
Mathematisches Forschungsinstitut Oberwolfach

Report No. 33/2007

Dynamische Systeme

Organised by
Hakan Eliasson, Paris

Helmut Hofer, New York

Jean-Christophe Yoccoz, Paris

July 8th – July 14th, 2007

Abstract. This workshop continued the biannual series at Oberwolfach on
Dynamical Systems that started as the “Moser & Zehnder meeting” in 1981.
The main theme of the workshop were the new results and developments in
the area of classical dynamical systems, in particular in celestial mechanics
and Hamiltonian systems. Among the main topics were new results on Arnold
diffusion, new global results on symplectic fixed point theory and the dynam-
ics on Hamiltonian energy surfaces. A high point was Ginzburg’s solution of
the Conley conjecture for aspherical symplectic manifolds generalizing recent
results by N. Hinston. Another highlight was Mather’s report on Aubry Sets
in Small Perturbations of Integrable Systems.

Mathematics Subject Classification (2000): 37xx, 53D.

Introduction by the Organisers

This workshop, organised by Hakan Eliasson (Paris), Helmut Hofer (New York),
and Jean-Christophe Yoccoz (Paris) continued the biannual series at Oberwolfach
on Dynamical Systems that started as the “Moser & Zehnder meeting” in 1981.
The workshop was attended by more than 50 participants from 12 countries. The
main themes of the workshop were the new results and developments in the area of
classical dynamical systems, in particular in celestial mechanics and Hamiltonian
systems. The workshop covers a large area of dynamical systems and the following
samples give an idea about the scope. The topic of Arnold Diffusion was treated
in great detail by talks of M. Levi and J. Mather. In the classical field of celestial
mechanics new insight has been gained about two interesting families of relative
periodic solutions of the spatial n-body problem (the P12-family and the hip-hop-
family) as they share the property of being global continuations of Lyapunov fami-
lies which bifurcate from a relative equilibrium solution in the direction orthogonal
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to the plane of motion (A. Chenciner). K. Kuperberg reported on the construction
of flows on three-manifolds where every nonconstant trajectory is wild in a sense
related to the Artin-Fox example of an exotic arc in Euclidean three-space. Other
results were concerned with one of the main problems in Hamiltonian dynamic,
namely the stability of motions in nearly-integrable systems (L. Niedermann). Y.
Pesin outlined the construction of hyperbolic volume-preserving flows on manifolds
of dimension at least three and V. Ginzburg described the recent developments
concerning the Conley Conjecture for periodic points of Hamiltonian symplectic
maps. John Franks described his recent results about group actions on surfaces. In
addition several talks covered new Floer-theoretic methods in the study of Hamil-
tonian systems and it will be interesting to see in the future how these symplectic
methods can be merged with the more classical dynamical systems methods.
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Abstracts

The Conley Conjecture

Viktor Ginzburg

In 1984 Conley conjectured that a Hamiltonian diffeomorphism of a torus has
infinitely many periodic points or, more precisely, such a diffeomorphism with
finitely many fixed points has simple periodic points of arbitrarily large period.
This fact has been recently proved by Hingston, [Hi]. Similar results for Hamilton-
ian diffeomorphisms of surfaces of positive genus were established by Franks and
Handel, [FH]. Tori and such surfaces are particular examples of symplectically
aspherical manifolds, as are all symplectic manifolds with zero second homotopy
group. Of course, one can expect the Conley conjecture to be true for a general
closed, symplectically aspherical manifold and numerous partial results to this ef-
fect have been proved in the context of symplectic topology. For instance, Salamon
and Zehnder established in [SZ] this generalized conjecture under a suitable non-
degeneracy assumption on the fixed points of the diffeomorphism by controlling
the growth of Conley–Zehnder indices of periodic points.

In [Gi] the Conley conjecture is proved for an arbitrary closed, symplectically
aspherical manifold. The proof is a combination of the index control method from
[SZ] and an action control method based on a Floer homological calculation similar
to that carried out in [GG].
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Arnold Diffusion

Mark Levi

(joint work with Vadim Kaloshin)

We present what is perhaps the simplest possible geometrical picture explaining
the mechanism of Arnold diffusion. The example is given in terms of a geodesic
flow on the 3-torus in the metric arbitrarily close to Euclidean, or equivalently,
in terms of the particle in an arbitrarily weak periodic potential in R3. Arnold
diffusion amounts to the existence of orbits which turn by O(1) no matter how
weak the potential is.

Topology of closed geodesics on symmetric Finsler surfaces

Sigurd Angenent

Let M be a compact orientable surface without boundary, and let L : TM → R

be a symmetric Finsler metric on M . Thus, L|TxM is a norm on each tangent
space whose unit ball is a strictly convex symmetric set. We assume that L is
smooth (except on the zero section). A geodesic for (M,L) is a critical point of
the Finsler length functional

S(γ) =

∫
L(γ(z), γ′(z)) dz.

This functional is well defined on the space

Ω =
{C2 immersions S1 →M}

{C2 reparametrizations h : S1 → S1} .

One can construct a gradient flow for the Finsler length on Ω by choosing a smooth
Riemannian background metric g on M . If one lets immersed curves evolve by

(1) v = κg + f(γ, T ),

then one has

(2)
dS(γ(t)

dt
= −

∫

γ(t)

B(γ, T )v2ds.

Here v and κg are the normal velocity and geodesic curvature of the curves γ(t)
(measured using g), N and T are the unit normal and tangent vectors to γ, and
finally,

f(γ, T ) =
A(γ, T )

B(γ, T )
,

A(γ, T ) = g
(
N,Lvx(γ, T ) · T − Lx(γ, T )

)
,

B(γ, T ) = g
(
N,Lvv ·N

)

Convexity of the Finsler metric guarantees that B(γ, T ) > 0, and symmetry of the
Finsler metric implies that f is odd:

(3) f(γ,−T ) = −f(γ, T ).
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Jeffrey Oaks [2] has proved that a solution of (1) exists for all C2 initial curves.
Moreover, he showed that if such a solution becomes singular at a finite time
T , then the curves γ(t) contain a loop whose area becomes arbitrarily small as
tր T ; if the solution exists for all t > 0, then its curvature remains bounded, and
its ω-limit set consists of closed geodesics for the Finsler metric.

Another consequence of the symmetry of L (i.e. of (3)) is that the number of
self intersections of a solution of (1) cannot increase with time, and must in fact
drop whenever the curve γ(t) develops a self-tangency.

As a consequence, the Lyusternik-Schirelman theorem can be extended from
the Riemannian to the symmetric Finsler case: any smooth symmetric Finsler
metric on S2 admits at least three closed simple geodesics.

One can also extend the arguments from [1] to prove

Theorem. If a surface M with a symmetric Finsler metric L admits a simple
closed geodesic γ with rotation number ω 6= 1, then for every p

q
between 1 and ω

there is a closed geodesic on (M,L) which is a (p, q) satellite of γ (in the sense of
Poincaré [3]).

The main obstacle in extending the arguments of [1] is the use of the Gauss-
Bonnet formula when estimating the rate with which small loops vanish. In doing
this for the new flow one must estimate integrals of the form

I =

∫

loop

f(γ, T )ds

over (small) closed loops. This is done by observing that if the enclosed area of
the loop is small, then either the loop is short (so the integral I is small), or else
the loop consists mostly of parallel strands with opposite orientation so that the
oddness (3) causes cancellation in the integral I which therefore again ends up
being small.
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Global continuation of relative equilibria and action minimization

Alain Chenciner

(joint work with Jacques Féjoz)

The P12-family and the Hip-Hop family are two families of relative periodic
solutions of the spatial n-body problem (respectively n = 3 and n = 4). They share
the property of being global continuations of Lyapunov families which bifurcate
from a relative equilibrium solution in the direction orthogonal to the plane of
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motion. The first one, discovered by C. Marchal, connects the Lagrange equilateral
relative equilibrium of three equal masses to the figure eight solution while the
second one connects the square relative equilibrium of four equal masses to the Hip-
Hop solution. In both cases the global continuation minimizes the action among
paths of configurations which, in an appropriate rotating frame, become loops
sharing a discrete symmetry. These symmetries originate from the symmetries
of the solutions of the variational equation along the relative equilibrium. For
the regular n-gon relative equilibrium, the solutions of the “vertical variational
equation” are known explicitly and their symmetries are easily analyzed. This
leads to representations of Dn × Z/2Z (where Dn is the dihedral group with 2n
elements) in the space of loops of relative n-body configurations which, as the
examples above suggest, are of a different nature according to the parity of n.
The corresponding local Lyapunov families, when unique, inherit these discrete
symmetries when looked at in appropriately chosen families of rotating frames
and one can ask for their minimizing properties. In the good cases, (locally)
minimizing the Lagrangian action in a space of symmetric loops of configurations
may then lead to global continuation of the Lyapunov families.
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Hamiltonian Stability and Morse-Sard Theory

Laurent Niederman

One of the main problem in Hamiltonian dynamic is the stability of motions in
nearly-integrable systems (for example : the n-body planetary problem).

According to the theorem of Liouville-Arnold, under general topological condi-
tions, a Hamiltonian system integrable by quadrature can be reduced to a system
defined over the cotangent bundle T ∗Tn of the n−dimensional torus.
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Hence, an analytic nearly-integrable system can be reduced to :

H(ε, I, θ) = h0(I) + εf(I, θ) for h0 ∈ Cω (U,R) and f ∈ Cω (U × Tn,R) (1)

where (I, θ) ∈ Rn × Tn are the action angle variables of the unperturbed Hamil-
tonian.

An important tool of investigation in this context is the construction of normal
forms which yields two kinds of theorems :

i) Results of stability over infinite times provided by Kolmogorov-Arnold-
Moser theory which are valid for solutions with initial conditions in a Cantor set of
large measure. But no information are given for trajectories lying outside of this
set and in systems with more than three degrees of freedom, a strong instability can
occur under an arbitrary small perturbation (the Arnold instability). Russmann
has given a minimal non degeneracy condition on the unperturbed Hamiltonian to
ensure the persistence of invariant tori under perturbation. Namely, the image of
the gradient map associated to the integrable Hamiltonian should not be included
in an hyperplane and this condition is generic among real analytic numerical func-
tions.

ii) Nekhorochev ([1]) has proved global results of stability over open sets
which complete KAM theory and ensure that under generic assumptions Arnold
diffusion can only occur over very long times, namely we look at :

Definition 1. (exponential stability) Consider an open set Ω ⊂ Rn, an
analytic integrable Hamiltonian h : Ω −→ R and action-angle variables (I, ϕ) ∈
Ω × Tn where T = R/Z. For an arbitrary ρ > 0, let Oρ be the space of analytic
functions over a complex neighborhood Ωρ ⊂ C2n of size ρ around Ω×Tn equipped
with the supremum norm ||.||ρ over Ωρ. We say that the Hamiltonian h is expo-

nentially stable over an open set Ω̃ ⊂ Ω if there exists positive constants ρ, C1,

C2, a, b and ε0 which depend only on h and Ω̃ such that :
i) h ∈ Oρ.
ii) For any function H(I, ϕ) ∈ Oρ such that ||H − h||ρ = ε < ε0, an

arbitrary solution (I(t), ϕ(t)) of the Hamiltonian system associated to H with an

initial action I(t0) in Ω̃ is defined over a time exp(C2/ε
a) and satisfies :

||I(t) − I(t0)|| ≤ C1ε
b for |t− t0| ≤ exp(C2/ε

a) (E)

a and b are called stability exponents.

Remark 2. Along the same lines, the previous definition can be extended to
an integrable Hamiltonian in the Gevrey class.

Here, we prove that such a property of stability is generic according to :
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Theorem 3. (Genericity of exponential stability, [2])
Consider an arbitrary real analytic integrable Hamiltonian h defined on a neigh-

bourhood of the closed ball B
(n)

R of radius R centered at the origin in Rn. For almost
any Ω ∈ Rn, the integrable Hamiltonian hΩ(x) = h(I)−Ω.I is exponentially stable
with the exponents :

a =
b

2 + n2
and b =

1

2(2 + (2n)n)
.

In order to introduce the problem, we begin by a typical example of non-
exponentially stable integrable Hamiltonian : h(I1, I2) = I2

1−I2
2 . Indeed, a solution

of the perturbed system governed by h(I1, I2) + ε sin (I1 + I2) with an initial ac-
tions located on the first diagonal (I1(0) = I2(0)) admits a drift of the actions
(I1(t), I2(t)) on a segment of length 1 over a timespan of order 1/ε. Actually, with
this example, we have the fastest possible drift of the action variables according
to the magnitude ε of the perturbation.

The important feature in this example which has to be avoided in order to
ensure exponential stability is the fact the gradient ∇h(I1, I1) remains orthogonal
to the first diagonal. Equivalently, the gradient of the restriction of h on this first
diagonal is identically zero.

Nekhorochev ([1]) have introduced the class of steep functions where this prob-
lem is avoided. The property of steepness is a quantitative condition of transversal-
ity and the steep functions can be characterized by the following simple geometric
criterion which is proved with theorems of real subanalytic geometry :

Theorem 4. ([3])
A real analytic real valued function is steep (according to Nekhorochev) if and

only its restriction to any affine subspace admits only isolated critical points.

In this setting, Nekhorochev proved the following :

Theorem 5. ([1])
If h is real analytic, does not admit critical points, non-degenerate (|∇2h(I)| 6= 0

for any I ∈ Ω) and steep then h is exponentially stable.

The fundamental difference between our result of stability and the generic the-
orems of stability which can be ensured with Nekhorochev’s original work is the
fixed value of the exponents a and b in our theorem 3.

Indeed, the set of steep functions is generic among sufficiently smooth functions.
For instance, we have seen that the function x2−y2 is not steep but it can be easily
showed that x2−y2 +x3 is steep. Actually, a given function can be transformed in
a steep function by adding higher order terms (Nekhorochev [1]) but the order of
contact of the considered manifolds can be high and theorem 5. is valid with small
exponents of stability. Hence, the initial theorem of Nekhorochev allows to find a
generic set of exponentially stable integrable Hamiltonians but with exponents of
stability which can be arbitrary small.
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Here, according to our theorem 3, fixed stability exponents are obtained on a
measure-theoretic generic set. Actually, we exhibit a set of exponentially stable
integrable Hamiltonian which is prevalent according to the terminology of Hunt,
Sauer and Yorke or Kaloshin.

Our main theorem 3. is proved thanks to a result of exponential stability under
a strictly weaker assumption than steepness which involves only affine subspaces
spanned by integer vectors (the rational subspaces). For instance, h(I1, I2) =
I2
1−δI2

2 where δ is the square of a Diophantine number is not steep but nevertheless
exponentially stable.

Then we consider a class of functions which satisfy our weak condition of steep-
ness but with fixed orders of contact of the considered manifolds. We show that
this set is prevalent among sufficiently smooth functions defined over a relatively-
compact subset in Rn.

Actually, by an application of the usual Sard’s theorem, one can see easily

that the Morse functions are prevalent in the Banach space
(
C2

(
B

(n)

R ,R
)
, ||.||C2

)

where B
(n)

R is the closed ball of radius R centered at the origin in Rn.
Here, we follow the same kind of reasonings but we have to substitute the Sard’s

theorem by a quantitative Morse-Sard theory developed by Yomdin ([4]).
One can notice that this later theory is valid for sufficiently smooth functions

and does not require analyticity. This last point is only needed to ensure exponen-
tially long times of stability. Hence, it would be natural to look for generic results
of stability for non-analytic but smooth enough quasi-integrable Hamiltonian sys-
tems. In this case, one should obtain polynomially long times of stability.
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Aubry Sets in Small Perturbations of Integrable Systems

John N. Mather

I announced results related to the problem of Arnold diffusion at a conference in
Russia in 2002 ([1]). These concerned a Lagrangian L(θ, θ̇, t) = l0(θ̇) + ǫP (θ, θ̇, t)
where θ = (θ1, θ2) ∈ T2 and d2l0 > 0. Thus, L is a Lagrangian in 2 1

2 degrees
of freedom and it is a small perturbation of the integrable system l0. The proof
of these results involves finding orbits for which θ̇ moves approximately along
a resonant line segment Γ. The resonance condition of Γ is that there exists
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(k0, k1, k2) ∈ Z3 with k0 6= 0 such that (ω1, ω2) ∈ Γ implies that k0+k1ω1+d2ω2 =
0.

A substancial part (now mostly written) of the proof consists of a discussion of
the Aubry sets Auc for c ∈ Ch, where Ch is a connected open set in a const×√

ǫ-
neighborhood of dl0(Γ) and Ch contains dl0(P ) and dl0(Q), where P and Q are
the endpoints of the interval. This discussion is valid for 0 < ǫ < ǫ0, where ǫ0 is
a sufficiently small positive number. For c ∈ Ch, the structure of the Aubry sets
closely resembles the structure of the Aubry sets associated to a twist mapping.

This permits the proof of the existence of diffusing orbits as minimizers (subject
to suitable auxiliary conditions) of L−c on large segments. For different segments
one minimizes L − c for different c. One always chooses c ∈ Ch. On neighboring
segments, one chooses the corresponding c’s to be close. For large negative values
of the time-parameter, one chooses c to be dl0(P ); for large positive values, dl0(Q).

The resulting orbit has θ̇ near P for large negative values of the time-parameter
and near Q for large positive values.
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Codimension one laminations and the structure of minimizing closed

normal currents

Victor Bangert

On a compact Riemannian manifold (Mn, g) the “minimal volume of a real
homology class” defines a natural norm on the real homology H∗(M,R). This
minimal volume can be defined for h ∈ Hq(M,R) by

S(h) := inf
{∑

|λi|volgq(σi) |
∑

λiσi a real Lipschitz q-cycle representing h
}

The norm S is dual to the “comass norm” S∗ defined on the de Rham cohomology
Hq

dR(M) ≃ Hq(M,R)∗ by

S∗(α) = inf{‖ω‖∞| ω ∈ ΩqM,dω = 0, [ω] = α}
where

‖ω‖∞= max{ωx(e1, . . . , eq)|x ∈M, ei ∈ TMx, |ei| ≤ 1}
In a more general setting these notions go back to H. Federer [Fe], and S was
baptized “stable norm” by M. Gromov.

In general, the infimum defining the stable norm S will not be attained by a
Lipschitz cycle. The following natural problems arise:

1) Existence and properties of minimizing representatives of h, i.e. of repre-
sentatives whose volume realizes the stable norm of h.

2) What can be said about the shape of the norm ball

Bg
q = {h ∈ Hq(M,R) | S(h) ≤ 1}?
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3) Rigidity (e.g., does differentiability ofBg
1 imply that (M, g) is a flat torus?).

In the case q = 1 these problems are closely related to J. Mather’s theory of
minimal measures, see [Ma] and [Ba]. For 2 ≤ q ≤ n− 2 most of the fundamental
problems are open. It was J. Moser [Mo] who - in a different context - noticed
that the codimension one case, i.e. q = n − 1, is a natural generalization of the
Aubry-Mather theory of minimizing orbits of monotone twist maps. In ongoing
work with F. Auer [AB1,2] we study properties of minimizers in this codimension
one case.

The basic result is that a minimizer in a class h ∈ Hn−1(M,R) is a measured
lamination of M by oriented minimal hypersurfaces that are injectively immersed
into M and possibly have a small singular set. Using this the following result from
[AB3] on the differentiability of the stable norm S was presented

Theorem 1 (F. Auer, V. Bangert). For h ∈ Hn−1(M,R) let V (h) denote
the smallest subspace of Hn−1(M,R) that contains h and is generated by integer
classes. Then S|V (h) is differentiable at h.

In the recent thesis by H. Junginger-Gestrich [Ju] it is shown that for M = Tn

this result is optimal, in the sense that for a large open set of metrics on Tn the
stable norm is only differentiable in the directions given in the theorem.

References

[AB1 ] F. Auer and V. Bangert, Minimising currents and the stable norm in
codimension one, C.R. Acad. Sci. Paris, Série I, 333 (2001), 1095–1100.

[AB2 ] F. Auer and V. Bangert, The structure of minimizing closed normal
currents of codimension one. In preparation.

[AB3 ] F. Auer and V. Bangert, Differentiability of the stable norm in codimen-
sion one, Amer. J.Math. 128 (2006), 215–238.

[Ba ] V. Bangert, Minimal measures and minimizing closed normal one-cur-
rents, Geom. Funct. Anal. (GAFA) 9 (1999), 413–427.

[Fe ] H. Federer, Real flat chains, cochains and variational problems, Indiana
Univ. Math. J. 24 (1975), 351–407.

[Ju ] H. Junginger-Gestrich, Minimizing hypersurfaces and differentiability
properties of the stable norm, Thesis, Universität Freiburg 2007.

[Ma ] J. N. Mather, Action minimizing invariant measures, Math. Z. 207

(1990), 169–207.
[Mo ] J. Moser, Minimal solutions of variational problems on a torus, Ann.
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Projective dynamics of a classical particle or a multiparticle system

Alain Albouy

(1) If two Riemannian metrics on a manifold have the same pre-geodesics (i.e.
unparametrized geodesics), then their geodesic flows are integrable. This state-
ment needs some more hypotheses but it is however quite striking. It was discussed
in 1998 by Matveev and Topalov [9], and independently by Tabachnikov (see [11]),
and applied to the geodesic flow on the n-dimensional ellipsoid. The discussion is
based on the paper [6] by Levi-Civita.

(2) If a Newton system, i.e. a system of the form q̈ = f(q), with q ∈ Ω ⊂ IRn,
f : Ω → IRn being a smooth function, possesses two quadratic first integrals then
it is integrable. Again the statement is astonishing, and it requires some technical
hypotheses (some seem generic but are not often satisfied in the examples while
others seem quite unlikely to happen but do happen). It is due to Lundmark’s
thesis in 1999 (see e.g. [7]).

(3) The geodesic flow on the ellipsoid is after a change of time the Neumann
problem on this ellipsoid seen as a sphere (i.e. choosing the Euclidean structure
that makes the ellipsoid a sphere). More precisely it is a energy level of Neumann’s
problem. This is due to Knoerrer [5].

(4) Appell’s central projection sends Neumann’s problem onto a Newton system,
if we define this projection as follows. The particle moves on a hypersphere under
a quadratic potential (Neumann). We choose a hyperplane not passing through
the center of the sphere, and project on it the particle motion using the central
projection from the center of the sphere. Finally we apply Appell’s change of time
[2].

Whatever be the hyperplane, the projected system possesses two quadratic first
integrals satisfying Lundmark’s hypotheses. Thus Statements (3) (4) and (2) give
an elegant way to reach the main example of Statement (1): the geodesic flow on
the ellipsoid.

(4’) If this hyperplane is parallel to a coordinate hyperplane for the coordinates
diagonalizing the quadratic potential, the projected system is naturally Hamilton-
ian. It is number −1 in the bi-infinite Jacobi family of separable potentials, defined
by Rauch-Wojciechowski [12]. This integrable Newton system was also noticed by
Appell [3].

Levi-Civita was trying to extend Appell’s surprising transformation from the
projectively flat to the curved framework. Levi-Civita paper was used by dozens
of authors while Appell was being forgotten (we don’t know any mention of his
transformation in the period 1952–2002). If Appell’s transformation was quite
unpopular, it is maybe because it is not symplectic, it does not respect the time
parameter, and the function called Energy before transformation has nothing to
do with a possible energy after transformation. However, we developed in [1] very
elementary and concrete consequences of Appell’s remark. As an example, we give
the simplest way to find the Hamiltonian of the projected system (4’).
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Neumann’s Hamiltonian on the sphere ‖q‖ = 1, where q ∈ IRn+1, with potential
U(q) = 〈aq, q〉/2 is

H =
1

2

(
‖q‖2‖p‖2 − 〈q, p〉2

)
+

1

2
〈aq, q〉.

In a base where the symmetric matrix a is diagonal with diagonal (a0, . . . , an) one
of the Uhlenbeck-Devaney first integrals is

F0 =

n∑

i=1

(q0pi − qip0)
2

a0 − ai

+ q20 .

Projective dynamics (a possible name for considerations around Appell’s central
projection) teaches us that there is a unique homogeneous form for each of these
first integrals. We find it using [1]:

H̃ =
1

2

(
‖q‖2‖p‖2 − 〈q, p〉2

)
+

1

2

〈aq, q〉
‖q‖2

. F̃0 =

n∑

i=1

(q0pi − qip0)
2

a0 − ai

+
q20

‖q‖2
.

Note that we did not need to change the velocity dependent term of these first
integrals. We were lucky: in general the homogeneization of this term requires
a computation. For example, if we had written above H in the simpler way
H = (‖p‖2 + 〈aq, q〉)/2, the deduction of H̃ would require a computation. We
took the expressions of H and F0 in Moser’s papers (e.g. [8]) but only readers who
are familiar with Moser’s constrained Hamiltonian systems can understand why
he expressed H in this complicated way. Moser happened to write the homoge-
neous form of the velocity dependent term, and his motivations seem unrelated to
projective dynamics.

The operation opposite to homogeneization is restriction. If we restrict H̃ and
F̃0 to the sphere ‖q‖ = 1 we find H and F0. If we restrict them to q0 = 1, together
with the associated tangent condition p0 = 0, we find:

H̄ =
1

2

(
(1 + q21 + · · ·+ q2n)(p2

1 + · · ·+ p2
n)− (q1p1 + · · · )2

)
+
a0 + a1q

2
1 + · · · + anq

2
n

2(1 + q21 + · · · + q2n)

F̄0 =
n∑

i=1

p2
i

a0 − ai

+
1

1 + q21 + · · · + q2n
.

In these expressions we make pi = q̇i and they become the first integrals of some
Newton system. There is a unique Newton system having F̄0 as a first inte-
gral and this system is the Hamiltonian system associated with the Hamiltonian
F̄0/2 expressed in the momenta Pi = pi/(a0 − ai). This is Appell’s or Rauch-
Wojciechowski’s system. We see that H was the Hamiltonian, and F0 just a
quadratic first integral, and now H̄ is just a quadratic first integral while F̄0/2
is the Hamiltonian. In the terminology of Magri’s school the system is quasi-bi-
Hamiltonian (“quasi” because time is changed, see [10]).

I wish to thank A. Borisov, I. Mamaev (see [4]), G. Falqui, H. Lundmark and
S. Rauch-Wojciechowski for recent discussions contributing to this work.
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Global Fixed Points for Group Actions and Morita’s Theorem

John Franks

This talk concerned the existence of global fixed points for certain smooth group
actions on surfaces.

Theorem 1 (Franks, Handel, Parwani [1]). Let G be an abelian subgroup of

Diff1
0(R

2) with the property that there is a compact G invariant subset of R2. Then
there is a point x ∈ R2 such that g(x) = x for all g in G.

Theorem 2 (F, Handel, Parwani [1]). Let G be an abelian subgroup of Diff1
0 (S2)

Then there is a subgroup G0 of G of index at most two and a point x ∈ S2 such
that g(x) = x for all g in G0.

Theorem 2 was previously proved by M. Handel [3] for groups generated by two
elements.

Theorem 3 (Franks, Handel, Parwani [2]). Suppose S is a closed oriented surface
of genus at least two and that F is an abelian subgroup of Diff0(S) Then the set
of contractible fixed points, Fixc(F), is non-empty. In particular Fix(F) is non-
empty.

Theorem 4 (Franks, Handel, Parwani[2]). Suppose S is a closed oriented surface
of genus at least two and that F is an abelian subgroup of Diff(S). Then F has a
finite index subgroup F0 such that Fix(F0) is non-empty.
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The Mapping Class Group Lifting problem

The mapping class group MCG(S) of a surface S with genus g is the group of
isotopy classes of orientation preserving homeomorphisms of S. We note

• MCG(S2) ∼= {1}
• MCG(T 2) ∼= SL(2,Z)

There is a natural homomorphism Homeo(S) → MCG(S). A lift of a subgroup
Γ of MCG(S) is a homomorphism L : Γ → Homeo(S) so that the composition
Γ → Homeo(S) → MCG(S) is the inclusion.

Question: Which subgroups of MCG(S) lift to Homeo(S)[Diff(S)]?
For genus g = 1, MCG(S) lifts to Diff(S) so assume that g ≥ 2.

• Any free group
• Any free abelian group
• Any finite group [Kerckhoff]
• MCG(S) does not lift to Diff(S) for g ≥ 5 [Morita]
• MCG(S) does not lift to Homeo(S) for g ≥ 6 [Markovic]

This talk was largely devoted to a preliminary report on joint work with Michael
Handel proving the following.

Theorem 5. MCG(S) does not lift to Diff(S) for g ≥ 3.

The proof is by contradiction and involves finding a global fixed point for an
action of a mapping class group. The following result of Thurston and its corollary
below are applied to obtain a contradiction.

Theorem 6 (Thurston Stability[4]). If G is a finitely generated non-trivial sub-
group of Diff(Mn) and if there exists x ∈ Fix(G) such that Dgx = Id for all g ∈ G
then there is a non-trivial homomorphism from G to R.

Corollary 1. If G is a finitely generated non-trivial subgroup of Diff(M2) and if
there exists an accumulation point x ∈ Fix(G) then there is a non-trivial homo-
morphism from G to R.
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Topological Methods in Classical Scattering

Andreas Knauf

In potential scattering on Rd one considers the solutions of the Hamiltonian
equations for the Hamiltonian function H(p, q) = 1

2‖p‖ 2 + V (q), on the energy

surfaces ΣE := H−1(E), E > 0. The (long range) potential V and its derivatives
are assumed to decay at spatial infinity, see e.g. [DG].

An orbit is called scattering if lim|t|→∞ ‖q(t)‖ = ∞ and bounded if

lim sup
|t|→∞

‖q(t)‖ <∞.

Finally, trapped orbits go to infinity in one time direction and stay bounded in the
other time direction. These three cases lead to a partition

ΣE = bE ∪̇ tE ∪̇ sE .

The set NT := {E > 0 | tE = ∅} of nontrapping energies is open.
Although the union tE of trapped orbits is of Liouville measure zero, in quantum

scattering they give rise to so-called quantum resonances. In the paper [KK2] with
M. Krapf we give a criterion for their existence, namely

Theorem 1. [KK2] For smooth potentials V , if V −1(E) ⊂ Rd is neither empty
nor homeomorphic to the sphere Sd−1, then E /∈ NT .

The proof is based on relative homotopy groups and the h-cobordism theorem.
Next we consider nontrapping energies E ∈ NT . Then asymptotically the solu-

tions have the form of straight lines and can thus be parametrized by a point in the
cotangent bundle N := T ∗Sd−1. Dynamics induces symplectic diffeomorphisms

SE : N → N (E ∈ NT ).

In [Kn1] this scattering map was used to define a topological index, deg(E) ∈ Z.
In examples of centrally symmetric V all values ≤ 1 were shown to occur.

This is illustrated in Figure 1.

Figure 1. 2D scattering with degrees 1 (left), 0 (center) and -1 (right)
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These results were now generalized to arbitrary long range potentials, including
the singular ones of the form

(1) V (q) =
−Z

‖q − s‖α
+W (q).

with Z > 0, α > 0 and W ∈ C2(Rd,R). Precisely for α = 2n/(n + 1), n ∈ N

the motion can be regularized to yield a smooth complete flow on a symplectic
manifold (P, ω) of dimension 2d.

Theorem 2. [KK2] For all dimensions d ≥ 2 and energies E ∈ NT
(1) we have in the case of smooth potentials V :

(a) if V −1(E) = ∅, then deg(E) = 0.
(b) if V −1(E) ∼= Sd−1, then deg(E) = 1.

(2) we have in the case of singular potentials V , with α = 2n/(n+1) for n ∈ N

(2) deg(E) =

{ −n , d even
1−(−1)n

2 , d odd.

The proof is based on homotopy arguments, respectively in the singular case
the calculation of an Euler number (the energy surface being a sphere bundle over
configuration space Rd).

The index deg(E) is also related to the folding of the Lagrange manifold of
given asymptotic momentum over configuration space.

This index can be used to imbed symbolic dynamics for scattering in a potential
V = V1 + . . . + Vk, where the Vi were assumed to carry non-zero degree, and to
have non-shadowing supports (no line meeting more then two supports). More
precisely, for any bi-infinite sequence a in

{
a ∈ {1, . . . , k}Z | al 6= al+1

}
,

there exists an orbit of energy E, visiting the supports of the Vi in the succession
prescribed by a.

This work is part of an ongoing project striving to introduce new topological
and geometric concepts in classical [BN, DG, KK1, Kn1, Kn2, KK3, KT] and
quantum [CJK, DG, GK] scattering, in particular in celestial mechanics [Kn3].

References

[BN] S.V. Bolotin, P. Negrini: Regularization and topological entropy for the spatial n-center
problem, Ergodic Theory and Dynamical Systems 21, 383–399 (2001).

[CJK] F. Castella, Th. Jecko, A. Knauf: Semiclassical resolvent estimates for Schrödinger oper-
ators with Coulomb singularities. Preprint (2007)
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Wild Dynamics

Krystyna Kuperberg

By a flow we understand an R-action. A semi-trajectory in a flow defined on a
3-manifold is wild if its closure is a wild arc. A trajectory is 2-wild if both of its
two semi-trajectories are wild.

An example of a wild arc in R3, an arc embedded in R3 in such a way that
there is no ambient homeomorphism of R3 taking the arc onto a straight segment,
was first given by R. Fox and E. Artin.

We prove the following:

Theorem 1. Every boundaryless 3-manifold admits a flow with a discrete set of
fixed points and such that every non-trivial trajectory is 2-wild.

Theorem 2. Every closed 3-manifold admits a flow with exactly one fixed point
and such that every non-trivial trajectory is homoclinic and 2-wild.

Both proofs are based on the construction of a wild-arc ridge, a vector field
W defined on a compact 3-manifold W with boundary. Denote by F the set
R × [−1, 1] × [−1, 1] in R3. Denote by W the two-point compactification of F ,
F ∪{p, q}, and keep the notation for the coordinates of points in F . The important
properties of W are:

(1) W(p) = W(q) = ~0 and there are no other singular points.
(2) W is vertical with positive z-component on ∂F .
(3) W satisfies the matched ends condition, i.e., if a trajectory passes through

points (x1, y1,−1) and (x2, y2, 1), then (x1, y1) = (x2, y2).
(4) There is a set S with non-empty interior in the bottom boundary of W

such that the positive semi-trajectory of a point in S is contained in F .
(5) The semi-trajectories in F that do not intersect ∂F are wild.
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Singularities and mixing in multidimensional dispersing billiards

Péter Bálint

(joint work with Imre Péter Tóth)

Let us consider a domain in the d-dimensional flat torus Q ⊂ Td, and a point
particle that travels uniformly (follows straight lines with constant speed) within
Q, and bounces off the boundary (the scatterers) via elastic collisions (angle of
incidence is equal to the angle of reflection). We investigate the resulting dynamics
in discrete time, that is, collision to collision. As the length of the velocity is an
integral of motion, the phase space, to be denoted by M , is a 2d− 2 dimensional
manifold, a hemisphere bundle with base ∂Q – configurations – and hemisphere
fibres – the possible outgoing velocities of unit length. The billiard map T :
M →M has a natural invariant measure µ, absolutely continuous with respect to
Lebesgue measure on M . The case d = 2 is often referred to as planar, while the
technically much more involved d ≥ 3 as multidimensional. For further material
on billiards in general, and on multidimensional dipersing billiards (see below) in
particular see [CM] and [BCST], respectively, and references in these works.

Dynamical properties of the billiard map are mainly determined by the shape
of the boundary ∂Q. We make the following assumptions:

(i) ∂Q is assumed to be a finite collection of pairwise disjoint, compact d − 1
dimensional C3-smooth submanifolds in Td. This implies, in particular, that it
is possible to define the curvature operator, or second fundamental form K in
any point of ∂Q. K should be understood as the second fundamental form for
the relevant one codimensional submanifold(s) with (unit) normal vectors pointing
inward Q. The billiard is strictly dispersing. That is, the boundary components,
as viewed from the exteriour, are stricly convex. In other words, the operator K
is positive definite on ∂Q.

(ii) Given a phase point x = (q, v) ∈M we may consider the free flight function:
τ(x) measures the distance along the straight line that starts out of q ∈ ∂Q in the
direction of v until it reaches ∂Q again. We assume that the horizon is finite;
there is a positive constant τmax < ∞, depending only on the billiard domain,
such that for any phase point x ∈ M : τ(x) ≤ τmax. Note that, according to our
assumption of disjoint and compact boundary pieces (lack of corner points), there
is also a lower bound on the free flight function, there exists a constant τmin > 0,
depending only on the billiard domain, such that for any phase point x ∈ M :
τ(x) ≥ τmin.

To summarize briefly properties (i) and (ii), one can say that we consider dis-
persing billiards with finite horizon. Our third assumption is more technical, thus
we need a little more formulation.

The main consequence of dispersivity is the hyperbolicity of billiard dynamics:
diverging wavefronts, when scattered on the boundary ∂Q, remain diverging, which
implies the presence of an invariant unstable cone field in the tangent bundle,
Cu ⊂ TM . Moreover, because of strict dispersivity, hyperbolicity is uniform, that
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is, there exists a constant Λ > 1 such that

(1) |T ndx| ≥ cΛn|dx|
for every dx ∈ Cu

x , for some c > 0, uniformly for x ∈M .
In this sense dispersing billiard maps resemble to Anosov diffeomorphisms, how-

ever, there is an important difference: T has singularities. For domains satisfying
properties (i)-(ii) above, T is discontinuous precisely at the preimages of tangential
reflections, that is, at the preimage of the boundary ∂M . We shall denote this
singularity set by S = ∂M∪T−1∂M , which is a finite collection of 1 codimensional
submanifolds. The discontinuity set for higher iterates T n, n ≥ 1, is denoted as
Sn = ∪n−1

i=0 T
−iS.

The ergodic properties of dispersing billiards are determined by the interplay of
hyperbolicity and singularities. Here we concentrate on ergodicity with respect to
the natural measure µ, and exponential decay of correlations in the following sense.
We say that the dynamical system (M,T, µ) has exponential decay of correlations
(EDC), if for every f, g : M → R Hölder-continuous pair of functions there exist
constants C <∞ and a > 0 such that for every n ∈ N

∣∣∣∣
∫

M

f(x)g(T nx)dµ(x) −
∫

M

f(x)dµ(x)

∫

M

g(x)dµ(x)

∣∣∣∣ ≤ Ce−an.

Our third assumption is related to a quantity characterizing the local combina-
torics of the singularity set Sn, the so-called complexity. Consider first for fixed
n ≥ 0 and x ∈M

Kn(x, ε) = #{Connected components of Bε(x) ∩ (M \ Sn)},
where Bε(x) denotes the ε neighborhood of x in M . Kn(x, ε) counts the number
of pieces into which the n-step singularity set partitions the phase space near x.
Then define

Kn = sup
x∈M

(
lim
ε→0

Kn(x, ε)
)
.

We say that the billiard domain Q satisfies the finite complexity condition if there
exists a constant K < ∞ such that Kn ≤ K for any n ≥ 0. Q satistfies the
sub-exponential complexity condition if Kn = o(Λn), where Λ is the constant of
minimum expansion, cf. Formula (1) above.

(iii) Let us assume that Q satisfies the sub-exponential complexity condi-
tion.

Now we can state the main result.
Theorem. Let us consider a multidimensional (d ≥ 3) billiard domain that

satisfies (i), (ii) and (iii) above. Then the billiard map (M,T, µ) is ergodic ([BBT])
and has exponential decay of correlations ([BT]).

Our result on EDC generalizes a Theorem from [Y], where Young obtained the
same property in the d = 2 case. Actually, our proof also follows her approach,
that is, a tower construction with exponential return time statistics. For this,
we need to perform a careful analysis of the growth and regularity properties of
local unstable manifolds, which has a turned out to be technically much more
complicated in the multidimensional case.



Dynamische Systeme 1935

Our assumption on complexity is a different issue: requiring such a property on
the local combinatorics of the singularity set seems to be unavoidable to obtain
exponential mixing. It is worth noting that different versions of this condition are
very common in the literature of expanding and hyperbolic systems with singular-
ities, see, for example, the works [S] or [DL].

As for the complexity of the singularity set in dispersing billiards with finite
horizon, we have the following picture.

Bunimovich proved (see [CY] for a modern presentation) that for d = 2 finite
horizon dispersing billiards complexity can grow at most linearly. In particular, if
a planar billiard domain satisfies properties (i) and (ii), property (iii) is automatic.

In contrast, there exists an example of a multidimensional domain Q for which
complexity grows exponentially. Thus, our Theorem above does not apply to
all finite horizon dispersing billiard systems. Nonetheless, we have the following
conjecture.

Conjecture. Let us consider the collection of all possible finite horizon dis-
persing billiard configurations ∂Q, that is, those satisfying conditions (i) and (ii)
above, and endow this set with the C3 topology. The subset of configurations for
which the finite complexity conditon holds is generic (dense and Gδ).

To be more precise, we conjecture that in a typical configuration no phase point
x ∈ M can have a trajectory that collides tangentially more than 2d − 2 times.
The rough explanation for this conjecture is as follows: tangency is a codimension
1 phenomenon, the set of double tangencies has codimension two, and so on.
Observe that dimM = 2d − 2, thus 2d − 2 tangencies along the same trajectory
seems to be a zero dimensional – atypical – property.

So far we have managed to make this argument precise, and thus completed the
proof of the above conjecture only in the d = 2 case. Certain details are still to
be worked out in the technically more complicated multidimensional situation.
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Closed characteristics on compact convex hypersurfaces in R6

Yiming Long

(joint work with Wei Wang, Xijun Hu)

Let Σ be a fixed C3 compact convex hypersurface in R2n, i.e., Σ is the boundary
of a compact and strictly convex region U in R2n. We denote the set of all such
hypersurfaces by H(2n). Without loss of generality, we suppose U contains the
origin. We consider closed characteristics (τ, y) on Σ, which are solutions of the
following problem

(1)

{
ẏ = JNΣ(y),
y(τ) = y(0),

where J =

(
0 −In
In 0

)
, In is the identity matrix in Rn, τ > 0, NΣ(y) is the

outward normal vector of Σ at y normalized by the condition NΣ(y) · y = 1. Here
a · b denotes the standard inner product of a, b ∈ R2n. A closed characteristic
(τ, y) is prime, if τ is the minimal period of y. Two closed characteristics (τ, y)
and (σ, z) are geometrically distinct, if y(R) 6= z(R). We denote by T(Σ) the set
of all geometrically distinct closed characteristics on Σ.

There is a long standing conjecture on the number of closed characteristics on
compact convex hypersurfaces in R2n:

(2) #T(Σ) ≥ n, ∀ Σ ∈ H(2n).

Since the pioneering works [Rab] of P. Rabinowitz and [Wei] of A. Weinstein in
1978 on the existence of at least one closed characteristic on every hypersurface
in H(2n), the existence of multiple closed characteristics on Σ ∈ H(2n) has been
deeply studied by many mathematicians. When n ≥ 2, besides many results under
pinching conditions, in 1987-1988 I. Ekeland-L. Lassoued, I. Ekeland-H. Hofer, and
A. Szulkin (cf. [EkL], [EkH], [Szu]) proved #T(Σ) ≥ 2 for every Σ ∈ H(2n). In
[LoZ] of 2002, Y. Long and C. Zhu further proved #T(Σ) ≥ [n

2 ] + 1 for every
Σ ∈ H(2n), where we denote by [a] ≡ max{k ∈ Z | k ≤ a}. Note that this estimate
yields still only at least 2 closed characteristics when n = 3. For more references
on this topic we refer to [Lo2]. The following recent result proved by Wei Wang,
Xijun Hu and the author in [WHL] gives a confirmed answer to the conjecture (2)
for n = 3.

Theorem 1. ([WHL]) There holds #T(Σ) ≥ 3 for every Σ ∈ H(6).
One of the main ingredients of our proof of this theorem is the following new

resonance identity on closed characteristics.
Theorem 2. ([WHL]) Suppose Σ ∈ H(2n) satisfies #T(Σ) < +∞. Denote

all the geometrically distinct closed characteristics by {(τj , yj)}1≤j≤k. Then the
following identity holds

(3)
∑

1≤j≤k

χ̂(yj)

î(yj)
=

1

2
,
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where î(yj) ≡ limm→∞ i(ym
j )/m ∈ R is the mean index of yj, χ̂(yj) ∈ Q is the

average Euler characteristic given by

(4) χ̂(y) =
1

K(y)

∑

1≤m≤K(y)
0≤l≤2n−2

(−1)i(ym)+lkl(y
m),

K(y) ∈ N is the minimal period of critical modules with Q-coefficients of iterations
of y, i(ym) is the Morse index of the Clarke-Ekeland dual-action functional at the
m-th iteration ym of y, kl(y

m) is the dimension of the l-th critical module with
Q-coefficients of ym.

Note that such a resonance condition was conjectured by I. Ekeland in [Eke]
of 1984. When all the closed characteristics on Σ ∈ H(2n) together with their
iterations are nondegenerate, i.e., 1 is a Floquet multiplier of them of precisely
algebraic multiplicity 2, this identity was obtained by C. Viterbo in [Vit] of 1989
for star-shaped hypersurfaces.

Note that in [HWZ] of 1998, H. Hofer-K. Wysocki-E. Zehnder proved that
#T(Σ) = 2 or ∞ holds for every Σ ∈ H(4). In [Lo1] of 2000, Y. Long proved
further that Σ ∈ H(4) and #T(Σ) = 2 imply that both of the closed characteristics
must be elliptic, i.e., each of them possesses four Floquet multipliers with two 1s
and the other two locate on the unit circle too. Now as a by-product of our
Theorem 2 we obtain a stronger result:

Theorem 3. ([WHL]) Let Σ ∈ H(4) satisfy #T(Σ) = 2. Then both of the
closed characteristics must be irrationally elliptic, i.e., each of them possesses four
Floquet multipliers with two 1s and the other two located on the unit circle with
rotation angles being irrational multiples of π.
Acknowledgements. The author thanks sincerely the hospitality of Mathema-
tisches Forschungs- institut Oberwolfach during his visit from July 8 to 14th of
2007.
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Floer caps and length minimizing Hamiltonian paths

Ely Kerman

1. Introduction

Let (M,ω) be a closed symplectic manifold. A smooth time-periodic Hamilton-
ian function H : R/Z ×M → R determines a Hamiltonian flow φt

H on M . This
flow can also be viewed as a path in the group of Hamiltonian diffeomorphisms
of (M,ω). The metric properties of this path, with respect to the Hofer metric,
are intimately related to the dynamics of the flow. In particular, playing a role
similar to the conjugate points of a Riemannian geodesic, certain periodic orbits of
the flow are required to exist in order for the path φt

H to not minimize the Hofer
length. This phenomenon was first discovered by Hofer in [Ho2] for Hamilton-
ian flows on symplectic vector spaces generated by time-independent Hamiltonian
functions. The relevant result from [Ho2] was later extended to all compact sym-
plectic manifolds by McDuff and Slimowitz in [McDSl].

In the present work, Floer theory is used to study this relation between dynam-
ics and Hofer’s geometry for Hamiltonian flows on compact symplectic manifolds
which are generated by general, time-dependent Hamiltonian functions. In par-
ticular, the length minimizing properties of a sufficiently short Hamiltonian path
are related to the properties and number of its 1-periodic orbits.

2. Hofer’s length functional

For every path of Hamiltonian diffeomorphisms, ψt, there is a function H in
C∞(R/Z × M) such that φt

H ◦ ψ0 = ψt. This generating Hamiltonian can be
chosen uniquely if one imposes the normalization condition

∫
M
Ht ω

n = 0, where
n is half of the dimension of M and Ht(p) = H(t, p). Following [Ho1], one can use
these unique generating Hamiltonians to define a length functional on the group
of Hamiltonian diffeomorphisms as follows

length(ψt) = ‖H‖

=

∫ 1

0

max
M

Ht dt−
∫ 1

0

min
M

Ht dt

= ‖H‖+ + ‖H‖−.
Both ‖H‖+ and ‖H‖− provide different measures of the length of ψt, called the
positive and negative Hofer lengths, respectively.
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Let [ψt] be the class of Hamiltonian paths which are homotopic to ψt relative
to its endpoints. Denote the set of normalized Hamiltonians which generate the
paths in [ψt] by C∞

0 ([ψt]). The Hofer seminorm of [ψt] is then defined by

ρH([ψt]) = inf{‖H‖ | H ∈ C∞
0 ([ψt])}.

The positive and negative Hofer seminorms of [ψt] are defined similarly as

ρ±([ψt]) = inf{‖H‖± | H ∈ C∞
0 ([ψt])}.

Since these seminorms are bi-invariant, we need only consider paths which start
at the identity and hence have the form φt

H . We say that φt
H minimizes the Hofer

length in its homotopy class if there is no path in [φt
H ] with a smaller Hofer

length, i.e., ‖H‖ = ρH([φt
H ]). The notion of a path which minimizes the negative

or positive Hofer length in its homotopy class is defined analogously.

3. Main results

If φt
H does not minimize ρH in its homotopy class, then it also fails to minimize

ρ+ or ρ−. For this reason, we formulate our results for the one-sided seminorms.
They are stated for the positive Hofer seminorm. The corresponding results for
ρ− are entirely similar.

For an ω-compatible almost complex structure J on M , let ~(J) be the infimum
over the symplectic areas of nonconstant J-holomorphic spheres in M . The Floer
theoretic methods used in this work require us to consider paths whose Hofer
length is less than the strictly positive quantity

~ = sup
J

~(J).

Theorem 1. Let H be a nondegenerate Hamiltonian such that ‖H‖ < ~. If
φt

H does not minimize the positive Hofer length in its homotopy class, then there
are at least rank(H(M ; Z)) contractible 1-periodic orbits xj of H which admit
spanning disks uj such that, for each j, the Conley-Zehner index µCZ(xj , uj) lies
in the interval [−n, n], and the symplectic action AH(xj , uj) lies in the interval
[−‖H‖−, ‖H‖+).

Here, H is said to be nondegenerate if the contractible 1-periodic orbits of φt
H

are nondegenerate. A spanning disc for a 1-periodic orbit x, is a map u from the
unit disc D2 ⊂ C such that u(e2πit) = x(t). As well, the symplectic action of a
1-periodic orbit x with respect to a spanning disc u is defined by

AH(x, u) =

∫ 1

0

H(t, x(t)) dt−
∫

D2

u∗ω.

For a general, possibly degenerate, Hamiltonian we also prove:
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Theorem 2. Let H be a Hamiltonian function with ‖H‖ < ~. If φt
H does

not minimize the positive Hofer length in its homotopy class, then there is a
contractible 1-periodic orbits y of H which admits a spanning disk w such that

−‖H‖− ≤ AH(y, w) < ‖H‖+.

Theorem 1 can be refined for Hamiltonians which have the properties known
to be necessary to generate a length minimizing path. A Hamiltonian H is called
quasi-autonomous if it has at least one fixed global maximum P ∈ M and one
fixed global minimum Q ∈M . That is,

H(t, P ) ≥ H(t, p) ≥ H(t, Q), for all p in M.

By the work of Bialy-Polterovich in [BP] and Lalonde-McDuff in [LMcD], it is
known that if the path generated by H is length minimizing in its homotopy class,
then H must be quasi-autonomous.

A symplectic manifold (M,ω) is said to be spherically rational if the quantity

r(M,ω) = inf
A∈π2(M)

{|ω(A)| | |ω(A)| > 0} .

is strictly positive. In this case, r(M,ω) ≤ ~ and we prove the following result.

Theorem 3. Let H be a nondegenerate Hamiltonian on a spherically rational
symplectic manifold (M,ω) such that H is quasi-autonomous and ‖H‖ < r(M,ω).
If φt

H does not minimize the Hofer length in its homotopy class, then H has at
least rank(H(M ; Q)) + 2 contractible 1-periodic orbits.

4. A final question

The Arnold conjecture implies the existence of at least rank(H(M ; Q)) con-
tractible 1-periodic orbits of the flow generated by a nondegenerate Hamiltonian.
The two extra orbits detected in Theorem 3 were also found in the case of sym-
plectically aspherical manifolds in [KL]. One is lead by these results, as well as the
previously mentioned work of Hofer and McDuff-Slimowitz, to the the following
question:

If the path generated by a nondegenerate Hamiltonian does not minimize the
(positive/negative) Hofer length (in its homotopy class), must it have at least
rank(H(M ; Q)) + 2 contractible 1-periodic orbits?
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Smooth linearization of commuting circle diffeomorphisms

Bassam Fayad

(joint work with Kostantin Khanin)

We show that a finite number of commuting diffeomorphisms with simultane-
ously Diophantine rotation numbers are smoothly conjugated to roations. This is
a joint work with Kostantin Khanin.

1. Introduction

The problem of smooth linearization of commuting circle diffeomorphisms was
raised by Moser in [10] in connection with the holonomy group of certain foliations
with codimension 1. Using the rapidly convergent Nash-Moser iteration scheme he
proved that if the rotation numbers of the diffeomorphisms satisfy a simultaneous
Diophantine condition and if the diffeomorphisms are in some C∞ neighborhood
of the corresponding rotations (the neighborhood beign imposed by the constants
appearing in the arithmetic condition, as usual in perturbative KAM theorems)
then they are C∞-linearizable, that is, C∞-conjugated to rotations.

In terms of small divisors, the latter result presented a new and striking phenom-
enon: if d is the number of commuting diffeomorphisms, the rotation numbers of
some or of all the diffeomorphisms may well be non-Diophantine, but still, the full
Zd-action is smoothly linearizable due to the absence of simultaneous resonances.
Further, Moser showed in his paper that this new phenomenon is a genuine one
in the sense that the problem cannot be reduced to that of a single diffeomor-
phism with a Diophantine frequency. Indeed, it is shown that there exist numbers
θ1, . . . , θd that are simultaneously Diophantine but such that for all linearly inde-
pendent vectors a, b ∈ Zd+1, the ratios (a0+a1θ1+. . .+adθd)/(b0+b1θ1+. . .+bdθd)
are Liouville numbers. Moreover, this shows that the theory for individual circle
maps does not suffice to yield smooth linearization.

According to Moser, the problem of linearizing commuting circle diffeomor-
phisms could be regarded as a model problem where KAM techniques can be
applied to an overdetermined system (due to the commutation relations). This
assertion could again be confirmed by the recent work [2] where local rigidity of
some higher rank abelian groups was established using a KAM scheme for an
overdetermined system.

At the time Moser was writing his paper, the global theory of linearization
for circle diffeomorphisms (Herman’s theory) was already known for a while. A
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highlight result is that a diffeomoprhism with a Diophantine rotation number is
smoothly linearizable (without a local condition of closeness to a rotation). The
proof of the first global smooth linearization theorem given by Herman ([5]), as well
as all the subsequent different proofs and generalizations ([11], [8],[9],[6],[7],[12]),
extensively used the Gauss algorithm of continued fractions that yields the best
rational approximations for a real number.

As pointed out in Moser’s paper, one of the reasons why the related global
problem for a commuting family of diffeomorphisms with rotation numbers satis-
fying a simultaneous Diophantine condition is difficult to tackle, is due precisely to
the absence of an analogue of the one dimensional continuous fractions algorithm
in the case of simultaneous approximations of several numbers (by rationals with
the same denominator). Although, in certain sense such algorithms were later
developed and even used in the KAM setting, our approach is based on different
ideas.

Moser asked under which conditions on the rotation numbers of n smooth com-
muting circle diffeomorphisms can one assert the existence of a smooth invariant
measure µ? In particular is the simultaneous Diophantine condition sufficient?
Here, we answer this question positively (Theorem 1, the existence of a smooth
invariant measure being an equivalent statement to smooth conjugacy). On the
other hand, it is not hard to see that the same arithmetic condition is optimal
(even for the local problem) in the sense given by Remark 1.

Before we state our results and discuss the plan of the proof, we give a brief
summary of the linearization theory of single circle diffeomorphisms on which our
proof relies.

We denote the circle by T = R/Z and by Diffr
+(T), r ∈ [0,+∞]∪{ω}, the group

of orientation preserving diffeomorphisms of the circle of class Cr or real analytic.
We represent the lifts of these diffeomorphisms as elements of Dr(T), the group

of Cr-diffeomorphisms f̃ of the real line such that f − IdR is Z-periodic.
Following Poincaré, one can define the rotation number of a circle homeomor-

phism f as the uniform limit

ρf = lim
j→∞

f̃ j(x) − x

j
mod[1],

where f̃ j (j ∈ Z) denote the iterates of a lift of f . A rotation map of the circle with
angle θ, that we denote by Rθ : x 7→ x+ θ, has clearly a rotation number equal to
θ. Poincaré raised the problem of comparing the dynamics of a homeomorphism
of the circle with rotation number θ to the simple rotation Rθ.

A classical result of Denjoy (1932) asserts that if ρf = θ is irrational (not in
Q) and if f is of class C1 with the derivative Df of bounded variations then f is
topologically conjugated to Rθ, i.e. there exists a circle homeomorphism h such
that h ◦ f ◦ h−1 = Rθ.

The first result asserting regularity of the conjugation of a circle diffeomorphism
to a rotation was obtained by Arnol’d in the real analytic case: if the rotation
number of a real analytic diffeomorphism satisfies certain Diophantine conditions
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and if the diffeomorphism is sufficiently close to a rotation, then the conjugation
is analytic. This result has been proven using KAM approach. The general idea,
that is due to Kolmogorov, is to use a quadratic Newton approximation method
to show that if we start with a map sufficiently close to the rotation it is possible
to compose successive conjugations and get closer and closer to the rotation while
the successive conjugating maps tend rapidly to the Identity. The Diophantine
condition is used to control the loss of differentiability in the linearized equation
which allows to compensate this loss at each step of the algorithm due to its
quadratic convergence. Applying the same Newton scheme in the C∞ setting is
essentially due to Moser.

At the same time, Arnol’d also gave examples of real analytic diffeomorphisms
with irrational rotation numbers for which the conjugating maps are not even
absolutely continuous, thus showing that the small divisors effect was inherent
to the regularity problem of the conjugation. Herman also showed that there
exist ”pathological” examples for any non-Diophantine irrational (i.e. Liouville)
rotation number (see [5, chap. XI], see also [4]).

A crucial conjecture was that, to the contrary, the hypothesis of closeness to
rotations should not be necessary for smooth linearization, that is, any smooth
diffeomorphism of the circle with a Diophantine rotation number must be smoothly
conjugated to a rotation. This global statement was finally proved by Herman in [5]
for almost every rotation number, and later on by Yoccoz in [11] for all Diophantine
numbers. In the end of the 80’s two different approaches to Herman’s global theory
were developed by Khanin, Sinai ([8], [9]) and Katznelson, Ornstein ([6], [7]).
These approaches give sharp results on the smootheness of the conjugacy in the
case of diffeomorphisms of finite and low smoothness. In principle, it should be
possible to study the case of commuting diffeomorphisms by all the three method.
In the present paper, we focus on the C∞ and Cω case and use the classical
Herman-Yoccoz approach.

Herman, and Yoccoz, developed a powerful machinery giving sharp estimates
on the derivatives growth for the iterates of circle diffeomorphisms, the essential
criterion for the Cr regularity of the conjugation of a Ck diffeomorphism f , k ≥
r ≥ 1, being the fact that the family of iterates (fn) should be bounded in the
Cr topology. The Herman-Yoccoz estimates on the growth of derivatives of the
iterates of f will be crucial for us in all the paper.

2. Results

For θ ∈ T and r ∈ [1,+∞] ∪ {ω}, we denote by Dr
θ the subset of Diff∞

+ (T) of
diffeomorphisms having rotation number θ.

Let d ∈ N, d ≥ 2, and assume that (θ1, . . . , θd) ∈ Td are such that there exist
ν > 0 and C > 0 such that for each k ∈ Z∗,

max(‖kθ1‖, . . . , ‖kθd‖) ≥ C|k|−ν .(1)

Finally, we say that a family of circle diffeomorphisms (f1, . . . , fd) is commuting
if fi ◦ fj = fj ◦ fi for all 1 ≤ i ≤ j ≤ p. Note that if h is a homeomorphism of the
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circle such that h ◦ f1 ◦ h−1 = Rθ1 , then for every j ≤ p we have that h ◦ fj ◦ h−1

commutes with Rθ1 , from which it is easy to see that h ◦ fj ◦ h−1 = Rθj
. Hence,

for r ≥ 2, Denjoy theory gives a homeomorphism that conjugates every fj to the
corresponding rotation. Here, we prove the following.

Theorem 1. Assume that θ1, . . . , θd satisfy (1) and let fi ∈ D∞
θi

, i = 1, . . . , p. If
a family (f1, . . . , fd) is commuting then, there exists h ∈ Diff∞

+ (T), such that for
each 1 ≤ i ≤ p, h ◦ fi ◦ h−1 = Rθi

.

Remark 1. Using Liouvillean constructions (constructions by successive conju-
gations) we see that the above sufficient arithmetic condition is also necessary
to guarantee some regularity on the conujugating homeomorphism h (essentially
unique, up to translation). There is indeed a sharp dichotomy with the above
statement in the case when the arithmetic condition (1) is not satisfied (see for
example [5, chap. XI] and [4] where the same techniques producing a single diffeo-
morphism readily apply to our context): Assume that θ1, . . . , θd do not satisfy (1),
then there exist fi ∈ D∞

θi
, i = 1, . . . , p such that a family (f1, . . . , fd) is commuting

and such that the conjugating homeomorphism of the maps fi to the rotations Rθi

is not absolutely continuous.

As a corollary of Theorem 1 and of the local theorem (on commuting diffeomor-
phisms) of Moser in the real anlytic category [10] we have by the same techniques
as in [5, chap. XI. 6]:

Corollary 1. Assume that θ1, . . . , θd satisfy (1) and let fi ∈ Dω
θi

, i = 1, . . . , p.
If (f1, . . . , fd) is commuting then, there exists h ∈ Diffω

+(T), such that for each
1 ≤ i ≤ p, h ◦ fi ◦ h−1 = Rθi

.

In the analytic setting the condition (1) is not optimal although it is necessary
to impose some arithmetic condition. It is possible to show that in the case when
the rotation numbers (θ1, . . . , θd) ∈ Tp are such that there exist a ∈ (0, 1) and
infinitely many k ∈ N satisfying

max(‖kθ1‖, . . . , ‖kθd‖) ≤ ak

then it is possible to construct a commuting family (f1, . . . , fd) ∈ Dω
θ1

× . . .×Dω
θd

such that the conjugating homeomorphism of the maps fi to the rotations Rθi
is

not absolutely continuous.
It is a delicate problem however to find the optimal arithmetic condition under

which any commuting family of real analytic diffeomorphisms will be linearizable
in the real analytic category. For a single real analytic diffeomorphism, the optimal
condition was obtained by Yoccoz in [12].
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PS–overtwisted contact manifolds are algebraically overtwisted

Klaus Niederkrueger

(joint work with Frédéric Bourgeois)

The plastikstufe [Nie06] is an attempt to generalize the overtwisted disk to
higher dimensional contact topology. Since it is unclear whether the notion is
general enough, we call contact manifolds containing a plastikstufe PS–overtwisted
(instead of just calling them overtwisted).

Over the last two years several indications have been collected that give some
justifications for the definition of the plastikstufe: PS–overtwisted manifolds are
non fillable [Nie06], and after the first closed higher dimensional examples of such
manifolds were found [Pre06], it was not difficult to convert any contact structure
into one that is PS–overtwisted [KN07]. Recently the Weinstein conjecture has
been shown to hold for these structures [AH07].
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In the work sketched here, we show that a PS–overtwisted manifold has van-
ishing contact homology (a manifold with trivial contact homology is called alge-
braically overtwisted). In fact, we seem to be able to prove that symplectic field
theory vanishes for such manifolds, extending the well known result for dimen-
sion 3 [Yau06], and giving virtually the first explicit computations of symplectic
field theory.

Sketch of the proof. Contact homology is the homology of a differential graded
algebra (A, ∂) with 1–element. The vanishing of H∗(A, ∂) is equivalent to the
exactness of the 1–element. The aim of our proof is thus to show that the 1–
element of the differential graded algebra A is exact. Recall that the algebra A is
generated by linear combinations of abstract products of closed Reeb orbits {γj},
and the boundary operator is given by

∂γ =
∑(

#MA
0 (γ; γa1 , . . . , γam

)
)
eAγa1 ∗ · · · ∗ γam

,

where MA(γ; γa1 , . . . , γam
) is the moduli space of the (n + 1)–times punctured

holomorphic spheres in the symplectization W of the contact manifold such that
the first puncture converges in a certain sense to the closed Reeb orbit {+∞}× γ,
and for each orbit γaj

there is a puncture converging to {−∞}× γaj
. The symbol

#MA
0 (γ; γa1 , . . . , γam

) denotes a rational number that counts the 0–dimensional
components of MA(γ; γa1 , . . . , γam

) taking into account orientations and the order
of the automorphism group. Note that the “empty product” of closed Reeb orbits
corresponds to the 1–element in A and we also have to include in the definition
of ∂γ the term (

#MA
0 (γ; ∅)

)
· ∅ =

(
#MA

0 (γ; ∅)
)
· 1

in the summation. The elements in MA(γ; ∅) are called finite energy planes, and
if such an element lies in a 0–dimensional moduli space, it is called a rigid finite
energy plane.

We have to find a finite combination of closed Reeb orbits

σ =
∑

j∈I

ajΓj ,

where Γj is a formal product γ1 ∗ · · · ∗ γm of closed Reeb orbits, such that

∂σ = 1 .

Our proof can now be sketched like this: In a first step we find a closed Reeb
orbit γ0 that bounds a rigid finite energy plane. Existence of such an orbit fol-
lows Hofer’s argument in the proof of the Weinstein conjecture for overtwisted
3–manifolds [Hof93] (for higher dimensions [AH07] respectively). Regard the
manifold M as the 0–level set in W . Then there is a 1–dimensional family of
holomorphic disks, the so-called Bishop family, living in the “lower half” of the
symplectization W , and having its boundary on the plastikstufe. The moduli
space is a compact closed interval. On one of its ends, the disks collapse to a
point on the singular set of PS(S), and on the other one some kind of bubbling
has to occur. The only type of bubbling that is possible in this situation is that
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the disks grow deeper and deeper into the negative direction finally breaking as a
punctured disk uC in

(
W,PS(S)

)
that goes from the plastikstufe to a closed Reeb

orbit {−∞}× γ0, and a rigid finite energy plane u0 in W that is bounded on the
top by {+∞}× γ0 (see Figure 1).

Figure 1. The disks in the Bishop family start as a point on the
singular set S of the plastikstufe PS(S). They grow down into
the symplectization until they finally break into a punctured disk
uC ending asymptotically at the Reeb orbit γ0 and a finite energy
plane u0 having γ0 as its top boundary.

If there was no other rigid punctured sphere having γ0 as the only top punc-
ture, then the proof would finish here, because then ∂γ0 = ±1. Unfortunately,
this is in general not the case. So assume there are other rigid punctured holo-
morphic spheres u1, . . . , uN in W having γ0 as the only top boundary (N is finite
because the moduli space is a discrete compact set). Let u1 have the closed Reeb
orbits γ1, . . . , γm as bottom punctures. We can glue u1 and uC to obtain a 1–
dimensional moduli space of punctured holomorphic disks in

(
W,PS(S)

)
, whose

boundary sits on the plastikstufe and whose punctures converge asymptotically to
{−∞}×γ1, . . . , {−∞}×γm (see Figure 2). This moduli space can also be naturally
compactified, and becomes this way a closed interval. Both of its ends correspond
to breaking. The left boundary point of the interval represents the breaking into
the curves we glued together, i.e., into uC and the punctured sphere u1. The other
end breaks into a single punctured sphere u′1 and a collection of vertical cylinders
in one level of W and a punctured disk u′C lying one level higher. The boundary
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of the disk u′C sits on the plastikstufe and its punctures converge to closed Reeb
orbits {−∞} × γ′1, . . . , {−∞} × γ′k at the bottom. The vertical cylinders and the
sphere u′j connect at the orbits {+∞}× γ′1, . . . , {+∞}× γ′k to u′C and converge at
the bottom punctures to the orbits {−∞}× γ1, . . . , {−∞}× γm. The reason why
the holomorphic curve in the lower part of the breaking consists of a single non
trivial element is that otherwise the dimensions of the bubbled moduli space would
be larger than 0, because disconnected components could be moved independently
against each other increasing the dimension.

When applying the boundary operator ∂ to the sum of the element γ0 ∈ A and
the product γ′1 ∗ · · · ∗γ′k, we do not find terms of the form γ′1 ∗ · · · ∗γ′k in the result,
because the punctured spheres uj and u′j represent points with different orienta-
tion in the moduli space. By repeating the gluing argument first for all curves
u1, . . . , uN , and collecting the elements corresponding to the second boundary of
the 1–dimensional moduli spaces, we obtain a term σ0 = γ0 +

∑
γ′j1 ∗ · · · ∗ γ′jkj

. In

the boundary ∂σ0, we have succeeded in canceling out all the contributions from
γ0 with the exception of the 1–element. Unfortunately, the “correction terms”
γ′j1 ∗ · · · ∗ γ′jkj

may give new undesired terms in the boundary ∂σ0. But each of

these elements can be dealt with by repeating analogous steps as above, and after a
finite number of applications of this method, we arrive at a collection of elements,
whose boundary is finally just the 1–element.
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[Nie06] K. Niederkrüger, The plastikstufe - a generalization of the overtwisted disk to higher
dimensions., Algebr. Geom. Topol. 6 (2006), 2473–2508.

[Pre06] F. Presas, A class of non-fillable contact structures, arXiv arXiv:math/0611390
(2006).

[Yau06] M.-L. Yau, Vanishing of the contact homology of overtwisted contact 3–manifolds, Bull.
Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 211–229, With an appendix by Y. Eliash-
berg.

Think global, act local - a new aproach to Gromov compactness for

pseudo-holomorphic curves.

Joel Fish

Since their introduction by Gromov, pseudo-holomorphic curves have been stud-
ied as maps from closed Riemann surfaces into almost complex manifolds with a
taming symplectic form. This parameterized view has lead to a number of ver-
sions of Gromov compactness which are quite global in nature. For instance, in
order to obtain convergence of a sequence of pseudo-holomorphic curves mapping
into a family of symplectic manifolds, typically one must first assume the family
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Figure 2. If γ0 bounds several rigid punctured curves, we can
perform gluing of any of these new planes to the punctured disk
uC to obtain a 1–dimensional moduli space of (punctured) holo-
morphic disks.

has uniform global bounds on geometric quantities like curvature, injectivity ra-
dius, energy threshold, etc. This talk will focus on a new approach to Gromov’s
compactness theorem, in which the curves are treated as generalized (unparam-
eterized) surfaces. In particular, we prove a local compactness theorem which is
useful when considering a family of target manifolds which develop unbounded ge-
ometry. This result recovers for instance compactness in the standard ”stretching
the neck” construction. Furthermore we will also provide applications of the local
result to families of connected sums of contact manifolds in which the connecting
handle degenerates to a point.

KAM-Liouville Theory for quasi-periodic cocycles

Raphael Krikorian

In this joint work with Bassam Fayad (CNRS, Paris 13) we extend the reducibil-
ity theory of cocycles of the form (α,A) : R/Z × SL(2,R) → R/Z × SL(2,R),
(θ, y) 7→ (θ+α,A(θ)y), A ∈ C∞(R/Z, SL(2,R)) to the case where α is of Liouville
type (qn+1 ≥ qn

n infinitely many times). We prove that such a C∞ cocycle which is
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C0 (resp. L2) conjugated to a cocycle of rotations is C∞-approximated by rotation-
reducible cocycles (i.e. Bn(θ + α)Rn(θ)Bn(θ)−1, Rn ∈ C∞(R/Z, SO(2,R)), Bn ∈
C∞(R/Z, SL(2,R))) provided α is Liouville (resp. super-Liouville) and the fibered
rotation of the cocycle satisfies some diophantine property (of full Lebesgue mea-
sure).

We also prove (when α is super-Liouville) that a C∞ cocycle close to constants
and whose rotation number satisfies a diophantine property is rotation reducible.
The proof of this theorem (which is an extension of theorems of Dinaburg-Sinai
and Eliasson to the Liouville case) uses a renormalization scheme and KAM-type
inductive procedure, which is quite surprising in that context.

Towards an Aubry-Mather theory for PDEs

Paul Rabinowitz

J. Moser and subsequently V. Bangert initiated an Aubry-Mather theory for a
family of quasilinear elliptic PDEs. We survey a further collection of such results
for the special case

(1) −∆u+ Fu(x, u) = 0, x ∈ Rn

where F ∈ C2(Tn+1,R). Of particular interest are a large variety of spatially
heteroclinic and homoclinic solutions obtained as local minima of a suitably renor-
malized functional associated with (1).

Existence of Hyperbolic Flows on Smooth Manifolds

Ya. Pesin

It has been a long-standing problem whether any smooth compact Riemannian
manifold admits a hyperbolic volume preserving dynamical system with discrete
time (in the case dimM ≥ 2) or continuous (in the case dimM ≥ 3) time. The
affirmative solution of this problem is given by the following two theorems.

Theorem 1 (Dolgopyat, Pesin). Given a smooth compact Riemannian manifold
of dimM ≥ 2, there exists a C∞ volume preserving ergodic (indeed, Bernoulli)
diffeomorphism f , which has nonzero Lyapunov exponents almost everywhere.

Theorem 2 (Hu, Pesin, Talitskaya). Given a smooth compact Riemannian man-
ifold M of dimM ≥ 3, there exists a C∞ volume preserving ergodic (indeed,
Bernoulli) flow φt, which has nonzero Lyapunov exponents almost everywhere (ex-
cept for the direction of the flow).
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In the talk I will sketch the proof of the second theorem (the continuous-
time case). The starting point of the construction (in fact, in both discrete- and
continuous-time cases) is a special C∞ volume preserving ergodic diffeomorphism
g of the two dimensional disk with nonzero Lyapunov exponents, constructed by
Katok. It is the identity on the boundary and all its derivatives of any order
vanish on the boundary. We then show that this diffeomorphism is diffeotopic
to the identity map of the disk. The proof then goes by constructing a smooth
divergence free vector field X on certain smooth (of class C∞) manifold K (of the
same dimension as M) with the boundary. The vector field X vanishes on the
boundary along with its derivatives. Then one can use results by Brin and Katok
that allow one to embed this manifold into M and carry over the vector field X
in the desired one.

I will also discuss a still open and challenging problem in the hyperbolic theory,
closely related to the above theorems, of whether any sufficiently small perturba-
tion (in the C1+α topology) of a volume preserving diffeomorphism with nonzero
Lyapunov exponents possesses nonzero exponents on a set of positive (but not
necessarily full) volume.
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KAM method in problems of rigidity for algebraic actions of higher

rank abelian groups

Anatole Katok

The first successful application of a KAM-type iteration scheme to this kind of
problem appeared three years ago in the joint work with Danijela Damjanovic. In
that work the algebraic action in question is an action by ergodic partially hyper-
bolic but not hyperbolic automorphisms of a torus. Neither individual elements
nor the action locally are stable and the a priori regularity/non-stationary normal
form method cannot be applied. Applicability of the KAM scheme is based on
vanishing of the obstructions to solutions to the linearized conjugacy equations
(“the higher rank trick”), tame estimates for solutions of those equations and the
estimates of the second cohomology based on a joint work with S. Katok.

Most of this talk is dedicated to the new and rather surprising application
to rigidity of totally non-hyperbolic, in fact parabolic, actions on homogeneous
spaces of some semisimple Lie groups. Specifically one considers the action of
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the unipotent upper-triangular subgroups by left translations on right factors by
irreducible cocompact lattices of the following

SL(2,R) × SL(2,R), SL(2,R× SL(2,C), SL(2,C)

The vanishing of the obstructions and construction of solutions for linearized equa-
tions in these cases was estabilished by David Mieszkowski in his 2006 PhD thesis
in [1]. An interesting peculiarity appears in the SL(2,C) case due to exceptional
behaviour of a particular irreducible representation which is responsible for the
first Betti number of SL(2,C)/Γ.

Starting from this, jointly with Damjanovic, we estabilish that in a general
position parametric family of perturbations there is an action conjugate to the
original unipotent action. Here the number of parameters needed corresponds to
the codimension of the unipotent action among the homogeneous ones, e.g., it is
equal to 2 for SL(2,R)× SL(2,R)/Γ.
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