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Introduction by the Organisers

The Workshop Komplexe algebraische Geometrie, organized by Fabrizio Catanese
(Bayreuth), Yujiro Kawamata (Tokyo), Gang Tian (Princeton), and Eckart Vieh-
weg (Essen), drew together 50 participants. There were several young PhD stu-
dents and other PostDocs in their 20’s and early 30’s, together with established
leaders of the fields related to the thematic title of the workshop. There were 23
talks, each lasting 55 minutes or one hour, and each followed by a lively 10 minutes
discussion.

As usual at an Oberwolfach Meeting, the mathematical discussions continued
outside the lecture room throughout the day and the night. The Conference fully
fulfilled its purported aim, of setting in contact mathematicians with different
specializations and non uniform background, of presenting new fashionable topics
alongside with new insights on long standing classical open problems, and also
cross-fertilizations with other research topics as arithmetic and physics. For the
latter, cf. the talk by Bernd Siebert on the new approach to Mirror Symmetry
through logarithmic geometry and toric affine Calabi Yau varieties and the one by
van Straten on quantization of completely integrable Hamiltonian Systems. For
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the former, cf. the talks by Winkelmann on integral sets and by McQuillan on the
Bloch principle.

A central role was occupied by the new results around the Hodge conjecture
presented by Voisin, and the new results by Hacon, McKernan et al which give an
essential step towards the final solution of the Minimal Model Program, and were
presented here by McKernan with a proposed approach to the Sarkisov program.

There were many expositions dealing with several classical problems and classi-
cal and modern theories. It would take too long to dwell on each of the outstanding
contributions presented at the Conference. For some topics there were several in-
terrelated talks, for instance we could mention the following classical themes:

(1) Abelian Varieties, Jacobian and Prym Varieties and their Moduli spaces
(van der Geer, Farkas, Lange, Hulek)

(2) Hodge Theory and Variation of Hodge structures (Voisin, Möller, Barja)
(3) Fibred varieties (Oguiso, Moeller)
(4) Algebraic Surfaces (Mukai, Pardini)
(5) Fundamental groups and algebraic fundamental groups (Esnault, Bauer,

Pardini).

There were also expositions on many other beautiful topics:

(1) Moduli spaces of sheaves on higher dimensional varieties (Lehn)
(2) Deformations of special complex maifolds (Rollenske)
(3) Varieties of power sums (Takagi)
(4) Ball quotients (Müller-Stach)
(5) Stacks and Azumaya algebras (Schröer)
(6) nefness and vector bundles (Peternell)

The variety of striking results and the very interesting and challenging propos-
als made the participation in the workshop rather strenuous but certainly highly
rewarding. We hope that the quality of the expositions in these abstracts will
make them quite useful to the mathematical community.
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Abstracts

Hodge loci and absolute Hodge classes

Claire Voisin

Let X be a smooth complex algebraic variety, and denote by Xan the correspond-
ing complex manifold. A Hodge class α on X is a class α ∈ (2ιπ)kH2k(Xan,Q) ∩
F kH2k(Xan,C) where F · stands for the Hodge filtration. According to [1], α is
said to be absolute Hodge if for any τ ∈ AutC, the class ατ ∈ F kH2k(Xan

τ ,C) is
again a Hodge class, that is belongs to (2ιπ)kH2k(Xan

τ ,Q). Here ατ is obtained by

using the isomorphism F kH2k(Xan,C) ∼= H2k(Xan,Ω·≥kXan) which gives by GAGA

F kH2k(Xan,C) ∼= H2k(X,Ω·≥kX/C).

We first reinterpret this notion in terms of the locus of Hodge classes (cf [2]) : X
is a complex fiber of a smooth quasi-projective family π : X → B defined over Q.
There is an algebraic vector bundle F kH2k over B which is defined over Q and
whose analytisation is the Hodge bundle with fiber F kH2k(Xan

t ,C) over t ∈ B(C).
Inside F kH2k(C), let Z be the set of all Hodge classes in fibers of π. Let Zα be
the connected component of Z passing through α. It is proved in [2] that Zα is
closed algebraic. We show that α is absolute Hodge iff Zα is defined over Q and
its Galois transforms under Gal (Q/Q) are again Zβ ’s. This leads to a weakening
a the notion of absolute Hodge classes. Namely consider the projection Bα of Zα
to B. Then we can study whether Bα is defined over Q and its Galois transforms
under Gal (Q/Q) are again Bβ’s.

This last property is enough to guarantee that the Hodge conjecture for α is
implied by the Hodge conjecture for Hodge classes on varieties defined over Q (a
question asked by Maillot and Soulé). On the other hand, it is much easier to
address. We prove the following criterion.

Theorem. Suppose that the only locally constant sub-Hodge structure L ⊂
H2k(Xt,Q), t ∈ Bα, is trivial, that is of type (k, k). Then Bα is defined over Q

and its Galois transforms under Gal (Q/Q) are again Bβ’s.

References

[1] P. Deligne. Hodge cycles on abelian varieties (notes by JS Milne), in Springer LNM 900 (
1982 ), 9-100.

[2] E. Cattani, P. Deligne, A. Kaplan, On the locus of Hodge classes, J. Amer. Math. Soc. 8
(1995), 2, 483-506.

[3] C. Voisin. Hodge loci and absolute Hodge classes, Compositio Mathematica 143, Part 4,
(2007), 945-958.



2796 Oberwolfach Report 47/2007

Cycle Relations on Jacobians

Gerard van der Geer

This is a report on joint work with Alexis Kouvidakis. The Chow ring CH∗Q(X)
with rational coefficients of a principally polarized abelian variety X over an
algebraically closed field k comes with a rich structure. It carries a grading
CH∗Q(X) = ⊕iCHi

Q(X) by codimension and an intersection product (x, y) 7→ x · y
making it into a commutative ring. But there is also the Pontryagin product
(x, y) 7→ x ∗ y which provides CH∗Q(X) with a second structure of commutative

ring and a Fourier-Mukai transform F : CH∗Q(X)→ CH∗Q(Xt), where Xt ∼= X is

the dual abelian variety. This transform F gives an isomorphism of (CH∗Q(X), ·)
with (CH∗Q(X), ∗) interchanging the intersection product and the Pontryagin prod-

uct. Furthermore we have the action of the integers Z ⊂ End(X) on CH∗Q(X).
Following Beauville (cf. [1]) we can put

CHi
(j)(X) = {x ∈ CHi

Q(X) : n∗x = n2i−jx for all n ∈ Z}.

Then F : CHi
(j)(X) ∼= CHg−i+j

(j) (X) which implies that i − g ≤ j ≤ i; but for

i = 1 and g − 1 we also know that j ≥ 0. The Chow ring modulo algebraic
equivalence A(X) = CH∗Q(X)/ ∼alg inherits this rich structure and we can write

A(X) = ⊕Ai(j).

Let now C be a smooth irreducible algebraic curve of genus g over an alge-
braically closed field k and embed C in its Jacobian J via p 7→ (p− p0) for some
point p0. Then class [C] of the image in A(J) is well-defined and can be decom-
posed as

[C] = C0 + C1 + · · ·+ Cg−1 with Cj ∈ A
g−1
(j) .

Note that the classes Cj are homologically trivial for j > 0 because n ∈ Z does
not act with the right power. We put

pj := F (Cj−1) ∈ A
j
(j−1) for j = 1, . . . , g.

Let now R be the smallest subring of A(J) containing the class [C] which is
stable under intersection and Pontryagin product, the action of Z and under F .
It is a theorem of Beauville ([2]) that R is generated by the classes p1, . . . , pg. In
particular the ring R is finite-dimensional. It is called the tautological ring of C.
The basic question is: what is the structure of R? It is a very subtle invariant
of C. It encodes both geometric information about the curve, but also arithmetic
information. A theorem of Colombo and van Geemen ([4]) says that if C possesses
a base-point free linear system g1

d then C(j) = 0 for j ≥ d − 1. But there is also
the celebrated theorem of Ceresa ([3]) that says that for a general curve of genus
g ≥ 3 the class p2 does not vanish and C − C− 6∼alg 0.

In 2006 Herbaut found a generalization of the Colombo-van Geemen theorem.
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Theorem 1. (Herbaut, [7]) If C has a base-point-free grd then
∑

a1+...ar=N

Bd(a1, . . . , ar)Ca1 ∗ · · · ∗ Car
= 0

for all N ≥ 0 with

Bd(a1, . . . , ar) =
∑

n1,...,nr≥1

(−1)d−
∑
nj

(
d∑
nj

)
na1

1 · · ·n
ar
r .

A little later Kouvidakis and I found the following result.

Theorem 2. (van der Geer–Kouvidakis, [6]) If C has a base-point-free grd then
∑

a1+...ar=N

(a1 + 1)! · · · (ar + 1)!Ca1 ∗ · · · ∗ Car
= 0

for all N ≥ d− 2r + 1.

It turns out the Herbauts relations are vacuous for N ≤ 2d − r, but for N =
d−2r+1 one finds the first new relation beyond the Colombo-van Geemen relation.
The relations in our theorem are much simpler. However, Zagier proved that the
set of relations of Herbaut is equivalent to that of our theorem, cf. [6]. But although
the theorems amount to the same the proofs are rather different. Herbaut works
on symmetric powers of C and calculates there cycle classes of loci that are blown
down under the map to the Jacobian. We use Grothendieck-Riemann-Roch to
deduce the relations.

The structure of R for a given curve is a difficult problem. Note that the general
curve of genus g has gonality [(g + 3)/2], hence pj = 0 for j ≥ g/2 + 1.

Observe that a (weighted) monomial of degree g and positive weight in the pi
has zero cohomology class, where we consider pj to be of degree j and weight j−1,
because a zero cycle which is homologically zero is algebraically equivalent to 0.

Polishchuk has studied in [9, 10] the operator x 7→ x ∗ θg−1/(g − 1)!, where θ
is the class of the theta divisor. The effect of this operator on R is given by the
differential operator

D = −g∂1 +
∑

m,n≥1

(
m+ n

n

)
pm+n−1∂m∂n,

where ∂i = ∂/∂pi. This gives a way of creating new relations from the positive
weight degree g monomials in the pj .

The ring R gets the structure of an sl2-module via

e(x) = p1 · x, h(x) = −g +
∑

n≥1

(n+ 1)pn∂n(x), f(x) = −D(x),

as Polishchuk observed (cf. [9, 10], also [8]).
Consider now the polynomial ring Q[x1, x2, . . .] and let I be the smallest ideal

containing all monomials in the xi of degree > g and all monomials of degree g
and weight > 0 where the degree (resp. weight) of xi is i (resp i − 1) and stable
under the operator D = −g∂1 +

∑
m,n≥1

(
m+n
n

)
xm+n−1∂m∂n with ∂i = ∂/∂xi.
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The quotient S := Q[x1, . . .]/I maps surjectively onto R via xi 7→ pi. Polishchuk
conjectures (cf. [9]) that for a general curve this is an isomorphism S ∼= R.

The structure of S is a combinatorial problem. We conjecture the following
for its structure, and then assuming Polishchuk’s conjecture also for the structure
of R.

Conjecture 1. For a general curve C of genus g the ring R satisfies

(1) dimQR = p(g + 1), the number of partitions of g + 1.
(2) dimRi(j) = p(i, g + 1 − i, j), the number of partitions of i with i− j parts

and with all parts ≤ g + 1− i.

Note that this conjecture is compatible with the duality between Ri(j) and

Rg−i+j(j) . It also connects well with Brill-Noether theory. Let d = d(g, r) be the

smallest d such that the general curve of genus g has a grd. We have d(g, r) = g+r−

[g/(r + 1)]. Then our conjecture predicts that Rj+r(j) = (0) if j ≥ d(g, r) − 2r + 1.

This is true for r = 1 since by Colombo-van Geemen we have that pj = 0 for
j ≥ g/2 + 1. It has been checked by Moonen (cf. [8]) for r = 2 and r = 3. Some
of the results on R can be lifted to the level of CH∗ instead of A, cf. [5, 8].

As a final remark, note that R also seems to carry subtle arithmetic information.
For example, if C is defined over a number field then one expects that pj = 0 for
all j > 2.
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Mordell-Weil group of an abelian fibered variety and its application to

hyperkähler manifolds

Keiji Oguiso

We work over C. In 70’s, Shioda [Sh] proved the following important:

Theorem 1. Let f : S −→ C be a relatively minimal Jacobian fibration, i.e., a
relatively minimal elliptic fibration with a section O, having at least one singular
fibers, say, Sti (1 ≤ i ≤ k). Then, the Mordell-Weil group MW(f) is a finitely
generated abelian group of rank

mw (f) = ρ(S)− 2−
k∑

i=1

(mi − 1) .

Here ρ(S) is the Picard number of S and mi is the number of irreducible compo-
nents of Sti . In particular, ρ(S) ≥ 2 and mw (f) ≤ ρ(S)− 2.

It is natural to ask the optimality of the last estimate. In this direction, the
following result was shown by [O1] (note that ρ(S) ≤ 20 for a K3 surface S):

Theorem 2. Let ρ be an integer s.t. 2 ≤ ρ ≤ 20. Then, for each such ρ, there is
a Jacobian K3 surface f : S −→ P1 s.t. ρ(S) = ρ and mw (f) = ρ− 2.

In the talk, I explained possible generalizations of these two theorems.

Definition 3. Let f : X −→ Y be a surjective morphism between normal projective
varieties. We call f an abelian fibration if f has a rational section O and the
generic fiber (in the sense of scheme) AK := Xη is an abelian variety defined over
K := C(Y ) with origin O ∈ AK(K). The Mordell-Weil group MW (f) of f is the
set of K-rational points AK(K), or more geometrically, the set of rational sections
of f .

MW (f) forms an abelian group and acts faithfully on X as birational automor-
phisms of X . We assume the following:

(i) X and Y have only Q-factorial rational singularities;
(ii) there is no prime divisor D on X s.t. f(D) is of codimension ≥ 2 on Y ;
(iii) h1(OX) = h1(OY ).
The conditions (i) and (ii) are natural in the view of flattening theorem and

probably the minimal model theory for higher dimensional varieties. Some con-
dition like (iii) is necessary for the finite generation of MW (f). For instance,
MW (p2) is far from being finitely generated for the product manifold p2 : A ×
Y −→ Y where A is a positive dimensional complex abelian variety. We have
h1(OS) = h1(OC) in Theorem 1, as f has a singular fiber, and also ρ(C) =
ρ(E) = 1, where E = Sη.

Definition 4. Let X be a compact Kähler manifold. We call X a hyperkähler
manifold (HK manifold, for short) if X is simply connected and X has an every-
where non-degenerate global holomorphic 2-form σX s.t. H0(Ω2

X) = CσX .
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Typical examples are the Hilbert schemes S[n] of n points on K3 surfaces S and
their small deformations [Be]. When n ≥ 2, ρ(S[n]) = ρ(S) + 1 and ρ(X) ≤ 21 for
any small deformation of S[n]. Note that a HK manifolds is even dimensional and
both projective HK manifolds and non-projective HK manifolds are dense in the
Kuranishi space.

The following theorem is due to Matsushita [M1], [M2]:

Theorem 5. Let f : X −→ Y be a surjective morphism with connected fibers from
a HK manifold of dimension 2n to a normal projective variety Y s.t. 0 < dimY <
2n. Then, any irreducible component of the fiber is Lagrangian. In particular,
any smooth fiber is a complex torus of dimension n and f is equi-dimensional.
Moreover, if X is projective, then Y is a Q-Fano variety with Q-factorial klt
singularities and ρ(Y ) = 1. In particular, (i), (ii) as well as (iii) (as h1(OX) = 0)
are satisfied for an abelian fibered HK manifold.

It is conjectured that the base space Y is always isomorphic to Pn.
The following is one of possible generalizations of Theorem 1 [O2]:

Theorem 6. Let f : X −→ Y be an abelian fibration with properties (i), (ii),
(iii). Let ∆ = ∪ki=1∆i ⊂ Y be the irreducible decomposition of the codimension 1
locus of the critical loci of f and let mi be the number of prime divisors lying over
∆i. Then MW (f) is a finitely generated abelian group of rank

mw (f) = ρ(X)− ρ(Y )− ρ(AK)−
k∑

i=1

(mi − 1) .

Here ρ(AK) is the rank of the Néron-Severi group of AK , i.e., the rank of group
of algebraically equivalent classes of divisors on AK defined over K. In particular,
ρ(X) ≥ 2 and mw (f) ≤ ρ(X)− 2.

A similar result is also obtained independently by [Kh]. As the dual abelian

variety Â of A is defined over K and is isogenous to A over K, the two groups
MW(f) = A(K) and Pic0AK(K) = Â(K) are isomorphic modulo finite groups.
This is the essential part of the proof, as it reduces the problem to the one on
divisor classes on X , Y , and AK . The rest of the proof is quite close to the proof
of Theorem 1 [Sh] and an argument of [Ka] for certain Calabi-Yau fiber spaces.
See [O2] for a complete proof.

The following is a partial generalization of Theorem 2:

Theorem 7. For each integers n ≥ 2 and 2 ≤ ρ ≤ 21, there is an abelian fibered
HK manifold f : X −→ Pn s.t. X is a small deformation of S[n] of a K3 surface
S, ρ(X) = ρ and mw (f) = ρ− 2.

Example 1. A Jacobian K3 surface f : S −→ P1 of Mordell-Weil rank ρ(S)− 2
induces an abelian fibration fn : S[n] −→ Pn of Mordell-Weil rank ≥ ρ(S) − 2.
For fn, the exceptional divisor of the Hilbert-Chow morphism becomes one of two
irreducible components over some critical prime divisor. Thus, from Theorem
6, we have mw (f) = ρ(S) − 2 = ρ(S[n]) − 3 and ρ(AK) = 1. Note that any
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smooth closed fiber Xt of fn is the product of elliptic curves. Thus ρ(Xt) ≥ 2. In
particular, ρ(AK) 6= ρ(Xt).

The crucial part of Theorem 7 is to compute somewhat mysterious ρ(AK):

Theorem 8. Let f : X −→ Pn be an abelian fibered HK manifold with generic

fiber AK . Then ρ(AK) = 1. In particular, mw (f) = ρ(X)− 2−
∑k

i=1(mi − 1).

For the proof, we use deformation theory. Let F be a general closed fiber of f
and let ι : F −→ X be the inclusion map. As f is fibered over Pn, by Matsushita
[M3] (see also [Sa]), deformation of X that keeps fibration is of codimension 1 in
the Kuranishi space. This deformation is a (part of) deformation of X that keeps
F Lagrangian. Therefore, by Voisin [Vo] (an easier direction), it is of codimension
rank Im(ι∗ : H2(X,Z) −→ H2(F,Z)). Thus rank Im ι∗ = 1. If ρ(AK) ≥ 2,
then the specialization of divisors D1 and D2 on X corresponding to independent
elements of NS (AK) would yield independent elements of NS (F ), a contradiction.
In this way, Theorem 8 can be proved.

Now one can show Theorem 7 by starting from fn : S[n] −→ Pn in Example 1
and deforming it as in the proof for the K3 case. The argument is based on the
jumping of Picard numbers under deformation [O1], again Voisin’s deformation
theory of Lagrangian submanifolds [Vo] (harder part), and the fact that fibered HK
manifold with a bimeromorphic section over a projective base space is projective
[O2]. See [O3] (which will be avaiable when this report will be published) for
details.
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The Sarkisov Program

James McKernan

(joint work with Christopher Hacon)

Recall the following well known conjecture of higher dimensional geometry:

Conjecture 1. Let X be a smooth projective variety.
Then there is a KX-negative birational map f : X 99K Y , whose inverse does not

contract any divisors, where Y has Q-factorial terminal singularities and either

(1) Y is a minimal model, so that KY is nef (that is KY · Σ ≥ 0 for every
curve C in Y ), or

(2) Y is a Mori fibre space, so that there is a contraction morphism ψ : Y →
V of relative Picard number one, dimV < dim Y and −KY is relatively
ample.

Negativity means that that the difference between the pullbacks of KX and KY

to a common resolution is effective and exceptional. The key point is that then X
and Y have the same pluricanonical forms:

∀m ≥ 0 H0(X,OX(mKX)) ≃ H0(Y,OY (mKY )).

Note that we do know some cases of Conjecture 1:

Theorem 1 (Birkar, Cascini, Hacon, McKernan, [1]). Let X be a smooth projective
variety.

(1) If X is of general type then X has a minimal model.
(2) If −KX is not pseudo-effective (ie KX is not a limit of big divisors) then

X has a Mori fibre space.

However in this talk I am much more interested in the fact that the output
of the MMP is not unique in either case. Fortunately we do have a satisfactory
understanding of what happens in the case of minimal models:

Theorem 2 (Kawamata, [3]). If f : X1 99K X2 is a birational map between two
minimal models then f is a composition of flops.

We also know that ifX is of general type, thenX has only finitely many minimal
models (in fact see below for a much sharper statement).

However the situation for Mori fibre spaces is much more complicated. To
understand the situation better, consider the case of surfaces. In this case, a Mori
fibre space is a contraction morphism φ : X −→ U , where X is a smooth surface
and φ is a P1-bundle, unless U is a point, in which case X = P2. The problem is
that rational surfaces have infinitely many Mori fibre spaces. Fortunately however
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they are arranged in an appealing fashion:

pt ✛ P2 T1 T2 · · ·

P1 ✛ F0
✲ F1

❄

✲

✛

F2

❄

✲

✲

F3

✲

· · ·

pt
❄

✛ P1
❄

= P1
❄

= P1
❄

= P1
❄

· · ·

The morphism F1 −→ P1 is simply the blow up of a point and the birational
map Fi 99K Fi+1 is an elementary transformation, which is given by the morphism
Ti −→ Fi which blows up a point of a fibre of the P1-fibration where it meets
a section of minimal self-intersection and then the morphism Ti −→ Fi+1 which
contracts the old fibre (or the inverse of such a map). We then have the following
classical result, whose modern formulation is due to Iskovskikh:

Theorem 3. Let f : X 99K Y be a birational map between any two Mori fibre
spaces φ : X −→ U and ψ : Y −→ V .

Then f is a composition of elementary links.

An elementary link is one of an elementary tranformation, blowing up a point of
P2 and switching which factor of P1×P1 we project down to. The key point about
Theorem 3 is that the intermediary links of the factorisation of f are all Mori fibre
spaces themselves. It is quite instructive to factor the Cremona transformation

f : P2
99K P2 where [X : Y : Z] −→ [X−1 : Y −1 : Z−1],

into a sequence of elementary transformations. Perhaps one of the most interesting
applications of Theorem 3 is to a proof of the following classical result:

Theorem 4. The group Bir(P2) of birational automorphisms of P2 is generated
by the Cremona transformation and PGL(3).
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Sarkisov was the first to realise that such a result should hold in all dimensions.
We recall the definition of the Sarkisov links I-IV:

(I)

X1
✲ · · · ✲ Xk = Y

X = X0

❄

V

ψ

❄

U

φ

❄
✛

g

where X1 −→ X is an extremal divisorial contraction, X1 99K Xk = Y is a
sequence of flops and ρ(V/U) = 1. A Sarkisov link of type II is the mirror reflection
of this diagram in a central vertical line.

(III)

X = X0
✲ · · · ✲ Xk−1

U

φ

❄

Xk = Y
❄

V

ψ

❄

f

✲

where X = X0 99K Xk−1 is a sequence of flips, Xk−1 −→ Xk = Y is an extremal
divisorial contraction and ρ(U/V ) = 1.

(IV)

X = X0
✲ · · · ✲ Xk = Y

U

φ

❄

V

ψ

❄

W
✛

gf
✲

Note that the blow up of a point of P2 is a link of type I, the blow down is a
link of type II, an elementary tranformation is a link of type III, and switching
the factors is a link of type IV.
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Theorem 5 (Corti, Hacon, Iskovskikh, McKernan, Sarkisov, Shokurov). Let
f : X 99K Y be a birational map between two Mori fibre spaces.

Then f is a composition of Sarkisov links.

This result was proved by Corti [2] in dimension three, and some special cases
were proved by Sarkisov in all dimensions and independently by Iskovskikh and
Shokurov. The key trick to prove Theorem 5 is to realise the intermediary links
as log terminal models, for an appropriate choice of divisors on some common
resolution W of X and Y . The result then follows by finiteness of these models,
which is proved in [1]. It seems worth pointing out though that we do not even
have a putative set of generators of Bir(P3).

References

[1] C. Birkar, P. Cascini, C. Hacon, and J. McKernan, Existence of minimal models for varieties
of log general type, arXiv:math.AG/0610203.

[2] A. Corti, Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom. 4 (1995),
no. 2, 223–254.

[3] Y. Kawamata, Flops connect minimal models, arXiv:alg-geom/07041013.

The Kodaira dimension of the moduli space of Prym varieties

Gavril Farkas

We consider the moduli stack Rg parametrizing pairs (C, η) where [C] ∈ Mg

is a smooth curve and η ∈ Pic0(C)[2] is a torsion point of order 2 giving rise to
an étale double cover of C. We denote by π : Rg → Mg the natural projection
forgetting the point of order 2 and by P : Rg → Ag−1 the Prym map given by

P (C, η) := Ker{f∗ : Pic0(C̃)→ Pic0(C)}0,

where f : C̃ → C is the étale double covering determined by η. It is known
that P is generically injective for g ≥ 7 (cf. [FS]), hence one can view Rg as a

birational model for the moduli stack of Prym varieties of dimension g − 1. If Rg
the normalization of the Deligne-Mumford moduli spaceMg in the function field

of Rg, then it is known that Rg is isomorphic to the stack of Beauville admissible
double covers (cf. [B]), and also to the stack of Prym curves in the sense of [BCF].
It is known that the space Rg is unirational for g ≤ 6 (cf. [D]) and the main result
of this paper is the following:

Theorem 1. The moduli space Rg is of general type for all g > 13.

The strategy of the proof is similar to the one used by Harris and Mumford
for proving thatMg is of general type for large g (cf. [HM]). One first computes

the canonical class KRg
in terms of the generators of Pic(Rg) and then shows

that KRg
is effective for g > 13 by explicitly computing the class of a specific

effective divisor on Rg and comparing it to KRg
. The divisors we construct are

of two types, dpending on whether g is even or odd. In an appendix, K. Ludwig
will show that for g ≥ 4 any pluricanonical form on Rg,reg automatically extends
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to any desingularization. This is a key ingredient in carrying out the program of
computing the Kodaira dimension of Rg.

In the odd genus case we we set g = 2i+ 1 and consider the vector bundle QC
defined by the exact sequence

0 −→ Q∨C −→ H0(KC)⊗OC → QC −→ 0.

(If other words, QC is the normal bundle of C embedded in its Jacobian). It is
well-known that QC is a semi-stable vector bundle of rank g − 1 on C of slope
ν(QC) = 2 ∈ Z, so it makes sense to look at the theta divisors of its exterior
powers. Recall that

Θ∧iQC
= {ξ ∈ Picg−2i−1(C) : h0(C,∧iQC ⊗ ξ) ≥ 1},

and the main result from [FMP] identifies this locus with the difference variety
Ci − Ci ⊂ Pic0(C).

Theorem 2. For g+ 2i+ 1, the locus Ei consisting of those points [C, η] ∈ R2i+1

such that η ∈ Θ∧iQC
, is an effective divisor on R2i+1. Its class on R2i+1 is given

by the formula

Ei ≡
2

i

(
2i− 2

i− 1

)
·
(
(3i+ 1)λ−

i

2
δu0 −

2i+ 1

4
δr0 − ( higher boundary divisors)

)
.

This proves our main result in the odd genus case. The diviors we consider for
even genus are of Koszul type in the sense of [F].

Theorem 3. For g = 2i + 6, the locus Di of those [C, η] ∈ R2i+6 such that
the Koszul cohomology group Ki,2(C,KC + η) does not vanish (or equivalently,
(C,KC+η) fails the Green-Lazarsfeld property (Ni)), is a virtual divisor on R2i+6.
Its class on R2i+6 is given by the formula:

Di ≡
1

2

(
2i+ 2

i

)(6(2i+ 7)

i+ 3
λ− 2δu0 − 3δr0 − · · ·

)
.

In both Theorems 2 and 3, λ ∈ Pic(Rg) denotes the Hodge class and π∗(δ0) =
δu0 + 2δr0 (that is δr0 is the ramification divisor of π whereas δu0 is the unramified
part of the pull-back of the boundary divisor δ0 fromMg.). The boundary divisors
δu0 and δr0 have clear modular description in terms of Prym curves and the same
holds for the higher boundary divisors.

References

[B] A. Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149-96.
[BCF] E. Ballico, C. Casagrande, C. Fontanari, Moduli of Prym curves, Docementa Math. 9

(2004), 265–281.
[D] R. Donagi, The unirationality of A5, Annal of Math. 119 (1984), 269–307.
[F] G. Farkas Kozul divisors on moduli spaces of curves, math.AG/0607475, to appear in the

Amer. J. Math.
[FMP] G. Farkas, M. Popa, M. Mustata, Divisors on Mg,g+1 and the Minimal Resolution

Conjecture, Annales Scient. Ecole Norm. Sup. 36 (2003), 553-581.
[FS] R. Friedman, R. Smith,The generic Torelli theorem for the Prym map, Invent. Math. 67

(1982), 473–490.



Komplexe Algebraische Geometrie 2807

[HM] J. Harris and D. Mumford, On the Kodaira dimension on Mg , Invent. Math. 67 (1982),
22-88.

The computation of ...

References

[1] M. Muster, Computing certain invariants of topological spaces of dimension three, Topology
32 (1990), 100–120.

[2] M. Muster, Computing other invariants of topological spaces of dimension three, Topology
32 (1990), 120–140.

Canonical coordinates in mirror symmetry

Bernd Siebert

(joint work with Mark Gross)

Mirror symmetry is a statement relating the complex geometry of an algebraic
variety to the symplectic geometry of a mirror partner and conversely. First lim-
ited to pairs of three-dimensional Calabi-Yau varieties, mirror phenomena have
been observed in arbitrary dimensions and with varieties with only effective anti-
canonical class; in the latter case the mirror is a non-compact variety together
with a holomorphic function.

Finer statements of this sort require to identify the moduli space of complex
structures on one side with the (complexified) moduli space of deformations of the
symplectic or rather the Kähler structure. Under this identification flat complex-
ified Kähler parameters correspond to what are called canonical coordinates on
the complex side, which are constructed by certain period integrals. For example,
the celebrated computation in [2] of the numbers of rational holomorphic curves
(genus zero Gromov-Witten invariants) on the quintic threefold works by expand-
ing the so-called Yukawa-coupling on the family of mirror quintics with respect to
canonical coordinates.

In [4] Mark Gross and myself laid the foundations for a program providing a
general framework for the study of mirror phenomena. The basic idea is to use
degenerations of the considered varieties into simpler (toric) pieces. For mirror
symmetry for complete varieties with trivial canonical bundle, we look at so-called
toric degenerations. These are degenerations with central fiber a union of toric
varieties, glued torically along pairs of toric divisors, and such that the map to the
base is toroidal near the zero-dimensional toric strata. The simplest interesting
example is a sufficiently general degeneration of a quartic in P3 into a union of
four hyperplanes. To such a degeneration we associate a combinatorial object, the
dual intersection complex of the central fiber. This is a cell complex P of integral,
convex polyhedra, together with a compatible structure of a complete fan at each
vertex. The underlying topological space B is then a manifold, and it comes
with a well-defined integral affine structure (transition functions in Aff(Zn) =
Zn ⋊ GL(Zn)) outside a closed, polyhedral subset ∆ ⊂ B of codimension two.
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In fashionable terms it is appropriate to call this data (B,P) an integral tropical
manifold.

To obtain mirror symmetry one needs a polarization on the degeneration. This
leads to a (multi-valued) strictly convex, piecewise linear function ϕ on B. The
basic duality between (I) integral, bounded convex polyhedra and (II) pairs con-
sisting of a complete fan and an integral, convex, piecewise linear function on it,
leads to a perfect Legendre-type duality on polarized tropical manifolds:

(B,P, ϕ)←→ (B̌, P̌, ϕ̌).

This provides the basic mirror mechanism: Toric degenerations with Legendre dual
degeneration data are mirror dual. It can be viewed as an algebraic-geometric,
limit version of the differential geometric SYZ-approach to mirror symmetry [8].
Mark Gross has shown that the largest class of known mirror pairs, complete in-
tersections in toric varieties [1], fits into this framework [3]. Moreover, preliminary
results on other cases (local mirror symmetry, Fano/Landau-Ginzburg duality, and
even mirror phenomena of varieties of general type) suggest that this idea should
work in complete generality.

In [5] we closed the main missing link in this picture by showing that, under cer-
tain natural conditions, any (B,P, ϕ) arises as the dual intersection of an explicit,
canonical toric degeneration. This gives complete control of the complex side of
mirror symmetry. Such canonical families were known from toric methods only
for toric and abelian varieties (Mumford). These are, in a sense, linear cases, and
a similarly direct method does certainly not work for proper Calabi-Yau varieties.
This is directly related to the fact that the affine structure on B\∆ has non-trivial
local monodromy around ∆ ⊂ B. (The linear cases have ∆ = ∅.) Therefore, local
models for the toric degeneration suggested by toric geometry do not patch. The
insight in [5] is that tropical geometry on (B̌, P̌, ϕ̌) provides a way to making the
necessary adjustments canonically. Some inspiration for this came from the work
of Kontsevich and Soibelman [7], where a rigid analytic K3-surface is constructed
out of an affine structure on S2 minus 24 singular points.

In the talk I argued that the canonical one-parameter families from our con-
struction readily provide canonical coordinates. The main point is that it is easy
to control the relevant period integrals over a large class of n-cycles throughout
our algorithm. What is currently missing to make this a theorem is to check that
the n-cycles of this form span the relevant subspace W2 of the monodromy weight
filtration on the middle homology. This will be addressed in the forthcoming
paper [6].
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Mixed Tate motives and the fundamental group

Hélène Esnault

(joint work with Marc Levine)

Abstract: Let k be a number field, and let S ⊂ P1(k) be a finite set of rational
points. We relate the Deligne-Goncharov contruction of the motivic fundamental
group of X := P1\S to the Tannaka group scheme over Q of the category of mixed
Tate motives over X .

More presicely, let MT (k) be the full abelian subcategory of Voevodksy’s cate-
goryDMgm(k) of geometric motives over k. It has been defined by Marc Levine [6],
based on Borel’s theorem saying-in more modern language- that number fields sat-
isfy the Beilinson-Soulé vanishing theorem. This is a Q-linear, abelian, tensor rigid
category, which is endowed with a natural neutral fiber functor grW associated to
the weight filtration of a motive. LetG(MT (k), grW ) be its Tannaka group scheme
over Q. If X is as described, localization shows that it also satisfies the Beilinson-
Soulé vanishing theorem. Cisinski-Déglise’s definition of DMgm(X) allows to de-
fineMT (X) ⊂ DMgm(X) in the same way as over k. So one has its Tannaka group
scheme G(MT (X), grW ) over Q. The structure morphism ǫ : X → Spec(k) yields
a surjective homomorphism ǫ∗ : G(MT (X), grW ) → G(MT (k), grW ). Thus any
section s of ǫ∗ defines K := Ker(ǫ∗), which is a group scheme over Q, as a represen-
tation of G(MT (k), grW ), thus Q[K] as a ind-representation of G(MT (k), grW ),
and thus as an ind-object ofMT (k). LetKs be the corresponding pro-groupscheme
object in GM(k). One shows

Theorem 1. If s is the section associated to a rational point a ∈ X(k), then Ks is
isomorphic in MT (k) to Deligne/Deligne-Goncharov motivic fundamental group
scheme πmot

1 (X, a).
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Enriques surfaces covered by Kummer’s quartics

Shigeru Mukai

(joint work with H. Ohashi)

An Enriques surface is a quotient of a K3 surface by a (fixed point) free invo-
lution. It determines the K3 surface uniquely as its universal cover but not vice
versa. In this talk we give an answer to the following problem in the case of a very
general Jacobian Kummer surface.

Problem Given a K3 surface X , how many Enriques surfaces are obtained by
taking quotient ofX? Equivalently, how many conjugacy classes of free involutions
are there in the automorphism group of X? Describe all Enriques quotients of X
as explicit as possible.

Let J(C) be the Jacobian of a (smooth projective) curve C of genus 2. Its
image KmC ⊂ P3 by the linear system |2Θ| is a quartic surface with 16 nodes
and called Kummer’s quartic. We denote the minimal resolution by KmC. It is
known that KmC is the intersection of three quadrics

(*)

6∑

i=1

x2
i =

6∑

i=1

λix
2
i =

6∑

i=1

λ2
i x

2
i = 0

in P5. (The coordinates xi’s correspond to the 6 Weierstrass points of C.)

‘Theorem’ Assume that the Picard number of J(C) is equal to 1. Then there are
exactly 31 Enriques quotients of the Jacobian Kummer surface KmC. Moreover,
they are KmC/εG, KmC/Swη and KmC/εW obtained from

(1) 15 Göpel subgroups G of the 2-torsion group J(C)(2),
(2) 10 even theta characteristics η of C, and

(3) 6 cubic surfaces SW ⊂ P3 whose Hesians H̃(SW ) are isomorphic to KmC.

Here we explain the 31 free involutions εG, Swη and εW briefly.

(1) A subgroup G ⊂ J(C)(2) of order 4 is called Göpel if the Weil pairing is
identically zero on G. εG is induced from a standard Cremona involution
of P3 with center the 4 nodes of KmC corresponding to G ([2], [3]).

(2) An even theta characteristic η corresponds to a partition of the 6 Weier-
strass points into two parts of cardinality 3. The switch Swη in the theorem
is the involution changing the three coordinates of xi’s in (*) belonging to
one of two parts corresponding to η.
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(3) A certain hexad of nodes of KmC, called a Weber hexad, defines a bira-
tional embeddingKmC into P3 whose image is the Hessian quarticH(SW )
of a cubic surface SW ⊂ P3. H(SW ) is defined by the two equations

5∑

1

xi =

5∑

1

ai
xi

= 0

in P4 for nonzero constants a1, . . . , a5 ∈ C. The a free involution εW is
induced from the standard Cremona involution (xi) 7→ (ai/xi) of P4 (cf.
[1]). There are 12 Weber hexads W modulo the translation by J(C)(2).
These 12 hexads decomposes into six pairs such that two hexads in the
same pair define the same Enriques quotients.

The theorem was conjectured and proved in the case where the patching group
is of type (2, 2) in my study of rank one involutions [4]. (Rank one involution
is the next step of the numerically trivial, or rank zero, involution towards the
classification of all involutions of Enriques surfaces.) The general case has been
recently (almost) proved by Hisanori Ohashi.
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A characterizaion of Shimura varieties

Martin Möller

(joint work with Eckart Viehweg, Kang Zuo)

Let Y be a complex projective manifold of dimension n, and let U be the comple-
ment of a normal crossing divisor S. We are interested in families f : A → U of
abelian varieties, up to isogeny, and we are looking for numerical invariants which
take the minimal possible value if and only if U is a Shimura variety of certain
type, or to be more precise, if f : A → U is a Kuga fibre space. Those invariants
will be attached to C-subvariations of Hodge structures V of R1f∗CA. We will
always assume that the family has semistable reduction in codimension one, hence
that the local system R1f∗CA has unipotent monodromy in the general points of
the components of S.
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The most important numerical invariant will be the slope of V or of the Higgs
bundle (E, θ). Recall that the slope µ(F) of a torsion free coherent sheaf F on Y ,
is defined by

Υ(F) =
c1(F)

rk(F)
∈ H2(Y,Q) and µ(F) = Υ(F).c1(ωY (S))dim(Y )−1.

We write

µ(V) := µ(E1,0)− µ(E0,1).

We require some positivity properties of the sheaf of differential forms on the
compactification Y of U :

Assumptions 1. Y is a connected projective manifold and U is the complement
of a normal crossing divisor S such that:

• Ω1
Y (logS) is nef and ωY (S) is ample with respect to U .

If the universal covering π : Ũ → U is a bounded symmetric domain, hence
isomorphic to M1 × · · · ×Ms for irreducible bounded symmetric domains Mi of
dimension ni, Mumford constructed in [Mu77, Section 4] a non-singular compacti-
fication satisfying the Assumption 1. We will call it the Mumford compactification
in the sequel. The Mumford compactification has the following property:

Condition 2.

• Ω1
Y (logS) is µ-polystable. If Ω1

Y (logS) = Ω1 ⊕ · · · ⊕Ωs′ is the decomposi-
tion as a direct sum of stable direct factors, then s = s′ and for a suitable
choice of the indices the pullback of Ωi|U to Ũ coincides with pr∗iΩ

1
Mi

.

In particular the Mumford compactification exists for a Shimura variety of
Hodge type or for the base of a Kuga fibre space. The following properties of
Shimura varieties are presumably somehow known, they can serve as a “Leitfaden”
for how Shimura varieties can be characterized.

Proposition 3. Let f : A → U be a Kuga fibre space, such that W = R1f∗CA
has unipotent local monodromies at infinity. Then there exists a compactification
Y satisfying the Assumption 1 and the Condition 2 such that for all irreducible
non-unitary C subvariation of Hodge structures V of W with Higgs bundle (E, θ)
one has:

i. There exists some i = i(V) such that the Higgs field θ factorizes through

θ : E1,0 >> E0,1 ⊗ Ωi ⊂>> E0,1 ⊗ Ω1
Y (logS).

(We say that Θ is pure of type i in this case)
ii. The ”Arakelov equality” µ(V) = µ(Ω1

Y (logS)) holds.
iii. Assume for i = i(V) that Mi is a complex ball of dimension ni ≥ 1. Then

the length of the iterated Kodaira-Spencer map equals

ς(V) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.
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The “Arakelov Equality” in ii) will be our main condition. It is valid indepen-
dently of the compactification. Assume that U has a compactification Y satisfying
the Assumptions 1. This allows to apply Yau’s Uniformization Theorem (as re-
called in [VZ07, Theorem 1.4]). In particular the sheaf Ω1

Y (logS) is µ-polystable
and the Condition 2 holds true. So one has again a direct sum decomposition

(1) Ω1
Y (log S) = Ω1 ⊕ · · · ⊕ Ωs.

in stable sheaves of rank ni = rk(Ωi). We say that Ωi is of type A, if it is invertible,
and of type B, if ni > 1 and if for all m > 0 the sheaf Sm(Ωi) is stable. Finally
it is of type C in the remaining cases, i.e. if for some m > 1 the sheaf Sm(Ωi) is
unstable.

Let again π : Ũ → U denote the universal covering with covering group Γ. The
decomposition (1) of Ω1

Y (logS) gives rise to a product structure

(2) Ũ = M1 × · · · ×Ms,

where ni = dim(Mi). If Ũ is a bounded symmetric domain, the Mi in (2) are
irreducible bounded symmetric domains, and on a Mumford compactification the
decomposition (1) coincides with the one in Property 2.

Yau’s Uniformization Theorem gives a criterion for the Mi to be bounded sym-
metric domains. In fact, if Ωi is of type A, Mi is a one-dimensional complex ball,
and it is a bounded symmetric domain of rank > 1, if Ωi is of type C.

If Ωi is of type B, then Mi is a ni-dimensional complex ball if and only if

(3)
[
2 · (ni + 1) · c2(Ωi)− ni · c1(Ωi)

2
]
.c(ωY (S))dim(Y )−2 = 0.

Fix an irreducible polarized C-variation of Hodge structures V on U of weight
one and with Higgs bundle (E, θ). By [VZ07, Theorem 1] one has the Arakelov
type inequality

(4) µ(V) = µ(E1,0)− µ(E0,1) ≤ µ(Ω1
Y (log S)).

We can now state a first part of a converse of Proposition 3.

Theorem 4. Under the Assumptions 1 consider an irreducible polarized C-varia-
tion of Hodge structures V of weight one with unipotent monodromy at infinity. If
V satisfies the Arakelov equality then V is pure for some i = i(V).

The proof of Theorem 4 makes use of small twists of the slopes µ(F) and the
behaviour of the Harder-Narasimhan filtration under such twists.

Finally we will obtain the numerical characterization of Kuga fibre spaces in
the following form.

Theorem 5. Let f : A→ U be a smooth family of abelian varieties, such that the
induced morphism U → Ag is generically finite. Assume that U has a projective
compactification Y satisfying the Assumptions 1.

Then f : A → U is a Kuga fibre space if and only if for each irreducible
subvariation of Hodge structures V of R1f∗CA with Higgs bundle (E, θ) one has:

1. If V is non-unitary, the Arakelov equality µ(V) = µ(Ω1
Y (log S)) holds.
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2. For each stable direct factor Ωj of Ω1
Y (log S) of type B either the compo-

sition

θj : E1,0 θ >> E0,1 ⊗ Ω1
Y (logS) pr >> E0,1 ⊗ Ωj

is zero, or

ς((E, θj)) =
rk(E1,0) · rk(E0,1) · (nj + 1)

rk(E) · nj
.

If in addition f : A→ U is infinitesimally rigid U is a Shimura variety of Hodge
type.
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Absolute Galois changes the fundamental group as much as possible

Ingrid C. Bauer

(joint work with F. Catanese and F. Grunewald)

1. Motivation

The key slogan of the following is: the absolute Galois group acts on the set of
components of moduli spaces, e.g., let Mx,y be the moduli space of isomorphism
classes of minimal complex surfaces S of general type with K2

S = x, χ(OS) = y.
It is wellknown that Mx,y is defined over the integers and therefore the absolute
Galois group Gal(Q̄/Q) acts on the set of irreducible (or connected) components
of Mx,y.

In particular, Gal(Q̄/Q) acts on the 0-dimensional components of Mx,y, the
rigid surfaces. Try to understand the absolute Galois group Gal(Q̄/Q).

Define:

M :=
⋃

x,y

Mx,y.

There are the following natural

Question 1. 1) Given a variety defined over Q̄, which topological invariants of
the corresponding complex space are preserved by the absolute Galois group?
2) Is the action of Gal(Q̄/Q) on M faithful?
3) Is the action of Gal(Q̄/Q) faithful on rigid surfaces?
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2. Some known results

1) If X is a nonsingular projective variety, then the Betti numbers are preserved
by the absolute Galois group (Serre).

2)The profinite completion of the fundamental group of an algebraic variety is
invariant under Gal(Q̄/Q); more generally, the profinite completion of the homo-
topy type of X is invariant under Galois conjugation (Artin-Mazur, [3]).

3) In the 60’s J.P. Serre (cf. [8]) gave an elegant example of a smooth variety
X (defined over Q̄) and a σ ∈ Gal(Q̄/Q) such that the fundamental groups of the
complex manifolds X and (X)σ are not isomorphic. In particular, X and (X)σ

are not homeomorphic.
4) There are further recent examples of Galois conjugate non homeomorphic

varieties, e.g., recently by Artal-Bartolo, Carmona Ruber, Cogolludo Augustin
(cf. [2].

5) Abelson (cf. [1]) gave examples of Galois conjugate (nonsingular projective)
varieties with the same fundamental group, yet of different homotopy type, and
examples of conjugate (nonsingular quasiprojective) varieties which are homotopy
equivalent, but not homeomorphic.

6) Gal(Q̄/Q) acts faithfully on coverings of the projective line branched only
over {0, 1,∞}; (Grothendieck’s dessins d’enfants).

7) E. Girondo and G. Gonzalez-Diez: Gal(Q̄/Q) acts faithful on dessins of any
given genus g (cf. [7]).

8) R. Easton and R. Vakil show that the absolute Galois group acts faithfully
on the set of irreducible components of M (cf. [6]).

3. An explicit example

In this section we provide, an explicit example of surfaces with nonisomorphic
fundamental groups which are conjugate under the absolute Galois group, hence
with isomorphic profinite completions of their respective fundamental groups.

We consider (as in [4]) normalized polynomials P (z) := zn + an−2z
n−2 + . . . a0

with only critical values {0, 1}. Once we choose the types of the respective cycle
decompositions (m1, . . . ,mr) and (n1, . . . , ns) of the respective local monodromies
over 0 and 1, we can write our polynomial P in two ways, namely as: P (z) =∏r
i=1(z − βi)

mi , and P (z)− 1 =
∏s
k=1(z − γk)

nk .
Comparing variables we obtain a set W(n; (m1, . . . ,mn), (n1, . . . , ns)) in affine

(n− 1) space, parametrizing these polynomials. This algebraic set is defined over
Q since by Riemann’s existence theorem they are either empty or have dimension
0 (we refer to [4] for more details).

Example 1. We calculate (e.g., using MAGMA) that W(7; (2, 2, 1, 1, 1); (3, 2, 2))
is irreducible over Q, which implies that Gal(Q̄/Q) acts transitively on W. Looking
at the possible monodromies, one sees that there are exactly two real non equivalent
polynomials (corresponding to the two orbits of the group of 7-th roots of unity).
The two permutations of types (2, 2) and (3, 2, 2) are seen to generate A7 and the
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respective normal closures of the two polynomial maps are easily seen to give (since
the automorphism group of A7 is S7) nonequivalent triangle curves C1, C2.

By Hurwitz’s formula, we see that g(Ci) = |A7|
2 (3 − 1

2 −
1
6 −

1
7 ) + 1 = 241.

We remark that A7 has generators a1, a2 of order 5 such that their product has
order five, yielding a triangle curve C (of genus 505). An easy MAGMA routine
shows that there is exactly one Hurwitz class of triangle curves given by a spherical
system of generators of type (5, 5, 5) of A7.

Obviously, A7 acts freely on C1 × C as well as on C2 × C and we obtain two
Beauville surfaces S1, S2, which are not diffeomorphic and therefore have non
isomorphic fundamental groups by [5].

Proposition 1. There is a field automorphism σ ∈ Gal(Q̄/Q) such that S2 =
(S1)

σ.

Proof. We know that σ(S1) = ((C1)
σ × (C)σ)/G. Since there is only one isomor-

phism class of triangle curves given by a spherical system of generators of type
(5, 5, 5) of A7, we have (C)σ ∼= C. �

We give now explicitly the fundamental groups of S1 and S2.
We choose an arbitrary spherical system of generators of type (5, 5, 5) of A7,

for instance ((1, 7, 6, 5, 4), (1, 3, 2, 6, 7), (2, 3, 4, 5, 6)).
A MAGMA routine shows that

((1, 2)(3, 4), (1, 5, 7)(2, 3)(4, 6), (1, 7, 5, 2, 4, 6, 3))

and

((1, 2)(3, 4), (1, 7, 4)(2, 5)(3, 6), (1, 3, 6, 4, 7, 2, 5))

are two representatives of spherical generators of type (2, 6, 7) yielding two non
isomorphic triangle curves C1 and C2. The two corresponding homomorphisms
Φ1 : T(2,6,7) × T(5,5,5) → A7 × A7 and Φ2 : T(2,6,7) × T(5,5,5) → A7 × A7 give two
exact sequences (i = 1, 2)

1→ π1(Ci)× π1(C)→ T(2,6,7) × T(5,5,5) → A7 × A7 → 1,

yielding two non isomorphic fundamental groups π1(S1) = Φ−1
1 (∆A7 ) and

π1(S2) = Φ−1
2 (∆A7 ), where ∆A7 is the diagonal of A7 × A7 (cf. [5]), fitting both

in an exact sequence of type

1→ Π241 ×Π505 → π1(Sj)→ ∆A7
∼= A7 → 1,

where Π241
∼= π1(C1) ∼= π1(C2), Π505 = π1(C).

Remark 1. 1) Using a surjection of a group Πg → A7 we get infinitely many
examples of pairs of fundamental groups which are nonisomorphic, but which have
isomorphic profinite completions. Each pair fits into an exact sequence

1→ Π241 ×Πg′ → π1(Sj)→ A7 → 1.

2) Many more explicit examples as the one above (but with cokernel group dif-
ferent from A7) can be obtained using polynomials with two critical values.
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Intersection theory of divisors on compactifications of Ag

Klaus Hulek

(joint work with Cord Erdenberger, Samuel Grushevsky)

The moduli space Ag of principally polarized abelian varieties of dimension g
is a quasi-projective variety. Several compactifications are known, notably the
Satake (or minimal) compactification ASat

g and toroidal compactifications such

as the second Voronoi compactification AVor
g , the central cone compactification

ACentr
g or the perfect cone compactification APerf

g . Alexeev [1], see also Olsson [6],

showed that AVor
g represents a moduli functor. The central cone compactification

ACentr
g is known to coincide with the Igusa compactification, which is a partial

desingularization of the Satake compactification. Finally, Shepherd-Barron [7]
proved that APerf

g is a canonical model of Ag in the sense of Mori theory if g ≥ 12.

The Picard group of APerf
g is very simple, namely

Pic(APerf
g )⊗Q = QL+ QD

where L is the Hodge line bundle and D is the boundary divisor. In view of this
Shepherd-Barron [7, p. 41] posed the question to determine the intersection theory
of divisors on APerf

g . This amounts to computing the numbers

a
(g)
N = 〈LG−NDN 〉APerf

g

where G = g(g + 1)/2 = dimAg. Our main result is
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Theorem 1. The only three intersection numbers with N < 3g − 3 that are
non-zero are those for N = 0, g, 2g − 1 (and thus the power of L being equal
to dimAg, dimAg−1, and dimAg−2, respectively). The numbers are

(1) a
(g)
0 = 〈L

g(g+1)
2 〉APerf

g
= (−1)G2−gG!

g∏

k=1

ζ(1 − 2k)

(2k − 1)!!

(2) a(g)
g = 〈L

(g−1)g
2 Dg〉APerf

g
=

1

2
(−1)G−1(g − 1)!(G− g)!

g−1∏

k=1

ζ(1 − 2k)

(2k − 1)!!

and

(3) a
(g)
2g−1 = 〈L

(g−2)(g−1)
2 D2g−1〉APerf

g
= (I) + (II) + (III)

where the terms (I), (II) and (III) can be computed explicitly.

For g = 2, 3 van der Geer [4] has computed the Chow ring of APerf
g which

in these cases coincides with the other two toroidal compactifications. In [2] we
determined the intersection theory of divisors not only for APerf

4 = ACentr
4 , but

also for AVor
4 . It should also be noted that the number a

(g)
0 = 〈L

g(g+1)
2 〉APerf

g
is

essentially the Hirzebruch-Mumford volume of the symplectic group and has as
such been known to Siegel [8]. The above result also holds, properly formulated,
for all “reasonable” toroidal compactifications of Ag.

The most striking result of our computations is that

(4) 〈LG−NDN 〉APerf
g

= 0 unless G−N = dimAk for some k ≤ g

in the range N < 3g − 3. Note that ASat
g has the natural stratification

ASat
g = Ag ⊔ Ag−1 ⊔ . . . ⊔A0.

This leads one naturally to

Conjecture 1. The intersection numbers a
(g)
N for any N vanish unless G−N =

k(k + 1)/2 for some k ≤ g, i. e. unless G−N equals the dimension of a stratum
of the Satake compactification.

One can also ask this question for other toroidal compactifications of Ag, and it
is tempting to conjecture that, if one interprets D as the closure of the boundary
of the partial compactification, this still holds. Of course, one could even hope
that such a vanishing result holds for (reasonable) toroidal compactifications of
any quotient of a homogeneous domain by an arithmetic group. This is e. g. the
case for the moduli space of polarized K3 surfaces. However, in this case the Baily-
Borel (or minimal) compactification has only two boundary strata, which are of
dimension 0 and 1 respectively and this easily implies the vanishing.

Our approach to computing intersection numbers is based on an analysis of
the boundary of APerf

g . Recall that every toroidal compactification Ator
g admits

a map π : Ator
g → ASat

g . Let βk = π−1(Ag−k). The set APart
g = Ator

g \ β2

is Mumford’s partial compactification and is independent of the chosen toroidal
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compactification. The boundary D′ = Ator
g \ β2 is the universal Kummer family

over Ag−1. More precisely, if π : Xg−1 → Ag−1 is the universal abelian variety
(which exists in a stack sense) then there is a map j : Xg−1 → APart

g such that
j∗([Xg−1]) = 2D′ as cycles. Note that we consider Ag as a stack with a non-
trivial involution which comes from the fact that every abelian variety possesses
an involution.

Our proof is based on two key observations: the first is that the universal family
itself allows a partial compactification π : XPart

g−1 → A
Part
g , which is obtained by

adding corank 1 degenerations, such that there is a map j : XPart
g−1 → A

Perf
g with

j(XPart
g−1 ) = APerf

g \ β3 (as sets). The second observation is that LM |βk
= 0 if

M > dimAg−k = (g− k)(g− k+ 1)/2. This follows easily from the fact that L⊗n

is free on ASat
g for n >> 0.

As an intermediate step we use the level covers APerf
g (ℓ) where ℓ ≥ 3 is prime.

This is a Galois cover σ : APerf
g (ℓ)→ APerf

g of degree νg(ℓ) = |Sp (2g,Z/ℓZ)| which
is branched of order ℓ along the boundary. Hence σ∗(D) = ℓ

∑
Di where the

number of the boundary components equals dg(ℓ) = 1
2ℓ

2g(1− ℓ−2g). We find that

a
(g)
N = 〈LG−NDN 〉APerf

g
=

1

νg(ℓ)
〈σ∗LG−Nσ∗DN 〉APerf

g (ℓ)

=
ℓN

νg(ℓ)

〈
σ∗LG−N


∑

i

DN
i +

∑

i>j; a+b=N,a,b>0

(
N

a

)
Da
iD

b
j

+
∑

i>j>k; a+b+c=N,a,b,c>0

(
N

a, b, c

)
Da
iD

b
jD

c
k



〉

APerf
g (ℓ)

.

The intersection of four or more boundary components can be neglected since these
cycles live in β3 on which LG−N vanishes if N < 3g − 3. This explains the three
summands in Theorem 1. The computation of these three summands can finally
be reduced to intersection numbers on geometrically well understood varieties.

This talk is based on [3] where details can be found.
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On the variety of power sums of the Scorza quartics of trigonal curves

Hiromichi Takagi

(joint work with Francesco Zucconi)

The problem of representing a homogeneous form as a sum of powers of linear
forms has been studied since the last decades of the 19th century. This is called the
Waring problem for a homogeneous form. We are interested in the global structure
of a suitable compactification of the variety parameterizing all such representations
of a homogeneous form. Here is a precise definition of such a compactification:

Definition 1. Let V be a (v + 1)-dimensional vector space and F ∈ SmV̌ be a
homogeneous form of degree m on V , where V̌ is the dual vector space of V .

VSP (F, n) := {([H1], . . . , [Hn]) | Hm
1 + · · ·+Hm

n = F} ⊂ Hilbn(P∗V̌ ).

We sometimes denote P ∗ V̌ by P̌v.

We describe the varieties of power sums for some special quartic forms. Though
we cannot fully describe such varieties, we can find some interesting subvarieties
of the following type:

Definition 2. For a subvariety S of P̌v,

VSP (F, n;S) := {([H1], . . . , [Hn]) | [Hi] ∈ S,Hm
1 + · · ·+Hm

n = F} ⊂ VSP (F, n).

We find some threefolds and study the geometry of some curves on them.
Let B be the smooth quintic del Pezzo 3-fold, and f : A→ B the blow-up along

a general smooth rational curve C of degree d on B, where d is an arbitrary integer
greater than or equal to 5. Let E be the f -exceptional divisor.

The notions of lines and conics on A, and marked lines and marked conics on B
are defined. For example, a conic on A is a reduced connected curve q such that
−KA · q = 2, E · q = 2 and pa(q) = 0, and a marked conic is the pair (q, η) of a
conic q on B and a length two subscheme η ⊂ C ∩ q. There are natural one to
one correspondences between lines on A and marked lines, and between conics on
A and (a part of) marked conics. Marked lines and conics, hence lines and conics
on A are parameterized nicely:

Proposition 3.

(1) Marked lines are parameterized by a smooth trigonal canonical curve H1

of genus d− 2 if d ≥ 5, and
(2) (a part of) marked conics are parameterized by the surface H2 obtained by

blowing up S2C ≃ P2 at (d−2)(d−3)
2 points.

For (1), recall that there are three lines (counted with multiplicities) through a
point of B. This gives the triple cover H1 → C ≃ P1.

For (2), the crucial point is that there exists a unique conic on B through two
points t1 and t2 if there is no line on B through t1 and t2. Thus the natural
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morphism H2 → S2C ≃ P2 mapping a marked conic to its marking is birational.

Let βi be a bi-secant line of C. It is shown that there exist (d−2)(d−3)
2 bi-secant

lines. Then for the length two subscheme [βi ∩ C], there exist infinitely many
marked conics (βi ∪ α, βi ∩ C), where α are lines intersecting βi, and it is known
that such α’s are parameterized by P1. This explains why H2 → S2C is the

blow-up at (d−2)(d−3)
2 points, which are [βi ∩C].

To investigate H2 more, consider the locus Dl ⊂ H2 parameterizing conics
which intersect a fixed line l. Dl turns out to be a divisor linearly equivalent to
(d−3)h−

∑
ei, where h is the pull-back of a line, and ei are the exceptional curves

of H2 → S2C. It is shown that if d ≥ 6, then |Dl| is very ample and embeds H2

in P̌d−3, and if d = 5, |Dl| defines a birational morphism H2 → P̌2. Here the dual
notation is used for later convenience. If d ≥ 6, then H2 is so called the White
surface.

Assume that d ≥ 6. Set D2 := {([q1], [q2]) | q1 ∩ q2 6= ∅} and denote by Dq

the fiber of D2 → H2 over a point [q]. By the seesaw theorem, it holds that
D2 ∼ p∗1Dq + p∗2Dq. Embed H2 × H2 into P̌d−3 × P̌d−3 by |D2|. By H0(H2 ×
H2,D2) ≃ H0(P̌d−3 × P̌d−3,O(2, 2)), D2 is the restriction of the unique (2, 2)-

divisor on P̌d−3 × P̌d−3, which is denoted by {D̃2 = 0}. Since {D̃2 = 0} is also

symmetric, the equation D̃2 can be taken so that it is the bi-homogenization of an
equation F̌4 of a quartic in P̌d−3. It holds that F̌4 is non-degenerate. Let F4 be
the quadratic form dual to F̌4 (see [Dol04, §2.3]).

By the double projection B 99K P2 from a general point b, we see that there
are n conics through a general point of a ∈ A. It is crucial that the number n is
equal to the dimension of the quadratic forms on P̌d−3.

Now we can state our main result:

Theorem 4. Let ρ : Ã → A be the blow-up of A along the strict transforms of

bi-secant lines of C on B. There is an injection Φ: Ã → HilbnP̌d−3 mapping a

point ã of Ã to the point representing the n points in H2 ⊂ P̌d−3 corresponding
to n conics on A ‘attached’ to a. Moreover ImΦ is an irreducible component of
VSP (F4, n;H2).

I will not explain the precise definition of attached conics. For a general point
ã, they are just conics through ρ(ã).

For a point ã, let H1, . . . , Hn be the linear forms on Pd−3 corresponding to n
conics attached to ã. Then Hi gives a representation α1H

4
1 + · · ·+αnH

4
n = F4 for

some αi 6= 0.
Unfortunately, we did not succeed in proving Φ is an immersion or ImΦ =

VSP (F4, n;H2).
Even if d = 5, we have a similar result as follows: associated to the birational

morphism Φ|Dl| : H2 → P̌2, there exists a non-finite birational morphism Φ: Ã→
VSP (F4, 6). Mukai showed that VSP (F4, 6) is isomorphic to a smooth prime Fano



2822 Oberwolfach Report 47/2007

3-fold V22 of genus 12. Φ turns out to fits into the following diagram:

Ã
ρ

~~}}
}}

}}
}} ρ′

  B
BB

BB
BB

B

Φ

��

A
f

����
��

��
��

99K A′

f ′

!!C
CC

CC
CC

C

B V22,

where A 99K A′ is the flop of the strict transforms of bi-secant lines of C, A′ → V22

is the blow-up along a general linem, and the rational map V22 99K B is the famous
double projection from m.

0.1. Canonical curves and theta characteristics. Finally, I explain some ap-
plications of our study of A for a pair of a canonical curve of any genus and a
non-effective theta characteristic.

Using the incidence correspondence of intersections of lines on A

I := {([l], [m] | l ∩m 6= ∅, l 6= m} ⊂ H1 ×H1,

a non-effective theta characteristic θ on H1 can be defined such that

I = {([l], [m]) | [m] is in the support of the unique member of |θ + [l]|}.

We can define so called the Scorza quartic for a pair of a canonical curve of any
genus and a non-effective theta characteristic (see [DK93, §9]). The Scorza quartic
is not known to exist always. Dolgachev and Kanev proposed three conditions
which guarantee the existence of the Scorza quartic. We prove that the pair
(H1, θ) satisfies these conditions. By a standard deformation theoretic argument,
we can verify these three conditions hold also for a general pair of a canonical
curve and a non-effective theta characteristic, hence

Theorem 5. The Scorza quartic exists for a general pair of a canonical curve and
a non-effective theta characteristic.

By the correspondence [l] 7→ Dl, there is a natural identification Pd−3 =
P∗H0(H1,KH1), where Pd−3 is the projective space dual to the ambient projective
space P̌d−3 of H2. By definition, the Scorza quartic {F ′4 = 0} for (H1, θ) lives in
P∗H0(H1,KH1) but now it is possible to consider {F ′4 = 0} ⊂ Pd−3. We prove

Proposition 6. The special quartic {F4 = 0} ⊂ Pd−3 in Theorem 4 coincides
with the Scorza quartic {F ′4 = 0}.
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Abstract: Polarizations of Prym varieties via abelianization

Herbert Lange

(joint work with Christian Pauly)

1. Introduction

Let X be a smooth projective curve of genus g, G a simple, simply-connected
complex Lie group, MX(G) the moduli stack of principal G-bundles and and L
the ample generator of Pic(MX(G)). The Verlinde formula gives the numbers
Ng,k := dimH0(MX(G),Lk). Some particular cases are

G SL(m) Spin(2m) E6 E7 E8

Ng,1(G) mg 4g 3g 2g 1

The notion “Abelianization of principal G-bundles” goes back to Hitchin. Roughly
speaking it means to give a map

Prym variety→ Moduli space of principal bundles

inducing an isomorphism between the Verlinde spaces and some spaces of Theta-
functions. To give an example: In the case G = SL(m), Beauville, Narasimhan
and Ramanan showed in [1]: There is cover Y → X such that the direct image
map Prym(Y/X)→MX(SL(m)) induces by pull-back an isomorphism between
the SL(m)-Verlinde space of level 1 and the space of abelian theta functions on
Prym(Y/X). Oxbury proved a similar result for the group Spin(2m).

The main motivation for the paper [4] was to relate the Verlinde spaces for
E6, E7 and E8 to a space of theta functions.

In order to explain the types of theta functions we are looking at, we have to
recall the definition of the Prym varieties we are considering. A polarized abelian
variety (A,L) is called a (generalized) Prym variety, if there is a curve C and an
embedding of A into its Jacobian JC such that the canonical principal polarization
Θ of JC restricts to L. A principally polarized (A,Ξ) is called a Prym-Tyurin
variety of exponent q if in addition Θ|A = qΞ. In [3] Kanev gave a construction of
Prym-Tyurin varieties for the Weyl groups of type An, Dn, E6 and E7.

2. Results

Let W denote the Weyl group of G, T ⊂ G a maximal torus, and Sw =
Hom(T,C∗) the weight lattice. Consider a commutative diagram



2824 Oberwolfach Report 47/2007

Z

π

��

&&M
MMMMMMMMMM

Y = Z/Stab(λ)

ψ
xxqqqqqqqqqqq

X

where π is a Galois covering of smooth projective curves with group W and λ ∈
Sw dominant weight. Then Kanev’s construction generalizes to give an abelian
subvariety

Pλ ⊂ JY

which we call the Prym variety associated to λ.
The aim is to determine the type of the restriction of the canonical principal

polarization to Pλ. Here the type of a polarization L is defined to be the finite
group K(L), the kernel of the induced isogeny of Pλ onto its dual abelian variety.

Recall that the Weyl groups of type Ei, 4 ≤ i ≤ 8 are called of del Pezzo type,
since a modified version of the weight lattice of W (Ei) is isomorphic to the Picard
lattice of a del Pezzo surface of degree 9− i. Consider the following table

Weyl group W (Ei) E4 = A4 E5 = D5 E6 E7 E8

weight λ ̟2 ̟4, ̟5 ̟1, ̟6 ̟7 ̟8

del Pezzo S of deg. d 5 4 3 2 1
deg Y/X = # lines ⊂ S 10 16 27 56 240

Here ̟i are the fundamental weights in the notation of Bourbaki [2]. In these
cases we have the following theorem.

Theorem 1. Suppose π : Z → X is étale. If Pλ denotes the Prym variety
associated to one of the weights of the table, then

ΘY |Pλ ≃M
⊗qλ

where M ∈ Pic(Pλ) is of type K(M) = (Z/dZ)2gX .

Remark. In the case of E8 the line bundle M defines a principal polariza-
tion. Hence we obtain families of Prym-Tyurin varieties. These are different
from Kanev’s examples in [3], since π is étale and hence X 6= P1.

Theorem 1 is a consequence of the following more general result.

Theorem 2. Assume

• π : Z → X étale, Galois with Galois group W ,
• qλ = dλ (= the Dynkin index of λ),
• λZ[W ] = Sλ,
• λ minuscule or quasiminuscule,
• ψ∗ : JX → JY is injective.
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Then ∃M ∈ Pic(Pλ) with ΘY |Pλ = M⊗qλ and

K(M) = (Z/mZ)2gX

where m = degY/X
gcd(degKλ−1,degY/X) .

In the talk a sketch of the proof of Theorem 2 was given. In particular the
words of the title “via abelianization” were explained.

3. Applications and Problems

3.1. Abelianization. The Theorem implies h0(Pλ,M) = Ng,1(G). Hence our
Prym varieties are candidates for the abelianization problem mentioned in the
introduction. Moreover there exists a map between the corresponding spaces:

γ∗ : H0(MX(G),L)→ H0(Pλ,M).

The problem remains to show that γ∗ is an isomorphism. It is in fact an isomor-
phism in the special case G = SL(m). This is easily seen using the results of [1].
In all other cases we do not know the answer, mainly because an explicit descrip-
tion of special divisors in the linear system |L| seems to be missing. Particularly
intriguing is the case of E8, where both spaces are of dimension 1.

3.2. The E8-Prym-Tyurin varieties. Study the families of Prym-Tyurin vari-
eties associated to E8 mentioned in the above remark. It is easy to see that they
can be realised starting with an arbitrary curve X of genus ≥ 2. Moreover we
have dimP̟8 = 8(gX − 1).

3.3. Ramified coverings. We expect similar results in the case of a ramified
Galois covering π : Z → X . There are however several problems in order to
generalize our proof of Theorem 2.
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The fundamental group of surfaces with small K
2

Rita Pardini

(joint work with Ciro Ciliberto, Margarida Mendes Lopes)

Let S be a minimal complex surface of general type. It is well known that the
numerical invariants of S satisfy the inequalities:

K2
S > 0, χ(S) > 0,

2χ(S)− 6 ≤ K2
S ≤ 9χ(S)

It is expected that surfaces with K2
S small with respect to χ(S) have simpler

fundamental group. For instance, it is known that surfaces on the Noether line
K2 = 2χ−6 are simply connected, while surfaces on the Bogomolov–Miyaoka–Yau
line K2 = 9χ have the unit ball in C2 as their universal cover.
The following conjecture of Miles Reid makes this expectation precise:

If K2
S < 4χ(S), then the algebraic fundamental group πalg

1 (S) of S is isomorphic,
up to finite group extensions, to the fundamental group of a curve.

One possible approach to Reid’s conjecture is to show the existence of a fibration
f : S → B onto a smooth curve and then to prove that the kernel and cokernel

of the induced map πalg
1 (S) → πalg

1 (B) are finite groups. Using this idea, Reid’s
conjecture has been verified in the following cases:

• when K2
S < 3χ(S) (work of Horikawa, Reid and other authors; cf. also

[MP1]). In this case the fibration arises from the canonical map of étale
covers of S;
• when S is irregular or has an irregular étale cover. In this case, by the the

Severi inequality, proven in [Pa], the Albanese map of (an irregular étale
cover of) S gives the required fibration.

To prove the conjecture in general, one should give a positive answer to the fol-
lowing:

Question 1. If K2
S < 4χ(S) and S has no irregular cover, is πalg

1 (S) a finite
group?

The answer to Question 1 is known to be yes for K2 < 3χ, but it is unknown for
3χ ≤ K2 < 4χ, even in the case K2 = 3, χ = 1 (the smallest possible invariants
in this range).

A related simpler question is to give explicit bounds for the order of πalg
1 (S)

when S is a surface with K2
S < 3χ(S) that has no irregular étale covers. Here one

can give precise answers:

Theorem 1 ([MP1], [CMP]). If S has no irregular finite étale cover and K2
S <

3χ(S), then:

(1) |πalg
1 (S)| ≤ 9;

(2) if |πalg
1 (S)| = 9 or 8, then K2

S = 2 and pg(S) = 0, namely S is a (numer-
ical) Campedelli surface.
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Better bounds can be obtained if one assumes the stronger inequality K2 <
3χ− 1:

Theorem 2 ([MP2]). If S has no irregular finite étale cover and K2
S < 3χ(S)−1,

then:

(1) |πalg
1 (S)| ≤ 5;

(2) if |πalg
1 (S)| = 5, then K2

S = 1 and pg(S) = 0, namely S is a (numerical)
Godeaux surface;

(3) if |πalg
1 (S)| = 3, then K2

S = 3χ(S)− 3 and 2 ≤ χ(S) ≤ 4

Theorem 1 and Theorem 2 are sharp. In fact, examples of the following are
known:

• (numerical) Campedelli surfaces with fundamental group of order 8 and 9;

• (numerical) Godeaux surfaces with πalg
1 = Z5, e.g. the classical Godeaux

surface;

• surfaces with K2 = 3χ− 3 and πalg
1 = Z3 for χ = 2, 3, 4;

• infinitely many families of surfaces with K2 < 3χ and πalg
1 = Z2, Z2

2.

The bounds given in Theorem 1 and Theorem 2, together with the above list
of examples, suggest the following:

Question 2. Let S be a surface with K2 < 3χ having no irregular étale cover. Is

it true that, up to a finite number of exceptions, πalg
1 (S) is a subgroup of Z2

2?

Finally, Campedelli surfaces with fundamental group of order 9 have been com-
pletely classified in [MP3]. They have some interesting properties:

Theorem 3. Let M be the moduli space of (numerical) Campedelli surfaces with

|πalg
1 | = 9. Then:

(1) M has two connected components: MA (surfaces with πalg
1 = Z9) and

MB (surfaces with πalg
1 = Z2

3);
(2) MA is irreducible of dimension 6 (= expected dimension) and MB is

irreducible of dimension 7 (= expected dimension+1);
(3) there is a codimension 1 subvarietyMB2 ofMB such that for S inMB2∪
MA the system |2KS| has two base points.

Notice that the bicanonical system of a surface of general type with K2
S > 1

is known to be base point free, except possibly, for 2 ≤ K2
S ≤ 4. The surfaces

correspondings to points ofMB2∪MA are at the moment the only known example
of surfaces with K2

S > 1 whose bicanonical system has base points.
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Generic nefness

Thomas Peternell

We fix a projective manifold X of dimension n. Recall from [BDPP] that
ME(X) is the closed cone generated by the classes of the following form:

µ∗(H1 · . . . ·Hn−1),

where µ : X̃ → X is a birational map from a projective manifold X̃ and Hi are
very ample divisors on X̃. It is shown in [BDPP] that ME(X) is the dual cone to
the cone of effective divisors; the pseudo-effecive cone of X. The question arises
whether it is really necessary to take blow-ups or whether already the closed cone
of complete intersection curves on X itself is dual to the pseudo-effective cone.

Definition. A line bundle L on a projective manifold Xn is generically nef if

L ·H1 · . . . ·Hn−1 ≥ 0

for all ample line bundle Hi.

In this notation the above problem is equivalent to the question whether generically
nef line bundle are already pseudo-effective. This is however in general not true
(see the update of [BDPP]):

Example. Let E be the rank 3-vector bundle E = O(−1)⊕O(−2)⊕O(−3) over
P1 or the rank 2-vector bundle on P2 given by a non-split extension

0→ O → E → I{p1,p2}(−2)→ 0,

where p1, p2 are two points in P2. Let X = P(E) and L = OP(E)(1). Then L is
generically nef, but not pseudo-effective.

It is however an interesting open question whether a counterexample exists also
for the canonical bundle:

Question 1. Suppose KX generically nef. Is KX pseudo-effective? In other
words, if KX is not generically nef, is X uniruled?

This question is a strong from of a reverse of Miyaoka’s theorem, saying then Ω1
X

is generically nef unless X is uniruled. Here is the relevant definition:

Definition. Let Hi be ample divisors on X. A vector bundle E is generically
(H1, . . . , Hn−1)−nef (ample), if E|C is nef (ample) where C is “MR-general”.
E is generically nef if it is for all choices of Hi.
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We say that C is MR-general, i.e. general in the sense of Mehta-Ramanathan, if
C is cut by general elements of |miHi|, 1 ≤ n− 1 for mi ≫ 0. The importance of
this notion comes in particular from the following fact:

if E is semi-stable w.r.t. (H1, . . . , Hn−1) and if c1(E) · H1, . . . , Hn−1) ≥ 0, then
E is generically nef w.r.t. (H1, . . . , Hn−1).

For applications the following would be useful:

Question 2. Let µ : X̃ → X be a modification from a projective manifold.
Suppose X not uniruled. Is µ∗(Ω1

X) generically nef?

In [CP] the following wekaer version is proved:

Theorem 1. If X is not uniruled and

(Ω1
X)⊗m → Q→ 0

a torsion free quotient, then detQ is pseudo-effective.

For applications we also refer to [CP].

A further strenghtening of Miyaoka’s theorem would be

Question 3. Let (Ct)t∈T be a covering family of curves of X and suppose that
the family is maximal, i.e. the parameter space T is an irreducible family of the
Chow scheme. Suppose Ω1

X |Ct is not nef for general t ∈ T. Is then X uniruled?

If one drops the assumption of maximality, the answer is “no”: in [BDPP] it is
shown that on a K3 surface or a Calabi-Yau threefold X there is a covering family
(Ct) such that Ω1

X |Ct is not nef for general t.

Turning sides, we now ask for which varieties X the tangent bundle might be
generically nef (ample).

Theorem 2. Assume TX is generically nef w.r.t. (H1, . . . , Hn−1). Let f : X → Y
be a surjective holomorphic map to the normal projective variety Y . Then either Y
is uniruled or κ(Ŷ ) = 0 for a desingularization Ŷ of Y. In particular the Albanese
map of X is surjective.

For the proof we refer to [Pe2]. A theorem of Qi Zhang [Zh] says that projective
manifolds with nef anti-canonical bundle have the same property. This leads to

Question 4. Let X be a projective manifold with −KX nef. Is TX generically
nef for some/all polarizations?

Before we discuss Question 4, let us mention that already the nefness/ampleness of
TX on one curve has strong consequences; in fact, in [Pe1] the following structure
result is shown.

Theorem 3. Let C ⊂ X be an irreducible curve. If TX |C is nef, then κ(X) <
dimX. If KX · C < 0, then X is uniruled. If furthermore TX |C is ample, then X
is rationally connected.
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As a corollary, if TX is generically ample for (H1, . . . , Hn−1), e.g., TX is semi-
stable w.r.t (H1, . . . , Hn−1) and if −KX ·H1 · . . . ·Hn−1 > 0, then X is rationally
connected.

Concerning Question 4 the following holds:

Theorem 4. Let X be a Fano manifold with b2(X) = 1. Then TX is generically
ample.

The proof uses essentially a theorem of Bogomolov-McQuillan and Kebekus-Sola
Condé-Toma, see [KST], on foliations which are ample on a “sufficiently regular”
curve.
We can prove Theorem 4 also for Fano manifolds with b2 > 1, once the following
cone theorem holds:

ME(X) is locally rationally polyhedral in {KX < 0}. The extremal rays are rep-
resented by covering families of rational curves.

J. McKernan told me during the conference that he can prove this cone theorem,
to be contained in a new version of [BCHM].
Question 4 has also a positive answer when −KX is nef admitting a KX -trivial
covering family of curves which is not “connecting”.

We would like to use nefness properties of the tangent bundle to settle the following

Conjecture 1. Let X be a projective manifold with −KX nef. Then the Albanese
is a (surjective) submersion.

Generic nefness is certainly not sufficient to prove Conjecture 1; one needs infor-
mations on every point of x. Therefore we propose

Definition. A vector bundle E is sufficiently nef, if through every point x of X
there is a covering family (Ct) of curves passing through x such that E|Ct is nef
for general t.

Using the notation we state

Conjecture 2. If −KX is nef, then TX is sufficiently nef.

Conjecture 2 can be shown for surfaces using a generalization of Bogomolov for
surfaces of the theorem of Mehta-Ramanathan. It is also not difficult to see that
Conjecture 2 implies Conjecture 1. In fact, Conjecture 1 is equivalent to saying
that the holomorphic 1-forms on X do not have zeroes. This clearly holds when
TX is sufficiently nef. At the momemt we have some partial results supporting
Conjecture 2.
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L
2–cohomology on ball quotients

Stefan Müller-Stach

(joint work with Kang Zuo)

The complex ball Bn is a bounded Hermitian symmetric domain of type G/K
with G = SU(n, 1) and K = U(n). A ball quotient X is a quotient of Bn by a
torsion–free discrete subgroup Γ ⊂ SU(n, 1). Such double quotients Γ\G/K are
also called locally symmetric varieties. If Γ is an arithmetic subgroup, then X is
quasi–projective and allows a natural normal projective compactification by adding
a finite number of points (cusps) at infinity, the Baily–Borel–Satake compactifica-
tion. Desingularizations X of this compactification are given by toroidal compact-
ifications. If X = B2/Γ is a compact ball quotient surface and KX = L⊗3 for some
nef and big line bundle L, then Miyaoka [3] proved that H0(X,SnΩ1

X ⊗L
−m) = 0

for m ≥ n ≥ 1. Examples of compactified ball quotient surfaces are Picard mod-
ular surfaces X . Those are (components of) Shimura varieties which parametrize
abelian 3–folds with given Mumford–Tate group. In this case Γ is a subgroup of
SU(2, 1) with values in integers of an imaginary quadratic field E and X parama-
trizes Jacobians of Picard curves of type y3 = P (x) with deg(P ) = 4.
Let us start with the following vanishing theorem of Ragunathan, which has later
been generalized by Li–Schwermer [2] and Saper:

Theorem 1 (Ragunathan). Let W be an irreducible representation of Γ, i.e., a
local system on X. If the highest weight of W is regular, then the intersection
cohomology IH1(X,W) = 0.

Using the formalism of Higgs bundles and Higgs cohomology we show that this
implies the following result [4]:

Theorem 2. On has H0(X,SnΩ1
X

(logD)(−D)⊗ L−m) = 0 for all m ≥ n ≥ 3.

For the proof in the interesting case m = n = a + 2, consider the Higgs bun-
dle associated to a regular representation with highest weight (a, 1) with a ≥ 1.
In the first cohomology of the corresponding Higgs bundle Ea,1 only the term

H0(X,Sa+2Ω1
X

(logD)(−D)⊗ L−a−2) = 0 survives and hence is zero.

The twist by (−D) in the theorem is too strong and the proof gives a slightly better
result. We also prove generalizations of such vanishing and related non–vanishing



2832 Oberwolfach Report 47/2007

results to higher–dimensional ball quotients in [4]. The symmetric powers Sn are
then replaced by certain Schur functors of the type Γa1,...,an−1.
We also give applications to the intersection cohomology groups of universal fam-
ilies f : A → X of abelian varieties over Picard modular surfaces and threefolds.
Standard methods from the theory of algebraic cycles imply vanishing and non–
vanishing theorems for Chow groups as a consequence. For example we can show:

Theorem 3 ([4], Schoen). Let f : A → X be the universal familiy of abelian 3–
folds over a Picard modular surface. Assume that the monodromy representation
of R1f∗C has unipotent monodromy at infinity. Then a multiple of the normal
function AJ(Ct −C

−
t ) associated to the Ceresa cycle is contained in the maximal

abelian subvariety J2
ab(JCt) of the intermediate Jacobian J2(JCt) for every t.

This theorem gives some evidence for Clemens’ conjecture saying that C − C− is
never algebraically equivalent to zero unless C is hyperelliptic. It can be shown
that the necessary multiple in the theorem is 3 (due to Chad Schoen, unpublished).
Note that in this case C is hyperelliptic as a point on X only if C becomes singular
as a curve (with smooth Jacobian).
There are also corresponding non–vanishing theorems of Kazdan which show that
form < n the vanishing does not hold, if Γ is sufficiently small and V is not regular.
For Picard modular 3–folds X with a universal family f : A → X (assuming
unipotent monodromy) we get as a consequence:

Theorem 4. (a) If Γ is sufficiently small, the general member At of the universal

family f : A→ X has non–trivial Griffiths group Griff3(At).
(b) If Γ is sufficiently small and H0(X,Ω1

X
) contains two linearly independent

sections α, β with α∧β 6= 0, then the group Gr3FH
2
L2(X,R4f∗Cpr) does not vanish.

In particular, assuming the Hodge conjecture, there are codimension 3–cycles in
the kernel of the Abel–Jacobi map.

Case (b) seems to be a new phenomenon.
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A birational Local Torelli Theorem with respect to n- and 1- forms

Miguel A. Barja

(joint work with Francesco Zucconi)

A local family f : X −→ B is a proper flat family of smooth complex projective
varieties of dimension n over a polydisk B. Set Xb for the fibre over b. In this
context, local Torelli theorem asks whether the fibres are mutually isomorphic
provided the Hodge structures of the fibres are constant.

Our main result is as follows: we give a set of properties for Xb in such a way
that, if the global n-forms ant the global 1-forms of Xb are liftable to the family
X , then var(f) = 0 (see Theorem 3). When B is 1-dimensional this means that
all the fibres are mutually birational. Liftability of forms is a direct consequence
of having constant Hodge structure, and birationality (instead of biregularity) of
the fibres can not be avoided since the global differential forms on the fibres are
invariant under birational transformations.

As a byproduct we give a result which characterizes products of varieties as fibre
spaces verifying Künneth formulas, when the general fibre verifies good properties
(Theorem 4), as a generalization of a well known result of Beauville for surfaces.

We obtain the main results as a consequence of a generalization of the so called
Adjoint Theorem in [PZ] and an inverse of it (Theorem 1). Let X be a smooth
variety of dimension n and let F be a locally free sheaf of rank r. Fix an element
of an extension class ξ ∈ Ext1(F ,OX):

0→ OX
dǫ
→ E → F → 0

and assume that we have η1, ..., ηr+1 ∈ H0(X,F) which are liftable to H0(X, E).
Let L = det(F) and consider the linear system |

∧r
W | (whereW = 〈η1, . . . , ηr+1〉)

inside |L| (assuming it is not empty). Call D the base divisor of that linear system.
Choosing liftings si ∈ H0(X, E) of ηi we define its adjoint image ω as the image

of s1 ∧ ... ∧ sr+1 through the chain of maps
∧r+1

H0(X, E) → H0(X, det(E)) ∼=
H0(X,L). Now, the Adjoint Theorem states (see [PZ]) that if ω ∈ |

∧r
W | then

ξ ∈ Ker(H1(X,F∨)→ H1(X,F∨(D)). The first result we have is

Theorem 1. If h0(X,OX(D)) = 1 then the inverse holds, i.e., if
ξ ∈ Ker(H1(X,F∨)→ H1(X,F∨(D)) then ω ∈ |

∧rW |.

And as a consequence

Theorem 2. Let C be a smooth curve and

0 −→ OC −→ E −→ L −→ 0

an extension of a line bundle L on C. Assume

i) H0(C, E) surjects onto H0(C,L) and
ii) the linear system |L| induces a base point free birational morphism on C.

Then the extension splits.
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Now we can state the main theorem. Let f : X → B be a local family as
above, such that A = Alb(Xb) is constant (does not depend on b) and there exists
a morphism of B-schemes Alb : X → B ×A, with Albb = albXb

.
Assume we have liftability of n−forms from the fibres to the family, i.e.

i) H0(X ,ΩnX ) ։ H0(Xb,Ω
n
Xb

).

Observe that, as a consequence of the existence of the map Alb we can also lift
1-forms from the fibre to the family, i.e.

ii) H0(X ,Ω1
X ) ։ H0(Xb,Ω

1
Xb

).

The conditions we want to impose to the general fibre involves its Albanese map.
If Xb is of Albanese general type (i.e., its Albanese map is generically finite over
its image) we call Db the ramification divisor of albXb

and denote Cb := KXb
−Db.

Theorem 3. (Birational Local Torelli theorem) Assume that, for any b ∈ B, the
fibre Xb verifies

i) Xb is of general type of dimension n ≥ 2,
ii) deg(albXb

) = 1,
iii) h0(Xb,OXb

(Db)) = 1,
iv) hn−1(Xb,Ω

1
Xb

(2Cb)) = 0.

Then var(f) = 0.

Remark. The proof of the theorem is a consequence of the Adjoint theorem and
Theorem 1 and a criterium of birational triviality given by the Volumetric Theorem
in [PZ].

Remark.(i) It is easy to construct counterexamples when deg(albXb
) ≥ 2.

(ii) The four conditions for Xb in the theorem are trivially verified by smooth
general type subvarieties of abelian varieties, provided Ω1

X is big and nef. By a
result of Debarre (cf. [De]) this holds for any nondegenerate X with dimX ≤
1
2dimA. Also, if X is a complete intersection of at least 2 divisors in A, an easy

computation shows that hn−1(X,Ω1
X(2KX)) = 0.

Finally we can give a characterization of birationally trivial fibrations between
those verifying Künneth formulas, under some conditions for the canonical or the
Albanese map of the fibre.

Theorem 4. Let f : Z −→ Y be a fibration of complex projective varieties of
relative dimension n. Let F be a general smooth fibre. Assume that F is of
general type and verifies one of the following set of properties

(i) either the canonical map of F is birational or,
(ii) the albanese map of F is of degree 1, h0(F,OF (DF )) = 1 and

hn−1(F,Ω1
F (2CF )) = 0.

Assume that

∀i = 1, ..., n h0(Z,ΩiZ) =
∑

j+k=i

h0(Y,ΩjY )h0(F,ΩkF )

Then var(f) = 0. Moreover, if Y is a curve, then Z is birational to Y × F .
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The Bloch principle

Michael McQuillan

In comparison with the purely qualitative theorem of Picard, there is the the-
orem of Montel that the space of maps, in the compact open topology, from the
disc to P1\{0, 1,∞} is compact. The generalisation of Picard’s theorem by E.
Borel to a projective space complemented by planes is straightforward, but the
corresponding generalisation by A. Bloch, [1], and H. Cartan [2], of Montel’s the-
orem has resisted any substantive simplification for 80 years. Such discrepancy of
difficulty is, as Bloch remarked, not easily explained since there can be little doubt
that, nihil est in infinito quod non fuerit prius in finito. It is, however, already
not a complete triviality to give a concrete mathematical formulation of Bloch’s
dictum, and many, supposed, counterexamples have been suggested. These sup-
posed counterexamples are, however, completely explained by Gromov’s theory of
bubbling, [4], which in turn leads, [6], to counterexample free formulations of the
principle such as,

Question Suppose for a quasi-projective variety X with boundary ∂ there is a
Zariski subset Z of X such that every entire map f : C → X factors through Z,
then is a sequence of discs fn : ∆ → X without a convergent subsequence in the
sense of Gromov arbitrarily close to Z ∪ ∂ ?

Which, in turn, for surfaces admits a certain refinement, cf. below & op. cit.
§2, on taking, as we may, the boundary to be a stable curve. Nevertheless, there is
some distance between a properly posed question, and a solution. A major step,
however, has recently been taken by J. Duval, [3], who has established,

Fact Suppose that fn : ∆ → X are a sequence of discs to a compact analytic
space violating Gromov’s isoperemetric inequality, or, equivalently, there is a sub-
sequence such that the currents of integration,

1

An

∫

∆

f∗n

converge to a closed current, T , where An is the area of the nth disc, then if T has
mass along a subvariety Z there is an entire mapping from C to Z.

Plainly, this reduces the study of the Bloch principle to that of appropriate T
and Z as found in Duval’s theorem. For surfaces, the requisite study, [5], had
already been undertaken, and whence,

Conclusion Let S be a quasi-projective surface, or bi-dimensional Deligne-Mum-
ford stack, with stable boundary ∂ such that there is a Zariski subset Z of S
through which every entire map f : C → X factors, then a sequence of discs
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fn : ∆→ X without a convergent subsequence in the sense of Gromov is arbitrarily
close to Z.
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Entire curves, integral sets and fiber bundles

Jörg Winkelmann

Let X be a variety defined over a number field K. Conjecturely existence of entire
curves (holomorphic maps from C to X(C)) is related to the existence of infinite
integral point sets: More precisely: Let W be a (irreducible) subvariety of X
defined over a finite field extension K ′/K. Then there should exist a holomorphic

map f : C → X with f(C)
Zar

= W if and only if there is a finite field extension
K ′′/K ′ for which there is a Zariski dense integral point set in W (K ′′).

This follows the philosophy proposed by Lang and Vojta ([1],[3]).
As evidence towards this conjecture we show that entire curves and integral

point sets have similar functorial behaviour with regard to principal bundles:

Theorem 1. Let G be a connected algebraic group (not necessarily linear) and let
p : E → B be a G principal bundle which is locally trivial in the Zariski topology,
all defined over some number field K.

Then for every holomorphic map f : C → B there exists a holomorphic map

F : C→ E with f = p ◦ F and F (C)
Zar

= p−1
(
F (C)

Zar
)
.

For every integral point set S ⊂ B(K) there is a finite field extension K ′ and

an integral point set R ⊂ E(K ′) such that R
Zar

= p−1
(
S
Zar

)
.

As a consequence one obtains:

Corollary 2. Let X be a quasiprojective variety over a number field K. Then a
subset S ⊂ X(K) is integral if and only if there exists an affine variety Z with a
closed embedding i : Z → AN and a morphism φ : Z → X (all over K) such that

φ(i−1(OK
N ) = S.

Additional evidence towards the conjecture is provided by the following result
concerning ramified coverings over abelian varieties, which is based on recent re-
sults in Nevanlinna theory ([2]).



Komplexe Algebraische Geometrie 2837

Theorem 3. Let π : X → A be a finite morphism from a quasi-projective variety
X to a semi-abelian variety A, all over some number field K.

Then for every holomorphic map f : C → X there is a finite field extension
K ′/K such that there exists an integral point set S ⊂ X(K ′) for which f(C) ⊂

S
Zar

.
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Singular Symplectic Moduli Space

Manfred Lehn

(joint work with D. Kaledin, Ch. Sorger)

A holomorphic symplectic manifold is a complex manifold X together with a
global holomorphic form σ that is closed and non-degenerate in the sense that
it induces an isomorphism σ : TX → Ω1

X . Such a manifold is called irreducible
holomorphic symplectic if X is compact, simply connected and admits a Kähler
structure and if σ spans the C-vector space H2,0(X). There are only two known
examples of irreducible holomorphic symplectic manifolds that are not deformation
equivalent to K3-surfaces S and their Hilbert schemes or to generalised Kummer
varieties associated to complex toriA = C2/Γ. These examples are due to O’Grady
and arise as symplectic desingularisations of singular moduli spaces of semistable
sheaves MS(2; 0, 4) or MA(2; 0, 2). We will show that the attempt to construct
other examples of new topological types of irreducible holomorphic symplectic
manifolds in this way from singular moduli spaces must fail.

For simplicity, let S be a K3-surface. Let 〈−,−〉 denote the Mukai pairing on
H∗(S,Z) and let M = M(v) denote the moduli space of H-semistable sheaves on

S with Mukai vector v = v(F ) := ch(F )
√
td(TS), where the ample divisor H is

assumed to be general with respect to v in the sense that for any F ∈ M(v) and
any destabilising subsheaf F ′ ⊂ F one has v(F ′) ∈ Qv. The virtual dimension of
M is 2 + 〈v, v〉. The Moduli spaces M(v) are singular simyplectic varieties.

We may write v = mv0 with m ∈ N and a uniquely defined primitive vector
v0 ∈ H∗(S,Z). Now the singularity type of M(v) is completely determined by the
numbers m and 〈v0, v0〉. The first theorem extends part of O’Grady’ result.

Theorem 1. (Lehn-Sorger [2]) — Let m = 2 and 〈v0, v0〉 = 2. Then blowing-up

the singular locus of M(v) provides a symplectic resolution M̃ →M(v).

The second theorem rules out the rest of possible candidates.
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Theorem 2. (Kaledin-Lehn-Sorger [1]) — If m, 〈v0, v0〉 ≥ 2 and m+ 〈v0, v0〉 ≥ 5,
then M(v) is irreducible, l.c.i, and locally factorial, and the codimension of the
singular locus is at least 4. In particular, M does not admit a symplectic resolution.

A fundamental property of symplectic resolutions is that they are semismall.
So if M ′ → M(v) were a symplectic resolution under the conditions of the last
theorem, then any component of the exceptional locus would have to have codi-
mension at least one half of the codimension of the singular locus in M(v), i.e.
2. On the other hand, if M(v) is locally factorial, any resolution is divisorial, a
contradiction.

The method of proof for both theorems consists in a careful analysis of the local
situation near a point [F ] ∈ M(v), represented by a polystable sheaf F . There
is an PAut(F )-equivariant germ of a map κ : (Ext1(F, F ), 0) → Ext2(F, F )0, the
so-called Kuranishi map, with the property that (M(v), [F ]) ∼= κ−1(0)//PAut(F ).
Moreover, up to higher order terms, κ equals the momentum map µ : Ext1(F, F )→
Ext2(F, F )0 = Lie(PAut(V ))∗ for the action of PAut(V ) on the representation
Ext1(F, F ). We first show that the symplectic reduction Ext1(F, F )///PAut(V ) :=
µ−1(0)//PAut(F ) has the properties claimed about (M(v), [F ]), and then extend
these results to the moduli space itself.

This raises the more general question which symplectic singularities admit sym-
plectic resolutions. In this talk we considered only quotients by finite groups, and
omitted the discussion of symplectic reductions because of time constraints.

LetG ⊂ Sp(V ) be a finite group. By a theorem of Verbitsky, if the quotient V/G
admits a symplectic resolution then G is generated by symplectic reflections. Given
a real reflection group G ⊂ GL(n,R), complexification yields a group generated by
complex or pseudo-reflections, and the canonical embedding GL(n,C)→ Sp(2n,C)
turns any complex reflection group into a symplectic reflection group. All these
types of reflection groups have been classified by Coxeter, Shephard and Todd,
and A. Cohen, respectively. The theorem of Verbitsky limits the search for sym-
plectically resolvable quotients to this range. A theorem of Kaledin and Ginzburg
for real reflection groups and of Bellamy for complex reflection groups shows that
only the following three representations of a group G on a vector space V0 admit
symplectic resolutions for their corresponding symplectic double V0 ⊕ V ∗0 /G:

(1) The action of Sn on H = {z ∈ Cn | z1 + . . . , zn = 0}.
(2) The action of the wreath product (Z/2)n ⋊ Sn on Cn.
(3) The action of the binary tetrahedral group T on C2.

It is well-known that in the first cases of Coxeter type A and B resolutions are
provided by the Hilbert scheme of points. For the last case we have the following
resolution: T has three different 2-dimensional representations: the standard ac-
tion S, which is in fact symplectic, the quotient being the E6-singularity, and two
representations S′ and S′′ that are dual to each other. S′ contains a divisor C
consisting of four lines that are made up by points with non-trivial stabiliser. Even
though the divisor is invariant under T , its equation is not. Hence the quotient
W := (C × S′′)/T ⊂ Z := (S′ ⊕ S′′)/T is a Weil divisor but not Cartier.
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Theorem 3. (Lehn-Sorger [3]) — Let Z ′ → Z be the blow-up of Z along W , and
let Z ′′ → Z ′ be the blow-up along the singular locus of Z ′. Then Z ′′ is smooth and
Z ′′ → Z is semismall. In particular, Z → Z ′′ is a symplectic resolution.

As a by-product of the work on this example we find: The Nakamura Hilbert
scheme T −Hilb(S′⊕S′′) is not irreducible. It consists of two smooth components,
one of which lies dominantly over (S′ ⊕ S′′)/T , whereas the other is isomorphic
to P2 × P̌2. They intersect transversely along the natural incidence variety. This
seems to be first example of a reducible G-Hilbert scheme for an action of a finite
group G on a smooth variety.
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Nilmanifolds with left-invariant complex structure and their

deformations in the large

Sönke Rollenske

The aim of this work was to understand the deformations in the large of a
certain class of compact, complex manifolds.

We say that two compact, complex manifolds X and X ′ are directly deforma-
tion equivalent X∼defX ′ if there exists an irreducible, flat family π : X → B of
compact, complex manifolds over an analytic space B such that X ∼= π−1(b) and
X ′ ∼= π−1(b′) for some points b, b′ ∈ B. The manifold X is said to be a deformation
in the large of X ′ if both are in the same equivalence class with respect to the
equivalence relation generated by ∼def .

The problem of determining the deformations of a given complex manifold is
very difficult in general; but while there is a general method due to Kuranishi,
Kodaira and Spencer to tackle small deformations there is no general approach to
deformations in the large.

From Tori to Nilmanifolds. Even the seemingly natural fact that any deforma-
tion in the large of a complex torus is again a complex torus has been fully proved
only in 2002 by Catanese. In [Cat04] he studies more in general deformations
in the large of principal holomorphic torus bundles, especially bundles of elliptic
curves. This was the starting point for our research.

It turns out that the right context to generalise Catanese’s results is the theory
of left invariant complex structures on nilmanifolds, i.e., compact quotients of
nilpotent real Lie groups [CF06].

Many (counter-)examples in complex differential geometry have been construct-
ed from nilmanifolds:
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• Thurston’s example of a manifold which admits a complex structure and
a symplectic structure but no Kähler structure.
• Guan’s example of a simply connected, non-kählerian, holomorphic sym-

plectic manifold.
• Manifolds with arbitrarily non degenerating Frölicher spectral sequence

[Rol07]. This answers a question mentioned in the book of Griffith and
Harris.

In fact, a nilmanifold M admits a Kähler structure if and only if it is a complex
torus [BG88].

There are too many nilmanifolds. Even if every (iterated) principal holo-
morphic torus bundle can be regarded as a nilmanifold, the converse is far from
true. Moreover it turns out that even a small deformation of an iterated principal
holomorphic torus bundle may not admit such a structure.

A simple example showing this behaviour can already be found in complex
dimension 3.

Addressed questions.

(1) What are the small deformations of nilmanifolds with left invariant
complex structure.

(2) When has such a nilmanifold a geometric description as an (iterated)
principal holomorphic torus bundle?

(3) Can we determine all deformations in the large of (iterated) principal
holomorphic torus bundles?

Small deformations. A fairly complete answer to the first question is given by
the following result:

Theorem 1. Let M = Γ\G be a nilmanifold with left-invariant complex structure
J . If the Dolbeault cohomology Hp,q(M,J) can be calculated using left-invariant
differential forms then all small deformations of (M,J) are again nilmanifolds
with left-invariant complex structure.

The condition on Dolbeault cohomology is satisfied if (M,J) is an iterated
principal holomorphic torus bundle or if J is generic (see [CF01, CFGU00]) and
conjecturally holds true for all left-invariant complex structures.

The strategy of the proof is to show that the Kuranishi family can be described
using only left-invariant differential forms generalising results of [CFP06].

Stable geometries. In order to study deformations in the large we need more
control over the geometry – the existence of a so-called stable torus bundle series.
Example: Let π : S → E0 be a Kodaira surface, i.e., a non-trivial principal
bundle of elliptic curves over an elliptic curve, and let E′ be an elliptic curve. We
consider a family of nilmanifoldsM→ ∆ such thatM0 = S × E′.
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After a general small deformation the projection to the product of curves will
vanish, while the projection induced by π always remains:

M0

p1

}}||
||

||
|| p2

$$H
HHHH

HHH
H

small

deformation
>/o/o/o/o/o/o/o/o/o/o Mt

p1

~~||
||

||
|| ∄ p2

##H
H

H
H

H

E0 E0 × E
′ Et Et × E

′
t

Hence the right approach is to study Mt as a principal 2-torus bundles over an
elliptic curve.

Analysing the Albanese map it turns out that

Mt
αt //

p1
$$I

II
II

III
II

Alb(Mt)

��

dimension variesoo o/ o/ o/

Et constant quotientoo o/ o/ o/

Note that even the C∞-map underlying p1 does not change.
This is the simplest example of a stable torus bundle series and we determined

several condition under which these exist.

Deformations in the large. Studying deformations in the large of such constant
quotients (if they exist) instead of the whole Albanese variety we can generalise
the results in [Cat04, CF06]. For technical reasons it is better to formulate the
results in the language of Lie theory.

Theorem 2. Let G be a simply connected nilpotent Lie group with Lie algebra lg
and let Γ ⊂ G be a lattice such that the following holds:

(1) lg admits a stable torus bundle series (Si lg)i=0,...,t.
(2) The nilmanifolds of the type (St−1 lg, J,Γ∩exp(St−1 lg)) constitute a good

fibre class. (Examples are Tori or Kodaira surfaces.)

Then any deformation in the large M ′ of a nilmanifold with left-invariant complex
structure of type M = (Γ\G, J) carries a left-invariant complex structure.

In complex dimension 3 there are only 16 cases to check [Sal01]:

Theorem 3 (Theorem C). Let M = (Γ\G, J) be an iterated, principal holomor-
phic torus bundle which has complex dimension at most 3.

If not dimRZ(G) = dimR[G,G] = 3 then every deformation in the large of M
is gain an iterated principal holomorphic torus bundle.

In higher dimension there are several conditions on the structure of the Lie
group under which the same conclusion as in Theorem C holds.

Acknowledgements. These results are part of my PhD Thesis [Rol07]. I would
like to express my gratitude to my adviser Fabrizio Catanese for suggesting this
research, constant encouragement and several helpful discussions.
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Azumaya algebras and Artin stacks

Stefan Schröer

(joint work with Jochen Heinloth)

Our main result ist:

Theorem. Let X be a noetherian scheme. Then the inclusion of the bigger Brauer

group B̃r(X) ⊂ H2(X,Gm) into étale cohomology is an equality.

Here B̃r(X) denotes Taylor’s bigger Brauer group [4], which is defined in terms
of quasicoherent associative OX -algebras that are étale locally of the form E ⊗ F
for some quasicoherent sheaves E and F , with multiplication law given by

e⊗ f · e′ ⊗ f ′ = e⊗ f ′Φ(f, e′)

for some surjective pairing Φ : F ⊗ E → OX .
Our result generalizes a theorem of Raeburn and Taylor [3]. Our proof relies

on the theory of algebraic stacks as developed in the book of Laumon and Moret-
Bailly [2], and is closely related to de Jong’s proof [1] that the Brauer group Br(X)
equals the torsion subgroup of H2(X,O×X) if X carries an ample invertible sheaf.
The main idea it to show that a Gm-gerbe lies in the bigger Brauer group if and
only if the associated algebraic stack carries a coherent sheaf of weight w = 1 that
locally contains invertible direct summands. Then we use some general direct limit
and descend arguments to see that such sheaves always exists.

The result does not only hold for noetherian schemes X , but also for noetherian
algebraic stacks whose diagonal is quasiaffine.
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On the Quantisation of Completely Integrable Hamiltonian Systems

Duco van Straten

(joint work with Mauricio Garay)

Classical mechanics is described by a hamiltonian function that induces a flow in a
phase space. The mathematical model is that of a symplectic manifold M , where
the symplectic form ω defines an identification φ between the cotangent bundle
ΩM and the tangent bundle ΘM ; a function H on M defines a flow by integrating
the hamiltonian vector field φ(dH), [1].

We consider the caseM = C2n with canonical coordinates (p1, . . . , pn, q1, . . . , qn)
such that ω =

∑n
i=1 dpi ∧ dqi. The dynamics is described by the Hamilton equa-

tions

ṗi = −∂H/∂qi, q̇i = ∂H/∂pi

where the hamiltonian H is a function of the 2n coordinates (p, q). The time

derivative of an arbitrary function is then given by Ḟ = {H,F}, where

{F,G} =

n∑

i=1

∂F

∂pi

∂G

∂qi
−
∂G

∂pi

∂F

∂qi

is the Poisson-bracket of F and G. F is called a conserved quantity if Ḟ = 0, or,
what is the same F Poisson commutes with H , {F,H} = 0.

In general we call I1, I2, . . . , In ∈ R := C[p1, . . . , pn, q1, . . . , qn] which are func-
tionally independent and with {Ii, Ij} = 0 for all i, j a (polynomial classical)
integrable system. Although they are rare and hard to construct, several examples
are known, like the tops of Euler, Lagrange, Kovalevskaya; special cases of the
Henon-Heiles system, the Calogero-Moser systems, to mention a few. In many
cases the fibres of the map I := (I1, . . . , In) : C2n −→ Cn are affine pieces of
abelian varieties, see [6] for an overview. In algebraic geometry one encounteres
the integrable Hitchin system, the systems of Beauville-Mukai, which correspond
to the global situation of a Lagrangian fibrations on a hyperkähler manifold.

In their 1925 paper [2], Born and Jordan realised that quantum mechanics is
a non-commutative deformation of classical mechanics: the ring R = C[p, q] is
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replaced by the non-commutative Heisenberg algebra Q := C < ~, p, q > with the
relation

pq − qp = ~, ~ :=
h

2πi
, (h ≈ 6.10−34Js)

~ should be considered as a central element, and classical mechanics is recovered
by putting ~ = 0. Indeed, one can consider R as a quotient of Q: Q/~Q = R. It
was observed by Dirac, that the Poisson-bracket is recovered from the commutator
via

{f, g} :=
1

~
[F,G] mod ~Q

Question: Given a integrable system I1, . . . , In ∈ R, do there exist J1, . . . , Jn ∈ Q
such that [Ji, Jj ] = 0 and Ji = Ii mod ~?

If we can find such commuting J1, . . . , Jn, we will say the system is quantum
completely integrable. We have no general answer to this question, but for many in-
tegrable systems explicit quantisations are known. The quantisation of the Hitchin
system plays a central role in the geometric Langlands program [3].

It is natural to work order by order in ~ and put Qk := Q/~kQ and re-

place Q by the completion Q̂ = lim←kQk. We consider the polynomial ring

A = C[I1, . . . , In]
ι1
→֒ Q1 = R which we try to lift ι1 order by order to A

ι2
→֒ Q2,

. . . , A
ιk
→֒ Qk. The Poisson-commutativity of the Ii is equivalent to the liftability

of ι1 to ι2.

Let ΘA := Der(A,A) =
⊕

i=1 A
∂
∂Ii

and put Cp := R ⊗A ∧pΘA. We have n

commuting derivations f 7→ {Ii, f} of R, which combine to define a differential

δ : Cp −→ Cp+1, fw 7→
n∑

i=1

{f, Ii}
∂

∂Ii
∧w

Proposition [5]: Consider ιk : A −→ Qk and a lifting to ιk+1 : A −→ Qk+1.
Then there exists a well-defined obstruction element

Ξ = Ξ(ιk) ∈ H
2(C•, δ).

with the following property: ιk can be lifted to ιk+2 : A −→ Qk+2 by changing
the lift ιk+1 if and only if Ξ(ιk) = 0.

We put X = Spec(R) = C2n, S = Spec(A) = Cn and let I : X −→ S the
corresponding map. There is a discriminant set Σ ⊂ S, such that the pull-back
I ′ : X ′ −→ S′ := S\Σ is smooth and for s ∈ S′ the fibreXs is a smooth Lagrangian
subvariety of X . The complex (C•, δ) can be sheafied to a sheaf complex C• on
X .
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Proposition [5]: There is a natural map of complexes

ρ : (Ω•X/S , d) −→ (C•, δ)

which is an isomorphism on X ′.

As a consequence, the obstruction class Ξ induces for s ∈ S′ an element

Ξs ∈ H
2(ΩXs

) = H2(Xs,C)

If one makes reasonable assumptions on the structure of the singularities, one
can show coherence of the cohomology, using the classical Kiehl-Verdier approach:

Theorem [4]: If I : X −→ S is pyramidal, then Hi(C•, δ) are OS-coherent.

Corollary: If H2(C•, δ) is torsion free, then the obstruction Ξ is zero if and only
if Ξs = 0 for generic s ∈ S′.

In fact, the modules Hi are in fact free modules in all examples we calculated.

The classical Darboux-Givental’-Weinstein theorem says that in the C∞ con-
text, a neighbourhood of a Lagrange submanifold L is symplectomorphic to a
neighbourhood in the cotangent bundle T ∗L. The same is true in our situation
for L = Xs ⊂ X , because L is a Stein space. As a consequence of the rigidity of
of the Poisson structure, it seems one can construct a formal quantisation on a
formal generic fibre. This quantum Darboux theorem would imply the vanisishing
of Ξs for s generic. One would obtain the following corollary: If I : X −→ S is
pyramidal and H2(C•, δ) is torsion free, then there I lifts to a formal quantum

integrable system: we find Ji ∈ Q̂, [J1, Jj ] = 0 and Ji = Ii mod ~.
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Universitätsstr. 1
40225 Düsseldorf

Dr. Mao Sheng

Institut für Mathematik
Johannes-Gutenberg-Universität Mainz
Staudingerweg 9
55099 Mainz

Prof. Dr. Bernd Siebert

Mathematisches Institut
Universität Freiburg
Eckerstr. 1
79104 Freiburg

Prof. Dr. Duco van Straten

Fachbereich Mathematik
Universität Mainz
Saarstr. 21
55122 Mainz

Prof. Dr. Hiromichi Takagi

Graduate School of
Mathematical Sciences
University of Tokyo
3-8-1 Komaba, Meguro-ku
Tokyo 153-8914
JAPAN

Prof. Dr. Eckart Viehweg

Fachbereich Mathematik
Universität Duisburg-Essen
45117 Essen

Prof. Dr. Claire Voisin

Inst. de Mathematiques de Jussieu
Universite Paris VI
175 rue du Chevaleret
F-75013 Paris

Prof. Dr. Jörg Winkelmann

Lehrstuhl VII für Mathematik
Universität Bayreuth
95440 Bayreuth


