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Introduction by the Organisers

This Mini-Workshop was organized by M. Farber (Durham), A. Suciu (Boston)
and S. Yuzvinsky (Eugene). It brought together researchers working on two dis-
tinct, yet related topics:

• The topology of closed one-forms is a field of research initiated in 1981 by
S. P. Novikov. In this version of Morse theory, one studies closed 1-forms
and their zeroes instead of smooth functions and their critical points.

• The cohomology jumping loci are the support varieties for cohomology with
coefficients in rank one local systems, and the related resonance varieties.
In recent years, these varieties have emerged as a central object of study
in the theory of hyperplane arrangements and related spaces.

Even though these two fields share some common roots, so far they have devel-
oped in parallel, with not much overlap or interaction. Nevertheless, it is becoming
increasingly apparent that there are deep connections between the two theories,
with potentially fruitful applications going both ways:
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• An example is provided by the Lusternik-Schnirelmann category, and the
related notions of category weight and topological complexity of robot
motion planning. Such notions are amenable to being studied via closed
1-forms, and have applications to dynamical systems and motion planning
in robotics. A good understanding of the cohomology ring and resonance
varieties yields useful bounds.

• The Bieri-Neumann-Strebel invariants, which generalize the Thurston
norm from 3-dimensional topology, are directly related to Novikov - Siko-
rav homology, Alexander invariants, and the resonance varieties.

• Undergirding some of this theory is a spectral sequence, introduced by
Farber and Novikov in the mid 1980s. Recently, this machinery has been
extended in a way that connects it to the cohomology jumping loci.

Given the multifaceted nature of these topics, the meeting brought together
people with a variety of backgrounds, including topology, algebra, discrete geom-
etry, geometric analysis, and singularity theory. Several participants were recent
Ph.D.’s, most of them on their first visit to Oberwolfach. In all, there were 16
people attending the workshop (including the organizers), coming from the United
States, Great Britain, France, Romania, Canada, and Germany.

The Mini-Workshop provided a lively forum for discussing a host of questions
related to the themes listed above. The day-by-day schedule was kept flexible, and
was agreed upon on short notice, making it possible to shape the program on-site,
and in response to the interests expressed by the participants. The borderline
between problem sessions and formal lectures were often blurred. Spending a
concentrated and highly intense week in a relatively small group allowed for in-
depth and continuing conversations, in particular with new acquaintances. These
opportunities were enhanced by the diversity of backgrounds of the participants.

A basic objective of the Mini-Workshop was to bring together some of the people
most actively working in two related fields, and to seek common ground for further
advances and collaborations. In the ideally suited research atmosphere at Ober-
wolfach, participants had the opportunity to explain their respective approaches,
and the variety of techniques they use. The lively atmosphere and the free-flow of
ideas led to a deeper understanding of the subject, to progress in solving several
open problems, and to fruitful insights on how to attack new problems.
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Abstracts

Jumping loci and finiteness properties of groups

Alexander I. Suciu

(joint work with Alexandru Dimca, Stefan Papadima)

This is an extended abstract of a talk given on the first day of the Mini-Workshop.
In the first part, we give a quick overview of characteristic and resonance varieties.
In the second part, we describe recent work [11], relating the cohomology jumping
loci of a group to the homological finiteness properties of a related group.

1. Cohomology jumping loci

Characteristic varieties. Let X be a connected CW-complex with finitely many
cells in each dimension, and G its fundamental group. The characteristic varieties
of X are the jumping loci for cohomology with coefficients in rank 1 local systems:

V i
k (X) = {ρ ∈ Hom(G, C∗) | dimHi(X, Cρ) ≥ k}.

These varieties emerged from the work of Novikov [22] on Morse theory for closed
1-forms on manifolds. It turns out that V 1

k (X) is the zero locus of the annihilator
of the k-th exterior power of the complexified Alexander invariant of G; thus, we
may write Vk(G) := V 1

k (X). For example, if X is a knot complement, Vk(G) is
the set of roots of the Alexander polynomial with multiplicity at least k.

One may compute the first Betti number of a finite abelian regular cover, Y →
X , by counting torsion points of a certain order on Hom(G, C∗), according to their
depth in the filtration {Vk(G)}, see Libgober [17]. One may also obtain information
on the torsion in H1(Y, Z) by considering characteristic varieties over suitable
Galois fields, see [21]. This approach gives a practical algorithm for computing
the homology of the Milnor fiber F of a central arrangement in C3, leading to
examples of multi-arrangements with torsion in H1(F, Z), see [4].

Foundational results on the structure of the cohomology support loci for local
systems on smooth, quasi-projective algebraic varieties were obtained by Beauville
[2], Green–Lazarsfeld [14], Simpson [28], and ultimately Arapura [1]: if G is the
fundamental group of such a variety, then V1(G) is a union of (possibly translated)
subtori of Hom(G, C∗). The characteristic varieties of arrangement groups have
been studied by, among others, Cohen–Suciu [6], Libgober–Yuzvinsky [20], and
Libgober [18]. As noted in [30, 31], translated subtori do occur in this setting; for
an in-depth explanation of this phenomenon, see Dimca [7, 8].

Resonance varieties. Consider now the cohomology algebra H∗(X, C). Right-
multiplication by a class a ∈ H1(X, C) yields a cochain complex (H∗(X, C), ·a).
The resonance varieties of X are the jumping loci for the homology of this complex:

Ri
k(X) = {a ∈ H1(X, C) | dimHi(H∗(X, C), ·a) ≥ k}.
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These varieties were first defined by Falk [12] in the case when X is the com-
plement of a complex hyperplane arrangement. In this setting, a purely combi-
natorial description of R1

k(X) was given by Falk [12], Libgober–Yuzvinsky [20],
Falk–Yuzvinsky [13], and Pereira–Yuzvinsky [26].

The varieties Rk(G) := R1
k(X) depend only on G = π1(X). In [30], two conjec-

tures were made, expressing (under some conditions) the lower central series ranks
and the Chen ranks of an arrangement group G solely in terms of the dimensions
of the components of R1(G). For recent progress in this direction, see [23, 27].

The tangent cone formula. If G is a finitely presented group G, the tangent
cone to Vk(G) at the origin, TC1(Vk(G)), is contained in Rk(G), see Libgober [19].
In general, though, the inclusion is strict, see [21, 9]. Now suppose G is a 1-formal
group, in the sense of Quillen and Sullivan; that is, the Malcev Lie algebra of G is
quadratic. Then, as shown in [9], equality holds:

TC1(Vk(G)) = Rk(G).

This extends previous results from [6, 18], valid only for arrangement groups. It
is also known that TC1(V

i
k (X)) = Ri

k(X), for all i ≥ 1, in the case when X is
the complement of a complex hyperplane arrangement, see Cohen–Orlik [5]. A
generalization to arbitrary formal spaces is expected.

2. Non-finiteness properties of projective groups

In [29], Stallings constructed the first example of a finitely presented group
G with H3(G, Z) infinitely generated; such a group is of type F2 but not FP3.
It turns out that Stallings’ group is isomorphic to the fundamental group of the
complement of a complex hyperplane arrangement, see [23].

More generally, to every finite simple graph Γ, with flag complex ∆(Γ), Bestvina
and Brady associate in [3] a group NΓ and show that NΓ is finitely presented if and

only if π1(∆(Γ)) = 0, while NΓ is of type FPn+1 if and only if H̃≤n(∆(Γ), Z) = 0.
In joint work with Dimca and Papadima [10], we determine precisely which

Bestvina-Brady groups NΓ occur as fundamental groups of smooth quasi-projective
varieties. (The proof uses previous work on the jumping loci of right-angled Artin
groups [24, 9] and Bestvina-Brady groups [25].) This classification yields examples
of quasi-projective groups which are not commensurable, even up to finite kernels,
to the fundamental group of an aspherical, quasi-projective variety.

In [11] we go further, and construct smooth, complex projective varieties whose
fundamental groups have exotic homological finiteness properties.

Theorem 1 ([11]). For each n ≥ 2, there is an n-dimensional, smooth, irreducible,
complex projective variety M such that:

(1) The homotopy groups πi(M) vanish for 2 ≤ i ≤ n − 1, while πn(M) 6= 0.

(2) The universal cover M̃ is a Stein manifold.
(3) The group π1(M) is of type Fn, but not of type FPn+1.
(4) The group π1(M) is not commensurable (up to finite kernels) to any group

having a classifying space of finite type.
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Theorem 1 provides a negative answer to the following question raised by Kollár
in [16]: Is a projective group G commensurable (up to finite kernels) with another
group G′, admitting a K(G′, 1) which is a quasi-projective variety?

Theorem 1 also sheds light on the following question of Johnson and Rees [15]:
Are fundamental groups of compact Kähler manifolds Poincaré duality groups of
even cohomological dimension? In [32], Toledo answered this question, by produc-
ing examples of smooth projective varieties M with π1(M) of odd cohomological
dimension. Our results show that fundamental groups of smooth projective vari-
eties need not be Poincaré duality groups of any cohomological dimension: their
Betti numbers need not be finite.

A key point in our approach is a theorem connecting the characteristic vari-
eties of a group G to the homological finiteness properties of some of its normal
subgroups N .

Theorem 2 ([11]). Let G be a finitely generated group. Suppose ν : G → Zm is
a non-trivial homomorphism, and set N = ker(ν). If V r

1 (G) = Hom(G, C∗) for
some integer r ≥ 1, then:

(1) dimC H≤r(N, C) = ∞.
(2) N is not commensurable (up to finite kernels) to any group of type FPr.

The proof of Theorem 2 depends on the following lemma. Let T = Hom(Zm, C∗)
be the character torus of Zm, and let Λ = CZm be its coordinate ring. Let A be
a Λ-module which is finite-dimensional as a C-vector space. Then, for each j ≥ 0,
the set Aj := {ρ ∈ T | TorΛj (Cρ, A) = 0} is a Zariski open, non-empty subset of
the algebraic torus T.

To obtain our examples, we start with an elliptic curve E and take 2-fold
branched covers fj : Cj → E (1 ≤ j ≤ r and r ≥ 3), so that each curve Cj

has genus at least 2. Setting X =
∏r

j=1 Cj , we see that X is a smooth, projec-
tive variety, whose universal cover is a contractible, Stein manifold. Moreover,
V r

1 (π1(X)) = Hom(π1(X), C∗).
Using the group law on E, define a map h : X → E by h =

∑r
j=1 fj. Let M be

the smooth fiber of h. Under certain assumptions on the branched covers fj, we
show that M is connected and h has only isolated singularities. A complex Morse-
theoretic argument shows that the induced homomorphism, ν = h♯ : π1(X) →
π1(E), is surjective, with kernel N isomorphic to π1(M). Applying Theorem 2 to
this situation (with n = r − 1) finishes the proof of Theorem 1.
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Varieties of flat line bundles, cohomology jumping loci and topology of

closed 1-forms

Michael Farber

(joint work with Dirk Schütz)

The aim of the talk was to survey methods of topology of closed one-forms based
on studying varieties of flat line bundles and various objects on these varieties
depending on topology of the underlying manifold. A classical example is provided
by the Novikov theory which was mentioned first. Let X be a finite polyhedron
and ξ ∈ H1(X ; R). The following statement gives an alternative description of the
Novikov numbers bi(ξ). One considers complex flat line bundles L over X having

the property that the induced flat bundle over X̃ is trivial; here X̃ → X denotes
the covering corresponding to ker ξ. The set of all such bundles L is an algebraic
variety Vξ isomorphic to (C∗)r where r = rk(ξ) is the rank of ξ. According to
Theorem 1.50 from [1], there exists a proper algebraic subset S = S(X, ξ) ∈ Vξ

such that
dimHi(X, L) = bi(ξ)

for all L ∈ Vξ − S and
dimHi(X, L) ≥ bi(ξ)

for L ∈ S.
Next I discussed results of topology of closed 1-forms developed by the author

in collaboration with Thomas Kappeler and Dirk Schütz. The classical Lusternik
-Schnirelmann category cat(X) allows several interesting generalizations

cat(X, ξ), cat1(X, ξ), Cat(X, ξ)(1)

depending on a finite polyhedron X and on a real cohomology class ξ. Definitions of
these invariants are similar to each other and to the definition of the usual category:
they are minimal numbers of covers of X having certain topological properties.
However, instead of requiring that all sets in the cover are null-homotopic, we
allow that one of the sets is movable with respect to a closed 1-form representing
ξ. Different invariants (1) vary by understanding differently the term movable.

Invariants (1) play interesting role in dynamics, they estimate complexity of
chain recurrent sets of flows, see [1], [2].

Paper [4] suggests new cohomological lower bounds for cat1(X, ξ). These bounds
are also based on studying flat line bundles of special kind (not ξ-algebraic inte-
gers). Another new tool suggested in [4] is the notion of category weight of a
homology classes which is a variation of the notion of category weight of coho-
mology classes of Faddell and Husseini in 1992. With the help of the notion of
category weight of homology classes we establish many examples when the invari-
ants cat(X, ξ) and cat1(X, ξ) are distinct. Moreover, we show that the difference
cat1(X, ξ) − cat(X, ξ) can be arbitrarily large.



2330 Oberwolfach Report 40/2007

References

[1] M. Farber, Topology of closed one-forms. Mathematical Surveys and Monographs, 108.
American Mathematical Society, Providence, RI, 2004.

[2] M. Farber, T. Kappeler, Lusternik - Schnirelman theory and dynamics, II, Proceedings of
the Steklov Institute of Mathematics 247 (2004), 232–245.
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Lusternik-Schnirelmann category for closed 1-forms

Dirk Schütz

(joint work with Michael Farber)

For a finite CW-complex X we discuss two versions of a Lusternik-Schnirelmann
category for cohomology classes ξ ∈ H1(X ; R), namely cat(X, ξ) and cat1(X, ξ),
which have already appeared in the talk of Michael Farber and which were intro-
duced in [1] and [2], respectively. The difference in their definition is rather subtle,
and beside the obvious inequality

cat(X, ξ) ≤ cat1(X, ξ)

there is the natural question whether they are equal. In order to obtain calculations
of a Lusternik-Schnirelmann category one usually requires good bounds from below
and above. We establish a lower bound by a cup-length estimation which involves
coefficients in a complex flat line bundle over X which pulls back trivially to
the minimal covering q : X̃ → X that satisfies q∗ξ = 0. This gives rise to our
main lower bound for cat(X, ξ), but in the case of cat1(X, ξ) we can improve
this slightly: if the resulting non-trivial cup-product evaluates non-trivially on an
element coming from the homology of X̃ , the estimate improves by the category
weight of that homology class, a concept introduced in [4].

This already indicates that cat(X, ξ) < cat1(X, ξ), but in order to get an exam-
ple, better upper bounds for cat(X, ξ) are needed. The crucial result here is the
following

Theorem 1 ([3]). Let M be a smooth closed connected manifold of dimension m
and ξ ∈ H1(M ; R) be non-zero. Then

cat(M, ξ) ≤ m − 1

It is important here that M is a manifold, as for ordinary CW-complexes X
and ξ 6= 0 we only get cat(X, ξ) ≤ dimX and equality is possible. The proof of
Theorem 1 does not work for cat1(M, ξ) and with the above mentioned cup-length
estimations it is easy to see that cat1(Mg, ξ) = 2 for Mg an orientable surface of
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genus g > 1 and ξ 6= 0. As cat(Mg, ξ) ≤ 1 by Theorem 1 this gives a first example
where cat(X, ξ) 6= cat1(X, ξ).

For direct products of spaces there exist similar estimates as for the classical
Lusternik-Schnirelmann category and so we obtain the following theorem.

Theorem 2. Let M2k = Σ1×· · ·×Σk, where each Σi is a closed orientable surface
of genus gi > 1. Given ξi ∈ H1(Σi; R), one has

cat(M2k, ξ) = 1 + 2r

cat1(M2k, ξ) = 1 + r + k

where ξ = p∗1ξ1 + · · ·+ p∗kξk and r ≤ k is the number of indices i such that ξi = 0.

An immediate consequence is

Corollary 1. The difference

cat1(X, ξ) − cat(X, ξ)

can be arbitrary large.
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Topological complexity of almost-direct products of free groups

Daniel C. Cohen

Let X be a path-connected topological space, and let PX be the space of all
continuous paths γ : [0, 1] → X , equipped with the compact-open topology. The
map π : PX → X×X , γ 7→ (γ(0), γ(1)), defined by sending a path to its endpoints
is a fibration.

Definition. The topological complexity of X , TC(X), is the minimal k for which
X × X = U1 ∪ · · · ∪ Uk, where Ui is open and there exists a continuous section
si : Ui → PX , π ◦ si = idUi

, for each i, 1 ≤ i ≤ k. In other words, the topological
complexity of X is the sectional category (or Schwarz genus) of the path space
fibration, TC(X) = secat(π : PX → X × X).

This notion, introduced by Farber, provides a topological approach to the mo-
tion planning problem from robotics, see the survey [6] and the references therein.
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Assume that X is a finite-dimensional cell complex. We shall make use of the
following properties of topological complexity, which may be found in [6].

(1) TC(X) is an invariant of the homotopy type of X ;
(2) TC(X) = 1 ⇐⇒ X is contractible;
(3) TC(X) ≤ 2 dim(X) + 1;

(4) TC(X) > zcl(H∗(X)) := cup length
(
ker

(
H∗(X) ⊗ H∗(X)

∪
−−→ H∗(X)

))
.

For the zero-divisor cup length zcl(H∗(X)), use cohomology with field coefficients.

Problem (Farber [6]). For a discrete group G, define the topological complexity
of G to be the topological complexity of an Eilenberg-MacLane space of type
K(G, 1), TC(G) := TC(K(G, 1)). Determine the topological complexity of G in
terms of other invariants of G.

Definition. An almost-direct product of free groups is an iterated semi-direct
product G = Fnℓ

⋊ · · · ⋊ Fn1
of finitely generated free groups Fni

, ni < ∞, such
that the action of Fni

on the homology H∗(Fnj
; Z) is trivial for 1 ≤ i < j ≤ ℓ.

We pursue the topological complexity of groups of this type. This is motivated
by the following results.

Theorem (Farber-Yuzvinsky [8]). Let Pℓ be the Artin pure braid group, the
fundamental group of the configuration space of ℓ ordered points in C. Then
TC(Pℓ) = 2ℓ − 2.

Theorem (Farber-Grant-Yuzvinsky [7]). Let Pℓ,k = ker(Pℓ → Pk) denote the
kernel of the map which forgets the last ℓ−k strands of an ℓ-strand pure braid, the
fundamental group of the configuration space of ℓ ordered points in C\{k points}.
If k ≥ 2, then TC(Pℓ,k) = 2(ℓ − k) + 1.

The groups Pℓ = Fℓ−1 ⋊ · · · ⋊ F1 and Pℓ,k = Fℓ−1 ⋊ · · · ⋊ Fk are almost direct
products of free groups. For i < j, the action of Fi on Fj is given by (the restriction
of) the Artin representation.

Let PΣℓ be the group of basis-conjugating automorphisms of the free group
Fℓ = 〈x1, . . . , xℓ〉. McCool [10], found the following presentation for PΣℓ:

PΣℓ = 〈βi,j , 1 ≤ i 6= j ≤ ℓ | [βi,j , βk,l], [βi,k, βj,k], [βi,j , (βi,k · βj,k)], 〉,

where the indices in the relations are distinct, and the generators βi,j are the
automorphisms defined by

βi,j(xk) =

{
xk if k 6= j,

x−1
i xjxi if k = j.

The subgroup PΣ+
ℓ generated by βi,j for i < j is an almost-direct product of

free groups, see [4]. One has PΣ+
ℓ = Fℓ−1 ⋊ PΣ+

ℓ−1 = Fℓ−1 ⋊ · · · ⋊ F1, where

Fℓ = 〈β1,ℓ, . . . , βℓ−1,ℓ〉, and the action of PΣ+
ℓ−1 on Fℓ may be extracted from the

above presentation. The upper triangular McCool group PΣ+
ℓ is not isomorphic

to the pure braid group Pℓ.
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Theorem (Cohen-Pruidze [2]). Let PΣ+
ℓ be the upper triangular McCool group.

Then TC(PΣ+
ℓ ) = 2ℓ − 2.

Remark. The pure braid group Pℓ and triangular McCool group PΣ+
ℓ each have

infinite cyclic center. Denoting the center of a group G by Z(G), and writing

G = G/Z(G), we have Pℓ = P ℓ × Z and PΣ+
ℓ = PΣ

+

ℓ × Z, where P ℓ and PΣ
+

ℓ

are almost-direct products of free groups, each of which has rank at least two.

The above results are unified by the following:

Theorem. Let G = Fnℓ
⋊ · · ·⋊Fn1

be an almost-direct product of free groups. If
nj ≥ 2 for each j and m is a non-negative integer, then TC(G×Zm) = 2ℓ+m+1.

Problem. If Zm acts nontrivially on G, what is TC(G ⋊ Zm)?

For the sake of brevity, we focus on the case m = 0. Let X = K(G, 1) be an
Eilenberg-MacLane space of type K(G, 1). The above result may be established
using the bounds zcl(H∗(G)) < TC(G) ≤ 2 dim(X) + 1 noted previously. First,
it is not difficult to show that the cohomological dimension of G is equal to the
geometric dimension of G, which in turn, is equal to ℓ,

cd(G) = geom dim(G) = ℓ =⇒ TC(G) ≤ 2ℓ + 1.

The lower bound zcl(H∗(G)) < TC(G) may be established through analysis of
the (integral) cohomology ring H∗(G).

Theorem. The cohomology ring H∗(G) is a quadratic algebra. That is, H∗(G) ∼=
E/J , where E is an exterior algebra generated in degree 1, and J is an ideal
generated in degree 2.

The integral homology H∗(G) is torsion-free and the Poincaré polynomial is

given by P (G, t) =
∑ℓ

k=0 bk(G) · tk =
∏ℓ

j=1(1+njt), where bk(G) is the k-th Betti

number of G, see [5]. A minimal, free ZG-resolution of Z, which we denote by

C•(G)
ǫ

−−→ Z, is constructed in [3].
Let N = b1(G). The abelianization map G → ZN induces a chain map

Φ• : C• → K•, where C• = C•(G) ⊗ZG ZZN and K• → Z is the standard ZZN -
resolution of Z. One can show that the induced map in cohomology Φ∗

2 : H2(ZN ) →
H2(G) is surjective, and that H∗(G) ∼= E/J , where E = H∗(ZN ) and J = ker(Φ∗

2).
The identification H∗(G) ∼= E/J may be used to show that zcl(H∗(G)) = 2ℓ.

For each i, 1 ≤ i ≤ ℓ, let xi and yi be classes in H1(G) corresponding to distinct
generators of the free group Fni

. Then one can show that the product

ℓ∏

i=1

(xi ⊗ 1 − 1 ⊗ xi)(yi ⊗ 1 − 1 ⊗ yi)

is non-zero. So we have 2ℓ = zcl(H∗(G)) < TC(G) ≤ 2 dim(K(G, 1)) + 1 = 2ℓ + 1.
As another consequence of the calculation of the cohomology ring of an almost-

direct product of free groups G, one can show that H∗(G; Q) is, in fact, Koszul.
If, additionally, the group G is 1-formal, then the space K(G, 1) is formal. This is
the case for the groups Pℓ, Pℓ,k, and PΣ+

ℓ , see [9] and [1]. When G is 1-formal, the
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calculation of TC(G) above may be viewed as evidence in support of the conjecture
that, for a formal space X , one has TC(X) = 1 + zcl(H∗(X ; k)) for some field k.

The basis-conjugating automorphism group PΣℓ is also known to be 1-formal,
see [1]. Moreover, we have TC(PΣℓ) = 2ℓ − 1 = 1 + zcl(H∗(PΣℓ; Q)), see [2].

Problem.

(1) Presumably, PΣℓ is not an almost-direct product of free groups.
Prove (or disprove) this.

(2) Determine if the cohomology ring H∗(PΣℓ; Q) is Koszul.
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Novikov homology and three-manifolds

Jean-Claude Sikorav

Novikov homology is a useful tool to study 1) singularities of closed one-forms
and in particular the question of existence of a nonsingular one-form in a given
cohomology class 2) finiteness properties in group theory: finite generation, finite
presentation, FPn. In dimension three, there is a close though as yet not fully
understood relation with the Thurston norm on H1(M ; R) = H2(M ; R). This
results from a reinterpretation of results of Stallings and Thurston, and is due to
Bieri, Neumann and Strebel in 1987, and independently the author (same year,
with some recent improvements). We first describe this relation, and then spec-
ulate how it could be interpreted thanks to some hypothetical noncommutative
Alexander polynomial. Let M be a closed 3-manifold, with H1(M ; R) 6= 0. We
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assume that it is oriented and irreducible, thus aspherical. Then G = π1(M) is a
3-dimensional Poincaré duality group, and using a Morse function one can find a
resolution

0 −→ Λ
d3−→ Λp d2−→ Λp d1−→ Λ

ε
−→ Z −→ 0

By convention, all modules are left-modules, thus di is multiplication on the
right with a matrix Di with coefficients in Λ = Z[G]. One has D1 = (x1 −
1, · · · , xp − 1) where x1, · · · , xp are generators of G associated to critical points of

index 1, and D2 =

(
∂ri

∂xj

)
∈ Mp,p(Λ). Moreover, if the function is ”symmetrical”

one can assume that D3 = D∗
1 = (x−1

1 · · · x−1
p ). Ideally, one should think of D2

as being self-adjoint (D2 = D∗
2), which is a translation of Poincaré duality. Let

ξ ∈ H1(M ; R) = Hom(G, R) be nonzero. One defines the Novikov ring Λξ =

Z[G]ξ = {
+∞∑

i=0

aigi | ai ∈ Z, gi ∈ G, lim
i→∞

ξ(gi) = +∞} and the Novikov homology

H∗(M ; ξ) = H∗(G; ξ) = H∗(C∗ ⊗Λ Λξ), where C∗ is the complex Λ → Λp →
Λp → Λ above (thus the differentials are the same, but with coefficients in Λξ).
Let N ⊂ H1(M ; R) be the set of classes represented by nonsingular one-forms.
Recall that the unit ball BT ⊂ H1(M ; R) of the Thurston norm is a polyhedron
determined by integral inequations. The relation between Novikov homology and
Thurston norm is expressed by the two following facts:

(1) H1(M ; ξ) = 0 ⇔ ξ ∈ N (this is also true if one replaces Z[G]ξ by Q[G]ξ)
(2) N is a union of cones over some top-dimensional faces of BT .

The Thurston norm is up to now a purely geometrical object, we would like to
understand it algebraically. The starting point is the following observation, which
relies on the fact that Λξ is stably finite (every square matrix which is left invertible
is invertible): if ξ(xi) 6= 0 and (D2)i;i is the matrix obtained by deleting the i-eth
line and the i-eth column of Di, one has

H1(M, ξ) = 0 ⇔ (D2)i,i is invertible in Mp−1,p−1(Λξ).

The theory of Alexander polynomials is based on a Abelianized version of the
above, ie one works over Λ = Z[Gab/Torsion] = Z[t±1

1 , · · · , t±1
m ], m = b1(M). It is

now tempting to postulate a noncommutative version, which would be a positive
answer to the following question:

Question 1. Let M be a closed 3-dimensional aspherical manifold. Does there

exist an element ∆̃(M) ∈ Λ with the following properties:

(i) ∆̃(M) = ∆̃(M)∗

(ii) its image in Λ is the Alexander polynomial ∆(M) = gcddet(D2)i,j .
(iii) the Thurston norm is

||ξ||T = max
g,h∈supp(∆̃(M))

|ξ(g) − ξ(h)| − 2 = 2 max
g∈supp(∆̃(M))

|ξ(g)| − 2
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(iv) ξ ∈ N ⇔ ∆̃(M) is invertible in Λξ (or in Λ−ξ) ⇔ is there is only one

element in supp(∆̃) with minimal (or maximal) ξ-value, and its coefficient
is ±1.

A related question is the following:

Question 2. Let G be a finitely generated group. Let A be a matrix in Mp,p(Z[G]),
and let N ⊂ Hom(G, R) \ {0} be the set of ξ such that A is invertible over Z[G]ξ
(or Q[G]ξ). Is N defined by a finite number of integral inequations?

Remark. 1) The ring Mp,p(Q[G]) is a direct factor of Q[G × Sp+1], thus one
can reduce to the case p = 1. 2) The result is clearly true if p = 1 and G is
left-orderable (which is true in particular if G = π1(M) as above).
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On 1-admissible rank one local systems

Alexandru Dimca

Let M be a connected finite CW-complex. If M is 1-formal, then the first
twisted Betti number of M with coefficients in L may be computed from the
cohomology ring of M in low degrees, for rank one complex local systems L near
the trivial local system, see [4], Theorem A. In this paper, assuming moreover
that M is a connected smooth quasi-projective variety, our aim is to show that
(a version of) the above statement is true globally, with finitely many exceptions.
In such a situation the exponential mapping sends the irreducible components E
of the first resonance variety R1(M) of M onto the non translated irreducible
components W of the first characteristic variety V1(M) of M .

For α ∈ E, α 6= 0 (resp. L ∈ W , L 6= CM ), the dimension of the cohomol-
ogy group H1(H∗(M, C), α∧) (resp. H1(M,L)) is constant (resp. constant with
finitely many exceptions where this dimension may possibly increase). The first
result is that the 1-formality assumption implies the inequality

dimH1(M,L) ≥ dimH1(H∗(M, C), α∧)

obtained by Libgober and Yuzvinsky when M is a hyperplane arrangement comple-
ment, see [5], Proposition 4.2. An 1-admissible local system is a system for which
the equality in the above inequality holds. Various characterization of 1-admissible
local systems L on a non translated component W of the first characteristic variety
V1(M) are given in the following.
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Proposition 1. If M is 1-formal, then the following three conditions on a local
system L = f−1L′ ∈ W are equivalent.

(i) L is 1-admissible;
(ii) dimH1(M,L) = minL1∈W dimH1(M,L1). (This minimum is called the

generic dimension of H1(M,L) along W .)
(iii) the natural morphism f∗ : H1(S,L′) → H1(M,L) is an isomorphism.

In particular, all local systems, except finitely many, on a non-translated irre-
ducible component W are 1-admissible.

The main novelty is the analysis of local systems belonging to a positive dimen-
sional translated component W ′ of the first characteristic variety of M .

Theorem 1. Assume that M is a smooth quasi-projective irreducible complex
variety. Let W = ρ ·f∗(T(S)) be a translated d-dimensional irreducible component
of the first characteristic variety V1(M), with d > 0. Let L0 be the rank one local
system on M corresponding to ρ, F = R0f∗L0 and Σ(F) the singular support of
F . Set S0 = S \ Σ(F) and M0 = f−1(S0). Assume moreover that M and M0 are
1-formal.

Then there is a non-translated irreducible component W0 of V1(M0), such that
W ⊂ W0 under the obvious inclusion T(M) → T(M0). In particular, for any local
system L1 ∈ W , except finitely many, there is a 1-form α(L1) ∈ H1(M, C) such
that exp(α(L1)) = L1 and dimH1(H∗(M0, C), α0(L1)∧) = dim H1(M,L1), where
α0(L1) = ι∗(α(L1)), ι : M0 → M being the inclusion.

Example 1. This is a basic example discovered by A. Suciu, see Example 4.1 in
[6], the so called deleted B3-arrangement. Consider the line arrangement in P2

given by xyz(x − y)(x − z)(y − z)(x − y − z)(x − y + z) = 0. Then there is a
1-dimensional translated component W . In this case the new hypersurface HW is
the line x + y − z = 0, and M0 is exactly the complement of the B3-arrangement.
The characteristic variety V1(M0) has a 2-dimensional component W0 denoted by
Γ in Example 3.3 in [6]. In the notation of loc. cit. one has

Γ = {(t, s, (st)−2, s, t, (st)−1, s2, (st)−1) | (s, t) ∈ (C∗)2}.

An easy computation shows that W corresponds to the translated 1-dimensional
torus inside W0 = Γ given by st = −1.
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Topological complexity and cohomology operations

Mark Grant

(joint work with Michael Farber)

We describe new cohomological lower bounds for the topological complexity
TC(X) of a path-connected topological space X , using cohomology operations.
These improve on the standard lower bound in terms of zero-divisors cup-length.
Topological complexity is a numerical homotopy invariant, defined by M. Farber
to be the Schwarz genus of the free path fibration

(1) π : XI → X × X, π(γ) =
(
γ(0), γ(1)

)
,

where XI denotes the space of all paths γ : I → X with the compact-open topol-
ogy. It provides a quantitative measure of the complexity of the task of navigation
in X . Knowledge of the value TC(X) is of practical use in the design of motion
planning algorithms for mechanical systems whose configuration space is homo-
topy equivalent to X . For a recent survey on this invariant and its applications,
see [2].

The Schwarz genus of a fibration p : E → B was defined and extensively studied
by A. S. Schwarz [6], who gave the general cohomological lower bound

(2) genus(p) > cup-length
(
ker

(
p∗ : H∗(B) → H∗(E)

))

(here we may use arbitrary or local coefficients). Inspired by the work of E. Fadell
and S. F. Husseini [1], who introduced category weights of cohomology classes
to improve the classical cup-length lower bound for the Lusternik-Schnirelmann
category, we make the following definition.

Definition 1. Let p : E → B be a fibration, and u ∈ H∗(B) a cohomology class.
The weight of u with respect to p is

wgtp(u) = sup{k | f∗(u) = 0 for all f : A → B with genus(f∗p) ≤ k}.

Here f∗p denotes the pullback fibration of p along f .

One may show that, if u1, . . . , uℓ ∈ H∗(B) are classes whose product u1 · · ·uℓ

is non-zero, then

(3) genus(p) > wgtp(u1 · · ·uℓ) ≥
ℓ∑

i=1

wgtp(ui),

and that wgtp(u) ≥ 1 if and only if p∗(u) = 0. Hence the lower bound (3)
improves (2), providing we can find indecomposable classes u with wgtp(u) ≥ 2.
This can be done for the path fibration (1) using stable cohomology operations.
Let θ = {θm : Hm(−; R) → Hm+i(−; S)} be a stable cohomology operation of
degree i, where R and S are abelian groups. Define the excess of θ, denoted e(θ),
to be the largest n such that θm ≡ 0 for all m < n.
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Theorem 1. Let u ∈ Hn(X ; R) where n = e(θ). Then the element

θ(u) = 1 × θ(u) − θ(u) × 1 ∈ Hn+i(X × X ; S)

has wgtπ(θ(u)) ≥ 2, where × denotes the cohomology cross product.

This result, inspired by Theorem 3.12 of [1], is proved in [3] and applied to
calculate TC(L) for various lens spaces L. For example for any pair m, n ∈ N
such that m ∤

(
2n
n

)
, the topological complexity of the 2n+1-dimensional m-torsion

lens space L2n+1(1, . . . , 1) equals 4n + 2.
We can also use Massey products to improve the cup-length lower bound for

the Schwarz genus (compare Theorem 4.4 of [5]).

Theorem 2. Let p : E → B be a fibration, and α, β, γ ∈ H∗(B) cohomology
classes. Suppose that the Massey product 〈α, β, γ〉 is defined and does not contain
zero. Then genus(p) > wgtp(β) + min{wgtp(α), wgtp(γ)}.

A proof of this result may be found in [4], where it is applied to show that TC

of the Borromean rings link complement in S3 is at least 4. This is the first known
example of a K(G, 1) space for which TC(G) = TC(K(G, 1)) is greater than the
zero-divisors cup-length plus one.

The next result, also proved in [4], is useful for finding indecomposable zero-
divisors z with wgtπ(z) ≥ 2 in the simply-connected case. Let swgt(u) denote the
strict category weight of u ∈ H∗(X), in the sense of Y. B. Rudyak [5]. Recall that
swgt(u) ≥ 2 if u is a Massey product ([5], Corollary 4.6).

Theorem 3. Let X be an r-connected space, r ≥ 1. Suppose that u ∈ Hℓ(X ;F)
has swgt(u) ≥ k, where k(r + 1) ≤ ℓ < (k + 1)(r + 1) and F is a field. Then there
exists an element φ(u) ∈ Hℓ(X × X ;F), of the form

φ(u) = 1 × u + θ(u), θ(u) ∈
⊕

i+j=ℓ, i>0

Hi(X ;F) ⊗ Hj(X ;F),

which has wgtπ(φ(u)) ≥ k. If u is indecomposable, then φ(u) = u = 1× u− u× 1.

Question. Is there an analogue of Theorem 3 in the non-simply-connected case?
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Global versus local algebraic fundamental groups

Stefan Papadima

1. Questions

1.1. Global groups. An old theme, initiated by Serre 50 years ago, is to charac-
terize global (or quasi-projective) groups, i.e., finitely presented groups G realizable
as π1(M), where M is a smooth, irreducible, quasi-projective complex variety. A
basic obstruction was found by Morgan [7]: the Malcev Lie algebra EG of such a
group has generators of weight 1 or 2, and relations of weight 2, 3 or 4. Another im-
portant obstruction is due to Arapura [1]: the cohomology jumping locus in degree
1 of such a group must be a finite union of (translated) subtori of the character
torus of the group. A recent new restriction involves the Alexander polynomial
∆G ∈ Z[t±1

1 , . . . , t±1
n ], where n := b1(G).

Theorem 1 (Dimca-Papadima-Suciu [3]). If G is a global group with n := b1(G) ≥
3, then ∆G has a single essential variable, that is, ∆G = P (u), with P ∈ Z[u±1]
and u = te1

1 · · · ten
n .

1.2. Local groups. A local group is by definition realizable as π1(M), where M
is the analytic germ at o of X \ Y , with X and Y complex algebraic varieties,
Y ⊂ X a divisor, and o ∈ Y an isolated singularity on both X and Y . I will
focus here mainly on plane curve singularity groups, for which Y is a curve and
X = C2, a case going back to Zariski’s work from the early 1930s. As follows from
a result of Durfee and Hain [4], all plane curve singularity groups verify Morgan’s
test from §1.1, in stronger form. More precisely, they all are 1-formal groups, i.e.,
their Malcev Lie algebras have only quadratic relations. Moreover, all plane curve
singularity groups also pass the Arapura test from §1.1, as a consequence of recent
results by Libgober [6]. Two natural questions thus arise:

Question 1. How many plane curve singularity groups (besides those coming
from quasi-homogeneous curves) are global?

Question 2. Classify the Malcev Lie algebras of global plane curve singularity
groups.

As noticed by Eisenbud and Neumann in [5], plane curve singularity groups
are particular cases of fundamental groups of graph links. A graph link, (Σ, L), is
a non-empty, oriented, n-component link L in a compact, oriented, Z-homology
sphere Σ3, having the property that all geometric pieces of the link exterior, ML,
are Seifert fibered. Fundamental groups of Seifert graph links are both global and
local, see [5].

Question 3. Which graph links (besides Seifert links) have global fundamental
groups?
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2. Answers

2.1. Graph links. The approach to Questions 1 and 3 uses Theorem 1, together
with the Eisenbud-Neumann calculus of Alexander polynomials from [5].

Graph links are classified by (minimal) splice diagrams. It will be assumed from
now on that splice diagrams are connected, with non-zero edge weights (since this
always happens for the diagram of a plane curve singularity link). Consequently,
all geometric pieces of the corresponding link exterior are non-empty Seifert links.

Definition 1. A node of a splice diagram is essential if it has an adjacent arrow-
head vertex in the diagram.

Theorem 2. The Alexander polynomial of a minimal splice diagram has a single
essential variable if and only if the diagram has at most one essential node.

In conjunction with Theorem 1, this gives partial answers to Questions 1 and
3, as follows.

Theorem 3. For any n ≥ 3, there exist infinitely many non-isomorphic plane
curve singularity groups, with b1 = n, that are not global.

Theorem 4. Let (Σ, L) be a graph link such that all geometric pieces of ML are
Seifert links with at least 2 components, and b1(ML) ≥ 3. Then the group π1(Σ\L)
is global if and only if the given link is Seifert.

2.2. Positive deficiency. Since plane curve singularity groups have positive de-
ficiency (i.e., they admit presentations with more generators than relators), the
result below fully answers Question 2. The resonance obstructions to quasi-
projectivity from [2] provide a key ingredient for the proof.

Theorem 5. Let G be a 1-formal group with positive deficiency. If G is global,
then EG

∼= Eπ1(M), where M is either a smooth complex algebraic curve, or the

complement of a central line arrangement in C2.

Complete proofs of the results from Section 2 will appear elsewhere.
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Completely reducible fibers of a pencil of curves

Sergey Yuzvinsky

The main new result in this talk is the following theorem.

Theorem 1. In a pencil of plane curves with irreducible generic fiber of degree
d > 1 there are at most four completely reducible fibers. Moreover if the number
k of completely reducible fibers is four then the pencil is linearly isomorphic to the
Hesse pencil generated by the smooth cubic and its Hessian.

Equivalently this result can be formulated in the following form.

Theorem 1’. The maximal dimension of the first non-local resonance component
of any hyperplane arrangement is three, i.e., the maximal dimension of the first
cohomology of an Orlik-Solomon algebra on any non-local component is two. More-
over the only known example (of the Hesse arrangement) with the two-dimensional
cohomology is unique up-to a linear isomorphism.

The completely reducible fibers of a pencil of curves were considered in at least
two classical papers: by G.Halphen (e.g., see Oeuvres de G.-H.Halphen, tome III,
Gauthier-Villars, 1921, 1-260) and J.Hadamard (“Sur les conditions de decompo-
sitions des formes”, Bull. SMF 27 (1899), 34-47). However the amazingly simple
answer given by Theorem 1 seemed to stay unnoticed. Let us mention for com-
parison that for the number of reducible fibers the upper bounds are much more
complicated and depend on d. The best known result was obtained by A.Vistoli
(Invent. Math. 112 (1993)) and the newest one was obtained by Arnaud Bodin in
“Reducibility of rational functions in several variables”, math.NT/0510434.

For the speaker the inspiration came from the question answered by Theorem 1’.
The cohomology algebras A of hyperplane arrangement complements in Cn are well
known and the next important question is to study the ‘secondary’ cohomology,
i.e., the cohomology of A under multiplication by an element of degree 1. The
elements of degree one for which the first cohomology of A does not vanish form a
subvariety (so called first resonance variety) in the affine space A1 and the existence
of an irreducible resonance component is equivalent to the arrangement containing
the union of some completely reducible fibers of a pencil of hypersurfaces in CPn−1.
Moreover the dimension of the component is k − 1 where k is the number of the
fibers and dim H1(A, a) = k − 2 for every a from the component. The local
components, i.e., the ones lying in a pencil of degree 1 are easy to study and their
dimensions are not bounded uniformly. For non-local components only examples
of dimensions two and three had been known.

The history of the results mentioned above is as follows. The equivalence of
the two theorems was contained implicitly in a paper by Libgober and Yuzvinsky
(2000) who also proved the inequality k < 6 for pencils with the maximal size of
the base (= d2), equivalently for the arrangements that support so called nets.
This equivalence was proved explicitly by Falk and Y. (2006) who also proved
that k < 6 for the pencils with reduced completely reducible fibers. In 2007, the
inequality k < 6 was proved in full generality by Pereira and Y. They proved
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also that the pencils with k > 2 in any projective space are linear pullbacks from
CP 4 (similarly, for k > 3 from CP 2). Then in 2007 the Dissertation of J.Stipins
appeared where he proved for nets that k < 5 and that any arrangement with
k = 4 is isomorphic to the Hesse one. Finally Yuzvinsky has generalized Stipins’
proof to all pencils.

The answer to the problem 1 suggests many natural questions. For instance,

Question 1. What are the similar upper bounds for linear systems of higher
dimensions?

Question 2. What are the similar bounds for curves of degree larger than 1 in
the space of hypersurfaces (or homogeneous polynomials)?

Question 3. Do there exist pencils in CP 4 with k > 2 that are not linear pullbacks
of pencils from CP 3?

In the mentioned above paper by Pereira and Y., there is an infinite family of
pencils in CP 3 with k = 3 that are not pullbacks from smaller projective spaces.

Resonance and zeros of logarithmic one-forms with hyperplane poles

Michael J. Falk

(joint work with Daniel C. Cohen, Graham Denham and Alexander Varchenko)

Let A = {H1, . . . , Hn} be an essential central arrangement of complex hyper-
planes. Each Hi is the kernel of a linear functional αi : Cℓ → C well-defined up
to multiplicative constant. Let M = Cℓ \

⋃n
i=1 Hi, and ωi = dαi

αi
, a 1-form on

M with logarithmic poles along Hi. Let A = A(A) be the C-subalgebra of the
(holomorphic) de Rham complex of M generated by {ω1, . . . , ωn}. By a theorem
of Orlik and Solomon, A is isomorphic to the cohomology ring H∗(M, C). Note
A1 ∼= Cn.

For λ = (λ1, . . . , λn) ∈ Cn, set ωλ =
∑n

i=1 λiωi ∈ A1. We are concerned with
the following question: how does the zero locus Z(ωλ) := {x ∈ M | ωλ(x) = 0}

depend on λ? Note that ωλ = d log(Φλ) = dΦλ

Φλ
where Φλ =

∏n
i=1 αλi

i is the cor-

responding (generally multi-valued) master function. Thus Z(ωλ) coincides with
the critical locus crit(Φλ) of Φλ. This is our original motivation: for A a discrimi-
nantal arrangement (in the sense of [6]) and parameter vectors λ constructed from
certain representations of sln, crit(Φλ) gives rise to solutions of the sln Knizhnik-
Zamolodchikov equation via the Bethe Ansatz.

We always assume
∑n

i=1 λi = 0, so that ωλ descends to a form on the projective

image M of M. If λ is generic, then crit(Φλ) consists of χ(M) isolated points [8, 5].
On the other hand, if A is a discriminantal arrangement for certain integral weight
vectors λ, crit(Φλ) is a 1-dimensional (complex) subvariety of M [7]. Moreover,
for those special weights ωλ is a resonant 1-form [1], in a sense we now describe.
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Left-multiplication by ωλ makes the graded algebra A into a cochain complex.
The cohomology of this complex is denoted H∗(A, ωλ). This cohomology is ap-
proximates the cohomology of the local system with connection one-form ωλ, and
is isomorphic to the local system cohomology for most λ. If λ is generic, then
Hi(A, ωλ) = 0 for i < ℓ − 1, and dimHℓ−1(A, ωλ) = χ(M), which coincidentally
matches the number of points in the discrete set crit(Φ).

We say ωλ is resonant in degree p if Hi(A, ωλ) vanishes for i < p and is nonzero
for i = p. One might conjecture that crit(Φλ) has codimension equal to p when ωλ

is resonant in degree p, and that the number of components equals dim Hp(A, ωλ).
Both statements are false without some further hypotheses on ωλ. For instacne we
have the following result.

Theorem 1. Suppose ωλ is resonant in degree p. Suppose ωλ possesses a nontrivial
decomposable p-cocycle, i.e., there exist λ1, . . . , λp such that ωλ∧(ωλ1

∧. . .∧ωλp
) =

0, and ωλ1
∧ . . .∧ωλp

is not a multiple of ωλ. Then, for generic λ′ in the C-span of
{λ, λ1, . . . , λp}, crit(Φλ′) has codimension p. Moreover, components of crit(Φλ′)
are intersections of level sets of Φλ, Φλ1

, . . . , Φλp
.

This theorem is proved by considering the map Φ = (Φλ, Φλ1
, . . . , Φλp

). The

hypothesis implies the image Σ of Φ has codimension one in Cp+1. In other words,
the rational functions Φλ, Φλ1

, . . . , Φλp
satisfy a nontrivial algebraic dependence

relation. A generic form σ =
∑p

i=0 ai
dxi

xi
, restricted to Σ, will have isolated zeros

that miss the singularities of Σ. The preimage of Z(σ|Σ) is the zero set of ωλ′ , where
λ′ = a0λ+

∑p
i=1 aiλi, and it has the claimed properties. The genericity conditions

can be written explicitly in terms of a defining equation for Σ. In particular, if Σ
is known, one can check whether λ itself satsifies the conditions.

In related work we have shown a similar result, for arbitrary ωλ resonant in
degree p, if A is a free arrangement, though the conclusion is weaker: the codi-
mension of Ẑ(ωλ) := {x ∈ Cℓ | ωλ(x) = 0} is at most p. But it may be the case

that Z(ωλ) = Ẑ(ωλ) ∩ M = ∅. See the talk by G. Denham in this workshop.
In case p = 1, one can use the results of [3] to draw more precise conclusions.

Theorem 2. If ωλ is resonant in degree 1, then, with finitely many exceptions,
crit(Φλ) has codimension one and has dimH1(A, ωλ) components.

The finitely many exceptions in the above statement can be explicitly identified.

The proof of the theorem above indicates the importance of algebraic depen-
dence relations among master functions. One can approach this question using the
methods of tropical algebraic geometry [2]. The function Φ above can be factored
into the linear map α = (α1, . . . , αn) : Cℓ → Cn followed by a monomial map
m : Cn → Cp+1; x 7→ (xλ, xλ1 , . . . , xλp), in the usual vector notation for mono-
mials. The image Σ of Φ has codimension one precisely when its tropicalization
τ(Σ), a polyhedral fan, has codimension one in Rp+1. But the tropicalizations of
the factors of Φ are well-understood. The image of α tropicalizes to the Bergman
fan of A, and the tropicalization of m is the linear map given by the matrix of
weights λ, λ1 . . . λp. By [4], the Bergman fan of A is subdivided by the nested set
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fan of A, whose cones are generated by incidence vectors of certain flags in the
intersection lattice of A. Using this one can write rank conditions that guarantee
that the tropical variety τ(Σ) has positive codimension. Whether this tropical
approach can yield more definitive results on crit(Φλ) remains a subject of current
research.
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Zeroes of 1-forms and resonance of free arrangements

Graham Denham

(joint work with D. Cohen, M. Falk, A. Varchenko)

Let A = {H1, . . . , Hn} be an arrangement of hyperplanes in Cℓ, with complement
M = M(A) = Cℓ \

⋃n
j=1 Hj . Fix coordinates x = (x1, . . . , xℓ) on Cℓ, and for each

hyperplane Hj of A, let fj be a linear polynomial for which Hj = {x : fj(x) = 0}.
A collection λ = (λ1, . . . , λn) ∈ Cn of complex weights with

∑n
i=1 λi = 0 deter-

mines a master function

(1) Φλ =

n∏

j=1

f
λj

j ,

a multi-valued holomorphic function with zeros and poles on the variety
⋃n

j=1 Hj

defined by A. The master function Φλ determines a one-form

(2) ωλ = d log Φλ =

n∑

j=1

λj

dfj

fj

in the Orlik-Solomon algebra A = A(A) ∼= H ·(M ; C).
Let Σλ = V (ωλ) ⊂ M , the variety defined by the vanishing of the one-form

ωλ or, equivalently, by the critical equations of the master function Φλ on M .
For certain arrangements, this variety is of interest in mathematical physics: the
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Bethe ansatz equations in the Gaudin model associated with a complex simple Lie
algebra g are critical equations of a suitable master function: see [5, 8].

In [7], Varchenko showed that, for generic weights λ and real equations {fi},
the master function is a cone over |χ(P(M))| isolated critical points. The general-
ization to arbitrary complex arrangements was proven by Orlik and Terao [3].

On the other hand, a one-form ωλ ∈ A1 is said to be resonant (in dimension p)
if the pth cohomology group of the complex

(A, ωλ) = A0 ωλ→ A1 ωλ→ A2 · · ·
ωλ→ Aℓ

is nonzero, where the differential is given by multiplication by ωλ. Yuzvinsky
showed in [9] that, for generic λ, the one-form ωλ is resonant only in dimensions
ℓ−1, ℓ. This and further work in [4, 1, 6] leads to the (elegant, but easily falsified)
conjecture that the codimension of the variety Σλ equals the least dimension p for
which ωλ is resonant.

Instead, let R = C[x], and let Der(A) denote the R-module of logarithmic
derivations. The arrangement A is said to be free if Der(A) is free as an R-
module. Such arrangements have an extensive literature. Let Iλ = 〈Der(A), ωλ〉,
the ideal of R given by evaluating logarithmic derivations on ωλ via the canonical
(duality) pairing. Let Σλ = V (Iλ), an affine variety. Clearly Σλ ∩ M = Σλ. Then
our main result is the following:

Theorem 1. If A is a free arrangement, and p is the least integer for which a
one-form ωλ ∈ A1 is resonant, then the variety Σλ has codimension p.

On the other hand, we see the converse is false: for this, consider the master
function

Φλ =
x2(y2 − z2)

y2(x2 − z2)

on the “deleted B3-arrangement” with hyperplanes

{x, y, x − y, x + y, x − z, x + z, y − z, y + z} .

The arrangement is free, and λ is generic (that is, ωλ is resonant only for dimen-
sions 2, 3); however, Σλ and Σλ have codimension 1: the latter is the union of
hyperplanes z = 0, x = y, x = −y, the first of which is not in the arrangement.
This example has very special properties (a positive-dimensional component in a
characteristic variety, discovered by Alex Suciu: see [2]), although the conceptual
relationship with the problem considered here remains to be worked out.
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Arrangements of hypersurfaces and Bestvina-Brady groups

Daniel Matei

(joint work with Enrique Artal Bartolo and Jose Ignacio Cogolludo)

We show that quasi-projective Bestvina-Brady groups are fundamental groups
of complements to hyperplane arrangements. We thus obtain examples of hyper-
surface complements whose fundamental groups satisfy various finiteness proper-
ties.

In a series of papers [5] from 1960’s C.T.C. Wall studied general finiteness
properties of groups and CW-complexes. A group G is said to be of type Fn if
it has an Eilenberg-MacLane complex K(G, 1) with finite n-skeleton. Clearly G
is finitely generated if and only if it is F1 and finitely presented iff it is F2. An
interesting example of a finitely presented group which is not finitely presented
was given by Stallings in [4].

A group G is said to be of type FPn if the ZG-module Z admits a projective
resolution which is finitely generated in dimensions ≤ n. If X is a K(G, 1) complex,

then the action of G on the universal cover X̃(n) induces such a resolution, hence
the property Fn implies the FPn property. Note that G is of type FP1 if and
only if it is finitely generated, and that G is of type FP2 if it is finitely presented.
But, as shown by Bestvina and Brady [1] FP2 does not imply finite presentation.
The first example of a group which is finitely presented but not of type FP3 was
given by Stallings in [4]. Afterwards Bieri [2] generalized Stallings’ examples to
the following family: Let Gn = F2×· · ·×F2 be the direct product of n free groups,
each of rank 2. Then the kernel of the map taking each generator to 1 ∈ Z is Fn−1

but not Fn. Stallings’ examples mentioned above are the cases n = 2 and n = 3.
Let Γ be a finite simplicial graph and ∆ the flag simplicial complex it generates.

If 1, . . . , s are the vertices of Γ, the right-angled Artin group AΓ associated to Γ is
the group with generators σ1, . . . , σs and relations σiσj = σjσi, one for each edge
ij of Γ. For example if Γ = Kn1,...,nr

the complete multipartite graph, then the
right-angled Artin group AΓ is the product of free groups Fn1

× · · · × Fnr
. Thus

the Stallings-Bieri examples are Bestvina-Brady kernels.
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The Bestvina-Brady group associated to Γ is the kernel NΓ of the homomor-
phism AΓ → Z that sends each σi to 1. The group NΓ is finitely presented if and
only if ∆ is simply-connected. Furthermore, Bestvina and Brady show in [1] that
NΓ is FPn if and only ∆ is (n − 1)-acyclic.

In [3] all the quasi-projective Bestvina-Brady groups NΓ are determined. The
graph Γ is either a tree, or a complete multipartite graph Kn1,...,nr

with either
some ni = 1 or all ni ≥ 2 and r ≥ 3. The class of groups corresponding to these
graphs consists of the following two distinct types:

(1) a product of free groups Zr × Fn1
× · · · × Fns

, with r ≥ 0, s ≥ 0 and all
ni ≥ 2;

(2) NKn1,...,nr
, with all ni ≥ 2 and r ≥ 3.

We will show that all these groups can be realized by fundamental groups of
complements to line arrangements. It is not hard to realize Zr ×Fn1

×· · ·×Fns
as

the fundamental group of a complement to a line arrangement: Consider s distinct
directions in C2 and take ni lines parallel to the ith direction, and r other lines in
general position. So, it remains to deal with NKn1,...,nr

.

Theorem 1. Any quasi-projective Bestvina-Brady group NΓ is an arrangement
group. More precisely, if An1,...,nr

is the arrangement of n = n1 + · · · + nr lines
in P2 consisting of the r sides of an r-gon together with ni − 1 lines in a pencil at
vertex i of the polygon, for all i, such that these n − r lines intersect generically
away from the r-gon, then NΓ is isomorphic to π1(P

2 \ An1,...,nr
).

It follows from Bestvina and Brady [1] that NKn1,...,nr
is Fr−1 but not FPr, and

so the arrangement groups π1(P
2 \An1,...,nr

) enjoy the same finiteness properties.
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The equivariant spectral sequence and cohomology with local

coefficients

Alexander I. Suciu

(joint work with Stefan Papadima)

In his pioneering work from the late 1940s, J.H.C. Whitehead established the cat-
egory of CW-complexes as the natural framework for much of homotopy theory. A
key role in this theory is played by the cellular chain complex of the universal cover
of a connected CW-complex, which in turn is tightly connected to (co-)homology
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with local coefficients. In [8], we revisit these classical topics, drawing much of the
motivation from recent work on the topology of complements of complex hyper-
plane arrangements, and the study of cohomology jumping loci.

A spectral sequence. Let X be a connected CW-complex, π its fundamental
group, and kπ the group ring over a coefficient ring k. The cellular chain complex

of the universal cover, C•(X̃, k), is a chain complex of left kπ-modules, and so it
is filtered by the powers of the augmentation ideal. We investigate the spectral
sequence associated to this filtration, with coefficients in an arbitrary right kπ-
module M . To start with, we identify the d1 differential.

Theorem 2. There is a second-quadrant spectral sequence, {Er(X, M), dr}r≥1,
with E1

−p,p+q(X, M) = Hq(X, grp(M)). If k is a field, or k = Z and H∗(X, Z) is

torsion-free, then E1
−p,p+q(X, M) = grp(M) ⊗k Hq(X, k), and the d1 differential

decomposes as

grp(M) ⊗k Hq
id⊗∇X

// grp(M) ⊗k (H1 ⊗k Hq−1)
∼=��

(grp(M) ⊗k gr1(kπ)) ⊗k Hq−1

gr(µM )⊗id
// grp+1(M) ⊗k Hq−1 ,

where ∇X is the comultiplication map on H∗ = H∗(X, k), and µM : M ⊗k kπ → M
is the multiplication map of the module M .

Under fairly general assumptions, E•(X, M) has an E∞ term. In general,
though, E•(X, kπ) does not converge, even if X has only finitely many cells.

Base change. To obtain more structure in the spectral sequence, we restrict
to a special situation. Suppose ν : π ։ G is an epimorphism onto a group G;
then the group ring kG becomes a right kπ-module, via extension of scalars. The
resulting spectral sequence, E•(X, kGν), is a spectral sequence in the category of
left grJ (kG)-modules, where J is the augmentation ideal of kG.

Now let G be an abelian group. Assuming X is of finite type and k is a field, the
spectral sequence E•(X, kGν) does converge, and computes the J-adic completion
of H∗(X, kGν) = H∗(Y, k), where Y → X is the Galois G-cover defined by ν. As
a particular case, we recover in dual form a result of A. Reznikov [9] on the mod p
cohomology of cyclic p-covers of aspherical complexes.

Monodromy action. Let X be a connected, finite-type CW-complex. Suppose
ν : π1(X) ։ Z is an epimorphism, and k is a field. Let (H∗(X, k), ·νk) be the
cochain complex defined by left-multiplication by νk ∈ H1(X, k), the cohomology
class corresponding to ν.

Theorem 3. For each q ≥ 0, the grJ(kZ)-module structure on E∞(X, kZν) de-
termines P q

0 and P q
t−1, the free and (t−1)-primary parts of Hq(X, kZν), viewed as

a module over kZ = k[t±1]. Moreover, the monodromy action of Z on P j
0 ⊕ P j

t−1

is trivial for all j ≤ q if and only if Hj(H∗(X, k), ·νk) = 0, for all j ≤ q.
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Particularly interesting is the case of a smooth manifold X fibering over the
circle, with ν = p∗ : π ։ Z the homomorphism induced by the projection map,
p : X → S1. The homology of the resulting infinite cyclic cover was studied by
J. Milnor in [7]. This led to another spectral sequence, introduced by M. Far-
ber, and further developed by S.P. Novikov, see [6]. The Farber-Novikov spectral
sequence has (E1, d1)-page dual to our (E1(X, kZν), d1

ν)-page, and higher differen-
tials given by certain Massey products. Their spectral sequence, though, converges
to the free part of H∗(X, kZν), and thus misses the information on the (t − 1)-
primary part captured by the equivariant spectral sequence.

Formality and Jordan blocks. As an application of our machinery, we develop
a new 1-formality obstruction for groups, based on the interplay of two ingredients:
the connection between the formality property (in the sense of D. Sullivan) and
the cohomology jumping loci, established in [4], and the connection between the
monodromy action and the Aomoto complex, established in Theorem 3.

Theorem 4. Let N be the kernel of an epimorphism ν : π ։ Z. Suppose π is
1-formal, and b1(N, C) < ∞. Then the eigenvalue 1 of the monodromy action of
Z on H1(N, C) has only 1 × 1 Jordan blocks.

Given a reduced polynomial function f : (C2,0) → (C, 0), there are two stan-
dard fibrations associated with it. The above result helps explain the radically
different properties of these two fibrations.

• The Milnor fibration, S3
ǫ \K → S1, has total space the complement of the

link at the origin. As shown in [5], this space is formal. Theorem 4 allows
us then to recover the well-known fact that the algebraic monodromy has
no Jordan blocks of size greater than 1 for the eigenvalue λ = 1.

• The fibration f−1(D∗
ǫ ) → D∗

ǫ is obtained by restricting f to the preimage
of a small punctured disk around 0. As pointed out by Alex Dimca at the
Oberwolfach Mini-Workshop, the algebraic monodromy of this fibration
can have larger Jordan blocks for λ = 1, see [1]. In such a situation, the
total space, f−1(D∗

ǫ ), is non-formal, by Theorem 4.

Bounds on twisted cohomology ranks. Our approach yields readily com-
putable upper bounds on the ranks of the cohomology groups of a space, with
coefficients in a prime-power order, rank one local system.

Theorem 5. Let X be a connected, finite-type CW-complex, and let ρ : π1(X) →
C× be a character given by ρ(g) = ζν(g), where ν : π → Z is a homomorphism,
and ζ is a root of unity of order a power of a prime p. Then, for all q ≥ 0,

dimC Hq(X, ρC) ≤ dimFp
Hq(X, Fp).

If, moreover, H∗(X, Z) is torsion-free,

dimC Hq(X, ρC) ≤ dimFp
Hq(H∗(X, Fp), νFp

).
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Neither of these inequalities can be sharpened further. Indeed, we give examples
showing that both the prime-power hypothesis on the order of ζ, and the torsion-
free hypothesis on H∗(X, Z) are really necessary. The second inequality above
generalizes a result of D. Cohen and P. Orlik [2], valid only for complements of
complex hyperplane arrangements.

Minimality and linearization. Suppose now X has a minimal cell structure,
i.e., the number of q-cells of X coincides with the (rational) Betti number bq(X),
for every q ≥ 0; in particular, H∗(X, Z) is torsion-free. Let k = Z, or a field. Pick
a basis {e1, . . . , en} for H1 = H1(X, k), and identify the symmetric algebra on H1

with the polynomial ring S = k[e1, . . . , en].

Theorem 6. Under the above assumptions, the linearization of the equivariant
cochain complex of the universal abelian cover of X coincides with the universal
Aomoto complex, (H∗(X, k)⊗kS, D), with differentials D(α⊗1) =

∑n
i=1 e∗i ·α⊗ei.

This theorem generalizes results from [2] and [3], and answers a question posed
by M. Yoshinaga in [10].

References

[1] E. Artal Bartolo, P. Cassou-Noguès, A. Dimca, Sur la topologie des polynômes complexes,
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Floer-Novikov homology in the cotangent bundle

Mihai Damian

Let Mn be a closed connected manifold and T ∗M its cotangent bundle endowed
with the standard symplectic structure ωM = dλM , where λM is the Liouville
form λM =

∑
i pi dqi. Let Ln →֒ T ∗M be an exact Lagrangian submanifold, i.e.

a submanifold of maximal dimension such that λM |L is an exact 1-form. The only
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known examples of exact Lagrangian submanifolds are the graphs of functions
f : M → R

Lf := {(q, dfq) | q ∈ M}

and their images by Hamiltonian vector flows. The question of the existence
of other examples was first evoked by V.I. Arnold in his survey ”First steps in
symplectic topology” [1]. It is far from being solved. A positive answer was
given by R. Hind in the case L = M = S2. The other related results which were
proved up to now are topological obstructions to the existence of exact Lagrangian
embeddings L →֒ T ∗M . We summarize them in the statement below :

Theorem 0. Let M be a closed manifold and L →֒ T ∗M an exact Lagrangian
embedding of a closed manifold L. Denote by p the projection of L on the base
space M . Then we have :
a) If L and M are orientable, then χ(L) = deg2(p)χ(M). If L and M are not
orientable the same equality is valid modulo 4.
b) The index [π1(M) : p∗(π1(L))] is finite.
c) If M is simply connected then L can not be aspherical (i.e. Eilenberg-Mac
Lane).
d) If M is simply connected and L is spin with vanishing Maslov class, then
H∗(L, K) ≈ H∗(M, K), where K is an arbitrary field of non-zero characteristic.

The statement 0.a was proved by M. Audin in [2], 0.b was proved by F. Lalonde
and J-C Sikorav in [5] and 0.c is a result of C. Viterbo [9] (see also [8]) . More
recently, 0.d was proved independently by K. Fukaya, P. Seidel and I. Smith [4]
and D. Nadler [6]. For M = Sn and L simply connected this was proved previously
by P. Seidel [7] and by L. Buhovsky [3].

The aim of this talk is to present other obstructions which are obtained in
the case where M is a total space of a fibration over the circle, by means of a
non-Hamiltonian version of the Floer homology theory. Our main results are :

Theorem 1. Let Mn≥3 be a closed manifold which is the total space of a fibration
over S1 and let L →֒ T ∗M be an exact Lagrangian embedding of a closed manifold
L. Then we have :
a) Let < g1, g2, . . . , gp | r1, r2, . . . , rq > be an arbitrary presentation of the funda-
mental group π1(L). Then p − q ≤ 1.
b) The fundamental group π1(L) is not isomorphic to the free product G1 ∗ G2 of
two non-trivial (finitely presented) groups.

Here are some examples of non-embedding statements which can be inferred
from this theorem :

Corollary 1. Let P, Q, L be closed manifolds and suppose that P is simply con-
nected (or more generally that π1(P ) is finite).
a) Suppose that χ(L) 6= 0. Then there is no exact Lagrangian embedding L×P →֒
T ∗(Q × S1).

In particular, let Σg be a (non necessary orientable) surface of genus g ≥ 2.
Then there is no exact Lagrangian embedding of Σg × P into T ∗(Q × S1). More
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generally, for surfaces Σgi
as above there is no exact Lagrangian embedding

Σg1
× Σg2

× · · · × Σgk
× P →֒ T ∗(Q × S1).

b) Let Ln≥4 be the connected sum L1#L2 of two manifolds which are not homeo-
morphic to the n-sphere. Then there is no exact Lagrangian embedding L × P →֒
T ∗(Q × S1).
c) Suppose that there is an exact Lagrangian embedding

L × T l →֒ T ∗(T m × Q),

where T k is the k-dimensional torus and m > l. Then L satisfies the conditions
a, b of Theorem 1.

Idea of the proof

Let f : M → S1 be a fibration. The closed 1-form α = f∗dθ has no zeroes. Let
L be an exact embedding into T ∗M . Consider the Lagrangian isotopy

Lt = L + tα.

It follows that Lt ∩ L = ∅ for t large enough. The Lagrangian manifolds Lt are
not exact but they satisfy

ωM |π2(T∗M,Lt) = 0

just like an exact Lagrangian manifold. Under this hypothesis one can define a
Floer-type complex C•(L, Lt), which is spanned by the intersection points L∩Lt.
Therefore, this complex vanishes for t >> 0.

We then compute the homology of this complex and we show that it is isomor-
phic to the Novikov homology H∗(L, p∗u), where u ∈ H1(M, Z) is the cohomology
class of α and p : L → M is the projection. In particular it is independent of t. It
follows :

Theorem 2. H∗(L, p∗u) = 0

In order to prove Theorem 1 one has to argue in the following way : suppose
that 1.a is false. Then one can show that the Novikov homology H∗(L, v) does not
vanish for any v ∈ H1(L, R), contradicting thus Theorem 2. A similar argument
works for the proof of 1.b.
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Refinement of the Ray-Singer torsion

Maxim Braverman

(joint work with Thomas Kappeler)

We construct a canonical element, called the refined analytic torsion, of the deter-
minant line of the cohomology of a closed oriented odd-dimensional manifold M
with coefficients in a flat complex vector bundle E, which depends holomorphically
on the flat connection. It encodes the information about both, the Ray-Singer η-
invariant of the Atiyah-Patodi-Singer odd signature operator. In particular, when
the bundle E is acyclic, the refined analytic torsion is a non-zero complex number,
whose absolute value is equal (up to an explicit correction term) to the Ray-Singer
torsion and whose phase is expressed in terms of the η-invariant. The fact that
the Ray-Singer torsion and the η-invariant can be combined into one holomorphic
function allows to use the methods of complex analysis to study both invariants.
We present several applications of these methods. In particular, we compute the
ratio of the refined analytic torsion and the Farber-Turaev refinement of the com-
binatorial torsion.

Definition of the refined analytic torsion. For α ∈ Rep(π1(M), Cn) we denote by
Eα the flat vector bundle over M whose monodromy is equal to α. Let ∇α be the
flat connection on Eα. We defined a canonical non-zero element

ρan(α) = ρan(∇α) ∈ Det
(
H•(M, Eα)

)
,

called the refined analytic torsion, of the determinant line Det
(
H•(M, Eα)

)
of

the cohomology H•(M, Eα) of M with coefficients in Eα. The construction is
based on the study of the graded determinant of the Atiyah-Patodi-Singer odd
signature operator. If the representation α is not unitary, this operator is not self-
adjoint. To carry out the construction of the refined analytic torsion we proved
several new results about determinants of non-self-adjoint operators, which have
an independent interest.

Analyticity of the refined analytic torsion. The disjoint union of the lines
Det

(
H•(M, Eα)

)
, (α ∈ Rep(π1(M), Cn)), forms a line bundle

Det → Rep(π1(M), Cn),

called the determinant line bundle. It admits a nowhere vanishing section, given
by the Farber-Turaev torsion, and, hence, has a natural structure of a trivializable
holomorphic bundle.

We prove that ρan(α) is a nowhere vanishing holomorphic section of the bundle
Det. It means that the ratio of the refined analytic and the Farber-Turaev torsions
is a holomorphic function on Rep(π1(M), Cn). For an acyclic representation α,
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the determinant line Det
(
H•(M, Eα)

)
is canonically isomorphic to C and ρan(α)

can be viewed as a non-zero complex number. We show that ρan(α) is a holo-
morphic function on the open set Rep0(π1(M), Cn) ⊂ Rep(π1(M), Cn) of acyclic
representations.

Recently, Burghelea and Haller [5, 6] constructed another holomorphic function
on the space of acyclic representations, whose absolute value is related to the
Ray-Singer torsion. Their function is different from ours and is not related to the
η-invariant. In [4], we show that the Burghelea-Haller torsion can be computed in
terms of the refined analytic torsion.

Comparison with the Farber-Turaev torsion. In [9, 10], Turaev constructed a re-
fined version of the combinatorial torsion associated to a representation α, which
depends on additional combinatorial data, denoted by ǫ and called the Euler struc-
ture, as well as on the cohomological orientation of M , i.e., on the orientation
o of the determinant line of the cohomology H•(M, R) of M . In [8], the Tu-
raev torsion was redefined as a non-zero element ρǫ,o(α) of the determinant line
Det

(
H•(M, Eα)

)
.

One of our main results states that, for each connected component C of the
space Rep(π1(M), Cn), there exists a constant θ ∈ R, such that

(1)
ρan(α)

ρǫ,o(α)
= eiθ · fǫ,o(α),

where fǫ,o(α) is a holomorphic function of α ∈ Rep(π1(M), Cn), given by an
explicit local expression.
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Problem Session

All Participants

During the workshop, we had problem sessions to discuss various questions in
the fields. Many of these can be found in the abstracts above, but the remaining
ones are collected here.

BNS invariants and resonance

Problem 1 (A. Suciu). What is the relationship between the Bieri-Neumann-
Strebel invariants and the resonance varieties of a finitely generated group G?

Here is a more precise formulation. Pick a finite generating set for G, and
let C(G) be the corresponding Cayley graph. Given an additive real character
χ : G → R, let Cχ(G) be the full subgraph on vertex set {g ∈ G | χ(g) ≥ 0}. In
[2], Bieri, Neumann, and Strebel define the (first) BNS invariant of G to be:

Σ1(G) = {χ ∈ Hom(G, R) \ {0} | Cχ(G) is connected}.

Clearly, Σ1(G) is a conical subset of the vector space Hom(G, R) = H1(G; R). It
turns out that Σ1(G) does not depend on the choice of generating set for G.

Problem 2 (A. Suciu). Give conditions on G such that

(1) Σ1(G) ∪−Σ1(G) = H1(G; R) \ R1
1(G; R).

In the case when G is a right-angled Artin group equality (1) holds: the left
hand side was computed by Meier-VanWyk [10], the right hand side by Papadima-
Suciu [11], and both agree. Still one should ask for a conceptual reason of this
equality in greater generality.

One has to keep in mind that (1) cannot hold in full generality.

Topological complexity

The numerical invariant TC(X) measures navigational complexity of a topo-
logical space X viewed as the configuration space of a mechanical system, see [6].

Problem 3 (M. Farber). If F → E → B is a locally trivial fibration, is it true
that

TC(E) ≤ TC(F ) · TC(B)?

It is shown by M. Farber and M. Grant in [7] that

TC(E) ≤ TC(F ) · cat(B × B).

but there may well be counterexamples to Question 3.

Problem 4 (M. Farber). Let Ng be the non-orientable surface of genus g. What
is TC(Ng)?
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It is known that TC(N1) = 4 (Farber, Tabachnikov and Yuzvinsky [8]) and
TC(N2) = 4 (A. Costa) but for g > 2 the answer is still unknown.

Consider polygon spaces: Let ℓ = (l1, . . . , ln), where each li > 0. Look at all
closed planar polygons with given side lengths up to rotation and translation, and
call this space Mℓ. Let Nℓ be the spatial (R3) n-gons with the same condition.
For generic ℓ, Mℓ is a compact manifold of dimension n − 3 and Nℓ a compact
manifold of dimension 2(n − 3).

Problem 5 (M. Farber). What is TC(Mℓ)?

It is known that TC(Nℓ) = 2(n− 3) + 1 which uses a symplectic structure and
simple-conectedness, but for Mℓ it depends on the length vector ℓ.

By normalizing one can assume that l1 + · · · + ln = 1, so that ℓ ∈ ∆n−1.

Problem 6. Compute
∫
∆n−1 TC(Mℓ) dµ(ℓ).

Problem 7 (A. Suciu). Let M be a closed 3-manifold. Does TC(M) depend only
on π1(M)? In particular, is TC(L(p, q)) = TC(L(p, 1))?

As shown in [9], the LS category of M depends only on π1(M): it is 2, 3, or 4,
according to whether π1(M) is trivial, a non-trivial free group, or not a free group.

Almost direct products of groups

A split extension of groups, G = B ⋊ A, is called an almost direct product if A
acts on B by automorphisms inducing the identity on H∗(B).

Problem 8 (D. Cohen). For G = Fm⋊Fn an almost direct product of free groups,
when is G 1-formal?

Let PΣn be the group of basis-conjugating automorphisms of the free group
Fn.

Problem 9 (D. Cohen). Let G = PΣn.

(1) Prove (or disprove) that G is not an almost direct product of free groups.
(2) Determine whether the cohomology ring H∗(G; Q) is a Koszul algebra.

Novikov-Sikorav homology

Problem 10 (J.-C. Sikorav). Let M be a closed 3-dimensional aspherical manifold
and N ⊂ H1(M ; R) be the set of classes represented by nonsingular one-forms.

Does there exist an element ∆̃(M) ∈ Λ with the following properties:

(i) ∆̃(M) = ∆̃(M)∗

(ii) its image in Λ is the Alexander polynomial ∆(M) = gcddet(D2)i,j .
(iii) the Thurston norm is

||ξ||T = max
g,h∈supp(∆̃(M))

|ξ(g) − ξ(h)| − 2 = 2 max
g∈supp(∆̃(M))

|ξ(g)| − 2

(iv) ξ ∈ N ⇔ ∆̃(M) is invertible in Λξ (or in Λ−ξ) ⇔ is there is only one

element in supp(∆̃) with minimal (or maximal) ξ-value, and its coefficient
is ±1 ⇔ H1(M ; ξ) = 0.
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Problem 11 (J.-C. Sikorav). Let G be a finitely generated group. Let A be a
matrix in Matp,p(Z[G]), and let N ⊂ Hom(G, R) \ {0} be the set of ξ such that
A is invertible over Z[G]ξ (or Q[G]ξ). Is N defined by a finite number of integral
inequalities?

Line arrangements

Let A be a line arrangement in P2 and G = π1(P
2 \

⋃
ℓ∈A ℓ). According to

a fundamental result of Donu Arapura [1], every positive-dimensional component
of V1(G) is a coset of a subtorus by a torsion point of (C∗)n. The component is
translated if it is not the identity coset. An example of an arrangement group G
such that V1(G) does have a (1-dimensional) translated component was given by
Alex Suciu in [12]. Several questions about translated components in the charac-
teristic varieties of complex line arrangements were raised in [12, §6]. One of those
questions seems now within reach:

Problem 12 (M. Falk). Prove or provide a counter-example to the following
assertion: all positive-dimensional translated components of V1(G) have dimension
one.

Alex Dimca showed that any translated component of V1(G) of dimension two
or greater is a coset of a subtorus component of V1(G), see [4]. Combining results
of [5] with those of [3] may enable one to prove the assertion above.

References

[1] D. Arapura. Geometry of cohomology support loci for local systems. I., J. Alg. Geometry 6

(1997), no. 3, 563–597.
[2] R. Bieri, W. Neumann, R. Strebel, A geometric invariant of discrete groups, Invent. Math.

90 (1987), no. 3, 451–477.
[3] A. Dimca. Pencils of plane curves and characteristic varieties, arXiv:math.AG/0606442.
[4] A. Dimca. Characteristic varieties and constructible sheaves, arXiv:math.AG/0702871.
[5] M. Falk, S. Yuzvinsky, Multinets, resonance varieties, and pencils of plane curves, Compo-

sitio Math. 143 (2007), no. 4, 1069–1088.
[6] M. Farber, Topological complexity of motion planning, Discrete Comput. Geom. 29 (2003),

no. 2, 211–221.
[7] M. Farber, M. Grant, Robot motion planning, weights of cohomology classes, and cohomol-

ogy operations, to appear in Proc. Amer. Math. Soc.
[8] M. Farber, S. Tabachnikov, S. Yuzvinsky, Topological robotics: motion planning in projective

spaces, Int. Math. Res. Not. 2003, no. 34, 1853–1870.
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