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Abstract. Analysis of coagulation and fragmentation is crucial to under-
standing many processes of scientific and industrial importance. In recent
years this has led to intensified research activities in the areas of differen-
tial equations, probability theory, and combinatorics. The purpose of the
workshop was to bring together people from these different areas working on
various aspects of coagulation and fragmentation. We believe that the in-
sights resulting from the interactions which have been stimulated that week
should lead to further advances both in the development of mathematical
techniques and in new applications.
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Introduction by the Organisers

Historically deterministic equations were used for modelling the dynamics of the
density of clusters of different sizes in a medium that evolves by coagulation and/or
fragmentation. An alternative stochastic approach uses the distribution of a typ-
ical particle in systems undergoing a random evolution. This approach provides
tools for deriving limit equations, it easily extends to more general interactions and,
finally, it shares the familiar advantages of particle-based methods for computing
distributions in high dimensions. The stochastic theory is undergoing intense de-
velopment, both at a theoretical level, in the construction of models and analysis
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of their properties, and at a computational level. Major mathematical challenges
in the field of coagulation and fragmentation models are related to phase transi-
tions due to fast coagulation (gelation) or fast fragmentation (formation of dust),
and to explicit descriptions of the structure of partitions (e.g. allelic partitions
induced by random mutations in models for the evolution of populations). A fur-
ther direction of intensive study is the detailed analysis of particular coagulation
and fragmentation processes, where special features (e.g., scaling properties) al-
low links to be made to Brownian motion and other Lévy processes, also to some
interesting problems in random combinatorics.

Major topics that have been discussed during the workshop include :

1. Spatial models of coagulation and fragmentation
Models incorporating diffusion; scaling limits; derivation from particle dy-
namics; equilibrium measures for coagulation-fragmentation processes; for-
mation of structured particles; diffusion limited aggregation

2. Phase transitions in coagulation and fragmentation models
Gelation effects; shattering transition (appearance of dust in fragmenta-
tion); explosion phenomena; computation of the gelation time; uniqueness
issues; convergence of particle systems

3. Aspects of random combinatorics
Links to random graphs and trees; genealogy for certain large populations
dynamics; mutation and allelic partitions; stochastic coalescents with mul-
tiple collisions (Λ-coalescents) and fragmentations

4. Computational issues
Approximation and numerics; analysis of algorithms; Monte Carlo issues
around sensitivity in initial conditions and kernel parameters
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Numerical simulation of spatially inhomogeneous coagulation dynamics
in the gelation regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2777
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Abstracts

Exchangeable coalescents and flows of bridges

Jean-François Le Gall

(joint work with Jean Bertoin)

Exchangeable coalescents are Markov processes with values in the set of all
partitions of N, which describe the scaling limits of the ancestry process in popu-
lations with a large fixed size. They were introduced independently by Pitman and
Sagitov, and were discussed later by Schweinsberg, Möhle and many others. An
exchangeable coalescent is a coalescent process (meaning that the state of the pro-
cess at time t is a random partition of N whose blocks are merged together as time
increases) which satisfies a natural exchangeability condition. An important sub-
class is the class of the Λ-coalescents, where at most one set of blocks can coalesce
at any given time. Special cases of Λ-coalescents are the famous Kingman coales-
cent, the Bolthausen-Sznitman coalescent which arose in connection with certain
models of spin glass theory, and more generally the so-called beta-coalescents. In
this lecture, we first describe a remarkable connection between exchangeable coa-
lescents and flows of bridges on the time interval [0, 1]. A bridge is a process with
exchangeable increments and nondecreasing sample paths, which starts from 0 at
time 0 and ends at 1 at time 1. A flow of bridges is then a collection (Bs,t) of
bridges, indexed by pairs (s, t) of real numbers such that s < t, which satisfies
the composition rule Bs,u = Bs,t ◦ Bt,u as well as the obvious stationarity and
independence properties. The one-to-one correspondence between exchangeable
coalescents and flows of bridges leads to certain generalized Fleming-Viot pro-
cesses (already discussed by Donnelly and Kurtz), which are measure-valued duals
to the Λ-coalescents. The duality relation makes it possible to derive properties of
the coalescents using information from the Fleming-Viot processes. As a typical
application, we investigate the small time behavior of the number of blocks in a
Λ-coalescent under a regular tail assumption on the measure Λ. Sharper results
have been obtained recently by Berestycki, Berestycki and Schweinsberg, but only
in the special case of beta-coalescents.
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Asymptotics of the allele frequency spectrum associated with the
Bolthausen-Sznitman coalescent

Christina Goldschmidt

(joint work with Anne-Laure Basdevant)

We imagine a coalescent process as modelling the genealogy of a sample from a
population which is subject to neutral mutation. We work under the assumptions
of the infinitely many alleles model so that, in particular, every mutation gives
rise to a completely new type in the population. Mutations occur as a Poisson
process of rate ρ along the branches of the coalescent tree. The allelic partition
groups together individuals of the same allelic type, and is obtained by tracing
each individual’s lineage back in time to the most recent mutation. An example
of this construction is given below.
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The allelic partition here is {1}, {2, 3, 5}, {4, 7, 8}, {6}. Let Nk(n) be the number
of blocks of size k in the allelic partition, when we start with a sample of n
individuals and let N(n) =

∑n
k=1 Nk(n). The allele frequency spectrum is the

vector (N1(n), N2(n), . . .) of block counts.
We are interested in the distribution of the allele frequency spectrum associated

with the Λ-coalescents, a class of exchangeable coalescent processes introduced by
Pitman [10] and Sagitov [11]. Each such process corresponds to a finite measure Λ
on [0, 1]. Since the state of a Λ-coalescent is an exchangeable random partition of N

for all times and the mutation occurs in a symmetric manner, the allelic partition is,
itself, exchangeable. This entails that there exists a sequence of underlying random
block frequencies F1 ≥ F2 ≥ . . . ≥ 0 such that

∑∞
i=1 Fi ≤ 1. The allelic partition

could then be viewed as the partition created by sampling from these (unknown)
frequencies in an i.i.d. manner, according to Kingman’s paintbox process. For a
general exchangeable random partition, the quantities Nk(n), k ≥ 1, and N(n)
(thought of the numbers of boxes discovered by the first n samples) have recently
been of particular interest; see Gnedin, Hansen and Pitman [8] and the references
therein.
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For Kingman’s coalescent, the distribution of the allele frequency spectrum is
known completely and is given by the celebrated Ewens sampling formula [7]:

q(m1, m2, . . .) := P (N1(n) = m1, N2(n) = m2, . . .) =
n!θ

∑

i≥1 mi

(θ)n

∏

j≥1 jmj mj !
,

where θ = 2ρ and (θ)n = θ(θ + 1) . . . (θ + n− 1). For no other Λ-coalescent (apart
from the degenerate star-shaped coalescent with Λ = δ1) is q(m1, m2, . . .) known
explicitly, although Möhle [9] has proved a recursion that it must satisfy. However,
Berestycki, Berestycki and Schweinsberg [2, 3] have recently proved asymptotic re-
sults for the Beta coalescents with α ∈ (1, 2); that is, the coalescents corresponding
to

Λ(dx) =
1

Γ(α)Γ(2 − α)
x1−α(1 − x)α−1dx.

In this case nα−2N(n)
p→ ρα(α − 1)Γ(α)

2 − α

and, for k ≥ 1, nα−2Nk(n)
p→ ρα(α − 1)2Γ(k + α − 2)

k!
as n → ∞.

The Bolthausen-Sznitman coalescent [4] is the α = 1 Beta coalescent
i.e. Λ(dx) = dx. It has several nice properties and seems to be more tractable
than most other Λ-coalescents. A significant difference between it and the Beta
coalescents with α ∈ (1, 2) is that the Bolthausen-Sznitman coalescent does not
come down from infinity; that is, it has infinitely many blocks for all time. The
main result of [1] gives the corresponding (and rather different) asymptotics for
the allele frequency spectrum of the Bolthausen-Sznitman coalescent:

Theorem. As n → ∞,
log n

n
N1(n)

p→ ρ

and, for k ≥ 2,
(log n)2

n
Nk(n)

p→ ρ

k(k − 1)
.

As a corollary, we obtain that log n
n N(n)

p→ ρ.
The proof of this theorem involves proving a fluid limit result for the path of the

coalescent with mutations, using the method described in Darling and Norris [5].
We need to add some structure in order to follow the mutations and so (following
Dong, Gnedin and Pitman [6]) we allow individuals to be in two possible states:
active (unmutated) or frozen (mutated). Blocks may contain both active and
frozen individuals, and the status of an individual is ignored by the operation of
coalescence. At rate ρ, any block containing active individuals receives a mutation.
A block can contain individuals which were frozen at different times, but all those
frozen at the same time form a block in the final allelic partition. The process
continues until all individuals are frozen. Now suppose that we start with n active
individuals in singleton blocks. For k ≥ 1, let Xn

k (t) be the number of blocks
containing k active individuals at time t. Let Zn

k (t) be the number of blocks of
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size k in the final allelic partition which have already been formed by time t. Let
Tn = inf{t ≥ 0 :

∑n
k=1 Xn

k (t) = 0}. Then

(Xn
1 (t), Xn

2 (t), . . . , Zn
1 (t), Zn

2 (t), . . .)0≤t≤Tn

is a Markov jump process whose terminal value is of interest to us. We show that
(

1
nXn

1

(
t

log n

)

, log n
n Xn

2

(
t

log n

)

, log n
n Xn

3

(
t

log n

)

, . . . ,

log n
n Zn

1

(
t

log n

)

, (log n)2

n Zn
2

(
t

log n

)

, (log n)2

n Zn
3

(
t

log n

)

, . . .
)

0≤t≤(log n)Tn

behaves asymptotically like the deterministic function

(x1(t), x2(t), x3(t), . . . , z1(t), z2(t), z3(t), . . .)t≥0,

where x1(t) = e−t, xk(t) =
te−t

k(k − 1)
, k ≥ 2,

z1(t) = ρ(1 − e−t), zk(t) =
ρ

k(k − 1)
(1 − e−t − te−t), k ≥ 2.

Heuristically, then, (log n)Tn should not be too far from inf{t ≥ 0 :
∑∞

k=1 xk(t) =
0} = ∞. It is possible to show rigorously that we do, indeed, have

log n

n
Zn

1 (Tn) ∼ z1(∞) = ρ and
(log n)2

n
Zn

k (Tn) ∼ zk(∞) =
ρ

k(k − 1)
, k ≥ 2,

as stated in the Theorem. See [1] for a full proof.
We remark that this fluid limit is ususual in two respects. Firstly, we scale

time down rather than up and, secondly, different co-ordinates of the process have
different scalings.
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On the number of cuts needed to isolate the root of a random
recursive tree

Martin Möhle

(joint work with Michael Drmota, Alex Iksanov and Uwe Rösler)

Let T be a rooted deterministic tree. Meir and Moon [7] introduced the following
procedure to isolate the root of T by successive deletions of edges. Delete one edge
chosen at random. Now consider only the subtree containing the root and delete
in it one edge at random. Repeat the last step until the root is isolated. With
X(T ) we denote the (random) number of cuts needed to isolate the root of T .

A recursive tree is a rooted tree with n ∈ N := {1, 2, . . .} vertices 1, . . . , n such
that the root has label 1 and the labels of the vertices on the unique path from
the root to any other vertex form an increasing sequence. A tree Tn is called a
random recursive tree with n vertices if Tn is uniformly distributed on the set of
all (n − 1)! recursive trees with n vertices.

We are interested in the number Xn = X(Tn) of cuts needed to isolate the root
of a random recursive tree with n vertices. Note that both the tree and the cuts
are random. It is well known that (Xn)n∈N satisfies the recursion

(1) X1 = 0 and Xn = 1 + Xn−Dn , n ∈ {2, 3, . . .},
where Dn is a random variable independent of X2, . . . , Xn−1 with distribution
P (Dn = k) = n/((n − 1)k(k + 1)), k ∈ {1, . . . , n − 1}. The random variable Xn

can be interpreted as the absorption time inf{k ≥ 0 : Jk = 1, J0 = n} of a strictly
decreasing Markov chain (Jk)k≥0 with state space N and transition probabilities
P (Jk+1 = j|Jk = i) = i/((i− 1)(i− j)(i− j +1)), j ∈ {1, . . . , i− 1}. Note that Xn

coincides with the number of collision events that take place in the Bolthausen-
Sznitman coalescent, restricted to the set {1, . . . , n}, until there is just a single
block (Goldschmidt and Martin [3]).

Panholzer [9] derived the asymptotics of the jth moment of Xn, j ∈ N. In

particular, µn := E(Xn) ∼ n/ logn, E(X2
n) ∼ n2/ log2 n and σ2

n := Var(Xn) ∼
n2/(2 log3 n), from which the weak law of large numbers follows immediately, i.e.
Xn/µn → 1 in probability as n → ∞. A natural and for many years open problem
was to find the following weak limiting behaviour of Xn. As n → ∞,

(2)
log2 n

n
Xn − log n − log log n

d→ X,

where X is a 1-stable random variable with characteristic function E(eitX) =
eit log |t|−π

2 |t|, t ∈ R. Panholzer [9] already mentioned that it is impossible to verify
(2) via an approach based on the method of moments. Contraction methods
(see, for example, Neininger and Rüschendorf [8]) seem to be not or at least not
directly applicable. An analytic proof of (2), based on a singularity analysis of the
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generating function f(s, t) :=
∑

n∈N
E(sXn)tn−1, was given in [1]. Applications to

the number of collisions, the total branch length, and the number of segregating
sites of the Bolthausen-Sznitman coalescent appeared in [2].

Shortly later, a completely different, purely probabilistic proof of (2) was pro-
vided in [4]. This probabilistic proof is based on a coupling related to the random
walk (Sn)n≥0, S0 := 0, Sn := ξ1 + · · ·+ ξn, where ξ1, ξ2, . . . are independent copies
of a random variable ξ with distribution P (ξ = k) = 1/(k(k + 1)), k ∈ N.

It turns out that this coupling method can be extended to any recursion of the
form (1) as long as the random variable Dn is independent of X2, . . . , Xn−1 and
has a distribution of the form

(3) P (Dn = k) =
pk

p1 + · · · + pn−1
, k, n ∈ N, k < n,

for some proper probability distribution pk = P (ξ = k), k ∈ N. Asymptotic results
for absorption times of Markov chains under the assumption (3) are studied in [5].
These results are in particular applied to the number Xn of collisions in beta(a, 1)-
coalescents with parameter 0 < a < 2. The results indicate that the two parameter
values a = 1 and a = 2 play a kind of threshold-role when studying the limiting
behaviour of Xn. The coupling method is not applicable for a ≥ 2. However, the
boundary case a = 2 can be treated separately via asymptotics of moments and
contraction methods [6].
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Collisions and freezing events in coalescents with multiple mergers

Alexander Gnedin

(joint work with Yuri Yakubovich)

The Pitman–Sagitov Λ-coalescent is a continuous-time Markov process describing
the random coagulation of an infinite system of particles that collide in bulks
and merge by collisions to form new particles [8, 9]. Restricting the process to n
particles, each j-tuple of them is merging into a single particle at some rate λn,j

(for j = 2, . . . , n), so that the total rate of collision among n particles is

λn =

n∑

j=2

(
n

j

)

λn,j .

Pitman [8] showed that the consistency of restricted coalescent processes for vari-
ous values of n amounts to an integral representation of the rates

λn,j =

∫ 1

0

xj−2(1 − x)n−j Λ(dx) .

with some finite measure Λ on [0, 1], which by the virtue of a time-change can be
reduced to a normalised measure, so we assume Λ[0, 1] = 1.

Letting the time ticking at the collision events, we can represent the decaying
number of particles by means of a decreasing Markov chain, which we denote
Mn for the coalescent starting with n particles. Dong, Gnedin and Pitman [5]
characterised all Markov chains on N that appear in this way, and demonstrated
that the decrement matrix q of such a chain (which is a lower-triangular transition
matrix whose entries satisfy a nonlinear recursion) uniquely determines Λ and the
collision rates through the relation q(n, n − j + 1) = λn,j/λn, hence determines
fully the law of the coalescent process. For instance, Kingman’s coalescent with
only binary collisions (Λ = δ0) corresponds to Mn with the deterministic path
n, n− 1, . . . , 1. Note that Mn decrements from n to n− j + 1 if the first collision
among n particles takes j of them. The number of collisions Cn is thus the number
of jumps the chain Mn needs to move from n to the terminal state 1.

The large-n asymptotics of many interesting functionals like Cn are to a great
extent determined by the behaviour of the underlying measure Λ near zero. Here
we discuss a family of measures with the power-like behaviour

(1) Λ[0, x] = Axα + O(xα+ς ) as x ↓ 0, with 0 < α < 1 and ς > 0.

This covers some beta-coalescents [1, 2], with Λ = Beta(α, 2 − α) (we mean ς = 1
and 0 < α < 1 as in (1)), but excludes the Bolthausen–Sznitman coalescent for
which Λ is the uniform distribution [4].

Let Jn denote the random multiplicity of the first collision, so

P(Jn = j) = q(n, n − j + 1) j = 2, . . . , n ,
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and the size of the first jump of Mn is Jn − 1. It turns out that under assump-
tion (1) Jn converges in distribution:

lim
n→∞

P(Jn = j) = (2 − α)
(α)j−2

j!
j = 2, 3, . . . ,

where (α)j stays for the rising factorial. This quasi-stationarity of decrements
allows us to construct stochastic bounds J+

n and J−
n to satisfy

J+
n ≤d Jb ≤d J−

n

for sufficiently large n and for all b in the range n ≥ b ≥ nυ for some constant
υ < 1. The distributions of J+

n and J−
n depend on υ and three further parameters,

which can be chosen to guarantee that the mean values both converge to 1/(1−α).
Comparing the Markov chain Mn with two random walks, whose negative jumps
are J+

n − 1 and J−
n − 1, correspondingly, we are lead to the following law of large

numbers for the number of collisions.

Theorem. If the measure Λ satisfies assumption (1) then n−1Cn converges to
1 − α in probability.

Coupling arguments also allow us to derive a limit theorem for Cn from Feller’s
renewal theorem for random walks [6]. However, it is by far not enough that J+

n

and J−
n have asymptotically the same means, since we also need that the limit laws

for the approximating random walks hold with the same scaling. This objective
can be achieved by a still finer tuning of the parameters of distributions for J+

n −1
and J−

n −1, but the tuning requires explicit control of the error term in (1), which
restricts the range of ς.

Theorem. Let the measure Λ satisfy (1) with ς > max
{

(2−α)2

5−5α+α2 , 1 − α
}

. Then,

as n → ∞, we have the convergence in distribution

Cn − (1 − α)n

(1 − α)n1/(2−α)
→d S2−α

to a stable random variable S2−α with the characteristic function

(2) E
[
eiuS2−α

]
= exp

(

−e−iπαsign(u)/2|u|2−α
)

.

Note that the most important case ς = 1 is always covered.

A variation of the Λ-coalescent is the (Λ, ρ)- coalescent with freeze [5], in which
every particle can be withdrawn from the collision process (frozen) at certain rate
ρ > 0. In a biological context, which motivated this kind of model [7], a freeze
event corresponds to a mutation in the population which leads to formation of
a new allele and, consequently, of a new block in the partition of the population
by alleles. Let Fn be the number of frozen particles ever generated by the (Λ, ρ)-
coalescent starting with n particles.

A Markov chain Ln which captures all relevant information has now the state-
space N×Z+, and the initial state (n, 0). The first component counts the number
of remaining active particles, while the second component counts the number of
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frozen particles. The state (b, m) changes by a j-fold collision to (b − j + 1, m),
and in the event of freeze to (b − 1, m + 1). The number of mutations Fn is the
final value of the second component as Ln enters a state (1, •).

Like for Mn, the decrements of Ln in the first component can be satisfacto-
rily approximated by J+

n and J−
n on the major part of the path. However, the

probability of freeze varies substantially along the path, since the probability is
asymptotic to const bα−1 at state (b, m). A natural way to circumvent the diffi-
culty is to furher subdivide the trajectory of Ln into smaller pieces on which the
probability of freeze can be approximated by a constant.

Theorem. Suppose that the measure Λ satisfies assumption (1) with ς = 1. Then
for n → ∞ the number of frozen particles Fn satisfies:

for 0 < α < 2 −
√

2,
Fn − ρ(1 − α)(2 − α)nα

√

ρ(1 − α)(2 − α)nα/2
→d N ,

while for 2−
√

2 < α < 1,
Fn − ρ(1 − α)(2 − α)nα

βn(3α−1−α2)/(2−α)
→d S2−α,

where N is the standard Normal distribution, S2−α is determined by (2) and β =
(

ρ(1−α)(2−α)
A(3α−1−α2)

)1/(2−α)

.

Closely related results with the same kind of phase transition have been obtained
in [3] for the total length of branches of the coalescent tree at a fixed time.
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Beta coalescents and populations with large family sizes

Jason Schweinsberg

(joint work with Julien Berestycki, Nathanaël Berestycki)

Coalescents with multiple collisions, also known as Λ-coalescents, are coalescent
processes in which many clusters can merge at once into a single cluster. These
processes were introduced by Pitman [10] and Sagitov [11]. In recent years, there
has been a surge of interest in these processes, motivated in part by potential
biological applications.

Before defining these processes precisely, we recall the definition of Kingman’s
coalescent, which was introduced in [8]. Kingman’s coalescent has the property
that only two clusters merge at a time, and each pair of clusters merges at rate one.
More precisely, the n-coalescent is a Markov process, taking its values in the set of
partitions of {1, . . . , n} and starting from the partition of {1, . . . , n} into singletons,
such that each transition that involves merging two blocks of the partition occurs
at rate 1, and no other transitions are possible. Kingman’s coalescent is a Markov
process taking its values in the set of partitions of the positive integers whose
restriction to {1, . . . , n} is the n-coalescent.

Coalescents with multiple collisions are also Markov processes taking their val-
ues in the set of partitions of the positive integers that are defined by their re-
strictions to {1, . . . , n}. The restriction of a coalescent with multiple collisions to
{1, . . . , n} has the property that whenever there are b blocks, each transition in
which k blocks merge into one occurs at some rate λb,k, which does not depend on
n or on the sizes of the blocks. Pitman [10] showed that for some finite measure
Λ on [0, 1], the merger rates must satisfy

(1) λb,k =

∫ 1

0

xk−2(1 − x)b−k Λ(dx).

The coalescent process whose transition rates satisfy (1) is called the Λ-coalescent.
To understand the meaning of the measure Λ, note that any finite measure Λ
on [0, 1] can be written as Λ = aδ0 + Λ0, where δ0 is the unit mass at zero and
Λ0({0}) = 0. We can think of the Λ-coalescent as having the following two types
of transitions:
1) Each transition that involves two blocks merging into one happens at rate a.
2) Consider a Poisson process on [0,∞) × (0, 1] with intensity dt × p−2Λ0(dp). If
(t, p) is a point of this Poisson process, then at time t, we flip an independent coin
for each block which comes up heads with probability p, and merge the blocks
whose coins come up heads.

Thus, the measure Λ determines the rates at which different multiple mergers
occur. Kingman’s coalescent is the case in which Λ is a unit mass at zero, so a = 1
and Λ0 is the zero measure. The Λ-coalescent in which Λ is the uniform distribution
on [0, 1] is called the Bolthausen-Sznitman coalescent and was introduced in [6].
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Coalescent processes are of interest in biology because they can be used to
describe the genealogy of a population. If one samples n individuals from a popu-
lation and follows their ancestral lines backwards in time, the ancestral lines will
coalesce. Consider a population with infinitely many generations and N individ-
uals in each generation. Assume the distribution of the N family sizes ν1, . . . , νN

is exchangeable, and is the same in each generation. To describe the genealogy of
the population, sample n individuals at random from the population in generation
zero and define a discrete-time Markov chain (Ψn,N (m))∞m=0, where Ψn,N is the
partition of {1, . . . , n} such that i and j are in the same block if and only if the ith
and jth individuals in the sample have the same ancestor in generation −m. Let
cN be the probability that two individuals chosen at random from one generation
have the same ancestor in the previous generation. Möhle and Sagitov [9] have
shown that under suitable regularity conditions, the continuous-time processes
(Ψn,N (⌊t/cN⌋), t ≥ 0) converge as N → ∞ to a limiting coalescent process. When
family sizes are small enough that it is unlikely that three or more of the sampled
ancestral lines will merge simultaneously, the processes (Ψn,N (⌊t/cN⌋), t ≥ 0) con-
verge to Kingman’s n-coalescent. However, Sagitov [11] showed that if very large
family sizes are possible, then Λ-coalescents can arise in the limit because multiple
ancestral lines coming from a large family will coalesce at the same time.

To focus on what seems to be a natural special case, consider a model in which
the numbers of offspring of the N individuals are independent, and N of these
offspring are chosen at random to form the next generation. Suppose the proba-
bility of having k or more offspring is Ck−α for some constant C. It was shown
in [13] that if α ≥ 2, the genealogy is described by Kingman’s coalescent because
large families are rare. However, when 1 ≤ α < 2, the genealogy is described by a
Λ-coalescent in which Λ is the Beta(2−α, α) distribution. A continuous version of
this result appears in [5]. Bertoin and Le Gall [4] had previously shown that the
Bolthausen-Sznitman coalescent (which is the beta coalescent when α = 1) gives
the genealogy of a continuous-state branching process introduced by Neveu. These
results indicate that the beta coalescents are natural models of the genealogy of
populations with large family sizes and provide motivation for further study of
beta coalescents.

We focus here on properties of beta coalescents that are of potential interest
in genetics. Consider a beta coalescent restricted to {1, . . . , n}, which represents
the genealogy of a sample of size n from a population. Suppose mutations occur
at times of a Poisson process of rate θ along each lineage. When we examine the
DNA of the n sampled individuals, we can observe which mutations each individual
acquired. Let Sn be the total number of mutations in the tree. This is called the
number of segregating sites because as long as each mutation takes place at a
different site on the DNA, the number of sites on the DNA at which not all n
segments agree will be the number of mutations. Define the allelic partition to be
the partition of {1, . . . , n} such that i and j are in the same block if and only if
the ith and jth individuals in the sample got exactly the same set of mutations.
Let Mk,n be the number of mutations that are acquired by k of the n sampled
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individuals, and let Nk,n be the number of blocks of size k in the allelic partition.
The sequence (M1,n, . . . , Mn−1,n) is called the site frequency spectrum, and the
sequence (N1,n, . . . , Nn,n) is called the allele frequency spectrum.

Considerable progress has been made in recent years towards understanding
the behavior of these quantities. It is well-known that for Kingman’s coalescent,
Sn/ logn →p θ, and the distribution of Sn is asymptotically normal. It was shown
in [2] that for the beta coalescent with 1 < α < 2, we have

Sn

n2−α
→p

θα(α − 1)Γ(α)

2 − α
.

For the Bolthausen-Sznitman coalescent, it was shown in [7] that (log n)Sn/n →p

θ, and the asymptotic distribution of Sn is a stable law of index one.
For Kingman’s coalescent, the distribution of the allelic partition is given by the

famous Ewens sampling formula. In this case, E[Mk,n] = θ/k for k = 1, 2, . . . , n−1,
and for fixed k, we have E[Nk,n] → θ/k as n → ∞. Asymptotics for the site and
allele frequency spectra for the beta coalescents were worked out in [3], where it
was shown that

Mk,n

Sn
→p

(2 − α)Γ(k + α − 2)

Γ(α − 1)k!

for all k and that the same result holds when Mk,n is replaced on the left-hand
side by Nk,n. Recently, detailed asymptotics for the allele frequency spectrum for
the Bolthausen-Sznitman coalescent were obtained in [1].

References

[1] A.-L. Basdevant and C. Goldschmidt, Asymptotics of the allele frequency spectrum
associated with the Bolthausen-Sznitman coalescent, (2007), Preprint, available at
arXiv:0706.2808.

[2] J. Berestycki, N. Berestycki, and J. Schweinsberg, Small-time behavior of beta coalescents,
(2006), Preprint, available at arXiv:math.PR/0601032.

[3] J. Berestycki, N. Berestycki, and J. Schweinsberg, Beta coalescents and continuous stable
random trees, (2006), Preprint, available at arXiv:math.PR/0602113.

[4] J. Bertoin, and J.-F. Le Gall, The Bolthausen-Sznitman coalescent and the genealogy of
continuous-state branching processes, Probab. Theory Related Fields 117 (2000), 249–266.

[5] M. Birkner, J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweinsberg, and A. Wakol-
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[9] M. Möhle and S. Sagitov, A classification of coalescent processes for haploid exchangeable

population models. Ann. Probab. 29 (2001), 1547–1562.
[10] J. Pitman, Coalescents with multiple collisions. Ann. Probab. 27 (1999), 1870–1902.
[11] S. Sagitov, The general coalescent with asynchronous mergers of ancestral lines. J. Appl.

Probab. 36 (1999), 1116–1125.
[12] J. Schweinsberg, Coalescents with simultaneous multiple collisions. Electron. J. Probab. 5

(2000), 1–50.
[13] J. Schweinsberg, Coalescent processes obtained from supercritical Galton-Watson processes.

Stochastic Process. Appl. 106 (2003), 107–139.



Coagulation and Fragmentation Models 2743

Coalescent with rebirth

Vlada Limic

(joint work with A. Greven, A. Winter)

The goal of the talk was to motivate the construction of the process called the coa-
lescent with rebirth from [6] that arises naturally in the asymptotic study of spatial
Moran models and similar particle systems evolving on two-dimensional lattice.
Neither the talk, nor this extended abstract, attempt to show the full strength
of the results and techniques in [6]. Rather, a certain asymptotic phenomenon is
described in a simpler and already potentially interesting setting.

It is well known, see for example [2], that coalescing random walks are dual
to the voter model. In an analogous way, the spatial coalescent (with delay), see
[5], is dual to the spatial Moran models. This duality turns out to be a very
powerful tool for studying asymptotic behavior of the voter (and alike) models,
due to the fact that the partitions formed from coalescing random walks started
at “sparse” configurations, when viewed on appropriate scale, converge to the
Kingman coalescent [7]. The original result verifying the above fact was proved by
Cox [2] in the case of coalescing simple symmetric random walks on d-dimensional
tori. In [5], we extend his analysis to the case of delayed spatial coalescent, and
this enables us to characterise the asymptotic behavior of voter-like models in
transient (d ≥ 3) dimensions. The one-dimensional setting was understood some
time ago due to the work of Arratia [1]. However, the critical recurrent dimension
d = 2, which is also interesting from the perspective of applications in biology,
seems to be more difficult to handle. In [6] we focus on the analysis of coalescent
processes, and we postpone the analysis of the particle systems until future work.

A predecessor of the coalescent with rebirth is the “frozen coalescent” of Cox
and Griffeath [3], and indeed, we build on their analysis. One advantage of our
approach are the weak limits in the sense of Skorokhod topology, and not solely
in the sense of finite-dimensional distributions.

The coalescent with rebirth evolves formally (see [6] for a rigorous construc-
tion) according to the following dynamics: starting with infinitely many parti-
cles/blocks, each pair of blocks coalesces at rate 1, and immediately upon each co-
alescing event (in which two blocks merge to one) a new particle is reborn/created.

The following figure represents a simpler process, where the “rebirth” is per-
formed at times I2, and I3. Denote by

(1) (Kb;I1,I2,I3
I∗

, Kg;I1,I2,I3
I∗

, Kw;I1,I2,I3
I∗

)

the triple consisting of the numbers of black, grey and white blocks, respectively,
in the configuration at time I∗.
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Next fix a large parameter t, and three boxes [−
√

t
αi

,
√

t
αi

]2 ∩ Z2, i = 1, 2, 3,
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Figure 2

where 0 < α1 < α2 < α3. We refer to [−
√

t
αi

,
√

t
αi

]2 ∩Z2 as the αi-box. Consider
configurations of up to several (stochastically bounded, say) particles situated at
each site of [−

√
t,
√

t]∩Z2. We are interested in the state of the spatial coalescent
started from the above configuration at time 0 and observed at time t.
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It turns out (as we prove in [6]) that, for t large, after initial short period of
coalescence, the remaining blocks in the αi-box do not interact until the time
tαi , and after this time they evolve approximately as the (non-spatial) Kingman
coalescent, however with the logarithmic time change. An essential indication of
this behavior is the Erdös-Taylor [4] formula for regular two-dimensional walks
saying that, for z ∈ R \ {(0, 0)}, and 0 < γ < β

lim
t→∞

P ztγ/2

(the walk does not visit origin before time tβ) =
γ

β
= e− log(β/γ).

In Figure 2, the colors (shades) of the particles match on purpose those in Figure
1 to illustrate the correspondence between the space for the spatial coalescent
(with no rebirth) and the time for the coalescent with rebirth.

A consequence of a general theorem from [6] is that, asymptotically as t → ∞,
1) there is a diverging number of black blocks present in the system at time tα1 ,
2) the black blocks interact among themselves according to a time-changed King-
man coalescent during the time interval [tα1 , tα2 ],
3) there is a diverging number of grey blocks present in the system at time tα2 ,
4) the black and grey blocks interact jointly according to a time-changed Kingman
coalescent during the time interval [tα2 , tα3 ],
5) there is a diverging number of white blocks present in the system at time tα3 ,
6) all the blocks (black, grey and white) interact according to a time-changed
Kingman coalescent during the time interval [tα3 , t].

In conclusion, if one denotes by (N b
t , Ng

t , Nw
t ) the triple consisting of the num-

bers of black, grey and white blocks in the spatial coalescent system at time t,
then

(N b
t , Ng

t , Nw
t ) =⇒t→∞

(Kb;log α1,log α2,log α3

0 , Kg;log α1,log α2,log α3

0 Kw;log α1,log α2,log α3

0 ),
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Spatially Structured Coalescents

Nathanaël Berestycki

(joint work with O. Angel, A. Hammond, V. Limic)

Many models from the field of mathematical population genetics lead to a de-
scription of the genealogical tree of a population by a coalescent process first
introduced by Kingman in 1982 [3, 4], now known as Kingman’s coalescent. A
fascinating mathematical object, Kingman’s coalescent has also permitted much
important theoretical progress in population genetics. From a quantitative point
of view, it serves as the basic model to evaluate genetic diversity in a well-mixed
population at a neutral locus, and when an individually doesn’t typically have
a large number of offsprings. While this situation is now well-understood, there
has been a lot of interest recently in trying to analyze more sophisticated models
which depart from these oversimplifying hypotheses.

For instance, in the case where natural selection cannot be ignored (e.g., viral
populations), or when there is large variation in the offspring distribution of a
typical individual (e.g., marine species), there is convincing evidence that the
use of coalescents which allow for multiple collisions is more appropriate than
Kingman’s coalescent. These processes, called Λ-coalescents, have been introduced
and studied by Pitman [6] and Sagitov [7]. We defer to the next section for precise
definitions and some background on these processes.

In this paper, we study spatially structured coalescent processes which describe
the genealogy of a population when we also try to take into account geographic
factors such as migration, isolation, etc. These processes, introduced by Limic and
Sturm [5], bear the name of spatial coalescents. They can be informally described
as follows. We are given a locally finite graph G = (V, E), and we view each
vertex v ∈ V as the site of a colony. Each edge represents potential migratory
routes between two adjacent colonies. Initially, we are given n particles on the
graph, which represents in biological terms a sample of the population at the
present time. When we follow the ancestral lineages of these individuals backward
in time, two things can happen. Particles which are on the same site, coalesce
according to some mechanism, be it Kingman’s coalescent or, more generally,
a Λ-coalescent. Simultaneously, every particle performs simple random walk in
continuous time, with some given rate θ > 0. These two rules reflects the idea
that individuals typically reproduce within their own colony (so that only particles
on the same site may coalesce), and occasionally there is a rare migration event,
which corresponds to the random walk motion of particles. In the case where the
coalescence mechanism is simply Kingman’s coalescent, we note that this model
bears close connections with Kimura’s stepping-stone model.

Our main results give some information about the limiting behavior of this
process as the size of the sample n tends to infinity, at both small and large time-
scales. Our main results are in the case where at time t = 0 all particles are
located at the origin o of G. The only general assumptions we make on G are that
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it is connected and has bounded degrees, though some of our results give more
detailed descriptions of the behaviour when G is the d-dimensional lattice.

Theorem. Suppose the local coalescence is Kingman’s coalescent, and fix G and
t > 0. Then there are constants c, C > 0 such that

P

(

c ≤ Nn(t)

VolB(o, log∗ n)
≤ C

)

−−−−→
n→∞

1,

where Vol B(o, r) is the volume of the ball of radius r around o.

Remark. The function log∗(n) is the inverse of the tower function:

(1) Tow(n) = eTow(n−1) := ee
. . .

e

︸ ︷︷ ︸

n times

.

Thus, log∗(n) = inf{m ≥ 1 : Tow(m) ≥ n}. The function log∗(n) tends to infinity
with n, but at a very slow rate. For instance, when n = 1078 (the total number
of atoms in the universe), log∗(n) = 4. For all practical purposes, log∗(n) is a
constant equal to 3.

The behaviour in Theorem contrasts with the non-spatial case, where Nn(t)
is known to converge (without renormalization) to a finite random variable Nt.
In the lattice case G = Zd, we see that Nn(t) diverges as log∗(n)d, i.e. extremely
slowly. Even on a regular tree, where the balls have maximal volume given the
degrees, the volume is only ec log∗(n).

Our next result deals with the biologically relevant case where the coalescence
mechanism is not Kingman’s, but one known as the Beta-coalescent, with param-
eter 1 < α < 2. (See, e.g., [1, 2]). Our result is easier to state when the graph G is
simply Zd. It states that for this process, the number of particles that survive up
to a fixed constant time is of order (log log n)d, rather than (log∗ n)d in the case
of Kingman’s coalescent.

Theorem. Let 1 < α < 2, and suppose the local coalescence is a Beta(2 − α, α)-
coalescent, and fix G and t > 0. Then there are constants c, C > 0 such that

P

(

c ≤ Nn(t)

(log log n)d
≤ C

)

−−−−→
n→∞

1.

The next result concerns the case of more general Λ-coalescents. Our result
states that no matter what the geometry graph G looks like, spatial coalescents
are always globally divergent. Let Nn(t) be the number of particles at time t > 0
when initially there was n particles at some given vertex o of G.

Theorem. For any measure Λ and any infinite G and t > 0, we have Nn(t) → ∞
almost surely as n → ∞.

This should be compared with the behaviour in the non-spatial case. There,
Nn(t) is either tight or diverges, depending on Λ. In the spatial case divergence
is universal.
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While the above theorems consider the state of the system at a fixed time t,
we also give relatively precise estimates for the number of particles who survive
for a long time. Here the diffusion of particles plays a more important role, and
the results depend in a fundamental way on the underlying graph. We focus on
the case G = Zd. When d = 1, 2 or 3, this case bears special biological relevance.
For instance, when d = 1, one should think of coastal marine species, since the
coast is essentially a one-dimensional object. When the coalescence mechanism is
Kingman’s, our results take the following form.

Theorem. Let G = Zd, let m = log∗(n), and fix δ > 0. Then there exists some
constants c > 0 and C > 0 (depending only on the d, δ) such that if d > 2

P

(

cmd−2 < Nn(δm2) < Cmd−2
)

−−−−→
n→∞

1,

while if d = 2 then

P
(
c lnm < Nn(δm2) < C lnm

)
−−−−→
n→∞

1.
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Structured population dynamics : the method of generalized entropy

Benoit Perthame

The notion of Relative Entropy Inequality is standard for Markov processes and
several linear Partial Differential Equations that are conservation laws written as
parabolic, hyperbolic or integral equations.

Biological applications lead naturally to birth and death processes that can be
described by zeroth order terms. They also lead to models where several struc-
turing variables enter (age, size of individuals, physiological character or level of
some proteins for cells) and several balance laws combine together (number of in-
dividuals, total biomass, total protein content) but no significant conservation law
follows. Then the dynamics is strongly driven by these birth and death processes,
more than by flux exchanges.
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In this talk, we introduce the notion of General Relative Entropy Inequality that
applies to PDEs that are not in conservation form. We show how the eigenelements
come in the definition of the entropy and we give several types of applications of
the General Relative Entropy Inequality: a priori estimates and existence of so-
lution, long time asymptotic to a steady state or attraction to periodic solutions.
This last point is motivated by the question: can tumor growth be seen as a lost
of circadian control?

This talk is taken from papers with P. Michel, S. Mischler and L. Ryzhik; J.
Clairambault and F. Bekkal-Brikci; J. Carrillo and S. Cuadrado.

Coagulation models with nonlocal drift

Barbara Niethammer

(joint work with M. Herrmann, P. Laurençot, J. Velázquez)

In this talk we consider models of the form

(1) ∂tf + ∂x

((
xαu(t) − 1

)
f
)

= J(f, f)

where f = f(x, t) is a number density of e.g. particles of size x ∈ [0,∞), α ∈ (0, 1]
and J(f, f) is a typical coagulation term of the form

(2) J(f, f) = 1
2

∫ x

0

K(x − y, y)f(x − y)f(y) dy − f(x)

∫ ∞

0

K(x, y)f(y) dy

with a symmetric coagulation kernel K(x, y). The so-called mean-field u(t) is a
nonlocal term and determined by the constraint that the first moment of f is
conserved, that is

(3)

∫ ∞

0

xf(t, x) dx = ρ .

In particular we are interested in the two cases that

(1) α = 1/3 and K(x, y) = (x + y)/t
(2) α = 1 and K(x, y) = 2

Our motivation to investigate the first case is that the model has been suggested as
a possible regularization of the classical LSW mean-field model [3, 7] for Ostwald
Ripening; the second case we study as a simpler toy model.

The classical LSW model is a mean-field model to describe coarsening of par-
ticles interacting by diffusional mass exchange. Under the assumption that the
volume fraction of particles is small and that then particles interact effectively
only via a common mean-field, denoted by u = u(t), the model is given by

(4) ∂tf + ∂x

((
x1/3u(t) − 1

)
f
)

= 0

(5)

∫ ∞

0

xf dx = ρ that is u(t) =

∫∞
0

f dx
∫∞
0

x1/3f dx
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One particular interest in the LSW-theory is the study of convergence of f to self-
similar form. It can be easily calculated that (4)-(5) has a one parameter family
of self-similar solutions, all with compact support. The largest support has that
member of the family which is exponentially smooth, the others behave like a power
law at the end of the support. It has been established in [4] that the long-time
behavior of solutions to (4)-(5) depends very sensitively on the behavior of the data
at the end of their support. For convergence to any of the self-similar solutions
behaving like a power law it is necessary for the data to be regularly varying at
the end of their support with the same power. Sufficiency of this condition could
also be established under some restrictions (see [4, 5, 6]).

In order to overcome this so-called weak selection of self-similar asymptotic
states it has been suggested in [3] to take the occasional merging of particles
into account which has been neglected in the mean-field ansatz. This amounts to
adding a coagulation term with a kernel which is additive in self-similar variables
such that we obtain equation (1) with α = 1/3, K(x, y) = x+y

t . To emphasize
that the volume fraction of particles is small, we replace ρ by ε ≪ 1 in (3).

Going over to self-similar variables, that is f(x, t) = εt−2F (z), z = x/t and
u = λt−1/3 we find the following equation for self-similar solutions:

(6) −
(
1 + z − λz1/3

)
F ′ =

(
2 − λ

3
z−2/3

)
F + ε

(
1
2F ⋆ F − F − zFm0(F )

)

with F ⋆ F (x) =
∫ x

0
F (x − y)F (y) dy and m0(F ) =

∫∞
0

F (y) dy.
As described before, for ε = 0 there exists one self-similar solution that is expo-

nentially smooth. We call it FLSW , it has support in [0, 1/2] and a corresponding
value of λ which is λLSW = 3 · 22/3.

Lifshitz and Slyozov treat the coagulation term in (6) as a perturbation and
construct an approximation of a solution by plugging FLSW into and solve the re-
sulting inhomogeneous linear ODE. Via asymptotic analysis they also found that
the corresponding λ satisfies λLSW −λ = O(1/ ln |ε|2), that is the deviation of the
mean-field is quite large. However, this construction leads only to an approxima-
tion of a solution, if indeed a fast decaying solution exists at all. Since this is not
clear a-priori, a rigorous proof of the existence – and possibly uniqueness – of such
a solution seems desirable. By setting up an appropriate fixed-point problem, we
are able to show the following

Theorem [2] For any sufficiently small ε > 0 there exists a unique self-similar
solution Fλ to (6) with λ0 − λ ∼ 1

| ln ε|2 and which decays exponentially.

We should emphasize that uniqueness is only claimed within the class of fast
decaying solutions, strictly speaking, the decay is of the order 1

zγ e−Lγ where γ > 1
and L is sufficiently large.

Furthermore, we conjecture, that also solutions with algebraic decay exist. How-
ever, at this stage, our methods are not yet sufficient to prove this statement.
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Scaling dynamics in solvable models of coagulation

Robert Pego

(joint work with Govind Menon)

We discuss the dynamical behavior of several mean-field models of coagulation
that are ‘solvable’ in the sense that the Laplace transform converts the evolu-
tion equation for size distribution into a first-order PDE that can be studied by
the method of characteristics. These models include Smoluchowski’s coagulation
equations with rate kernels K(x, y) = 2, x + y and xy, and models of ‘min-driven’
coagulation in which the smallest cluster combines with k others at random with
probability pk. The latter class of models was recently shown to be solvable by
Gallay and Mielke [2] using a remarkable linearizing transformation.

In these models of coagulation, typical cluster size grows without bound as time
progresses, and we must rescale to study nontrivial long-time dynamics. We aim
to address the following issues:

• What scaling solutions exist? Here we seek self-similar solutions, or fixed
points of the dynamics modulo scaling.

• What are the domains of attraction of these scaling solutions? These
comprise the universality classes for dynamic scaling.

• What limit points are possible under scaling dynamics in general? We call
the set of such points the scaling attractor of the system.

• How can we describe the dynamics on the scaling attractor? We call this
the ultimate dynamics of the system.

• How complicated can the ultimate dynamics be?

While this is evidently stated in dynamical terms, there is a deep analogy with
classical limit theorems of probability theory, related to the central limit theorem,
stable laws, and infinite divisibility.

Our results for Smoluchowski’s equations appear in [3], [4] and [6]. Due to
work of Carraso & Duchon and Bertoin that established a rigorous connection
between the kernel K = x + y and Burgers turbulence model, in [5] we were able
to classify domains of attraction for solutions of ut + uux = 0 whose increments
form a one-sided Lévy process with no positive jumps.
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Associated with a size distribution measure solution νt of Smoluchowski’s equa-
tion is a probability measure with distribution function

Ft(x) =

∫

(0,x]

yγνt(dy)/

∫

(0,∞)

yγνt(dy)

(γ = 0, 1, or 2 for K = 2, x + y and xy resp.), and the dynamics defines an
evolution on the space P of probability measures on (0,∞) (prior to the gelation
time for the xy kernel). Addressing the questions above we have the following
results.

• Scaling solutions. Up to normalization, there is a one-parameter family of
self-similar solutions, corresponding to distribution functions written Fρ,γ

for 0 < ρ ≤ 1, γ ∈ {0, 1, 2}. The endpoint ρ = 1 delivers the unique (and
classically-known) self-similar solution with finite γ+1st moment, and this
solution has exponential decay as x → ∞. For 0 < ρ < 1, the solutions
have infinite γ + 1st moment and are directly related to important heavy-
tailed distributions of probability theory — Mittag-Leffler distributions
for K = 2, and Lévy stable laws of maximum skewness for K = x + y and
xy. For K = x + y these solutions were first discovered by Bertoin by a
different argument [1].

• Domains of attraction. The classical self-similar solution with ρ = 1 at-
tracts all solutions with finite γ + 1st moment in the weak topology. In
general, the domains of attraction of self-similar solutions are character-
ized by the power-law behavior (more precisely, regular variation) of the
γ + 1st moment distribution: An initial size distribution measure ν0 lies
in the domain of attraction of the self-similar solution Fρ,γ if and only if

∫ x

0

yγ+1ν0(dy) ∼ x1−ρL(x), x → ∞,

for some function L slowly varying at ∞ There are no other self-similar
solutions or domains of attraction.

• Scaling attractor. The (proper) scaling attractor corresponds in one-to-one
fashion with eternal solutions of Smoluchowski’s equation, and these have
a Lévy-Khintchine representation for each solvable kernel, as established
first for K = x+y by Bertoin [1]. This parametrizes the set of scaling limit
points in terms of measures satisfying certain finiteness conditions. The
measures can be described as backward-in-time limits of eternal solutions
scaled to preserve the γ + 1st moment (if finite). E.g., for K = x + y the
measure H corresponding to an eternal solution νt satisfies

∫

[0,x]

H(dy) = lim
t→−∞

∫

[0,x]

y2νt(e
t dy)

at each point of continuity.
• Ultimate dynamics. The Lévy-Khintchine representation linearizes the

dynamics on the attractor. As a consequence of basic scaling properties of
Smoluchowski’s equation, nonlinear evolution on the attractor is conjugate
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to a group of simple scaling transformations on the measures that generate
the representation. E.g., for K = x+y , if a distribution F0 on the scaling
attractor evolves to Ft, then the corresponding measure H0 evolves to

Ht(dx) = e2tH0(e
−tdx).

This representation makes precise the sensitive dependence of long-time
dynamics on the tails of the initial size distribution—the ultimate dynam-
ics on the scaling attractor is conjugate to a continuous dilation map.

• Chaos. We use the Lévy-Khintchine representation to construct orbits
with complicated dynamics. The scaling attractor contains a dense family
of scaling-periodic solutions. Furthermore, there are eternal solutions with
trajectories dense in the scaling attractor — we call these Doeblin solutions
by analogy with Doeblin’s universal laws in probability. And, for any
given scaling trajectory, there is a dense set of initial data whose forward
trajectories shadow the given one.

In addition, we find that Smoluchowski dynamics “compactifies” in a natural
way that accounts for clusters of negligible and infinite size (dust and gel). Con-
sidering defective limits on (0,∞) that concentrate probability at 0 and ∞ yields
a well-posed dynamics of “extended solutions” on [0,∞]. Proper solutions remain
fundamental, but considering extended solutions with dust and gel yields dynam-
ics on a compact, metrizable space. We obtain an asymptotic shadowing result
that for any two initial size distributions with the same large-tail behavior, under
an arbitrary time-dependent scaling the distance between the rescaled solutions
tends to zero as time grows.
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Convergence to self-similarity in addition models with input of
monomers

Fernando Pestana da Costa

(joint work with J.T. Pinto, R. Sasportes, H. van Roessel, J.A.D. Wattis)

We are interested in studying the large j and t limit of solutions to the system






ċ1 = J1(t) − c2
1 − c1

∞∑

j=1

jpcj

ċj = jp−1c1cj−1 − jpc1cj , j ≥ 2.

(1)

where p < 1, the input of monomers J1(t) satisfy J1(t) = (1 + ε(t))αtω , and the
continuous function ε(t) converge to zero as t → +∞.

From now on we will consider only the case p = 0. We shall return to the more
general case in the end. The main idea used in this study is the following: by defin-

ing a new variable c0 =
∞∑

j=1

cj , we can decouple system (1) into a bidimensional

system
{

ċ0 = J1(t) − c0c1

ċ1 = J1(t) − c0c1 − c2
1,

(2)

and an infinite dimensional one that, upon the change in time scale t 7→ ς(t) :=

ς0 +
∫ t

t0
c1(s)ds, becomes the lower triangular linear system

(3) c̃j
′ = c̃j−1 − c̃j , j ≥ 2,

where c̃j(ς) := cj(t(ς)).
Since (3) can be explicitly solved in terms of c̃1, namely

(4) c̃j(ς) = e−ς

j
∑

k=2

ςj−k

(j − k)!
ck(0) +

1

(j − 2)!

∫ ς

0

c̃1(ς − s)sj−2e−sds,

and the asymptotic behaviour of c1 is determined by (2), our problem is reduced to
that of determining the detailed asymptotic behaviour of solutions to the (generally
non-autonomous) bidimensional ODE (2), and to the evaluation of an appropriate
asymptotic behaviour of (4).

In all cases we have considered, the asymptotic evaluation of (4) follows es-
sentially similar lines, that were first developed for the autonomous input case,
ω = 0, ε(t) ≡ 0, in [5]. The main differences between this one and the other, non-
autonomous, cases are in the way the needed information about c1 is extracted
from (2).

In the autonomous case (ω = 0, ε(t) ≡ 0) the main tools used were invari-
ant regions, together with a compactification and a centre manifold argument
[5], although the same result could be achieved using only invariant regions and
monotonicity arguments [1].

Neither of these approaches work well in the non-autonomous cases. We start
the study of these cases by making use of an ansatz about the behaviour of solutions
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obtained by Wattis [7] by means of formal arguments. This ansatz suggests a
change of variables to be applied to (2) in order to fix the prospective limit point
(as t → +∞). Then, an analysis using differential inequalities and qualitative
theory methods is applicable [2, 4]. The main is the following

Theorem. Let p = 0, J1(t) = (1 + ε(t))αtω, where α > 0, ω > − 1
2 , and ε(t)

is a continuous function satisfying ε(t) → 0 as t → +∞. Define Q0(ω) :=
(

3
(1+2ω)α

) 1
2+ω ( 2+ω

3

)r0
, where r0 := 1−ω

2+ω . Let (cj) be any solution of (1) with

initial data cj(0) ∈ ℓ1. Let ς(t) and c̃j(ς) be as above. Then

(i): lim j, ς→+∞
η=j/ς fixed

η 6=1

Q0(ω)ςr0 c̃j(ς) = Φ1,ω(η) :=

{

(1 − η)−r0 if η < 1

0 if η > 1,

(ii): furthermore, if cj(0) = 0 for j ≥ 2,

lim
j, ς→+∞

ξ= j−ς√
ς

fixed

ξ∈R

(π

2

) 1
2

Q0(ω) ς
1
2 r0 c̃j(ς) = Φ2,ω(ξ) := e−

1
2 ξ2

∫ +∞

0

y1−2r0e−ξy2− 1
2y4

dy.

In Figure 1 we present plots of the similarity limits given in Theorem for several
values of ω. Note that the profiles of Φ2,ω provide a kind of inner expansion of the
jump discontinuities occurring in the profiles of Φ1,ω when ω ≤ 1.

η

ω = 1

ω > 1

ω < 1

1

1

ω = 0.99

ω = −0.342

1

2

2 4−2−4−6 ξ

Figure 1. Graphs of the similarity limits in Theorem .
Left: Φ1,ω for values of ω below and above 1 in steps of 0.1;
Right: Φ2,ω for ω from −0.342 to 0.99 in steps of 0.148.

The slow input cases (ω < − 1
2 ), as well as the borderline case ω = − 1

2 , have also
been studied, although a completely satisfactory understanding of what is going
on is still missing [3, 6].

The extension of these results to non-constant coagulation kernels p 6= 0 was
obtained at a formal level [8], but attempts to turn it rigorous have, so far, been
marred by a number of difficulties. We believe the following holds:
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Conjecture 1. Let p < 1, J1(t) = αtω, where α > 0, and ω > − 1
2 . For every

solution (cj) of (1) with initial data satisfying ∃ρ > 0, µ > r + p : ∀j, cj(0) ≤ ρ/jµ,

consider c̃j(ς) as previously defined, where now ς(t) =
(

Qp(ω)(3−2p)
2+ω

) 1
1−p

t
2+ω
3−2p ,

where Qp(ω) is a known function of ω. Then, there exist constants A(ω, p) such

that, with rp = 1−ω(1−p)
(2+ω)(1−p) , the following holds true:

lim
j, ς→+∞

η=j/ς fixed
η 6=1

A(ω, p)ςrp c̃j(ς) = Φ1,ω,p(η) :=

{

η−p
(
1 − η1−p

)−rp
if η < 1,

0 if η > 1.

Figure 2. Graphs of Φ1,ω,p for p > 0 (left) and p < 0 (right), for
several values of ω. Since Φ1,ω,0 ≡ Φ1,ω, the p = 0 case is in
Figure 1.
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Some exact solutions to the coagulation equation with product kernel

Henry van Roessel

(joint work with Mazi Shirvani, Claudia Calin)

1. Introduction

We consider the continuous version of the coagulation equation

∂c

∂t
(λ, t) =

1

2

∫ λ

0

K(λ−µ, µ)c(λ−µ, t)c(µ, t) dµ − c(λ, t)

∫ ∞

0

K(λ, µ)c(µ, t) dµ,(1)

c(λ, 0) = c0(λ),

with a non-homogeneous coagulation kernel of the form

(2) K(λ, µ) = θ(λ)θ(µ), θ(λ) = α + βλ, α, β ≥ 0,

where c(λ, t) represents the concentration of particles of size λ at time t. The
vast majority of the literature on coagulation equations, with a some notable
exceptions [3, 7, 10], deal with coagulation kernels that are homogeneous. The
kernel in Eq. (2) contains both the constant kernel and the homogeneous product
kernel as special cases. For this kernel it is well known that gelation occurs in
finite time if and only if β > 0. Various models of gelation formation have been
proposed. The one adopted here assumes that after a critical time (the gelation
time), the coagulation process transfers large particles to a “super particle” or
“gel” and that this gel does not interact with the pre-gel (or sol) particles. This
model of gelation is usually referred to as the Stockmayer [8] model. See Ziff and
Stell [10] and Lushnikov [4, 5, 6] for a discussion of other gelation models.

We use Laplace transforms to analyse the coagulation equation. While trans-
forming (1) to a PDE by means of Laplace transforms is not new (see Leyvraz [2]
for a review), it has recently been shown [9] that such a formulation can be used to
reduce the problem for the post-gelation mass to an ordinary differential equation
depending only on α, β and on the initial data. In some instances, this ODE can
be solved explicitly, and, in a few rare cases, the solution of the post-gelation mass
can then be used to obtain the explicit solution to (1).

2. Formulation as a PDE

We will use Laplace transforms to convert Eq. (1) to a first-order quasilinear
partial differential equation. Before doing so, however, it is convenient to make a
change of variables and to re-write the equation in a slightly different form. Let
us define

N(t) :=

∫ ∞

0

θ(λ) c(λ, t) dλ = αM0(t) + βM1(t),

where Mn(t) :=
∫∞
0

λn c(λ, t) dλ represents the nth moment of the solution. Now
change variables from c(λ, t) to f(λ, t) as follows:

f(λ, t) := eθ(λ) Q(t)c(λ, t), where Q(t) :=

∫ t

0

N(s) ds.
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Then equation (1) becomes:

(3)
∂f

∂t
(λ, t) =

1

2
e−αQ(t)

∫ λ

0

θ(λ − µ)θ(µ) f(λ − µ, t)f(µ, t) dµ, f(λ, 0) = c0(λ).

Define the following Laplace transforms:

F (x, t) := L[θ(λ) f(λ, t)] :=

∫ ∞

0

e−λxθ(λ) f(λ, t) dλ; h(x) := L[θ(λ) c0(λ)].

Multiply Eq. (3) by e−λx and integrate to obtain the following first-order, quasi-
linear PDE for the transform function F :

(4) eαQ(t) ∂F

∂t
+ βF

∂F

∂x
=

α

2
F 2, F (x, 0) = h(x).

Equation (4) is unusual in that the function Q that appears in the first coefficient
is itself unknown and must be determined as part of the solution. From the
definition of Q one may easily show that it must satisfy the following “compatibility
condition:”

(5) Q′(t) = e−αQ(t)F (βQ(t), t), Q(0) = 0.

The coupled system of equations (4) and (5) must be solved simultaneously.
For β > 0, Eq. (4) will exhibit a shock, which is known to coincide with the

occurrence of gelation. In the pre-shock (or pre-gelation) regime, analysis of the
problem is straight forward and the moments M0 and M1 are easily computed. To
compute these moments in the post-gelation regime is more problematic. However,
one can show that the problem of computing the moments in the post-gelation
regime can be reduced to the following ODE:

(6) r′ =
β2h′2(r)

βh′′(r) − α
2 h′(r)

e−αr/β, r(t0) = 0,

where t0 is the gelation time. The post-gelation moments (i.e. for t ≥ t0) are
explicitly given in terms of the solution to Eq. (6):

M0(t) =
βC0(r(t))C

′′
0 (r(t)) − 1

2 [αC0(r(t)) + βC′
0(r(t))]C

′
0(r(t))

α2

2 C0(r(t)) − 3
2αβC′

0(r(t)) + β2C′′
0 (r(t))

βe−
α
β r(t),(7)

M1(t) = −C′
0(r(t)) e−

α
β r(t),(8)

where C0(x) = L[c0(λ)]. For the case α = 0, Eqs. (7) and (8) reduce to

M0(t) = C0(r(t)) −
1

2
β2t C′2

0 (r(t)), M1(t) = −C′
0(r(t)).

Lushnikov [6] has obtained an analogous formula for M0 for the discrete, homoge-
neous kernel Kij = 2ij.
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3. Exact Solutions

Having determined the post-gelation moments M0 and M1 of the solution, the
next step is to determine F and then to take inverse Laplace transforms to get
a solution to Eq. (1). This is not easily done. Only for α = 0 have we managed
to obtain exact solutions. Two examples follow, in both cases we take β = 1. In
first example we recover the solution obtained by Ernst et al [1]. The solution in
the second example is, as far as we know, new and has not appeared before in the
literature.

Example 1. For c0(λ) = e−λ

λ we get h(x) = L[λc0(λ)] = 1
1+x , which leads to

M1(t) =







1, 0 ≤ t < 1

1√
t
, t ≥ 1

, F (x, t) =
2

1 + x +
√

(1 + x)2 − 4t
,

and finally to the exact solution obtain by Ernst et al [1].

c(λ, t) =
e−(1+Q(t))λ

λ2
√

t
I1(2λ

√
t),

where I1 is the modified Bessel function of order 1.

Example 2. Let a > b ≥ 0 and k :=
√

a2 − b2. Then for c0(λ) = ke−aλ

λ2 I1(kλ) we

get h(x) = x + a −
√

(x + a)2 − k2, which leads to

M1(t) =

{

a − b, 0 ≤ t < b
a−b ,

k√
1+2t

, t ≥ b
a−b ,

, F (x, t) =
x + a −

√

(x + a)2 − k2(1 + 2t)

1 + 2t
,

and finally to the exact solution:

c(λ, t) =
ke−(a+Q(t))λ

λ2
√

1 + 2t
I1(kλ

√
1 + 2t).
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Similarity Solutions for Coagulation Equations

Claudia D. Calin

(joint work with Henry J. van Roessel, Mazi Shirvani)

We perform an analysis for investigating the symmetry groups for the Smolu-
chowski coagulation equation where the rate of production of particles is a bilinear,
separable function of the form K(λ, µ) = (α + β λ) (α + β µ), with α, β ≥ 0 arbi-
trary constants, under the assumption that new particle source terms are included
into the coagulating system in the form of a a nonnegative function g(λ, t) ≥ 0
satisfying certain integrability conditions:

∂c

∂t
(λ, t) =

1

2

∫ λ

0

K(λ − µ, µ) c(λ − µ, t) c(µ, t) dµ − c(λ, t)

∫ ∞

0

K(λ, µ) c(µ, t) dµ

+ g(λ, t)

c(λ, 0) = c0(λ), where the size and time variables range in λ, t ∈ [0,∞).

The study related to the symmetry groups for the coagulation equation has
not received much attention in the literature. The main difficulty for developing
such a study is related to the existence of the integral terms in these equations, in
particular the nonlinear convolution integral. We are interested in modeling a key
aspect of the coagulation theory, namely the asymptotic behavior of solutions to
the coagulation equation with particle source terms for large particle sizes λ → ∞
and all times t ≥ 0 and also the long time behavior of such solutions and the total
mass.

We present two methods that provide us with similarity solutions for the co-
agulation equation in the presence of particle source terms. Similarity solutions
have played an important role in the analysis of qualitative properties of solutions
of nonlinear problems. These two methods provide a new family of exact and
asymptotic solutions to the coagulation equations which can be further used for
numerical studies.

The first method is an indirect method applied to a partial differential equation
associated to a new modified form of the coagulation equation and determines a
local Lie group of transformations that leaves the PDE invariant. This method is
based on the classical technique for investigating Lie symmetry groups of differen-
tial equations that were introduced by Sophus Lie. The advantage over previous
methods is that in some special cases the expression of the total mass does not
need to be known in advance. Based on this method we verified the previous
solution obtained by Ernst et al [3] and also obtained new exact and asymptotic
solutions for the case when new particle source terms are included in the coagu-
lating system. The method that we provide is more general and its applicability
is by far preferred.

To illustrate the first method we present two examples of new exact and as-
ymptotic solutions for the coagulation equation (see below).
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Example 1. If the coagulation kernel K(λ, µ) = λµ, the initial condition

c0(λ) =
q e−aλ

pλ2
· I1(p λ) and g(λ, t) = 0

then the solution c(λ, t) to the coagulation equation

c(λ, t) =
q e− (a+Q(t)) λ

λ2
√

2 q t + p2
· I1(λ

√

2 q t + p2)

where a, q, p > 0 are arbitrary constants and

Q(t) =

∫ t

0

M1(τ) dτ =

{
q
p2 (a − m) t for 0 ≤ t < Tgel
√

2 q t + p2 − a for t ≥ Tgel

Here Tgel = m p2

q (a−m) represents the gelation time (see e.g. [4] for the definition of

the gel-time), where m =
√

a2 − p2 and a > p > 0.

Example 2. If the coagulation kernel K(λ, µ) = λµ, the initial condition

λ c0(λ) =
2 b

a
· L−1

{

1 −
√

1 − a4

2 b2
· e−x

}

(λ) or c0(λ) ≈ b

a
√

π
λ−5/2

and the source term

λ g(λ, t) = a2 e
2 b
a t e−λ Q(t) δ(λ − 1)

where a, b are some arbitrary constants such that a · b > 0 and a4

2b2 ≤ 1 then
the asymptotic behavior of the solution is given by

c(λ, t) ≈ e−λQ(t) b

a
√

π
λ−5/2 as λ → ∞, and ∀ t ≥ 0

where γ := a4

2 b2 , A := 1 +
√

1 − q and Q(t) =
∫ t

0 M1(τ) dτ .

The total mass is given by

M1(t) :=







4bγ
a · e

b
a

t

A2e− b
a

t + γe
b

a
t

if 0 ≤ t < Tgel

2b
a if t ≥ Tgel

if γ < 1, where Tgel = a
2b ln(A2

γ ) represents the gelation time. If γ = 1 then the

gelation occurs instantaneously.

The second method is a new generalized version of the direct methods that
determine the symmetry group of the point transformations to integro-differential
equations. The existence of symmetry groups for integro-differential equations
with non-local structure has been developed only recently in the work of Akhiev et
al. [1] and Zawistowski [5]. Applications of this method are currently provided for
a few classes of IDEs such as, Vlasov-Maxwell equations, Collisionless-Boltzmann
equations and fragmentation equation. The study of existence of symmetry groups
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for the coagulation equations with a general kernel has not been provided in the
literature.

Our purpose is to extend the direct methods proposed by Akhiev et al. [1]
that determine the symmetry group of the point transformations to IDEs to a
modified form of the coagulation equation. We have obtained a more general
method for determining the symmetry groups for the coagulation equation. The
advantage of this method over the previous methods used in the self-similarity
theory is that new similarity solutions can be obtained for a general coagulation
kernel, no special ansatz and structure of the scaling solutions to the coagulation
equation being assumed apriori. Based on this method we obtained new similarity
solutions to the coagulation equation for the constant and product kernels for the
case when particle source terms have a similarity form. In addition, we considered
the case when α and β are nonnegative, time dependent functions. Moreover, we
also applied this second method directly to the original, unmodified version of the
coagulation equation.
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Coagulation, Fragmentation and Growth Processes in Size Structured
Population

Jacek Banasiak

(joint work with W. Lamb)

Phytoplankton can be studied at different levels. Individual-based models,
which can be thought of providing ‘microscopic’ models, track random motion
and division of individual particles, see e.g. [3, 9, 10]. A ‘macroscopic’ descrip-
tion is provided by advection-diffusion-reaction equations describing concentra-
tions (densities) of individual particles, see [8]. The model which we study can
be considered to be in between, on a ‘mesoscopic’ scale, in that it recognizes the
role played by the phytoplankton aggregates which are individual building blocks
labelled by their size. Thus, we describe the phytoplankton using the aggregate
density function u(x, t) which gives the number density of aggregates of size x
satisfying 0 ≤ x0 ≤ x ≤ x1 ≤ ∞; that is, ‘consisting’ of x individual building
blocks (we consider here x to be a continuous variable) at time t. Such a model,



Coagulation and Fragmentation Models 2763

fitting into a broad coagulation-fragmentation theory, can be obtained from the
individual-based by appropriate limit passage (see e.g., [9, 10]) or derived from
first principles, as in e.g. [7, 4, 1, 2]. In this model the aggregates grow due
to division of single cells, can split and coalesce. Furthermore, drawing on some
earlier works, the authors assume that all daughter cells fall off the aggregates
and, joining the single cell population, enter the system as new aggregates. This
results in the model described by the classical fragmentation-coagulation equation
coupled with the McKendrik-von Foerster renewal model:

∂tu(x, t) = −∂x(r(x)u(x, t)) − µ(x)u(x, t)

− a(x)u(x, t) −
x1∫

x

a(y)b(x|y)u(y, t)dy

+ u(x, t)

x1∫

x0

k(x, y)u(y, t)dy +
1

2

x−x0∫

x0

k(x − y, y)u(x − y, t)u(y, t)dy,

r(x0)u(x0, t) =

x1∫

x0

β(y)u(y, t)dy,

u(x, 0) = u0(x).(1)

The functions β, r and µ represent, respectively, the rate at which daughter cells
enter the single cell population, the rate of the increase of size x aggregate due to
daughter cells remaining in the aggregate and, finally, the rate of the removal of
cells due to death of cells or sinking. The ‘stickiness function’ k(x, y) represents
the likelihood of an aggregate of size x sticking to an aggregate of size y; we assume
that k ∈ L∞([x0, x1] × [x0, x1]). Further, we assume that the number of daughter
particles is bounded and that the processes conserve mass. In our considerations
the function µ is bounded, and r and a are sublinear with 1/r integrable close to
x0. The analysis is carried out in the space X = L1([x0, x1], (1 + x)dx), which
keeps track of both the number of aggregates and the total number of cells in the
the ensemble.

Analysis of the linear part of the problem, consisting of the growth term with
the renewal boundary conditions and the fragmentation term, is only non-trivial
if x1 = ∞ and a is unbounded. It can be proved that the introduced assumptions
allow to reduce the linear part so that it fits into the framework of the substochastic
semigroup theory [6] and to show that its’ appropriate realization generates a
positive semigroup in X .

The nonlinear part is treated as a semilinear perturbation of the linear problem.
Due to quadratic character, the coagulation term is Frechét differentiable which
ensures strong local solvability of (1). In the next step, by rescaling, we are able
to prove that the solution is nonnegative on its interval of existence. This allows
to control the norm of the solution and, consequently, prove the existence and
uniqueness of a global in time strong positive solution to (1), see [5].
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Some applications of spinal decompositions of fragmentation trees

Bénédicte Haas

(joint work with Grégory Miermont, Jim Pitman, Matthias Winkel)

Self-similar fragmentation trees are Continuum Random Trees (T , µ) that nat-
urally arise ([5]) as genealogical trees of self-similar fragmentation processes, as
introduced by Bertoin ([1],[2]). Given a sample of labeled leaves according to µ,
we call spine the path from the root to the leaf labeled 1. Deleting each edge
along this spine defines a graph whose connected components define the (coarse)
spinal decomposition of the tree. We give two examples of applications we obtain
by studying some properties of this spinal decomposition.

(1) Asymptotics of consistent families of Markov branching models
[6]. Let (Tn, n ≥ 1) be a family of rooted combinatorial trees with n leaves
labeled {1, 2, ..., n}. This family is said to be consistent if the restricted
tree obtained from Tn by considering the leaves {1, 2, ..., n−1} and the root
is distributed as Tn−1. It possesses the Markov branching property if given
that the unique branchpoint neighboring the root connects r ≥ 2 subtrees,
say τ1, ..., τr with, respectively, k1, ..., kr leaves, the subtrees τ1, ..., τr are
independent and distributed, respectively, as Tk1 , ..., Tkr . Under some ad-
ditional assumptions of regular variation type, we identify some self-similar
fragmentation trees as scaling limits of consistent Markov branching mod-
els, where the discrete trees have been endowed with edge-lengths 1.
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(2) Invariance under uniform re-rooting [7]. It has been shown by Mier-
mont [8] that the stable trees of Duquesne and Le Gall [3] belong to
the family of self-similar fragmentation trees. These stable trees are also
known to possess an interesting symmetry property of invariance under
uniform re-rooting (cf. [4]). Informally, this means that taking a leaf at
random according to µ and considering T rooted at this random leaf, gives
a CRT with the same distribution as the original CRT with its original
root. Using the spinal decomposition, we show that, up to a scaling factor,
stable trees are the only self-similar fragmentation trees that are invariant
under uniform re-rooting.
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[3] T. Duquesne, J.F. Le Gall, Random Trees, Lévy Processes and Spatial Branching Processes,
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The size of random fragmentation trees

Svante Janson

(joint work with Ralph Neininger)

We consider the random fragmentation process introduced by Kolmogorov, where
a particle having some mass is broken into pieces and the mass is distributed
among the pieces at random in such a way that the proportions of the mass shared
among different daughters are specified by some given probability distribution (the
dislocation law); this is repeated recursively for all pieces. More precisely, we
consider a version where the fragmentation stops when the mass of a fragment is
below some given threshold, and we study the associated random tree. Dean and
Majumdar found a phase transition for this process: the number of fragmentations
is asymptotically normal for some dislocation laws but not for others, depending
on the position of roots of a certain characteristic equation. This parallels the
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behaviour of discrete analogues with various random trees that have been studied
in computer science. We give rigorous proofs of this phase transition, and add
further details.

The proof uses the contraction method. We extend some previous results for
recursive sequences of random variables to families of random variables with a
continuous parameter; we believe that this extension has independent interest.

Details will appear in a paper accepted for publication in Probability Theory
and Related Fields.

Random search trees as fragmentation trees

Alain Rouault

(joint work with J. Bertoin, B. Chauvin, J-F. Marckert, Th. Klein)

The binary search tree (BST) is a very popular model in computer science (see
[7]). We consider it as a Yule fragmentation tree stopped at the successive times
(τn)n of appearance of a new fragment. The size of a fragment of generation k is
just 2−k. The ”additive” martingale used in the study of branching random walks
by Biggins ([2]), and extended in the case of fragmentations in [1], can then be
stopped at (τn)n. We obtain a martingale in discrete time which is a product of
two martingales: one connected with the jump times, and the other connected with
the successive shapes of the BST. This latter was known before as the Jabbour
martingale ([6].

This allows to capture the profile of the BST (i.e. the collection of number of
leaves of each generation) and its asymptotic behavior ([4]), in the whole range of
presence of leaves, extending the results obtained by previous methods ([3]).

Besides, with the help of the two other natural stopping lines (fixed time /
fixed generation), we get three families of additive martingales. A fourth one (the
bisection martingale) can be extracted from the Yule tree by considering right and
left subtrees issued from vertices ([5]). Thanks to a convenient adjustment of the
parameters, we establish strong links between these martingales and their limits.
There are only two different limits (a.s.) in the domain of L1 convergence. On the
boundary of this domain, we obtain identification by taking derivatives.

The branching property leads to remarkable identities in law, seen here as iden-
tities between random variables built on the same probability space.
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Trees and random maps

Grégory Miermont

A map is a cell complex of a compact oriented surface without boundary, con-
sidered up to homeomorphisms of the surface, and can be considered as a graph
embedded in the surface. Random maps are used in physics, in the field of 2-
dimensional quantum gravity, as discretized versions of an ill-defined random sur-
face [2]. Important progress has been made towards a mathematical understanding
of this approach thanks to bijective approaches initiated in Schaeffer’s work [14],
and allowing to encode geometric properties of maps with simpler combinatorial
objects, namely labeled tree-like objects. This allowed Chassaing and Schaeffer
[5] to obtain the scaling limits for the radius and profile of a uniform rooted pla-
nar quadrangulation with n faces, considered as a metric space by endowing its
vertices with the usual graph distance. Generalizations of this result have been
obtained for much more general families of random maps by Marckert, Weill and
the author in [9, 12, 15, 13], by relying on generalizations of Schaeffer’s bijection
by Bouttier, Di Francesco and Guitter [4].

Marckert and Mokkadem [10] proved convergence of random planar quadran-
gulations towards a limiting object they called the Brownian map, using the con-
vergence of encoding functions of the underlying labeled trees. Another important
step was accomplished by Le Gall [7], who showed that scaling limits of these
random quadrangulations, considered in the Gromov-Hausdorff sense [6], must be
a topological quotient of the Brownian Continuum Random Tree of Aldous [1].
This allowed Le Gall and Paulin [8] to infer that these limits must be homeo-
morphic to the two-dimensional sphere. At the present stage, it is however not
known whether the metric structure of the scaling limit is uniquely determined,
which would lead to a nice mathematical understanding of approximating random
surfaces by random maps.

While most the articles on the topic have focused on scaling limits as n → ∞
of random maps with n faces, we rather draw our attention to natural proba-
bility measures on quadrangulations, called Boltzmann measures (the term being
inspired from [3], see also [9, 12]), and that are obtained by assigning a weight to
the faces. In the Physics terminology, these measures correspond to the so-called
grand-canonical measures, while the measures with fixed number of faces are the
microcanonical measures.

It turns out that a simple variant of Schaeffer’s bijection allows to treat geo-
metric properties of certain Voronoi-like tesselations of maps. By making a proper
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use of this bijection, we prove that the Gromov-Hausdorff limits of Boltzmann-
distributed random quadrangulations are path metric spaces endowed with a nat-
ural mass measure, such that almost-every pair of points are joined by a unique
geodesic segment. We do not restrict ourselves to the planar case, as the most
natural framework for our bijection is to consider maps of arbitrary (but fixed)
genus g. Thus, our bijection is really a variant of the Marcus-Schaeffer bijection
in arbitrary genus [11].
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A stratified sampling simulation of coagulation processes and
application to crystal growth.

Karl Sabelfeld

We develop a new version of the direct simulation Monte Carlo method (e.g., see
[2], [5], [1]) for coagulation processes governed by homogeneous Smoluchowsky
equations. The method is based on a subdivision of the set of particle pairs into
classes, and on an efficient algorithm for sampling from a discrete distribution, the
so-called Walker’s alias method [3]. The efficiency of the new method is drastically
increased compared to the conventional methods, especially when the coagulation
kernel is strongly varying. The method is applied to solving a problem of islands
formation on a surface due to a diffusion controlled coagulation [4].

Formation of clusters and their growth through aggregation is the main feature
of many physical processes, from polymerization and gelation in polymer science,
flocculation and coagulation in aerosol and colloidal chemistry, percolation and
coarsening in phase transitions and critical phenomena, formation of aerosol par-
ticles in combustion processes, agglutination and cell adhesion in biology, to island
nucleation and thin film growth in material science we developed in [6] and [4].

To explain the main idea behind the new method, let us suppose we have an
extremely efficient method (EEM) of sampling from an arbitrary discrete distri-
bution. Then we could imagine that we keep the table of the pair collision prob-
abilities and sample the collision pairs from this table using the above mentioned
method, EEM. Bad news is that after each coagulation event, we have to recal-
culate the table of probabilities. The crucial point of our new method is that the
change in the table can be done quite rarely, and the choice of the class of pair
particles is done by the method suggested by Walker [3]. Thus instead of using
the rejection method where the coagulation event happens with small probabil-
ities, we turn to a stratified sampling which ends up with a coagulation having
large probability, so we call the method shortly SLP (stratified sampling with large
probabilities).

Summarizing, the general scheme for solving Smoluchowski equation can be
described as follows:
First step: we choose the current particle distribution as a given initial distribution
L(t0, l).
Second step: take N particles according to the current distribution, choose a
subdivision of the set of all particle pairs into (many) classes; this subdivision is
generated by a subdivision of the whole sizes into a set of size bins; the random
index of the class is sampled by EEM, while inside the sampled class the von
Neumann rejection method is applied. The majorant of the rejection method is
fixed: Each coagulation event {i}+{j} = {k} leads to the corresponding change in
the arrays containing the clusters {i}, {j}, {k}; sample the time step ∆t according
to the exponential distribution. The process simulations proceed till the number
of particles in the size bins is twice decreased or increased. After that we go to
step 2.
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Becker–Döring equations

The number of atoms n in a cluster increases or decreases by one when an
atom is attached to the cluster or detached from it. Let Jn be the net rate of
transformation of nmers into (n + 1)mers. The number cn of nmers increases
due to the transformation of (n− 1)mers into nmers and decreases because of the
transformation of nmers into (n + 1)mers:

(1) dcn/dt = Jn−1 − Jn.

This equation is valid for n ≥ 2. The equation describing the number of monomers
c1 is obtained by requiring that the total number of atoms in the system

(2) N =

∞∑

n=1

ncn

does not change in time. The condition dN/dt = 0 gives, after substitution of Eqs.
(1) and rearrangement of the terms,

(3) dc1/dt = −2J1 −
∞∑

n=2

Jn.

This equation takes into account that each transformation of an nmer into an
(n + 1)mer decreases the number of monomers by one, except in the case n = 1,
where two monomers form a dimer.

The net rate Jn is a result of two processes. First, an nmer catches a monomer.
The rate of this process is proportional to the densities of the nmers and the
monomers and can be written as anc1cn, where an is a time-independent coefficient
that remains to be determined. The second process is a spontaneous detachment of
a monomer from a (n+1)mer. It is proportional to the density of (n+1)mers solely
and can be written as bncn+1, where bn is another time-independent coefficient to
be specified. Hence, we obtain

(4) Jn = anc1cn − bn+1cn+1.

Equations (1), (3), and (4) are the Becker–Döring equations.
If the time limiting process is the adatom diffusion between clusters, the attach-

ment and detachment coefficients an and bn for the 3D problem are calculated,
for large n, as follows. The cluster of n atoms is considered as a sphere of ra-
dius rn, so that n = 4πr3

n/3. To calculate the attachment coefficient, we solve
the steady-state diffusion equation ∇2c(r) = 0 with two boundary conditions: the
concentration of the monomers far away from the cluster is equal to their mean
concentration, c(r) |r=∞ = c1, while the concentration of the monomers at the
cluster surface is zero, c(r) |r=rn = 0, since the monomers are attached to the
cluster as soon as they reach it. The solution is c(r) = (1 − rn/r)c1. The total
atom flux at the cluster surface

(5) jn = 4πr2
nD∇c(r) |r=rn ,
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where D is the diffusion coefficient of the monomers, is equal to 4πDrnc1, and
hence the attachment coefficient is

(6) an = 4πDrn.

The detachment coefficient is calculated assuming that the concentration of the
monomers at the cluster surface is equal to the equilibrium monomer concentration
cneq, while there is an ideal sink for monomers at infinity, c(r) |r=∞ = 0. The
solution of the steady-state diffusion equation with these boundary conditions is
c(r) = cneqrn/r, and the corresponding detachment flux of the monomers is bn+1 =
4πDrncneq. Here we take into account that this flux refers to the detachment from
the (n + 1)mer. The ratio of the detachment and the attachment coefficients is
then

(7) bn+1/an = cneq.

The equilibrium density of monomers at the surface of a cluster is given by the
Gibbs–Thomson formula

(8) cneq = c∞eq exp(γ/rn) ≈ c∞eq(1 + γ/rn),

where γ is a constant proportional to the surface tension. A correction to Eq. (8)
for small clusters consisting of very few atoms, while being important for the nu-
cleation theory, is not essential for the Ostwald ripening problem. Then, equations
(1)–(8) form a complete set that describes the process of Ostwald ripening.

When the clusters are large enough, n can be treated as a continuous variable.
It can be verified (e.g., see [4]) that the continuous equations derived from the set
of equations above are the Lifshitz–Slyozov equations. The results of numerical
simulations of the crystall growth based on the described method can be seen in
[4].
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Computing likelihoods under Λ-coalescents (in the
infinitely-many-sites model)

Matthias Birkner

(joint work with Jochen Blath and Matthias Steinrücken, TU Berlin)

We derive a recursion for the probability of sequence observations in a situation
where the underlying genealogy is described by a Λ-coalescent, extending earlier
work by Griffiths and Tavaré [3], [4] for Kingman’s coalescent, and use this to
implement a Monte Carlo scheme to estimate these probabilities. We illustrate
resulting likelihood surfaces for the family of Beta(2− α, α)-coalescents with sim-

ulated datasets and a subsample from a cod dataset taken from Árnason [1].
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Coagulation and Fragmentation Models in Chemical Engineering

Markus Kraft

(joint work with Computational Modelling Group in Cambridge)

Three different applications for coagulation and fragmentation processes appear-
ing in chemical engineering are presented. For each application a stochastic model
is formulated, numerically solved by a direct simulation Monte Carlo method
(DSMC) and the simulation results are discussed. In case of Titania flame syn-
thesis the particle type space is given by the mass, surface area, and number of
primary particles which comprise an aggregate. The particles are subject to incep-
tion, coagulation, growth, and sintering and coupled to a gas-phase kinetic model
using an operator splitting technique. The model is used to simulate a heated fur-
nace laboratory reactor and an industrial production facility. Using the primary
particle information, transmission electron microscopy (TEM) style images of the
particles are generated. The stochastic model for the synthesis of soot is an exten-
sion of the Titania model in as much as the positions of the primary particles to
each other are included. Numerical simulations are presented and the formation
mechanism of primary particles is illustrated. Finally, a model for the granula-
tion of powders is introduced. The model is also given in terms of a stochastic
jump process in which the stochastic particles are assumed to be spherical and
have five characteristic properties: solid material, binder on solid, pores, binder in
pores, and reaction products. The results of a DSMC scheme are presented and
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the influence of the rate of the chemical reaction of the binder turning into solid
is investigated.
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Fragmentation problem in mining

Servet Mart́ınez

(joint work with Jean Bertoin)

The objective of the mining activity is to liberate, via fragmentation, the metal
associated particles and then separate these from its non valued content. An
idea of the magnitudes involved in fragmentation in the mining process is given
by Chuquicamata, the biggest open pit copper mine on earth, one blasts and
transports nearly 600.000 of tons material per day. Out of this, 200.0000 tons
are defined as mineral and the average grade of copper content of this mineral is
around 1 per cent.

There, the fragmentation is carried out in a series of steps, the first one being
blasting. After, there are two circuits for mechanically decrease the mineral size.
The conventional process uses three types of crushers (primary, secondary and
tertiary) and the particles are forwarded to the mills once they are smaller than
1/2 inches. The fragmentation process is stopped once the particles have a size
smaller than 20µm. In the other process the SAG mills are fed with particles of
size smaller than 8 inches with a similar end product of 20µm. At every step each
particle is screened, so, if it is smaller than the diameter of the mesh of a grid, it
is forwarded to the next step. As described, in crushers, grinders and mills the
material is broken by a repetitive mechanism, finishing when the particles can go
across the classifying-grid. The process finishes when the material attains a size
sufficiently small for the mining purposes.

In the figure below it is drawn a secondary crusher fed with particles with diam-
eter smaller than η3. The particles with diameter smaller than η1 are forwarded
directly to the mills. The other particles are segregated, those with a diameter
bigger than η2 proceed to the crushers and exit once its diameter is smaller that
η2. After, in a sorting belt they join the particles whose diameter is smaller than
η2 (but bigger than η1) and the material flow is forwarded to the next crusher.
The hypothesis that particles break independently of each other, which is at the
base of random fragmentation theory, is a reasonable assumption in the mining
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process. Moreover, it can be also assumed that the fragmentation process happens
in a self-similar way.

grid

under $\eta_1$

over $\eta_2$ under $\eta_1$under $\eta_3$

under $\eta_2$

Mass flow in secondary crusher

$\eta_1 < \eta_2 < \eta_3$

beltcrusher

One of the problems that faces mining industry is to minimize the energy used
in these processes. Let us assume that the energy required to break a block of size
s into a set of smaller blocks of sizes (s1, s2, ...) (in one unit of time in the discrete
case, and instantaneously in the continuous case), is of the form sβϕ(∆) where
∆ = (s1/s, s2/s, . . .), ϕ is a cost function and β > 0 a fixed parameter. When
ϕ(s1, s2, . . .) =

∑∞
n=1 sβ

n − 1, the energy is potential, because the total energy
needed to break a series of masses (m1, m2, . . .) summing up to 1 into a finer

distribution (m′
1, m

′
2, . . .) is given by

∑

i m′β
i −∑j mβ

j , and this is independent of
the fragmentation path leading from the initial configuration to the final one. The
potential energy is one of the most used models in mining and corresponds to the
laws of Charles, Walker and Bond.

The mining process inspired the study of the evolution of a fragmentation pro-
cess until every fragment in the system has size less than a fixed bound η, so each
fragment whose size is smaller that η is frozen in the system. Let E(η) be the en-
ergy needed to reduce a fragment of unit mass to the set of final fragments (xη,j)
resulting from the above process (so with size at most η).

Below one set the results already stated in the continuous case [2]. One uses
the constructions and results developed by J. Bertoin, that can be found in [1].
Let us denote by S = {S = (s1, s2, ..) : s1 ≥ s2 ≥ · · · ≥ 0,

∑

i si ≤ 1} and by ν the
dislocation measure that satisfies

∫

S

(1− s1)ν(dS) < ∞. One assumes that there is

no erosion. The energy is given by

E(η) =
∑

t≥0

1Xk(t)(t−)≥ηXβ
k(t)(t

−)ϕ(∆(t))

where k(t) is the index of the fragment that dislocates at time t and Xk(t)(t
−)∆(t)

is the sequence of fragments in which it dislocates.
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An essential assumption is the existence of the Malthusian parameter α > βc

(see the definition of βc in [1] or [2]), so it verifies

∫

S

(

1 −
∑

n

sα
n

)

ν(dS) = 0.

Define m(α) = −
∫

S

∑

n
sα

n log sn ν(dS) and let W∞ be the terminal values of the

martingale Wn =
∑

n Xα
n (t). The main result in [2], under the condition ϕ ∈

L1(dν) ∩ L2(dν), shows that whenever β ∈ (βc, α),

lim
η→0

ηβ−αE(η) =
W∞

(α − β)m(α)

∫

S

ϕ(S)ν(dS) in L2.

In [2] it is also obtained a limit theorem for the empirical distribution of fragments
with size less than η which result from the process. Indeed, if ρη is the finite
measure given by

< ρη, f >=
∑

j

xα
η,jf(

xη,j

η
) for f : [0, 1] → R measurable ,

then

lim
η→0

< ρη, f >= W∞ < ρ, f > in L2, with < ρ, f >=

1

m(α)

∫ 1

0

f(u)

(
∫

S

∑

n

1u>snsα
nν(dS)

)

du

u
.

In the discrete framework no L2 hypothesis is needed and above limits are in L1.
This is shown by using Nerman results [4] on the CMP branching process.

In the mining process the mass of the rocks is preserved. Hence, if the size of
a fragment corresponds to its mass, the Malthusian parameter is α = 1 which is
known as the conservative case. A problem appears because the bound η corre-
sponds to the diameter of the fragment, and not to its mass. One can assume that
the density of the material is constant, so the mass of the rock is proportional to its
volume. But the volume is not a function of the diameter since there is no shape
preserving. But it is reasonable to assume that the volume is a random function V
of the diameter, that this function verifies 0 ≤ V ≤ 1, and that it is independent of
the fragment process. So, instead of stopping the fragmentation of a particle once
its size is smaller than η, the problem turns into freezing the fragmentation of a
particle once its size is smaller than ηV . When V is lower bounded by a strictly
positive constant, analogous results as those already stated also hold.

Let us point out that the above results applies to the action of only one crusher
(or mill) possessing a well-defined fragmentation mechanism. In [3], the behavior of
the fragmentation process when the material flow crosses several machines acting
in a sequential way as it happens in the mining process, is being studied.
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Scenarios of gelation in coagulating systems

Alex A. Lushnikov

The critical and post–critical behavior of coagulating systems, where the coagu-
lation efficiency grows with the masses of colliding particles g and l as K(g, l) =
0.5(gαlβ +gβlα), λ = α+β > 1, µ = |α−β| < 1 is studied. The instantaneous sink
that removes the particles with masses exceeding G is introduced which allows one
to describe the coagulation kinetics by a finite set of equations and define the gel
as a deposit of particles with masses between G+ 1 and 2G. This system displays
the critical behavior (the sol–gel transition) in the limit G −→ ∞ if λ = α+β > 1.
The exact post–critical particle mass spectrum is shown to be an algebraic func-
tion of g times a growing exponent. All critical parameters of the systems are
determined as the functions of α and β.
Three possible scenarios of gelation are reported.

(1) Only one giant particle (gel) forms after the critical time tc. This particle
actively interacts with the sol part consuming the mass of the sol particles.
Such scenario realizes when the coagulation kernel has a term linear in
particle mass, α = 1. In particular this scenario realizes in the exactly
solvable model with K = gl. This scenario is referred to as active gelation.

(2) Gelation is always passive at α, β < 1, λ > 1, µ < 1. This situation is well
described by the truncated models. In this case there is a finite mass flux
through the cutoff mass G (this flux is independent of G. The gel itself
does not affect the sol spectrum.

(3) Collapse in gelling systems occurs at λ > 1, µ ≥ 1. In collapsing systems
the post–gelation sol spectrum contains the multiplier G−1/2, i.e. it van-
ishes as G −→ ∞. Nevertheless its mass remans finite and the mass flux
from sol to gel remains finite as G −→ ∞. Hence, in the limit of large
G the sol disappears after the critical time. There are other examples of
collapsing systems, where the gel appears right after the very beginning of
the coagulation process.

Main results are published in [1, 2, 3]
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Numerical simulation of spatially inhomogeneous coagulation
dynamics in the gelation regime

Flavius Guiaş

We present a stochastic approach for the simulation of coagulation-diffusion dy-
namics in the gelation regime. The method couples the mass flow algorithm for
coagulation processes with a stochastic variant of the diffusion-velocity method
in a discretized framework. The simulation of the stochastic processes occurs ac-
cording to an optimized implementation of the principle of grouping the possible
events. A full simulation of a particle system driven by coagulation-diffusion dy-
namics is performed with a high degree of accuracy. This allows a qualitative
and quantitative analysis of the behaviour of the system. The performance of
the method becomes more evident especially in the gelation regime, where the
computations become usually very time-consuming.

Our basic approach is to consider a discretization of a spatial domain into cells,
which are considered as spatially homogeneous “reactors”. Inside each cell we
simulate the population balance dynamics with a usual algorithm, e.g. the mass
flow algorithm. In addition to this, we have to couple these reactions with a
mechanism which allows exchange of mass between the cells.

In [1] the coupling of directly simulated coagulation-fragmentation dynamics
with random walks was analyzed from a theoretical point of view. Conditions were
given under which the corresponding deterministic equation has a unique solution
and a convergence result of the family of stochastic particle models to this solution
was proven. However, this approach turns out to be extremely inefficient from the
numerical point of view.

In order to be able to perform numerical simulations for models of the type
described above, one needs on the one hand to improve the efficiency of the existing
algorithms for population balance dynamics and on the other hand to simulate the
diffusive motion of particles by a method which surpasses significantly -concerning
speed and accuracy- the performance of the random walk method.

The first step towards this goal is to work directly with approximations of
the macroscopic quantities (like densities or mass corresponding to particles of a
given size, at a given place) rather than treating each particle individually. We
make therefore no distinction between particles located at the same point in the
size space or in the physical space. The set of possible events of the Monte Carlo
simulation decreases significantly, while the state of the system continues to change
according to the same particle dynamics.

The second step towards higher speed is to group possible events. The basic
idea is to divide the set of possible events into a number of groups, choose a group
according to its probability and then select the transition event inside this group.
The expected number of operations needed to compute one transition decreases in
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this way significantly compared to the situation when we try to consider the whole
set of events at once. Here, we use the method introduced in [3] to optimize the
underlying grouping principle. The optimization is done by a simple method based
on binary partitions of the groups. Usually the events to be computed correspond
to a list which is ordered in a natural way (e.g. by size, in the case of coagulating
particles). Having a given group, we choose from all possible splittings in two
consecutive parts the one which minimizes the number of expected operations
needed to compute an event (to be precise: an approximation of it). We call this
division a binary partition of the original group. The algorithm which computes
the optimized structure starts with a single group (which contains all possible
events) and follows then the next procedure: having the current group structure,
do succesive binary partitions of the existing groups. If by replacing a group with
the two parts the expected number of operations decreases, then we keep this
binary partition and update the group structure. Otherwise, we reject it. We stop
if the binary partition steps are rejected for all existing groups. For the present
simulation, where the data has a two-dimensional spatial structure, we can perform
a similar decomposition into rectangular patches. We take now binary partitions
in both directions: horizontally and vertically.

In order to simulate particle diffusion, we use the method introduced in [2]. It
is based on the idea of associating a velocity vector to the particles, which can be
computed formally as −∇u/u, where u denotes the density of the quantity which
diffuses. Unlike in the random walk method, where the particles can jump in all
directions, we simulate here essentially only the flux between neighbouring cells.
The jumps of the particles are oriented and the efficiency of the method increases
significantly.

The numerical simulations of coagulation-diffusion dynamics in 2D are realized
by applying the principles discussed before. The most important feature of these
simulations is that they allow computations beyond the gelation time, i.e. where
we have also particles of large size, or “giant clusters”. According to the mass flow
algorithm, they are removed from the system and account for the gel phase. The
computations in this regime are extremely time consuming, even in the spatially
homogeneous setting, and were made possible by the optimization of the stochastic
algorithms as described above and by the simulation of diffusion using a new
scheme, instead of random walks. The results of these simulations are presented
in [4].
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Measurability of optimal transportation and convergence rate for
Landau type interacting particle systems

Sylvie Méléard

(joint work with Joaquin Fontbona, Hélène Guérin)

We consider nonlinear diffusion processes driven by space-time white noises, which
have an interpretation in terms of nonlinear partial differential equations. For
a specific choice of coefficients, they correspond to Landau equations arising in
kinetic theory. Our aim is to construct an easily simulable diffusive interacting
particle system, converging towards this nonlinear process and to obtain an explicit
pathwise rate. This requires to find a significant coupling between finitely many
Brownian motions and the infinite dimensional white noise process. The key idea
is to construct the right Brownian motions by pushing forward the white noise
processes, through the Brenier map realizing the optimal transport between the
law of the nonlinear process, and the empirical measure of independent copies of
it. A striking problem then is to establish the joint measurability of this optimal
transport map with respect to the space variable and the parameters (time and
randomness) making the marginals vary. We prove a general measurability result
for the mass transportation problem and for the support of the optimal transfert
plans, in the sense of set-valued mappings. This allows us to construct the coupling
and to obtain explicit convergence rates.

Asymptotic density for a variety of coalescing random walks model

J. Van den Berg

We study coalescing random walk models in Zd, for d ≥ 3. For he basic model,
where particles always coalesce when they meet, we know that the density p(t)
satisfies p(t) ∼ 1/(yt), as t tends to infinity, where y is the probability that a
single random walk particle never returns to its starting point. Their proof relies
heavily on the duality relation with the voter model. Van den Berg and Kesten
(2000) introduced a more robust method with which several modifications of the
model can be handled as well. Recently, it became clear that the method also
applies to a seemingly quite different problem, namely the behaviour of the sta-
tionary state density for a coalescing random walk model in which new particles
are spontaneously created at rate λ. We study the asymptotic density for this
model as λ ↓ 0.
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The speed of coalescence when it comes down from infinity

Julien Berestycki

(joint work with Nathanaël Berestycki, Vlada Limic)

Exchangeable coalescent which allow multiple collisions but not simultaneously
are called Λ-coalescent since their law is characterized by a finite measure Λ on
[0, 1]. A coalescent is say to “come down from infinity” if the number of its clusters
Nt is immediately finite for all positive time t > 0 (initially Nt = ∞ as each integer
form a single block). In 2000 Schweinsberg [4] gave a criteria to determine whether
a coalescent do comes down from infinity or not. The question of the speed of
coalescence is that of determining the behavior of Nt as t ց 0. For instance it
is known that in the case of Kingman’s coalescent Nt/t → 2 almost surely as
t ց 0. In 2006 Berestycki, Berestycki and Schweinsberg [1] (see also [2] for a result
obtained independently in the same direction) showed that if Λ(dx) = f(x)dx with
f(x) = Ax1−α for α ∈ (1, 2) then

lim
tց0

t1/(α−1)Nt = (α/(AΓ(α − 2))1/(α−1) a.s.

We obtain the speed of coalescence, i.e. a function t 7→ v(t) such that Nt/(v(t) →
1 as t → 0 almost surely, for general measures Λ. More precisely, define Ψ(q) :=
∫ 1

0 (e−qx − 1 + qx)x−2Λ(dx) and let v(t) := inf{s :
∫∞

s
dq

Ψ(q) < t}. Call δ the

lower-index of the Lévy process with Laplace exponent Ψ (see [3]). Then we have

Theorem. Call (Π(t), t ≥ 0) the coalescent associated with the measure Λ. Then

- Π(.) comes down from infinity if and only if
∫∞

.
dq

Ψ(q) < ∞.

- If it does, Nt

v(t) → 1 almost surely as t → 0 provided that δ 6= 1

The first point had already been observed analytically by Bertoin and Le Gall in
[2] who noted that Schweinsberg’s criteria can be reexpressed under this form which
is also Grey’s criteria for a continuous branching process with mechanism Ψ to
become extinct in finite time almost surely. However no probabilistic explanation
of this fact was known. By shedding more light on the relations (which have
been the focus of much attention lately) between Λ-coalescent, continuous-state
branching processes and so-called generalized Flemming-Viot super-processes, we
are able to give such an explanation. Then by combining this approach with
martingale techniques we obtain the second part of the result.
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The central limit theorem for the Smoluchovski coagulation model

Vassili N. Kolokoltsov

We establish a central limit theorem (CLT) for the fluctuations of the Markus–
Lushnikov process in the limit of large particle numbers thus giving a solution to
problem 10 in the list of open problems in mathematical theory of coagulation from
the well known review [1]. Analysis of CLT is of course a natural next step after
the convergence of the Markus-Lushnikov process to the solution of Smoluchovski
equation was established in [7]. Full exposition of our results is given in [5]. In
case of bounded kernels and discrete mass distributions the corresponding CLT
was established in [2]. Bounded kernels with not necessarily discrete mass was
addressed in [3] in a much more general context including possible fragmentation
and collisions. Here we develops further the approach from [3] using also some
ideas and results from [4] and [6].

Consider the simplest case where coagulation rates are a function only of particle
masses, so that any two particles, of masses E(x) = x and E(x′) = x′ say, coagulate
to form a particle of mass x + x′ at a given rate hK(x, x′). Here, N = 1/h is the
number of initial particles and the coagulation rates are scaled to give the following
law of large numbers. The process of empirical particle distributions Zh = (Zh

t )t≥0

converges weakly, as h → 0 (or equivalently N → ∞), when Zh
t converges weakly

to µ0, to the solution (µt)t≥0 of Smoluchowski’s coagulation equation

µt = µ0 +

∫ t

0

K(µs, µs)ds.

Here, for suitable measures µ and µ′ on (0,∞), K(µ, µ′) is the signed measure,
given by

(f, K(µ, µ′)) =

∫

(0,∞)2
(f(x + x′) − f(x) − f(x′))µ(dx)µ′(dx′),

for suitable measurable functions f . Our result concerns the limiting distribution
of the fluctuations

Fh
t = Fh

t (Zh
0 , µ0) = (Zh

t − µt)/
√

h.

This is of interest if we consider the Markus–Lushnikov model as representing a
good mathematical description in some applied context and wish to understand,
for large particle numbers, how this model deviates from the deterministic evo-
lution given by Smoluchowski’s equation. It is also important in quantifying the
stochastic errors which may arise in a computational approach to Smoluchowski’s
equation using Monte–Carlo techniques.

Formal calculations of the limiting generator for the fluctuation process Fh
t are

not difficult and yield for it the expression

(1) ΛtF (Y ) =

1

2

∫ ∫ ∫

(δF (Y ), δz1+z2 − δz1 − δz2)K(z1, z2)(Y (dz1)µt(dz2) + µt(dz1)Y (dz2))

+
1

4

∫ ∫ ∫

(δ
2
F (Y ), (δz1+z2 − δz1 − δz2)

⊗2
)K(z1, z2; dy)µt(dz1)µt(dz2).
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Hence the mathematical problem we are solving is in constructing a well defined
infinite dimensional Gaussian Ornstein-Uhlenbeck (OU) process in an appropriate
space of generalized functions (distributions) with a generator of this form and to
prove the convergence of the fluctuations Fh

t to this OU process.
Assume K is non-decreasing in each argument 2-times continuously differen-

tiable with all the first and second partial derivatives being bounded by a constant.
For a positive non-decreasing f we denote by C1,0

f the Banach space of con-

tinuously differentiable functions φ on R+ such that limx→0 φ(x) = 0 with the
norm

‖φ‖C1,0
f

= sup
x

|φ′/f |(x)

and by M1
f we denote its dual. This space seems to be natural for building the

limiting OU process. However the norms are difficult to estimate in this space
leading to a necessity (that one would of course expect here) to use Hilbert space
methods. Having this in mind, we introduce further weighed spaces.

Define L2,f as the space of measurable functions g on R+ having finite norm

‖g‖L2,f
= ‖g/f‖L2. Also let L2,0

2,f denote the spaces of absolutely continuous

functions φ on R+ such that limx→0 φ(x) = 0 with the norm respectively

‖φ‖L2,0
2,f (X) = ‖φ′/f‖L2 + ‖(φ′/f)′‖L2 ,

Let (L2,0
2,f)′ denotes its dual.

From the Sobolev embedding lemma one deduces the inclusion L2,0
2 ⊂ C1,0 and

hence also L2,0
2,f ⊂ C1,0

f implying by duality the inclusion M1
f ⊂ (L2,0

2,f )′.
Theorem 1. Suppose k ≥ 0 and h0 > 0 are given such that

(2) sup
h≤h0

(1 + Ek+5, Zh
0 + µ0) < ∞.

and Fh
0 ∈ (L2,0

2,1+Ek+2)
′ converge to some F0 in (L2,0

2,1+Ek+2)
′, as h → 0. Then

the processes of fluctuations Fh
t (Zh

0 , µ0) converge in distributions on the Sko-

rohod space of càdlàg functions D([0, T ]; (L2,0
2,1+Ek+2(R+))′) (with J1-topology),

where (L2,0
2,1+Ek+2(R+))′ is considered in its weak topology, to the finite-dimensional

Gaussian Ornstein-Uhlenbeck process on (L2,0
2,1+Ek+2(R+))′ specified by the (non-

homogeneous) generator (1).
One can also estimate the rate of convergence. Say for linear functionals on

measures the following holds.
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Theorem 2.

(3) sup
s≤t

|E(g, Fh
s (Zh

0 , µ0)) − (U0,sg, Fh
0 )

≤ κ(C, t, k, e0, e1)
√

h‖g‖C2,0

1+Ek
(1 + Ek+5, Zh

0 + µ0)
3

·



1 +

∥
∥
∥
∥

Zh
0 − µ0√

h

∥
∥
∥
∥

2

M1

1+Ek+1(X)





for all k ≥ 0, g ∈ C2,0
1+Ek(X), where the bald E denotes the expectation with respect

to the process Zh
t and κ is a constant. Here U t,r is the backward propagator of the

equation

(4) ġ(z) = −Λtg(z) = −
∫ ∫

(g(y) − g(x) − g(z))K(x, z; dy)µt(dx)

(which as one shows is well defined in C2,0
1+Ek).
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Fragmenting random permuations

James Martin

(joint work with Christina Goldschmidt, Dario Spanò)

Denote by [n] the set {1, 2, . . . , n}.
Problem 1.5.7 from Pitman’s Saint-Flour lecture notes [4] asks: Does there exist

a “fragmentation process” (Π1, Π2, . . . , Πn) such that: (i) for each k, Πk has the
same distribution as that of the partition generated by cycles of a uniform random
permutation of [n], conditioned to have k cycles, and (ii) for each k, Πk is obtained
from Πk−1 by splitting a block into two parts. (See also [1] and [3]).

We show that the answer to this question is yes.
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Using the “Chinese restaurant process” construction of a uniform random per-
mutation of [n], we show that the result is implied by the following proposition:

Proposition 1. Let n be fixed and let p1, p2, . . . , pn ∈ [0, 1]. Consider independent
Bernoulli random variables Bi, 1 ≤ i ≤ n, with P(Bi = 1) = 1 − P(Bi = 0) = pi.
Then there exists a collection of random variables Bk

i , 1 ≤ k ≤ n, 1 ≤ i ≤ n with
the following properties:

(i) For all k, (Bk
1 , . . . , Bk

n) has the distribution of (B1, . . . , Bn) conditioned
on the event

∑n
i=1 Bi = k;

(ii) For all i and all k, Bk
i ≥ Bk−1

i with probability 1.

In the application to the random permutation question via the Chinese restau-
rant process, one has

(1) Bi = I(i is the smallest element in its block),

and pi = 1/i.
Proposition 1 can be proved by applying a form of Strassen’s theorem on the

existence of couplings with given marginals, which also manifests itself as a version
of Hall’s Marriage Theorem or as a version of the max-flow min-cut theorem. One
has to verify the following result:

Proposition 2. Let A1, A2, . . . , Am be distinct k-subsets of [n] and let

Ej = {Bi = 1 ∀ i ∈ Aj}, 1 ≤ j ≤ m.

Then for 0 ≤ k ≤ n − 1,

P

(

E1 ∪ E2 ∪ · · · ∪ Em

∣
∣
∣
∣
∣

n∑

i=1

Bi = k

)

≤ P

(

E1 ∪ E2 ∪ · · · ∪ Em

∣
∣
∣
∣
∣

n∑

i=1

Bi = k + 1

)

.

This in turn is a corollary of the following result from Efron [2]:

Proposition 3. Let φn : Zn → R be a function which is increasing in all of its
arguments. Let Ii ∼ Bernoulli(pi), 1 ≤ i ≤ n independently. Then

E

(

φn(I1, I2, . . . , In)

∣
∣
∣
∣
∣

n∑

i=1

Ii = k

)

≤ E

(

φn(I1, I2, . . . , In)

∣
∣
∣
∣
∣

n∑

i=1

Ii = k + 1

)

,

for all 0 ≤ k ≤ n − 1.

In general there are many possible distributions satisfying the conditions in
Proposition 1, and hence many different fragmentation processes with the required
properties. We give a particular example which has a consistency property as n
varies and has a simple recursive construction. To construct the partition Πk

n, one
first conditions on whether the element k will be a singleton in the partition. If
so, the partition is obtained by adding this singleton to the partition Πk−1

n−1. If
not, then instead the partition is obtained by adding the element k to one of the
blocks of the partition Πk

n−1. Using Proposition 2 it is not hard to verify that
this construction can be carried out in such a way as to satisfy the fragmentation
conditions.
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The partition obtained from a random partition of [n] has the so-called Poisson-
Dirichlet(0, 1) distribution. We give a partial extension to the more general case
of a Poisson-Dirichlet(α, θ) distribution. One can again define the variables Bi as
at (1); now they are no longer independent. In this case, a log-concavity property
of certain Stirling numbers of the second kind can be established, which implies
an equivalent of Proposition 1 for the random variables Bi. However, the Chinese
restaurant process representation no longer seems enough to show directly that
the corresponding property for partitions holds.
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[2] B. Efron. Increasing properties of Pólya frequency functions. Ann. Math. Statist., 36:272–
279, 1965.

[3] A. Gnedin and J. Pitman. Poisson representation of a Ewens framgentation process.
arXiv:math/0608307.

[4] J. Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathemat-
ics. Springer-Verlag, Berlin, 2006. Lectures from the 32nd Summer School on Probability
Theory held in Saint-Flour, July 7–24, 2002, With a foreword by Jean Picard.

Reporter: Vincent Bansaye



2786 Oberwolfach Report 46/2007

Participants

Dr. Ines Armendariz

Statistical Laboratory
Centre for Mathematical Sciences
Wilberforce Road
GB-Cambridge CB3 OWB

Prof. Dr. Hans Karl Babovsky

Institut f. Mathematik
Technische Universität Ilmenau
Weimarer Str. 25
98693 Ilmenau

Prof. Dr. Jacek Banasiak

School of Mathematical Sciences
University of KwaZulu Natal
Westville Campus
Durban 4000
SOUTH AFRICA

Vincent Bansaye

Inst. de Mathematiques de Jussieu
Universite Paris VI
175 rue du Chevaleret
F-75013 Paris

Dr. Anne-Laure Basdevant

Universite de Toulouse
118, route de Narbonne
F-31062 Toulouse

Dr. Julien Berestycki

LPMA / UMR 7599
Universite Pierre & Marie Curie
Paris VI
Boite Courrier 188
F-75252 Paris Cedex 05

Dr. Nathanael Berestycki

Dept. of Mathematics
University of British Columbia
1984 Mathematics Road
Vancouver , BC V6T 1Z2
CANADA

Prof. Dr. Jacob van den Berg

Centrum voor Wiskunde en
Informatica
Kruislaan 413
NL-1098 SJ Amsterdam

Prof. Dr. Jean Bertoin

Laboratoire de Probabilites
Universite Paris 6
4 place Jussieu
F-75252 Paris Cedex 05

Matthias Birkner

Weierstrass-Institute for Applied
Analysis and Stochastics
Mohrenstr. 39
10117 Berlin

Claudia D. Calin

Department of Mathematical and
Statistical Sciences
University of Alberta
632 Central Academic Bldg.
Edmonton, Alberta T6G 2G1
CANADA

Prof. Dr. Philippe Chassaing

Institut Elie Cartan
-Mathematiques-
Universite Henri Poincare, Nancy I
Boite Postale 239
F-54506 Vandoeuvre les Nancy Cedex



Coagulation and Fragmentation Models 2787

Prof. Dr. Madalina Deaconu

INRIA Lorraine - IECN
Campus Scientifique
Universite de Nancy 1
B.P. 239
F-54506 Vandoeuvre-les Nancy Cedex

Dr. Miguel Escobedo

Departamento de Matematicas
Universidad del Pais Vasco
Apartado 644
E-48080 Bilbao

Fabian Freund

Mathematisches Institut
Heinrich-Heine-Universität
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