. The idea of replacing λ̂ by R̂, which is technically
simpler to work with, is apparently due to M. Anderson. Two versions of the
argument, somewhat different to ours, can be found in [8, Section 93]1.

To study the topology of the thin part, we use a method developed by Boileau-
Porti [4] and Boileau-Leeb-Porti [5] in their proof of the orbifold theorem. This
approach relies on M. Gromov’s simplicial volume and W. Thurston’s hyperboliza-
tion theorem for Haken manifolds. A different approach to collapsing 3-manifolds
has been proposed by Shioya-Yamaguchi [13] using Alexandrov space theory.
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Gluing constructions of special Lagrangian cones

Mark Haskins

Our main theorem is the following existence result for special Lagrangian cones in
C3.

Theorem 1 (Haskins-Kapouleas, 2007). For any odd genus g = 2d + 1 there
exist infinitely many special Lagrangian cones C in C3, whose link C ∩S5(1) is an
orientable surface of genus g.

These are currently the only known examples of special Lagrangian cones with
links of genus g > 1.

We use a gluing method to prove this result. The basic building blocks of the
construction are SO(2)–invariant special Lagrangian cones in C3 studied previously
by the author. The construction uses these invariant SL-cones, close to a singular
limit in which the link is the union of round 2–spheres. Close to this singular limit
the link of the cone is a long torus consisting of many almost spherical regions
connected to its neighbours by a small highly curved neck.

The construction is technically challenging, because for geometric reasons the
linearization of the nonlinear equation to be solved has many small eigenvalues.
Understanding all the small eigenvalues of the linearization and how to compensate
for this problem is the main technically difficult part of the proof.

Gromov hyperbolic spaces and the sharp isoperimetric constant

Stefan Wenger

The goal of this work is to find optimal characterizations of Gromov hyperbolicity
in terms of isoperimetric inequalities and filling radius inequalities. The theory of
δ-hyperbolic spaces was first developed by Gromov [5] in the context of geometric
group theory.

A geodesic metric space is said to be δ-hyperbolic if every geodesic triangle in
X is δ-slim, i.e., if each side of the triangle is contained in the δ-neighborhood
of the union of the other two sides. In order to state our first result recall the
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classical isoperimetric inequality in the Euclidean plane E2 which asserts that the
area A enclosed by a closed curve γ in E2 satisfies

A ≤
1

4π
length(γ)2,

with equality if and only if γ parameterizes a circle. Our first theorem shows that
a geodesic metric space cannot have a quadratic isoperimetric inequality for long
curves with isoperimetric constant strictly smaller than 1

4π unless it is Gromov
hyperbolic.

Theorem 1. Let X be a geodesic metric space and suppose there exists ε > 0 such
that every sufficiently long Lipschitz loop γ in X bounds a singular Lipschitz disc
Σ in X of area

(1) Area(Σ) ≤
1 − ε

4π
length(γ)2.

Then X is Gromov hyperbolic and thus admits a linear isoperimetric inequality for
sufficiently long loops.

A singular Lipschitz disc in X is (the image of) a Lipschitz map Σ : D2 → X ,
where D2 ⊂ E2 denotes the unit disc. Furthermore, Area(Σ) is the ‘parameterized’
2-dimensional Hausdorff measure of Σ. If Σ is one-to-one on a set of full measure
then Area(Σ) = H2(Σ(D2)), where H2 is the 2-dimensional Hausdorff measure on
X . Finally, X is said to admit a linear isoperimetric inequality for long loops if
there exists D > 0 such that every sufficiently long Lipschitz loop γ in X bounds
a singular Lipschitz disc Σ with

Area(Σ) ≤ D length(γ).

Clearly, the constant 1
4π appearing in (1) is optimal as follows from the classical

isoperimetric inequality in E2. Theorem 1 is new even in the setting of Riemann-
ian manifolds and was previously only known in the special case when X is a
CAT(0)-space (for which it was observed by Gromov). In the setting of Riemann-
ian manifolds the best constant previously established was 1

16π , again by Gromov
[5]. Indeed, using conformal mappings Gromov proved that a ‘reasonable’ Rie-
mannian manifold M is δ-hyperbolic provided (1) holds with ε := 3

4 , i.e. if every
sufficiently long Lipschitz loop γ in M bounds a singular Lipschitz disc Σ in M of
area

Area(Σ) ≤
1

16π
length(γ)2.

For the meaning of ‘reasonable’ see [5, p. 176]. For example, the universal covering
of a closed Riemannian manifold is ‘reasonable’. A detailed account of Gromov’s
proof appears in [2]. Gromov furthermore showed that the same conclusion holds
for geodesic metric spaces provided (1) is satisfied with ε ∈ (0, 1) close enough to 1.
Similar results and alternative proofs of the latter were later given by Olshanskii
[7], Short [10], Bowditch [1], Papasoglu [8], and Druţu [3]. Finally, the fact that
Gromov hyperbolic metric spaces admit a (coarse) linear isoperimetric inequality
follows from a well-known argument essentially going back to Dehn.
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We now describe a generalization of Theorem 1 which accounts also for spaces
which in general do not admit non-trivial Lipschitz discs (such as Cayley graphs
of groups). For this recall that every metric space X isometrically embeds into
L∞(X), the space of bounded functions on X , by the Kuratowski embedding. We
have:

Lemma 2. Let X be a metric space and γ a Lipschitz loop in X. Let Y be a
metric space which isometrically contains X and let Σ be a Lipschitz disc in Y
which γ bounds. Then γ bounds a Lipschitz disc Σ′ in L∞(X) for which

Area(Σ′) ≤ Area(Σ).

The lemma thus asserts that the area needed to fill γ in L∞(X) is smaller or
equal to that in Y , for any Y in which X isometrically embeds.

Definition 3. A metric space X is said to be admissible if there exists a complete
metric space X ′ which isometrically contains X, which is at finite Hausdorff dis-
tance from X and for which there exists C such that each Lipschitz loop γ in X ′

bounds a Lipschitz disc Σ in X ′ satisfying

Area(Σ) ≤ C length(γ)2.

Length spaces admitting a coarse homological quadratic isoperimetric inequality
for curves are for example admissible. This includes in particular Cayley graphs
of finitely presented groups with quadratic Dehn function. The generalization of
Theorem 1 can now be stated as follows:

Theorem 4. Let X be an admissible geodesic metric space and suppose that there
exists ε > 0 such that every sufficiently long Lipschitz loop γ in X bounds a singular
Lipschitz disc Σ in L∞(X) with

(2) Area(Σ) ≤
1 − ε

4π
length(γ)2.

Then X is Gromov hyperbolic and, in particular, has a thickening which admits a
linear isoperimetric inequality for curves.

A similar result holds for the filling radius inequality: Given a Lipschitz loop
γ in X denote by Fill RadL∞(X)(γ) the infimum of r ≥ 0 such that γ bounds
a 2-chain in L∞(X) with support in the r-neighborhood Nr(γ) of γ. Note that
Nr(γ) is the set of points in L∞(X) which lie at a distance at most r from the
image of γ. Next, let α0 be the largest number such that in any 2-dimensional
normed space V there is a Lipschitz loop γ : S1 → V with length(γ) = 1 and

Fill RadL∞(V )(γ) ≥ α0.

It can be shown that 3
32 ≤ α0 ≤ 1

8 . We then have:
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Theorem 5. Let X be an admissible geodesic metric space and suppose there exist
ε > 0 such that for every sufficiently long Lipschitz loop γ in X

Fill RadL∞(X)(γ) ≤ (1 − ε)α0 length(γ).

Then X is Gromov hyperbolic and, in particular, has a thickening which admits a
logarithmic filling radius inequality for curves.

The theorem is clearly optimal in the class of admissible metric spaces, as follows
from the definition of α0. It generalizes results in [5], [3], [9] and improves the best
known constant 1

73 obtained by Papasoglu [9]. The optimal value for the intrinsic

filling radius inequality is conjectured to be 1
8 , see [9]. At present we do not know

the exact value of α0.
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Ptolemy’s Inequality and Non-Positive Curvature

Thomas Foertsch

(joint work with Alexander Lytchak and Viktor Schroeder)

We examine certain features of geodesic Ptolemy metric spaces, focusing on the
question of how the Ptolemy four point property relates to notions of non-positive
curvature.

Definition 1. A metric space X is called a Ptolemy metric space if

|xy| |zw| ≤ |xz| |yw| + |xw| |yz| ∀x, y, z, w ∈ X.

Note that the property of being Ptolemy is a Möbius invariant!

Certain aspects of Ptolemy metric spaces have occasionally been studied in the
past (see, for instance, [4], [5] and [6]).

Examples: (1) The n-dimensional Euclidean space En is Ptolemy.
(2) CAT(0)-spaces are Ptolemy.
(3) A C2-Riemannian manifold (M, g) is locally Ptolemy if and only if it is of
non-positive sectional curvature, Kg ≤ 0.
(4) A normed vector space is Ptolemy if and only if it is Euclidean.
(5) A locally Ptolemy Finsler manifold is Riemannian.

Our interest in these spaces originates from the following observation.

Theorem 2. (Theorem 1.1. in [3]) Let Y be the boundary of a CAT(−1)-space
endowed with a Bourdon- or Hamenstädt metric | · |. Then for all y1, y2, y3, y4 ∈ Y
it holds

|y1y3| |y2y4| ≤ |y1y2| |y3y4| + |y1y4| |y2y3|.

Moreover, equality holds if and only if the convex hull of the four points is isometric
to an ideal quadrilateral in the hyperbolic plane H2, where y1y3 and y2y4 are the
diagonals.

Recall that for a basepoint o in a CAT(−1)-space, the associated Bourdon met-

ric ρo is given by ρo(ξ, ξ
′) := e−(ξ·ξ′)o for all ξ, ξ′ ∈ ∂∞X , while, for an additional

basepoint ω ∈ ∂∞X , the associated Hamenstädt metric ρω,o writes as

ρω,o(ξ, ξ
′) =

ρo(ξ, ξ
′)

ρo(ξ, ω)ρo(ξ′, ω)
∀ ξ, ξ′ ∈ ∂∞X \ {ω},

i.e., the Hamenstädt metric is obtained from the corresponding Bourdon metric
by involution at the point ω.

From the rigidity part of this theorem one easily obtains the
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Corollary 3. (see [2]) Let X be a CAT(κ)-space, κ < 0, x ∈ X and ω ∈ ∂∞X

such that H := (∂∞X \ {ω}, ρ
√
−κ

ω,o ) is geodesic, then H is CAT(0). If, moreover,
the space X is ω-visual, i.e. that every geodesic ray in X to ω can be extended to
all of R, then X is isometric to the metric warped product R ×e−

√
−κt H.

On the other hand, for every κ < 0, every CAT(0)-space H can be realized as
the boundary at infinity of a CAT(κ)-space X when endowed with a Hamenstädt
metric; namely let X be the metric warped product X = R ×e−

√
−κt H .

These observations and the Examples (1)-(5) above raise the

Question: How does the Ptolemy inequality relate to concepts of non-positive
curvature?

We answer this question by proving the following three theorems:

Theorem 4. (Theorem 1.1. in [1]) Every Ptolemy metric space admits an iso-
metric embedding into a complete, geodesic, Ptolemy metric space.

Note that it follows easily that, in general, a geodesic Ptolemy metric space
need not be uniquely geodesic. The situation changes completely, if one assumes
the space to be locally compact.

Theorem 5. (Theorem 1.2. in [1]) A locally compact, geodesic, Ptolemy metric
space is uniquely geodesic.

Since, as mentioned above, general geodesic Ptolemy metric spaces need not be
uniquely geodesic, it is clear that the Ptolemy condition is not a suitable kind of
non-positive curvature condition itself. However, it turns out that the Ptolemy
condition precisely distinguishes between the two most common non-positive cur-
vature conditions; namely between those due to Alexandrov and Busemann, re-
spectively.

Theorem 6. (Theorem 1.3. in [1]) A metric space is CAT(0) if and only if it is
Ptolemy and Busemann convex.
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New Ricci flow invariant curvature conditions in large dimensions

Burkhard Wilking

(joint work with Christoph Böhm)

This is a report on work in progress. For a compact Riemannian manifold
(M, g) the curvature operator Rp of M at p is a selfadjoint endomorphism of the
second exterior product Λ2TpM . By the second Bianchi identity it is contained
in a subspace S2

B(Λ2TpM) of the vectorspace of all selfadjoint endomorphisms. In
dimensions above three S2

B(Λ2TpM) decomposes under the natural representation
of the orthogonal group O(TpM) into three subspaces.

S2
B(Λ2TpM) = 〈I〉 ⊕ 〈Ric0〉 ⊕ 〈W〉.

R = RI +RRic0 +RW

We view any O(n)-invariant subset C ⊂ S2
B(Λ2Rn) as a curvature condition. A

manifold is said to satisfy the condition C if the curvature operator at any point is
contained in C. We also recall that condition C is said to be invariant under the
Ricci flow if for any compact Riemannian (M, g) satisfying C for all t ∈ [0, T ), the
manifold (M, gt) also satisfies C, where (M, gt) is the solution to the Ricci flow

∂
∂tg = −2 Ric .

The aim of this project is to find Ricci flow invariant curvature conditions that
do not depend on RRic0 .

If C is a convex curvature condition then, by Hamilton’s maximum principle,
C defines a Ricci flow invariant curvature condition provided that it is invariant
as a set under the ODE

(1) R′ = R2 +R#

where ad: Λ2(so(n)) → so(n) is the adjoint representation and where we have
identified ΛRn with so(n).

Theorem 1. There is a positive integer n0 such that in all dimensions n ≥ n0

the following holds. Consider for c > 0 the convex curvature condition

(2) ‖RW ‖2 ≤ c‖RI‖
2 and scal(R) ≥ 0.

a) If n is even the condition (2) is invariant under the ODE (1) if and only
if c = n

n−2 .

b) If n is even the condition (2) is invariant under the ODE (1) if and only if
c =

[
n

n−2−δn,
n

n−2 +εn] where δn and εn are sequences of positive numbers
converging to 0.

Corollary 2. Let n ≥ n0. Let (Mn, g) be a simply connected compact Einstein
manifold with a positive Einstein constant and ‖RW ‖2 ≤ n

n−2‖RI‖
2. Then (M, g)

is isometric to Sn or Sn/2 × Sn/2.

The constant c = n
n−2 is chosen such that for even n equality is attained for the

manifold Sn/2 ×Sn/2. We can also show in all dimensions that a positive compact
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Einstein manifold with ‖RW ‖ ≤ ‖RI‖ has constant curvature unless n = 4 and M
is locally isometric to CP2.

Finally we give a method of constructing examples of such manifolds.

Theorem 3. Let F be a spherical space form and F → M → B a fiber bundle
with structure group contained in Iso(F ). Assume dim(F ) > dim(B). Then M
admits a metric with

‖RW ‖2 < n
n−2‖RI‖

2 and scal(R) > 0.

It is also known that connected sums of spherical space forms admits confor-
mally flat metrics with positive scalar curvature.

The constant n0 in Theorem 1 is at least 12 and we conjecture that equality
holds.

It is well known that positive isotropic curvature in dimension 4 is a Ricci flow
invariant curvature condition which is independent of RRic0 . By recent work of
Nguyen and independently by Brendle and Schoen, positive isotropic curvature
defines a Ricci flow invariant curvature condition in all dimensions. However,
only in dimension 4 this condition is independent of RRic0 . Nevertheless, in view
of Theorem 1 it seems reasonable to expect that there should be a Ricci flow
invariant curvature condition independent of RRic0 in all dimensions.
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Shape of large balls in groups of polynomial growth and

sub-Riemannian geometry

Emmanuel Breuillard

Let G be a locally compact and compactly generated group. The group G is
said to have polynomial growth if for some (hence all) compact generating set Ω
there are positive constants c and k such that volG(Ωn) ≤ c·nk for all n ∈ N, where
volG is a left (or right) Haar measure on G. A celebrated theorem of Gromov [2]
says that if G has polynomial growth and is discrete then G is commensurable to
a nilpotent group. We first extend this to locally compact groups and show:

Theorem 1. Any locally compact group G of polynomial growth is weakly com-
mensurable to a connected and simply connected solvable Lie group S of polynomial
growth, namely there is a compact normal subgroup K in G and a closed co-compact
subgroup H of G containing K such that H/K embeds as a closed and co-compact
subgroup of S. We call S a Lie shadow of G.
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It is worth noting that solvable cannot be replaced by nilpotent in the above
result.

Our goal is to study natural distances ρ on G and determine the asymptotic
cone of (G, ρ). We require the distance ρ to be coarsely geodesic (i.e. there is C > 0
such that any two points in G can be joined by a C-coarse geodesic, i.e. a path φ(t)
for t ∈ [a, b] with |ρ(φ(s), φ(t))−|t−s|| < C), and periodic (i.e. left invariant under
some co-compact subgroup H). Examples of such distances include word metrics
ρΩ(x, y) = inf{n ∈ N, x−1y ∈ Ωn} induced by a compact symmetric generating
set Ω, Riemannian or sub-Riemannian distances on G in case G is a connected Lie
group, or lifts of a Riemannian metric on a compact homogeneous space of G.

From Theorem 1 we get that there is a periodic metric ρS on S such that (G, ρ)
is coarsely isometric (i.e. (1, C)-quasi-isometric) to (S, ρS). So the coarse geometry
of G reduces to that of S. Let Snil = (S, ∗) be the nilshadow of S. It is a simply
connected nilpotent Lie group, obtained from S by keeping the same underlying
manifold and modifying the Lie product (see [1] for a construction). Although
the solvable Lie shadow S obtained from G by Theorem 1 may not be unique, its
nilshadow Snil is uniquely determined by G.

To describe the asymptotic cone of (G, ρ) we also need to introduce the graded
nilshadow S∞ = (S, ∗gr) which is obtained by further modifying the Lie product
on Snil in order to make it a graded nilpotent Lie group (also called Carnot
group). This group comes with a 1-parameter group of dilations (δt)t>0, which
are automorphisms of S∞.

A Carnot-Caratheodory-Finsler metric on S∞ is a left invariant sub-Riemannian
metric induced by a norm on a horizontal vector subspace of Lie(S∞) (i.e. trans-
verse to the commutator ideal).

We obtain

Theorem 2. Let ρ be a coarsely geodesic periodic distance on a simply connected
solvable Lie group of polynomial growth S. Then there exists a left invariant

Carnot-Caratheodory-Finsler metric d∞ on S∞ such that ρ(e,x)
d∞(e,x) → 1.

In particular, if Bρ(n) is the ρ-ball of radius n centered at the identity e, then
the renormalized balls δ 1

n
(Bρ(n)) converge in the Hausdorff topology to Bd∞(1) the

d∞-unit ball centered at e.

This theorem extends the work of P. Pansu [6], who showed the same result when
S was assumed to be nilpotent and the Malcev closure of some finitely generated
nilpotent group. See also [4] for a result of a similar flavor in the context of
reductive groups.

Corollary 3. Let G be a locally compact group of polynomial growth and ρ a
coarsely geodesic periodic distance on G, then (G, ρ

n ) converges in the Gromov-
Hausdorff topology to (S∞, d∞). And

volG(Bρ(n))

nd(G)
→ volS∞(Bd∞(1))
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where d(G) is given by the Bass-Guivarc’h formula

d(G) = d(S∞) =
∑

k≥1

k dim(Ck(S∞)/Ck+1(S∞)).

Corollary 4. The asymptotic cone of (G, ρ) is uniquely defined (independent of
the ultrafilter) and isometric to (S∞, d∞).

Corollary 5. The sequence of balls Bρ(n) is a Folner sequence.

This in turn yields (see [5]):

Corollary 6. The pointwise ergodic theorem for a measure preserving G-action
holds for ball averages along any sequence of centered balls of radii tending to
infinity.

Remark: Theorem 2 above also enables us to answer negatively a question
of Burago and Margulis (see [4] Conj. (a)) about asymptotic metrics on finitely
generated groups.

Outline of the proof : Theorem 1 follows from Losert’s extension of Gromov’s
theorem to locally compact groups together with an embedding theorem for solv-
able groups due to H.C. Wang. In Theorem 2 the strategy is to construct another
distance ρK (by some averaging procedure) which will be asymptotic to the orig-
inal distance ρ and periodic with respect to the new Lie structure on S, i.e. the
nilshadow product. The key point is that at a large scale ρ becomes invariant
under the semisimple part of the action of S on itself by conjugation. We hence
reduce the problem to Snil. Then the methods from [6] can be carried out to show
that the ρK is asymptotic to the desired sub-Riemannian metric d∞ on S∞.
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Solvable Kähler groups

Thomas Delzant

We study the generalized Green–Lazarsfeld set of a group. As an application,
it is shown that if a Kähler group is solvable, then it is virtually nilpotent.

Boundary value problems for Dirac operators

Werner Ballmann

(joint work with Jochen Brüning and Gilles Carron)

In their work on the signature theorem for compact Riemannian manifolds with
boundary, Atiya, Patodi, and Singer observed that there is a correction term to the
signature integral which is a spectral invariant of the boundary [1]. This initiated
the study of boundary value problems for Dirac operators, compare [5].

Let M be a Riemannian manifold with compact boundary N and E → M
be a Dirac bundle over M in the sense of Gromov and Lawson [6]. Consider
the Dirac operator D of E as an unbounded operator on the space L2(M,E) of
square-integrable sections of E: Let D0,c be the restriction of D to domD0,c :=
C∞

0,c(M,E), the space of smooth sections of E with compact support which vanish

along N . Set Dmax := (D0,c)
∗, the L2(M,E)-dual operator of D0,c. Since D0,c

is symmetric, D0,c ⊆ Dmax. We call Dmax the maximal extension of D0,c. The
dual operator Dmin of Dmax is the minimal extension of D0,c as a closed operator
in L2(M,E). The work reported on is concerned with closed extensions of D0,c

between Dmin and Dmax and with their regularity properties.
By interior elliptic regularity, sections in the domain domDmax of the maximal

extension are contained in the Sobolev space H1(M,E) locally in M \ N . The
regularity of elements in domDmax is, therefore, connected to their boundary
regularity.

LetH := L2(N,E|N) and A be the induced Dirac operator inH . LetHs, s ∈ R,
be the domain of definition of (I+A2)s/2. It turns out that the space of boundary

values of elements in domDmax is the hybrid Sobolev space Ȟ := H
1/2
≤ ⊕H

−1/2
> ,

where the indices refer to the corresponding spectral projections of A. Closed
linear subspaces of Ȟ are called boundary conditions. For a boundary condition
B ⊂ Ȟ, we set domDB,max := {σ ∈ domDmax : σ|N ∈ B} and DB,max :=
Dmax|domDB,max.

Proposition 1. The closed extensions of D0,c contained in Dmax are precisely the

operators of the form DB,max, where B ⊂ Ȟ is a boundary condition.

We say that a boundary condition B is regular, if domDB,max ⊂ H1(M,R).
From the explicit description of boundary regularity in the case where M is a half-
cylinder R+ × N over N and the data for D do not depend on the R+-variable,
it follows that B is regular if and only if B is a closed subspace of Ȟ which is
contained in H1/2 ⊂ Ȟ . We say that a boundary condition is elliptic if B and
the boundary condition Ba of the adjoint operator (DB,max)

∗ are regular. We
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obtain an explicit characterization of elliptic boundary conditions, and it turns
out that they coincide with the boundary condition which were considered in [2].
The explicit description of elliptic boundary conditions shows that they are very
flexible. For example, they are well-suited for deformations, compare [2].

Theorem 2. If M is compact and B is an elliptic boundary condition, then
DB,max is a Fredholm operator.

This theorem holds also under the more general assumption that B is elliptic
and that there is a constant C such that the L2-norm of smooth sections σ of E
with compact support in M \N is bounded from above by C times the L2-norm
of Dσ. For details we refer to [3], applications will appear in [4]. From a different
angle, the theory of elliptic boundary conditions will also be partly detailed in [2].
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Path integrals on manifolds by finite dimensional approximation

Christian Bär

(joint work with Frank Pfäffle)

This talk is based on the results in [2]. Let M be a compact Riemannian manifold
without boundary, let E →M be a Riemannian or Hermitian vector bundle with
compatible connection ∇. We study selfadjoint generalized Laplace operators,
i. e. operators of the form H = ∇∗∇ + V where V is a potential (symmetric
endomorphism field on E). For simplicity of notation we restrict ourselves to
scalar potentials even though this is not necessary.

Our main result can formally be stated as follows: The solution to the heat
equation

∂U

∂t
+HU = 0

with initial condition

U(0, x) = u(x)

is given by the path integral
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U(t, x) =

1

Z

∫

Cx(M,t)

exp

(
−

1

2
E(γ) +

∫ t

0

(
1

3
scal(γ(s)) − V (γ(s))

)
ds

)
τ(γ)0t u(γ(t))Dγ.

Here Cx(M, t) is the space of all continuous paths γ : [0, t] → M emanating
from x, E(γ) denotes the energy of the path γ, τ(γ) is parallel translation along
γ, Dγ is a formal measure on Cx(M, t) and Z is a normalizing constant.

Such formulas are very common in the physics literature but there are various
problems with a rigorous mathematical interpretation:

• Cx(M, t) is an infinite dimensional space and the meaning of the measure
Dγ is unclear,

• E(γ) and τ(γ) are not defined for continuous paths without differentiability
properties,

• Z is infinite.

It is well-known that 1
Z exp

(
− 1

2E(γ)
)
Dγ yields a well-defined measure on path

space Cx(M, t), the Wiener measure. Parallel transport τ(γ) can be treated using
stochastic differential equations. This then generalizes the Feynman-Kac formula,
see e. g. [4].

We follow a different approach. We approximate Cx(M, t) by finite dimensional
spaces of geodesic polygons. It turns out that the formally identical integrals over
these finite dimensional space approximate the solution to the heat equation. The
necessary analysis can be organized nicely using a classical theorem of Chernoff’s
[3]. The short time asymptotics of the heat kernel also play an important role.

Our technique allows us to derive different versions of the path integral formula.
For example, one can remove the scalar curvature term if one uses another measure
on the approximating spaces of geodesic polygons. This clarifies a discussion in [1]
where our main result has been proved by different methods in the special case of
the Laplace-Beltrami operator acting on functions.

As an application we find a very simple and natural proof of the Hess-Schrader-
Uhlenbrock estimate for the heat kernel by the kernel of a scalar comparison
operator, see [5]. Moreover, we can express the trace of the heat operators by
a path integral. Formally,

Tr(e−tH) =

1

Z

∫

Ccl(M,t)

exp

(
−

1

2
E(γ) +

∫ t

0

(
1

3
scal(γ(s)) − V (γ(s))

)
ds

)
tr(hol(γ))Dγ.

Here Ccl(M, t) denotes the space of closed continuous loops in M , parameterized
on [0, t], and hol(γ) is the holonomy of such a loop γ.
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A link between Willmore energy, isoperimetric inequalities and

inverse mean curvature flow

Gerhard Huisken

Consider a complete noncompact 3–manifold (M3, g) without boundary and
satisfying one of two curvature conditions:

(i) non–negative scalar curvature or
(ii) non–negative Ricci–curvature.

The first curvature condition is natural for asymptotically flat manifolds arising
in General Relativity, the second is natural in the context of manifolds that are
asymptotically cone–like.

Let φ be the isoperimetric profile of the corresponding model spaces (Riemann-
ian Schwarzschild and cone respectively), which assigns to a given area of boundary
2–spheres the maximal volume enclosable by such spheres in (M3, g). The lecture
explains that the difference

φ(|Σ2
t |) − Vol(ΩΣt)

is monotone under (weak) mean curvature and inverse mean curvature flow, leading
to optimal isoperimetric inequalities in the two cases above. The results rely on
the properties of weak mean curvature flow (Giga–Goto, Evans–Spruck, White)
and weak inverse mean curvature flow (Ilmanen–H.) and extend earlier work on
isoperimetric inequalities by Kleiner, Bray, Morgan, Schulze and Topping.

Refinement of Perelman’s Stability Theorem

Vitali Kapovitch

A fundamental observation of Gromov says that the class of complete n-dimension-
al Riemannian manifolds with fixed lower curvature and upper diameter bounds
is precompact in Gromov-Hausdorff topology. The limit points of this class are
Alexandrov spaces of dimension ≤ n with the same lower curvature and upper
diameter bounds. Given a sequence of manifolds Mi in the above class converging
to an Alexandrov space X it’s interesting to know what can be said about the
relationship between topology of the limit and elements of the sequence.

Our main purpose is to give a careful proof of the following Theorem of Perelman
which answers this question in the situation when dimX = n.
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Theorem 1. Let Xn be a compact n-dimensional Alexandrov space of curv ≥ κ.
Then there exists an ǫ = ǫ(X) > 0 such that for any n-dimensional Alexandrov
space Y n of curv ≥ κ with dG−H(X,Y ) < ǫ, Y is homeomorphic
to X.

A proof of the Stability Theorem was given in [1]. However, that paper is very
hard to read and is not easily accessible. We aim to provide a comprehensive and
hopefully readable reference for Perelman’s result.

It is also worth pointing out that the Stability Theorem in dimension 3 plays
a key role in the classification of collapsing of 3-manifolds with a lower curvature
bound by Shioya and Yamaguchi [4, 5] which in turn plays a role in Perelman’s
work on the geometrization conjecture. However, as was communicated to the
author by Kleiner, for that particular application, if one traces through the proofs
of [4, 5] carrying along the additional bounds arising from the Ricci flow, then
one finds that in each instance when a 3-dimensional Alexandrov space arises as
a Gromov-Hausdorff limit of smooth manifolds, it is in fact smooth, and after
passing to an appropriate subsequence, the convergence will also be smooth to a
large order. For such convergence the stability theorem is very well known and
easily follows from Cheeger-Gromov compactness.

Besides the original proof of Perelman, we also present a different proof of
the Stability Theorem for limits of Riemannian manifolds based on techniques of
controlled homotopy theory. In its current form this proof for dim = 3 uses the
3-dimensional Poincare conjecture (the proof of which does not require stability).
While the use of the Poincare conjecture doesn’t seem very satisfactory, the author
fully believes that the proof can be modified so that it doesn’t rely on the Poincare
conjecture at all.

Perelman showed in [2] that any n-dimensional Alexandrov space possesses
a canonical topological stratifications where its i-th strata is an i-dimensional
topological manifold. Any homeomorphism between two Alexnadrov spaces clearly
has to preserve their topological stratifications.

It turns out [3], that the above mentioned topological stratification is a part of
a finer geometric stratification of an Alexandrov space into extremal subsets which
plays an important role in the study of Alexandrov spaces.

Being geometric rather than topological, this stratification need not be pre-
served by arbitrary homeomorphisms between Alexandrov spaces. Nevertheless
we show that the stability homeomorphisms in the context of the Stability theo-
rem can be chosen to preserve this stratification. More precisely, we show

Theorem 2 (Relative Stability Theorem). Let Xn
i

G−H
−→
i→∞

Xn be a noncollapsing

sequence of compact Alexandrov spaces with curv ≥ κ and diam ≤ D. Let Ei ⊂ Xi

be a sequence of extremal subsets converging to an extremal subset E in X. Then
for all large i there exist homeomorphisms θi : (X,E) → (Xi, Ei), close the original
Hausdorff approximations Xi → X.
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Curvature explosion in quotients and applications

Alexander Lytchak

(joint work with Gudlaugur Thorbergsson)

Let M be a complete Riemannian manifold and G a closed group of isometries of
M . The quotient space B = M/G is an Alexandrov space with curvature locally
bounded below. It is stratified by smooth strata BK corresponding to conjugacy
classesK of isotropy groups in G. The main stratum B0 is open, dense and convex
in B. Usually, the supremum of sectional curvatures k̄(y) at points y ∈ B0 goes to
infinity as the points y approach the boundary of B0. On the other hand, in many
important examples the curvature is uniformly bounded on B0. For instance, it
happens in the case of polar actions, like the isotropy representation of a symmetric
space, i.e. actions with identically vanishing O’Neill tensor in the regular part. Our
first result gives a precise description of the explosion of curvature.

Theorem 1. Let x ∈M be a point and let x̄ denote its projection in B. Then the
following are equivalent:

(1) lim supy→x̄,y∈B0 k̄(y) <∞;

(2) lim supy→x̄,y∈B0 k̄(y) · d2(x̄, y) = 0;
(3) The isotropy representation at the point x is polar;
(4) A neighborhood of x̄ in B is isometric to a smooth Riemannian orbifold.

The equivalence of (1) and (2) in the above theorem says that if the explosion
occurs then only at a prescribed rate, namely, proportional to the inverse of the
square of the distance. On the other hand, the theorem says that large parts of
B consists of orbifold points, that allows us to use differential geometric methods
in B. For instance, the set of orbifold points contains all strata of codimension at
most 2. As a consequence we deduce:

Corollary 2. The geodesic flow in the quotient B preserves the Liouville measure
on the unit tangent bundle of B.

If B is compact, the Liouville measure is finite and we get a recurrence theorem,
that is very useful in applications concerning conjugate points along horizontal
geodesics.
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We say that G is infinitesimally polar at x if the isotropy representation at x
is polar. Our motivation for studying such points was an observation that can
be loosely formulated as follows: G is infinitesimally polar at x if and only if in
a neighborhood of x indices of horizontal geodesics have continuous vertical and
horizontal parts. The horizontal index is the index that corresponds to the index
of the projected quasi-geodesic in the orbit space and can be defined using the
work of Wilking ([7]). The vertical index is the part of the index that cannot be
seen below and that can be easily read off in the total space. It was implicitly used
by Bott and Samelson([2]) in studying the topology of (loop spaces of) symmetric
spaces.

To make the idea more precise we give two definitions and two theorems related
to them. We call a horizontal geodesic γ regular if it starts and terminates in a
regular point. Such a geodesic crosses singular orbits only at finitely many points
γ(ti) and we define the crossing number c(γ) to be the sum of r − dim(γ(ti)),
where r is the dimension of a regular orbit. This crossing number is precisely the
vertical index mentioned above. The above statement in combination with the
first theorem can now be stated as follows.

Theorem 3. The crossing number function is continuous on the space of all regu-
lar geodesics if and only if the quotient space B is a smooth Riemannian orbifold.

Finally our results can be used to obtain a description of variationally complete
actions, that were introduced by Bott in [1]. The action is variationally complete
if the vertical index of each regular geodesics coincides with its focal index, with
respect to the orbit through its starting point. Variationally complete actions are
very useful in topology (c.f. [1],[2]). They have been studied by many authors by
very different means (cf. [3], [4], [5] [6]). We prove:

Theorem 4. The action of G on M is variationally complete if and only if the
quotient B is isometric to the quotient of a smooth Riemannian manifold N with-
out conjugate points by a discrete group Γ of isometries of N .

All results explained above are proven in the much more general case of singular
Riemannian foliations.
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Reeb vector fields and open book decompositions

Vincent Colin

(joint work with Ko Honda)

Let M be an oriented closed three manifold. An open book decomposition of
M is a pair (K, θ) where K is a link in M and θ : M \ K → S1 is a fibration
that coincides with the function given by the normal angular coordinate in a
trivialized neighbourhood of K. The link K is called the binding, and the fibers
of θ are called the pages. They are both canonically oriented. Such an open book
decomposition can be entirely described by a small compact retraction of one page
S and the monodromy of the fibration θ, viewed as a diffeomorphism of S which
is the identity along ∂S.

It is known by a work of Giroux [Gi], that isotopy classes of positive contact
structures on M are in one-to-one correspondence with isotopy classes of open
book decompositions of M , considered modulo stabilization. The stabilization
procedure is the plumbing of (K, θ) by a Hopf band (it can be applied several
times). More precisely, a contact structure ξ is said to be carried by an open book
decomposition (K, θ) if it admits a Reeb vector field which is (positively) tangent
to the binding and (positively) transversal to the pages. Using this definition,
Giroux’s theorem states that every contact structure is carried by some open book;
that two contact structures carried by the same open book are isotopic, and that
if ξ and ξ′ are carried by (K, θ) and (K ′, θ′), then ξ is isotopic to ξ′ if and only if
(K, θ) and (K ′, θ′) have isotopic stabilizations.

Our initial motivation in what follows is to give a proof the Weinstein conjecture
in dimension 3 (“every Reeb vector field has a periodic orbit”) and to analyze the
links between the dynamical behavior of Reeb vector fields and the topology of
the ambient manifold. A complete proof of the 3-dimensional Weinstein conjecture
has been given recently by Taubes [Ta].

On our side, we prove the following:

Theorem 1. If a contact structure ξ is carried by an open book decomposition
whose monodromy is isotopic to a periodic diffeomorphism, then the Weinstein
conjecture holds for ξ: every Reeb vector field for ξ has a periodic orbit.

In fact we have that [CH]:

Theorem 2. Every contact structure is carried by an open book whose monodromy
is isotopic to a pseudo-Anosov diffeomorphism and whose binding is connected.

In this case, the isotopy between the monodromy h and its pseudo-Anosov
representative ψ is not the identity along ∂S. If we follow the trace of this isotopy
on ∂S, we get a rotation number c ∈ R, which is a rational number of the form
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k/n. Here, n is the number of singularities of the stable invariant foliation of ψ
that sit on ∂S.

By a theorem of Honda, Kazez and Matic̀ [HKM], if c ≤ 0 then the contact
structure ξ is overtwisted, and thus, applying a result of Hofer [Ho], the Weinstein
conjecture holds for ξ.

The following result is still a work in progress:

Let ξ be the contact structure carried by an open book decomposition whose
monodromy is isotopic to a pseudo-Anosov diffeomorphism with rotation number
k/n. If k ≥ 2, then ξ is tight, π2(M) = 0, the universal cover of M is not S3, and
for every Reeb vector field R associated to a contact form α for ξ, the number of
periodic orbits γ of R of actions

∫
γ
α less than L grows exponentially with L.

The proofs of these results involve computations in contact homology [EGH].
We say that a contact structure ξ is dynamically hyperbolic if every Reeb vector

field associated with ξ has an exponentially growing set of periodic orbits with
respect to their actions. We make the conjecture that every universally tight
contact structure on a hyperbolic three manifold is dynamically hyperbolic.
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The Thurston-Bennequin inequality for tight confoliations

Thomas Vogel

In this talk we discuss a generalization of a result of Eliashberg (for tight contact
structures) respectively Thurston (for Reebless foliations). Throughout this talk
M will be an oriented manifold of dimension 3.

Definition 1. A positive confoliation on M is a plane field on M which is locally
defined by a 1-form α such that α ∧ dα ≥ 0.

Contact structures are defined by the condition that α ∧ dα > 0 while for
foliations the equality α ∧ dα = 0 holds.

Contact structures are divided into two classes according to whether they are
tight or not (the definition of tightness can be found below). It turns out that
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only tight contact structures reflect properties of the underlying manifold. The
following generalization of tightness to confoliations was suggested in [ET].

Definition 2. A confoliation ξ on M is tight if for every embedded disc D2 ⊂M
such that

(i) ∂D is tangent to ξ,
(ii) TD2 and ξ are transverse along ∂D2

there is an embedded disc D′ satisfying the following requirements

(i) ∂D = ∂D′,
(ii) D′ is everywhere tangent to ξ,
(iii) e(ξ)[D ∪D′] = 0.

If ξ is a contact structure, then there are no surfaces tangent to ξ and Def-
inition 2 reduces to a definition of tightness. In the case when ξ is a foliation,
then Definition 2 corresponds to the absence of so called vanishing cycles. By a
theorem of Novikov [No] the absence of vanishing cycles on a closed manifold is
equivalent to the absence of Reeb components and foliations without Reeb com-
ponents have turned out to be much more interesting than foliations with Reeb
components. Thus Definition 2 interpolates between tight contact structures and
Reebless foliations.

As is pointed out in [ET] there is an interesting inequality imposing restrictions
on the Euler class of ξ when ξ is either a tight contact structures or a Reebless
foliation. In this article we generalize this inequality to the case when ξ is a tight
confoliations. This confirms conjecture 3.5.4. from [ET] and provides additional
evidence that Definition 2 is the correct generalization of the notion of tightness
to confoliations. Before we can state the inequalities mentioned above we need
one more definition.

Definition 3. Let γ be a nullhomologous knot in a confoliated manifold (M, ξ)
which is transverse to ξ. For each choice F of an oriented Seifert surface of γ we
define the self linking number l(γ, ξ) of γ as follows. Choose a nowhere vanishing
section X of ξ|F and let γ′ be the knot obtained by pushing γ off itself by X. Then

l(γ, F ) = γ′ · F .

We orient γ using the coorientation of ξ (usually a cooriention of ξ is obtained
from a form α such that ker(α) = ξ). In [Be] D. Bennequin proved the following
inequality between l(γ) and the Euler number χ(F ) of F .

Theorem 4. Let γ be a transverse knot in the standard contact structure ξ =
ker(dz − y dx) on R3. Then

(1) l(γ) ≤ −χ(F ).

Eliashberg showed in [El] that (1) holds for all tight contact structures and he
also showed the other inequalities in the context of tight contact structures. On
the other hand, it follows from Thurston’s work in [Th] that the same inequalities
hold for surfaces in foliations without Reeb components.
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We discuss a possible generalization of these results to tight confoliations, for
example we prove that for every embedded sphere in a manifold with tight confo-
liations satisfies e(ξ)[F ] = 0.
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Geometry of hyperbolic 3-manifolds and rank of the fundamental

group

Juan Souto

(joint work with Ian Biringer)

We consider the relation between the geometry of closed orientable hyperbolic
3-manifolds and the rank of their fundamental group. Recall that the rank of a
finitely generated group is the minimal number of elements needed to generate it.
Recall also that the Heegaard genus g(M) of a 3-manifold is the smallest genus of
a Heegaard splitting of M .

Observe that for every 3-manifold M one has rank(π1(M)) ≤ g(M). Wald-
hausen asked whether equality always holds and this question was answered in
the negative by Boileau-Zieschang [1] who constructed examples with rank 2 and
genus 3. Other examples are due to Schultens-Weidmann. However, the following
conjecture is still possible, and in the opinion of the authors even plausible:

Conjecture. For all k there is gk such that for every hyperbolic 3-manifold
M with rank(π1(M)) = k one has g(M) ≤ gk.

We prove:

Theorem 1. For all k and ǫ there is gk,ǫ such that every ǫ-thick hyperbolic 3-
manifold with rank(π1(M)) = k then g(M) ≤ gk,ǫ.

This result extends an unfortunately unavailable theorem of Agol in the case
that rank(M) = 2. While Theorem 1 asserts that the Heegaard genus is bounded
in terms of the rank and the injectivity radius, the following implies that the rank
and the genus can only differ if the minimal genus Heegaard splittings of M have
small distance in the sense of Hempel [2]:
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Theorem 2. For all g and ǫ there is dk,ǫ such that every ǫ-thick hyperbolic 3-
manifold M which admits a genus g Heegaard splitting with at least distance dg,ǫ

has rank(π1(M)) = g.

We deduce Theorem 1 and Theorem 2 directly from the first claim of the fol-
lowing result:

Theorem 3. For all k and ǫ there is a finite collection of compact 3-manifolds
N1, . . . , Nr and a number n such that the following holds:

• Every closed hyperbolic 3-manifold with inj(M) > ǫ and rank(π1(M)) = k
can be obtained by gluing along the boundary at most n of the manifolds
N1, . . . , Nr.

• If (Mi, pi) is a pointed sequence of pairwise distinct closed hyperbolic 3-
manifolds with inj(Mi) ≥ ǫ and rank(π1(Mi)) = k which converges ge-
ometrically to a manifold MG, then MG is homeomorphic to one of the
manifolds Ni and every end of MG is degenerate.

Combining the second part of the main theorem with a result of Vigneras [3]
we obtain the following finiteness results for arithmetic manifolds:

Theorem 4. For all k and ǫ there are only finitely many closed, arithmetic,
hyperbolic 3-manifolds M with inj(M) ≥ ǫ, rank(π1(M)) = k and H1(M ;Z) = 0.

Theorem 5. For all k and ǫ there are only finitely many commensurability classes
of closed, arithmetic, hyperbolic 3-manifolds M with

inj(M) ≥ ǫ and rank(π1(M)) = k.

Before concluding, recall that the geometric form of the Lehmer conjecture
asserts that there is some ǫ such that every closed arithmetic hyperbolic 3-manifold
has at least injectivity radius ǫ. Should this conjecture hold, then the finiteness
results of Theorem 3 and Theorem 4 depend only on the genus.
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[3] M.-F. Vignéras, Quelques remarques sur la conjecture λ1 ≥ 1/4, Seminar on number theory,
Paris 1981–82 (Paris, 1981/1982), 321–343, Progr. Math., 38, Birkhäuser, 1983.
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Extremal metrics on blow ups

Frank Pacard

(joint work with C. Arezzo, M. Singer)

In [3], [4] Calabi has proposed, as best representatives of a given Kähler class [ω]
of a complex compact manifold (M,J), a special type of metrics (called extremal
metrics) which are critical points of the L2-square norm of the scalar curvature
s. The corresponding Euler-Lagrange equation reduces to the fact that the vector
field

Ξs := J ∇s + i∇s,

is a holomorphic vector field on M . The set of extremal metrics clearly contains
the set of constant scalar curvature Kähler ones.

Let (M,J, g, ω) be a Kähler manifold with complex structure J and Kähler form
ω and let g denote the metric associated to the Kähler form ω, so that

ω(X,Y ) = g(J X, Y ).

We further assume that g is an extremal metric. Let K be a compact subgroup
K ⊂ Isom(M, g) and let K0 be the identity component of K. If k denotes the Lie
algebra associated to K0, we assume that

J ∇s ∈ k.

Assume that we are given points

p1, . . . , pn ∈ Fix (K0),

such that {p1, . . . , pn} is globally invariant under the action of K. In order to
produce extremal metrics on the blow up of M at the points p1, . . . , pn, we have
to identify, among all C∞ functions on the blown up manifold, those who generate
real-holomorphic vector fields, since these can arise as scalar curvatures of extremal
metrics. To this aim, we define h to be the vector space of K-invariant Killing
vector fields on M which vanish somewhere on M . The correspondence between
the elements of h and the scalar functions on M is given by the moment map

ξω : M → h∗,

which is uniquely determined by the fact that the function f := 〈ξω, X〉 associated
to the vector field X ∈ h is the unique solution of

−df = ω(X,−),

whose mean value over M is 0.
There is a natural orthogonal decomposition

h = h′ ⊕ h′′,

where h′ := h ∩ k and where the scalar product is taken to be

(X, X̃)h :=

∫

M

〈ξω , X〉 〈ξω, X̃〉 dvolg.

Using this setup, our main result reads :
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Theorem 1. Assume that :

(i) There exists a1, . . . , an > 0 satisfying
n∑

j=1

am−1
j ξω(pj) ∈ h′ ∗,

and aj1 = aj2 if pj1 and pj2 belong to the same K-orbit.
(ii) The projections of ξω(p1), . . . , ξω(pn) over h′′ ∗ span h′′ ∗ .
(iii) There is no nontrivial element of h′′ vanishing at p1, . . . , pn.

Then, there exists ε0 > 0 and, for all ε ∈ (0, ε0), there exists a K-invariant

extremal Kähler metric gε on M̃ , the blow up of M at p1, . . . , pn, whose associated
Kähler form ωε lies in the class

π∗[ω] − ε2 (a1 PD[E1] + . . .+ an PD [En]) .

Here π : M̃ → M is the standard projection map and PD[Ej ] are the Poincaré
duals of the (2m − 2)-homology classes of the exceptional divisors of the blow up
at pj.

Finally, the sequence of metrics (gε)ε converges to g (in smooth topology) on
compacts, away from the exceptional divisors.

Observe that, in the case where K is connected, and h ⊂ k (so that h′ = h and
h′′ = {0}), conditions (i), (ii) and (iii) become vacuous.

Extremal versus constant scalar curvature metrics If the metric g we start
with has constant scalar curvature, it might well be that the extremal metrics we
obtain have in fact constant scalar curvature. There is a simple criterion involving
the points p1, . . . , pn and the parameters a1, . . . , an, which ensures that this is not
the case. Under the assumptions of Theorem 1, if we further assume that the
metric g has constant scalar curvature and if the points and weights are chosen so
that

n∑

j=1

am−1
j ξω(pj) 6= 0,

then the metrics we obtain on M̃ are extremal with non-constant scalar curvature.
In [1] is treated the case where g is a constant scalar curvature Kähler metric,
K = {Id} and h = {0}, while in [2] is treated the case where g is a constant
scalar curvature Kähler metric, K is a discrete subgroup of Isom (M, g), h′ = {0},
and h′′ is not necessarily trivial. Theorem 1 is therefore a generalization of the
constructions given in [1] and [2].

The case of projective spaces When (M,J, g, ω) is the projective space
Pm endowed with the Kähler form ωFS associated to a Fubini-Study metric, we
consider the group K = S1 × . . . × S1, to be the maximal compact subgroup of
PGL(m+ 1), whose action is given by

K × Pm −→ Pm

(
(α1, . . . , αm+1), [z

1 : . . . : zm+1]
)

7−→ [α1z
1 : . . . : αm+1z

m+1],
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(where (z1, . . . , zm+1) are complex coordinates in Cm+1)and we consider the set
of fixed points of K

p1 := [1 : 0 : . . . : 0], . . . , pm+1 := [0 : . . . : 0 : 1].

In this case, the space h is spanned by vector fields of the form ℜ
(
zj ∂zj − zk ∂zk

)
,

and we have k = h = h′ and h′′ = {0}. As a consequence of the result of Theorem
1, we obtain extremal Kähler metrics on the blow up of Pm at the points p1, . . . , pn,
for any n = 1, . . . ,m + 1. In addition, the Kähler metrics we obtain have non-
constant scalar curvature if n < m+ 1.

The case corresponding to n = 1 was already obtained by Calabi [3] in more
generality (i.e. for all Kähler classes) and the case where Pm is blown up at m+1
linearly independent points q1, . . . , qm+1 and a1 = . . . = am+1 was already studied
in [2] where constant scalar curvature metrics were obtained.

More generally, if (M,J, g, ω) is a m-dimensional toric variety whose associated
metric is extremal, one can take K to be the maximal torus giving the torus
action. In this case h = k, h′′ = {0}, and it follows from Theorem 1 that, given
p1, . . . , pn ∈ Fix (K), there exists an extremal Kähler metric on the blow up of M
at p1, . . . , pn . Since blowing up a toric variety at such points preserves the toric
structure, one can apply inductively Theorem 1 in this setting.
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Kähler-Ricci flow: a finite dimensional approach

Julien Keller

In this talk we discuss a natural way to approach the Kähler-Ricci flow on a
projective manifold M with c1(M) > 0 or c1(M) < 0. First, we give a natural
discretization of the Kähler Ricci flow in the infinite dimensional world of Kähler
potentials. This leads to define the operator on Kähler forms

Ric−1

using Calabi-Yau Theorem [Ya]. The iterations of this operator leads us to con-
sider a natural dynamical system, as in [Na]. For instance, we prove, using the
decrease of the Mabuchi functional under an iteration, that one cannot expect non
trivial periodic points Ric−1 when M is a Fano manifold. When M is a Kähler-
Einstein Fano manifold then, under some strong assumptions, we can prove the
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convergence of these iterations towards the Kähler-Einstein metric. On the other
hand, in the case of a Fano toric manifold we get the convergence under no extra-
assumption towards a Kähler-Ricci soliton (X,ωKS). Note that in that context,
the holomorphic vector field X is unique and given in terms of the toric geometry.
The Kähler-Ricci soliton ωKS is unique up to holomorphic automorphisms and its
existence has been proved in [WZ, Zh] by flow or continuity methods. We reprove
Wang and Zhu’s results by showing

Theorem 1. Let M be a Fano toric manifold. We consider the sequence of metrics
ωj given by

Ric(ωj+1) = LXωj+1 + ωj

where ω0 is any Kähler form invariant under the maximal compact subgroup of
the acting torus on M . Then ωj converges smoothly to a Kähler-Ricci soliton
when j → +∞. In particular, if M is Kähler-Einstein, the sequence of metrics ωj

defined by

Ric(ωj+1) = ωj

converges to a Kähler-Einstein metric.

Denote µ = 1 if c1(M) > 0 and µ = −1 if c1(M) < 0. Now, using the notion of
ν-balanced metrics introduced by Donaldson [Do3], we are able to derive a proce-

dure in a finite dimensional setting that produces natural metrics onH0(M,K−µk
M )

close to the Kähler-Einstein metric. More precisely, for k large enough and given

H0 ∈Met(H0(K−k
M )), we can define a new metric on H0(K−µk

M ), by

H1(si, sj) = T̃ (H0)(si, sj) =

∫

M

si ⊗ sj

(
∑N

i=1 Si ⊗ Si)1+µ/k

where (Si)i=1,..,N ∈ H0(K−µk
M ) form an orthonormal basis with respect to H0, and

N = dimH0(K−µk
M ). The fixed points of the T̃ operator (if they do exist) are called

canonically balanced metrics. Let’s now set FS : Met(H0(K−µk
M )) →Met(K−µk

M )
the Fubini-Study map.

Theorem 2. Let M be a Kähler-Einstein manifold with c1(M) > 0 and no non-
trivial holomorphic vector field or c1(M) < 0. Then there exists a sequence of

canonically balanced metrics H̃k ∈ Met(H0(K−µk
M ) and c1(FS(H̃k)1/k) converge

to the Kähler-Einstein metric when k → ∞. Furthermore, the operator T̃ has an
attractive fixed point.

This is this technique that we use in order to compute an approximation of
the Kähler-Einstein metric on the Fano toric manifold given by CP2 blown up in
3 (generic) points. From a technical point of view, this algorithm is particularly
efficient.

Finally, a slight modification of our procedure in the case c1(M) < 0 gives us
back an iterative scheme studied recently by Tsuji [Ts]. In that case, we prove that
the sequence of induced metrics has exponential speed of convergence (towards the
Kähler-Einstein metric), improving slightly [SW].
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In the case of Fano manifolds, we expect that the existence of canonically bal-
anced metrics is related to an algebraic notion of stability in G.I.T sense of the
manifold.
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Cross Ratios and Identities for Higher Thurston Theory

François Labourie

(joint work with Gregory Mc Shane)

1. Introduction

1.1. Identities for lengths of simple closed geodesics in hyperbolic geom-

etry: In [9], the second author established an identity for lengths of simple closed
geodesics on punctured hyperbolic surfaces. To simplify the exposition in this talk
we consider the case where Σ denotes a complete hyperbolic surface with a single
cusp. If C is a closed curve then we denote by ℓ(C) the infimum of the set of
lengths of curves freely homotopic to C with respect to the hyperbolic metric; this
extends naturally to finite set of curves. With this notation Mc Shane’s identity
for Σ with a single cusp is

1 =
∑

P∈P

1

e
ℓ(∂P )

2 + 1
,(1)
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M. Mirzakhani [10] extended this identity to hyperbolic surfaces with geodesic
boundary : Let Σ be a complete hyperbolic surface with a single totally geodesic
boundary component ∂Σ then Mirzakhani’s identities are

ℓ(∂Σ) =
∑

P∈P
log

(
e

ℓ(∂P )
2 + eℓ(∂Σ)

e
ℓ(∂P)

2 + 1

)
,(2)

where P is the set of embedded pants (with marked boundary) up to homotopy
such that first the boundary component of the pair of pants is ∂Σ.

We show that the identity above has a natural formulation in terms of (gener-
alised) cross ratios. Then, using this formulation, we study identities arising from
the cross ratios constructed for representations in PSL(n,R) by the first author
[6].

1.2. Cross ratio and periods: Let Σ be a closed surface. Let ∂∞π1(Σ) be
the boundary at infinity of the fundamental group π1(Σ) of Σ. A cross ratio on
∂∞π1(Σ) is a π1(Σ)-invariant Hölder function on

∂∞π1(Σ)4∗ = {(x, y, z, t) ∈ ∂∞π1(Σ)4 x 6= t, and y 6= z},

satisfying some rules (compare with Otal’s original definition in [11]), the most
significant being the “multiplicative cocycle type” identities

b(x, y, z, t) = b(x, y, z, w)b(x,w, z, t), b(x, y, z, t) = b(x, y, w, t)b(w, y, z, t).

To every non trivial element γ of the group π1(Σ), we associate a positive number,
ℓb(γ), called the period of γ defined by

ℓb(γ) = log b(γ−, γy, γ+, y),

where γ+ and γ− are respectively the attractive and repulsive fixed points of γ in
∂∞π1(Σ) and where y is any point of ∂∞π1(Σ) such that γ(y) 6= y. Observe that
a complete hyperbolic metric on Σ gives rise to an identification of ∂∞π1(Σ) with
the real projective line, hence to a cross ratio on ∂∞π1(Σ) such that the period of
γ is just the hyperbolic length of the closed geodesic freely homotopic to γ.

1.3. Pant gap function and the generalized formula: Given a cross ratio
on ∂∞π1(Σ), we now define the pant gap function which takes a homotopy class
of immersed pair of pants with marked boundary α to a positive number. If P
is such a homotopy class of immersions of pants then, by considering three loops
going round the boundary components of some representative, this corresponds to
a triple (α, β, γ) of elements of π1(Σ). The triple is well defined up to conjugation
and such that αγβ = 1. We define the value of pant gap function at P to be the
positive number

Gb(P ) = log(b(α+, γ−, α−, β+).
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We shall prove

Theorem 1. Let Σ be closed surface. Let b be a cross ratio on ∂∞π1(Σ). Let
α be a non trivial element of π1(Σ) which corresponds to an essential separating
closed curve. Let P be the space of homotopy classes of pair of pants with marked
boundary in Σ whose first boundary component is α, then

ℓb(α) =
∑

P∈P

Gb(P ).

Moreover, the theorem generalizes to open surfaces of finite type after a suitable
extension of the notion of cross ratio in this context. It also generalizes “at a cusp”
in order to cover the case of Formula (1)

1.4. Cross ratios and hyperbolic geometry: The case of hyperbolic geometry
is special in that the pant gap function can be computed in terms of the lengths of
just the boundary components. Using Thurston’s shear coordinates [2] and elemen-
tary manipulations involving the classical cross ratio – as opposed to hyperbolic
trigonometry in the original proofs – we recover Mirzakhani-Mc Shane’s formulae
(1) and (2) for the pant gap function.

1.5. Cross ratios and PSL(n,R): In [7], the first author gives an interpretation
of the Hitchin representations, a connected component of the space of representa-
tions of the π1(Σ) in PSL(n,R), as the space of cross ratios on ∂∞π1(Σ) satisfying
an extra functional identity the form of which depends on n. Unfortunately, for
n ≥ 3 the pant gap function Gb is no longer only determined by the monodromies
of three boundary components of the pants: it also depends on “internal parame-
ters” which we describe in the following paragraphs.

1.6. Hitchin representation for open surfaces. In a series of articles [8], [6]
and [7], the first author has shown that Hitchin representations are discrete and
faithful, that every non trivial element is purely loxodromic. V. Fock and A. Gon-
charov [4] introduced coordinates – actually (n!)3 set of coordinates – to describe
a moduli space related to Hitchin representations which are far reaching general-
izations of Thurston’s shear coordinates. We then show that for a suitable choice
of coordinates, the pant gap function has a nice expression. On the other hand,
using a computer algebra software and the explicit description of the holonomies
given by V. Fock and A. Goncharov in [5], we show that even in the case of n = 3,
the pant gap function has a very complicated expression.

1.7. Possible applications and conclusion: Using her identities, M. Mirza-
khani gives a recursive formula for the volume of moduli space of hyperbolic struc-
ture, i.e the quotient of Teichmüller space by the mapping class group. From the
work of the author in [6], it follows that the mapping class group acts properly on
the moduli space of Hitchin representations. It is quite possible that the formula
obtained in Theorem 1 combined with the use of Fock-Goncharov coordinates can
help to compute geometric quantities associated to the corresponding quotient.
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However the volume is not the right thing to compute since for n ≥ 3, one can
show it is infinite.

We conclude by saying that it is a striking fact that so many of the familiar
ideas from the world of hyperbolic geometry translate naturally to the world of
Hitchin representations. So much so that one is tempted to call the latter a higher
(rank) Thurston theory.
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Foliated projective structures and the Hitchin component for

PSL(4,R)

Anna Wienhard

(joint work with Olivier Guichard)

Let Σ be a connected oriented closed surface of genus g ≥ 2. The Teichmüller
space T (Σ) can be realized as the space of hyperbolic structures

T (Σ) = {(M, f) hyperbolic structure on Σ}/ ∼,

where a hyperbolic structure (M, f) consists of a hyperbolic surface M and an
orientation preserving homeomorphism f : Σ → M . Two hyperbolic structures
(M, f) and (M ′, f ′) on Σ are said to be equivalent, (M, f) ∼ (M ′, f ′), if there
exists an isometry i : M →M ′ such that i ◦ f is isotopic to f ′.
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Associating to a hyperbolic structure (M, f) the holonomy homomorphism f∗ :
π1(Σ) → π1(M) < PSL(2,R) defines an embedding of the Teichmüller space into
the space of representations

T (Σ) ⊂ Hom(π1(Σ),PSL(2,R))/PSL(2,R).

The image is a connected component which is homeomorphic to R6g−6 and consists
entirely of discrete and faithful representations.

In [4] Hitchin discovered a special connected component, the ”Teichmüller com-
ponent”, in Hom(π1(Σ),PSL(n,R))/PSL(n,R). He showed that the Teichmüller
component, now usually called “Hitchin component”, is diffeomorphic to a ball of
dimension (2g − 2)(n2 − 1). Recently, Labourie [5] proved that the Hitchin com-
ponent consists entirely of discrete and faithful representation which in addition
are loxodromic.

Considering the nice properties of representations in the Hitchin component it is
natural to ask whether there is a moduli space of geometric structures realizing the
Hitchin component. We show in [3] that the Hitchin component for PSL(4,R) can
indeed be interpreted as moduli space of certain locally homogeneous geometric
structures.

Theorem 1. The Hitchin component for PSL(4,R) is naturally homeomorphic to
the moduli space of (marked) properly convex foliated projective structures on the
unit tangent bundle of Σ.

Convex foliated projective structures are locally homogeneous
(PSL(4,R),RP3)-structures on the unit tangent bundle M of the surface Σ sat-
isfying the following additional conditions:

• every orbit of the geodesic flow on M is locally a projective line,
• every stable leaf of the geodesic flow is locally a projective plane and the

projective structure on the leaf obtained by restriction is convex.

There is a natural map from the moduli space of projective structures to the
variety of representation π1(M) → PSL(4,R). The restriction of this map to
the moduli space of properly convex foliated projective structures is a homeomor-
phism onto the Hitchin component; in particular, the holonomy representation
of a properly convex foliated projective structure factors through the projection
π1(M) → π1(Σ).

Our result relies on the following geometric characterization of representations
inside the Hitchin component of PSL(n,R).

Theorem 2 (Labourie [5], Guichard [2]). A representation ρ : π1(Σ) → PSL(n,R)
lies in the Hitchin component if and only if there exists a continuous ρ-equivariant
convex curve ξ : ∂π1(Σ) → RPn−1.

A curve ξ : ∂π1(Σ) → RPn−1 is said to be convex if for every n-tuple of pairwise
distinct points in ∂π1(Σ) the corresponding lines are in direct sum. Convex curves
into RP2 are exactly injective maps whose image bounds a strictly convex domain
in RP2.



Differentialgeometrie im Grossen 1903

It is easy to prove that the existence of such a curve for PSL(2,R) implies that
the representation is in the Teichmüller space. Let us indicate how this character-
ization implies a result of S. Choi and W. Goldman [1] that the representations in
the Hitchin component for PSL(3,R) are precisely the holonomy representations
of convex real projective structure on Σ.

A convex real projective structure on Σ is a pair (N, f), where N is a convex real
projective manifold, that is N is the quotient Ω/Γ of a strictly convex domain Ω in
RP2 by a discrete subgroup Γ of PSL(3,R), and f : Σ → N is a diffeomorphism.
Given a representation ρ : π1(Σg) → PSL(3,R) in the Hitchin component for

PSL(3,R), let Ωξ ⊂ RP2 be the strictly convex domain bounded by the convex

curve ξ1(∂π1(Σ)) ⊂ RP2. Then ρ(π1(Σ)) is a discrete subgroup of the group of
Hilbert isometries of Ωξ and hence acts freely and properly discontinuously on Ωξ.
The quotient Ωξ/ρ(π1(Σ)) is a real projective convex manifold, diffeomorphic to Σ.
Conversely given a real projective structure on Σ, we can ρ-equivariantly identify
∂π1(Σ) with the boundary of Ω and get a convex curve ξ1 : ∂π1(Σ) → ∂Ω ⊂ RP2.

To associate a geometric structure to a representation ρ : π1(Σ) → PSL(4,R)
lying in the Hitchin component we consider domains of discontinuity for the action
of ρ(π1(Σ)) on RP3, similar to Ωξ for PSL(3,R). For this it is useful to consider

the surface ∆ formed by the tangent lines of the convex curve ξ : ∂π1(Σ) → RP3.
The complement RP3 − ∆ decomposes into two connected components Ω and Λ.
The action of ρ(π1(Σ)) on Ω and on Λ is properly discontinuous. The quotient
Ω/ρ(π1(Σ)) is a projective manifold homeomorphic to the unit tangent bundle M
of Σ and induces a properly convex foliated projective structure on M .

This construction gives rise to a map from the Hitchin component to the mod-
uli space of properly convex foliated structures on M . The proof of the converse
direction is more involved. Starting with a properly convex foliated projective
structure on M we construct an equivariant convex curve and show that the pro-
jective structure is obtained by the above construction.

We expect that the interpretation of the Hitchin component for PSL(4,R) in
terms of geometric structures can be used to obtain Fenchel-Nielsen type coordi-
nates for the Hitchin component. We also hope that the geometric description will
be helpful to understand the structure of the quotient of the Hitchin component
by the mapping class group. Conjecturally this quotient is a vector bundle over
the Riemannian moduli space. For PSL(3,R) this was proven by Labourie [6] (see
also Loftin [7]) using the geometric description of Choi and Goldman.
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Obstructions to positive scalar curvature using codimension 2
submanifolds

Thomas Schick

(joint work with Bernhard Hanke)

Let M be a closed smooth spin manifold of dimension m. There are important
obstructions to the existence of a Riemannian metric with positive scalar curvature
on M , based on the Dirac operator, the Weitzenböck formula and index theory.

Gromov and Lawson define a particular such obstruction, based on submanifolds
of codimension 2, which applies in particular to circles in 3-manifolds:

Theorem 1 (Gromov/Lawson). Assume that M is an aspherical closed spin man-
ifold, N ⊂ M is a submanifold of codimension 2 with trivial normal bundle and
π1(N) injects into π1(M) as a proper subgroup.

If N is enlargeable, then M does not admit a metric with positive scalar curva-
ture.

Here, by definition a manifold is enlargeable, if it admits a sequence of coverings
Mk, together with maps fk : Mk → Sn which have non-zero degree but are 1/k-
contracting (i.e. the differential at every point has norm ≤ 1/k, for metrics which
are pulled back from a fixed Riemannian metric on M).

On the other hand, a very powerful obstruction among the “Dirac operator
obstructions” is the K-theoretic index in the (real) K-theory of the (real) maximal
C∗-algebra of the fundamental group, αmax(M) ∈ KOm(C∗

maxπ1(M)), a certain
completion of the group ring Rπ1M , constructed in [8, 6, 7].

Question: How much information is contained in αmax(M). In particular, what
is the relation between the codimension 2-obstructions and α(M). Is α(M) 6= 0
for manifolds to which the codimension-2-method applies?

The goal of the talk is, to present a generalization of the theorem of Gromov-
Lawson, which at the same time is much more in the spirit of the index theory
obstruction α(M). However, this new formulation is still not strong enough to
give an answer to the question above.

Theorem 2. Assume that W ⊂M is a submanifold of codimension 0 with bound-
ary ∂M . Assume furthermore

(1) π0(∂W ) = 0
(2) π2(M) = 0
(3) π1(W ) →֒ π1(M) is injective, but the image has infinite index in π1(M).
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(4) For i∗ : π1(∂W ) → π1(W ), the composition ker(i∗) →֒ π1(∂W ) → H1(∂W )
is injective.

In this situation, if scalM > 0, then the Rosenberg index

ind(D∂W,C∗π1∂W ) = 0 ∈ K∗(C
∗π1(∂W )).

Given N and M as in the theorem of Gromov-Lawson (and N connected), we
let W be the closed normal bundle of N , i.e. W ∼= N ×D2, with ∂W = N × S1.
Then all the conditions are satisfied, and therefore the result of Gromov-Lawson
is a special case of our theorem.

We now outline the proof of the theorem.
First, let p : M →M be the covering ofM with fundamental group π1(W ). This

implies that the inverse image p−1(W ) is the disjoint union π1(M)/π1(W ) ×W
(note that the covering will in general not be a normal covering with transitive
action of the deck transformation group on the fibers). Fix one component/copy
{1} ×W ⊂M of p−1(W ), and set X := M \ {1} ×W . Consequently, ∂X = ∂W .

Lemma 3. The inclusion induces a split injection π1(∂W ) →֒ π1(X).

Consider now the manifold Y := X ∪∂W X. By the van Kampen theorem and

the above Lemma, we again have a split injection π1(Y ) →֒ π1(∂W )
s
−→ π1(∂W ),

the split being compatible with both inclusions X →֒ Y .
We put a complete Riemannian metric on Y by lifting the metric of M and

smoothing out in a (compact) neighborhood of ∂W . In particular, if M has a
metric with scal > 0, then the scalar curvature of Y is uniformly positive outside
a compact neighborhood of ∂W .

Using a suitable twist bundle for the Dirac operator on Y and a suitable coarse
C∗-algebra C∗(Y , π), we define a Roe index

ind(DY ,π) ∈ K∗(C
∗(Y , π)).

This is inspired by [5].
If the Riemannian metric on Y has uniformly positive scalar curvature outside

a compact subset of Y , then ind(DY ,π) = 0

Theorem 4. In the given twisted situation, there is a partitioned manifold index
theorem (like in [5]), with a (boundary) map K∗(C

∗(Y , π)) → K∗−1(C
∗π) given

by the partition, and this map sends ind(DY ,C∗π) to ind(D∂W , C∗π).

Under our conditions on the homotopy groups, j∗π = π1(∂W ), so that the
image under the boundary map is exactly the Mishchenko-Fomenko index

ind(D∂W,π1(∂W )) ∈ K∗−1(C
∗π1(∂W )).

As a corollary, if N is a closed spin manifold with ind(DN , π1(N)) 6= 0 ∈
K∗−2(C

∗π1(N)) then no N -bundle over a surface different from S2 or RP 2 admits
a Riemannian metric with scal > 0.

By the prove of the stable Gromov-Lawson-Rosenberg conjecture due to Stephan
Stolz [10], a manifold with α(M) = 0 but to which the obstruction of our main
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theorem would apply is a counterexample to the strong Novikov conjecture, and
therefore is probably hard to come by, a counterexample to the unstable conjecture
like [9, 1] can never work.

Other index theoretic obstructions to positive scalar curvature based on en-
largeability indeed are contained in α(M), as is shown in [3, 4, 2].
Question.

(1) Is it possible to work with submanifolds of even higher codimension (us-
ing more conditions on the ambient manifold, e.g. on vanishing of higher
homotopy groups)?

(2) In some sense, the proof of the theorem uses the ends of suitable coverings
of the manifold in question and pins down the obstruction to positive scalar
curvature near those. One should try to formalize this and consider this
approach much more systematically.

References

[1] William Dwyer, Thomas Schick, and Stephan Stolz. Remarks on a conjecture of Gromov
and Lawson. In High-dimensional manifold topology, pages 159–176. World Sci. Publishing,
River Edge, NJ, 2003.

[2] Bernhard Hanke, Dieter Kotschick, John Roe, and Thomas Schick. Coarse topology, en-
largeability, and essentialness. arXiv:0707.1999.

[3] Bernhard Hanke and Thomas Schick. Enlargeability and index theory. J. Differential Ge-
ometry, 74(2):293–320, 2006. arXiv:math.GT/0403256.

[4] Bernhard Hanke and Thomas Schick. Enlargeability and index theory: infinite covers.
arXiv:math.GT/0604540, to appear in K-theory, 2006.

[5] John Roe. Lectures on coarse geometry, volume 31 of University Lecture Series. American
Mathematical Society, Providence, RI, 2003.

[6] J. Rosenberg. C∗-algebras, positive scalar curvature and the Novikov conjecture. II. In
Geometric methods in operator algebras (Kyoto, 1983), volume 123 of Pitman Res. Notes
Math. Ser., pages 341–374. Longman Sci. Tech., Harlow, 1986.

[7] Jonathan Rosenberg. C∗-algebras, positive scalar curvature, and the Novikov conjecture.

Inst. Hautes Études Sci. Publ. Math., (58):197–212 (1984), 1983.
[8] Jonathan Rosenberg. C∗-algebras, positive scalar curvature, and the Novikov conjecture.

III. Topology, 25(3):319–336, 1986.
[9] Thomas Schick. A counterexample to the (unstable) Gromov-Lawson-Rosenberg conjecture.

Topology, 37(6):1165–1168, 1998.
[10] Stephan Stolz. Manifolds of positive scalar curvature. In Topology of high-dimensional mani-

folds, No. 1, 2 (Trieste, 2001), volume 9 of ICTP Lect. Notes, pages 661–709. Abdus Salam
Int. Cent. Theoret. Phys., Trieste, 2002.



Differentialgeometrie im Grossen 1907

Localization of Perelman’s reduced volume monotonicity

Klaus Ecker

(joint work with Dan Knopf, Lei Ni and Peter Topping ([EKNP]))

We consider a time-dependent Riemannian manifold ((M, g(t)) (closed or com-
plete) satisfying

∂g

∂t
= 2h

and two functions u,Ψ : M × I → R.
For r > 0 we denote by Er the set in M × I where Ψ > r−n. We prove that if

the functions u and Ψ satisfies certain conditions which ensure that all expressions
appearing below are well-defined such as for instance relative compactness of the
sets Er for small enough r then the following formula holds:

d

dr

(
1

rn

∫

Er

(
|∇ log Ψ|2 − (trgh) log(rnΨ)

)
u dµt dt

)

= −
n

rn+1

∫

Er

(
log(rnΨ)

(
∂

∂t
− ∆

)
u+ Ψ−1u

(
∂

∂t
+ ∆ + trgh

)
Ψ

)
dµt dt

Integrating with respect to r leads to a local mean value formula localising for
example representation formulas the solutions of the heat equation.

Admissible functions Ψ are for instance fundamental solutions for the backward
heat operator on time-dependent manifolds. This generalizes results of Watson
([W]), Evans and Gariepy ([EG]) in the case of Euclidean space with the standard
metric and of Fabes and Garofalo ([FG]) in the case of Riemannian manifolds with
a fixed metric and for Ψ being the backward heat kernel.

In the case of mean curvature flow this formula was obtained in [E], localizing
Huisken’s monotonicity formula in [H]. The above formula also applied to Ricci
flow, that is for h = −Ric so that trgh = −R, the scalar curvature of g. In fact,
let ℓ be Perelman’s space-time distance function see [P] with respect to some base
point (x0, t0) ∈M × I. The quantity

Ψ = v =
e−ℓ

(4πτ)
n
2

then satisfies the inequality

(
∂

∂t
+ ∆ −R

)
v ≥ 0.

Inserting this and u ≡ 1 into the above formula leads to a local version of
Perelman’s reduced volume monotonicity formula. Moreover, taking as u the scalar
curvature which satisfies the equation
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(
∂

∂t
− ∆

)
R = 2|Ric|2

we obtain (after integration with respect to r) the Harnack type inequality

R(x0, t0) ≥
1

rn

∫

Er

(
|∇ℓ|2 +R log(rnv)

)
dµt dt

+

∫ r

0

2n

sn+1

∫

Es

log(snv)|Ric|2 dµt dt ds

as long as R ≥ 0 in the set Er = {log(rnv) > 0}.
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