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Abstract. Various scientific models demand finer and finer resolutions of
relevant features. Paradoxically, increasing computational power serves to
even heighten this demand. Namely, the wealth of available data itself be-
comes a major obstruction. Extracting essential information from complex
structures and developing rigorous models to quantify the quality of informa-
tion leads to tasks that are not tractable by standard numerical techniques.
The last decade has seen the emergence of several new computational method-
ologies to address this situation. Their common features are the nonlinearity

of the solution methods as well as the ability of separating solution character-
istics living on different length scales. Perhaps the most prominent examples
lie in multigrid methods and adaptive grid solvers for partial differential equa-
tions. These have substantially advanced the frontiers of computability for
certain problem classes in numerical analysis. Other highly visible examples
are: regression techniques in nonparametric statistical estimation, the de-
sign of universal estimators in the context of mathematical learning theory
and machine learning; the investigation of greedy algorithms in complexity
theory, compression techniques and encoding in signal and image processing;
the solution of global operator equations through the compression of fully
populated matrices arising from boundary integral equations with the aid of
multipole expansions and hierarchical matrices; attacking problems in high
spatial dimensions by sparse grid or hyperbolic wavelet concepts.

This workshop proposed to deepen the understanding of the underlying
mathematical concepts that drive this new evolution of computation and to
promote the exchange of ideas emerging in various disciplines.
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Introduction by the Organisers

Complex scientific models like climate models, turbulence, fluid structure interac-
tion, and nanosciences, demand finer and finer resolution in order to increase reli-
ability. This demand is not simply solved by increasing computational power. In-
deed, higher computability even contributes to the problem by generating wealthy
data sets for which efficient organization principles are not available. Extracting
essential information from complex structures and developing rigorous models for
quantifying the quality of information is an increasingly important issue. This
manifests itself through recent developments in various areas. Examples include
regression techniques such as projection pursuit in stochastic modeling, the inves-
tigation of greedy algorithms in complexity theory, or compression techniques and
encoding in signal and image processing. Further representative examples are the
compression of fully populated matrices arising from boundary integral equations
through concepts like multipole expansions, panel clustering or, more generally,
hierarchical matrices, and adaptive solution techniques in numerical simulation
based on continuous models such as partial differential or integral equations.

The mathematical methods emerging to address these problems have several
common features including the nonlinearity of the solution methods as well as the
ability of separating solution characteristics living on different length scales. Hav-
ing to deal with the appearance and interaction of local features at different levels
of resolution has, for instance, brought about multigrid methods as a key method-
ology that has advanced the frontiers of computability for certain problem classes
in numerical analysis. In fact, the separation of frequencies plays an important role
in preconditioning linear systems arising from elliptic partial differential equations
so that the corresponding large scale systems could be solved with discretization
error accuracy optimally in linear time.

A related but different concept for managing the interaction of different length
scales centers on wavelet bases and multilevel decompositions. In the very spirit
of harmonic analysis they allow one to decompose complex objects into versatile
and simple building blocks that again support analyzing multiscale features.

While this ability was exploited first primarily for treating explicitly given ob-
jects, like digital signals and images or data sets, the use of such concepts for
recovering also implicitly given objects, like solutions of partial differential or
boundary integral equations, has become a major recent focus of attention. The
close marriage of discretization, analysis and the solution process based on adaptive
wavelet methods has led to significant theoretical advances as well as new algorith-
mic paradigms for linear and nonlinear stationary variational problems. Through
thresholding and best N -term approximation based on wavelet expansions, con-
cepts from nonlinear approximation theory and harmonic analysis become prac-
tically manageable. In our opinion, these ideas open promising perspectives not
only for signal and image processing but also for the numerical analysis of differ-
ential and integral equations covering, in particular, such operator equations with
stochastic data.
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These two research areas have developed relatively independently of one an-
other. Our first Oberwolfach Workshop ‘Wavelet and Multiscale Methods’ held
in July 2004 sought to bring various disciplines utilizing multiscale techniques
together by inviting leading experts and young emerging scientists in areas that
rarely interact. That workshop not only accelerated the advancement of nonlinear
and multiscale methodologies but also provided beneficial cross fertilizations to an
array of diverse disciplines which participated in the workshop, see the Oberwol-
fach Report 34/2004. Among the several recognizable outcomes of the workshop
were: (i) the emergence of compressed sensing as an exciting alternative to the tra-
ditional sensing-compression paradigm, (ii) fast online computational algorithms
based on adaptive partition for mathematical learning, (iii) clarification of the role
of coarsening in adaptive numerical methods for PDEs.

The workshop Wavelet and Multiscale Methods organised by Albert Cohen
(Paris), Wolfgang Dahmen (Aachen), Ronald A. DeVore (Columbia) and Angela
Kunoth (Bonn) was held July 29th – August 4th, 2007. This meeting was well
attended with over 50 participants with broad geographic representation from all
continents. It was a nice blend of researchers with various backgrounds described
in the following.

Compressed sensing, as being developed by Candes, Donoho, Vershynin, Gil-
bert, Strauss, and others advocates a fascinating alternative to the usual sensing
and compression methodology. The classical model of limited bandwidth is re-
placed by sparsity models and the role of traditional sampling is played by sensing
functionals that are typically based on random vectors. One can then prove that
under certain circumstances by far fewer observations are needed to record all the
information required to encode sparse signals. Adaptive methods for numerically
solving a wide range of equations with proven optimality (in terms of the number
of computations needed to achieve a prescribed error tolerance) originally involved
coarsening procedures. The necessity of such coarsening was brought into ques-
tion at the previous workshop and subsequent work of Stevenson has shown that
it is possible to avoid coarsening for scalar elliptic problems through cautious bulk
chasing.

As in the previous workshop, the participants are experts in areas like non-
linear approximation theory (e.g., DeVore, Temlyakov), statistics (e.g., Picard,
Kerkyacharian), finite elements (e.g., Braess, Oswald, Xu), multigrid methods
(e.g., Braess, Hackbusch), spectral methods (e.g., Canuto), harmonic analysis and
wavelets (e.g., Cohen, Daubechies, Petrushev, Schneider, Stevenson), numerical
fluid mechanics (e.g., Süli), conservation laws (e.g., Tadmor) or systems of sta-
tionary operator equations (e.g., Dahmen, Kunoth, Schwab). One of the main
objectives of this workshop was to foster synergies by the interaction of scientists
from different disciplines resulting in more rapid developments of new methodolo-
gies in these various domains. It also served to bridge theoretical foundations with
applications.
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Examples of conceptual issues that were advanced by the workshop were: con-
vergence theory for adaptive multilevel methods for high-dimensional PDEs; ex-
tension of fast solution methods such as multigrid and multiscale methods to more
complex models such as control problems involving partial differential equations,
and partial differential equations with stochastic data; adaptive multiscale meth-
ods for coupled systems involving partial differential and integral equations; incor-
porating anisotropy in analysis, estimation, compression and encoding; adaptive
treatment of nonlinear and time–dependent variational problems; interaction of
different scales under nonlinear mappings, e.g., for flow problems and for prob-
lems with stochastic data.

We feel that our workshop propelled further advancement of several emerging
areas: the numerical aspects of complete sensing including stability and optimal-
ity; deterministic methods for complete sensing based on coding theory; the design
and analysis of universal estimators in nonparametric statistical estimation and
machine learning — nonlinear multiscale techniques may offer much more efficient
alternatives to schemes based on complexity regularization; solution concepts for
problems of high spatial dimension by utilizing anisotropy, for instance, in math-
ematical finance, in quantum chemistry and electronic structure calculations.

In summary, we find that the conceptual similarities that occur in these diverse
application areas suggested a wealth of synergies and cross-fertilization. These
concepts are in our opinion not only relevant for the development of efficient so-
lution methods for large scale problems but also for the formulation of rigorous
mathematical models for quantifying the extraction of essential information from
complex objects.
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Approximation and Interpolation by Power Series with ±1 Coefficients . 2105

Wolfgang Hackbusch
Convolution of hp-Functions on Locally Refined Grids . . . . . . . . . . . . . . . . 2107

Helmut Harbrecht (joint with Reinhold Schneider and Christoph Schwab)
Sparse Second Moment Analysis for Elliptic Problems in Stochastic
Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2111

Gitta Kutyniok (joint with S. Dahlke, T. Sauer, G. Steidl and G. Teschke)
Shearlets: A Wavelet-Based Approach to the Detection of Directional
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2113

Peter Oswald (joint with S. Harizanov)
Nonlinear Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2117

Roland Pabel
Wavelet Methods for PDE-Constrained Elliptic Control Problems with
Dirichlet Boundary Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2120



2084 Oberwolfach Report 36/2007

Pencho Petrushev (joint with George Kyriazis and Yuan Xu)
Decomposition of Weighted Besov and Triebel-Lizorkin Spaces and
Nonlinear Approximation on the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2124

Dominique Picard (joint with P. Baldi, G. Kerkyacharian and D. Marinucci)
Needlets on the Sphere and Applications to the Cosmological Microwave
Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2127

Bojan Popov (joint with Jean-Luc Guermond)
L1 Approximation of Hamilton-Jacobi Equations . . . . . . . . . . . . . . . . . . . . 2129

Holger Rauhut (joint with Götz Pfander and Jared Tanner)
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Abstracts

Reliable A Posteriori Error Estimates by the Hypercircle Method

Dietrich Braess

(joint work with Joachim Schöberl)

The talk is concerned with a posteriori error estimates for finite element solutions
of elliptic differential equations. Specifically we want upper estimates that have
no generic constant in the main term. For convenience, we restrict ourselves here
to the Poisson equation in a two-dimensional domain Ω,

(1)
−∆u = f in Ω,

u = 0 on ∂Ω

and to linear elements on a partition Th of Ω into triangles. Here the mixed method
for the Poisson equation will also be important

(2)
σ = ∇u in Ω,

div σ = −f in Ω,
u = 0 on ∂Ω.

A flux σ which satisfies the second equation in (2) is called equilibrated. The point
of departure is the following theorem. ΓD and ΓN are the parts of the boundary
with Dirichlet and Neumann boundary conditions, respectively. All norms are L2

norms.

Theorem of Prager and Synge (Two-Energies-Principle).
Let σ ∈ H(div), σ · n = 0 on ΓN
while v ∈ H1(Ω), v = 0 on ΓD and assume that

(3) div σ + f = 0.

Furthermore, let u be the solution of the Poisson equation. Then,

(4) ‖∇u−∇v‖2 + ‖∇u− σ‖2 = ‖∇v − σ‖2.

There is much freedom in choosing v and σ. We also find the name hypercircle
method in connection with the theorem. We emphasize that it is not restricted to
the Poisson equation. We will refer to some other elliptic problems for which there
are also theorems of Prager–Synge type, at the end of this abstract.

Let v = uh be a finite element solution for which an a posteriori estimate
is wanted. The crucial step is the construction of an equilibrated flux σ. In
contrast to Neittaanmäki and Repin [8] we perform the construction by computing
a correction σ∆ := σ−∇uh to the given gradient of uh, i.e., we use the information
that we have a finite element solution.

Following [5] the computation will be performed for the broken Raviart–Thomas
space of lowest order

RT −1 := {τ ∈ L2(Ω); τ |T = aT + bTx, aT ∈ Rd, bT ∈ R ∀T },
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and the triangulation is the same as that for which the finite element solution was
computed. The subspace of functions with continuous normal components is the
usual space

RT 0 := RT −1 ∩H(div).

Furthermore we denote the space of piecewise linear functions by M0.
The first step of the construction brings a separation of the data oscillation.

Given f on the right-hand side of (1), let f̄ be the piecewise constant function
which results from the L2 projection of f . The quantity

ch‖f − f̄‖
is called the data oscillation. It reflects the error if f is replaced in (1) by f̄ , and it
is found in most a posteriori error estimates. Since it is a term of higher order, we
admit here a generic constant. Moreover, c depends only on the shape parameter
of the triangulation.

Now we make an excursion to the mixed method by Raviart–Thomas

(5)
(σh, τ) + (div τ, wh) = 0 ∀τ ∈ RT 0

(div σh, v) = −(f̄ , v) ∀v ∈ M0.

Note that σh is a piecewise linear function. Therefore, div σh is piecewise constant
as well as f̄ is by definition. Since we also test with functions in M0, it follows
that

(6) div σh = −f
holds in the classical sense. In particular σh is equilibrated. It is easy to show
that σh is even the equilibrated function in RT 0 for which ‖σ−∇uh‖ is minimal.

The computation of the solution of (5), however, is considered as too expensive
for an a posteriori error estimation. Fortunately there is a cheap local procedure
that provides a suitable approximation.

Consider a vertex V of the triangulation Th and let ωV denote the patch of
triangles around V :

ωV :=
⋃

V ∈T̄
T .

The nodal basis function ϕV with ϕV (V ) = 1 and support ωV is inserted into the
finite element equation

∫

ωV

∇uh · ∇ϕV =

∫

ωV

fϕV .

By partial integration we see that the left-hand side equals
∑

E⊂ωV

∫
E

[∇uh ·n]ϕV .

We recall that div σ = −f̄ is the aim. Since all factors in the integrals are now
piecewise linear or piecewise constant, we conclude that in the 2-dimensional case

1

2

∑

E⊂ωV

[∇uh · n]E |E| =
1

3

∑

T⊂ωV

div σT |T | .

For this reason, we can shift one half of the jumps of ∇uh ·n to obtain a Raviart–
Thomas function σωV

with one third of the required divergence in all triangles of
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the patch. The algorithmic implementation for problems in 2-space has a simple
geometric interpretation and is described in [4]. Otherwise merely small systems
of algebraic equations have to be solved.

By repeating the procedure on all patches ωV for all vertices V , we encounter
each edge twice and each triangle three times. Hence, the sum σ∆ :=

∑
V σωV

yields a function σ := ∇uh + σ∆ with div σ = −f̄ . Now the theorem of Prager
and Synge provides the guaranteed estimate

(7) ‖∇u−∇uh‖ ≤ ‖σ∆‖ + ch‖f − f̄‖ .

This is the required upper estimate. The equivalence of the expression on the
right-hand side of (7) with the residual estimator implies that the new estimator
is not only reliable but also efficient.

We will comment on the differences to similar procedures in the literature and
note that small changes may have much impact on the computing effort. Moreover,
applications to quite different elliptic problems will be listed (without saying how
our variant has to be adapted). We emphasize that often the connection between
papers on this topic is not recognized at first glance, if the theorem of Prager and
Synge, the hypercircle method, and the two-energies-method are not mentioned.
Because of the lack of space, we will cite explicitly only one representer of closely
related research.

Remarks.
1. The inequality (7) is written as an estimator for uh, although it follows from

(4) that the error of the mixed method by Raviart–Thomas on the same grid is also
included. A comparison of the error of linear elements and of the Raviart–Thomas
elements can be derived from this fact [4].

2. There is a strong similarity with the error estimators by local Neumann
problems [2]. The construction in [2], however, is performed in infinite dimensional
spaces. Moreover, the normal components of the equilibrated fluxes on edges are
linear functions.

3. The construction of equilibrated fluxes in [6] refer to finer grids. The treat-
ment of estimators for the Lamé equation in [9] is closer to our concept.

4. The approach of Repin (see, e.g., [8]) is directed to arbitrary approximate
functions with respect to the elliptic problem, and their origin is not used for the
construction. The latter is therefore more expensive.

5. Edge elements and the equations of magnetostatics are easily treated in the
framework of the two-energies-principle [5].

6. A theorem of Prager–Synge type can be formulated for variational inequali-
ties as found in obstacle problems or contact problems. An implementation with-
out extra terms, however, is restricted to active sets with some regularity; see, e.g.,
[11].

7. When the theorem of Prager and Synge and (4) are applied for estimating
finite element solutions of the mixed method, the construction proceeds in the
opposite direction. Now the other term on the left-hand side of (4) must not be
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too large. For this reason quadratic elements and not merely linear elements are
used in [1].

8. The two-energies-principle has also been applied on the continuous level in
order to justify or discard plate models [3, 7]. Admissible functions for the mixed
method in 3-space are constructed from the solutions in the lower dimensional
spaces.
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Multilevel Preconditioners for one Discontinuous Galerkin Method

Martin Campos Pinto

(joint work with Kolja Brix and Wolfgang Dahmen)

One major advantage of DG Finite Element schemes is the great freedom allowed
in the design of the trial spaces, due to the complete lack of constraint between
two neighboring elements. In this work, we consider the situation where we want
to solve an elliptic model problem, say: find u ∈ H1

0 (Ω) such that

(1) a(u, v) := 〈A∇u,∇v〉 + 〈bu, v〉 = 〈f, v〉, v ∈ H1
0 (Ω),

A being a s.p.d. 2× 2 matrix and b some nonnegative bounded function, using as
trial functions discontinuous piecewise polynomials of variable order. Thus we set

Vh := Pk(Th) = {v ∈ L2 : vT ∈ Pk(T ), ∀T ∈ Th},
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where Th denotes a (possibly) non-conforming and highly non-uniform mesh ob-
tained by recursive refinements of some coarse initial triangulation of a bounded
polygonal Ω ⊂ R2. Thereby, k = k(T ) resp. h = h(T ), T ∈ Th, should be seen as a
piecewise constant function on Ω representing the maximal degree of the elements
on the triangle T , resp. the diameter of T . On such trial spaces, the Symmetric
Interior Penalty Galerkin method introduced in the early 1970s reads as follows,
see e.g. [1]: find uh ∈ Vh such that

(2) ah(uh, v) = 〈f, v〉, ∀v ∈ Vh

where the mesh dependent, symmetric bilinear form ah is given by

ah(v, w) :=
∑

K∈Th

a(v, w)K −
∑

e∈Eh

∫

e

(
{∇w} · [v] + {∇v} · [w]

)
+
∑

e∈Eh

γ

|e|

∫

e

[w] · [v],

denoting as usual by [·], resp. {·}, the jumps, resp. averages of piecewise smooth
(polynomial) functions across the edges. For sufficiently large γ, this method is
known to be well posed in Vh when equipped with the mesh dependent norm

(3) ‖|v‖|2h :=
∑

K∈Th

a(v, v)K +
∑

e∈Eh

1

|e| ‖[v]‖2
L2(e)

i.e. for any v and w in Vh we have

c‖|v‖|2h ≤ ah(v, v) and ah(v, w) ≤ C‖|v‖|h‖|w‖|h
(here and below, c and C denote generic constants independent of the mesh sizes
h). Less has been shown, however, about the efficiency of the method. In par-
ticular, it is well known that -as it happens with conforming finite elements-
the condition number κ(AΦ) := ‖AΦ‖‖(AΦ)−1‖ of the stiffness matrix AΦ :=
(ah(φi, φk))i,k∈Ih

grows like h−2, h = inf{h(T ) : T ∈ Th} when Φh = {φi : i ∈ Ih}
is a standard nodal basis of Vh. Preconditioning of elliptic operators, of course,
has been thoroughly studied and in the conforming case, that is when the finite
element space is embedded in H1

0 (Ω), several multilevel methods have been devel-
oped which are asymptotically optimal, see e.g. [2], [6], [9], [7]. Optimal results
have also been obtained for certain classes of nonconforming elements (exclud-
ing DG), see e.g. [3], [10], [11]. We could summarize these findings as follows:
building an optimal preconditioner for (2) is closely related with finding a stable
splitting of the space Vh, which can either be a stable (e.g. wavelet-type) basis
Ψ = {ψλ : λ ∈ Λh} satisfying

c‖|v‖|2h ≤
∑

λ∈Λh

‖|dλψλ‖|2h ≤ C‖|v‖|2h for any v =
∑

λ∈Λh

dλψλ ∈ Vh,

in which case the preconditioner essentially consists in a change of basis, or more
generally a redundant stable splitting, i.e. a collection Sh = {Vγ : γ ∈ Γh} of
subspaces spanning Vh in such a way that

c‖|v‖|2h ≤ inf
vγ∈Vγ

v=
∑

γ∈Γh
vγ




∑

γ∈Γh

‖|vγ‖|2h



 ≤ C‖|v‖|2h
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holds for any v ∈ Vh. In this case an optimal preconditioner is obtained through
an additive Schwarz scheme based on the splitting, [9], [7].

Let us remind that in the case of conforming spaces, such (H1-)stable splittings
are very simple to build when the underlying triangulation Th is obtained by
recursive, shape regular refinements of some coarse T 0, and for sake of simplicity
we only consider piecewise affine elements, i.e. V ch := P1(Th) ∩H1

0 . In such cases
indeed, it is possible to define Th,j, j = 1, 2, . . . jh, as the successive unions of all
level j triangles that appear in the refinement history leading to Th, and N c

h,j as

the vertices of Th,j that lie in the interior of Ωh,j := ∪{T : T ∈ Th,j}. Next, for
every n ∈ N c

h,j we let φcj,n denote the standard nodal (piecewise affine) continuous
hat function at vertex n supported on the star of triangles in Th,j sharing n. The
multilevel collection of nodal bases

(4) Sch := {Span(φcj,n) : j = 1, 2, . . . jh, n ∈ N c
h,j}

is then a H1
0 -stable splitting of P1(Th) ∩H1

0 (Ω), see [7].
Clearly, the above described results apply in the DG setting, but up to now

no bases -or splittings- were known to be stable in the DG norm (3). Inspired by
the wavelet examples, we first tried to build stable bases possessing a multilevel
structure, i.e. for which any local refinement of the mesh entails in adding a few
functions to the basis, and found the following continuity constraint.
Theorem 1. If Ψh is a multilevel and DG-stable basis of Vh := Pk(Th), then it
contains one subset that is a stable basis of the conforming part Vh ∩H1

0 (Ω).
In particular, this means that a multilevel, stable Ψh must contain continuous

basis functions at any level, which is a rather bad news considering the full discon-
tinuous structure of Vh. Moreover, such a constraint complicates the construction
of a multilevel basis. Therefore we turned to redundant splittings, and found
the following result which holds as long as Th satisfies some grading (implying,
in particular, that every edge has at most one hanging point), see [4] for further
details.
Theorem 2. Let Φh be one standard nodal basis of Vh := Pk(Th). Then

Sh := Sch ∪ {Span(φi) : φi ∈ Φh}

is a DG-stable splitting of the full space Vh, Sch denoting the conforming splitting
of P1(Th) ∩H1

0 (Ω) introduced in (4).
It should be emphasized that these results match very well the theoretical frame-

work of the auxiliary space method and two-level techniques developed in [3], [10]
and [11] for nonconforming elements. In particular, this implies that the corre-
sponding additive Schwarz scheme solves the original problem (1) with a condition
number that is bounded independently of the mesh sizes h. We also found that
it is possible to build stable splittings with high order conforming parts, yielding
probably better robustness of the condition numbers with respect to the diffusion
coefficients.
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Instance Optimality in Compressed Sensing

Albert Cohen

(joint work with Wolfgang Dahmen and Ron DeVore)

The typical paradigm for obtaining a compressed version of a discrete signal rep-
resented by a vector x ∈ IRN is to choose an appropriate basis, compute the coef-
ficients of x in this basis, and then retain only the k largest of these with k < N .
If we are interested in a bit stream representation, we also need in addition to
quantize these k coefficients.

Assuming, without loss of generality, that x already represents the coefficients
of the signal in the appropriate basis, this means that we pick an approximation
to x in the set Σk of k-sparse vectors

(1) Σk := {x ∈ IRN : # supp(x) ≤ k},
where supp(x) is the support of x, i.e., the set of i for which xi 6= 0, and #A is the
number of elements in the set A. The best performance that we can achieve by
such an approximation process in some given norm ‖ · ‖X of interest is described
by the best k-term approximation error

(2) σk(x)X := inf
z∈Σk

‖x− z‖X .

This approximation process should be considered as adaptive since the indices of
those coefficients which are retained vary from one signal to another. On the other
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hand, this procedure is stressed on the front end by the need to first compute all of
the basis coefficients. The view expressed by Candès, Romberg, and Tao [2, 3] and
Donoho [5] is that since we retain only a few of these coefficients in the end, perhaps
it is possible to actually compute only a few non-adaptive linear measurements in
the first place and still retain the necessary information about x in order to build
a compressed representation. Similar ideas have appeared in data streaming see
e.g. [4, 6].

These ideas have given rise to a very lively area of research called compressed
sensing which poses many intriguing questions, of both a theoretical and practical
flavor. Here, we focus our interest on the question of just how well compressed
sensing can perform in comparison to best k-term approximation.

To formulate the problem, we are given a budget of n questions we can ask
about x. These questions are required to take the form of asking for the values
λ1(x), . . . , λn(x) where the λj are fixed linear functionals. The information we
gather about x can therefore by described by

(3) y = Φx,

where Φ is an n × N matrix called the encoder and y ∈ IRn is the information
vector. The rows of Φ are representations of the linear functionals λj , j = 1, . . . , n.

To extract the information that y holds about x, we use a decoder ∆ which is
a mapping from IRn → IRN . We emphasize that ∆ is not required to be linear.
Thus, ∆(y) = ∆(Φx) is our approximation to x from the information we have
retained. The main question that we want to address here is:

For a given norm ‖ · ‖X and k < N , what is the minimal value of n, for which
there exists an encoding-decoding pair (Φ,∆) such that

(4) ‖x− ∆(Φx)‖X ≤ C0σk(x)X ,

for all x ∈ IRN , with C0 a constant independent of k and N?

We shall say a pair (Φ,∆) satisfying (4) is instance optimal of order k with con-
stant C0 for the space X . In particular, we want to understand under what
circumstances the minimal value of n is roughly of the same order as k. We shall
see below that the answer to this question strongly depends on the norm X under
consideration.

The approximation accuracy of a compressed sensing matrix is determined by
the null space

(5) N = N(Φ) := {x ∈ IRN : Φx = 0}.
The importance of N is that if we observe y = Φx without any a-priori information
on x, the set of z such that Φz = y is given by the affine space

(6) F(y) := x+ N.

The importance of the null space for studying instance-optimality is expressed by
the following theorem of [1].
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Theorem 1. Given an n×N matrix Φ, a norm ‖ · ‖X and a value of k, then a
sufficient condition that there exists a decoder ∆ such that (4) holds with constant
C0 is that

(7) ‖η‖X ≤ C0

2
σ2k(η)X , η ∈ N.

A necessary condition is that

(8) ‖η‖X ≤ C0σ2k(η)X , η ∈ N.

The conditions (7) and (8) in this theorem essentially mean that no element in
the null space can have most of its X norm concentrated on 2k of its coordinates.
Theorem 1 can be used to characterize the amount of measurement n needed for
instance-optimality in specific norms. We give below the corresponding results in
the two cases X = ℓ1 and X = ℓ2 (see [1] for more detail).

Theorem 2. There exists pairs (Φ,∆) which are instance optimal of order k
for the space ℓ1, provided that k ≤ cn log(N/n) where c is a fixed constant.

Concrete example of such pairs are produced by matrices Φ which satisfies the
so-called restricted isometry property of order 3k

(9) (1 − δ)‖x‖2
ℓ2 ≤ ‖Φx‖2

ℓ2 ≤ (1 + δ)‖x‖2
ℓ2 , x ∈ Σ3k,

with δ < (
√

2 − 1)2/3, and by the decoder ∆ defined by ℓ1 minimization

(10) ∆(x) := Argminz∈F(y)‖z‖ℓ1.
It is known that matrices which satisfy (9) exists provided that k ≤ cn log(N/n)
with c = c(δ), however all known constructions are so far based on probabilities,
i.e. by proving that (9) holds with high probabiliy for certain classes random ma-
trices. Typical examples are when the entries of Φ are i.i.d. Bernoulli variables
±1√
n

or Gaussians of variance 1/n.

Theorem 3. If a pair (Φ,∆) is instance optimal of order k = 1 with constant C0

for the space ℓ2, then necessarily n ≥ c0N with c0 = 1
C2

0
.

Theorem 3 shows that instance-optimality is not a viable concept in ℓ2 since even
with k = 1 a very large number of measurements might be necessary to achieve
the desired accuracy. It is yet possible to recover instance-optimality in ℓ2 with
a small number of measurements closer to k, if we accept a slightly weaker state-
ment involving probability. In such a statement, the matrix Φ is drawned from a
probability law such as i.i.d. Bernoulli variables ±1√

n
or Gaussians of variance 1/n

as entries.
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Theorem 4. Given any b > 0, there exists a c > 0 such that if k ≤ cn log(N/n),

there exists a decoder ∆ such that for all x ∈ IRN ,

(11) ‖x− ∆(Φx)‖ℓ2 ≤ C0σk(x)ℓ2

holds with probability larger than 1 − e−bn.

It should be noted that similar results of instance optimality involving probability
have been obtained in the theoretical computer science approach to compressed
sensing [4, 6]. In these approaches the matrix Φ is of a different nature than
Bernoulli or Gaussian. One specific interest of considering Gaussian matrices is
that they are invariant with respect to an orthonormal change of coordinates. This
allows us to perform the measurements on arbitrary signals which are known to be
well compressed in a common orthogonal basis. However, the decoder involved in
the proof of Theorem 4 does not have low algorithmic complexity. At the present
stage it is an open problem to find a fast decoder enjoying the same instance
optimality property.
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Adaptive Frame Schemes for Elliptic Operator Equations

Stephan Dahlke

(joint work with Massimo Fornasier, Thorsten Raasch, Rob Stevenson and
Manuel Werner)

The analysis of adaptive numerical schemes for operator equations is a field of
enormous current interest. Especially, it has also turned out that adaptive schemes
based on wavelets have several important advantages. The wavelet methodology
differs from other schemes in so far as one uses a Riesz basis Ψ = {ψλ}λ∈J for the
entire solution Hilbert space H of the given operator equation

(1) Lu = f,

where we assume that L : H → H ′ is a linear isomorphism of H onto its normed
dualH ′. Prominent examples which fit into this setting are linear elliptic boundary
value problems as well as boundary integral equations. Using the Riesz basis
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property of Ψ, it can be shown that (1) is equivalent to the infinite–dimensional
system

(2) Lu = f ,

where u and f are the wavelet coefficient arrays of the unknown solution u and
the right–hand side f , respectively, and L is the standard representation of L in
wavelet coordinates, see [2, 3] for details.

Since the operator L under consideration is usually defined on a bounded do-
main or a closed manifold Ω ⊂ Rd, a numerically stable construction of a wavelet
basis on Ω is needed. Although there are by now several construction methods
such as, e.g., [1, 6, 7], certain drawbacks such as a lack of numerical stability
and/or sufficiently high smoothness are often unavoidable. A possible way out is
to use a slightly weaker concept than Riesz bases, namely frames.

Definition 1. A frame for the Hilbert space X is a system Ψ = {ψλ}λ∈J ⊂ X

which satisfies the norm equivalence ‖g‖2
X h

∑
λ∈J

∣∣〈g, ψλ〉
∣∣2.

The first attempt to use frames for the adaptive discretization of (1) was made
in [8]. For several theoretical and practical reasons, we use the following class of
frames in X :

Definition 2. Let H ⊂ X ⊂ H ′ be a Gelfand triple. A frame Ψ = {ψλ}λ∈J ⊂ X
is called a Gelfand frame for the Gelfand triple H ⊂ X ⊂ H ′, if there exists
a Gelfand triple of sequence spaces ℓ ⊂ ℓ2(J ) ⊂ ℓ′, such that the operators

F ∗ : ℓ → H , c 7→ c⊤Ψ and F̃ : H → ℓ, g 7→ 〈g, Ψ̃〉 are bounded, where Ψ̃ is
the canonical dual frame of Ψ.

It has been shown in [4] how Gelfand frames can serve as an appropriate gener-
alization of Riesz bases in the numerical discretization of operator equations like
(1). More precisely, also in the Gelfand frame case it is possible to transform
(1) into an equivalent infinite–dimensional system of the form (2). Due to the
redundancy of the frame, the operator L will in general have a nontrivial kernel.
However, L is still boundedly invertible on its range ran(L), so that the frame
expansion of any coefficient array u solving (2) yields the unique solution u of (1).

In the spirit of [2, 3], the infinite–dimensional system (2) may be solved by a
simple iterative scheme

(3) u(n+1) = u(n) + αnr
(n),

with the residuals r(n) = f − Lu(n) and descent parameters αn = α (Richardson

method) or αn = 〈r(n),r(n)〉
〈Lr(n),r(n)〉 (steepest descent method), in both cases leading to

a uniform per–step error reduction in the energy norm. These ideal iterations
can be realized numerically by approximately applying L to the current finitely
supported iterands [2, 3]. Convergence and work/accuracy balance for the ap-
proximate Richardson and steepest descent iteration have been investigated [5].
In general, convergence and work/accuracy balance results in the frame case have
the following form, see [4, 8] for details:
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Theorem 1. Given a target accuracy ε, the algorithm under consideration stops
after a finite number of iterations and outputs a finitely supported coefficient
array uε such that

∥∥P(u− uε)
∥∥ ≤ ε, where P : ℓ2(J ) → ran(L) is the orthogonal

projector. Whenever u can be approximated by N terms with accuracy O(N−s),
then #suppuε and #flops to compute uε stay proportional to ε−1/s.
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Figure 1. Some steepest descent iterands and corresponding er-
rors for the Poisson equation example

In [4], an easy construction of Gelfand frames forH = Ht
0(Ω) was given, using an

overlapping decomposition Ω =
⋃n
i=1 Ωi with smoothly parametrized patches Ωi =

κi(�), � := (0, 1)d and a reference Riesz basis Ψ� ⊂ Ht
0(�). These Gelfand frames

allow the adaptive numerical treatment of linear elliptic boundary value problems
of order 2t with homogeneous Dirichlet conditions. As an example, the Poisson
equation −∆u = f on the L–shaped domain Ω := (−1, 0)×(−1, 1)∪(−1, 1)×(0, 1)
was solved numerically [5], taking the reentrant corner singularity as exact solution
u.

Moreover, since the Gelfand frames are obtained by aggregating local Riesz
bases Ψ(i) ⊂ Ht

0(Ωi), domain decomposition preconditioners such as multiplicative
and additive Schwarz methods can be realized in a straightforward fashion. For
example, the additive Schwarz method can be considered as a Richardson iteration
for the preconditioned system (2), i.e.

(4) M−1Lu = M−1f ,

where M = diag(L1, . . . ,Lm), and Li denotes the standard representation of L
with respect to Ψ(i). Thus, in order to perform a single iteration of such a method,
the operators Li have to be (approximately) inverted, thus on Ωi an elliptic prob-
lem has to be solved. One of the main advantages of such an approach is that,
depending on the structure of the algorithm at hand, the latter operations can be
performed in parallel. Furthermore, for the local solves on Ωi, efficient (adaptive)
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wavelet Galerkin methods can be applied, which exclusively work in the case of
discretizations with respect to wavelet bases.
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Multiscale Analysis of Vincent Van Gogh’s Paintings

Ingrid Daubechies

(joint work with Eugene Brevdo and Shannon Hughes)

This was a report on the analysis by the “Princeton Team” of 101 high defini-
tion gray value scans of paintings by Vincent Van Gogh and other artists, in the
framework of a workshop for Art Historians and Image Processors, held in May
2007 at the Van Gogh Museum in Amsterdam. This workshop was organized
by Professor Rick Johnson, Electrical Engineering Department at Cornell Univer-
sity. Two other image analysis teams also participated: one led by Professor Eric
Postma, Computer Science at the University of Maastricht, The Netherlands, and
another led by Professors James Wang, College of Informations Sciences and Jia
Li, Department of Statistics, Penn State University.

The Princeton researchers based their analysis on wavelet transforms of the
high resolution gray-level images. More precisely, they divided every painting in
rectangular patches of similar dimensions, 512 x 512 pixels wide (corresponding
to roughly 7.4 cm x 7.4 cm), and then computed the wavelet transform for each
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patch. They chose to work with a pair of complex wavelet filter banks, allowing
for 6 different orientations [1, 2].

Before computing the wavelet transform of each patch, they equalized the col-
lection of patches, so different patches had similar means and dynamic range in
gray level distribution.

To analyze the wavelet transforms of the patches, they modeled the distribution
of wavelet coefficients in every orientation and at every scale as a mixture of two
zero-mean gaussian distributions (one wide, one narrow), associated with a hidden
Markov tree, with two hidden states (one for each of the distributions). This
model is based upon the intuition that locations in the picture where sharp edges
are present correspond to wavelet coefficients that are of type W (for wide), i.e.
distributed according to the wide distribution at every scale (and thus admitting
quite large values); locations where the content depicted in the picture varies
smoothly correspond to wavelet coefficients of type N, i.e. distributed according
to the narrow distribution (so that all values are small). Less sharp edges can
correspond to a hidden state of type N for fine scale coefficients, switching to
W for coarser scales. Similar hidden Markov tree models have been successful
in distinguishing different textures in images [3]. The parameters of the hidden
Markov tree model included, for each scale and each orientation of the collection of
wavelet coefficients, the variances of the W and N distributions (for that scale and
orientation), the probability of switching from a coarser scale state W to state N at
that scale (and in that orientation), and the probability for the other switch, from
a coarser scale state N to state W. Once estimated by the EM algorithm, these
parameters were combined into a feature vector that characterized the wavelet
transform of each patch.

Machine learning algorithms showed that the features that dominated the clas-
sification between paintings by Van Gogh and other artists were mostly transition
probabilities from type N to type W (going from coarser to finer scales), linked to
orientation-dependent scale values. In other words, these features mostly identi-
fied the scales at which detail information ”emerges”, as one gradually zooms in,
in Van Gogh paintings more so than in non-Van Gogh paintings. These character-
istic scales turn out to be different for features in different directions; the relative
strength of details in each scale and orientation seems characteristic for Van Gogh’s
style. One can then define an ”essential m-feature vector”, by restricting to only
the m features dominant for classification. A ”similarity distance” between paint-
ings was defined by adding, for all pairings of a patch of one painting with a patch
of the other, the (possibly weighted) distance between their essential m-feature
vectors. Using a multidimensional scaling algorithm to arrange the paintings in
space in accordance with these pairwise distances, we found that a good separation
was obtained between paintings by Van Gogh and others in the dataset, even when
using as few as 2 features. Additionally, stylistically similar Van Gogh paintings
were found to tend to cluster in this analysis, with Van Gogh paintings that were
stylistically less typical tending toward non-Van Gogh regions; the results of this
analysis were therefore interpreted as a characterization of a painting’s style.
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However, it is also desirable to pinpoint paintings, such as copies or forgeries
of true Van Goghs, that are stylistically similar to Van Goghs but are by another
artistś hand. In order to do this, the Princeton team made a second analysis, now
restricted to much finer scales, which was designed to measure the fluency of the
brushstrokes. This analysis was based on patches of 128x128 pixels (roughly 1.85
cm x 1.85 cm); it was inspired by Eric Postma’s earlier observation [4] that the
infamous Walker forgeries of Van Gogh paintings typically had many more large-
valued wavelet coefficients than true Van Gogh paintings. (In this earlier work,
Postma used a type of wavelet different from the Princeton team’s choice, but
this is immaterial for this issue.) Since, in a two-dimensional wavelet transform,
15/16 of the wavelet coefficients pertain to the two finest scales, this suggested that
wavelet transforms of non-authentic paintings would have many more large coeffi-
cients at the finest scales, i.e. that the painting would have many more prominent
very fine scale details. Such abundance of superfine detail can be attributed to
more hesitant brushstrokes, caused by a reduction in motion fluidity when copy-
ing another painting or another painter’s manner. The second analysis technique
used by the Princeton team thus checked the relative abundance of extremely fine
detail. This feature did indeed separate copies and forgeries from most of the au-
thentic, original Van Goghs; the wavelet transforms of the non-authentic paintings
had a much larger population in the finest scale wavelet layers, corresponding to a
wealth of ”details” of the order of .25-.5 mm wide (2-4 pixels only, at the very limit
of the spatial resolution in the dataset.) Surprisingly, a very small number of true
Van Goghs were also marked out as ”less fluent” by this analysis. Consultation
with museum officials revealed that these were either copies that Van Gogh made
after another painting, or paintings where, experimenting with technique, he had
traced over his own brushstrokes again after the paint had dried. In both cases,
the lack of fluency had therefore a natural explanation.
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Banach Gelfand Triples in Classical Fourier Analysis

Hans G. Feichtinger

It was the purpose of this talk to propagate certain tools that arose in the context
of time-frequency analysis for the use in the context of classical Fourier analysis.
In fact, it was pointed out that the relatively simple concept of Banach Gelfand
triples allows to give a rather natural interpretation to approximation ideas that
have been around already for a century, in the form of summability methods.
Taking a new look into these topics may/should have also an influence on how we
are teaching Fourier analysis to our students.

The central theme of the talk, which is in full available on the internet at under
www.univie.ac.at/nuhag-php/program/talks show.php?name=Feichtinger

has been the concept of Banach Gelfand triples. They are defined as follows:
Definition: A triple (B,H ,B′), consisting of a Banach space B, which is

dense in some Hilbert space H, which in turn is contained in B′ is called a Banach
Gelfand triple (BGT). This triple of spaces is endowed with three norm topologies,
and in addition the w∗-topology on the (big) dual space B′.

Definition: A bounded linear operator T between two Banach Gelfand triples
is called a BGT-homomorphism if it maps these spaces continuously into each
other, at all three levels and with respect to all four topologies, i.e. also w∗ −w∗-
continuous on the dual spaces. Accordingly isomorphisms and automorphism are
defined. They are called unitary if they are in addition unitary at the Hilbert
space level.

In contrast to the concept of “rigged Hilbert spaces” occurring in the discussion
of elliptic partial differential operators and quantum mechanics we propose to use
the modulation spaceM1,1

0 (Rd), also denoted by S0(Rd), is defined as the subspace
of L2(Rd) with a short-time Fourier transform Vgf with Gaussian window g being

integrable, i.e. in L1(Rd × R̂d). The S0-norm of f is by definition ‖Vgf‖1. This
space is the minimal Banach space in L2(Rd) among all the Banach spaces on
which time-frequency shifts act isometrically, i.e. with ‖MωTxf‖B = ‖f‖B, for all
t ∈ Rd and ω ∈ Rd. Here Tt and Mω are the time- and frequency shift operators
respectively. We use the (original) symbol S0(Rd) for this space (because it is a so-
called Segal algebra on Rd, but it can easily be defined on general LCA groups as
well). The fact that S0(Rd) is isometrically invariant under the Fourier transform
(and hence by the usual transposition process the same is true for S′

0(Rd)) allows
to formulate the following statement involving Banach Gelfand triples.

Theorem. The Fourier transform is a unitary Banach Gelfand triple automor-
phism on (S0,L

2,S′
0)(Rd), and is uniquely characterized as such by the fact that

it maps the “pure frequencies” χs (resp. characters of the LCA group Rd, viewed
as elements of Cb(Rd) ⊆ S′

0(Rd), into the corresponding Dirac measures δs).
This example can be used to show typical facts about Banach Gelfand triple

mappings in such a setting. While the DFT (discrete/finite Fourier transform)
resp. FFT can be easily characterized as the unitary (up to the normalization
factor

√
n) matrix which maps the discrete pure frequencies into unit vectors, or
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in other words, the FFT is an orthogonal change of bases, with the pure frequencies
(the system of eigenvectors to the shift operator) being the orthonormal basis.

In the setting of Rd one has a number of new problems. Where simple sums
could be used to express the FFT and its inverse one has now integrals. Although
this makes L1(Rd) look like a natural domain for F already F−1 makes problems.

Classically summability methods are invoked, i.e. one multiplies f̂ by some nice,

classical kernel ĥ (most of them are in fact members of S0(Rd)). Since L1∗S0 ⊆ S0,

one has ĥ · f̂ = f̂ ∗ h ∈ FS0 = S0 ⊆ L1(Rd), hence integral inversion is no
problem. The Hilbert space level is the standard Plancherel theorem, but neither
pure frequencies χs nor Dirac measures are in L2(Rd).

There are many other situations, see for example, in [3], in order to describe
e.g. the Kohn-Nirenberg mapping as a unitary Banach Gelfand triple isomorphism.
This result is based on a kernel theorem which identifies the linear operators from
S0(Rd) into S′

0(Rd) with distributional kernels in S′
0(Rd). The Hilbert space result

is the characterization of Hilbert-Schmidt operators via kernels in L2(R2d), while
regularizing kernels in S0(Rd) characterize operators from S′

0(Rd) into S0(Rd).
In this context the KN-mapping is characterized as a unitary BGT-isomorphism
which is characterized by the property that the TF-shift operatorsMωTt is mapped

onto the Dirac measure δt,ω over Rd × R̂d.
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One Sketch for all: Fast Algorithms for Compressed Sensing

Anna C. Gilbert

(joint work with Martin Strauss, Joel Tropp and Roman Vershynin)

Compressed Sensing is a new paradigm for acquiring the compressible signals that
arise in many applications. These signals can be approximated using an amount of
information much smaller than the nominal dimension of the signal. Traditional
approaches acquire the entire signal and process it to extract the information. The
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new approach acquires a small number of nonadaptive linear measurements of the
signal and uses sophisticated algorithms to determine its information content.
Emerging technologies can compute these general linear measurements of a signal
at unit cost per measurement.

This paper exhibits a randomized measurement ensemble and a signal recon-
struction algorithm that satisfy four requirements:

(1) The measurement ensemble succeeds for all signals, with high probability
over the random choices in its construction.

(2) The number of measurements of the signal is optimal, except for a factor
polylogarithmic in the signal length.

(3) The running time of the algorithm is polynomial in the amount of infor-
mation in the signal and polylogarithmic in the signal length.

(4) The recovery algorithm offers the strongest possible type of error guaran-
tee. Moreover, it is a fully polynomial approximation scheme with respect
to this type of error bound.

Emerging applications demand this level of performance. Yet no other algorithm
in the literature simultaneously achieves all four of these desiderata.
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Matrices with Off-Diagonal Decay and their Inverses

Karlheinz Gröchenig

(joint work with Andreas Klotz)

We study the off-diagonal decay of infinite matrices. This property is important
in many applications, ranging from the properties of dual frames and regularity
questions of pseudodifferential operators to equalization algorithms in wireless
communications.

The best known result deals with the inverse of banded matrices: If A is
invertible on ℓ2(Zd) and akl = 0 for |k−l| > N , then A−1 has exponential decay [2]

|(A−1)kl| ≤ Ce−ǫ|k−l| .

In this case, the properties of the matrix are not preserved exactly by the inverse.
The abstract reason is that both exponential decay and bandedness are preserved
by matrix multiplication, but not by limits.

In order to obtain symmetry between A and A−1 one has to use Banach alge-
bras of matrices. The fundamental results are due to Jaffard and Journée [4] for
polynomial decay and to Gohberg, Kurbatov, Baskakov, and others for ℓ1-decay,
see for instance [1].

If A is invertible on ℓ2(Zd) and |akl| ≤ C(1 + |k − l|)−s for s > d, then also
(A−1)kl| ≤ C′(1 + |k − l|)−s (same exponent s)

Likewise, if A is invertible on ℓ2(Zd) and |akl| ≤ h(k − l) for some h ∈ ℓ1, then
also |(A−1)kl| ≤ H(k − l) for some H ∈ ℓ1.

In the last few years, these results have been investigated intensively, and many
variations (weights, additional parameters, different types of decay conditions)
have been studied, see e.g. [3] or Q. Sun’s work.

The abstract concept behind the scenes is that of inverse-closedness, which is
defined as follows: Let A ⊆ B be two (involutive) Banach algebras with common
identity. Then A is called inverse-closed in B, if

a ∈ A and a−1 ∈ B =⇒ a−1 ∈ A .

The mentioned results of Jaffard, Baskakov, Gohberg state that a certain Ba-
nach algebra of matrices is inverse-closed in B(ℓ2), the bounded operators on ℓ2.

Inverse-closedness is a strong property with many implications, e.g., invariance
under holomorphic calculus, but most constructions of inverse-closed subalgebras
are somewhat adhoc.

The purpose of this talk was to explain two methods to the systematic con-
struction of subalgebras A of infinite matrices in B(ℓ2) that are inverse-closed. If
A is defined by some type of decay condition, . then the inverse of a matrix in A,
if it exists, satisfies automatically the same decay conditions.
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The systematic construction of inverse-closed subalgebras exhibits a nice inter-
play between approximation theory and the theory of operator algebras and Banach
algebras.

Smooth Subalgebras. Consider the Banach algebra Cn of all n-times differ-
entiable functions on [0, 1]. If a function f ∈ Cn does not vanish anywhere, then
its inverse 1/f is again n-times differentiable, f ∈ Cn, by the quotient rule.

This observation can by transferred to arbitrary Banach algebras by using
derivations instead of derivatives. Let A be a Banach algebra and δ : A → A
a (closed) derivation, i.e., δ satisfies the product rule δ(AB) = δ(A)B +Aδ(B).

Now define the subalgebra of n-smooth elements by

Cn(A) =

n⋂

k=1

dom δk

Theorem 1 (Bratteli). If A ∈ Cn(A) and A is invertible in A, then A−1 ∈ Cn(A),
in other words, Cn(A) is inverse-closed in A.

This is an abstract statement about any Banach algebra. The connection to
matrices is established by looking at a particular derivation, namely the commuta-
tor with the (unbounded) diagonal matrix X with entries Xkl = kδkl, k, l ∈ Z. Set
δ(A) = [X,A] = XA−AX , then the entries of δ(A) are δ(A)kl = (k−l)akl, k, l ∈ Z.

By Bratteli’s Theorem we have that δn(A) ∈ A, if and only if
(

(k − l)nakl

)
∈ A.

This means rougly, that the entries of the original matrix A satisfy polynomial
off-diagonal decay |akl| ≤ C |k− l|−n. This observation can be used to make some
shortcuts in Jaffard’s Theorem.

The analogy between spaces of smooth functions and spaces of smooth elements
in Banach algebras can be turned into a program and leads to many more inverse-
closed Banach algebras of “smooth” elements.

For instance, by imitating the fractional smoothness of Hölder-Lipschitz spaces,
one may consider fractional smoothness in a Banach algebra A with a derivation
δ as follows. Let αh : A → A, h ∈ R be the automorphism group generated by δ.
We say that A ∈ Cs(A) for 0 < s < 1, if ‖αh(A)−A‖A ≤ C|h|s. One then obtains
the following result:

Theorem 2. If A ∈ Cs(A) and A is invertible in A, then A−1 ∈ Cs(A). In other
words, Cs(A) is inverse-closed in A.

Algebras by Approximation Properties. A second idea is to imitate the
definition of approximation spaces. For this recall the characterization of the
Hölder spaces Cs on the torus by approximation with trigonometric polynomials.
Let σn(f) denotes the minimal error made when approximating f by a trigono-
metric polynomial of degree n. Then f ∈ Cs if and only if σn(f) = O(n−s).

To generalize the construction of approximation spaces to Banach algebras,
assume that Tn is a nested sequence of subspaces of A satisfying the following
properties: (1) Each Tn contains that identity element e, (2) Tn ⊆ Tn+1, and (3)
Tm · Tn ⊆ Tm+n
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Let σn(A) be the (linear) approximation error σn(A) = infB∈Tn
‖A − B‖A.

Then we can define the approximation space Eps (A) as usual by

‖A‖Ep
s

:=
( ∞∑

n=0

(nsσn(A))p
1

n

)1/p

It was shown by Almira and Luther that Eps (A) is a subalgebra of A.
The connection to inverse-closedess is established in the following new result.

Theorem 3. Eps (A) is inverse closed in A.

To apply this abstract result on Banach algebras to matrices, we choose the
natural sequence of of approximation subspaces, namely the banded matrices Tn =
{A : akl = 0 for |k − l| > n}. Thus the main theorem says that if a matrix is
approximated well by banded matrices, then its inverse is also approximated well
by banded matrices. Clearly good approximation by banded matrices is also a
measure for the off–diagonal decay of a matrix.

This program may and will be pursued much further in the work of A. Klotz.
The talk gave an overview how ideas from classical approximation may be mod-

ified to yield systematic construction procedures for inverse-closed algebras of ma-
trices with off-diagonal decay.
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Approximation and Interpolation by Power Series with ±1 Coefficients

C. Sinan Güntürk

This talk consists of two parts. The first part concerns the results published by
the author in [1]. The motivation of this paper comes from the following “fair
duel problem” of S. Konyagin [2]: There are two duellists A and B who will shoot
at each other (only one at a time) using a given ±1 sequence q = (qn)n≥0 which
specifies whose turn it is to shoot at time n. The shots are independent and
identically distributed random variables with outcomes hit or miss. Each shot
hits (and therefore kills) its target with a small unknown probability ǫ, which is
arbitrary but fixed throughout the duel. The “fair duel” problem is to find an
ordering q, which is independent of ǫ, and is as fair as possible in the sense that
the probability of survival for each duellist is as close to 1/2 as possible. (The
problem makes sense only when we ask q to be universal, i.e., independent of ǫ.
Otherwise, for any fixed known ǫ ≤ 1/2, an ordering can be found such that the
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probability of survival is exactly equal to 1/2 for both duellists.) We measure the
fairness of an ordering q by its bias function Bq(ǫ), defined to be

Bq(ǫ) := P{A survives} − P{B survives},

and ask that Bq(ǫ) → 0 as fast as possible as ǫ→ 0. It is an elementary calculation
that the bias is given by

Bq(ǫ) = ǫ
∞∑

n=0

qn(1 − ǫ)n.

At first, it may appear as the best ordering should be to simply alternate
between the two duellists, i.e., to set qn = (−1)n, for which Bq(ǫ) = ǫ/(2 −
ǫ) ≍ ǫ. However, this naive option is quickly ruled out as, for instance, the 4-
periodic sequence given by q0 = 1, q1 = −1, q2 = −1, q3 = 1 yields Bq(ǫ) ≍ ǫ2.
Continuing in this fashion, it is tempting to think that the Thue-Morse sequence
on the alphabet {−1,+1} might perhaps be the optimal sequence. For the Thue-
Morse sequence, one has

BTM(ǫ) = ǫ

∞∏

n=0

(
1 − (1 − ǫ)2

n
)
,

where the infinite product
∏(

1 − z2n)
=
∑
qnz

n can in fact be taken as the
definition of this sequence. It is not difficult to show that there is a positive
constant c > 0 such that BTM(ǫ) ∼ e−c(log ǫ)2.

It turns out that one can do much better. The following result is proven in [1]:
Let 0 ≤ µ < 1 ≤ M < ∞ be arbitrary and RM := {z ∈ C : |1 − z| < M(1 − |z|)}.
There exist constants C1 := C1(µ,M) > 0 and C2 := C2(µ,M) > 0 such that for
any power series

f(z) =
∞∑

n=0

anz
n, an ∈ [−µ, µ], ∀n,

there exists a power series with ±1 coefficients, i.e.,

Q(z) =

∞∑

n=0

qnz
n, qn ∈ {−1,+1}, ∀n,

which satisfies

|f(z) −Q(z)| ≤ C1e
−C2/|1−z|

for all z ∈ RM . A result by Borwein-Erdélyi-Kós [3] shows that this type of decay
rate is best possible in the sense that modulo the constant in the exponent, the
lower bound will be achieved infinitely often as z → 1.

The special case f ≡ 0 corresponds to the fair duel problem and one obtains a
universal ordering q for which

|Bq(ǫ)| ≤ C
√
ǫ e−

π2
24ǫ .
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This sequence is recursively defined and its computation involves special numerical
methods. The first 50 values of this sequence in 0/1 format is

10010101101010100101101001010101101001011010100101...

The above result concerned how well power series with ±1 coefficients could
approximate more general power series around the point z = 1. In the second part
of the talk, we consider the interpolation properties of ±1 power series and ask
if the graph of such a series can be passed through any number of generic points
whose abscissa are sufficiently close to 1 and ordinate close to 0. The following
result is reported:

Given any positive integer M , there exists c = cM > 0 such that for all M
distinct numbers x1, x2, . . . , xM ∈ (1−c, 1), there exists δ = δ(x1, ..., xM ) > 0 such
that for all y1, y2, . . . , yM ∈ [−δ, δ], there exists a ±1 power series Q(x) =

∑
qnx

n

of the real variable x whose graph goes through all the points (xi, yi), i.e.,

yi =

∞∑

n=0

qnx
n
i ; i = 1, ...,M.

It is not surprising that the result holds on a left neighborhood of the point 1
whose length depends on M , as a simple volume covering argument imposes the
constraint that x1x2 · · ·xM ≥ 1/2. We also note that this result has consequences
in terms of non-separable Bernoulli convolutions.
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Convolution of hp-Functions on Locally Refined Grids

Wolfgang Hackbusch

Usually, the fast evaluation of a convolution integral requires that the involved
functions have a simple structure based on an equidistant grid in order to apply the
fast Fourier transform. Here we discuss the efficient performance of the convolution
of hp-functions in certain locally refined grids. More precisely, the convolution
result is projected into some given hp-space (Galerkin approximation). The overall
cost is O(p2N logN), where N is the sum of the dimensions of the subspaces
containing f , g and the resulting function, while p is the maximal polynomial
degree.

We consider the convolution integral

(1) ωexact (x) := (f ∗ g) (x) :=

∫

R

f(y)g(x− y)dy
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for hp-functions f, g of bounded support. We do not compute the exact result
ωexact, but its L2-orthogonal projection ω := Pωexact into a certain subspace of
hp-functions.

Convolutions involving a kernel function f = k occur for instance when integral
operators Kg(x) =

∫
R
k(x− y)g(y)dy are to be evaluated. In [1] and [2] one finds

applications where the convolutions are not derived from integral operators. In the
case of integral operators, the kernel function k is often assumed to satisfy special
(smoothness) conditions. This allows various approximations and various methods
for its efficient numerical treatment (e.g., [7], [8]). Here we make no assumptions
about f, g except that they belong to certain hp-finite element subspaces.

Convolution of locally refined piecewise constant functions has been considered
in [3]. A variant of the method with “mass conservation” in the piecewise constant
case can be found in [5]. The mass conservation holds in general for approaches
with polynomial degrees p ≥ 1. The particular case of p = 1 is discussed in [4].

The present article concentrates on the algorithmic aspects when large polyno-
mial degrees appear as it is generally assumed in the hp-case, where coarser grid
sizes are compensated by higher polynomials degrees.

Ω
Ω2Ω

1

3

Ω0

Figure 1. Refined grid (first line) composed by local refinements
at the levels 0-3 in the zones Ωℓ

The hp-structure is based on nested refinement zones

(2) R ⊃ Ω0 ⊃ . . . ⊃ Ωℓ−1 ⊃ Ωℓ ⊃ . . . ⊃ ΩL

(cf. Figure 1; ΩL+1 := ∅) corresponding to step sizes hℓ = 2−ℓh with a fixed
(coarsest) step size h = h0. More precisely, Ωℓ must be a nonempty interval con-
sistent with the hℓ-mesh, i.e., Ωℓ = [ia,ℓhℓ, ib,ℓhℓ] for some ia,ℓ, ib,ℓ ∈ Z. The
nestedness (2) can be rewritten as ia,0h0 ≤ ia,1h1 ≤ . . . ≤ ia,LhL < ib,LhL ≤ . . . ≤
ib,1h1 ≤ ib,0h0.

The infinite grid Mℓ :=
{
Iℓν : ν ∈ Z

}
of level ℓ ∈ N0 containing the intervals

Iℓν := [νhℓ, (ν + 1)hℓ) for ν ∈ Z, ℓ ∈ N0.

The geometric mesh for the hp-functions consists of the intervals in the set

M :=
{
Iℓν ∈ Mℓ : Iℓν ⊂ Ωℓ\Ωℓ+1, 0 ≤ ℓ ≤ L

}
,

i.e., inside of Ω0\Ω1 the h0-mesh is used, inside of Ω1\Ω2 the h1-mesh, . . . and
finally ΩL\ΩL+1 = ΩL is filled with the hL-mesh.
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Furthermore, we associate to each interval Iℓν ∈ M with a polynomial degree1

p ∈ N0 and define the space S = S (M) of hp-functions by all functions ψ with

(3) ψ|Iℓ
ν

is a polynomial of degree ≤ p for all Iℓν ∈ M
and ψ = 0 outside of Ω0. Note that no continuity of ψ is required.

We allow that the two factors f and g of the convolution belong to different
hp-spaces characterised by different refinement zones. For the resulting projection
ω := Pωexact (ωexact from (1)) a third hp-space may be defined. We denote these
three spaces by the superscripts “f, g, ω”. Therefore, we have to replace the sets
Ωℓ, M, S by

Ωfℓ , Ωgℓ , Ωωℓ , Mf , Mg, Mω, Sf , Sg, Sω .
s similar to the fast wavelet transformation, and a discrete convolution which is
solved by the Fast Fourier Transform.

Now, the problem can be formulated.

PROBLEM. Given f ∈ Sf and g ∈ Sg, we want to compute the (exact) pro-
jection ω = P (f ∗ g) , where P is the L2-orthogonal projection onto the subspace
Sω ⊂ L2(R).

The computational details are as follows.
The (orthonormal) system of basis functions Φℓi,α is given by the Legendre

polynomials of degree α, mapped affinely from (−1, 1) onto Iℓi := [ihℓ, (i+ 1)hℓ)

and normalised such that
∫ 1

−1

(
Φℓi,α(x)

)2
dx = 1. Here Iℓi varies in M, and 0 ≤

α ≤ p. Hence, the discrete subspace is S (M) = span
{

Φℓi,α : Iℓi ∈ M, 0 ≤ α ≤ p
}
.

The functions f and g have representations

f =
∑

ℓ

fℓ, fℓ =
∑

i,κ

f ℓi,κ Φℓi,κ ∈ Sℓ g =
∑

ℓ

gℓ, gℓ =
∑

i,κ

gℓi,κ Φℓi,κ ∈ Sℓ,

where Sℓ := span{Φℓi,α : i ∈ Z, 0 ≤ α ≤ p} (ℓ ∈ N0) .

Their convolution leads to f∗g =
∑Lf

ℓ′=0

∑Lg

ℓ=0 fℓ′∗gℓ =
∑

ℓ′≤ℓ fℓ′∗gℓ+
∑
ℓ<ℓ′ gℓ∗

fℓ′ . In the following we concentrate on the first sum with ℓ′ ≤ ℓ.
The projection P (f ∗ g) onto the hp-space Sω has the representation

P (f ∗ g) =
∑

ℓ′′,i,α

ωℓ
′′

i,αΦℓ
′′

i,α with ωℓ
′′

i,α =
〈
f ∗ g,Φℓ′′i,α

〉
.

The dependence of the desired coefficients ωℓ
′′

i,α on the coefficients of f and g is
given by

ωℓ
′′

i,α =
∑

j,k∈Z

p∑

β,κ=0

f ℓ
′

j,β g
ℓ
k,κ γ

ℓ′′,ℓ′,ℓ
(i,α),(j,β),(k,κ),

γℓ
′′,ℓ′,ℓ

(i,α),(j,β),(k,κ) :=

∫∫
Φℓ

′′

i,α(x) Φℓ
′

j,β(y) Φℓk,κ(x− y)dxdy =
〈

Φℓ
′′

i,α,Φ
ℓ′

j,β ∗ Φℓk,κ

〉
.

1We may use different degrees pℓ
ν ∈ N0,
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Let Pℓ the mapping from ψ ∈ L2(R) into the corresponding coefficients ψℓi,κ =〈
ψ,Φℓi,κ

〉
of the projection onto Sℓ, which is denoted by Pℓ(ψ) =

∑
i,κ

〈
ψ,Φℓi,κ

〉
Φℓi,κ.

The critical problem is the computation of the projected convolution Pℓ′(fℓ′∗gℓ),
where ℓ′ ≤ ℓ indicates that ℓ′ corresponds to a coarser grid than ℓ. The naive
approach is the representation of fℓ′ at the fine level ℓ: fℓ′ 7−→ fℓ (same function,
other representation). Then fℓ∗gℓ leads to a standard discrete convolution and the
result can be coarsened to level ℓ′. However, the disadvantage is that by fℓ′ 7−→
fℓ the data size is increased by the factor 2ℓ−ℓ

′

. Instead, the g-data must be
transported from level ℓ to ℓ′ as explained in

LEMMA. Let ψℓ′ =
∑

i∈Z

∑p
β=0 ψ

ℓ′

i,βΦℓ
′

i,β ∈ Sℓ′ . Then

(
ψℓ

′

i,β

)

i∈Z,0≤β≤p
∗
(

Γℓ
′,ℓ
i,(α,β)

)

i∈Z,0≤α,β≤p
= Pℓ′ (ψℓ′ ∗ gℓ) for ℓ ≥ ℓ′

holds, where Γℓ
′,ℓ
i,(α,β) :=

∑
k,κ g

ℓ
k,κ γ

ℓ′,ℓ′,ℓ

k−i2ℓ−ℓ′ ,(α,β,κ)
. The discrete convolution on the

left-hand side is defined by
(∑

j∈Z

∑p
β=0 ψ

ℓ′

j,β ∗ Γℓ
′,ℓ
j−i,(α,β)

)

i∈Z,0≤α≤p
.

The Γ-coefficients can be computed by a simple recursion starting with ℓ′ = ℓ.
The final algorithm for computing projections Pℓ′′(

∑
ℓ′≤ℓ fℓ′ ∗gℓ) distinguishes the

cases (A) ℓ′′ ≤ ℓ′ ≤ ℓ, (B) ℓ′ < ℓ′′ ≤ ℓ, (C) ℓ′ ≤ ℓ < ℓ′′. In each case, the
calculation involves a loop which is similar to the fast wavelet transform using
some mask coefficients, and a discrete convolution which can be performed by the
Fast Fourier Transform.

Details are in [6].
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Sparse Second Moment Analysis for Elliptic Problems in Stochastic
Domains

Helmut Harbrecht

(joint work with Reinhold Schneider and Christoph Schwab)

Introduction. The rapid development of scientific computing and numerical anal-
ysis in recent years allows the efficient numerical solution of large classes of partial
differential equation models with high accuracy, provided that the problem’s input
data are known exactly. Often, however, exact input data for numerical simulation
in engineering is not known. The practical significance of highly accurate numer-
ical solution of differential equation models in engineering must thus address how
to account for uncertain input data.

If a statistical description of the input data is available, one can mathematically
describe data and solutions as random fields and aim at the computation of cor-
responding deterministic statistics of the unknown random solution u. Here, we
consider elliptic boundary value problems on uncertain domains D. In particular,
we like to compute the expectation

Eu(x) =

∫

Ω

u(x, ω)dP (ω), x ∈ D,

the two-point correlation

Coru(x,y) =

∫

Ω

u(x, ω)u(y, ω)dP (ω), x,y ∈ D,

and from it the variance Varu(x) = Coru(x,x) − E2
u(x).

The goal of computation is as follows: given mean and two-point correlation
of the boundary perturbation field, compute, to leading order, the mean and the
two-point correlation of the random solution of the boundary value problem.

Partial differential equations on stochastic domains. Starting point of our
modelling is the boundary value problem

−∆u(x, ω) = f(x), x ∈ Dω, ω ∈ Ω

with Dirichlet boundary conditions

u(x, ω) = g(x), x ∈ ∂Dω, ω ∈ Ω.

Herein, the domain Dω is bounded by the boundary ∂Dω that is defined as the
perturbation of a fixed nominal boundary ∂D:

∂Dω = {y ∈ Rn : y(x, ω) = x + εκ(x, ω)n(x), x ∈ ∂D}, ω ∈ Ω

where n denotes the ouward normal vector to D. For a fixed small ε > 0 one can
linearize the problem under additional assumptions on the smoothness of κ(x, ω)
with respect to ω, necessary to ensure that the perturbed boundary is still admis-
sible (e.g. Lipschitz). We fix x ∈ Rn with P ({x ∈ Dω}) = 1 and expand u(x, ω)
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in terms of a second order shape Taylor expansion

(1) u(x, ω) = u(x) + εdu(x)[κ(x, ω)] +
ε2

2
d2u(x)[κ(x, ω), κ(x, ω)] + O(ε3),

see [2]. Herein, du denotes the local shape derivative

(2) ∆du = 0 in D, du = κ
∂(g − u)

∂n
on ∂D.

The second order local shape derivative d2u needs not to be explicitly known to
derive the following estimates.

Assuming that Eκ = 0 we arrive in view of the shape Taylor expansion (1) at
(cf. [2])

Eu(x) = u(x) + O(ε2), Coru(x,y) = ε2Cordu(x,y) + O(ε3).

Herein, u and Cordu satisfy the boundary value problems

(3) −∆u = f in D, u = g on ∂D

and

(4)

(∆x ⊗ ∆y)Cordu = 0 in D ×D,

Cordu = Corκ

[
∂(g − u)

∂n
⊗ ∂(g − u)

∂n

]
on ∂D × ∂D.

Consequently, the expectation of the random solution is with leading order given
by the Poisson equation (3). The two-point correlation, the second order statistical
moment, is to leading order determined by a partial differential equation in tensor
product form, based on the equation for the local shape derivative (2).

Solution by boundary element methods. To numerically solve the determin-
istic problems (3) and (4) we can use a variational boundary integral equation
approach combined with a wavelet discretization. The sparse tensor product ap-
proximation is advantageous for the efficient computation of Kronecker products of
operators. Thus, the boundary value problem (4) has been formulated as boundary
integral equation and approximated by a sparse tensor product wavelet discretiza-
tion, combined with the wavelet matrix compression strategy from [1]. That way,
the algorithmical complexity to compute the first two statistical moments scales
essentially (i.e., except for logarithmical terms) proportionally to N , the number
of degrees of freedom needed to parametrize the unperturbed, nominal boundary
∂D. That is, the complexity of solving (4) essentially scales like that of solving
the mean field equation (3).

Solution by finite element methods. We shall consider a traditional and
widely used multilevel hierarchy

V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ H1(D).
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The sparse tensor product space V̂J ⊂ H1,1(D×D) is defined via the complemen-
tary spaces

Wj := Vj+1 ⊖ Vj ⊂ H1(D)

according to

V̂J =
⊕

j+j′≤J
Wj ⊗Wj′ =

∑

j+j′≤J
Vj ⊗ Vj′ ⊂ H1,1(D ×D).

A basis is given by tensor products of the hierarchical bases of Wj , like e.g. wavelet
bases.

Instead of a basis, one can consider the collection of appropriate normed tensor
products of the basis functions in Vj . According to [3] this collection forms a
frame for the sparse tensor product space. The discretization of boundary value
problems by frames and the solution of operator equations in frame coordinates is
well understood and quite similarly to the basis case. The algorithms developed
in [4], especially the applications of tensor product operators, can be modified
to the case of multilevel frames. It turns out that, in order to solve equations
of the type (4) efficiently, it suffices to provide standard multigrid hierarchies and
associated finite elements together with prolongations and restrictions, see [3]. The
computational complexity is essentially the one required to solve the mean field
equation (3) by the finite element method.
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Shearlets: A Wavelet-Based Approach to the Detection of Directional
Features

Gitta Kutyniok

(joint work with S. Dahlke, T. Sauer, G. Steidl and G. Teschke)

1. Continuous Shearlet Systems

In data analysis, one main focus of current research is on the development of
directional representation systems which precisely detect orientations of singular-
ities like edges in a 2-D image while providing optimally sparse representations.
Several approaches have been suggested in the last years such as the ridgelets [1],
the curvelets [2], the contourlets [5], and many others.
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The shearlet systems are the first directional representation systems, which not
only possess the above mentioned properties (cf. [7, 9]), but are moreover equipped
with a rich mathematical structure similar to wavelets. The main idea for the
construction is employing a two-parameter dilation group, where one parameter
ensures the multiscale property, whereas the second parameter provides a means
to detect directions. For each a > 0 and s ∈ R, let Aa denote the parabolic scaling
matrix and Ss denote the shear matrix of the form

Aa =

(
a 0
0

√
a

)
and Ss =

(
1 s
0 1

)
,

respectively. Then the (continuous) shearlet system generated by ψ ∈ L2(R2) is
defined by

{ψast = TtDSsAa
ψ = a−

3
4ψ(A−1

a S−1
s ( · − t)) : a ∈ R+, s ∈ R, t ∈ R2},

and the associated Continuous Shearlet Transform of some f ∈ L2(R2) is given by

SHψf : R+ × R × R2 → C, SHψf(a, s, t) = 〈f, ψast〉.
A function ψ ∈ L2(R2) is called a continuous shearlet, if it satisfies the admissibility

condition
∫

R2 |ψ̂(ξ1, ξ2)|2/ξ21 dξ < ∞. In this case, each function f ∈ L2(R2) can

be reconstructed from its shearlet coefficients {〈f, ψast〉 : (a, s, t) ∈ R+ ×R×R2}.
The shearlet systems can also be viewed from a group theoretic point of view.

The associated locally compact group – the so-called Shearlet group S – is defined
to be the set R+ × R × R2 endowed with the multiplication

(a, s, t) · (a′, s′, t′) = (aa′, s+ s′
√
a, t+ SsAat

′),

which is isomorphic to a semi-direct product of the dilation group with R2. Letting
σ : S → U(L2(R2)) be the unitary representation of this group given by

σ(a, s, t)ψ(x) = a−
3
4ψ(A−1

a S−1
s (x − t)),

the link with shearlet systems is established by the relation ψast = σ(a, s, t)ψ.
This rich mathematical structure enables, for instance, the application of un-

certainty principles to tune the accuracy of the transform [3] and of special Fourier
methods to investigate the discretization process of the Continuous Shearlet Trans-
form [10]. For more information on the theory of shearlets we refer to the webpage
www.shearlet.org.

For a large class of continuous shearlets, the Continuous Shearlet Transform
precisely detects the wavefront set of distribution. In fact, if ψ1 ∈ L2(R) is a

continuous wavelet, ψ̂1 ∈ C∞(R), and supp ψ̂1 ⊆ [−2,− 1
2 ] ∪ [12 , 2], if ψ2 ∈ L2(R)

is such that ψ̂2 ∈ C∞(R) and supp ψ̂2 ⊆ [−1, 1], and if we define ψ ∈ L2(R2) by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2ξ1 ),

then the wavefront set of a distribution f is the closure of the set of points (s, t)
where SHψf(a, s, t) = 〈f, ψast〉 is of slow decay as a→ 0 [9].
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2. Discrete Shearlet Systems

For the implementation of the shearlet transform, the shearlet systems need
first to be discretized. Two special discrete shearlet systems have already been
constructed in [8], which form Parseval frames for L2(R2). The tiling of the fre-
quency plane induced by those systems is illustrated in Figure 1, where the shaded
area indicates the support of one of the generating functions.

(a) (b)

Figure 1. The tiling of the frequency domain induced by the
discrete shearlets (a) and the discrete shearlets on the cone (b).

For a general discretization strategy, we employ the fact that the Continuous
Shearlet Transform is related with group theory as explained above. This prop-
erty provides us with a link to another central problem in applied analysis on how
to measure the smoothness of a given function. Classical approaches are, e.g.,
based on (strong or weak) derivatives (Hölder and Sobolev spaces), or moduli of
smoothness (Besov spaces). However, by means of the concept of square-integrable
group representations it is possible to derive a unified approach to many different
smoothness measures: they can all be restated in terms of the decay of a partic-
ular transform associated with the representation. Moreover, by discretizing the
representation in a judicious way, one obtains frames for these smoothness spaces
which can therefore be interpreted as the natural building blocks for the under-
lying transformation. All these relationships have been clarified in the so-called
coorbit space theory which has been derived by Feichtinger and Gröchenig in a
series of papers (see, for instance, [6]).

In [4], we use this approach to derive a new class of smoothness spaces and
associated (Banach) shearlet frames. First we remark that the Shearlet group
needs to be enlarged to R \ {0} × R × R2 with group multiplication given by

(a, s, t) (a′, s′, t′) = (aa′, s+ s′
√
|a|, t+ SsAat

′) and Aa appropriately adapted, so
that the associated representation, which generates the shearlet system, is in fact
square-integrable. Denoting this larger group also by S, we let ψ ∈ S(R2) with

some additional support conditions on ψ̂, w ∈ Lloc1 (R2), and 1 ≤ p ≤ ∞. Then
the shearlet coorbit space SCp,w is defined by

SCp,w = {f ∈ SC∼
1,w : SHψf ∈ Lp,w(S)},
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where SC1,w = {f ∈ L2(R2) : SHψf ∈ L1,w(S)} and SC∼
1,w denotes its anti-dual,

i.e., the space of all continuous conjugate-linear functionals on SC1,w. The SCp,w-
norm of an f ∈ SCp,w is given by ‖f‖SCp,w

= ‖SHψf‖Lp,w
. This definition is in

fact independent of the choice of ψ, and the Schwartz space is contained in SCp,w
for particular weights.

The relation to discrete shearlet systems is now established in the following way.
Let U ⊂ S be a neighborhood of e which is “small enough”, and let w ∈ Lloc1 (R2).
We prove that provided {(ai, si, ti)}i∈I ⊂ S is U -dense and relatively separated,
the sequence {SHψf(ai, si, ti)}i∈I is a Banach frame for SCp,w, hence

‖f‖SCp,w
∼= ‖{SHψf(ai, si, ti)}i∈I‖ℓp,w

.

Moreover, there exists a bounded, linear reconstruction operator R from ℓp,w to
SCp,w such that

R({SHψf(ai, si, ti)}i∈I) = f.

Interestingly, one particular example of a sequence satisfying the hypotheses of
this result agrees with the discretization chosen in [8] (cf. Figure 1 (a)).

3. Shearlet Multiresolution Analysis

The question remains open whether it is possible to construct an associated
multiresolution analysis with finitely supported filters leading to a fast decom-
position. In [11], we show that this indeed can be achieved by constructing a
(non-stationary) bivariate adaptive directional subdivision scheme in the follow-
ing way.

Considering the shearlet dilation matrices Mε := S−εA 1
2
, ε ∈ {0, 1}, we observe

that these indeed preserve the lattice structure in contrast to a rotation matrix. In
fact, for all j ∈ Z, we have Mε(4

−jZ×2−jZ) = 4−(j+1)Z×2−(j+1)Z. Now defining
two expanding matrices by Wε := M−1

ε and choosing two finitely supported masks
aε ∈ ℓ(Z2), ε ∈ {0, 1}, we can define the associated subdivision schemes by

Sεc =
∑

α∈Z2

aε (· −Wε α) c (α) , ε ∈ {0, 1}, c ∈ ℓ(Z2).

The two subdivision schemes S0 and S1 are now applied to some data c ∈ ℓ(Z2)
in an iterative way, thereby providing the opportunity to adaptively change the
orientation of the data during the subdivision process. In this sense we might
view the subdivision process as a binary tree, in which the direction of the refined
data is dependent on the branch we choose. Convergence certainly needs to apply
to each branch of the tree. Therefore, we call this subdivision scheme convergent
in C

(
R2
)
, if for any sequence ε in {0, 1}N the associated sequence of subdivision

schemes applied to δ converges to some nonzero uniformly continuous function fε.
If the masks are chosen for this to be satisfied, the limit functions fε, ε ∈ {0, 1}N,
ε = (ε1, ε2, . . . ), fulfill the refinement equation

fε =
∑

α∈Z2

aε1(α) fε̂ (Wε1 · −α) , ε̂ := (ε2, ε3, . . . ) .
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Moreover, we derive a complete characterization of convergence of these subdivi-
sion schemes in terms of the restricted joint spectral radius and membership of
the z-transform of the masks in a quotient ideal of the Laurent polynomials.

Returning to the initial question concerning a shearlet multiresolution analysis,
we employ the fact that each multiresolution analysis is associated with a subdi-
vision scheme and introduce scaling spaces based on the previously constructed
directional subdivision schemes. Using the above mentioned refinement equations,
we prove that these indeed provide a multiresolution analysis structure. This
then leads to a fast decomposition in a very natural way, where we focus on the
interpolatory case.
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Nonlinear Multiresolution Analysis

Peter Oswald

(joint work with S. Harizanov)

From an algorithmical point of view, multiresolution analysis is governed by two
sets of operators acting between consecutive spaces Vj , j ≥ 0, representing different
resolution levels: Restrictions (also called decimation operators) Rj : Vj → Vj−1

and prolongations (depending on context, also called interpolation, prediction, or
subdivision operators) Pj : Vj−1 → Vj . The associated pyramid algorithm

vj−1 := Rjvj , dj := vj − Pjvj−1 ( ⇐⇒ vj = Pjvj−1 + dj )
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leads to a multiscale representation

vJ ↔ {v0, d1, . . . , dJ}
of fine-scale data vJ by coarse-scale data v0 and details dj from all intermediate
resolution levels. While most of the existing multiscale analysis is carried out
when the Vj are nested linear spaces of exponentially growing dimension, and the
Rj , Pj are linear operators acting between them, during the last 10 years many
applications have used nonlinear setups. E.g., normal multiresolution for geometry
compression [7], edge-adapted image analysis schemes [1], morphological pyramid
algorithms [6, 5], subdivision schemes for the parametrization of manifolds [9, 10],
etc. all use nonlinear Pj and/or Rj .
The talk draws attention to this emerging area of research on nonlinear mul-
tiresolution analysis. Although some papers have already appeared (e.g., on the
convergence and smoothness analysis of special cases of nonlinear schemes), much
needs still to be done. In particular, the investigation of stability of nonlinear
pyramid algorithms and subdivision schemes has only begun. Using the language
of dynamical systems, a (nonlinear) subdivision scheme

u0 7−→ u1 := P1u0 7−→ . . . 7−→ uj := Pjuj−1 7−→ . . .

is called Lyapunov stable at ũ0 if for any ǫ > 0 there is a δ > 0 such that for all u0

in a δ-neighborhood of ũ0, the uj stay in a ǫ-neighborhood of ũj for all j > 0, i.e.,

‖u0 − ũ0‖ ≤ δ =⇒ ‖uj − ũj‖ ≤ ǫ ∀ j > 0.

For simplicity, we have assumed that all Vj are subsets of the same normed space.
A more quantitative, stronger definition is Lipschitz stability at ũ0: There is a
C <∞ such that for all u0 in some neighborhood of ũ0

‖uj − ũj‖ ≤ C‖u0 − ũ0‖ ∀ j > 0.

Similarly, the pyramid transform governed by the Pj is called Lipschitz stable if

(1) ‖vj − ṽj‖ ≤ C(‖v0 − ṽ0‖ +

j∑

k=1

‖dk − d̃k‖) ∀ j > 0.

This notion of stability is closely related to error control in lossy compression
algorithms using the given nonlinear pyramid transform.
So far, only scattered results are known. In [3], a theory for stationary univariate
nonlinear subdivision in ℓp(Z) spaces has been developed. The basic assumption
is that the nonlinear subdivision operator S is, for each v ∈ ℓp(Z), written in
the form Sv = S(v)v, where S(v) is a linear subdivision operator (w.r.t. dyadic
dilation on Z). Then, sufficient conditions for the convergence of the subdivision
sequence vj := Sjv as j → ∞, the smoothness of the limits in Hölder-Sobolev
spaces, and the Lipschitz stability of the subdivision scheme can be formulated in
terms of properties of the associated family {S(v)} of linear subdivision operators.
The crucial condition for Lipschitz stability is Lipschitz continuity w.r.t. v:

(2) ‖S(v) − S(u)‖ ≤ C‖v − u‖,
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where the constant C <∞ may depend on max(‖u‖, ‖v‖) in a monotone way (the
norms are induced by ℓp(Z)). This condition holds for WENO-type subdivision
schemes but is unfortunately not satisfied for many other schemes such as the PPH
scheme [2] and median subdivision [5]. For the dyadic interpolatory PPH scheme
given by the formulas (Sv)2i = vi and

(Sv)2i+1 =
vi + vi+1

2
− (∆2vi · ∆2vi+1)+

4(∆2vi + ∆2vi+1)
, ∆2vi := vi+1 − 2vi + vi−1,

Lipschitz stability has been established in [2] by proving a contraction property of
the form

(3) ‖∆2(S2v − S2u)‖ ≤ 3

4
‖∆2(v − u)‖ ∀ u, v ∈ ℓ∞(Z).

For this particular scheme, even Lipschitz stability (1) for the full pyramid trans-
form has been shown [2]. Although stability is also discussed in other papers
[1, 4, 11], further rigorous results on Lipschitz stability as defined above are miss-
ing.

We are currently working towards systematic generalizations of these scattered
results (joint work with S. Harizanov, PhD student at Jacobs University Bremen).
A benchmark case under consideration is median interpolation subdivision, orig-
inally introduced in [5] for heavy tail noise removal from univariate time series.
Convergence and Hölder smoothness results for this scheme have been established
in [5, 8, 12]. However, the Lipschitz stability problem is still open. Besides a
refinement of conditions such as (3), a systematic use of tools from dynamical
systems theory seems necessary to achieve further progress.
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Wavelet Methods for PDE-Constrained Elliptic Control Problems
with Dirichlet Boundary Control

Roland Pabel

Given a domain Ω = (0, 1)d with spatial dimension d ≥ 2 and fixing the observation
ΓY ⊂ ∂Ω and control boundaries Γ ⊂ ∂Ω, the control problem is stated as follows:

For some given data yΓY
and f , minimize

(1) J (y, u) =
1

2
‖y − yΓY

‖2
Hs(ΓY ) +

ω

2
‖u‖2

Ht(Γ)

where the state y and the control u are coupled through the linear elliptic boundary
value problem

−∇ · (a∇y) + a0 y = f in Ω,

y = u on Γ,(2)

(a∇y) · n = 0 on ∂Ω \ Γ.

Here we are not only faced with a problem formulation which is much more
complex than calculating the solution of a single elliptic PDE alone, but also
with the added complexity of the minimization formulation involving evaluation
of Sobolev norms of fractional order in the cost functional (1). The intrinsic space
of the trace of a function of the Sobolev space H1(Ω) is the space H1/2(∂Ω) and
as such we have to consider fractional Sobolev norms, i.e. the natural case is
s = t = 1/2.

Wavelet methods allow us to tackle both problems simultaneously. Norm equiv-
alences in the wavelet setting are used for optimal preconditioning of discretized
systems [2, 4] and here also for evaluating the Sobolev norms as precisely as pos-
sible.

The construction of boundary adapted biorthogonal wavelets on the inter-
val [0, 1] based on B-Splines (piecewise polynomials) was first set out in [3]. Addi-
tionally, we use specialized constructions including basis transformations for low-
ering the overall absolute condition numbers, for details see [6]. Wavelet bases
for the higher dimensional domain Ω ⊂ IRd are realized here by tensor product
construction of these univariate bases.

We will make use of the Riesz basis property of a wavelet basis Ψ indexed by
an infinite set II, i.e. for a (sufficiently smooth) function v = vTΨ ∈ L2 holds
‖v‖Hs ∼ ‖Ds v‖ℓ2(II) for a range of values s ∈ (s∗, s∗), not only as a means of
optimal preconditioning (see e.g. [2]) but also for evaluating the Sobolev norms of
the cost functional. To this end, we introduce Riesz Operators RHs : Hs → H−s

with 〈Rv,w〉H−s×Hs := (v, w)Hs . Since the exact Hs norm is inaccessible for
s /∈ ZZ, we use different constructions based on scaling or interpolation instead,
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see e.g. [6]. We then get norm equivalences ‖v‖Hs ∼ ‖R1/2 Ds v‖ℓ2(II) with smaller
absolute constants than before.

Our boundary value problem (2) is now expressed as a saddle point problem
using the Lagrange multiplier method. To this end, we introduce the trace oper-
ator onto the control boundary, B : H1(Ω) → H1/2(Γ), with which the Dirichlet
boundary conditions are expressed. The norm on the observation boundary ΓY
in (1) is evaluated with help of another trace operator, T : H1(Ω) → H1/2(ΓY ).

Fixing wavelets and index sets for the spaces X = H1(Ω), Y = Hs(ΓY ) and
Q = Ht(Γ), our control problem in infinite wavelet coordinates then reads:
Given (f ,yΓY

) ∈ ℓ2(IIX × IIY ), find (y,p,u) ∈ ℓ2(IIX × IIQ × IIQ), such that

(3) J(y,u) =
1

2
‖R1/2

ΓY
(Ty − yΓY

)‖2
ℓ2(IIY ) +

ω

2
‖R1/2

Γ u‖2
ℓ2(IIQ),

is minimized subject to

(4) L

(
y
p

)
:=

(
A BT

B 0

)(
y
p

)
=

(
f
u

)
.

The necessary and sufficient conditions for this optimal control problem can
be derived by appending the constraint (4) to the functional (3) by means of
Lagrangian multipliers (z,µ)T and calculating the first variation of this Lagrangian
functional with respect to the now five unknowns (y,p, z,µ,u)T :

L

(
y
p

)
=

(
f
u

)
,

u = ω−1 R−1
Γ µ,(5)

LT
(

z
µ

)
=

(
−TTRΓY

(Ty − yΓY
)

0

)
.

There are several approaches possible for solving these coupled equations. Elim-
inating the control variable u from (5) gives rise to an All-In-Solver which is
numerically unfavorable, see [6]. An Inexact Gradient method was proposed in [5]
and numerical results for this setup were given in [6], but the speed of this method
depends to a large extent on choosing the right step size parameter. We present
an Inexact Conjugate Gradient (ICG) method which relinquishes the step size
parameter and gives rise to optimal convergence results.

The ICG method is based on the fact that the optimal control u∗ is the unique
global minimizer of the reduced cost functional [5], i.e.

δJ(u∗) ≡ Qu∗ − g = 0,

where Q is a symmetric positive definite matrix,

Q = S−1BA−TTTRΓY
TA−1B−TS−T + ωRΓ, S := BA−1BT ,

and the affine term g depends only on f and yΓY
,

g = −S−1BA−TTTRΓY

(
T f̃ − yΓY

)
, f̃ := A−1

(
I − BTS−1BA−1

)
f .
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The algorithmic description to compute these analytic expressions up to a given
tolerance η can be found in Figures 1 and 2.

Our properly scaled discretized systems A,L have uniformly bounded condition
numbers. The Solve algorithms can be selected as CG or Uzawa methods,
which thus reduce the residual error by any factor in uniformly bounded iteration
numbers. The linear equations are thus solved up to discretization error accuracy
with complexity and in time proportional to the number of unknowns.

ApplyQ[η,u] → (Qu)η

Solve

[
1

2
cP η,L,

(
0

u

)]
→
(
yη
pη

)

Solve

[
1

2
cAη,L

T ,

(−TTRΓY
Tyη

0

)]
→
(

zη
µη

)

Return (Qu)η := ωRΓ u− µη

Figure 1. Algorithm ApplyQ calculates the matrix product Qu
up to given error accuracy η: ‖Qu− (Qu)η‖ℓ2(IIQ) ≤ η .

InexactRHS [η, f ,yΓY
] → gη

Solve

[
1

2
cP η,L,

(
f

0

)]
→
(

f̃η
pη

)

Solve

[
1

2
cAη,L

T ,

(−TTRΓY
(T f̃η − yΓY

)

0

)]
→
(

zη
µη

)

Return gη := µη

Figure 2. Algorithm InexactRHS calculates the right hand
side g up to given error accuracy η: ‖g − gη‖ℓ2(IIQ) ≤ η .

The ICG algorithm described in Figure 3 is based upon a nested-iteration strat-
egy and solves the control problem with complexity proportional to the number of
unknowns on the highest level J . The numerical results in Table 1 show that the
internal CG steps kJ are uniformly bounded as well as the mean number of steps
necessary to solve the primal (#P-It/kJ) and adjoint (#A-It/kJ) systems. There
was no Inexact-CG step on level J = 9 necessary because the residual error was al-
ready below 0.01 ∗ 2−9. The third column shows the error in the control declining

from level to level en par with the residual error r
(kJ )
J in the first column.

The results show that wavelet discretizations are suitable for exact numerical
representation of control problems with Dirichlet boundary control. The optimal
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InexactCG [j, J ] → uj

(i) Set j := j, uj := u0

(ii) While j ≤ J

Set hj := 2−j

Assemble f j ,yjΓY

InexactRHS[hj ,f
j , yjΓY

] → gj

Use regular CG with ApplyQ[cQhj,·]
to calculate ‖Quj − gj‖ℓ2(IIQ) ≤ hj

Set j := j + 1 and prolongate uj

(iii) Return uJ

Figure 3. The InexactCG algorithm computes uJ up to dis-
cretization error accuracy hJ := 2−J .

J ‖r(kJ )
J ‖ℓ2 ‖u∗ − u

(kJ )
J ‖ℓ2 kJ

#P-It
kJ

#A-It
kJ

4 4.1123e– 03 4.1231e– 03 1 – –
5 8.2395e– 06 8.6744e– 05 2 3 1
6 1.8710e– 05 8.0957e– 05 1 3 1
7 9.5404e– 07 2.3294e– 05 1 2 1
8 1.4663e– 06 6.5335e– 06 1 1 1
9 1.1902e– 05 – ”” – – – –
10 2.6704e– 07 1.8761e– 06 1 2 1

Table 1. Inexact CG example results. The stopping criteria on
each level is ‖rJ‖ℓ2 ≤ 0.01 ∗ 2−j . We use a direct solver on level
J = 4.

preconditioning ensures low absolute condition and iteration numbers and the
norm equivalence property in combination with Riesz operators can improve the
accuracy of the model substantially. Changes in the domain Ω and the boundaries
Γ,ΓY can be implemented via a fictitious domain approach and by exchanging
trace operators.
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Decomposition of Weighted Besov and Triebel-Lizorkin Spaces and
Nonlinear Approximation on the Ball

Pencho Petrushev

(joint work with George Kyriazis and Yuan Xu)

Localized bases and frames allow to decompose functions and distributions in
terms of building blocks of simple nature and have numerous advantages over other
means of representation. In particular, they enable one to encode smoothness and
other norms in terms of the coefficients of the decompositions. Meyer’s wavelets [6]
and the ϕ-transform of Frazier and Jawerth [1, 2, 3] provide such building blocks
for decomposition of Triebel-Lizorkin and Besov spaces in the classical case on Rd.

Our aim is to develop similar tools for decomposition of weighted Triebel-
Lizorkin and Besov spaces on the unit ball Bd in Rd (d > 1) with weights

ωµ(x) := (1 − |x|2)µ−1/2, µ ≥ 0,

were |x| is the Euclidean norm of x ∈ Bd. These include Lp(B
d, ωµ), the Hardy

spaces Hp(B
d, ωµ), and weighted Sobolev spaces. For our purposes we develop

localized frames which can be viewed as an analogue of the ϕ-transform of Frazier
and Jawerth on Bd.

For the construction of our frame elements we use orthogonal polynomials in
the weighted space L2(ωµ) := L2(Bd, ωµ). Denote by Πn the space of all algebraic
polynomials of degree n in d variables and by Vn the subspace of all polynomials
of degree n which are orthogonal to lower degree polynomials in L2(ωµ). We have
the orthogonal polynomial decomposition

L2(ωµ) =

∞⊕

n=0

Vn, Vn ⊂ Πn.

As is shown in [13] the orthogonal projector Projn : L2(ωµ) 7→ Vn can be written
as

(Projnf)(x) =

∫

Bd

f(y)Pn(x, y)ωµ(y)dy,

where, for µ > 0, the kernel Pn(x, y) has the representation

Pn(x, y) = bµdb
µ− 1

2
1

n+ λ

λ
(1)

×
∫ 1

−1

Cλn

(
〈x, y〉 + u

√
1 − |x|2

√
1 − |y|2

)
(1 − u2)µ−1du.

Here 〈x, y〉 is the Euclidean inner product in Rd, Cλn is the n-th degree Gegenbauer

polynomial, λ = µ + d−1
2 , and the constants bµd , b

µ− 1
2

1 are defined by (bγd)−1 :=
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∫
Bd(1 − |x|2)γ−1/2dx. For a representation of Pn(x, y) in the limiting case µ = 0,

see (4.2) in [11].
Evidently,

(2) Kn(x, y) :=
n∑

j=0

Pj(x, y)

is the kernel of the orthogonal projector of L2(ωµ) onto the space
⊕n

ν=0 Vν .
A key role in this study plays the fact (established in [11]) that if the coefficients

on the right in (2) are “smoothed out” by sampling a compactly supported C∞

function, then the resulting kernel has nearly exponential localization around the
main diagonal y = x in Bd ×Bd. More precisely, let

Ln(x, y) :=
∞∑

j=0

â
( j
n

)
Pj(x, y),

where the “smoothing” function â is admissible in the sense of the following defi-
nition:

Definition: A function â ∈ C∞[0,∞) is called admissible of type
(a) if supp â ⊂ [0, 2] and â(t) = 1 on [0, 1], and of type
(b) if supp â ⊂ [1/2, 2].

We introduce the distance

d(x, y) := arccos
{
〈x, y〉 +

√
1 − |x|2

√
1 − |y|2

}
on Bd

and set

Wµ(n;x) :=
(√

1 − |x|2 + n−1
)2µ

, x ∈ Bd.

The main result in [11, Theorem 4.2] asserts that for any k > 0 there exists a
constant ck > 0 depending only on k, d, µ, and â such that

|Ln(x, y)| ≤ ck
nd√

Wµ(n;x)
√
Wµ(n; y)(1 + n d(x, y))k

, x, y ∈ Bd.

The kernels Ln are our main ingredient in constructing analysis and synthesis
needlet systems {ϕξ}ξ∈X and {ψξ}ξ∈X , indexed by a multilevel set X = ∪∞

j=0Xj .
This is a pair of dual frames whose elements have nearly exponential localization
on Bd and provide representation of every distribution f on Bd or f ∈ Lp(ωµ):

(3) f =
∑

ξ∈X
〈f, ϕξ〉ψξ.

The superb localization of the frame elements prompted us to term them needlets.
Our main interest lies with distributions in the weighted Triebel-Lizorkin (F -

spaces) and Besov spaces (B-spaces) on Bd. These spaces are naturally defined
via spectral decompositions (see [9, 12] for the general idea). To be specific, let

Φ0(x, y) := 1 and Φj(x, y) :=

∞∑

ν=0

â
( ν

2j−1

)
Pν(x, y), j ≥ 1,
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where P(·, ·) is from (1) and â is admissible of type (b) such that |â| > 0 on
[3/5, 5/3].

The F -space F sρpq with s, ρ ∈ R, 0 < p <∞, 0 < q ≤ ∞, is defined as the space

of all distributions f on Bd such that

(4) ‖f‖F sρ
pq

:=
∥∥∥
( ∞∑

j=0

(2sjWµ(2j ; ·)−ρ/d|Φj ∗ f(·)|)q
)1/q∥∥∥

p
<∞,

where Φj ∗ f(x) := 〈f,Φ(x, ·)〉. Here and in what follows ‖ · ‖p := ‖ · ‖Lp(ωµ).
The corresponding scales of weighted Besov spaces Bsρpq with s, ρ ∈ R, 0 < p, q ≤

∞, are defined via the (quasi-)norms

(5) ‖f‖Bsρ
pq

:=
( ∞∑

j=0

(
2sj‖Wµ(2j ; ·)−ρ/dΦj ∗ f(·)‖p

)q)1/q

.

Unlike in the classical case on Rd, we have introduced an additional parameter ρ,
which allows considering different scales of Triebel-Lizorkin and Besov spaces.
To us most natural are the spaces F spq := F sspq and Bspq := Bsspq, which embed
correctly with respect to the smoothness parameter s. A “classical” choice would
be to consider the spaces F s0pq and Bs0pq , where the weight Wµ(2j ; ·) is excluded
from (4)-(5). The introduction of the parameter ρ enables us to treat these spaces
simultaneously.

One of our main results [5] is the characterization of the F -spaces in terms of
the size of the needlet coefficients in the decomposition (3), namely,

‖f‖F sρ
pq

∼
∥∥∥
( ∞∑

j=0

2sjq
∑

ξ∈Xj

|〈f, ϕξ〉|Wµ(2j; ξ)−ρ/d|ψξ(·)|q
)1/q∥∥∥

p
.

Similarly for the Besov spaces Bsρpq we have the characterization

‖f‖Bsρpq ∼
( ∞∑

j=0

2sjq
[ ∑

ξ∈Xj

(
Wµ(2j ; ξ)−ρ/d‖〈f, ϕξ〉ψξ‖p

)p]q/p)1/q

.

Further, the weighted Besov spaces are applied to nonlinear n-term approxima-
tion from needlets on Bd. Consider nonlinear n-term approximation for a single
needlet system {ψη}η∈X (i.e. ϕη = ψη). Suppose Σn is the nonlinear set of all
functions g of the form g =

∑
ξ∈Λ aξψξ, where Λ ⊂ X , #Λ ≤ n, and Λ may vary

with g. Let σn(f)p denote the error of best Lp(ωµ)-approximation to f ∈ Lp(ωµ)
from Σn, i.e.

σn(f)p := inf
g∈Σn

‖f − g‖p.

We consider approximation in Lp(ωµ), 0 < p < ∞. Suppose s > 0 and let
1/τ := s/d + 1/p. Denote briefly Bsτ := Bssττ . Our main result asserts that if
f ∈ Bsτ , then

σn(f)p ≤ cn−s‖f‖Bs
τ

[Jackson estimate].

The results presented here are contained in [5, 11]. They are part of a broader
undertaking for needlet characterization of Triebel-Lizorkin and Besov spaces on
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nonclassical domains, including the multidimensional unit sphere [7, 8] and the
interval [4, 10] with Jacobi weights. Our results generalize the results in the
univariate case from [4] (with α = β), where needlet characterizations of F - and
B-spaces on the interval are obtained.
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Needlets on the Sphere and Applications to the Cosmological
Microwave Background

Dominique Picard

(joint work with P. Baldi, G. Kerkyacharian and D. Marinucci)

The Cosmological Microwave Background (CMB) is a relic radiation which pro-
vides a picture of the Universe at the time of the so-called recombination, estimated
to have occurred approximately 3× 105 years after the Big Bang, that is, approx-
imately 1.3 × 1010 years ago (or in other words, when the Universe was less than
0.005% of its current age, much before the formation of the first stars or galax-
ies). Analysing the CMB will provide a lot of informations about the structure of
the Universe. However, the CMB as many other cosmological maps are usually
provided with large parts of missing observations (Point sources, stars, galaxies,
the milky way, for instance, mask the CMB.)
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Statistical Issues

(1) The observation of the CMB is generally modelised as a random field
(Tξ)ξ∈S2 where S2 is the unit sphere of R3.

(2) Two important statistical issues are :
(a) Can ξ 7→ Tξ be considered as a Gaussian field ?
(b) Is ξ 7→ Tξ is a rotation- invariant field ?

i.e. ∀ρ ∈ O(3), ∀ξ, η ∈ S2 E(Tξ, Tη) = E(Tρ(ξ), Tρ(η)), ETξ = c ?
(3) Unfortunately, from the statistical point of view, we have only ONE ob-

servation of the field (Tξ will not change in one year or in one hundred
years) and only on some points of the sphere (outside the masks).

Decomposition of the Field
Under the hypothesis of isotropy of the field, the spaces Hk of spherical harmonics
of order k are eigenspaces of the covariance operator

f(x) ∈ L2(S2) 7→ Kf(x) =

∫

S2

K(〈x, y〉)f(y)dy

where K(x, y) := E(Tx, Ty) and

∀f ∈ Hk, Kf = Ckf.

The sequence Ck is called the angular power spectrum of the field Tξ.
So, if P ki , 1 ≤ i ≤ 2k+ 1 is an orthonormal basis of spherical harmonics of Hk,

we get a decomposition of the field into uncorrelated atoms :

Tξ =
∑

k∈N

∑

1≤i≤2k+1

(

∫

S2

TuP
k
i (u)dσ(u))P ki (ξ) =

∑

k∈N

∑

1≤i≤2k+1

Zki P
k
i (ξ)

and the variables Zki =
∫
S2 TuP

k
i (u)dσ(u) are uncorrelated and such that

V ar(Zki ) = E(

∫

S2

TuP
k
i (u)dσ(u))2 = Ck.

The Zki ’s provide ideal atoms to build tests for isotropy or gaussiannity.
Unfortunately this is not really feasible since the evaluation of the Zki ’s is cor-

rupted by the mask.
In this paper we investigate the statistical properties of the so-called needlets

(ψjk). These are a family of spherical wavelets which were introduced by Nar-
cowich, Petrushev and Ward [6]. Needlets enjoy several properties which are not
shared by other spherical wavelets. First they enjoy good localization properties
in frequency: needlets are compactly supported in the frequency domain with a
bounded support which depends explicitly on a user-chosen parameter. On the
other hand, needlets enjoy excellent localization properties in real space, with an
exponential decay of the tails.

As a major consequence of the localization property both in the frequency and
in the space domain, the needlet coefficients are asymptotically uncorrelated as
the frequency tends to ∞ for any fixed angular distance.

If we define the needlet (random) coefficients associated to the CMB field :
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βj,k =

∫

S2

Tuψj,k(u)dσ(u).

Under the assumptions of isotropy and gaussianity, the βj,k’s are gaussian,
centered and above all asymptotically uncorrelated. These coefficients are not
corrupted provided that they are evaluated outside the mask, and yield much
more robust test statistics for isotropy and gaussianity.
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L1 Approximation of Hamilton-Jacobi Equations

Bojan Popov

(joint work with Jean-Luc Guermond)

L1-based minimization methods for stationary Hamilton-Jacobi equations

H(x, u,Du) = 0, x ∈ Ω, with u|∂Ω = 0

are developed. The first case considered is of a one dimensional linear equation.
An algorithm is developed to solve the ill-posed boundary value problem and an
optimal error estimate is proved. In the nonlinear case, the convergence theory
and numerical algorithms are extended to Hamilton-Jacobi equations with convex
and uniformly continuous hamiltonians. The main result is proven in the case
of a 2D bounded domain with a Lipschitz boundary. The general assumption
is that the viscosity solution u of the problem is unique, u ∈ W 1,∞(Ω), and
the gradient Du is of bounded variation. We approximate the solution to this
problem using continuous finite elements and by minimizing the residual in L1.
In the case of a convex and uniformly continuous hamiltonian, it is shown that
upon introducing an appropriate entropy the sequence of approximate solutions
based on quasi-uniform shape regular finite element triangulations converges to
the unique viscosity solution u. The main features of the methods are that they
are of arbitrary polynomial order and do not have any artificial viscosity. The fact
that residual in minimized in L1 is a key.
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Numerical examples, computational complexity and possible applications to other
hyperbolic equations or systems, including time dependent problems, will be dis-
cussed.
All references are available at www.math.tamu.edu/∼popov/preprints.html
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Identification of Sparse Operators

Holger Rauhut

(joint work with Götz Pfander and Jared Tanner)

Motivated by the channel estimation problem in communication engineering
(wireless communication and sonar) we consider the problem of identifying a ma-
trix Γ ∈ Cn×m from its action Γh on a single vector h ∈ Cm. Clearly, without
further knowledge Γ is completely determined only by its action on n basis vectors
in Cm, and our task seems impossible. However, physical considerations suggest
that in certain practical situations (see also below) Γ can be well-represented by a
short linear combination of a few basic matrices; in other words it has a sparse rep-
resentation. In this situation one can exploit connections to sparse approximation
and compressed sensing [5, 7] to efficiently reconstruct Γ.

Given a suitable set Ψ of N “elementary” matrices Ψj ∈ Cn×m, j = 1, . . . , N
(a matrix dictionary) we say that Γ ∈ Cn×m has a k-sparse representation if

Γ =
∑

j

xjΨj

for a vector x ∈ CN whose support has at most cardinality k, formally ‖x‖0 :=
|{k, xk 6= 0}| ≤ k. The action of such a matrix Γ on a vector h ∈ Cm can be
written as

Γh =
∑

j

xjΨjh = Ψhx

with the matrix Ψh = (Ψ1h| . . . |ΨNh) ∈ Cn×N . Identification of Γ clearly
amounts to reconstructing the sparse vector x from Γh. Unfortunately, the obvious
approach of determining the vector x with shortest support (i.e. minimal ‖x‖0)
that is consistent with the observation, Γh = Ψhx, yields an NP-hard combinato-
rial problem[2] and, thus, is not feasible in practice.

Several tractable alternative recovery algorithms have been proposed so far,
most notably ℓ1-minimization (Basis Pursuit), on which we will concentrate here.
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Instead of solving a combinatorial optimization problem we consider the minimizer
of the problem

(1) min
x

‖x‖1 =

N∑

j=1

|xj | subject to Γh = Ψhx.

This minimization problem can be solved efficiently with convex optimization tech-
niques [4].

Obvious questions concern the choice of h, and the maximal sparsity k that
allows for recovery of x resp. identification of Γ by ℓ1-minimization.

Our first result in this direction [11] deals with dictionaries of random matrices.
Although in practice rather deterministic dictionaries will appear, it neverthe-
less provides some intuition of what can be expected, in particular, the maximal
recoverable sparsity.

Theorem 1. Let h be a non-zero vector in Rm.

(a) Let all entries of the N matrices Ψj ∈ Rn×m, j = 1, . . . , N , be chosen
independently according to a standard normal distribution (Gaussian en-
semble); or

(b) let all entries of the N matrices Ψj ∈ Rn×m, j = 1, . . . , N , be independent
Bernoulli ±1 variables (Bernoulli ensemble).

Then there exists a positive constant c such that

(2) k ≤ c
n

log
(
N
nε

)

implies that with probability at least 1 − ε all matrices Γ having a k-sparse rep-
resentation with respect to Ψ = {Ψj} can be recovered from Γh by Basis Pursuit
(1).

The proof of this theorem is based on estimating the so called restricted isometry
constants [6] of the random matrix Ψh.

We will now concentrate on the matrix dictionary of time–frequency shifts,
which appears naturally in the channel identification problem in wireless commu-
nications [3] or sonar [13]. Due to physical considerations wireless channels may
indeed be modeled by sparse linear combinations of time–frequency shifts MℓTp,
where the translation operators Tp and modulation operator Mℓ on Cn are given
by

(Tph)q = hp+q mod n and (Mℓh)q = e2πiℓq/nhq.

The system of time–frequency shifts G = {MℓTp : ℓ, p = 0, . . . , n−1} forms a basis
of Cn×n and for any non-zero h, the vector dictionary Gh = (MℓTph)ℓ,p=0,...,n−1

is a Gabor system [9]. Below, we focus on the so-called Alltop window hA [1, 10]
with entries

(3) hAq :=
1√
n
e2πiq

3/n, q = 0, . . . , n−1,
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and the randomly generated window hR with entries

(4) hRq :=
1√
n
ǫq, q = 0, . . . , n−1,

where the ǫq are independent and uniformly distributed on the torus {z ∈ C, |z| =
1}.

Invoking existing recovery results [8, 14] and results on the coherence of the
Gabor systems GhA [10] and GhR [11], we obtain

Theorem 2. (a) Let n ≥ 5 be prime and hA be the Alltop window defined

in (3). If k <
√
n+1
2 then BP recovers from ΓhA all matrices Γ having a k-

sparse representation with respect to the time–frequency shift dictionary.
(b) Let n be even and choose hR to be the random unimodular window in (4).

Let t > 0 and suppose

k ≤ 1

4

√
n

C log(n) + t
+

1

2

with C = 2 log(4) ≈ 2.77. Then with probability of at least 1 − e−t BP
recovers from ΓhR all matrices Γ ∈ Cn×n having a k-sparse representation.

Although this theorem provides a first recovery result, it is not yet satisfactory
as the maximal sparsity which guarantees recovery is quite small – on the order
of

√
n – compared to (2), where it is of the order n/ log(N/n) which in our case,

N = n2, is n/ log(n). By passing from worst case analysis to a probability model
on the sparse coefficient vector x one can apply recent work by Tropp based on the
coherence [15] in order to achieve an improvement. Indeed, if the support set Λ is
chosen at random as well as the signs of the non-zero coefficients xj , j ∈ Λ, then
for both hA and hR one has recovery with high probability of the true coefficient
vector x provided

k ≤ c
n

log(n)1+u

for some c, u > 0 (governing the probability of recovery). We refer to [11] for a
precise formulation.

In case of the randomly generated vector hR we were able to improve further
on the above recovery results by removing the randomness in the coefficient vector
x [12].

Theorem 3. Let Γ ∈ Cn×n be k-sparse with respect to the time-frequency shift
dictionary G. Choose hR at random. There exists a constant C > 0 such that

(5) k ≤ C
n

log(n/ǫ)

implies that with probability at least 1− ǫ Basis Pursuit (1) recovers Γ from ΓhR.

The above theorem is based on a careful analysis of the singular values of a sub-
matrix consisting of k columns of GhR [12]. It would be interesting to investigate
an analog for the deterministic Alltop window hA.
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Numerical experiments for both hA and hR in [11] suggest that recovery is
possible with high probability for most signals provided k ≤ n

2 log(n) .
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Adaptive Coupled Cluster Method and CI Method for the Solution of
the Electronic Schroedinger Equation

Reinhold Schneider

The electronic Schrödinger equation plays a fundamental role in molecular physics.
It describes the stationary non-relativistic quantum mechanical behavior of an N
electron system in the electric field generated by the nuclei. The Coupled Cluster
Method has been developed for the numerical computation of the ground state
energy and wave function. It provides a powerful tool for high accuracy electronic
structure calculations. The present paper aims to provide a convergence analysis
of this method. Under additional assumptions quasi-optimal convergence of the
projected coupled cluster solution to the full CI solution and also to the exact
wave function can be shown in the Sobolev H1 norm. The error of the ground
state energy computation is obtained by an Aubin Nitsche type approach.
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Recent developments in science and technology, in particular in chemistry,
molecular biology, material sciences or semi-conductor devices, are requesting re-
liable computations of molecular behavior. On an atomic or molecular length
scale, the physics is governed by the laws of quantum mechanics. Consequently,
numerical modeling of such processes should be based on first principles of quan-
tum mechanics. The basic equation for a quantitative description of atomistic
and molecular phenomena of interest is the electronic Schrödinger equation. It de-
scribes the stationary and non-relativistic behavior of an ensemble of N electrons
in an electric field resulting from fixed nucleons,

HΨ =

N∑

i=1

[−1

2
∆i −

M∑

j=1

Zj
|xi − Rj|

+
1

2

N∑

j 6=i

1

|xi − xj |
]Ψ = EΨ .

The ground state energy of a given N -electron system, which is the eigenvalue of
the lowest eigenstate of the Schrödinger-Hamilton operator is of major interest,

E0 = min〈Ψ,Ψ〉=1〈HΨ,Ψ〉 .
Since the corresponding wave function depends on 3N spatial variables and N
two-valued spin variables

Ψ(x1, s1; . . . ; xN , sN ) , Ψ : R3N ⊗ SN → C resp. R , 〈Ψ,Ψ〉 = 1 ,

not to mention its lack of smoothness, its numerical approximation is a rather
difficult and challenging task. Usually it is approximated by sums anti-symmetric
tensor products Ψ =

∑∞
k=1 ckΨk with Slater determinants Ψk defined by

Ψk(x1, s1, . . . ,xN , sN ) = ϕ1,k ∧ . . . ∧ ϕN,k =
1√
N !

det(ϕi,k(xj , sj))
N
i,j=1 ,

〈ϕi,k, ϕj,k〉 = δi,j , with N orthonormal functions ϕi, i = 1, . . . , N called spin or-
bitals ϕi : R3 × {± 1

2} → C(R), i = 1, . . . , N . In contrast to the CI (Configuration
Interaction) method, which consists in a linear parametrization and a correspond-
ing Galerkin method, the Coupled Cluster (CC)-method is based on an exponential
parametrization of the wave function,

Ψ = eTΨ0 , T =

N∑

i=1

Ti =
∑

µ∈J
tµXµ

for given reference determinant Ψ0 and excitation operators Xµ and unknown
amplitudes tµ satisfying the amplitude equations

0 = 〈Ψµ, e
−THΨ〉 = 〈Ψµ, e

−THeTΨ0〉 =: fµ(t) , t = (tν)ν∈J , µ, ν ∈ J .
Restricting the ansatz and the above amplitude equations to a relevant subset
of excitation Jh ⊂ J , usually consisting of single and double excitations, yields
to the projected CC method, e.g CCSD. In contrast to truncated CI methods,
like CISD, the projected is size consistent, due to exponential parametrization.
Nowadays the projected CC approach constitutes the method of choice for high
resolution wave function computation in electronic structure calculation, at least
in cases where dynamical correlation is dominating. However, it performs poorly
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in some cases, where a single reference Slater determinant is not sufficient. Due
to the authors knowledge, the authors paper [4] was the first attempt to analyse
the (Projected Coupled) Cluster method rigorously from a numerical analysis point
of view. For the analysis of the CC method, as well as in practice, presented
in [4], the (approximate) Hartree Fock wave function is considered as a reference
Slater determinant. Based on the established convergence of the full CI solution
towards the exact wave function by the full CI solution, in a second step, the
convergence of the projected CC solution to the full CI solution is considered in
detail. In particular, a weighted l2-norm for the coupled cluster amplitudes ‖t‖V
has been introduced, which are shown to be equivalent to the H1 Sobolev norm of
the approximate wave functions in a certain extent. With this notion at hand, the
projected CC method can be interpreted as a Galerkin method for a non-linear
function f : V → V ′ seeking th ∈ Vh s.t.

〈f(th),vh〉 = 0 ∀ vh ∈ Vh ⊂ V.

Under an additional assumption of strict monotonicity of the amplitude func-
tion, quasi-optimal convergence of the projected CC method is concluded.
Theorem ([4]) (a priori estimate) If f(t) = 0 and f is (locally) strictly monotone
at t and the solution of the Galerkin scheme th satisfies ‖t−th ≤ δ then it satisfies

‖t− th‖V . inf
v∈R♯J

‖t− vh‖V .

and

‖Ψ − Ψh‖H1 . inf
v∈RL

‖Ψ − e
∑

µ∈Jh
vµXµΨ0‖H1 .

Since convergence problems are reported for the CC method in presence of stati-
cal correlation, convergence might depend on the actual molecular configuration.
Therefore setting such an assumption seems to be reasonable. Whether this might
be necessary or not is not clear yet.

Since the ground state energy is a functional of the amplitudes

J(t) := E(t) := 〈Ψ0, H(1 + T2 +
1

2
T 2

1 )Ψ0〉 ,

in order to estimate the convergence of the computed eigenvalue to the exact
ground state energy, the dual weighted residual approach, introduced by Rannacher
et al., has been applied for the derivation of sharp a priori estimates. Defining the
Lagrange functional

L(t,a) := J(t) − 〈f(t),a〉 , t ∈ V ′ , a ∈ V ,

its stationary points are given by the solution of the amplitude equation f(t) = 0
and the dual equation for a ∈ V

f ′[t]⊤a = −(J ′[t]) ∈ V ′.

The error of the energy functional obtained by the Galerkin solutions th,ah can
be expressed by the corresponding residuals

|J(t)−J(th)| =
1

2
(〈r(th),a−bh)〉+

1

2
〈r∗(th,ah), (t−uh)〉+R3 , ∀uh,bh ∈ Vh ,
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with a cubic remainder term R3, which implies the following result.
Theorem ([4]) The error in the energy E = J(t) and the discrete energy

Eh = J(th) can be estimated by

|E − Eh| . ‖t− th‖V ‖a− ah‖V + (‖t − th‖V )2

. inf
uh∈Vh

‖t− uh‖V inf
bh∈V

‖a− bh‖V +

+( inf
uh∈Vh

‖t− uh‖V )2.

Originally, the dual weighted residual method has been developed for the design
of local a posteriori error estimators for adaptive finite element methods, which are
used to optimize the finite element meshes for computation of certain function-
als of the solution. However adaptive finite element method (FEM) techniques
cannot be transferred immediately to the solution of the electronic Schrödinger
equation. Perhaps, instead of truncating with respect to the excitation level one
needs nonlinear approximation procedures for optimizing the basis sets, and even
more significant, for an automatic selection of those amplitudes which contributes
most to the ground energy. An alternative is provided by nonlinear best n-term
approximation strategies introduced by Cohen, Dahmen, DeVore.

The amplitude equations

0 = fµ(t) = 〈Ψµ, e
−THeTΨ0〉 = 〈Ψµ, [F , T ]Ψ0〉 + 〈Ψµ, e

−TUeTΨ0〉
are of the form f(t) = Ft − Φ(t) = 0 which can be solved iteratively by an aug-
mented Newton type scheme tn+1 := F−1Φ(tn), which in turn has to be performed
only approximatively according to best n-term strategies.

The same strategy applies also to the CI method still in an almost size extensive
way. In two recent papers on adaptive best n-term algorithm for the computation
of the lowest eigenvalue and eigenstate has been developed [1, 2]. Regularity
providing best n-term convergence rates has been obtained by Yserentant and
also in [3].
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Space Time Adaptive Wavelet Methods for Parabolic Problems

Christoph Schwab

(joint work with Rob Stevenson)

In a bounded polyhedral domain Ω ⊂ Rd with Lipschitz boundary, and in a finite
time interval (0, T ), let

(1) V →֒ H ∼= H∗ →֒ V ∗

be an evolution triple with dense injection. Assume given a one parameter family of
(pseudo) differential operators A(t) ∈ L(V, V ∗), of constant order 2ρ ∈ (0, 2]. The
family {A(t)}0≤t≤T is assumed uniformly elliptic in the sense that the associated
bilinear form

a(t; η, ζ) := V ∗

〈
A(t)η, ζ

〉
V

: V × V → R

satisfies for some Ma, α > 0, λ ∈ R and for almost every t ∈ (0, T ), η, ζ ∈ V :

(2) |a(t; η, ζ)| ≤Ma‖η‖V ‖ζ‖V , a(t; η, η) ≥ α‖η‖2
V − λ‖η‖2

H .

Typically, V = H̃ρ(Ω), H = L2(Ω), V ∗ = H−ρ(Ω), 0 < ρ ≤ 1. For given
g ∈ L2(0, T ;V ∗), h ∈ H , we consider the parabolic problem:

(P) u̇(t) +A(t)u(t) = g(t) in V ∗, u(0) = h in H .

In weak form: given (g, h) ∈ Y∗, find

(W) u ∈ X : b(u, v) = f(v) ∀v = (v1, v2) ∈ Y
where

(3) X = L2(0, T ;V ) ∩H1(0, T ;V ∗) ⊂ C0([0, T ];H), Y = L2(0, T ;V ) ×H ,

b
(
u, (v1, v2)

)
:=

∫ T

0

{
V ∗

〈
u̇, v1

〉
V

+ a(t;u, v1)
}
dt+ H

〈
u(0), v2

〉
H
,(4)

f(v) :=

∫ T

0
V ∗

〈
g(t), v1(t)

〉
V
dt+ H

〈
h, v2

〉
H
.(5)

Examples:

(1) Diffusion problem in Ω = (0, 1)d with possibly large d with variable, but
uniformly in Ω elliptic coefficients. Here V = H1

0 (Ω). See [3].
(2) A(t) infinitesimal generator of anisotropic Feller-Lévy process Xt in Ω =

(0, 1)d: V = H̃s1,...,sd(Ω), H = L2(Ω), (Aη)(ζ) := E(η, ζ), 0 < si ≤ 1,
i = 1, ..., d where E(·, ·) denotes the (possibly nonsymmetric) Dirichlet
Form of the process {Xt}t≥0, see [4].

(3) Stokes Problem in Ω × (0, T ) in velocity-formulation with

V =
{
u ∈ H1

0 (Ω)d : divu = 0 in L2(Ω)
}
, H = L2(Ω)d.

Regarding the well-posedness of (W), we have
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Proposition 1. There exist constants β > 0, Mb < ∞ s.t. the form b(·, ·) is
continuous

(6) ∀u ∈ X , v ∈ Y : |b
(
u, (v1, v2)

)
| ≤Mb ‖u‖X‖v‖Y ,

coercive

(7) inf
06=u∈X

sup
06=v∈Y

b
(
u, (v1, v2)

)

‖u‖X ‖v‖Y
≥ β,

and injective

(8) ∀0 6= v ∈ Y : sup
06=u∈X

b
(
u, (v1, v2)

)

‖u‖X ‖v‖Y
> 0 .

In particular,

(9) Bu :=
(
u̇+A(t)u, u(0)

)
: X → Y∗ is an isomorphism .

To discretize the operator equation (P), we require therefore Riesz bases of the
spaces X and Y. These can be obtained by tensorizing wavelet bases which are,
properly scaled, Riesz bases in the evolution triple (1) and in H1(0, T ), L2(0, T )
and H1(0, T )∗, respectively.

Proposition 2. Assume given Σ = {σµ : µ ∈ ∇x} ⊂ V and Θ = {θλ : λ ∈ ∇t} ⊂
H1(0, T ) which are, properly scaled, Riesz bases of V,H, V ∗ and of H1(0, T ),

L2(0, T ), H̃−1(0, T ) = (H1(0, T ))∗, respectively. Then
{

(t, x) 7−→ θλ(t)σµ(x)

(‖θλ‖2
L2(0,T )‖σµ‖2

V + ‖θλ‖2
H1(0,T )‖σµ‖2

V ∗)
1
2

: (λ, µ) ∈ ∇t ×∇x

}

is a Riesz Basis in X and

(t, x) 7−→
{( θλ(t)σµ(x)

‖θλ‖L2(0,T )‖σµ‖V
, 0
)

: (λ, µ) ∈ ∇t×∇x

}
×
{(

0,
σµ(x)

‖σµ‖H

)
: µ ∈ ∇x

}

is a Riesz Basis in Y.

Proposition 3. In the tensor basis Θ ⊗ Σ := {θλ σµ : (λ, µ) ∈ ∇t × ∇x} the
bi-infinite matrix

(10)

BBB := b
(
Θ ⊗ Σ, (Θ ⊗ Σ) × Σ

)
=

[
‖Θ ⊗ Σ‖−1

L2⊗V 0

0 ‖Σ‖−1
H

]
×

×


L

2

〈
Θ̇,Θ

〉
L2 ⊗H

〈
Σ,Σ

〉
H

+

∫ ⊤

0

a(t; Θ ⊗ Σ,Θ ⊗ Σ)dt

H

〈
Θ(0) ⊗ Σ,Σ

〉
H


 ‖Θ ⊗ Σ‖−1

X

is a bounded isomorphism in L
(
ℓ2(∇t × ∇x), ℓ2(∇t × ∇x) × ℓ2(∇x)

)
; here,

‖Σ‖H denotes the mass matrix of the basis [Σ]H in H and analogously for the
other expressions in (10).



Wavelet and Multiscale Methods 2139

Now assume that Θ,Σ are spline-wavelet bases in (0, T ) resp. in Ω with sufficient
smoothness and sufficiently many vanishing moments and with isotropic support.

Proposition 4. i) If A ∈ L(V, V ∗) is independent of t satisfying (2) and is s∗-
computable with respect to the basis [Σ]V , then the bi-infinite matrix BBB in (10) is
s∗-computable with respect to the bases [Θ ⊗ Σ]X , [Θ ⊗ Σ × Σ]Y .

ii) If A(t) satisfying (2) and is smooth in t ∈ [0, T ], then there exists a quadrature
scheme in (x, t) s.t. the matrix BBB in (10) is s∗-computable.

If the wavelets σµ in the basis [Σ]H are tensor products of univariate spline
wavelets of order p+ 1, s∗ compressibility of the matrix corresponding to the
diffusion operator has been shown in [3].

Then there are variants of both adaptive wavelet algorithms of Cohen, Dahmen
& DeVore in [1, 2] which converge with optimal rates in linear complexity to

any solution u ∈ As∗

∞ of (W) with convergence rate N−s/d for wavelet bases Σ
consisting of spline wavelets in Rd with isotropic support and with convergence
rate N−s (i.e. without the curse of dimensionality) for wavelet bases Σ consisting
of tensor products of univariate spline wavelets in (0, 1)d (see [3]) for 0 ≤ s <
min(s∗, p+ 1− ρ) in work and memory, up to some absolute constant equal to the
support size N of the solution vector.
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An Adaptive Wavelet Method for Solving High-Dimensional Elliptic
PDE’s

Rob Stevenson

(joint work with Christoph Schwab)

In Ω = (0, 1)n, for given f ∈ H−1(Ω), we study the numerical solution of the
problem: find u ∈ H1

0 (Ω) such that

(1) a(u, v) :=

∫

Ω

c0uv +

n∑

m=1

cm∂mu∂mv = f(v) ∀v ∈ H1
0 (Ω)

where c0 ≥ 0 and cm > 0 (m = 1, . . . , n) are constants.
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PDE’s such as (1) in spatial domains of high dimension arise in numerous
areas. We only mention mathematical finance (valuation of derivative contracts
on large baskets), elliptic homogenization problems with multiple separated length
scales, deterministic methods for stochastic PDE’s, the multi-electron Schrödinger
equation in molecular dynamics and problems from molecular biology.

With a standard, piecewise polynomial approximation procedure in (0, 1)n, the
error in energy norm

(2) ||| · ||| := a(·, ·) 1
2

on H1
0 (Ω) behaves at best as ∼ N−(d−1)/n, where d is the polynomial order and N

is the number of degrees of freedom. The rate (d−1)/n being inversely proportional
to the space dimension n is known as curse of dimensionality.

Using that Ω = (0, 1)n is a tensor product domain, the curse of dimensional-
ity can be circumvented by applying hyperbolic cross approximation or sparse
grids ([BG04]). With this approach, for any fixed n the error behaves as ∼
(logN)n−1N−(d−1), or with some small modification even without the log-factor,
assuming that u ∈ ⋂nk=1

⊗n
m=1H

d+δkm(0, 1). The largest order of a (mixed) par-
tial derivative that is involved in this regularity constraint increases linearly with
nd.

The key to overcome regularity restrictions is to apply nonlinear approximation.
Let {ψλ : λ ∈ ∇} be a Riesz basis for L2(0, 1) consisting of wavelets of order d,
such that {2−|λ|ψλ : λ ∈ ∇} is a Riesz basis for H1

0 (0, 1). As usual, here |λ| ∈ N0

denotes the level of ψλ, and we assume that for ℓ ∈ N0, #{λ ∈ ∇ : |λ| = ℓ} = 2ℓ.
Now for any n, the properly scaled tensor product basis

(3) Ψ :=
{
ψλ :=

n⊗

m=1

ψλm
/|||

n⊗

m=1

ψλm
||| : λ ∈ ∇ := ∇n

}

is a Riesz basis for H1
0 (0, 1)n, even uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n)

when this space is equipped with the energy norm ||| · |||. This means that the
quotient

(4) sup
06=v∈ℓ2(∇)

|||∑
λ∈∇

vλψλ|||2
‖v‖2

ℓ2(∇)

/
inf

06=v∈ℓ2(∇)

|||∑
λ∈∇

vλψλ|||2
‖v‖2

ℓ2(∇)

is bounded, uniformly in c0 ≥ 0 and cm > 0 (m = 1, . . . , n). With |λ| :=
(|λ1|,. . ., |λn|), for any ℓ ∈ N0, {ψλ : λ ∈ ∇, ‖|λ|‖1 ≤ ℓ} spans the corresponding

sparse grid space of dimension N =
∑ℓ

k=0 2k
(
n−1+k
n−1

)
.

Instead of restricting ourselves to sparse-grid approximation, we consider ap-
proximations to u from the span of {ψλ : λ ∈ ΛN}, where ΛN ⊂ ∇ is any subset
with #ΛN = N . Because of the boundedness of the quotient from (4), approxi-
mating u by

∑
λ∈ΛN

vλψλ in ||| · ||| is equivalent to approximating its representation
u with respect to Ψ by (vλ)λ∈ΛN

in ‖·‖ℓ2(∇). We have inf{v∈ℓ2(∇):suppv⊂ΛN} ‖u−
v‖ℓ2(∇) = ‖u−u|ΛN

‖ℓ2(∇), where u|ΛN
is the vector in ℓ2(∇) that coincides with

u on its support being ΛN . For approximating u in ‖ · ‖ℓ2(∇), a best choice for



Wavelet and Multiscale Methods 2141

ΛN is one such that u|ΛN
is a best N -term approximation to u, denoted as uN ,

meaning that it contains the N largest coefficients in modulus of u.
The class

As
∞ := {v ∈ ℓ2(∇) : ‖v‖As

∞
:= sup

ε>0
ε[min{N ∈ N0 : ‖v − vN‖ℓ2(∇) ≤ ε}]s <∞}

gathers under one roof all v whose best N -term approximations converge to v
with rate s > 0. Note that ‖v‖As

∞
≥ supε<‖v‖ℓ2(∇)

ε = ‖v‖ℓ2(∇). Although As
∞

is non-empty for any s, as it contains any finitely supported vector, in view of
the order d of polynomial reproduction being applied, the representation v of an
arbitrarily smooth v cannot be expected to be in As

∞ for s > d− 1. On the other
hand, in [Nit06], Nitsche showed that for sufficiently smooth wavelets, e.g., spline
wavelets, for 0 < s < d− 1 and with τ = (s+ 1

2 )−1

v ∈ As
τ ⇐⇒ v ∈

n⋂

k=1

n⊗
τ

m=1

Bs+δmk
τ (Lτ (0, 1))

where As
τ := {v ∈ ℓ2(∇) :

∑
N∈N

(Ns‖v−vN‖ℓ2(∇))
τN−1 <∞}, Bs+δmk

τ (Lτ (0, 1))
is the Besov space measuring “s+ δmk orders of smoothness in Lτ”, and

⊗
τ de-

notes the so-called “τ tensor product”. Note that As
τ is even (slightly) smaller

than As
∞.

The upshot of this result is that
⋂n
k=1

n⊗
τ

m=1

Bs+δmk
τ (Lτ (0, 1)) is much larger, with

an increasing difference when s and n get larger, than
⋂n
k=1

⊗n
m=1H

s+δkm(0, 1),
membership of which is needed to guarantee the same rate with sparse grid ap-
proximation. In particular, for two and three space dimensions, in [Nit05] it
was shown that for general, sufficiently smooth f , the solution u of (1) is in
⋂n
k=1

n⊗
τ

m=1

Bs+δmk
τ (Lτ (0, 1)) for any s. This means that the rate of convergence of

best N -term approximation is never restricted by the regularity of u for what-
ever order d. The proof in [Nit05] makes use of the splitting of u into known
singular functions and a smooth remainder, which is also available for (1) in more
than three dimensions in [Dau88b]. It indicates the huge potential of best N -term
approximation in tensor product bases.

Above considerations concern best N -term approximations that, however, are
not feasible in practice, already because u is not given explicitly. It can be found
as the solution of the infinite matrix-vector problem

(5) Au = f ,

with “stiffness matrix” A = [a(ψλ′ ,ψλ)]λ,λ′∈∇ and f = [f(ψλ)]λ∈∇. This infi-
nite matrix problem is equivalent to (1). In [CDD01, CDD02], optimal adaptive
algorithms were introduced for solving (5). It was shown that whenever for some
s > 0, u happens to belong to As

∞, then, under two assumptions discussed below,
the sequence of approximations produced by these algorithms converge to u with
this rate s, requiring a number of operations equivalent to their length. The first
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assumption is that one has available a routine RHS that given an ε > 0 produces
an approximation fε := RHS[ε] with ‖f − fε‖ ≤ ε and

(6) rhss := sup
0<ε<‖f‖ℓ2(∇)

ε
[
# operations required by the call RHS[ε]

]s
<∞.

The second assumption is that for some s∗ > s, A is s∗-computable, which is
a quantitative measure how well A can be approximated by computable sparse
matrices. This assumption implies that A : As

∞ → As
∞ is bounded, and thus

that ‖f‖As
∞

. ‖u‖As
∞

. So in any case if we could realize (quasi-) best N -term
approximations for f in O(N) operations, then the resulting routine RHS would
satisfy rhss <∞, with in particular rhss . ‖u‖As

∞
.

In the tensor product basis setting, applying as a building block univariate
biorthogonal spline wavelets, in [SS07] we proved that A is s∗-computable for
some s∗ > d − 1, which s∗ is thus larger than any s for which u ∈ As

∞ might
be expected. We showed this result in a more general setting than we consider
here. Most importantly, we allowed general, i.e., non-separable, smooth variable
coefficients in the differential operator, meaning that we had to design and analyze
a quadrature scheme. Our results imply that for any n, and s ∈ [0, d − 1], the
adaptive wavelet schemes produce an approximation to u ∈ As

∞ within any given
tolerance 0 < ε . ‖f‖ℓ2(∇) in ‖ · ‖ℓ2(∇) with a support length not exceeding

D1ε
−1/s|u|1/sAs

∞
,

taking a number of operations not exceeding

D2ε
−1/s|u|1/sAs

∞
+D3ε

−1/srhs1/s
s ,

where D1, D2 and D3 are some constants, independent of c0 ≥ 0 and cm > 0
(m = 1, . . . , n). Only knowing that u ∈ As

∞, up to the factors D1 or D2 +
D3[rhss/|u|As

∞
]1/s, this length or number of operations are indeed the best that

generally can be expected.
What we did not analyze, however, is the dependence of D1, D2, D3 and the

quotient from (4) on the space dimension n. Concerning the latter, note that in-
stead of approximating u, our ultimate goal is to approximate u in |||·||| within some
given tolerance with, up to some constant factor, the smallest linear combination
of wavelets. The quotient from (4) is nothing else than the condition number κ(A)
of A, which for biorthogonal wavelets can be expected to grow exponentially with
n. Since in any case also D2 is an increasing function of κ(A), it may be that,
although optimal for any fixed n, the method has only practical value for relatively
small values of n.

In view of this, in the current work we apply univariate L2(0, 1)-orthonormal,
piecewise polynomial wavelets as introduced in [DGH96]. In this case, κ(A) is
bounded uniformly in n, and c0 ≥ 0 and cm > 0 (m = 1, . . . , n). Thanks to both
the L2-orthonormality, and the fact that the wavelets are piecewise polynomial,
the stiffness matrix A appears to be very close to a sparse matrix. We give a
detailed description of an adaptive wavelet algorithm for which aforementioned
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statements are valid with

D1,
D2

n , D3 constants, independent of n and c0 ≥ 0, cm > 0 (m = 1, . . . , n).

So only the constant involved in the operation count may grow with the space
dimension, but only linearly.

The algorithm we use is a modification developed in [GHS07] of the adaptive
wavelet method from [CDD01]. With this modification, the recurrent coarsening of
the iterands is avoided. An additional quantitative improvement will be obtained
by the use of a modified approximate matrix vector routine APPLY that will use
a posteriori information to optimize the accuracies with which the columns of the
infinite stiffness matrix are approximated.
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Sparse Finite Element Approximation of High-Dimensional
Transport-Dominated Diffusion Problems

Endre Süli

(joint work with Christoph Schwab and Radu-Alexandru Todor)

Partial differential equations with non-negative characteristic form arise in nu-
merous mathematical models in science. In problems of this kind, the exponential
growth of computational complexity as a function of the dimension d of the prob-
lem domain, the so-called “curse of dimension”, is exacerbated by the fact that the
problem may be transport-dominated. We develop the numerical analysis of stabi-
lized sparse tensor-product finite element methods for such high-dimensional, non-
self-adjoint and possibly degenerate second-order partial differential equations, us-
ing piecewise polynomials of degree p ≥ 1. Our convergence analysis is based on
new high-dimensional approximation results in sparse tensor-product spaces. By
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tracking the dependence of the various constants on the dimension d and the poly-
nomial degree p, we show that in the case of elliptic transport-dominated diffusion
problems the error-constant exhibits exponential decay as d→ ∞ for p ≥ 1. When
the characteristic form of the partial differential equation is non-negative, under
a mild condition relating p to d, the error constant is shown to grow no faster
than O(d2). In any case, the sparse stabilized finite element method exhibits an
optimal rate of convergence with respect to the mesh size hL, up to a factor that
is polylogarithmic in hL.

1. Model problem

Suppose that Ω := (0, 1)d, d ≥ 2, and that a = (aij)
d
i,j=1 is a symmetric positive

semidefinite matrix with entries aij ∈ R, i, j = 1, . . . , d. In other words, a⊤ = a
and ξ⊤a ξ ≥ 0 for all ξ ∈ Rd. Suppose further that b ∈ Rd and c ∈ R, and let
f ∈ L2(Ω). Let Γ ⊂ ∂Ω denote the union of all (d − 1)-dimensional open faces of
Ω. We shall consider the partial differential equation

(1) −a : ∇∇u+ b · ∇u+ cu = f(x), x ∈ Ω,

subject to suitable boundary conditions on Γ which will be stated below.
Here ∇∇u is the d × d Hessian matrix of u whose (i, j) entry is ∂2u/∂xi ∂xj ,

i, j = 1, . . . , d. For two d× d matrices A and B, we define A : B :=
∑d
i,j=1 AijBij .

The real-valued polynomial α ∈ P2(Rd; R) of degree ≤ 2 defined by

ξ ∈ Rd 7→ α(ξ) := ξ⊤a ξ ∈ R

is called the characteristic polynomial or characteristic form of the differential
operator u 7→ Lu := −a : ∇∇u + b · ∇u + cu featuring in (1) and, under our
hypotheses on the matrix a, following Olĕınik and Radkevič, the equation (1) is
referred to as a partial differential equation with non-negative characteristic form.

2. Summary of the main results

Let I = (0, 1) and consider the sequence of partitions {T ℓ}ℓ≥0, where T 0 = {I}
and T ℓ+1 is obtained from T ℓ := {Iℓj : j = 0, . . . , 2ℓ − 1} by halving each of the

intervals Iℓj ; the mesh-size in the partition T ℓ is hℓ := |Iℓj | = 2−ℓ. We consider

the finite-dimensional linear subspace Vℓ,p of H1(0, 1) consisting of all continuous

piecewise polynomials of degree p ≥ 1 on T ℓ, ℓ ≥ 0. For ℓ ≥ 0 let Vℓ,p0 be the

subspace of Vℓ,p defined by Vℓ,p0 := Vℓ,p ∩ H1
0(0, 1), consisting of all continuous

piecewise polynomials on T ℓ of degree p that vanish at both endpoints of the

interval [0, 1]. We shall use Vℓ,p(0) to denote Vℓ,p0 or Vℓ,p, as the case may be. We

shall write H1
(0)(0, 1) to denote H1

0(0, 1) or H1(0, 1), depending on whether or not

homogeneous Dirichlet boundary conditions are imposed at the endpoints of I.
For ℓ ≥ 0 and p ≥ 1, consider the projector P ℓ,p : H1(0, 1) → Vℓ,p defined by

(P ℓ,pu)(x) := u(0) + (P ℓ,p0 u)(x), (P ℓ,p0 u)(x) :=

∫ x

0

(Πℓ,p−1u′)(ξ) dξ, x ∈ [0, 1],
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where Πℓ,p−1 : L2(0, 1) → Vℓ,p−1 is the L2(0, 1)-orthogonal projector onto Vℓ,p−1.
It is easily seen that (P ℓ,pu)(1) = u(1) for all ℓ ≥ 0 and all p ≥ 1; furthermore,

P ℓ,p|H1
0(0,1)

= P ℓ,p0 . The projector P ℓ,p(0) has the following approximation property:

for any v in Hk+1(0, 1) ∩ H1
(0)(0, 1), k ≥ 1, we have that

|v − P ℓ,p(0) v|Hs(0,1) ≤
(
hℓ
2

)t+1−s
1

p1−s

√
(p− t)!

(p+ t)!
|v|Ht+1(0,1), 1 ≤ t ≤ min(p, k),

where hℓ = 2−ℓ, ℓ ≥ 0, p ≥ 1, s ∈ {0, 1}. Clearly, Vℓ,p(0) = P ℓ,p(0) H1
(0)(0, 1) for all

ℓ ≥ 0 and p ≥ 1. Now, let Qℓ,p(0) := P ℓ,p(0) −P
ℓ−1,p
(0) , ℓ ≥ 1, and Qℓ,p(0) := P 0,p

(0) for ℓ = 0.

We define the hierarchical increment spaces Wℓ,p
(0) := Qℓ,p(0) H1

(0)(0, 1), ℓ = 0, 1, . . . .

Hence, for any pair of integers L ≥ 0 and p ≥ 1, VL,p(0) =
⊕L

ℓ=0 W
ℓ,p
(0) .

Consider, on Ω = (0, 1)d, the sparse tensor-product finite element space

V̂ L,p(0) :=
⊕

|ℓ|1≤L
Wℓ1,p

(0) ⊗ · · · ⊗Wℓd,p
(0) , ℓ = (ℓ1, . . . , ℓd).

Given I = {i1, i2, . . . , ik} ⊂ {1, 2, . . . , d}, let I
c = {j1, j2, . . . , jd−k} denote the

(possibly empty) complement of I with respect to {1, 2, . . . , d}; for non-negative
integers α and β we then denote by |u|Hα,β,I(Ω) the seminorm

∑

(α)i≤αi≤α

· · ·
∑

(α)k≤αk≤α

∑

(β)j≤βj≤β

· · ·
∑

(β)d−k≤βd−k≤β

∥∥∥∥∥∥

(
∂α1

∂x
α1
i1

· · ·
∂αk

∂x
αk
ik

)

 ∂β1

∂x
β1
j1

· · ·
∂βd−k

∂x
βd−k

jd−k



u

∥∥∥∥∥∥

where ‖ · ‖ is the L2(Ω)-norm and, for i = 1, . . . , k,

(α)i :=

{
α if Oxi is an elliptic co-ordinate direction,
0 if Oxi is a hyperbolic co-ordinate direction,

with analogous definition of (β)j , j = 1, . . . , d− k.

Theorem 1. Let Ω = (0, 1)d, s ∈ {0, 1}, k ≥ 1, and p ≥ 1. Let, further, C∞
(0)(Ω̄)

denote the set of all C∞(Ω̄)-functions that vanish on Γ0, the elliptic part of Γ.
Then, for 1 ≤ t ≤ p, there exist constants cp,t, κ(p, t, s, L) > 0, independent of d,

and κ monotonic decreasing in L ≥ 1, such that, for any u ∈ C∞
(0)(Ω̄), any L ≥ 1

and any d ≥ 1, we have

inf
v∈V̂ L,p

(0)

|u− P̂L,p(0) u|Hs(Ω) ≤ d1+ s
2 cp,t(κ(p, t, s, L))d−1+sLν(s)2−(t+1−s)L|u|Hk+1(Ω),

where, for s = 0, the seminorm | · |Hs(Ω) coincides with the L2(Ω)-norm and

ν(0) = d − 1, while for s = 1 the seminorm | · |Hs(Ω) is the H1(Ω)-seminorm and
ν(1) = 0, and where |u|Hk+1(Ω) := max1≤k≤d maxI⊆{1,2,...,d} , |I|=k |u|Ht+1,s,I(Ω).

It is shown in [1] that when Γ = Γ0 (i.e. when a = a⊤ > 0, and so the problem
is elliptic in Ω,) the constant κ(p, t, s, L) is in the range (0, 1) for all t = p ≥ 1,
s ∈ {0, 1} and L ≥ 1. In the case when Γ0 ( Γ (i.e. the hyperbolic part of the
boundary is nonempty), for s = 0, κ(p, p, 0, L) ∈ (0, 1) for all p ≥ 2 and all L ≥ 2,
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while for s = 1, κ(p, p, 1, L) ∈ (0, 1) when p = 2 and d ≤ 7, when p = 3 and
d ≤ 71, and when p = 4 and d ≤ 755. Finally it is shown that the, potentially
harmful, polylogarithmic factor Ld−1 = | log2 hL|d−1 can be absorbed into the
factor (κ(p, t, 0, L))d−1 for p = t = 2 and L ≤ 5, for p = t = 3 and L ≤ 29, and
for p = t ≥ 4 and L ≤ 397. Thus, in most cases of practical interest, the error
constant, for p = t fixed and L fixed, exhibits exponential decay to 0 as d→ ∞.

Based on this approximation result, in [1] we also develop a streamline-diffusion
type stabilized finite element method for (1) over the sparsified tensor-product

finite element space V̂ L,p(0) , and we show that for each (fixed) p ≥ 1 the method

exhibits an optimal order of convergence in hL (up to a polylogarithmic factor in
hL) in the streamline-diffusion norm ||| · |||SD defined by

|||v|||2SD := ‖√a∇v‖2
L2(Ω) + c‖v‖2

L2(Ω) + δL‖b · ∇v‖2
L2(Ω) + 1

2 (1 + cδL)
∫
Γ+
|β||v|2 ds,

where δL is the streamline-diffusion parameter, β = b · n, n is the unit outward
normal to Γ and Γ+ ⊂ Γ is the hyperbolic outflow boundary. As in Theorem 1,
the error constant of the method exhibits exponential decay to 0 as d→ ∞.

Our results represent an extension and generalization of an observation made
by Griebel in [2], where exponential decay of the error constant was observed for
Poisson’s equation on Ω = (0, 1)d, as d→ ∞, for p = 1.
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Analytic and Geometric Features of Reproducing Groups

Anita Tabacco

(joint work with E. Cordero, F. De Mari and K. Nowak)

The analysis of oriented features in two-dimensional images requires objects more
flexible than the wavelets arising from the tensor product of one-dimensional
wavelets. To solve this problem, frame systems of directional functions, with
excellent angular selectivity, have been constructed and used in signal process-
ing. Among these, two-dimensional directional wavelets well-known and heavily
used in the last few years are the so-called curvelets and shearlets. The former
obtain directional selectivity by a construction that requires a rotation operator,
the latter gets the directional property by means of a shearing operation. They
both represent different solutions to the same problem of image recovering and
both have advantages and disadvantages. A natural question is whether there are
other constructions, involving other operations on the plane, that guarantee the
reproducibility of a signal and enjoy more flexible properties than the ones above.
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Moreover, a complete classification of such systems (at least on the plane) would
provide a clear panorama of all the instruments available. We want to study such
problems; the starting point is given by continuous representations in every di-
mensions. We would like to understand analytic, geometric and algebraic features
which distinguish such reproducing formulae.

Precisely, in this report we study the reproducing formula

(1) f =

∫

H

〈f, µe(h)φ〉µe(h)φ dh, f ∈ L2(Rd),

where H is a Lie subgroup of the semidirect product G of the (double cover of
the) symplectic group Sp(d,R) and the Heisenberg group Hd, or, to be precise,
its quotient modulo the (irrelevant) center. The map h 7→ µe(h)φ arises from the
restriction to H of the (extended) metaplectic representation µe of G as applied
to a fixed and suitable window φ ∈ L2(Rd). Formula (1) is otherwise known as
resolution of the identity, and must be interpreted in the weak sense. Such formulae
appear pervasively in mathematics and physics, both in pure and in applied areas
such as coherent states, harmonic analysis and group representations, wavelet and
Gabor analysis, signal processing, and so on [1, 2, 4, 8].

Among the most widely used and studied versions of (1) are the Calderón-
Grossman-Morlet formula, on which wavelet theory rests, and Gabor’s formula, at
the heart of signal processing. It is though not as widely known that both these
formulae arise by restricting the integral in (1) to suitable subgroups of G [4, 7].

The main question is: for which subgroups H of G does there exist an ana-
lyzing window, that is, a function φ ∈ L2(Rd) such that the above reproducing
formula holds for all f ∈ L2(Rd)? Clearly, one looks for invariants or other gen-
eral properties that will decide whether a group H enjoys the property, and is thus
called a reproducing group, or not. Further, one seeks conditions that single out
the analyzing windows, those for which (1) holds and, consequently, are named
reproducing. A complete classification of reproducing subgroups when d = 1 is
given in [7] and various examples in higher dimension have been worked out in
[3, 4, 5]. Let us fix some notation. The symplectic group is

Sp(d,R) =
{
g ∈ GL(2d,R) : tgJg = J

}
, J =

[
0 Id

−Id 0

]
,

where J defines the standard symplectic form ω(x, y) = txJy on R2d. The Heisen-
berg group Hd is R2d+1 = R2d × R equipped with the product

(2) (z, t) · (z′, t′) = (z + z′, t+ t′ − 1

2
ω(z, z′)).

We often refer to R2d as the phase space and we write z = (x, ξ) when we
separate the space component x from the frequency component ξ. We denote
the translation and modulation operators on L2(Rd) by Txf(t) = f(t − x) and
Mξf(t) = e2πi〈ξ,t〉f(t). The Schrödinger representation of Hd on L2(Rd) is

ρ(x, ξ, t)f(y) = e2πiteπi〈x,ξ〉e2πi〈ξ,y〉f(y − x) = e2πiteπi〈x,ξ〉TxMξf(y).
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The metaplectic representation µ is a representation of the double cover of the
symplectic group. Up to a sign, µ can be considered as a representation of the
symplectic group, as we briefly indicate. For any given A ∈ Sp(d,R), µ(A) is the
intertwining unitary operator (whose existence is guaranteed by the Stone–von
Neumann theorem) between ρ and ρA, where ρA is the unitary representation of
Hd obtained by composing ρ with the automorphism of Hd defined by A, that is

ρA : Hd → U(L2(Rd)), (z, t) 7→ ρ(Az, t).

Observe that the reproducing formula (1) is insensitive to phase factors eis,
that is, it remains unchanged under the mapping φ 7→ eisφ = ρ(0, s)φ. Hence the
role of the center of the Heisenberg group is irrelevant and the “true” group under
consideration is R2d ⋊ Sp(d,R), which we denote again by G.

The affine action of G on R2d is given by

(3) g(x, ξ) = ((q, p), A) (x, ξ) = A t(x, ξ) + t(q, p).

The many connections of these themes with wavelet theory have been pointed
out in [4], where we have introduced the notion of admissible group. This is very
closely related to a parallel notion developed in [8] in a different setting, and it
brings geometry to the forefront through a purely analytic construct, the Wigner
distribution. The latter is the time-frequency representation of φ ∈ L2(Rd)

(4) Wφ(x, ξ) =

∫

Rd

e−2πi〈ξ,y〉φ(x +
y

2
)φ(x− y

2
) dy,

where 〈x, ξ〉 is the inner product of x, ξ ∈ Rd. Its most relevant feature in this
context is that it intertwines the representation µe with the affine action:

(5) Wµe(g)φ(x, ξ) = Wφ

(
g−1(x, ξ)

)
, g ∈ G,

where g(x, ξ) is defined in (3). The relation between (1) relative to a subgroup
H ⊂ G and the properties of its orbits is shown in the following result [4, Thm.
1], which gives an analytic condition that a subgroup has to enjoy.

Theorem 1. If there exists a function φ such that the mapping

(6) h→Wφ(h−1(x, ξ))

is in L1(H) for a.e. (x, ξ) ∈ R2d, and such that

(7)

∫

H

|Wφ(h−1(x, ξ))| dh ≤M, for a.e. (x, ξ) ∈ R2d,

then H is reproducing if and only if the following admissibility condition holds:

(8)

∫

H

Wφ(h−1(x, ξ)) dh = 1 for a.e. (x, ξ) ∈ R2d.

A group for which there exists a φ such that conditions (6)–(8) are satisfied is
called an admissible group, whereas φ is an admissible analyzing function.

Let us now consider some geometric features of an admissible subgroup (we
refer to [5] for the proofs and related results). The group G and its affine action
on phase space play a prominent role, and we get dimensional bounds as simple
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consequences of the topology of its stabilizers. Indeed, as it follows by a direct
adaptation of a result in [8], they must be (almost all) compact. Since the orbits
are at most 2d-dimensional, it is enough to look at the largest possible compact
stabilizers. If H has no nontrivial compact subgroups, then clearly dimH ≤ 2d.
Here, as it is customary, Stabz(H) = {h ∈ H : hz = z} and hz is as in (3).

Proposition 2. [8, Prop. 2.1 and 2.3] Let H ⊂ G be admissible. Then

(i) the stabilizer Stabz(H) is compact for a.e. z ∈ R2d;
(ii) if H ⊂ Sp(d,R), then H is not unimodular.

The maximal compact stabilizers, among all possible subgroups of G, turn out
to be isomorphic to the unitary group U(d), whence the first upper bound dimH ≤
d2+2d. Since the restriction of (1) to R2d ⊂ Hd yields Gabor reproducing formula,
R2d is a reproducing, and in fact admissible, subgroup of G. Thus, its semidirect
product with U(d) is again an admissible group, and an example of maximal
dimension. Indeed, adding compact semidirect factors to a group preserves both
reproducibility and admissibility, as observed formally in the following proposition.

Proposition 3. Let H = H0 ⋊K with H0,K ⊂ G, K compact. Then

(i) if H0 is reproducing, then H is reproducing;
(ii) if H0 is admissible, then H is admissible.

Moreover, if one looks at subgroups of Sp(d,R) alone, thereby considering only
linear transformations of phase space (versus affine), then a stabilizer must fix
a vector in phase space and is therefore isomorphic to a subgroup of U(d − 1).
Hence the upper bound dimH ≤ d2 +1. This is also sharp, because the semidirect
product F = Hd−1

e ⋊ U(d− 1) of the extended Heisenberg group and the unitary
group embeds into Sp(d,R), has dimension d2+1 and is admissible for all d ≥ 2, as
we show. We also prove directly that F is reproducing and we describe necessary
and sufficient conditions for its reproducing windows.

Let us summarize these results.

Theorem 4. Let H ⊂ G be admissible. Then

(i) dimH ≤ d2 + 2d;
(ii) if H contains no nontrivial compact subgroups, then dimH ≤ 2d;

(iii) if H ⊂ Sp(d,R), then dimH ≤ d2 + 1.

Moreover the upper bounds are sharp.

Finally, in a forecoming paper [6], we study a unified approach to Gabor and
wavelet reproducing formulae.
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Edges and Hierarchy of Scales

Eitan Tadmor

1. Introduction

I will describe two, not unrelated scenarios, where edges can be treated through
different scales. The first part of the talk is devoted to detection of edges in
piecewise smooth data. Spectral edge detection is achieved by separation of scales.
The data is given in terms of its spectral representation. The objective is to recover
the location and amplitudes of jump discontinuities, from possibly incomplete and
noisy spectral information. We utilize a general family of edge detectors based on
concentration kernels. Each kernel forms an approximate derivative of the delta
function, which detects edges by separation of scales.

Edges are also the noticeable feature in images. The second part of the talk
is devoted to a novel representation of general images as hierarchy of edges, by
decompoistion of scales. The resulting decomposition is essentially nonlinear. The
questions of convergence, localization and adaptivity will be discussed and numer-
ical results will illustrate applications to synthetic and real images.

2. Separation of scales

This part of the talk is a summry of joint works with A. Gelb [3, 4], S. Engelberg
[2] and J. Zou [10]. A detailed account can be found in the recent Acta Numerica
review article [9].

We are interested in processing piecewise smooth functions from their spectral
information. The prototype example will be one-dimensional functions that are
smooth except for finitely many jump discontinuities. The location and amplitudes
of these discontinuities are not correlated. Thus, a piecewise smooth f is in fact
a collection of several intervals of smoothness which do not communicate among
themselves. The jump discontinuities can be viewed as the edges of these intervals
of smoothness. Similarly, two-dimensional piecewise smooth functions consist of
finitely many edges which lie along simple curves, separating two-dimensional local
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regions of smoothness. We are concerned here with edge detection: detecting the
location and amplitudes of the edges. Often, these are the essential features sought
in piecewise smooth data. Moreover, they define the regions of smoothness and
are therefore essential for the reconstruction of the underlying function f inside
its different regions of smoothness.

There are many classical algorithms to detect edges and reconstruct the data in
between those edges, based on local information. For example, suppose that the
values of a one-dimensional f are given at equidistant grid-points, fν = f(ν∆x).
Then, the first-order differences, ∆fν := fν+1 − fν, can detect edges where
∆fν = O(1), by separating them from smooth regions where ∆fν = O(∆x).
Similarly, piecewise linear interpolants can recover the point-values of f(x) up to
order O

(
(∆x)2

)
. Of course, these are only asymptotic statements that may greatly

vary with the dependence of the O-terms on the local smoothness of f in the im-
mediate neighborhood of x. We may do better, therefore, by taking higher-order
differences, ∆rfν , where O(1)-edges are better separated from O

(
(∆x)r

)
-regions

of smoothness, Similarly, reconstruction of f using r-order approximations, with
r = 2, 3, . . . and so on. In practice, higher accuracy is translated into higher resolu-
tion extracted from the information on a given grid. But, as the order of accuracy
increases, the stencils involved become wider and one has to be careful not to
extract smoothness information across edges, since different regions separated by
edges are completely independent of each other. An effort to extract information
from one region of smoothness into another one, will result in spurious oscilla-
tions, spreading from the edges into the surrounding smooth regions, preventing
uniform convergence. This is, in general terms, the Gibbs phenomenon, which is
the starting point of the present discussion.

The prototype for spectral information we are given on f , is the set of its N

Fourier coefficients, {f̂(k)}|k|≤N . These are global moments of f . It is well known

that the Fourier projection, SNf =
∑

|k|≤N f̂(k)eikx forms a highly accurate ap-

proximation of f provided that f is sufficiently smooth; for example,

|SNf − f | <∼ e−η
α
√
N .

Here, the root exponent α is tied to global smoothness of f of order α ≥ 1. But
this high accuracy is lost with piecewise smooth f ’s, due to spurious oscillations
which are formed around the edges of f . It is in this context of the Fourier
projections, that the formation of spurious oscillations became known as the Gibbs
phenomenon. This is precisely because of the global nature of SNf , which extracts
smoothness information across the internal edges of f . The Gibbs’ phenomenon
is also responsible for a global loss of accuracy: first-order oscillations spread
throughout the regions of smoothness. The highly accurate content in the spectral

data, {f̂(k)}|k|≤N , is lost in the Fourier projections, SNf .
Our aim is to detect edges and reconstruct piecewise smooth functions, while

regaining the high accuracy encoded in their spectral data. Our fairly general
framework for edge detection is based on concentration kernels : these are partial
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sums of the form

Kσ
Nf(x) :=

πi

cσ

∑

|k|≤N
sgn(k)σ

( |k|
N

)
f̂(k)eikx, cσ :=

∫ 1

0

σ(ξ)

ξ
dξ.

The Kσ
Nf(x) approximates the local jump function, Kσ

Nf(x) ≈ f(x+)− f(x−).
Consequently, Kσ

Nf tends to concentrate near edges, where f(x+) − f(x−) 6= 0,
which are separated from smooth regions whereKσ

Nf ≈ 0. We can express Kσ
Nf(x)

as a convolution with the Fourier projection of f , that is,

Kσ
Nf(x) = KσN ∗ (SNf)(x), KσN (x) := − 1

cσ

N∑

k=1

σ
( |k|
N

)
sin kx.

Here, KσN (x) are the corresponding concentration kernels which enable us to con-
vert the global moments of SNf into local information about its edges — both
their locations and their amplitudes. The choice of concentration factor, σ, is
at our disposal. We discuss a few prototype examples of concentration factors
and assess the different behavior of the corresponding edge detectors, Kσ

Nf . We
also mention a series of extensions which show how concentration kernels apply in
more general set-ups. We discuss the discrete framework, applying concentration

kernels as edge detectors in the Fourier interpolants, INf =
∑

|k|≤N f̂ke
ikx. We

also show how concentration kernels can be used to detect edges in non-periodic

projections, SNf =
∑
f̂(k)Ck(x), based on general Gegenbauer expansions. Fi-

anlly, we summarize [2], showing how the concentration factors could be adjusted
to deal with noisy data, by taking into account the noise variance, η ≫ 1/N , in
order to detect the underlying O(1)-edges; see figure 1. We also demonstrate how
to deal with incomplete data: we decribe the results of [10], which show how con-

centration kernels based on partial information, {f̂(k)}k∈K , can be complemented
by a compressed sensing approach to form effective edge detectors.

Concentration kernels, KσN (x), are approximate derivatives of the delta func-
tion. Convolution with such kernels, KσN ∗(SNf) yield edge detectors by separation
of scales, separating between smooth and nonsmooth parts of f . We can improve
the edge detectors by enhancement of this separation of scales. In particular, we
use nonlinear limiters which assign low- and high-order concentration kernels in
regions with different characteristics of smoothness. The result is parameter-free,
high-resolution edge detectors for one-dimensional piecewise smooth functions.

Next we turn to the two-dimensional set-up. Concentration kernels can be used
to separate scales in the x1 and x2 directions. Enhancements and limiters are
shown to greatly reduce, though not completely eliminate, the Cartesian stair-
casing effect. We show how concentration kernels are used to detect edges from
incomplete two-dimensional data. So far, we have emphasized the role of separa-
tion of scales in edge detectors based on concentration kernels, KσN ∗(SNf)(x). But
how do we actually locate those O(1) edges? to this end one seeks the zero-level set
x = (x1, x2) of ∇xKσN ∗ (SNf)(x). Depending on our choice of the concentration
factors, σ(·), this leads to a large class of two-dimensional edge detectors which
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Figure 1. Noisy data on the left. The edge was detected from the
spectra information using (BV,L2)-based concentration factors
outlined in [2].

generalize the popular two-dimensional zero-crossing method associated with dis-
crete Laplacian stencils.

3. Decomposition of scales

The second part of our talk describes the development of a novel multiscale
image decomposition introduced with S. Nezzar and L. Vese in [8].

The starting point is variational decomposition of an image, f = u0 +v0, where
[u0, v0] is the minimizer of a J-functional,

J(f, λ0;X,Y ) = inf
u+v=f

{
‖u‖X + λ0‖v‖2

Y

}
.

Here, u0 should capture ‘essential features’ of f which are to be separated from
the spurious components absorbed by v0, and λ0 is a fixed threshold which dictates
separation of scales. Such minimizers are standard tools for image manipulations
— denoising, deblurring, compression, ...,e.g., [6, 7, 5].

We focus our attention on the particular case of [7] J-minimizer with (X,Y ) =
(BV,L2) decomposition where u0 and v0 are sought to separate texture from edges.
But in what sense texture is different from an edge? our approach is that the
distinction is scale dependent. Texture contains significant edges when “viewed”
closer. Accordingly, we suggested to decompose v0 with a refined scale of , say,
2λ0, leading to finer decomposition v0 = u1 + v1 at scale 2λ0. To proceed, we
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Figure 2. Successive decompositions of an image of a woman
with λ0 = .0005.

iterate the refinement step

[uj+1, vj+1] = arg infJ(vj , λ02j),

leading to the hierarchical decomposition, f =
∑k

j=0 uj + vk. The resulting hier-

archical decomposition, f ∼ ∑j uj, is essentially nonlinear. Numerical results of

synthetic and real images in [8], [1] illustrate the superiority of the hierarchical
decomposition. An example is illustrated in figure 2 below.
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Relaxation in Greedy Approximation

Vladimir Temlyakov

Abstract. We study greedy algorithms in a Banach space from the point of view
of convergence and rate of convergence. There are two well studied approximation
methods: the Weak Chebyshev Greedy Algorithm (WCGA) and the Weak Relaxed
Greedy Algorithm (WRGA). The WRGA is simpler than the WCGA in the sense
of computational complexity. However, the WRGA has limited applicability. It
converges only for elements of the closure of the convex hull of a dictionary. In
this paper we study algorithms that combine good features of both algorithms the
WRGA and the WCGA. In construction of such algorithms we use different forms
of relaxation. First results on such algorithms have been obtained in a Hilbert
space by A. Barron, A. Cohen, W. Dahmen, and R. DeVore. Their paper was a
motivation for the research reported here.
Main results. Let X be a Banach space with norm ‖ · ‖. We say that a set
of elements (functions) D from X is a dictionary (symmetric dictionary) if each
g ∈ D has norm bounded by one (‖g‖ ≤ 1),

g ∈ D implies − g ∈ D,
and the closure of the span of D coincides with X . We denote the closure (in X)
of the convex hull of D by A1(D). We introduce a new norm, associated with a
dictionary D, in the dual space X ′ by the formula

‖F‖D := sup
g∈D

F (g), F ∈ X ′.

We discuss greedy algorithms with regard to D. For a nonzero element f ∈ X
we denote by Ff a norming (peak) functional for f :

‖Ff‖ = 1, Ff (f) = ‖f‖.
The existence of such a functional is guaranteed by Hahn-Banach theorem. Let
τ := {tk}∞k=1 be a given sequence of nonnegative numbers tk ≤ 1, k = 1, . . . . We
define first the Weak Chebyshev Greedy Algorithm (WCGA) (see [4]) that is a
generalization for Banach spaces of Weak Orthogonal Greedy Algorithm defined
and studied in [3] (see also [2] for Orthogonal Greedy Algorithm).
Weak Chebyshev Greedy Algorithm (WCGA). We define f c0 := f c,τ0 := f .
Then for each m ≥ 1 we inductively define

1). ϕcm := ϕc,τm ∈ D is any satisfying

Ffc
m−1

(ϕcm) ≥ tm‖Ffc
m−1

‖D.
2). Define

Φm := Φτm := span{ϕcj}mj=1,

and define Gcm := Gc,τm to be the best approximant to f from Φm.
3). Denote

f cm := f c,τm := f −Gcm.

We define now the generalization for Banach spaces of the Weak Relaxed Greedy
Algorithm studied in [4] (see [3] for the case of a Hilbert space).
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Weak Relaxed Greedy Algorithm (WRGA). We define f r0 := f r,τ0 := f and
Gr0 := Gr,τ0 := 0. Then for each m ≥ 1 we inductively define

1). ϕrm := ϕr,τm ∈ D is any satisfying

Ffr
m−1

(ϕrm −Grm−1) ≥ tm sup
g∈D

Ffr
m−1

(g −Grm−1).

2). Find 0 ≤ λm ≤ 1 such that

‖f − ((1 − λm)Grm−1 + λmϕ
r
m)‖ = inf

0≤λ≤1
‖f − ((1 − λ)Grm−1 + λϕrm)‖

and define

Grm := Gr,τm := (1 − λm)Grm−1 + λmϕ
r
m.

3). Denote

f rm := f r,τm := f −Grm.

Remark 1. It follows from the definition of WCGA and WRGA that the sequences
{‖f cm‖} and {‖f rm‖} are nonincreasing sequences.

Both of the above algorithms use the functional Ffm−1 in a search for the mth
element ϕm from the dictionary to be used in approximation. The construction of
the approximant in the WRGA is different from the construction in the WCGA.
In the WCGA we build the approximant Gcm in a way to maximally use the
approximation power of the elements ϕ1, . . . , ϕm. The WRGA by its definition is
designed for approximation of functions from A1(D). In building the approximant
in the WRGA we keep the property Grm ∈ A1(D). We call the WRGA relaxed
because at the mth step of the algorithm we use a linear combination (convex
combination) of the previous approximant Grm−1 and a new element ϕrm. The
relaxation parameter λm in the WRGA is chosen at the mth step depending on
f . Recently, the following modification of the above idea of relaxation in greedy
approximation has been studied in [1]. Let a sequence r := {rk}∞k=1, rk ∈ [0, 1),
of relaxation parameters be given. Then at each step of our new algorithm we
build the mth approximant of the form Gm = (1 − rm)Gm−1 + λϕm. With an
approximant of this form we are not limited to approximation of functions from
A1(D) as in the WRGA. Remarkable results on the approximation properties of
such an algorithm in a Hilbert space have been obtained in [1]. We will discuss
here a realization of the above new idea of relaxation in the case of Banach spaces.
We study the Greedy Algorithm with Weakness parameter t and Relaxation r
(GAWR(t, r)). We give a general definition of the algorithm in the case of a
weakness sequence τ .
GAWR(τ, r). Let τ := {tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define
f0 := f and G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D is any satisfying

Ffm−1 (ϕm) ≥ tm‖Ffm−1‖D.
2). Find λm ≥ 0 such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
λ≥0

‖f − ((1 − rm)Gm−1 + λϕm)‖
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and define
Gm := (1 − rm)Gm−1 + λmϕm.

3). Denote
fm := f −Gm.

In the case τ = {t}, t ∈ (0, 1], we write t instead of τ in the notation. We note
that in the case rk = 0, k = 1, . . . , when there is no relaxation, the GAWR(τ, 0)
coincides with the Weak Dual Greedy Algorithm [5], p.66. We will also consider
here a relaxation of the X-greedy algorithm (see [5], p.39) that corresponds to
r = 0 in the definition that follows.
X-Greedy Algorithm with Relaxation r (XGAR(r)). We define f0 := f
and G0 := 0. Then for each m ≥ 1 we inductively define

1). ϕm ∈ D and λm ≥ 0 are such that

‖f − ((1 − rm)Gm−1 + λmϕm)‖ = inf
g∈D,λ≥0

‖f − ((1 − rm)Gm−1 + λg)‖

and
Gm := (1 − rm)Gm−1 + λmϕm.

2). Denote
fm := f −Gm.

We note that, practically, nothing is known about convergence and rate of
convergence of the X-greedy algorithm. It will be seen from the results that
follow that relaxation helps to prove convergence results for the XGAR(r).

The following version of relaxed greedy algorithm has been studied in [6].
Weak Greedy Algorithm with Free Relaxation (WGAFR). Let τ :=
{tm}∞m=1, tm ∈ [0, 1], be a weakness sequence. We define f0 := f and G0 := 0.
Then for each m ≥ 1 we inductively define

1). ϕm ∈ D is any satisfying

Ffm−1 (ϕm) ≥ tm‖Ffm−1‖D.
2). Find wm and λm ≥ 0 such that

‖f − ((1 − wm)Gm−1 + λmϕm)‖ = inf
λ≥0,w

‖f − ((1 − w)Gm−1 + λϕm)‖

and define
Gm := (1 − wm)Gm−1 + λmϕm.

3). Denote
fm := f −Gm.

We consider here approximation in uniformly smooth Banach spaces. For a
Banach space X we define the modulus of smoothness

ρ(u) := sup
‖x‖=‖y‖=1

(
1

2
(‖x+ uy‖ + ‖x− uy‖) − 1).

The uniformly smooth Banach space is the one with the property

lim
u→0

ρ(u)/u = 0.

We formulate two typical results of the paper [6].
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Theorem 1. Let a sequence r := {rk}∞k=1, rk ∈ [0, 1), satisfy the conditions

∞∑

k=1

rk = ∞, rk → 0 as k → ∞.

Then the GAWR(t, r) and the XGAR(r) converge in any uniformly smooth Banach
space for each f ∈ X and for all dictionaries D.
Theorem 2. Let X be a uniformly smooth Banach space with modulus of smooth-
ness ρ(u) ≤ γuq, 1 < q ≤ 2. Take a number ǫ ≥ 0 and two elements f , f ǫ from X
such that

‖f − f ǫ‖ ≤ ǫ, f ǫ/A(ǫ) ∈ A1(D),

with some number A(ǫ) > 0. Then we have for the WGAFR

‖fm‖ ≤ max

(
2ǫ, C(q, γ)(A(ǫ) + ǫ)(1 +

m∑

k=1

tpk)−1/p

)
, p := q/(q − 1).

The setting in Theorem 2 with two functions f and f ǫ covers the following noisy
data setting. Let A(ǫ) = A and the target function f ǫ is such that f ǫ/A ∈ A1(D).
The task is to approximate f ǫ from the noisy data f of it.
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Can We Use Semiorthogonal Spline Wavelets for Adaptively Solving
Nonlinear Problems?

Karsten Urban

(joint work with Kai Bittner)

We consider the nonlinear boundary value problem

−∆u = Fu in Ω, u = 0 on ∂Ω,

with a given (nonlinear) operator F : H1
0 (Ω) → H−1(Ω). Its variational formula-

tion amounts finding u ∈ H1
0 (Ω) such that

a(u, v) = 〈Fu, v〉 for all v ∈ H1
0 (Ω),
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where the bilinear form is given by a(u, v) := (∇u,∇ v)L2 and 〈·, ·〉 denotes the
standard duality pairing. Using a Galerkin method based upon a wavelet basis Ψ =
{ψλ : λ ∈ J } of H1

0 (Ω) requires the computation (or at least, the approximation)
of terms like a(uε, ψµ) and 〈Fuε, ψµ〉 for a given (finite) approximation uε.

It is known, that a sufficiently good finite approximation of
(
a(uε, ψµ)

)
µ∈J can

be computed with linear cost, if the entries a(ψλ, ψµ) of the stiffness matrix can
be computed at unit cost. This is the case if the wavelets ψλ are spline functions
of compact support (cf. [8]).

This situation changes for the nonlinear terms 〈Fuε, ψµ〉 as can easily be seen
by the simple example Fu := u2. For a finite input

uε =
∑

λ∈Λ

uελ ψλ,

we obtain

〈Fuε, ψµ〉 =
∑

λ∈Λ

∑

ν∈Λ

uελu
ε
ν〈ψλψν , ψµ〉,

which requires O
(
(#Λ)2

)
-operations (thus non-optimal) if one computes these

values in a straightforward way. Moreover, the terms 〈ψλψν , ψµ〉 are integrals of
wavelets on fairly different levels. Such integrals can be computed with an amount
of work that is linear in the level difference of the involved functions (see e.g.
[3]), which again is non-optimal. Hence, one is interested in finding a numerical
scheme that is able to approximate 〈Fuε, ψµ〉 up to any desired accuracy with
(asymptotically) optimal complexity.

In [12] (and later improvements in [1, 9]) an optimal adaptive wavelet evalua-
tion scheme for nonlinear functions has been introduced and analyzed. All these
schemes are based upon biorthogonal wavelet bases which offer the advantage that
decomposition and reconstruction are based upon finite masks since primal and
dual functions are compactly supported. On the other hand, it is known that the
conditioning of these bases causes some quantitative problems for their numeri-
cal use. We display the condition numbers in the right part of Table 2. Note
that these condition numbers enter the constants in basically all estimates for the
corresponding numerical scheme. This is the reason why several improved con-
structions of biorthogonal wavelet bases on the interval have been introduced, see
e.g. [2, 4, 13, 14]. Another alternative is to use semiorthogonal spline wavelets,
sometimes also called prewavelets. They offer some advantages, namely:

• Scaling functions and wavelets are splines so that all fast spline algorithms can
be used e.g. for point evaluation.

• The wavelets are levelwise orthogonal which gives rise to quantitative good
stability properties, see the left part of Table 2.

• The support length of semiorthogonal wavelets is shorter then the correspond-
ing biorthogonal one of the same order.

However, there are also two main drawbacks, namely:

• The dual functions are in the same space. For the variational formulations,
one would like the duals to characterize the dual space H−1(Ω). The duals
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semiorth. ρΩ
Ψj

biorth.

m ρR

Φ ρR

Ψ ρ
[0,1]
Φj

ρ
[0,1]
Ψj

d = d̃, R d̃ = d + 10, R [0, 1]

2 3.0 2.3 3.0 2.3 10 4.2 4.1
3 7.5 3.5 7.6 3.5 80 16.0 16.0
4 18.5 5.9 19.3 6.0 ∞ 64.0 64.1
5 45.7 10.4 49.8 11.7 ∞ 256.2 264
6 112.8 18.7 130.4 21.2 ∞ ≥ 1024 ≥ 1024
7 278.4 33.9 345.0 50.3 ∞ ≥ 4096 ≥ 4096
8 686.9 61.6 920.7 158.4 ∞ ≥ 16384 ≥ 16384

Table 2. Condition numbers for scaling functions and wavelets

from [7] (ρR

Φ and ρR

Ψ) for L2(R), and from [6] (ρ
[0,1]
Φj

and ρ
[0,1]
Ψj

) for

L2([0, 1]) and j ≤ 11 in dependence of the spline order d. For com-
parison, we also display corresponding numbers for biorthogonal
spline wavelets on R from [10] and on [0, 1] from [4].

being in the same space, this is not possible. However, this does not affect
approximation and stability properties of the adaptive method, hence we do
not view this as a serious problem.

• The dual functions are globally supported which in particular means that the
decomposition is based upon an infinite mask. This is a crucial drawback.

In this talk, we answer the question if we can circumvent the problem of the global
duals in order to construct an efficient adaptive semiorthogonal wavelet scheme
for evaluating nonlinear functions. As a core algorithm we have used the method
in [12] which may be summarized as follows:

Algorithm 1 (Dahmen, Schneider, Xu: 2000). Input: uε, Λ, ε

1. Prediction: Predict the significant indices Λ̂ ⊂ J ;
2. Reconstruction: Determine a ‘local scaling function representation’ of uε

(permits a fast computation of function values);
3. Quasi-Interpolation: Based on prediction, compute a quasi-interpolant g =
A(Fuε);

4. Decomposition: Compute the significant wavelet coefficients dλ, of g.

Let us briefly describe the steps.
The prediction is typically based upon a subdivision of the domains Ω with

respect to so called support cubes that are related to each wavelet index λ. The
second ingredient is a computable error function. Then, a wavelet ψλ is rated
significant if the error functional exceeds a certain value related to the desired
accuracy. Since the error functional is linked to the quasi-interpolant, this will
have to be adapted for semiorthogonal spline wavelets.

In the reconstruction, the input in terms of the wavelet expansion is transformed
to a sparse single scale representation over all levels. This simply requires the
refinement equation which in turns is based upon the mask coefficients of the
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d γd,ℓ CQ

1 1 1

2 1 1

3 − 1
8
, 5

4
, − 1

8
3
2

4 − 1
6
, 4

3
, − 1

6
5
3

5 47
1152

, − 107
288

, 319
192

, − 107
288

, 47
1152

179
72

6 13
240

, − 7
15

, 73
40

, − 7
15

, 13
240

43
15

Table 3. Coefficients for the quasi-interpolant.

primal functions. These are compactly supported semiorthogonal spline wavelets
here and thus no changes are needed.

The quasi-interpolation gives typically a linear combination of dual scaling func-
tions hence, we need an alternative here. We have used an operator introduced by
Zheludev [15] defined by

q(f) :=

⌈ d−1
2 ⌉∑

ℓ=0

(−1)ℓβd,ℓ ∆̃2ℓ
1 f
(
d
2

)

with βd,ℓ defined by
(

2 arcsin t
2

t

)d
=

∞∑

ℓ=0

βd,ℓt
2ℓ,

and ∆̃k
h is the symmetric difference defined in the usual way ∆1

hf(x) := f(x +
h
2 ) − f(x − h

2 ) and ∆̃k+1
h := ∆1

h∆̃k
h. The above representation is not well suited

for numerical application, but there is an alternative representation as

q(f) =

d−1∑

ℓ=1

γd,ℓ f
(
ℓ− µ(d)

1

2

)
, µ(d) := dmod 2,

where the coefficients γd,ℓ are displayed in Table 3 The constant CQ is the constant
for the corresponding error estimate. We extend this operator to an adaptive
version and present its error analysis. This also gives rise to a new computable
error functional which is then used for the prediction.

Finally, the decomposition is based upon the dual mask coefficients which are
infinitely many. However, since primals and duals span the same space, we can
perform an efficient change of bases from primals to duals by using the mass matrix
of the primals which is sparse.

Hence, the answer to the question raised in the title of the talk is yes ! This
part of the talk is based upon the paper [5].

Finally, we show the use of the new adaptive quasi-interpolant in an industrial
application, namely the analysis and correction of optical surfaces produced by
the company Zeiss, Oberkochen (Germany). Since here particular importance is
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in the real-time application, we also show the main parts of the used software tools
FLENS and LAWA, http://flens.sourceforge.net and http://lawa.sourceforge.net.
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Tresholding and Compressed Sensing

Przemys law Wojtaszczyk

The aim of this talk is to present some simple observations about compressed
sensing. The main problem in compresssed sensing is to find k–sparse (i.e. with at
most k non zero coefficients) vector x ∈ RN when we make d nonadaptive linear
measurements. We think of N as very large. So formally

(1) Φ = (Φj)
N
j=1 with Φj ∈ Rd
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and Φ(x) =
∑N

j=1 xjΦj ∈ Rd. We look for (non-linear) ∆ : Rd → RN such that

∆Φ(x) = x for every k–sparse vector x ∈ RN . Usually Φ = Φ(ω) is a random
matrix.

Example I will concentrate on is a properly normalised Bernoulli measurement

matrix i.e. Φ(ω) =
(
d−1/2ǫij(ω)

)

j,i
with j = 1, . . . , N and i = 1, . . . , d and ǫij are

independent Bernoulli random variables. I will concentrate on this example, but
other examples also work.

A possible ∆ is ℓ1 minimization i.e.

(2) ∆1(y) = Argmin{‖z‖1 : Φ(z) = y}

where ‖ · ‖1 is the ℓ1 norm of the vector. The above scheme was put forward
recently by D. Donoho, E. Candes, T. Tao in a series of papers (see e.g. [1] [2])
They isolated and studied conditions k-RIP (see also [5], [6]) : there is a 0 < δ < 1
such that for every set A ⊂ {1, . . . , N} of k elements and all possible scalars we
have

(3) (1 − δ)
(∑

j∈A
|aj |2

)1/2

≤ ‖
∑

j∈A
ajΦj‖ ≤ (1 + δ)

(∑

j∈A
|aj |2

)1/2

They have shown the importance of this conditions to compressed sensing by
showing the following two results:

Theorem 1 If deterministic Φ satisfies (3) then for every k–sparse vector
x ∈ RN we have x = ∆1Φ(x).

Theorem 2 Except for a set of very small probability Φ(ω) satisfies (3)provided
d ≥ Ck lnN .

Unfortunatelly the map ∆1 is computationally costly.
Recently, A. Gilbert, J. Tropp [4] suggested to use OMP. Given dictionary

{Φj}Nj=1 ⊂ Rd and y ∈ Rd we define

(1) r0 = y
(2) j1 = Argmax|〈r0,Φj〉| and r1 = y − P1(y) with P1 is the orthogonal

projection onto span{Φj1}
(3) next inductively js+1 = Argmax|〈rs,Φj〉| and rs+1 = y − Ps+1(y) where

Ps+1 is orthogonal projection onto span{Φj1 ,Φj2 . . .Φjs+1}
When y = Φ(x) then we define

∆s
OMP (y) =

s∑

µ=1

aµejµ ∈ RN

where Ps(y) =
∑s
µ=1 aµΦjµ

Theorem 3 (Gilbert–Tropp) If Φ(ω) is random and d ≥ ck logN then for each
k–sparse vector x ∈ RN there exists a set of ω’s of probability very close to 1 such

that for those ω’s when we run OMP for y(ω) = Φ(x) =
∑N

j=1 xjΦj we get rk = 0

i.e. ∆k
OMP (y) = x.
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For x ∈ RN and y(ω) = Φ(ω)(x) ∈ Rd we have

P{|〈y(ω),Φj(ω)〉 − xj | ≤ a‖y(ω)‖√
k

for j = 1, . . . , N}

≥ 1 −N−b

provided d ≥ C(a, b)k logN . This shows that big coefficients can be recovered
with big probability by simple tresholding. In particular we have

Corollary 1 If x ∈ RN is k-sparse with |xj | = 0 or |xj | = 1 and d ≥ Ck logN
and y = Φ(x), then tresholding recovers x with big probability i.e.

(1) we find the set A of coordinates such that |〈y,Φj〉| ≥ ‖y‖
2
√
k

(2) we write y =
∑
µ∈A aµΦµ

(3) we get x =
∑

µ∈A aµeµ ∈ RN

This suggests the following modification of OMP which we will call Tresholding
OMP, TOMP for short.

Fix k. For a set of indices As ⊂ {1, 2, . . . , N} we define by PAs
= Ps the

orthogonal projection onto {Φj}j∈As
. If As = ∅ then Ps = 0. We have x =∑N

j=1 xjej . As usual y = Φ(x). We start with A0 = ∅, y0 = P0(y) = 0 and

r0 = y − y0. Given As, r
s and ys we put

(4) Bs+1 = {j : |〈rs,Φj〉| ≥
1

2
√
k
‖rs‖}.

and define As+1 = As ∪ Bs+1, ys+1 = Ps+1(y) and rs+1 = y − ys+1. For this
algorithm we can easily modify the argument of Gilbert and Tropp [4] and prove

Theorem 4 If Φ(ω) is random and d ≥ ck logN then for each k–sparse vector
x ∈ RN there exists a set of ω’s of probability very close to 1 such that for those

ω’s when we run TOMP for y(ω) = Φ(x) =
∑N
j=1 xjΦj we get rs = 0 for some

s ≤ k i.e. we recover x.
An algorithm very similar to TOMP was used by Donoho-Tsiag-Drori-Starck

[3] for somewhat different purposes.
We consider the case when we measure y with some error, so instead of y we

see V = Φ(x)+b with a fixed vector b ∈ Rd. The argument from [4] easily extends
to give

Theorem 5 If Φ(ω) is random, x is k–sparse and d ≥ ck logN then there
exists a set of ω’s of probability very close to 1 such that for those ω’s when we
run TOMP for V (ω) we get k-sparse x̃ with ‖x− x̃‖ ≤ 2‖b‖.

Remark Clearly the same if b is random, independent of Φ with uniformly
bounded norm. The same holds for OMP.
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Consistent Piecewise Polynomial Approximation of Hm(Ω) Functions
in Rn for any 0 ≤ m ≤ n

Jinchao Xu

(joint work with Ming Wang)

This talk addresses the question of constructing piecewise polynomial approx-
imation spaces (that have locally supported bases) for the the Sobolev space
H = Hm(Ω), Ω ⊂ Rn for any n and m. A universal construction will be given for
the case that 0 ≤ m ≤ n.
Internal approximations. Let Wh be a class of approximation space of Hm.
Wh is said to be an internal approximation of Hm if Wh ⊂ Hm and, otherwise,
an external approximation.

Well-known internal approximation spaces include smooth splines, wavelets (e.g.
of Daubechies) and conforming finite elements (FE). Construction of such spaces
are well-known for the case of n = 1,m ≥ 0. For n > 1,m ≥ 0, such constructions
are also easy for special domains Ω = Πn

i=1(ai, bi) using tensor product of spaces
for n = 1. For n > 1 and general polyhedral domain with simplicial partition,
it is complicated and very high degree of polynomials are required when m ≥
2. When n = 2 and m = 2, 5th order polynomial in each triangle (Argyris
element) is needed. In more general cases, one often needs polynomial of degree
(m − 1)2n + 1 (see [4] and references cited therein) to construct spline and finite
element subspaces of Hm. Such a high degree makes these spaces very complicated
and difficult to use in practice. Lower order constructions such as super-splines
(difficult to get locally supported basis) and composite elements (see [1, 5, 6]), are
also possible but complicated.
External approximation and nonconforming finite element spaces. For
the external approximation such as nonconforming finite elements, the approxi-
mation space Wh is not in general a subspace of Hm(Ω): Wh 6⊂ Hm(Ω). Given

Th = {T }, a partition of Ω, consider the inner product and norm:

(u, v)m,h =
∑

|α|≤m
(∂αhu, ∂

α
h v), ‖v‖m,h = (v, v)

1/2
m,h,

where ∂αh are the piecewise derivatives: ∂αh vh(x) = ∂αvh(x), x ∈ T.
The completely discontinuous approximation spaces are trivial to construct,

they are hardly useful because of lack of smoothness consistency. The so-called
discontinuous Galerkin (DG) methods do use completely discontinuous polynomi-
als, but they need to use many penalty terms to enforce smoothness approximately
(see [3]) to achieve consistency. A more desirable external approximation space
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Wh should impose some minimal smoothness requirement in the spaces so that the
limiting space exactly recovers the original target space Hm(Ω), and no additional
penalty parameters are needed to enforce the smoothness when applied to, e.g.,
numerical solution of partial differential equations.

An appropriate external approximation space may be motivated by a pure ap-
proximation theoretical point of view, namely, the limiting space of {Wh}, as
h → 0, should exactly recover Hm(Ω) in the following sense [2, 7]. First of all,
every function in Hm(Ω) can be approximated by functions in Wh:

lim
h→0

inf
vh∈Wh

‖v − vh‖m,h = 0, ∀v ∈ Hm(Ω).

Secondly, only the function in Hm(Ω) can be approximated by functions in Wh: if
for any {vhk

} ⊂Whk
and hk → 0 as k → ∞, ∂αvhk

⇀ vα for all |α| ≤ m (weakly
in L2(Ω)), then v0 ∈ Hm(Ω) and vα = ∂αv0, for all |α| ≤ m. The spaces {Wh}
satisfying the above two properties will be called consistent approximation spaces
of Hm.

Another motivation of appropriate external approximation is that {Wh} are
convergent nonconforming finite element spaces for 2m-th order elliptic boundary
value problems, which, according to [7], turn out to be equivalent that {Wh} are
consistent approximation spaces of Hm.

In the existing literature, nonconforming finite element spaces have been con-
structed mostly for H2(Ω) with Ω ⊂ R2. Among these nonconforming elements,
the so-called Morley element appears to be most peculiar because of the following
unusual properties: (1) it is a consistent approximation for H2(Ω), but it is not
always a consistent approximation for H1(Ω), and (2) it is not even continuous.
One question that motivated our studies is as follows: “Is the Morley element an
isolated incident or does it have a more general implication?” As it turns out, the
Morley element belongs to a family of nonconforming finite elements that can be
constructed in a universal and elegant fashion.
New nonconforming finite element of lowest degree for Hm(Ω) in Rn

(n ≥ m ≥ 1). Define the FE triple (T, PT , D
m
T ) as follows: the geometric shape

of the element T is an n-simplex, the shape function space PT is Pm(T ) (the
polynomial of total degree m) and the set of the degrees of freedom Dm

T consists
of the integral averages of normal derivatives of order m − k on all subsimplexes
of dimension n− k for 1 ≤ k ≤ m. The global FE space Mm

h is then the piecewise
Pm that is continuous on all d.o.f. (w.r.t. simplicial partition Th).

The dimension of PT is equal to the number of degrees of freedom in Dm
T thanks

to the well-known Vandermonde combinatorial identity that

m∑

k=1

Cn−k+1
n+1 Cm−k

m−1 = Cmn+m.

For m = 1 and n = 1, we obtain the well-known conforming P1 elements, the
only conforming element in this family of elements. For m = 1 and n ≥ 2, we
obtain the well-known nonconforming P1 elements. For m = 2, we recover the



Wavelet and Multiscale Methods 2167

Table 1. Some examples (degrees of freedom)

m = 1 m = 2 m = 3
n = 1 r r

n = 2
∫

∫∫

r

r r

∫∫

∫

n = 3 ∫∫ ∫∫∫∫
∫∫

△ △△

△

∫

∫∫
∫

∫∫
∫∫

∫∫

∫∫∫∫

r

r

rr
∫∫

∫∫∫∫ ∫∫

∫∫ ∫∫∫∫

∫
∫

∫∫
∫
∫

Morley element for n = 2 and its generalization to n ≥ 2 (see [8]). For m = 3 and
n = 3, we obtain a new cubic element on a simplex that has 20 degrees of freedom.

Lemma 1 (Weak continuity). For any 1 ≤ k ≤ m, |α| = m − k and vh ∈ Mn
h ,∫

F [∂αvh] = 0 on every internal (n− k)-dimensional subsimplex F .

To prove the lemma, we only need to prove that
∫
F ∂

αvh is determined by the

d.o.f. on F . For k = m,α = 0,
∫
F vh is a d.o.f. for n−m subsimplex F . Now for

k = m− 1, we need to prove that
∫
F
∇vh is determined by the d.o.f for n−m+ 1

subsimplex F . We write
∫
F
∇vh =

∑
i

∫
F
∂vh

∂νi
νi +

∑
j

∫
F
∂vh

∂τj
τj . Here each νi is

normal to F , and
∫
F
∂vh

∂νi
is already a d.o.f. Each τj is tangent to F , and

∫
F
∂vh

∂τj

can be expressed in terms of the d.o.f. on ∂F (n−m subsimplexes).
The proof of the above lemma can then be completed by induction.

Lemma 2 (Unisolvent Property). Dm
T is PT -unisolvent.

To prove this, let p ∈ Pm with all d.o.f.’s being zero, we need to show that p ≡ 0.
For any |α| = m, ∂αp =const. Hence by Green’s formula

∂αp =
1

|T |

∫

T

∂αp =
1

|T |
∑

|βj |=m−1

cj

∫

∂T

∂βjp = 0.

By induction, we can show ∂αp = 0 for all |α| = k with k = m− 1,m− 2, · · · , 0.

Lemma 3. For any |α| ≤ m,

(∂αh vh, φ) = (−1)|α|(vh, ∂
αφ) + O(h)‖vh‖m,h‖φ‖m, φ ∈ C∞

0 (Ω), vh ∈Mm
h .

Again, the above lemma can be proved by induction. α = 0 is trivial. Assume
true for |α| = ℓ < m. Then

(∂α+ei

h vh, φ) = −(∂αh vh, ∂iφ) +
∑

T∈T h

∫

∂T

φ∂αh vhνi

= (−1)|α|+1(vh, ∂
αh+eiφ) +

∑

F

∫

F

[∂αh vh]φνi + O(h)‖vh‖m,h‖φ‖m.
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By weak continuity, Poincare inequality and scaling argument,∫

F

[∂αh vh]φ = O(h)|∂αh vh|1,h,T∪T ′‖φ‖1,T∪T ′ , F = T ∩ T ′.

By Lemma 3, it is then easy to see that {Mm
h } is a consistent approximation of Hm

with following finite element approximation error estimate ‖u− uh‖m,h = O(h).
The new FE class (which extends trivially to include the case m = 0) is the

lowest order possible elements. Their d.o.f. are well defined on Hm(Ω) for all
m and n, while the d.o.f. of most other finite elements for Hm(Ω) are not well-
defined on Hm(Ω) (except for n = 1). Given any n > m ≥ 1, we have the inclusion
property Mm

h = span{∂e1h Mm+1
h , ∂e2h M

m+1
h , · · · , ∂en

h Mm+1
h }.

Locally supported basis functions can be constructed easily. In particular, we
have given all the details for m = 1, 2 and 3 (see [9]).

The new class of FE elements is the only known family of approximation spaces
of Hm(Ω) in Rn that are universally constructed (0 ≤ m ≤ n). It has many nice
properties and everything fits perfectly well. The “most peculiar” Morley element
seems now “most natural”.
Applications to higher order PDEs. Higher (4th or 6-th) order PDEs arise
in certain applications, such as, a Cahn-Hilliard equation modelling the spinodal
decomposition and coarsening phenomena in binary alloys, a 6th order phase field
simulation of the morphological evolution of a strained epitaxial thin film on a
compliant substrate, and a 6th equation on the oxidation of silicon in supercon-
ductor devices.

Commonly used methods for higher order problems are to reduce them to the
2nd order systems. But the reduction requires caution (see [9]). The high order
PDEs can be discretized directly by our new elements without too much difficulty.
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