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Introduction by the Organisers

Quite a number of scholars work on all aspects of Euler, especially in connection
with the continuing preparation of the edition of his Opera omnia. But the his-
torical study of the reception of his work during his lifetime and especially after
his death has been rather patchy; for example, in the general volume [1] to com-
memorate the bicentenary of his death and in the recent Euler handbook [2] to
note the tercentenary of his birth few articles dealt with aspects of reception in
any depth. (This point holds of reception history in general.)

In our workshop the reception of Euler’s work was usually considered up to
around 1840. After that, it seems that it was ordinarily either used routinely or
replaced, or quite forgotten, or was studied historically; a few exceptions are noted.

Sixteen scholars came together from eight countries to present their ideas on
Euler’s influence in a number of mathematical areas. The selection of topics is indi-
cated in the table of contents; it includes several from applied mathematics, where
scholarship is especially limited. We also discussed some examples of Euler’s influ-
ence in various countries, but this kind of history is even less well developed than
the influence by areas! In addition, we aired other neglected historical questions,
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such as: why was there such a small reception of the many papers and other writ-
ings that were posthumously published by the Saint Petersburg Academy between
1783 and 1862?

The sign ‘En’ in the abstracts below indicates the number n of an Euler writing
according to the list that was prepared in the early 1910s by the historian Gustav
Eneström.

The meeting was a success and we are thinking of building up our efforts into
a book on Euler’s influence.
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Abstracts

Algebra and Analysis

Rüdiger Thiele

I. Let us take the question: What is mathematics? A general belief is that (classi-
cal) mathematics deals with space and number, or more precisely with geometric
and arithmetic magnitudes. In a widespread mathematical dictionary by Jacques
Ozanam (1640-1717) published at the end of the 17th century we find Euclid’s view:
mathematics is the science of magnitudes which can be decreased or increased.

Almost one century later, in his Vollständige Anleitung zur Algebra (‘Complete
instruction in algebra’, 1770) Leonhard Euler repeated this statement but added
the idea of functionality. In this mature work algebra is described as a generaliza-
tion of arithmetic. Algebra, the extended arithmetic, is concerned with magnitudes
that submit to certain operations, i.e. when general rules can be stated. Such ob-
jects are natural numbers, integers and rational numbers, but further, ‘irrational
numbers, though they cannot be expressed by fractions, are nevertheless magni-
tudes of which we may form an accurate idea’, and it is ‘this property [which] is
sufficient to give us an idea of the number’. ([4], ser. I, vol. 1, I, §139). By calcu-
lation alone we have a clear and distinct idea of such magnitudes. Here Euler is in
accordance with the philosophical view of René Descartes (1596-1650). Further-
more, ‘From this definition [of magnitudes], it is evident, that the different kinds
of magnitude must be so various, as to render it difficult to enumerate them: and
this is the origin of different branches of the Mathematics, each being employed
on a particular kind of magnitude’ ([4], ser. I, vol. 1, I, §2). Euler then remarked:
‘It appears, that all magnitudes may be expressed by numbers; and that the foun-
dation of all the Mathematical Sciences must be laid in a complete treatise on the
science of Numbers. This fundamental part of mathematics is called analysis or
algebra’ ([4], ser. I, vol. 1, I, §5).

Later by the term ‘analysis’ one understands more the method of determining
those general rules whereas algebra has been the instrument to employ the rules.
For Euler ‘Mathematics is the science of quantity [magnitude], or the science which
investigates the means of measuring quantity’ ([4], ser. I, vol. 1, I, §2).

II. Once we have measured magnitudes algebra supplies rules and laws for dealing
and handling with them. Analysis deals above all with such systems of arithmeti-
cal objects as the real numbers used in the measurement of continuously variable
magnitudes (the geometric heritage); but Euler dealt also with imaginary numbers,
which had no geometric meaning and could not be approximated (like irrational
numbers) but nevertheless had rules. In his Algebra (1930) Leendert van der Waer-
den (1903-1996) started the chapter on ‘Rings and fields’ with these words, which
echo Euler: ‘The magnitudes with which one operates in algebra and arithmetic
are of different nature. Now they are integers, rational, real, complex or algebraic
numbers, now polynomials or integer rational functions of n variables, and so on.
We will get to know magnitudes of very different nature such as hypercomplex
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numbers or residue classes, and so on. We can calculate with them like or almost
like numbers.’ However, in contrast to van der Waerden Euler had no axiomatic
system.

It is quite natural in arithmetic to deal with polynomials, and the most inter-
esting question is the so called Fundamental Theorem which looks for the roots of
algebraic equations. Euler saw the necessity of proving the related Fundamental
Theorem of Algebra without any reference to geometric intuition (report of an
algebraic proof in 1746, published in 1751), and so did Jean le Rond d’Alembert
(1717-1783) at the same time in an analytic manner. Both men independently
demonstrated the Theorem but left gaps. In 1799 Carl Friedrich Gauss (1777-
1855) provided his first demonstration but also left gaps. In the end Bernhard
Bolzano (1781-1848) gave a satisfying proof.

In the beginning Euler regarded possible roots of an algebraic equation other
than imaginary numbers, but from 1743 he restricted the solutions to complex
numbers. In 1759 he tried to compose such solutions by roots, but – due to the
properties of algebra – he necessarily failed for algebraic equations of a degree
n > 4. Some results of Euler in number theory touch the origins of group theory
(see the abstract by Olaf Neumann).

III. The development of analysis is mainly characterized by this question: What
is an arbitrary function? We see firstly the shift from geometry to analysis; sec-
ondly the rise of the analytic expression and related power series; and finally the
transition to trigonometric series.

As a consequence of the isoperimetric problems posed in 1697 Johann I Bernoulli
(1667-1748) gave a first definition of an analytic function composed by the arith-
metic rules: ‘Here I call a function of one variable a quantity which is composed
in some way of this variable quantity and of constants.’ [2]

The crucial point is the expression ‘in some way’; in other words, any representa-
tion is still fixed to the operations Bernoulli was familiar with. Besides a geometric
representation (construction) we have for the first time an analytic representation.
Euler, a disciple of Johann Bernoulli, immediately accepted this analytic concept
of a function, and developed this idea to its limits (power series, even Puiseux and
Laurent series). For a long time he did not change the wording of his definition:
‘One quantity composed somehow from a greater number of quantities is called
its or their function’ [3]; but he extended permanently the admissible operations
forming the so-called analytical expression: elementary functions, transcendental
functions, functions which are defined by integrals or by an implicit equation.

In 1747 Jean le Rond d’Alembert wrote a paper on the vibrating string. He
gave a general solution of the problem using two arbitrary functions which how-
ever were restricted by him to analytic functions (representable by power series).
Dealing with the vibrating string, Euler noticed that the definition with which he
begun had ceased to make sense. Consequently, he found it convenient to take
also trigonometric series for the new problems of mathematical physics and even
geometrical methods. This paper gives insight into Euler’s openness in adapt-
ing the function concept to mathematical problems because already the simplest



Mini-Workshop: The Reception of the Work of Leonhard Euler 2243

cases (plucked string) demand an extension of the function concept with roots in
power series (Euler knew that power series cannot represent such initial shapes
of a string.) In the Preface of the Institutiones calculi differentialis ([4], ser. I,
vol. 10), published in 1755 but written in the time of the controversial discussion
concerning the vibrating string, Euler gave a general definition he never used ex-
plicitly: ‘If, therefore x denotes a variable quantity, all quantities which depend in
some way on x or are determined by it, are called functions of this variable.’

Indeed, we have a new aspect: Euler speaks of the general dependence of vari-
ables instead of the composition of an analytic expression. The crucial words are
‘depend in some way’ and ‘are determined’. In the actual forming of such func-
tions Euler must use the known kinds of determination, which is why this 1755
definition does not differ so much from the 1748 definition.

Euler’s 1755 generalization of the function concept was proposed under the
needs of mathematical physics and accepted by his followers. Above all, the newly
emerging topic of partial differential equations picked up the extension of the con-
cept. But what is an arbitrary function? There is no clear definition of such
functions, and above all the concept has changed in the course of time. We note
functions that cannot be represented by an analytical expression using the elemen-
tary functions (but avoiding limit processes). The representation of the totally
discontinuous Dirichlet function by a double limit process of continuous functions
shows that if one accepts limit operations, than one must accept such compounded
functions too. Euler admitted composed functions on an interval, subject to rules
or laws there. But in the end such considerations lead to points instead of inter-
vals, and if so extended the function concept is lawless, i. e. we have at each point
x different rules for f(x). Among the first mathematicians to see the possibility of
such an extension was Jean Baptist Joseph Fourier (1768-1830); in the end such
ideas gave rise to the study of point set theory.

Four years after Euler’s death, in 1787, the Petersburg Academy posed a prize
question on the nature of functions. The winner was Louis François Antoine
Arbogast (1759-1803), who advocated Euler’s viewpoint and introduced the dis-
continuity of solutions of partial differential equations in the modern sense (named
by him ‘discontigüité’). He wrote: ‘In opposition Mr. Euler had the daring idea to
regard curves not given by any law [arbitrary curves], and he was the first to say
that they may be arbitrary, irregular and discontinuous, or composed by different
parts of curves or freely drawn by hand which is moving in the space without any
[mathematical] rules.’ [1]

In 1771 Marie Jean Nicolas Caritat Condorcet (1743-1794), like Euler, smoothed
the solutions of equations at non-differentiable points of functions. For Gaspard
Monge (1746-1818) functions more general than those expressed by an equation
were legitimate mathematical objects. Around 1810 great virtuosity in handling
unknown arbitrary functions was shown by Simeon Denis Poisson (1781-1840).
However, in the course of his investigations on heat theory Fourier remarked in
a paper rejected by Joseph Louis Lagrange (1736-1813) in 1807: ‘But herein we
have dealt with a single case only of a more general problem, which consists in



2244 Oberwolfach Report 38/2007

developing any function whatever in infinite series of sines or cosines of multiple
arcs.’ He gave a theory of trigonometric series in his Theorie analytique de la

chaleur (‘Analytic theory of heat’, 1822). However, not before Dirichlet in 1829
were practical criteria for the representations of certain classes of functions offered,
including those of classical physics.

Furthermore, in 1834 Dirichlet gave also a similar definition to Euler’s in the
Preface of the Institutiones (1755). However, Dirichlet still stuck to the classic
meaning. His famous counterexample of an everywhere discontinuous function
(given in 1829) is aimed more to show that there are bounded functions for which
the Riemannian integral does not exist and less to reappraise the function concept.
The definition given in 1834 by Nikolai Ivanovich Lobatchevski (1792-1856) is
similar. Both Dirichlet and Lobatchevski were guided more likely by ‘mechanical’
motions than by modern functionality.

In 1854 Riemann presented investigations of the definite (Riemannian) integral
in order to establish conditions that a function can be Fourier representable. He
extended the results to certain functions which do not fulfill piecewise continuity.
Regarding the preservation or destruction of integrability he classified the related
sets (the modern description) without making set-theoretical consequences yet
which were made by later researchers.

Finally, the arithmetization of analysis culminated especially in Richard Dede-
kind (1831-1916). By giving a one-to-one correspondence between arbitrary sets,
he completely formulated analysis for the first time solely with analytic concep-
tions without any geometric visualization; Was sind und was sollen die Zahlen?

(‘What are numbers and what they are for?’, 1887). Here we have a new shift in
the concept, because topological concepts naturally linked with real numbers are
lacking. However, that starts a fascinating story beyond our intentions.
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Elaboration of Euler’s Ideas on Series in the early 19th Century

Hans Niels Jahnke

Euler’s view of divergent series

Usually, mathematicians of the 18th century calculated with power series in the
sense of modern formal power series. The question of convergence came up only
when numbers were substituted in equations involving such formal series. In most
cases mathematicians were sure about convergence for one or another reason and
did not explicitly discuss it. Sometimes they gave explicit proofs of convergence. In
any case, they tacitly assumed that a formal equality between formal expressions
would imply numerical equality. With power series this is in general true, as
already N. H. Abel remarked when he criticised this approach in the early 19th
century.

In 1760 L. Euler published a paper where he tried to give a definition of the sum
of a divergent series [2]. He distinguished between “convergent” and “divergent”
series, saying that in a convergent series the terms get smaller and smaller and
tend to zero, and that, therefore (?), adding them up would lead to its sum. The
problem then is whether it is possible to generalize the notion of sum so that one
can attribute a sum to a divergent series. Euler’s solution is the ‘definition’: “the
sum of any series is a closed expression out of whose development that series has
been formed” ([2], §12). It is clear that he looked upon numerical series always
as resulting from power series by substituting numbers. He justified his definition
by saying that for convergent series it agrees with the narrower meaning of a sum.
Also, when we calculate with indeterminates we can in every case substitute a
power series by the finite expression out of which it has been formed. For Euler,
this is a principle that he is not ready to give up. Implicit in Euler’s argument is a
notion of “formal equality” between a finite expression and its infinite expansion,
which he did not make explicit. But there are possible interpretations as, for
example, polynomial division and generating functions.

Euler gave a famous example which has been extensively treated by Hardy ([3],
26 – 29). It consists in the numerical series 1 − 1 + 2 − 6 + 24 − 120 + · · · , for
which he found by different methods the value 0,596347362123.

Explications of Eulerian ideas in the early 19th century

In the early 19th century some mathematicians tried to explicate Euler’s informal
notion of formal equality. Among them were R. Woodhouse (1803: symbolic equal-
ity), G. Peacock (1832) and other mathematicians of the English Algebraic School,
philosopher J. F. Fries (1822: Mathematische Naturphilosophie), Ch. Gudermann
(the teacher of Weierstrass) (1825), M. Ohm (1822: Versuch eines vollkommen
konsequenten Systems der Mathematik), and M. A. Stern (1860: Lehrbuch der
algebraischen Analysis).

On the other hand, mathematicians of the time became aware of formulae which
had been derived in the 18th century and which proved to be incorrect. One of
the most famous examples of this sort was the ‘representation of the powers of
sine and cosine by the sines and cosines of their multiple arcs’. Euler, Lagrange
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and others had ‘proved’ for ‘arbitrary’ exponents m the formulae:

cosmx +

(

m
1

)

cos (m − 2)x +

(

m
2

)

cos (m − 4)x + · · ·

=
∑

(

m
ν

)

cos (m − 2ν)x = (2 cosx)
m

and a similar formula including sines.
In 1811, S. D. Poisson showed these equations to produce incorrect results for,

say, x = π and m = 1/3. For more than ten years numerous mathematicians tried
in vain to resolve this paradox and to give the correct summations for the sine and
cosine series above. The first to provide the correct solutions were Martin Ohm
(1823, Berlin) and L. Poinsot (1825, Paris) (see [4]).

The paradox was one of the motivations for N. H. Abel to write his famous
paper about the binomial series in 1826, and Cauchy also treated the problem in
that year. However, in contrast to Abel and Cauchy, who read the paradox as an
argument against the use of divergent series, both Ohm and Poinsot pointed out
that a controlled application of divergent series was a means to successfully treat
the problem.

M. Ohm (1792-1872), brother of the famous physicist Georg Simon Ohm, was
for most of his life Professor of Mathematics at the University of Berlin (see [1]).
He felt a strong motivation to give a rigorous foundation to all of mathematics
including elementary algebra, a problem in fact unsolved at the time, and published
his respective “Attempt at a perfectly consequential system of mathematics” in
1822 [5]. In a sense this was a competing approach to Cauchy’s Analyse algébrique

of 1821 in that, like Cauchy, it required rigorous proofs of convergence but, in
contrast to Cauchy, it was more faithful to 18th-century practices including the
use of divergent series. His approach was similar to that of the English algebraic
school.

Ohm abandoned the definition of mathematics as a ‘theory of magnitudes’
(‘Größenlehre’). Instead, he considered analysis as a branch of arithmetic (‘Zahlen-
lehre’). The only objects given from the outset were the natural numbers and the
seven operations (‘7 Verbindungn der Zahlen’) a + b, a − b, a · b, a : b, ab, b

√
a,

and a?b, ? designating the logarithm. For these operations elementary universally
valid rules were stated as, for example, a− (b+ c) = (a− b)− c, a(b+ c) = ab+ ac.
Then, step by step, 0, negative, rational, irrational and complex numbers were
introduced as symbolic expressions (‘Zahlformen’) a− a, a− b, a/b, a/b where a, b
get infinitely large, and a + ik. Today we would speak of adjoining these symbolic
objects as ideal elements to the respective domains. Ohm saw clearly that with ev-
ery step of adjunction he had to define equality of expressions in the new domain,
and consequently he introduced the concepts ‘additively equal’, ‘multiplicatively
equal’, and so on. The only requirement for such a process of adjunction is in
Ohm’s words ‘necessity of results’; i.e. one had to secure that no contradiction
could occur in the respective old domain.
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A great achievement was the systematic treatment of multi-valued expressions.
Ohm called ax ·ay = ax+y an ‘imperfect equation’, since, in general, the multiplici-
ties on both sides are different. By multiplying this equation with all roots of unity
one got an equation with equal multiplicities on both sides, and this equation he
called ‘perfect’: ax · ay = ax+y · e2πi(µx+νy).

In a similar way, power series were introduced as symbolic expressions (equality
being defined as equality of the scales of coefficients). Calculating with power
series was a process involving the two steps of (1) deriving a formal equation that
perhaps entailed a divergent series and (2) of investigating what happens when
numerical values are inserted (domain of convergence, problem of multi-valued
expressions). This can be exemplified by Ohm’s treatment of the binomial series.

(1 + x)
m

=

∞
∑

k=0

(

m
k

)

xk

is an imperfect equation since for m = p/q the left hand has q values whereas the
right hand is single-valued. It becomes perfect by multiplying with the roots of
unity

(1 + x)
m · e2πi mµ =

(

∞
∑

k=0

(

m
k

)

xk

)

· e2πi mν .

Ohm still considered this as a formal equation. The passage to a numerical equa-
tion required the determination of the domain of convergence and the investigation
which value on the left side corresponds to which one on the right, i.e. one had to
find a function µ = f(ν) expressing this correspondence. Ohm gave a completely
rigorous proof of convergence of the binomial series meeting Cauchy’s standards
whereas the determination of the function f was left to the application of the
formula.

In fact, when solving the paradox of the above sine and cosine series the de-
termination of f proved especially complicated. Ohm was able to overcome this
difficulty and to arrive at the correct summation. For the result see [4].

Under the term ‘algebraic analysis’ Eulerian ideas survived in Germany in some
institutions until the end of the 19th century. The English Algebraic School can
also be seen as partly inspired by Euler’s ideas.
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On the reception of Euler’s calculus treatises

João Caramalho Domingues

Euler’s set of treatises on the calculus [2], [3], and [4] are among his most classical
works. At the time of their appearance they were much more advanced than any
other calculus textbook (e.g., paying much more attention to differential equations,
and in particular to partial differential equations), and were also innovative in
several technical and conceptual details (e.g., in centering the calculus on functions

rather than curves, and on the central role given to differential ratios equivalent
to derivatives – often called by modern historians “differential coefficients”, after
Lacroix [5]).

It is quite obvious that these books were read by the major working mathemati-
cians of the second half of the 18th century. But were they read by other people?
And were they influential in the teaching of the calculus during that century?

The three treatises enjoyed reprints before 1800 ([2] in 1797; [3] in 1787, and
[4] in 1792-1793). But it is striking that while their original editions are spread
through 22 years (from 1748 to 1770), these first reprints are concentrated in the 10
years from 1787 to 1797. The first translations also appeared around this period:
there was a partial French translation of [2] in 1786, a complete one in 1796-1797,
and a German translation in 1788; there was also a German translation of [3] in
1790-1793; the exception is [4], which was only translated (into German) in the
1820’s.

What could be the reason for this sudden interest in Euler’s treatises? Possibly
the same that Lacroix and Paoli gave for writing their own treatises [5] and [6]: the
gap between the available textbooks and research works had become too large, and
students who only knew the former would never be able to read the latter (these
complaints refer to France and Italy, but could presumably be applied to other
countries). The publication of Lagrange’s Méchanique Analitique in 1788 may
have been part of the trigger.

An analysis of the most common textbooks of the second half of the 18th
century also suggests that the influence of Euler’s calculus treatises was felt mainly
during the 1790’s (with the early exception of [1] in 1777). This can be seen: in
the more advanced level of several textbooks published then (namely in their
coverage of differential equations); in their greater emphasis on functions rather
than curves; in their greater emphasis on the differential coefficient / derivative; in
the presentation of the calculus of finite differences as a fundamental preliminary to
the differential calculus; and in their technical reliance on power series. The latter
is often identified as influence from Lagrange (who proposed a foundational reliance
on power series); but already in [3] Euler had stated that whatever the function
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y of x, its finite difference ∆y can be expressed as P∆x + Q∆x2 + R∆x3 + &c,
whence (passing to infinitesimal differences) dy = P dx.

This Eulerian influence culminated with Lacroix’s encyclopedic survey [5]. La-
croix’s treatise was clearly modelled on Euler’s, with two important distinctions:
the addition of geometrical applications (but separated from the analytical theory),
and the inclusion of many developments posterior to Euler’s treatises (for instance,
finite difference equations, or Lagrange’s and Monge’s work on partial differential
equations). Still, many passages in [5] are taken (and acknowledged to be taken)
from Euler.

After 1800, it is difficult to tell whether a particular author was directly in-
fluenced by Euler’s treatises or by Lacroix’s. But the latter possibility is more
likely. An example is the case of Cauchy’s definite integral: it descends from an
approximation method appearing in [4], but almost certainly through Lacroix’s
version (which not only had a few improvements over Euler’s, but also was used
by Lacroix to discuss the “nature of integrals” as limits of sums).
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One Aspect of the Development of the Calculus of Variations after
Euler

Michiyo Nakane

In Methodus inveniendi published in 1744, Leonhard Euler formulated the bra-
chistochrone problem to find the curve of y = y(x) that minimizes

∫ b

a

Z(x, y, y′ . . . , y(n))dx (1)

where Z is a function of x, y and the first n derivatives of y with respect to x.
Because of this formulation, the classical isoperimetric problems fall into the same
category as the brachistochrone problem with a side condition. He demonstrated
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that the solution of the variational problem must be a solution of equation

∂Z

∂y
− d

dx

∂Z

∂y′
= 0, (2)

a form of the so-called Euler-Lagrange equation for extremal curves. Because of
his formulation, we regard Euler as the founder of variational theory.

In 1755 Joseph Louis Lagrange, invented a new operator δ. Introduction of the
δ-process eliminates geometrical images from variational problems. In 1764, Euler
renamed the subject “the calculus of variations.”

Lagrange’s δ-process stimulated remarkable progress in variational theory. His
most important contributions to the calculus of variations are: 1) He successfully
expanded the Euler-Lagrange equation to cases where the integrand Z involves
plural variables y1(x), y2(x), . . . yn(x) and higher order derivatives of the variables
with respect to x. 2) He considered the case where the last part of the curve was
varied while the first part was fixed. 3) He made a modest start on considering
multiple integral problems of the calculus of variations. 4) He formulated the
variational problem with a side condition and developed his original idea of the
multiplier rule. 5) In his study of mechanics, he occasionally applied his variational
theory.

In addition to elaborating Euler’s and Lagrange’s works, the theory of the
calculus of variations developed in another ways. Adrien-Marie Legendre, Carl
Gustav Jacob Jacobi, Charles Delaunay, Simon Spitzer, Otto Hesse and others
discussed the problem of finding exact conditions that make (1) minimum. On the
other hand William Rowan Hamilton and Jacobi related variational problems to
partial differential equations in 1830’s.

In his examination of geometrical optics, Hamilton noted that the characteristic
function

I =

∫

νdρ (3)

where ν is index of refraction, dρ is an element of the path, described his “system
of rays.” He noted that δI = 0 determined the paths of light rays. He thought the
increment of I occurs when he passed from one curved ray to another infinitely
near it. Then he varied the whole path including two end points to prove that the
function I gives the geometrical property of light rays and obtained the partial
differential equation for I. Therefore we can find the path determined by the
variational principle by solving the partial differential equations. To relate the
variational problem to the partial differential equation, it is crucial to vary the
whole path with including end points.

Hamilton was aware that the action integral V could become the characteristic
function in mechanics. In 1834 and 1835, Hamilton demonstrated this idea in his
article “On a General Method in Dynamics.” He introduced his original idea of
canonical coordinates and found that Lagrange’s equation of motion derived from
the variational principle
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δV − tH = δ

∫ t

0

(T + U) = 0, (4)

where T is kinetic energy and the U is the force function, if end positions are
fixed. Since the solution of equations of motion reduced to the partial differential
equation, variational problems and the partial differential equations can be related.

Jacobi noted this fact and developed a new varitational theory in 1842-43.
He generalized Hamilton’s theory to purely mathematical variational problems.
Finally he arrived at the proto-type of the so-called Hamilton-Jacobi theory.

With contributions from several mathematicians, including Eugenio Beltrami,
Rudolff F. A. Clebsch, Adolph Mayer, and David Hilbert, this theory became one
of the important branches in the calculus of variations. The variable end-point
problem, which developed just after Euler, opened a new stage in the history of
the calculus of variations.
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Leonhard Euler’s Theory of Space and Time
and its Reception by Kant

Helmut Pulte

Euler’s relevance for philosophy in general should not be seen in any original con-
tribution to the doctrines of ‘school philosophy’ of his time. Rather, his thinking
marks a turning point in the relation of philosophy and science and promoted a
new attitude on how to reflect upon science. According to Ernst Cassirer, Euler
was the first who – at least in the German speaking-tradition – declares science
to be of age. With him, classical mathematical philosophy of nature gained a
self-awareness that is, so to speak, a historical precondition of Kant’s approach,
because Kant’s starting point is ‘science as a fact’ that demands a new form of
scientific philosophy. This transcendental philosophy puts the relation of mathe-
matics and experience on a new ground and strongly depends on space and time as
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‘forms of pure intuition’. Euler’s theory of space and time is of some relevance for
this new view and seems, more generally, most suitable in order to make ‘Cassirer’s
turning point’ visible.

In order to demonstrate this, we treat first Euler’s philosophical convictions in
general, as far as they are relevant for his understanding of space and time. Here,
his criticism of the Leibnizean distinction of ‘real’ and ‘ideal’ concepts has to be
considered: General concepts of mathematics can always be found in the more
special concepts which correspond to physical objects. Mathematical concepts
are gained from experience by abstraction and are therefore always applicable to
experience. Euler regards a demarcation of ideal and real concepts not only as
superfluous, but also as damaging: Such a demarcation makes implausible why
mathematics is so successfully applied in natural science and, at the same time,
deprives natural science from its most important instrument for uncovering sense
deceptions.

In addition, Euler’s philosophy of science has to be taken into account. It can
be characterised as essentialism in the sense of Karl Popper. On the basis of a
definition of what he holds to be the ‘essence’ of bodies, Euler builds up his program
of rational mechanics, which includes the derivation of principles of mechanics
(both Newtonian and analytical), which are not only regarded as true but even
as necessarily true. These principles form the axiomatic foundation of the whole
body of rational mechanics, which is deductively developed from it and which is
– on the other hand – the foundation of natural science in general. This whole
essentialistic and axiomatic-deductive image of science turns out to be crucial for
the ontological status of space and time in his philosophical considerations.

Next we present Euler’s analysis of space and time. The focus is mainly on
his ‘Réflexions sur l’espace et le temps’ (from 1748), though his earlier and later
discussions are taken into account. The ‘Réflexions’ reveal a new criticism of a
relational concept of space and time and they give, for the first time in Euler’s
career, a realistic interpretation of these concepts, though Newton’s arguments
are not central in this context. In fact, Euler’s whole approach is not based on
premises belonging to his philosophy of nature, but rather on epistemological con-
siderations and his concept of science: We come to the concept of space only when
we completely remove the body itself in our thinking. Place, which constitutes
space, can not be understood as a general property of a body; it is quite different
from extension. The Leibnizeans are badly advised when they deny that place
has reality, for the simple reason that it is an ideal concept gained by abstraction.
Therefore, space must be real in some sense (and the same conclusion holds for
time). However, the reality Euler has in mind is not to be understood as based on
sense experience, but as a kind of reality in its own right that can only be grasped
by reflection. It refers to the whole of our empirical knowledge, which is certain
and beyond any doubt. Absolutely certain are, first and above all, the principles
of mechanics – there truth is ‘indisputable’. This holds especially for the principle
of inertia: As this principle has the status of an indisputable axiom and as it is –
according to Euler’s analysis – in need of the postulate of absolute space, we have
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to accept absolute space not only as a mathematical hypothesis, but also as a real

entity. As Euler says: ‘It would be quite absurd that such merely imagined things
might serve as the foundation of the real principles of mechanics’.

This argument for the reality of absolute space is based on the accepted princi-
ples of mechanics, and thereby – according to Euler’s concept of science – on the
basis of the whole of the empirical knowledge about the world of physical objects.
Euler’s starting point is this body of knowledge, and then he asks for the condi-
tions, under which this body of knowledge can be regarded as true. This can only
be the case if the principles of mechanics are true. Therefore, concepts of space
and time have to be established, which serve as foundation of these principles. In
Kantian terms, Euler’s analysis can be described as an analysis of the conditions

of the possibility of these principles. We are far from claiming that Euler was the
author of a ‘transcendental aesthetics’ some decades before Kant. But his argu-
ment for the reality of space – and that for the reality of time is parallel – is not
logically circular, but transcendental in a specific sense: Space and time are real in
the sense that they are the precondition under which we can grasp the phenomena
of the physical world under general concepts and laws. Thus, the kind of reality
attributed to space and time corresponds to what Kant later labels as ‘empirical
reality’.

In his Theoria motus (1765), Euler continues his analysis of space and time
as concepts in their own rights, which do not fit into the established types of
school philosophy: ‘However, if the philosophers divide up all realities into certain
classes, and conjecture that place can not be related to one of it, then I will prefer
to believe that there is something wrong with their classes, because they did not
recognize the things related to them [i. e. the classes] sufficiently. The relation of
time is quite similar [. . . ]’. In the end, it is the function of space and time to
make scientific experience possible, in which Euler is interested and which is not
sufficiently articulated in the philosophical doctrines of his time.

Finally we handle the reception of Euler’s analysis in Immanuel Kant’s ‘pre-
critical’ period and an outlook to Kant’s ‘critical’ transformation of his reception.
Kant’s reception of the ‘Réflexions’ is at first positive and without reservation.
Later, his position is more complex: He shares Euler’s view that space must be
regarded as something real, but also remarks that Euler did not ‘completely reach’
his aim to demonstrate the reality of space. In the end, however, he completely
accepts the main result of Euler’s analysis of space, i. e. that absolute space forms
a new kind of reality: It is no mere ‘object of thinking’ (‘Gedankending’), and it
is no ‘object of outward sensation’ (‘Gegenstand der äußeren Empfindung’). It is
a ‘basic concept’, the reality of which should be ‘grasped by ideas of reason’, and
this basic concept is the precondition of the possibility of outward experience.

In his work Der philosophische Kriticismus (1876) Alois Riehl was the first
who demonstrated that the concept of space is of utmost importance for Kant’s
transition from his precritical to his critical period around 1770: Kant’s train of
thought starts with space as a basic concept that makes experience possible and
from this starting point comes to the transcendental aesthetics, where space and
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time are established as subjective forms of our sense, as ‘forms of pure intuition’.
Euler was certainly no ‘school philosopher’, but if we fit his theory of space and
time into this Riehlean frame, it seems plausible to say that his impact on our
modern view of how philosophy and science are related (Cassirer) and of philosophy
of science itself should not be underestimated.
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[2] Leonhard Euler, ‘Réflexions sur l’espace et le temps’, Histoire de l’Académie Royale des
Sciences et Belles-lettres de Berlin 4 (1753), 324-333 (Opera omnia, ser. 3, vol. 2, 376-383)
(E149).

[3] Helmut Pulte, ‘Order of nature and orders of science. on the mathematical philosophy of
nature and its changing concepts of science from Newton and Euler to Lagrange and Kant’,
in Between Leibniz, Newton and Kant. Philosophy and science in the eighteenth century (ed.
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Euler’s Influence in Celestial Mechanics

Curtis Wilson

Euler was the first to open up a way of applying the Leibnizian calculus to multiple
moving bodies attracting in accordance with Newton’s gravitational law. Having
discovered in 1739 the importance of trigonometric functions for the solution of
certain differential equations, he proceeded to develop, for the first time, a system-
atic treatment of the calculus of trigonometric functions. Introducing the modern
notation for these functions, he made explicit their role qua functions [8]. Sines
and cosines with arguments proportional to the time t could now, by means of the
chain rule, be differentiated and integrated. Differential equations expressing the
forces acting on the different bodies could be formulated and solved – if only by
approximation.

In the early 1740s Euler applied this calculus to the Moon’s motions; he pub-
lished his results (but not their derivation) in 1746. Beginning in the spring of
1746, Clairaut and d’Alembert likewise applied Leibnizian and Eulerian algorithms
to deriving the Moon’s motions. All three mathematicians achieved theories ac-
curate to about 3 to 5 arcminutes. Their calculations yielded only about half the
motion of the Moon’s apogee.

Since 1714 the British Board of Admiralty had been offering a handsome prize
for a method of finding the longitude at sea to within 60 nautical miles. A lunar
theory good to 2 arcminutes would suffice. By 1754 Tobias Mayer had obtained
lunar tables accurate to about 1 1

4 arcminutes. A refined version of these tables
became the basis of the British Nautical Almanac, first published for the year
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1767. The superior accuracy of Mayer’s tables derived in large part from empiri-
cal correction of the coefficients. (A full analysis of Mayer’s achievement remains
a desideratum.) The Nautical Almanac would continue to rely on empirical com-
parisons till 1862. In contrast, algebraic lunar theories derived from Newton’s law,
and relying on observation only for the constants of integration, converged with
painful slowness. To rival the accuracy of the Almanac tables along this route was
prohibitively labor-intensive – a difficulty Euler will address.

The study of planetary interactions presented a different difficulty. When a
planet moves from conjunction to opposition with a planet farther out, the distance
between the two planets varies hugely; their mutual gravitational force varies yet
more hugely. For application of the Leibnizian calculus, the algebraic expression of
this force needs to be conveniently tractable. Euler invented trigonometric series
for the purpose, and showed how the coefficients of the successive terms could be
determined [1]. These series were widely adopted in investigations of planetary
motion, but in the 1760s Euler came to distrust them. His theory of Jupiter and
Saturn had failed to account for a major anomaly in the motion of these planets,
and he mistakenly blamed the failure on slow convergence of the series. The cause
of the anomaly was discovered by Laplace in 1785.

The slow convergence in lunar theory was real. In 1762 Euler proposed using
numerical integration to compute ephemerides of the Moon and planets directly
from the differential equations [2]. In 1763, he showed how to obtain, by means of
the calculus of finite differences, exact initial conditions of position and velocity
from a series of observations of a celestial body on successive days [3]. These
methods are used at JPL today in deriving ephemerides of the Moon and planets.

In 1766, Euler’s eldest son – presumably expressing his father’s thought – pro-
posed a new plan for obtaining an accurate lunar theory [4]. First, the inequalities
depending solely on the angular elongation of the Moon from the Sun were to be
derived, all other inequalities being neglected. This first step yields a solution of a
simplified version of the three-body problem. Then this solution is to be perturbed
to take account of inequalities depending on successive powers and products of the
other small parameters on which the Moon’s motion depends: eccentricity of the
Moon’s orbit, eccentricity of the Earth’s orbit, ratio of the Sun’s parallax to the
Moon’s parallax, and the Moon’s orbital inclination to the ecliptic. This was the
route followed in Euler’s third lunar theory [5].

It was also the route followed in 1877-78 by George William Hill in founding
the present-day theory of the Moon’s motions [6], [7]. Using Jacobi’s integral of
the equations, Hill was able to compute the numerical parameters determining the
‘variation curve’ with a precision of 15 decimal places. When he then introduced
eccentricity into this orbit, and computed the resulting motion of the Moon’s apse,
he obtained a value differing by only 1/60th from that found by observation of the
actual Moon. The problem of convergence had thus been effectively vanquished.
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The Reception of Euler’s Elasticity:
Letters from Legendre to Sophie Germain

Stacy G. Langton

Laplace is supposed to have said, “Read Euler, read Euler. He is the master of us
all.” But, as Victor Katz remarked, it is difficult to figure out who actually read
Euler’s works [2, p. 232]. In this talk I described an episode in which, because of an
unusual combination of circumstances, we have a written record of mathematicians
reading and discussing Euler.

In 1809, the Paris Institute announced a prize competition for the best mathe-
matical explanation of the patterns that had been demonstrated by Ernst Chladni’s
experiments with vibrating plates. In 1815 the prize was awarded to Sophie Ger-
main. This competition led to the work of Poisson and Navier on elastic plates
and solids, and ultimately, starting in the 1820’s, to the work of Cauchy.

Around 1811, Sophie Germain began to work on the Paris prize problem. As
a preliminary study, she read Euler’s 1774 paper “Investigation of the ways in
which elastic laminas and rods can vibrate” [E 526]. According to the biography
of Germain by L. Bucciarelli and N. Dworsky, she composed a manuscript in which
she attempted to generalize some of Euler’s results [1, p. 46]. But she apparently
encountered a snag in her work, and asked her friend and patron Legendre for
help. In January, 1811, Legendre wrote a series of three letters to Germain in
which he discussed certain aspects of Euler’s paper. The letters were published
in 1879 by the journalist and Paris municipal councillor Hippolyte Stupuy, in a
book containing reprints of Germain’s correspondence and of some of her published
works [3, pp. 287–298]. These letters were the subject of the present talk.

Building on his work on the foundations of elasticity theory in the early 1770’s,
Euler in E 526 derives the partial differential equation for a vibrating elastic rod:

σ
∂2y

∂t2
= E

∂2y

∂s2
− B

∂4y

∂s4
,
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where t is the time, s is arc-length along the rod, y is the displacement normal to
the rod, σ is the density, E is the horizontal tension, and B is an elastic constant,
the “stiffness” of the rod. If B = 0, we just get the ordinary second-order wave
equation. If, on the other hand, E = 0, we get the fourth-order equation

σ
∂2y

∂t2
+ B

∂4y

∂s4
= 0

for the vibrating rod. Most of E 526 is devoted to finding solutions of this equation.
Separating variables, Euler finds a fourth-order ordinary differential equation

X ′′′′ − ω4

a4
X = 0,

for the spatial contour X(s) of the simple mode, where a is the length of the rod
and ω is an eigenvalue which determines the frequency of vibration. Euler now
analyzes 6 kinds of vibration, characterized by the boundary conditions imposed
at the ends of the rod. For example, if one end of the rod is “pinned”, so that
its displacement is 0 but it can turn freely about the pin, Euler argues that the
corresponding boundary conditions are

y =
∂2y

∂s2
= 0.

Near the end of the paper he considers a rod which is pinned at both ends
and also at its mid-point. The corresponding simple modes are given by certain
piecewise-defined functions

X =

{

αeω·s/a + βe−ω·s/a + γ sin
(

ω · s
a

)

+ δ cos
(

ω · s
a

)

for 0 ≤ s ≤ 1
2a,

α′eω·s/a + β′e−ω·s/a + γ′ sin
(

ω · s
a

)

+ δ′ cos
(

ω · s
a

)

for 1
2a ≤ s ≤ a.

The conditions that the rod be pinned at both ends give four boundary conditions.
At the mid-point, both piecewise-defined displacements must be 0, and Euler
requires that the first and second derivatives be continuous at the mid-point. Thus,
there are four conditions at the mid-point, for a total of 8 conditions that must be
satisfied by the 8 coefficients α, β, . . . , γ′, δ′. In order for non-trivial solutions to
exist, the determinant of this system must vanish. This vanishing gives a condition
on ω, namely,

(

sin
1

2
ω

)(

tan
1

2
ω − tanh

1

2
ω

)

= 0.

In the course of solving his 8 × 8 system, Euler has to divide by sin 1
2ω. Later,

when he works out the solutions corresponding to sin 1
2ω = 0 and finds that some

of them have sin 1
2ω in the denominator, he multiplies that factor out again. Le-

gendre, in his first letter to Germain, asserts that this is an error on Euler’s part.
Later, in his second letter, Legendre has understood better what Euler did, but
he now discovers an actual error in Euler’s work. The solution that Euler writes
down for the case sin 1

2ω = 0 is incorrect. In the present talk, I identified the
nature of Euler’s error.
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In his third letter, Legendre observes that the solutions in the case sin 1
2ω = 0

correspond to a rod which is pinned only at the ends, but which vibrates with a
node at the mid-point. Consequently the pin at the mid-point is inessential; it
provides no reaction. Legendre then speculates that something similar might be
the case when tan 1

2ω = tanh 1
2ω. This speculation is incorrect, however. The

solution in this case has a discontinuity in the third derivative at the mid-point,
and consequently the pin at the mid-point must provide a reaction.
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Leonhard Euler and the Formation of Hydrodynamics

Gleb K. Mikhailov

I. Leonhard Euler’s contribution to the formation of hydrodynamics is twofold,
according to the double meaning of the latter term. Today we understand under
hydrodynamics the general theory of fluid motion, while Daniel Bernoulli treated
it as a theory of quasi-one-dimensional fluid flow that is now the subject of Hy-
draulics. Until recent times it was unknown that Euler had been in fact closely
connected with the formation of hydraulics [2] [3].

Euler’s Basel ‘Notebook’ contains a detailed presentation plan for compiling
a large treatise on hydraulics (including topics such as the efflux of fluids from
vessels, water flow in rivers, and water waves) and solutions of some problems
of the efflux of water through orifices of finite cross-section. At that time there
was no mathematically based theory of water flow at all. Therefore, the results
obtained here by the 19-year-old Euler should be considered as path-breaking.

After Euler’s arrival to Petersburg two similar reports were presented consec-
utively in the Petersburg Academy of Sciences in the summer of 1727. Delivered
by Daniel Bernoulli and Euler, they treated the problem of non-stationary water
efflux from vessels. Both men presented the same theory and used the principle
of conservation of living forces, whose admirer and propagator was their teacher
Johann Bernoulli.

A delicate ‘copyright’ situation arose in this connection. As a result, Euler set
aside his studies in the theory of fluid motion for about 20 years and left the whole
field to Daniel Bernoulli. However, I have found in the Petersburg Archives a
paper by Euler from 1727 [1], where he expounded his theory of water efflux from
vessels.

Daniel Bernoulli’s famous Hydrodynamica appeared in 1738. The fame of the
Hydrodynamica deeply wounded Johann Bernoulli, who was always jealous. At
once he began to create his own theory of water motion and sent the first part of
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his Hydraulica to Euler in March 1739. Johann rejected here the principle of living
forces and used some new, but unclear, conceptions. At the same time Johann
promised to send soon to Euler the second, expanded part of his Hydraulica. Euler
re-conceived the unclear ideas of his old teacher in a much better form than that
of their originator. In his reply to Bernoulli of May 1739, Euler outlined a clear
exposition of the generalized theory of water motion in vessels and pipes.

Euler’s letter put his teacher in a very delicate situation, as Euler had formu-
lated for him practically the main idea of his whole work. As a consequence, the
preparation of the second part of Hydraulica required more than a year. Actually,
it was an entirely new work compiled via short instructions given by Euler. Here
comes to the end the latent contribution of Euler to the development of hydraulics.

II. Euler’s well-known contribution to the formation of modern hydrodynamics is
connected with his works from the 1750s. In 1748 the Berlin Academy announced
a competition on the subject of fluid resistance. In 1749 Jean d’Alembert pre-
sented for the competition an interesting Essai ; while it was vaguely written and
not quite satisfactory, it contained attempts to obtain general equations of fluid
motion in terms of partial derivatives. The academic jury (not without Euler’s
influence) rejected it, together with all other presented papers, as not confirmed
by experiments.

However, the hint contained in d’Alembert’s Essai encouraged Euler to develop
a perfect, irreproachable theory of fluid motion based on his ‘new principle’ that
involved isolating an elementary particle from a continuous medium and applying
to it Newton’s basic law of dynamics written in components along fixed coordinate
axes. He presented it to the Academy in the autumn of 1750.

In the first half of the 1750s Euler read in the Academy a set of papers on fluid
flow. The foundations of fluid mechanics were given by him in two fundamental
papers published together in 1757 in the Berlin Mémoires (E.225, 226). They con-
tain main equations of hydrostatics and hydrodynamics of an ideal fluid, presented
in a quite modern form.

In the second paper Euler considers the motion of an elementary fluid paral-
lelepiped, as we do in many manuals till now, and obtains the ‘Euler hydrodynamic
equations’ for an ideal compressible fluid as well as the continuity equation. He
notes that to these equations there should be added another one giving the relation
between the pressure, density and an additional physical property that affects the
pressure and is generally understood to be the temperature. According to Euler,
the resulting equations ‘include the entire Theory of the Motion of Fluids’.

After deriving the general equations, Euler introduces the potentials of force and
velocity and obtains in particular some integrals for the case of an incompressible
fluid; they are now usually called Lagrange-Cauchy integrals. In addition, Euler
specifically mentions the existence of non-potential flows. The paper concludes
with a remark that the equations derived transpose the problems of fluid motion
from the realm of mechanics to that of mathematical analysis.
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The corresponding mathematical problems of hydrodynamics, especially those
for vortex and free surface flows, are really very complicated. Even now we can
solve only some of them successfully, mainly using numerical methods.

III. These papers by Euler were followed by a number of his other investigations
in the fields of hydrodynamics and acoustics. They were basically accomplished
and generalized in a large essay published in 4 parts in the Novi Commentarii

of the Petersburg Academy of Sciences (1769-1772) (E375, E396, E409, E424).
Its second part is devoted to the general equations of hydrodynamics of an ideal
fluid and to the study of special cases of fluid flow. Also considered here is the
determination of fluid motions according to the given initial conditions and the
general equations in the so-called Lagrange (mass) variables; it should be noted
that the ‘Lagrange variables’ were introduced first by Euler in a letter to Lagrange
written in 1760. The last part of the essay presents a generalisation of his previous
investigation in acoustics and the theory of musical wind instruments. This part
(as well as his theory of tides) is more connected with the oscillation theory than
with hydrodynamics itself.

Applications of Euler’s hydrodynamics were mainly connected – at the begin-
ning of the 19th century – with the theory of water waves. The following essential
progress of the hydrodynamics of an incompressible ideal fluid and of gas dynamics
was attained by the middle of the 19th century and was connected with studying
vortex and free surface flows, as well as shock waves.
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Euler and Engineering

Ed Sandifer

Engineers commonly use four points to define their profession:
design,
analysis, and
construction,
for a practical purpose.

Euler is widely known among engineers, but people seldom call him an engineer.
However, we find engineering, to various degrees, in a variety of Euler’s work,
including:
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ballistics shipbuilding fountains
windmills saws gears
capstans agriculture screw of Archimedes
bridge building columns optics

He mostly worked on problems of his own choosing in mathematics and rational
mechanics. Most of his work was theoretical, and he usually had no particular
construction or practical purpose in mind.

There are some conspicuous exceptions. Euler himself did what we would call
“engineering” when he advised Frederick II on the construction of the fountains of
Sanssouci [1] and on repairs to the Finow Canal. Much of Euler’s work on optics
also qualifies as engineering, particularly his correspondence with John Dollond
[4] as Dollond was inventing and constructing his achromatic lenses, and as Euler
developed the general principles of microscopes and telescopes incorporating the
new lenses. Rather than recount these episodes here, we defer to the sources cited.

In 1741, as he was leaving St. Petersburg for Berlin, Euler wrote a brief essay,
“On the utility of higher mathematics.” It was not published in his lifetime, but
found print in the 1850s in French (1853) and Spanish (1853), as well as its original
Latin (1847).

In this essay, Euler contends that the utility of “elementary mathematics” (alge-
bra and arithmetic) is widely known, but that few people recognize the usefulness
of “higher mathematics” (calculus) in practical problems. Euler gives examples
in mechanics, hydrostatics, astronomy, artillery, physics and physiology. Euler’s
sentiments in this essay are reflected in Euler’s enthusiastic reception of Benjamin
Robins’ book on ballistics.

In 1742 Robins published New Principles of Gunnery, a 150 page book in which
he applied some of the new tools of analysis to ballistics. In 1745, Frederick II
asked Euler to identify and translate the best available book on artillery, and Euler
recommended Robins’ book. What resulted was Euler’s 720 page “translation” and
commentary.

Euler’s 1745 edition was translated back into English by Hugh Brown in 1777,
and into French by Lombard in 1783. Napoleon learned the principles of artillery
from the Lombard edition.

Frederick Rickey and Shawnee McMurran make the case that the Euler/Robins
ballistics texts caused calculus to be introduced into the curriculum at the military
academies, first at Woolwich, then in the French schools, and finally at the United
States Military Academy at West Point.

At least one of these editions, probably German but maybe French, found its
way east to Austria and into the hands of the Slovenian mathematician and ar-
tilleryman Jurij Vega. Euler had made some calculations about the combustion
of the powder in the firing chamber, using the then-current design of a cylindrical
chamber with a firing hole at the top of the chamber. Vega, a professor of artillery
at the artillery school in Vienna, realized how those calculations would be different
for different shaped chambers and different positions of the firing hole. Adapting
Euler’s calculations, Vega designed a conical chamber, ignited at the back, and
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more than tripled the range of Austrian mortars. This was extremely significant
for the Austrians during the Napoleonic Wars.

Euler published two important books on naval science, E110-111, Scientia

navalis in 1749, and E426 Théorie complette de la construction et de la manœuvre

des vaisseaux in 1773 and he also wrote a number of papers, many for the Paris
Prize competition. An account of one of these, E413, “De promotione navium sine
vi venti” is given in [3].

E426, the Théorie complette, also has an interesting story. Henry Watson trans-
lated it into English in 1776. A 1790 posthumous edition includes an account of
the life of the translator. It says that, while stationed in India, he used Euler’s
principles to design and build two sailing ships and that they were among the
fastest and most maneuverable ships on the water. When he was unable to secure
a license to use them for privateering around the Philippines, he made a fortune
using them as trading ships.

He was swindled of his fortune in a scheme by the British East India Company
to build wharfs in Bombay, and he died of a fever while on a trip back to England
to try to recover his fortune in the courts.

Euler’s influence in bridge building is largely based on his work in elasticity
theory. He wrote more than a dozen articles on the subject. Euler’s buckling
formula is found in E8 and in E831, and is regarded as one of the fundamental
formulas of engineering. It gives the critical force that a simply supported column
can bear without bending in terms of the shape of the column (as measured by
its moment of inertia), its length, and a parameter of the material from which
the column is constructed, now known as Young’s modulus, after Thomas Young
(1773-1829, FRS 1794), who was also an Egyptologist, and the one who translated
the demotic section of the Rosetta Stone.

Figure 1. The Pont des Invalides

Euler’s buckling formula and his related work were quite influential in the 19th
century, particularly on the theoretical work in France and on applications in
England. In 1826, when he published his influential Leçons at the Ecole Poly-
technique, Navier [2] included a long historical introduction and gave Euler a
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particularly prominent role. Despite his many theoretical and practical successes,
Navier was known in his own time for an engineering failure. The Pont des In-
valides, designed and constructed by Navier, collapsed in 1826, the same year it
was built. Just as Euler was unfairly blamed for the failure of the fountains at
Sanssouci, [1] so too Navier perhaps bears too much of the blame for the failure of
the Pont des Invalides, as it was a failure of the bridge abutments, not the bridge
itself, that brought down the bridge. The Dee Bridge, built in 1846 by Robert
Stephenson (1803-1859), suffered a similar fate, lasting only a year.
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Some Aspects of Euler’s Influence on Approximation Theory and the
St Petersburg Mathematical School

Karl-Georg Steffens

As is well-known, Pafnuty Chebyshev (1821-1894) was the first mathematician
who deeply investigated the problem of best uniform approximation, which in the
classical setting can be stated thus:

Let f be a continuous function, a, b ∈ R, n ∈ N. Find a polynomial
of degree at most n, so that

max
x∈[a,b]

|f(x) − p(x)|

will be minimal for all polynomials of degree at most n.

The most important property of a solution of this problem is the fact that it
gives an estimation of the error of approximation for every point of the interval
[a, b]. But due to the difficulty to solve this problem concretely the first results
were presented only in the 19th century. Chebyshev himself gave a necessary
condition for the solution, stating that there must be at least n + 2 points where
the error function f − p reaches its maximum, but he did not explicitly mention
that these deviation points reach the maximum errors with an alternating sign.
Thus, the alternation theorem giving a characterization of the solution was not
proved by him. Using Chebyshev’s results Kirchberger made a first try, which
was completed by Borel and Young (for a detailed discussion see [3, Chapter 4]).
An algorithm to compute the best approximation was firstly presented by Remez
only in 1934. Here the alternation property was crucial for defining the iterating
process generating the solution.
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1. Euler as a Forerunner in the Field of Best Uniform

Approximation Theory

Nevertheless, some special cases had been discussed before Chebyshev, and
the first of all was a problem of cartography Leonhard Euler dealt with during
his second stay in St Petersburg. In 1777 Euler analysed the local and global
accuracy of the Delislian conic projection in the contribution [2], where he tried
to approximate the proportion of longitudes and latitudes of the map to the real
proportion of the terrestrial globe.

This paper was the last and concluding of three papers dealing with cartography.
It was published in 1777 (Eneström index E490 - E492) and seemed to build upon
his former work at the cartographic department of the St Petersburg Academy of
Sciences. At first he proved the fact that a part map cannot be projected to the
plane preserving the scale in both dimensions. Then he discussed the question of
which kind of projection would be the most convenient for a map of all Russia. So
discussing several kinds of projections, e. g. stereographic and polar projections,
he had argued that De Lisle’s projection should be chosen because of the following
important properties:

(1) Parallels and meridians intersect perpendicularly
(2) It gives a locally good approximation

So one can use the map for estimating the distance between any two points having
a correct orientation.

The mathematical problem that Euler solved there was approximating cosx by
a linear function. He observed that the best approximation could be characterized
by the fact that there must be three dev́ıation points where the error function
a − bx − c cosx must reach maximum values alternating in sign - the alternation
theorem in its simplest shape!

With this setting he could compute a best map in his sense. This work de-
termined the Euler projection, which was used for a map of whole Russia till the
beginning of the 20th century.

2. How Euler’s Concepts Influenced Chebyshev’s St Petersburg

Mathematical School

It is well-known that Euler was the first mathematician of international repu-
tation working in St Petersburg. No doubt that the second one was Chebyshev.
So it is quite natural to wonder how the first had an impact on the latter.

In the 1840s in Moscow University mathematical lectures were based on the
work of Euler, Lacroix and Cauchy - so as a student there Chebyshev definitely
dealt with Euler’s work. Later, already as a lecturer of St Petersburg university,
he was engaged in the edition of some of Euler’s papers on number theory, being
encouraged by Bunyakovski. So it is not audacious to assume that Chebyshev very
well knew Euler’s work.

We know that besides his interest in solving problems and reaching deep results
Euler also tried to develop the basic concepts of mathematics to get a more elegant
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theory without unexplained concepts like the behavior of the solutions of the wave
equation outside the characterizing interval that d’Alembert discussed in the 1740s.
So problems of this kind led Euler to define functions as ‘depending quantities’ in
E212 abstracting from an analytical expression that he had demanded eight years
before following Leibniz in E101.

With this remark it is surprising that Chebyshev had no interest in a further
development of mathematical concepts. In 1856, in the year when he became a
member of the scientific committee of the ministry of national education, he gave
the following programmatic statement

“The congregation of theory and practice gives the best results,
and it is not only practice which gains a benefit from this; science
itself is developing under the influence of practice.[...] If the theory
gets much from new applications of an old method [...], then it
gains even more from the discovery of new methods, and in this
case science finds itself a true leader in the practice.”

Moreover, he sharply criticized efforts to mix mathematics with philosophy, as he
called it:

“I divide mathematicians into two categories: those who deal with
mathematics to solve new problems from nature and whose re-
sults are clear, and the others who love mathematics as subject
to philosophise about. I think that the second type should not be
called mathematicians, and whoever falls on this way won’t be a
mathematician. According to the question about the statute of
the university I therefore clearly said that at the faculty of math-
ematics lectures about philosophy are not desirable.”

We might assume that Chebyshev wanted to lead mathematics in a special
direction abusing his enormous influence in science and policy at that time. Surely,
it was not so. The above citation was taken from a lecture about probability theory
(see [1]), and not from a programmatic paper. To make it clearer, we also should
take the following citation:

“You have already recognized that sometimes I come down to phi-
losophizing, but then it is not about the subject, not about what
a quantity, a space are like, but about methods. I do not think
about the origins, but about what should be in mind for the so-
lution of new problems. For this all kinds of considerations are
useful. But philosophizing about what a infinitely small quantity
is, does not lead to anything. Here we have one of two alternatives:
Either we go via philosophizing to the point that conclusions us-
ing infinitely small quantities were not strict - and then we would
have to reject the infinitely small - or we come to the fact to prove
the correctness of those conclusions. The experience shows that
all people who dealt with similar questions explained this only
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for themselves and did not add anything for the solution of new
problems. In these cases I do not recommend you to philosophize.”

So there is still a place for the discussion of general concepts of mathematics.
But it is justified to say that for himself Chebyshev did not see any use in such
considerations. He warned his students, but did not forbid them anything.

How the other members of the St Petersburg Mathematical became engaged in
such discussions can be seen in their lectures and programmatic statements. In
fact we can say that there were two fractions - those who rejected any discussion
about concepts in general (represented by Korkin and Lyapunov), and others who
explained new ideas developed by Western schools (e. g. Zolotarev and Posse).
But there were no St Petersburg mathematicians who themselves tried to adopt
these new concepts into the theories following from problems solved by Chebyshev
and his pupils.

So Chebyshev’s theory had no chance to get a deep foundation at its birthplace.
Consequently, this was laid elsewhere - and in this way Euler did not have a deep
impact on his successors in St Petersburg.
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Leonhard Euler and the Wave Theory of Light

Roderick W. Home

In his Nova theoria lucis et colorum (1746), Euler presented a systematic critique
of Newton’s projectile theory of light, according to which rays of light consisted
of streams of rapidly moving corpuscles ejected by the luminous source [2]. He
argued instead that light is a disturbance transmitted through an all-encompassing
subtle and elastic aether in a manner closely analogous to the manner in which
sound is propagated through air. Contrary to a widely accepted picture of 18th-
century optics, according to which Euler was virtually alone in opposing Newton’s
views, his ideas won a significant measure of support, especially in Germany. That
support persisted for several decades until, in the late 1780s or early 1790s, the
discovery that light played a role in various chemical processes for a time persuaded
virtually everybody that light was not a disturbance in the aether but a material
substance with its own particular set of chemical affinities [6]. However, those who,
prior to this, took Euler’s discussion seriously, focused almost exclusively on the
qualitative arguments presented in the opening chapter of his treatise, and ignored
the technical details of the wave theory that he developed in later chapters of the
work.
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Euler’s ideas were a distinct advance over those of earlier upholders of trans-
mission theories. In particular, whereas Christiaan Huygens, for example, in his
famous Traité de la lumière (1690) held that the propagation of light amounted
to the transmission through the aether of an irregular series of impulses imparted
by random agitations in the luminous source [7], Euler had a clear conception of
both light and sound being propagated as regular successions of pulses – that is, as
waves. Frequency was thus a well-formed concept for him, whereas it had not been
for Huygens. In the case of light, Euler immediately linked different frequencies
of vibration with the different colours that we observe, and he attempted on this
basis (albeit with only limited success) to construct a general theory of dispersion
and the colours of bodies. However, Euler’s theory was also a child of its time
and fell short in various ways of the fully-fledged wave theory of light that became
established in the 19th century. Above all, Euler lacked the principle of super-
position that was exploited so fruitfully by Thomas Young and Augustin Fresnel
during the first decades of the 19th century as the basis of a comprehensive theory
of interference.

In a paper that Euler presented to the Berlin Academy of Sciences in 1744 [1],
he represented the aether, as Malebranche had done [8], as a close-packed array
of elastic globules, and light as a series of pressure impulses propagated through
this. By 1746, he had abandoned this idea and now pictured wave propagation,
whether in aether or air, in the same way as Newton had done, in terms of elements
of the medium being physically displaced and set oscillating by vibrating particles
in the luminous or sonorous body. This image remained with him for the rest of
his life. With it as a starting point, he was able to derive, as Newton had done
[9], an expression linking the speed of propagation of impulses with the density
and ‘elastic force’ of the medium. Unfortunately, in the case of sound, where the
density and elastic force were both known, the computed value of the speed of
propagation differed by approximately 10% from the experimentally determined
value, suggesting that there was something wrong with the theory. Newton at
this point fudged the figures [10]. Euler, however, attributed the discrepancy to
approximations he had had to make in the course of the derivation, that had the
effect, he thought, of assuming too small a value for the elastic force. The result
left him somewhat dissatisfied with the theory he had developed: ‘I am as little
satisfied as you’, he told the Genevan mathematician Gabriel Cramer, ‘with the
way in which I explain the propagation of this trembling, and I am persuaded that
we still lack some principles of mechanics that are needed for this’ [3].

One of Newton’s strongest arguments against any transmission theory of light
was that any disturbance propagating through a medium would spread into the
space behind any barrier placed in the beam, so that shadows could never be
formed. In a famous diagram in Book II of his Principia, he showed a wave
striking a barrier with a small hole in it, with the hole acting as an effective
source of waves spreading in all directions in the space beyond the barrier [9, 763].
Anyone advocating a transmission theory of light had to rebut this striking image.
Euler’s response was to deny the validity of Newton’s construction, on the basis of
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his conception of the way a wave propagated. As already indicated, he envisaged
a wave as a disturbance in which elements of the medium were displaced and
set oscillating. All such displacements, he insisted, were necessarily in a definite
direction, so that, even though light was emitted in all directions from a source,
in any direction that one cared to consider, its propagation was rectilinear.

The argument amounts to a rejection of the famous principle enunciated by
Huygens, according to which each point in an advancing wave front functions as
the source of a new wave. Euler never cited Huygens’s work, though he must have
known of it either directly or through his friend Johann II Bernoulli. He was not
alone, however, in rejecting the principle, which found almost no support until
Fresnel made it a central feature after 1816 of his mature theory.

Soon after Euler’s Nova theoria was published, d’Alembert arrived at and then
solved the wave equation for a vibrating string, setting the scene for a vigorous
dispute between him and Euler over what kinds of functions were acceptable as
solutions to the equation. Then in 1759, Euler arrived at and solved the three-
dimensional wave equation [4], giving him the mathematics required to develop a
full-blown theory of the propagation of disturbances through a medium. Yet he
never did this, despite his unhappiness with the theory of propagation that he had
developed earlier. He arrived at the three-dimensional equation while reconsidering
the theory of sound, in an attempt to remove the approximations that he blamed
for the discrepancy between the calculated and experimentally determined values
for the speed of propagation. However, he restricted his discussion to recalculating
the speed, without ever developing a general theory of sound. Perhaps he was
discouraged from developing the theory further when he found that, even using
his new equation, the discrepancy in the speeds remained. (Laplace later showed
that it was due to heating of the air as it was compressed as the wave passed
through it.) Euler never brought his new mathematics to bear on the theory
of light. He published no new papers on this subject, and in his popular-level
Letters to a German Princess, written in the early 1760s and published in 1768,
he presented the same ideas as he had set out in the Nova theoria, without so
much as a hint at the new possibilities that had since opened up for developing a
more adequate mathematical account [5].

Thus so far as the technical development of a wave theory of light was concerned,
Euler never advanced beyond the point he reached in 1746. He continued to
think of the underlying mechanism of wave propagation in an essentially linear
way – one that was still apparent, decades later, as a focus on rays rather than
waves in Young’s work and even in Fresnel’s first papers. It seems that the new
mathematical techniques that Euler developed in no way shook his faith in the
correctness of his physical picture of what happened during the propagation of a
disturbance. Indeed, that picture was critically important to him, for it gave him
a plausible response to Newton’s otherwise overwhelming argument. However, it
also placed significant constraints on the way in which Euler developed (or failed
to develop) a comprehensive mathematical theory of light. Here as elsewhere in
the history of science, developing the necessary mathematical tools is only part of
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the story. To arrive at a satisfactory theory, the mathematics must be linked to
appropriate physical conceptions.
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Electricity and magnetism

Patricia Radelet-de Grave

The talk fell into three parts corresponding to three parts of the Lettres à une

princesse d’Allemagne:
Electricity: letters CXXXVIII- CLIV;
Longitudes: letters CLV-CLXXV;
Magnetism: letters CLVI-CLXXXVI

I presented first the prehistory of those subjects, then I explained them the
way Euler does it in the Lettres and in his publications. Finally I reviewed the
influence of Euler’s ideas in these domains.

At the time people did not think of an interaction between electricity and mag-
netism even though scholars such as Gilbert (1600) and Aepinus (1759) compared
electrical and magnetic attraction and repulsion. Only Œrstedt, in 1820, will
observe an interaction.

1. Electricity

Euler’s model for electricity makes use of an elastic fluid, the ether, which is also re-
sponsible for optical phenomena and whose motions, due to internal disequilibrium
of the fluid, explain the electrical phenomena. In the first letter Euler presents his
model, and the later letters on electricity are dedicated to the explanation of the
various experiments known at the time. His model was not mathematical.
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2. The problem of longitudes

Following Gerhardt Mercator’s suggestion made in 1551, Euler proposes to solve
the problem of longitudes in a very original but unrealisable manner, using the
declination compass. Euler, and also Daniel Bernoulli, want to use not only the
measure of the declination but also that of inclination. For that purpose Euler
studies the best way to build an inclination compass, and examines theoretically
the curves of equal declination, traced on a map of the world by Halley for 1700,
using a very great number of observations.

Posterity The theoretical study of the curves of equal declination was pursued
by Christoph Hansteen in 1819; but only Gauss succeeded in solving it, having
potential theory at his disposal.

3. Magnetism

Euler’s model for magnetism elaborates a model given by Descartes in his Principes

de Philosophie (1644). He also makes use of an elastic fluid, more subtle than the
ether that forms vortices around magnets. With the help of those vortices, he
explains attraction and repulsion between magnets as well as all other magnetic
phenomena known to him. But the aim of Euler, and also of Daniel Bernoulli,
was to adjoin the mathematical laws of mechanics given by Newton to the model
given by Descartes to obtain a mathematical theory of magnetism.

As in Home’s survey of Euler’s optics, we see him here struggling with all
experimental results he knows about the subject, here electricity and magnetism,
in order to let the model he is building fit them. In addition, the various models
he builds for electricity, magnetism, optics, and so on, should fit into the unifying
structure that he gave in his Anleitung zur Naturlehre. This unifying structure
supplied the key to the mathematisation of nature by the way of his equations for
the motions of fluids.

Euler’s influence on Faraday and Riemann. The influence of Euler on
Faraday was very important, principally through the Lettres à une Princesse

d’Allemagne that are quoted many times in Faraday’s Experimental researches.
It helped him elaborating his crucial notion of lines of forces.

Riemann acknowledged for Euler’s influence in the following way: My most

important work concerns a new conception of the known laws of nature – their

expression by means of other fundamental principles – whereby it became possible

to use the experimental data on the interaction between heat, light, magnetism,

and electricity for the investigation of the connection between them. Towards this

I was led mainly by the study of the works of Newton, Euler, and – on the other

side – Herbart.
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Euler’s influence on algebra and number theory until ca. 1830

Olaf Neumann

As to algebra the speaker’s main contribution to the Workshop is a new evalu-
ation of Vandermonde’s (1735-1796) pioneering work on algebraic equations [11]
which had made essential use of Euler’s approach to the equations xn − 1 = 0
via the so-called “reciprocal equations” ([7]). It should be emphasized that from
Vandermonde’s theory there could have been deduced that the regular 17-gon be
constructible by ruler and compass (without anticipating Gauss’s approach!) but
this possibility has gone unnoticed ([7], [8]). As late as 1912 the British author
Chepmell published a construction of the regular 17-gon which as a matter of fact
rests on Vandermonde’s ideas at an obscure place, but, apparently, Chepmell was
ignorant of Vandermonde’s work ([10]).

Euler’s achievements in number theory can be best described as “prototheories”
and conjectures based on extensive numerical calculations and sound (sometimes
hypothetical) arguments. In contrast to Weil’s (1906-1998) excellent overview of
these results [12] the present talk keeps Euler’s analytical methods out of consid-
eration. Euler’s major discovery of the reciprocity law of quadratic residues was
couched in the observation, which goes back to 1744, that the prime divisors of
x2 + Ny2 for coprime x, y lie in special arithmetic progressions with difference
4|N | (cf. [12], pp. 210-219, 287-291). This discovery was acknowledged without
reservations only many decades later by Chebyshev (1821-1894) (1849), H. J. St.
Smith (1826-1883) (1859) and Kronecker (1823-1891) (1875). As far as we know
Legendre (1752-1833) (1785, see also [6]) and Gauss (1777-1855) (1796, see [3])
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came to their re-discovery of the reciprocity law independently of Euler and of
each other.

Euler’s direct influence can be felt strongly with Lagrange (1736-1813) [4]. He
was the one who expanded Euler’s fruitful use of quadratic and further irrational-
ities ([1], 2nd part, §§169-201) into an extensive theory of binary quadratic forms
including some special cases of the “composition of forms”. But with Lagrange and
Legendre [6] this composition did not, in general, induce a uniquely determined
“product” of Lagrange’s classes of forms, see [12], pp. 333-335. Those intrinsic
difficulties were overcome by Gauss [3] who created a complete and perfect theory
of binary quadratic forms without the use of quadratic irrationalities. This theory
provides also space for Euler’s highly original results on his “idoneal numbers”
([3], arts. 303-304; [12], pp. 219-226). Likewise Gauss’s book [3] completely ab-
sorbed and superseded Euler’s results in elementary multiplicative number theory,
in particular, the existence of primitive roots modulo a prime (as conjectured by
Euler) and the basic facts on power residues. In this regard, on the one hand
Euler had been a pioneer of research into a new branch of mathematics, and on
the other hand he had been a figure of transition. Thus after 1801 for the first
three decades further progress in number theory was made only by a few people,
mainly more under Gauss’s influence than under Euler’s and first of all in France.
Here Sophie Germain (1776-1831), pen-friend of Gauss, and Cauchy (1789-1857)
should be mentioned. In 1815 Cauchy proved that every positive integer is a sum
of m + 2 so-called (m + 2)-gonal numbers among them there are at least (m − 2)
summands equal to 0 or 1 (m ≥ 2). This result is a bit more precise than an old
assertion made by Fermat, and it generalizes Lagrange’s theorem for m = 2 (“four
squares theorem”).

A peculiar and spectacular line of number-theoretical research has its origin
without any doubt in Euler’s (incomplete) proof that the equation x3 + y3 = z3

has no solutions in rational integers x, y, z with xyz 6= 0 ([1], 2nd part, §§242-
243). It is well-known that Fermat (1608-1665) had claimed to have a proof that
xn + yn = zn for n > 2 would have no solutions in rational integers x, y, z with
xyz 6= 0 (“Fermat’s Last Theorem”). Basically, the proof in the case n = 4 is
due to Fermat himself. Legendre reproduced Euler’s proof for n = 3 in his book
[6] with minor ameliorations. Besides in 1966 Bergmann (b. 1910) realized that
further results of Euler himself make Euler’s proof of x3 + y3 6= z3 complete (see
[9]). In 1815 the French Académie des sciences offered a reward for the proof of
“Fermat’s Last Theorem” but for many years there was only one (unsuccessful)
response to this offer. Some progress on “Fermat’s Last Theorem” was due to
Sophie Germain (published 1830 in the 3rd edition of [6]) and Abel (1802-1829)
(1823). Eventually, in 1823, 1825 and 1828 Legendre and Dirichlet (1805-1859)
succeeded to prove Fermat’s conjecture in the case n = 5. By the way, this result
made Dirichlet a widely renowned mathematician who soon afterwards started his
career in Prussia.

We are entitled to call Euler the founding father of the Russian school of number
theory. After his death in 1783 the Academy of St. Petersburg continued to publish
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his papers on number theory. Eulerian themes of research were taken up by several
mathematicians in Russia. Among them the first outstanding figure was Viktor Ya.
Bunyakovskij (1804-1889) who in the 1830’s began to publish number-theoretical
papers.

Last but not least the speaker indicates a further line of research which had
received strong impulses from Euler. This is the search for rational numbers or in-
tegers x, y satisfying an (irreducible) equation f(x, y) = 0 of third or second degree
with integer coefficients. Euler gave complete solutions in many cases by means
of clever transformations of f and ingenious methods to obtain further solutions
from one or several given ones. His methods were generalized by Lagrange (1777),
Cauchy (1826) and Jacobi (1804-1851) (1835) to quite general algebraic formulas
which were linked to elliptic and abelian functions by Jacobi. Eventually, in the
19th century those formulas were interpreted in terms of the projective geometry
of rational or elliptic curves which gave rise to the “Diophantine geometry” ([5]).
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M. Leonhard Euler, traduits de l’Allemand, avec des notes et des additions. Tome premier.
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Euler’s Legacy in Probability and Statistics

Robert E. Bradley

Euler is not generally considered a major figure in the history of probability and
statistics. Todhunter characterized his work as follows: “although his contribu-
tions to the Theory of Probability relate to subjects of comparatively small impor-
tance, yet they will be found not unworthy of his own great powers and fame.”[6, p.
239] Euler variously addressed problems in probability theory, mathematical sta-
tistics and actuarial science. In this talk, we restrict our attention to the first two
of these areas, although an assessment of Euler’s influence on the development
of mortality and annuity calculations would also make for interesting historical
inquiry.

As an example of Euler’s work in probability theory, we consider E201, “Cal-
cul de la probabilité dans le jeu de Rencontre.” In this paper, Euler adressed
the problem of derangements: given a permutation of n objects, a “rencontre”
or “coincidence” occurs when a permuted object remains in its original place. A
derangement is a permutation with no coincidences. Euler derived various recur-
rence relations involving the number of objects permuted and the location of the
first coincidence, ultimately showing that the probability that a randomly selected
permutation is a derangement converges quickly to e−1 as n increases.

Lambert [2] was inspired by E201 to apply this theory to a study of the reliabil-
ity of weather predictions in German almanacs. Laplace discussed coincidences in
some detail [4], but it is not clear to what extent he was influenced by Euler, since
the problem and original solution dates back to Montmort, of whose work Euler
was apparently unaware. Euler returned to the problem in E738, “Solutio quaes-
tionis curiosae ex doctrina combinationum,” written in about 1779, but published
only in 1811. In this combinatorial paper, classified as “recreational mathematics”
in Euler’s Opera Omnia, he gave an elegant derivation of the recurrence relation
at the heart of this problem.

Euler wrote five papers on lotteries, including two works not intended for pub-
lication. We consider E338, “Sur la probabilité des sequences dans la Loterie
génoise.” This paper concerned a combinatorial problem arising from the type of
lottery that was popular all over Europe at the time, which had been introduced
in Berlin in 1763. Euler’s memoir inspired two related papers by Beguelin, which
appeared in the same volume of the Mémoires of the Berlin Academy for 1765 and
another by Johann (III) Bernoulli in the volume for 1769. More importantly, the
paper was an application of Euler’s theory of partitions of natural numbers, which
inspired a great deal of mathematical activity in the late 18th and 19th centuries;
see [1, vol. II, ch. III] for a chronology.

Euler considered the St. Petersburg problem in his posthumously published pa-
per E811. Sandifer has argued convincingly that the paper was written in 1730 or
1731, but withheld from publication in favor of Daniel Bernoulli’s paper “Speci-
men theoriae novae de mensura sortis,” published in volume 5 of the Commentarii

of the St. Petersburg Academy. Like Bernoulli, Euler argued in favor of a utility
function based on geometric means, rather than the usual weighted arithmetic
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means, in order to assess the value of this game with infinite expectation. In the
1770s, Buffon, d’Alembert and Condorcet were all critical of Bernoulli’s (and hence
Euler’s) resolution of the St. Petersburg paradox. However, Laplace discussed the
utility function in [4] and it is a vital topic in modern economic theory.

Euler considered the statistical problem of observational errors in E488. This
paper was a commentary on a paper by Daniel Bernoulli, which preceded it in
the same volume of the Acta of the St. Petersburg Academy for 1777. Essentially,
Bernoulli proposed the unimodal maximum likelihood estimator for determining
the best estimate of a parameter, given a set of observations. Euler countered
with an estimator that is equivalent to the modern M-estimator and involves an
expression similar to least squares; see [5, p. 302-319]. Commentators, including
Todhunter [6, p. 238], Sheynin and Pearson (see [5] for references) have been
critical of both E488 and Bernoulli’s paper, but we should instead consider the
context: a time when modern statistical concepts had not yet been formulated.

Finally, we consider Euler’s influence on the subsequent development of statis-
tical methods through his astronomical papers, particularly E120 and E389. E120
won the Paris Prize for 1748, addressing the irregularities in the orbits of Jupiter
and Saturn, and consequently the much larger issue of the stability of the solar
system. E120 contained important analytical innovations, but the problem of fit-
ting observed data to the model he had developed proved insurmountable to Euler.
In attempting to determine the values of seven parameters given more than sev-
enty disparate sets of observational data, he unsuccessfully applied a method now
referred to as the Method of Averages. Mayer solved a similar problem related to
the lunar orbit with greater success in 1750, using data from his own observations.
Euler’s difficulties reflect the prevailing opinion in his time that aggregating data
increases the effect of observational error, whereas the actual statistical effect is in
the opposite direction. In 1785, Laplace finally solved the problem of determining
the inequalities in the orbits of Jupiter and Saturn using the Method of Averages
[3]. Euler’s contributions to data fitting and maximum likelihood estimators were
among the elements in the intellectual landscape that led to the development of
least squares in the early 19th century.
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Euler’s Lettres à une princesse d’Allemagne

Wolfgang Breidert

The assessements of the Lettres à une princesse d’Allemagne [E 343, 344, 417] differ
greatly. For instance, Friedrich Christian Kries [1], considering the philosophical
letters unimportant and obsolete, neglected these totally, whereas Andreas Speiser
[2] had a high opinion of Euler’s philosophy with regard to classical German phi-
losophy, especially to Kant.

Euler did not pretend to be a philosopher, because he disdained the preten-
tious philosophers. And his contemporaries scarcely esteemed him as a philoso-
pher. There is no peculiarly ‘Eulerian’ philosophical question, but, so to speak,
an external motivation for his concern with ‘false’ philosophical doctrines. His
philosophical position is motivated by his religious belief, which was threatened
by materialism, deism, determinism, solipsism, and the Wolffian monadology in-
cluding questions about infinite divisibility and the concept of body. In the Lettres

even his physical explanations are mixed with religious remarks: e. g. the astro-
nomical distances force the admiration of God (letter no. 21), and the structure
of the eye convinces us of the omnipotence (letter no. 41). However, Euler re-
jected the argumentative appeal to omnipotence in his criticism of the Newtonian
attractionists.

Euler held a realistic dualism concerning body and mind, but he conceded a
separate status for space. In this respect he paved the way for Kant’s theory of
space. Contrary to Kant, Euler avowed that he is unable to refute idealism, but he
maintained that corporeal reality is independent from the thinking mind. Against
determinism Euler maintained dogmatically the freedom of will, because no man
could be mistaken with regard to his own freedom (letter no. 91).

In mathematics Euler admitted infinitely small or large quantities, but he con-
fessed that they cannot be applied to real things. In practice he crossed this gap
which he could not bridge in theory.

In spite of his famous clearness in calculation Euler seems to have had no deep
demand to treat philosophical problems, even not in mathematics. For instance,
his explanations of negative and imaginary numbers in Vollständige Anleitung zur

Algebra [E 387, § 31, §§ 141-145] are insufficient from the logical point of view. Ap-
pealing to his ‘remarkably sure intuition’ or his mathematical ‘sensitivity’ seems
a poor excuse for his reckless divisions by zero and for his careless use of infin-
itely small or infinitely large quantities. It is obvious by the example of George
Berkeley’s Analyst (1734) that it was possible at least to endeavour a rigorous
foundation of the calculus in the first half of the 18th century.
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On the reception of Euler by the French, 1780s-1830s

Ivor Grattan-Guinness

Jean d’Alembert, Daniel Bernoulli and Leonhard Euler died within 18 months
of each other in 1782 and 1783, and the mathematical inheritance came to their
principal successors. The French dominated, especially with C. Bossut, G. Monge,
P. S. Laplace and A. M. Legendre, and from 1787 J. L. Lagrange on his move to
Paris. The next generations produced many more major figures [1]. The influence
of Euler was considerable but not preponderant [2], an impression conveyed already
by earlier abstracts in this report.

On the calculus, very prominent was the differential and integral theory set out
by Leibniz and modified by Euler with his addition of the differential coefficient,
the forerunner of our derivative, especially in applications. However, Lagrange’s
version, reducing the calculus to a branch of algebra by assuming that a mathe-
matical function f(x + h) could always be expanded as a power series in h, with
the ‘derived functions’ defined from the coefficients of h, gained some serious at-
tention. In both theories the integral was specified as some sort of inverse of the
differential coefficient or derivative.

Concerning ordinary and partial differential equations, the general theory of
solutions was developed, and also many particular methods were found to solve
many specific equations. These achievements, especially the second, led to quite
a wide range of special functions and infinite series; they also encouraged the
theory of polynomial and other equations, in particular properties of their roots.
Euler and Lagrange were comparably significant. However, while Euler had made
important innovations to the ‘calculus of variations’ (his name), its generality and
algebraic formulation owed most to Lagrange.

From the 1820s this competition between Euler and Lagrange was made more
complicated by a new approach to mathematical analysis in general proposed by
A. L. Cauchy. Grounded upon a developed theory of limits of infinite sequences
of values, he defined the derivative as the limit of the difference quotient and the
integral as the limit of a sequence of partition sums, and he allowed in both cases
for the possibility that the limit did not in fact exist. In addition, in 1822 he
refuted Lagrange’s belief in the universality of the Taylor expansion.

In mechanics Euler had been a major figure in the Newtonian version, but he
had also advocated the generality of the principle of least action. Moreover, he
appealed to God as the guarantee of the source of this generality, and also for
the assurance that the planetary system would always be stable. The clash with
Lagrange is very direct here, for Lagrange used the principle as an important part
of his ‘analytical mechanics’ in which Newton’s laws were theorems rather than
assumptions. Further, in a wonderful analysis he attempted to prove the stability
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of the planetary system; but here we see also positive influence from Euler, for
Lagrange based his analysis on Euler’s expansion of the principal astronomical
variables in infinite trigonometric series, which was long to remain a staple tech-
nique in celestial mechanics. Both men developed different theories in branches
of continuum mechanics, especially in elasticity theory and fluid mechanics; both
received French followers.

In one area of mechanics the roles of these two giants were very different. La-
grange paid little attention to engineering, whereas Euler wrote quite extensively
on it. However, his influence was very small among the French, for whom engi-
neering and technology were important sectors of scientific activity. Maybe his
limited use of energy/work mechanics detracted followers, who would appeal more
to, for example, Daniel Bernoulli or the engineer C. A. Coulomb; but the quietude
remains surprising. Striking is the prominent engineer G. Riche de Prony, who
openly admired Euler’s work in mechanics in general but did not draw much on
the writings on engineering.

The contrast between Euler and Lagrange is noticeable in the work of Laplace,
who as a mathematician stands on a level comparable with both of them, especially
after the publication of his Traité de mécanique céleste (first four volumes 1799-
1805). His calculus and mathematical analysis was usually Eulerian but celestial
mechanics normally Lagrangian, for example in studying the stability problem
(but also by using Euler’s expansion in trigonometric series). Further, in his book
he presented lunar theory following the method used by d’Alembert.

Some of the new generation of French mathematicians active from 1800 on-
wards were largely responsible for the inauguration of mathematical physics. On
heat diffusion (1807 onwards) J. B. J. Fourier used Euler’s calculus to find the
differential equation but his own trigonometric series method for their solution.
(This method is not to be confused with Euler’s in celestial mechanics.) On phys-
ical optics Laplace advocated from 1805 a Newton-like ballistic theory, and then
A. J. Fresnel did not draw upon Euler’s wave theory when developing his own much
more sophisticated version of it from 1815 onwards. In electricity and magnetism
(and for A. M. Ampère after 1820, their connections) Coulomb was much more
important a past figure than Euler.

A final respect in which Euler’s influence seems to have been very modest, in all
topics and with successors of all nationalities, is the huge mass of his posthumous
papers: 180 published by the Saint Petersburg Academy until 1830, and 100 in
book collections up to 1862. Most of these works seems to have made little impact,
though they were not necessarily unread. One significant exception is his paper on
the linearity properties of the torque of a mechanical system (E659, 1793), which
Laplace used as the basis of a theory of the invariable plane of the planetary
system. Another case is a paper (E704, 1798) in which Euler found the Fourier
series (without, it seems, recognising its mathematical significance): Fourier learnt
of the paper only when it was pointed out to him by the textbook writer S.F.
Lacroix, whose knowledge of Euler’s work was probably the most detailed among
his French successors.
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