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Introduction by the Organisers

Noncommutative geometry applies ideas from geometry to mathematical struc-
tures determined by noncommuting variables. Within mathematics, it is a highly
interdisciplinary subject drawing ideas and methods from many areas of math-
ematics and physics. Natural questions involving noncommuting variables arise
in abundance in many parts of mathematics and quantum mathematical physics.
On the basis of ideas and methods from algebraic topology and Riemannian ge-
ometry, as well as from the theory of operator algebras and from homological
algebra, an extensive machinery has been developed which permits the formula-
tion and investigation of the geometric properties of noncommutative structures.
This includes K-theory, cyclic homology and the theory of spectral triples. Ar-
eas of intense research in recent years are related to topics such as index theory,
quantum groups and Hopf algebras, the Novikov- and Baum-Connes conjectures
as well as to the study of specific questions in other fields such as number theory,
modular forms, topological dynamical systems, renormalization theory, theoretical
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high-energy physics and string theory. Many results elucidate important proper-
ties of fascinating specific classes of examples that arise in many applications.
The talks covered substantial new results and insights in several of the different ar-
eas in Noncommutative Geometry. The workshop was attended by 53 participants
including 6 young researchers supported by the European Union.
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Abstracts

Semifinite noncommutative geometry and invariants from KMS states

Alan Carey

This talk summarised several projects that involve some joint work with Matilde
Marcolli, Ryszard Nest, Sergey Neshveyev, John Phillips and Adam Rennie. At
the moment the principal motivation comes from a proposal by Marcolli and col-
laborators that the C∗-algebras of certain directed graphs associated to Mumford
curves may contain information about the curves. Our calculations to date sup-
port this view.
The examples we have studied share some common features, namely that the alge-
bras in question do not admit faithful traces in general but do admit faithful states
or weights that are KMS for an action of the circle group. For such an algebra
A with faithful KMS state τ we construct spectral flow invariants associated to
certain unitaries acting on the GNS Hilbert space Hτ . In brief our construction
works as follows.
We let ∆it be the one parameter unitary group that implements the modular au-
tomorphism group for the circle action and we let D = log ∆. Strictly speaking we
have to work with matrix algebras over A, however we will suppress this additional
complexity in the discussion. In all of the examples we have been able to associate
to a pair (D,u) where u is a unitary on Hτ , an auxiliary semifinite von Neumann
algebraM such that

(1) D is affiliated toM and and defines an L(1,∞)-summable spectral triple,
(2) uDu∗ is also affiliated toM and differs from D by a bounded self adjoint

element ofM.

With these hypotheses, the von Neumann spectral flow introduced by J. Phillips
and denoted sfM(D,uDu∗), between D and uDu∗ along the straight line path
joining them is well defined. In our examples, when u is a unitary from A or from
a matrix algebra over A, satisfying the additional conditions that both u∆u∗∆−1

and u∗∆u∆−1 lie in the fixed point algebra for the circle action, we are able to
compute this spectral flow. This idea proved successful for graph algebras that
admit faithful traces (see [7, 8] and led to a proof [9] that the C∗-algebras of
directed graphs may be regarded as one dimensional noncommutative geometries
in the sense of a slight generalisation of the axioms of Alain Connes [4].
In our work the formula we use for these spectral flow computations is derived
from a spectral flow formula for unbounded Breuer-Fredholm operators affiliated
to a semifinite von Neumann algebra proved in [1]. We modify this formula so that
the spectral flow is expressed as a residue along the lines of the local index formula
in noncommutative geometry [2, 3, 5, 6]. The numerical invariants that we obtain
in this fashion exhibit, for all of the graph algebra cases we have considered, a
similar pattern.
With Nest and Neshveyev, Rennie and I have been looking for an explanation of
this pattern and we have recently found a way to understand it. If F denotes
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the fixed point algebra for the automorphic circle action on A then following [10]
we may introduce the mapping cone algebra M(F,A). What we find is that in
some cases we may explain the pattern of the spectral flow invariants using the K-
theory of M(F,A). For the tracial case considered in [7] we are preparing a paper
which explains how this works. In the case of faithful KMS states we have a less
complete picture. In some cases the map that assigns to a unitary u the spectral
flow sfM(D,uDu∗) can be seen to factor through the T-equivariant K-theory of
the mapping cone.
For this idea to work for the examples proposed by Matilde Marcolli a deeper
understanding of our residue formula for spectral flow is needed. Specifically the
difficulty is that with respect to the trace on M, which we construct using the
KMS state τ on A, the truncated von Neumann eta invariants of the endpoints
D and uDu∗ which contribute to the spectral flow do not cancel. Note that the
formal argument which would lead one to think that these eta invariants should be
equal as they are unitarily equivalent fails because u is not in M and so when we
try to use cyclicity of the trace we find that it fails and a twist is introduced from
the modular group. The problem we are now investigating is the study Cuntz-
Krieger systems that admit a type of eta cocycle associated with the KMS state
τ and the auxliary trace onM.
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Homological algebra for dense subalgebras

Ralf Meyer

The C∗-algebra of continuous functions on the circle C(S1) contains the subalgebra
of smooth functions C∞(S1) and the subalgebra C[t, t−1] of Laurent polynomials.
Many non-commutative C∗-algebras contain similar subalgebras of smooth and
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polynomial elements.
As an example, we consider the rotation algebra C(Tϑ) with parameter ϑ ∈ [0, 1];
this is the universal C∗-algebra u, v generated by two unitaries that satisfy the
relation uv = exp(2πiϑ)vu. Its elements have Fourier or Laurent series of the form∑

k,n∈Z aknu
kvn with akn ∈ C, which converge in a sense that we do not make

precise here. The Laurent series
∑

k,n∈Z aknu
kvn for which (akn) is rapidly de-

creasing form a dense subalgebra C∞(Tϑ) that plays the role of smooth functions;
if ϑ = 0, we do indeed get the algebra of smooth functions in the C∗-algebra of
continuous functions on the usual 2-torus. Elements of C(Tϑ) with finite Laurent
series form another dense subalgebra that plays the role of polynomial functions
on the non-commutative torus Tϑ.
Let G be a discrete group G. The reduced group C∗-algebra C∗

r (G) contains the
group ring C[G] as a dense subalgebra, which plays the role of the polynomial
functions in this situation. More generally, if G is totally disconnected, then we
should replace C[G] by the Hecke algebra of the group. In general, there is no
good analogue of the algebra of smooth functions. For reductive p-adic groups,
we can use the Harish-Chandra–Schwartz algebra of G. Similar Schwartz algebras
exist for Abelian groups and, more generally, for groups of polynomial growth. In
some cases, a construction of Jolissaint provides a good candidate for an algebra
of smooth functions (but this example is not so nice because the embedding of the
group ring in the Jolissaint algebra of a free group is not isoradial).
In the examples above, the algebras of polynomial, smooth, and continuous func-
tions are related in various ways. The purpose of this lecture is to identify some
relations between them that can be expected in reasonable generality. We cannot
expect completely general statements because already group C∗-algebra for gen-
eral discrete groups are too wild for this.
First we study the relationship between smooth and continuous functions. If X
is a compact manifold, then the algebra C∞(X) of smooth functions on X is
closed under holomorphic functional calculus in C(X). This implies that C(X)
and C∞(X) have the same K-theory. The notion of being closed under functional
calculus is an intrinsically commutative one because it only involves commutative
subalgebras of the algebras in question. We get a more satisfactory theory if we
refine this notion to take into account the non-commutativity of the algebras in
question. This is done most easily in the setting of bornological algebras, that is,
algebras with a family of bounded subsets (see [3]). In this lecture, all bornological
vector spaces and bornological algebras are tacitly assumed to be complete.

Definition 1. Let A be a bornological algebra and let S ⊆ A be bounded. The
spectral radius of S is defined by

̺A(S) = inf

{
r ∈ R>0

∣∣∣∣
∞⋃

n=1

(r−1 S)n is bounded

}
.

This is ∞ if
⋃∞
n=1(r

−1 S)n is unbounded for all r ∈ R>0.
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Definition 2. Let A andB be complete bornological algebras and let f : A→ B be
an injective bounded homomorphism with dense range. Suppose that ̺B(S) <∞
for all bounded subsets S ⊆ B. We call f isoradial if ̺B

(
f(S)

)
= ̺A(S) for all

bounded subsets S ⊆ A.

It can be expected that a “smooth” subalgebra is isoradial in the enveloping C∗-al-
gebra. This happens in the following cases:

• for the subalgebra of smooth functions C∞(X) in C(X);
• for the subalgebra C∞(Tϑ) in C(Tϑ);
• for the Schwartz algebra of a polynomial growth group;
• for the Schwartz algebra of a reductive p-adic group.

The Jolissaint algebras of groups with rapid decay also satisfy this condition. Here
we equip the algebras that occur with certain natural bornologies. For applications,
it is important to use precompact instead of von Neumann bounded subsets in
Banach spaces (see [3]).

Theorem 3. Let f : A → B be an isoradial bounded algebra homomorphism.
Then f induces an isomorphism in K-theory.

Suppose, in addition, that B satisfies a certain approximation property explained
in [3]. Then the embedding f is invertible in bivariant local cyclic homology and
hence induces an isomorphism on local cyclic homology and cohomology.

These two statements are proved in [4, 3], respectively. For the first one, much
weaker assumptions suffice. The second statement is due to Michael Puschnigg
and really uses the isoradiality condition.
Another advantage of the isoradiality notion is that it behaves well with respect
to tensor products and extensions (see [3]). This is useful, for instance, to check
that the obvious candidate for a smooth subalgebra in the Toeplitz C∗-algebra is
isoradial.
Thus local cyclic homology addresses a shortcoming of periodic cyclic homology.
Since the latter yields pathological results for C∗-algebras, we are forced to pass
to smooth subalgebras when studying it. But the result we get depends on the
choice of the smooth subalgebra, and it is hard to be sure that we have got the
right result. In contrast, local cyclic homology does not depend on the choice of
smooth subalgebra. Therefore, a smooth subalgebra is a good choice if its local
and periodic cyclic homology agree. Unfortunately, local cyclic homology is hard
to compute by hand, and few examples have been treated so far.
Now we study the relationship between polynomial and smooth functions. In many
cases, it happens that these two algebras have the same periodic cyclic homology
and the same topological K-theory. Here it is important to use topological instead
of algebraic K-theory because algebraic K-theory, say, for Laurent polynomials
in several variables, is quite different from the K-theory of a torus. Topological
K-theory for bornological algebras, including algebras with the fine bornology, is
defined and studied in [4].
In all the examples mentioned at the beginning, the periodic cyclic homology agrees
for the polynomial and smooth algebras. For K-theory, it is comparatively easy to
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prove this for functions on the circle and on non-commutative tori and for group
algebras of groups of polynomial growth. The case of Hecke and Schwartz algebras
of reductive p-adic groups has not been looked at so far, but I would expect things
to work out in this case as well.
Unfortunately, we do not yet understand satisfactorily why K-theory or periodic
cyclic homology agree so often for algebras of polynomial and smooth functions.
In the cases where this is known, the proof works by computing the theories for
both algebras and checking that the results agree.
In representation theory or algebraic geometry, we are interested in finer invariants
than periodic cyclic homology or K-theory, namely, derived categories and derived
functors. In all the examples mentioned at the beginning, it turns out that the
embedding from the polynomial into the smooth algebra induces a fully faithful
functor between the associated derived categories, provided the derived categories
are defined correctly. It is important to incorporate some functional analysis into
their definitions, even for algebras such as C[t, t−1] that carry a fine bornology.
The embedding C[t, t−1] → C∞(S1) serves as a trivial example to see the the
problem. If V is a module overA = C[t, t−1], then the following (Koszul) resolution
provides a free resolution of V :

V ← A⊗ V ← A⊗ V ← 0← · · · ,
where the map A⊗ V → V is the multiplication map a⊗ v 7→ a · v that describes
the module structure and the map A⊗ V → A⊗ V maps a⊗ v 7→ at⊗ v− a⊗ tv.
Similarly, if V is a bornological module over B = C∞(S1), then the following is a
free resolution of V :

V ← B ⊗̂ V ← B ⊗̂ V ← 0← · · · ,
where the maps are defined by the same formulas. Here we use the completed
projective bornological tensor product. In contrast, if we use the purely algebraic
tensor product, then already the chain complex

(4) B ← B ⊗B ← B ⊗B ← 0← · · · ,
fails to be exact. The issue is that the proof of exactness of the two resolu-
tions above involves division; this usually produces Laurent series with infinitely
many summands, which cannot be accommodated in the algebraic tensor product.
The homology groups of the chain complex (4) are TorA1 (B,B) and the kernel

of the canonical map TorA0 (B,B) = B ⊗A B → B. If homological algebra for
B-modules would reduce to homological algebra for A-modules, we would expect
TorA∗ (B,B) ∼= TorB∗ (B,B), which would predict (4) to be exact. Since it is not
exact, the canonical functor on derived categories Der(B) → Der(A) cannot be
fully faithful.
To avoid this problem, we should replace the vector space tensor product ⊗ by
the completed projective bornological tensor product. This can be incorporated
as follows. For a unital bornological algebra A, let Mod(A) be the category of
(complete) bornological A-modules with bounded A-module homomorphisms as
morphisms. It is possible to extend this to certain non-unital algebras (see [1]),
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but we do not discuss this here to avoid complications. The category Mod(A)
becomes an exact category if the admissible extensions are the extensions with a
bounded linear section, that is, extensions that split if we ignore the A-module
structures. In this exact category, free modules of the form A ⊗̂ V are projective,
and bar resolutions with completed tensor products provide projective resolutions.
Given any exact category such as Mod(A), there is a standard recipe to form a
derived category. First consider the category of chain complexes (say, unbounded,
but it does not matter much). A chain map is called a quasi-isomorphism if its
mapping cone is admissibly exact, that is, obtained by splicing admissible exact
sequences. The localisation at the quasi-homomorphisms is the derived category
Der(A). Since Mod(A) has enough projective and injective objects, we can compute
morphisms in Der(A) and derived functors using projective or injective resolutions.

Theorem 5. Let f : A → B be a bounded algebra homomorphism between two
bornological algebras. Then the following are equivalent:

(1) the (forgetful) functor f∗ : Der(B)→ Der(A) is fully faithful;
(2) let PA → A be a projective A-bimodule resolution of A; then

B ⊗̂A PA ⊗̂A B → B

is again an admissible resolution.

If this is the case, we call f isocohomological.

Various other equivalent characterisations of isocohomological algebra homomor-
phisms can be found in [1]. The main point of the proof is that an A-bimodule
resolution of A allows us to compute all kinds of derived functors. The chain com-
plex B ⊗̂A PA ⊗̂A B is automatically a chain complex of projective B-modules. If
it is a resolution as well, then we get a projective bimodule resolution for B from
one for A.
The embedding of the polynomial algebra in the smooth algebra is isocohomo-
logical for all the examples considered at the beginning by the results in [1, 2].
To see why this is useful, let us consider one of the applications in [2]. If f is
isocohomological and V,W are two B-modules, then we get

(6) Ext∗A(V,W ) ∼= Ext∗B(V,W ).

Now let A and B be the Hecke and the Schwartz algebra of a reductive p-adic
group. If V is a discrete series representation, then V is projective as a B-module,
but not necessarily as an A-module. Nevertheless, (6) yields ExtnA(V,W ) = 0 for
n > 0 if V is discrete series and W is tempered, even if V is not projective. This
vanishing result also has other interesting applications. For instance, together with
previous work of Schneider and Stuhler, it yields a quantisation of formal dimen-
sions of square-integrable representations (see [2]).
Such vanishing results were observed in all examples where the relevant Ext-
groups were computed, and this led representation theorists to conjecture that
there should be a comparison of derived categories. But to be able to prove such a
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statement, it is necessary to incorporate functional analysis into the derived cate-
gories because otherwise the result fails already in the trivial case of functions on
the circle, corresponding to the group of integers.
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Duality and analogues of the Lefschetz formula in operator algebras

Heath Emerson

K-theoretic duality of one kind or another plays a significant role in operator
algebras. There are three good examples of the the kind of duality I have in mind.

(1) The Baum-Connes duality (see e.g. [1]) whose statement I extend slightly
to assert that KKG(C0(EG)⊗A,B) ∼= KK(A,B⋊G) where A is a trivial
G-C∗-algebra.

(2) Noncommutative Poincaré duality for C∗-algebras, asserting in various
special cases A,B that there is a natural family of isomorphisms

KK(A⊗ P,Q) ∼= KK(P,B ⊗Q),

one for each P,Q.
(3) Kasparov duality (see [4]) which says that

RKKG(X ;A,B) ∼= KKG(P ⊗A,B)

for a given G-space X and some G-C∗-algebra P .

It turns out that there is a connection between duality and what I loosely term
Lefschetz formulae. I will only discuss the examples 2) and 3) here because 1) is
more or less equivalent to 3) modulo the Baum-Connes conjecture, and the Baum-
Connes conjecture understood in terms of the Dirac dual Dirac method is not itself
a duality but a question about whether or not the γ-element is the identity.
In reference to example 3) and based on ideas from [3] and in collaboration with
R. Meyer, I have extracted an invariant from a Kasparov duality (in the above
sense) for a G-space X which we call the Lefschetz invariant of that G-space. The
Lefschetz invariant is really a map

(1) Lef : RKKG(X ;C0(X),C)→ KKG(C0(X),C).

This map should be thought of as producing from a morphism X → X in KKG a
class in the equivariant K-homology of X . (For these purposes, the RKKG-group
is in fact the ‘correct’ home for morphisms X → X , when X is noncompact). The
idea is that Lef in some sense takes the intersection of the graph of the morphism
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and the diagonal in X ×X ; this produces a linear combination of ‘geometric cy-
cles’ for the (equivariant) K-homology of X . This is a pretty accurate account of
what happens when X is a smooth manifold. Another situation, where differential
topology is absent, is when X is a G-simplicial complex. The method still works,
since the Lefschetz invariant is determined by a duality, and there is a duality
available in this setting based on work of Kasparov and Skandalis, we can describe
the Lefschetz map in combinatorial terms. One assumes one has a G-equivariant
morphismX → X which maps simplices of X to unions of simplices. Then one can
extract from each simplex the number of times that simplex occurs in the chain
which is its image under the map. These multiplicities make up a G-equivariant
(zero-dimensional, in this case) K-homology class in a fairly obvious way. This is
the Lefschetz invariant of the skeletal map in question. Thus, in particular, we
have assigned Lefschetz data to morphisms in a unified way for both simplicial
complexes and for smooth manifolds.
The point of the construction is that Lef only depends on X as a G-proper-
homotopy class of spaces, and not on further structure. But one cannot describe
Lef at the level of cycles without utilizing further structure (the structure implicit
in a dual for X), for example a differential structure, or a triangulation. The
corresponding description of Lef then is in terms of the extra structure. So one
can relate, for instance, combinatorial and differential-geometric invariants, if, say,
X admits both a smooth Riemannian structure, and a simplicial structure. The
simplest such application asserts that if X is a proper G-manifold then the class
of the de Rham operator on X is essentially 0-dimensional (a sum of point K-
homology classes), a nontrivial assertion previously proven by Witten’s technique
of perturbing the de Rham complex by a generic vector field, but rather trivial
given our set-up. The classical Lefschetz fixed-point formula is also a special case.
It is fortunate that, dictated by the requirements of equivariant KK-theory, we
are forced to talk not about Lefschetz numbers, but Lefschetz classes. For as
mentioned above, our set-up applies in principle not just to maps X → X but
to general KK-elements. Conventional Lefschetz fixed-point theory picks off the
zero-dimensional part of our Lefschetz classes. When the morphism in question
is in a sense a higher-dimensional object than a map from X to X , there is cor-
respondingly higher-dimensional fixed-set information which is lost by passing to
numbers. This information is retained in our set-up. Thus, we have ‘higher Lef-
schetz formulae’ associated to smooth and G-equivariant correspondences from X
to X ; they are too complicated to state here. It would be nice if there was a no-
tion of combinatorial correspondence: this could give higher dimensional versions
of the Lück-Rosenberg theorem.
We are also working on generalizing the framework to where the group G is al-
lowed to be a groupoid. For instance, one should be able to easily prove that
the class of the longitudinal de Rham operator on a compact, foliated manifold,
is equal to the zero-dimensional class of an appropriately chosen transversal (of
course 0-dimensional in this case means intersection with each leaf should be 0-
dimensional.) Connes has stated a theorem quite close to this.
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The rest of my work so far in this area is concerned with the example 2) above.
Thus, here one also has an appropriate notion of duality and correspondingly
an abstract Lefschetz formula. Suppose one has two C∗-algebras A and B, as-
sumed nuclear, separable and satisfying the Kunneth theorem. Suppose they are
Poincaré dual in the sense of Connes. So there are classes ∆ ∈ KK(A ⊗ B,C)

and ∆̂ ∈ KK(C, A ⊗ B) are the fundamental classes of the duality, satisfying
the ‘zigzag equations’ of adjoint functors. One of course wants classes with in-
teresting descriptions (as with duals for G-spaces above.) The abstract Lefschetz
theorem in this case is easy to state: if α : A → A is a morphism in KK, then
the graded trace of α∗ ⊗Z idQ : K∗(A) ⊗Z Q → K∗(A) ⊗Z Q is equal to the index

pairing < ∆̂⊗A α,∆ >. The point is that the intersection product of ∆̂⊗A α and

∆ admits a description related to the geometry of ∆ and ∆̂. A very simple but
very illustrative example is when A = B is the C∗-algebra of a finite group and α
comes from a group automorphism. The tracial side turns out to be the number of
fixed points of the induced permutation of the irreducible dual of the group. The
geometric side is the number of twisted conjugacy classes. (In particular, these two
invariants are equal.) With S. Echterhoff and Hyun-Jeong Kim I have worked out
in some detail (based on material from [2]) the case of A = C0(X)⋊G where G is a
countable group acting properly (but not necessarily freely) on a manifold X . The
morphisms we study are covariant pairs for (X,G). The result is a rather beauti-
ful formula for the trace involving fixed orbits of φ, twisted conjugacy classes, and
orientation data. The computation seems to strongly recommend looking at other
examples.
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The Higher Harmonic Signature for Foliations

Moulay-Tahar Benameur

(joint work with James Heitsch)

1. The main theorem

One goal of index theory is to develop and relate analytic and topological in-
variants. A paradigm for this sort of result is the Atiyah-Singer index theorem for
families of elliptic operators defined along the fibers of a compact fiber bundle N .
The index of such a family is the difference of families of spaces (i.e. a K-theory
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class) over the base space of the bundle. The families index theorem relates the
Chern character of this index bundle to the characteristic classes of the tangent
bundle along the fibers of N and the symbol bundle of the family of operators. A
major application of this index theorem was Lusztig’s proof of the Novikov con-
jecture for free abelian groups, [9].
In the foliation case, it is an important problem to develop a theory which in-
corporates index bundles, when they exist, into the general index theory. In this
work, we define the higher harmonic signature, σ(F ), of an 2ℓ-dimensional oriented
foliation F of a compact Riemannian manifold M , and prove that, for Riemann-
ian foliations, it is a leafwise homotopy invariant. As σ(F ) is equal to the Chern
character of the index bundle of the leafwise signature operator, this work is a con-
tribution to the goal of integrating the index bundle into general non-commutative
index theory.
A leafwise metric determines Laplace operators ∆ and Hodge ∗-operators on the
differential forms on the leaves and their covers. The Hodge operator allows a
splitting ∆ℓ = ∆+

ℓ + ∆−
ℓ . To each leaf L of F , we associate the difference of the

(in general, infinite dimensional) spaces Ker(∆+
ℓ ) and Ker(∆−

ℓ ) on its holonomy
(or monodromy) cover. Assume that the Schwartz kernels of the projections onto
these two spaces (thought of as sections of a certain bundle over the groupoid)
vary smoothly transversely in a sense that is made precise in [3]. In our previous
work [2], we defined a Chern-Connes character cha for such “bundles”, which takes
values in the Haefliger cohomology of F . The higher harmonic signature of F is
then defined as

σ(F ) = cha(Ker(∆+
ℓ ))− cha(Ker(∆−

ℓ )).

The main theorem that I explained in my talk in this conference is the following.

Theorem 1. Suppose that M is a compact Riemannian manifold, with oriented
Riemannian foliation F of dimension 2ℓ. Then σ(F ) is a leafwise homotopy in-
variant.

It is an open question whether the projection to the leafwise harmonic forms al-
ways has transversely smooth Schwartz kernel. This assumption is satisfied for all
foliations with compact leaves and Hausdorff graph [6, 7], and in particular for
fibrations. We have assumed that the foliation is Riemannian to ensure this condi-
tion, see [4]. Simple examples of fibrations of Grassmannians over Grassmannians
show that the higher components of the higher harmonic signature are non-trivial
in general. See also [1].
We point out that this theorem with a more general twisted version can be de-
duced from an extension of the analytic method developped by Connes in [5], but
the method we develop here is completely geometric and new, and is in the spirit
of the classical proofs using connections on bundles. We believe that besides the
result itself, this approach can be applied to a wider class of topological problems.
Let us explain briefly the main steps of the proof. We fix a smooth leafwise ho-
motopy equivalence f : (M,F )→ (M ′, F ′) with homotopy inverse g.
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(1) We introduce the notion of smooth bundle with connection over the space
of leaves and prove that the Chern-Connes character of such bundles is well
defined and can be recovered using any such connection. The connections
we use extend the Bismut approch and correspond grossomodo to the
notion of connection over the space of leaves.

(2) We prove that the pull-back under the leafwise homotopy equivalence f
of a smooth bundle with connection is a smooth bundle with connection.
It is worth pointing out that the pull-back of a leafwise L2-form is not L2

in general and hence that one needs to adapt the Hilsum-Skandalis (HS)
method to overcome this difficulty and to define a new notion of pull-back
map. It is this HS pull-back map that is used to define the pull-back bundle
and the pull-back connection. As an important step, we quote here that
this HS pull-back map is proved to be uniformly bounded between Sobolev
spaces and not only L2.

(3) We show by using the properties of leafwise maps that the Chern-Connes
character of the pull-back bundle coincides in Haefliger cohomology with
the pull-back of the Chern-Connes character of the given bundle. As a
corollary, we deduce an interpretation of the pull-back of the higher sig-

nature σ(F ′) under the equivalence relation f , using a smooth bundle πf±
over (M,F ).

(4) To complete the proof, one needs to relate cha(π
f
±) with σ(F ). This is

achieved using a smooth isomorphism between the two smooth bundles.
While this isomorphism is easy to construct, a non trivial result is the
smoothness of its inverse.

The consequence of our method is also the leafwise homotopy invariance of the
higher Betti numbers.

2. Discussions and open questions

As previously mentioned, the geometric method that we have adopted applies
as well to the higher harmonic signature with coefficients in a leafwise flat bundle.
We are currently working on an extension of this work to the twist by leafwise
almost flat bundles as studied by Hilsum and Skandalis in [8]. We now explain the
relation of such theorem with the leafwise Novikov conjecture.
In [2], we proved that given a closed holonomy invariant current C of dimension 2k
on the foliation, the pairing of the twisted, by a vector bundle E, higher harmonic
signature with C, coincides with the characteristic number

∫

F

L(TF ) ch(E) ∈ H∗
c (M/F ),

whenever the Novikov-Shubin invariant is larger than k. As for a large class of
discrete groups and according to Gromov’s observation, almost flat bundles along
the leaves are suspected to generate, for a large class of foliations, the cohomology
of the classifying space of the groupoid. The precise conjectured statement is given
in [4]. In [3], we conjectured that
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• the Novikov-Shubin invariants of Riemannian foliations are always posi-
tive;

• the above equality between the Chern-Connes character of the index bun-
dle of a leafwise elliptic operator and the expected characteristic classes
is always true, under the weaker assumption that the index bundle of this
operator exists.

We observe that by using the Hilsum-Skandalis theorem [8], and modulo the gen-
eralization of a famous extension theorem of Connes [5] to all closed invariant
currents, one can deduce an analytic proof of our main theorem. Many experts
think that this generalization is straightforward.
Another approach that would replace Connes’ extension method was indicated to
us by Joachim Cuntz and is a consequence of the following probably true state-
ment for Riemannian foliations. Denote byHL∗ Puschnigg’s local cyclic homology.
Then there should exit a morphism

ΦL : HL∗(C
∗(M,F )) −→ H∗

c (M/F ),

such that ΦL ◦ ChL = cha on K∗(C∞
c (G)), where

ChL : K∗(C
∗(M,F ))→ HL∗(C

∗(M,F ))

is Puschnigg’s Chern-Connes character. This approach is somehow close to Connes’
extension approach.
I would like to thank the organizers for giving me the opportunity to present and
discuss this work. I am grateful to P. Baum, A. Carey, J. Cuntz, A. Gorokhovsky,
V. Mathai, R. Meyer, H. Moscovici, P. Piazza, M. Puschnigg and T. Schick, for
several useful discussions during the workshop.
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Algebraic vs. topological K-theory of locally convex algebras and
Karoubi’s conjecture

Guillermo Cortiñas

(joint work with Andreas Thom)

This talk was about our joint paper [3] on the comparison between algebraic and
topologicalK-theory. This is a classical subject with numerous applications, which
has been considered by several authors, for different classes of topological algebras,
and using a wide variety of tools (see J. M. Rosenberg’s excellent survey [9]).
Here we are concerned with the comparison between algebraic and topological K-
theory of not necessarily unital locally convex C-algebras. By a locally convex
algebra we understand a complete locally convex vector space L together with an
associative multiplication map L⊗̂L→ L; here ⊗̂ is the projective tensor product
of A. Grothendieck. We establish a six-term exact sequence relating algebraic
and topological K-theory with algebraic cyclic homology. We show that if J is
a Fréchet operator ideal and L a locally convex algebra, then there is an exact
sequence

(1) Ktop
1 (L⊗̂J ) // HC2n−1(L⊗̂J ) // K2n(L⊗̂J )

��
K2n−1(L⊗̂J )

OO

HC2n−2(L⊗̂J )oo Ktop
0 (L⊗̂J ).oo

HereK∗ is algebraicK-theory. There are several possible definitions for topological
K-theory of general locally convex algebras; however we show that they all coincide
for algebras of the form L⊗̂J as above. Thus for example in the sequence above we
can define Ktop in terms of Cuntz’ bivariant K-theory for locally convex algebras,
see [4],

Ktop
∗ (L⊗̂J ) = kktop

∗ (C, L⊗̂J ).

The algebraic cyclic homology groups are taken over Q; this means that the (al-
gebraic) tensor products appearing in the complex we use for defining HC (there
are several quasi-isomorphic such complexes) must be taken over Q. For example,
we have HC∗(A) = H∗(Cλ(A), b), where Cλ is Connes’ complex, see [8],

Cλn(A) = (A⊗n+1
Q )Z/〈n+1〉.

The meaning of the sequence (1) is clear; it says that, for locally convex algebras
stabilized by a Fréchet operator ideal, algebraic cyclic homology measures the
obstruction for the comparison map K∗ → Ktop

∗ to be an isomorphism. As an
immediate application of this, and of the fact that, by definition, cyclic homology
vanishes in negative degrees, we get

(2) Kn(L⊗̂J ) = Ktop
n (L⊗̂J ) (n ≤ 0).

The particular case of (2) when J = Lp, and p > 1 (or, more generally, when J
is harmonic) was proved in [5, Thm. 6.2.1].
It is also clear from (1) that the vanishing of cyclic homology in all degrees is
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equivalent to the isomorphism between algebraic and topological K-theory. For
example, we show that if J = L∞ is the ideal of all compact operators and L is a
unital Banach algebra then HC∗(L⊗̂J ) = 0, whence

(3) K∗(L⊗̂J ) = Ktop
∗ (L⊗̂J ).

This establishes Karoubi’s conjecture (as stated in [7]). In fact we show (3) holds
more generally when L is a Fréchet algebra whose topology is generated by a
countable family of sub-multiplicative seminorms and admits an approximate right
or left unit which is totally bounded with respect to that family. We point out that
Mariusz Wodzicki is credited with the solution of Karoubi’s conjecture, both the
original one and the generalization just mentioned, as well as with other results
proved in this paper. He has lectured on these results in several places, including
Heidelberg and Paris, giving full details of his proofs. However, although some of
these results have been announced in [10], his proofs have not been published in
print except in some particular cases, see [6]. Our proofs use some of the published
results of Wodzicki, as well as other results which are independent of his work. For
example, most of our proofs rely heavily on the diffeotopy invariance theorem from
[5] –which we generalize– and the excision theorem for infinitesimal K-theory from
[2], none of which were available at the time when Wodzicki’s pioneering work [10]
appeared.
Another result announced in [10, Thm. 5] is the existence of a 6-term exact
sequence
(4)

K−1(A⊗ J ) // HC2n−1(A⊗ B : A⊗ J ) // K2n(A⊗ B : A⊗ J )

��
K2n−1(A⊗ B : A⊗ J )

OO

HC2n−2(A⊗ B : A⊗ J )oo K0(A⊗ J ).oo

Here A is an H-unital C-algebra, ⊗ is the algebraic tensor product over the com-
plex numbers C, B is the algebra of bounded operators in an infinite dimensional,
separable Hilbert space, and J is what we call a sub-harmonic operator ideal.
We prove (4) for all algebras A and for all sub-harmonic operator ideals J . Thus
we generalize Wodzicki’s sequence from H-unital algebras to all algebras. Further-
more, we also prove a variant of (4), which is still valid under the same hypothesis,
and which involves absolute, rather than relative K-theory and cyclic homology.
We show that there is an exact sequence

(5) K−1(A⊗ J ) // HC2n−1(A⊗ J ) // K2n(A⊗ J )

��
K2n−1(A⊗ J )

OO

HC2n−2(A⊗ J )oo K0(A⊗ J ).oo

Examples of sub-harmonic ideals include all Fréchet ideals as well as some ideals,
such as the Schatten ideals Lp with 0 < p < 1, which are not even locally convex.
In the particular case when A = C both (4) and (5) simplify. Indeed we show that,
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as stated without proof in [10, Prop. on p. 491], we have

(6) K−1(J ) = 0, K0(J ) = Z

for any proper operator ideal J . Thus (5) becomes

(7) 0→ HC2n−1(J )→ K2n(J )→ Z
αn→ HC2n−2(J )→ K2n−1(J )→ 0.

We show moreover that if I ⊂ Lp (p ≥ 1) then αn is injective for n ≥ (p+1)/2. As
an application of this we obtain a new description of the multiplicative character
of a p-summable Fredholm module defined by A. Connes and M. Karoubi in [1].
One can also combine (6) with (4) to obtain a sequence similar to (7), but involving
relative, instead of absolute K-theory and cyclic homology:

(8) 0→ HC2n−1(J )→ K2n(B : J )→ Z→ HC2n−2(B : J )→ K2n−1(J )→ 0.

This is the sequence announced in [10, Thm. 6]; Dale Husemöller took the work
to write down Wodzicki’s proof in [6].
As indicated above we obtain a generalization of the diffeotopy invariance theorem
proved by J. Cuntz and the second author in [5]. The latter implies that if E is
a functor from the category LocAlg of locally convex algebras to abelian groups
which is split exact and stable with respect to 2×2-matrices, and J is a harmonic
ideal, then

(9) L 7→ E(L⊗̂J )

is diffeotopy invariant, i.e. sends the two evaluation maps A⊗̂C∞(∆1)→ A to the
same morphism. Recall that a harmonic ideal is a Banach operator ideal J ⊂ B
with continuous inclusion, which contains a compact operator whose sequence
of singular values is the harmonic sequence ( 1

n )n, and which is multiplicative.
We prove that, under an extra hypothesis on E, the functor (9) is diffeotopy
invariant for any Fréchet ideal J . The extra hypothesis essentially says that E
sends certain homomorphisms whose kernel and cokernel are both square-zero
algebras into isomorphisms. For example the functors Kn for n ≤ 0 as well as
the infinitesimal and (polynomial) homotopy K-theory groups K inf

n and KHn for
n ∈ Z, all satisfy these hypothesis. Hence if A is any C-algebra, and J any Fréchet
ideal, then the functors

(10) KH∗(A⊗ (?⊗̂J )) and K inf
∗ (A⊗ (?⊗̂J )),

are diffeotopy invariant. Using this we show, for example, that

(11) A⊗ (L⊗̂J ) is K0-regular.

In particular

Kn(A⊗ (L⊗̂J )) = KHn(A⊗ (L⊗̂J )) (n ≤ 0).

Further, we prove that topological and homotopy K-theory agree on stable locally
convex algebras. We have

(12) KH∗(L⊗̂J ) = Ktop
∗ (L⊗̂J )

for every Fréchet ideal J . In particular both (11) and (12) hold when J = Lp,
p ≥ 1.
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[1] A. Connes, M. Karoubi. Caractére mulitplicatif d’un module de Fredholm. K-theory 2 (1988)
431–463.
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[6] D. Husemöller. Algebraic K-theory of operator ideals (after Mariusz Wodzicki). In K-theory,
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Secondary invariants of Dirac operators on foliated spaces

Paolo Piazza

(joint work with Moulay Benameur, Hitoshi Moriyoshi, Thomas Schick)

Index theory for Dirac operators is not only a fascinating subject but it is also a
very useful tool in establishing purely geometric results. Still, there are situations
where one needs invariants associated to Dirac operators that are more sophisti-
cated than the index. Rho-invariants, introduced by Atiyah, Patodi and Singer in
[1] are such secondary invariants; they are defined in terms of a Dirac-type oper-
ator D on a compact odd dimensional manifold M and the choice of two unitary
representations α, β : π1(M)→ U(ℓ). More precisely: ρα−β(D) := η(Dα)−η(Dβ),
with η indicating the classic eta invariant and Dα, Dβ indicating the Dirac oper-
ators twisted by the flat bundles defined by α and β. The rho-invariant for the
signature operator of an orientable manifold can be used in order to distinguish
non-diffeomorphic lens spaces that are homotopy equivalent; the rho invariant for
the spin-Dirac operator on a spin manifold is useful in distinguishing metrics of
positive scalar curvature that are not path-connected or even non-bordant (results
by Botvinnik-Gilkey).
Now, index theory for Dirac operators has been developed in geometric situations
of increasing complexity:

• Galois coverings with structure group Γ
• measured foliations
• general foliations
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In the first two cases one can define a Von Neumann index and corresponding for-
mulae have been proved respectively by Atiyah and Connes. In the third case one
pairs the index class of a longitudinal Dirac operator with suitable cyclic cocycles,
a very interesting particular example being given by the so-called Godbillon-Vey
cyclic cocycle; an index formula has been established in this case by Connes with
alternative proofs given later by Moriyoshi-Natsume and Gorokhovsky-Lott.
The basic themes of my talk can be summarized as follows:

• is it possible to define secondary invariants of type rho in these more
complex situations ?

• are these invariants interesting ?
• can one give purely geometric applications of these invariants ?

The rho-invariant on Galois coverings has been introduced by Cheeger-Gromov as
the difference of the Von Neumann eta invariants upstairs, i.e. for the lifted Dirac
operator, and the usual eta invariants downstairs. I explained how the fundamen-
tal dichotomy for L2-invariants on Γ-coverings, namely whether Γ has torsion or
whether Γ is torsion-free, presents itself also in the case of the Cheeger-Gromov
rho-invariant. Indeed, if Γ is torsion-free and, in addition, satisfies the Baum-
Connes hypothesis for the maximal group C∗-algebra, then one can prove that the
Cheeger-Gromov rho-invariant for the signature operator is a homotopy-invariant,
whereas it is equal to zero for the spin-Dirac operator associated to a metric of
positive scalar curvature. These results are originally due to Keswani, see [3], and
have been reproved by Piazza and Schick in [5], where an analogous result was also
proved for Lott’s delocalized eta invariant (the latter result involves the weaker
hypthesis of Baum-Connes valid for the reduced C∗-algebra).
The message that we should retain here is that when Γ is torsion-free (and under
a Baum-Connes assumption), the Cheeger-Gromov rho-invariant behaves exactly
as an index. This is a rather interesting phenomenon, given that the rho-invariant
is defined in terms of the heat-kernel for all times.
When Γ has torsion, the situation is completely different and the rho-invariant
becomes a true secondary invariant. Geometric applications of the rho-invariant
in this case are due to Chang-Weinberger [2] (who proved the following: given a
manifold M of dimension 4k + 3 with fundamental group with torsion then there
is an infinite number of manifolds that are homotopy-equivalent to M but not
diffeomorphic to it) and to Piazza and Schick [6] (who proved that in the same
dimensions a spin manifolds with fundamental group with torsion with one metric
of positive scalar curvature will admit an infinite number of metrics of positive
scalar curvature that are paiwise non-bordant).
In the rest of my talk I then concentrated on foliated spaces admitting an invari-
ant transverse measure ν. In this case, given a longitudinal Dirac operator D
one can introduce a Von Neumann eta invariant upstairs, defined in terms of the
monodromy groupoid, and a von Neumann eta invariant downstairs, defined in
terms of the groupoid associated to the equivalence relation fixed by the foliation.
The first definition is due to Peric [4] whereas the second is due to Ramachandran
[7]. We define the foliated rho-invariant, ρν(D), as the difference of these two eta
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invariants. For such an invariant one can ask the usual fundamental questions: is
this an interesting invariant? Can one give geometric applications of it?
I reported on a recent result in collaboration with Moulay Benameur:

Theorem 1. Let X be a foliated space and assume that X is a foliated flat bundle:
X = M̃×ΓT , with Γ→ M̃ →M the universal covering of a compact manifold and
T a Γ-topological space endowed with a Γ-invariant measure ν. If Γ is torsion free
and the maximal Baum-Connes map with coefficients in C(T ) is an isomorphism,
then ρν(D

sign) is a foliated homotopy invariant.

In other words, we see once again that the rho-invariant for the signature opera-
tor behaves like an index in a torsion-free situation (and under a Baum-Connes
assumption).
The attempt to answer to the second question, i.e. to give geometric applications
of this invariant when Γ is not torsion free, is work in progress with Benameur.
Finally, in the very last part of my talk I reported briefly about the problem of
defining secondary invariants in the general case, for example for the Godbillon-
Vey cyclic cocyle. It should be said that it is already unclear how to define a
Godbillon-Vey eta invariant. Now, eta invariants are boundary correction terms
to index theorems on manifolds with boundary and one strategy is to proceed as
Atiyah Patodi and Singer did, namely to prove a Godbillon-Vey index theorem
on manifolds with boundary and find the corresponding eta invariant directly out
of the formula. I reported on joint work with Hitoshi Moriyoshi in this direc-
tion: what we proved is the existence of the Godbillon-Vey index on a foliated flat
bundle with boundary under the assumption that the londitudinal Dirac opera-
tor induced on the boundary-foliation is invertible. Because of the non-locality of
the parametrix this theorem is not at all obvious and in fact employs heavily an
extension of the the b-calculus of Melrose to the foliated context.

References

[1] Atiyah, M. F. , Patodi, V. K. and Singer, I. M., Spectral asymmetry and Riemannian
geometry. II Math. Proc. Cambridge Philos. Soc. 78 (1975), 405–432.

[2] Chang, S., Weinberger, S., On Invariants of Hirzebruch and Cheeger-Gromov, Geom. Topol.
7 (2003), 311–319.

[3] Keswani, N. Von Neumann eta-invariants and C∗-algebra K-theory, J. London Math. Soc.
(2) 62, 771–783.
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Noncommutative Field Theory

Razvan Gurau and Vincent Rivasseau

1. Introduction

Noncommutative (NC) quantum field theory (QFT) may be important for
physics beyond the standard model and for understanding the quantum Hall effect
[1]. It also occurs naturally as an effective regime of string theory [2, 3].
The simplest NC field theory is the φ4

4 model on the Moyal space. Its perturbative
renormalizability at all orders has been proved by Grosse, Wulkenhaar and follow-
ers [4]. Grosse and Wulkenhaar solved the difficult problem of ultraviolet/infrared
mixing by introducing a new harmonic potential term inspired by the Langmann-
Szabo (LS) duality [5] between positions and momenta.
An amazing discovery was made in [6]: the non commutative φ4

4 model does not
exhibit any Landau ghost at one loop. It is not asymptotically free either. For
any renormalized Grosse-Wulkenhaar harmonic potential parameter Ωren > 0, the
running Ω tends to the special LS dual point Ωbare = 1 in the ultraviolet. As a
result the RG flow of the coupling constant is simply bounded1. This result was
extended up to three loops in [7].
We compute the flow at the special LS dual point Ω = 1, and check that the beta
function vanishes at all orders using a kind of Ward identity inspired by those of
the Thirring or Luttinger models [8]. Note however that in contrast with these
models, the model we treat has quadratic (mass) divergences.
We denote Γ4(0, 0, 0, 0) the amputated one particle irreducible four point func-
tion and Σ(0, 0) the amputated one particle irreducible two point function with
external indices set to zero. The wave function renormalization is ∂LΣ = ∂RΣ =
Σ(1, 0)− Σ(0, 0) [7]. Our main result is [9]:

Theorem 1. The equation

(2) Γ4(0, 0, 0, 0) = λ(1 − ∂LΣ(0, 0))2

holds up to irrelevant terms to all orders of perturbation, either as a bare equation
with fixed ultraviolet cutoff, or as an equation for the renormalized theory. In the
latter case λ should still be understood as the bare constant, but reexpressed as a
series in powers of λren.

The proof of this result resides on a Ward identy (see fig.1) which writes:

(3) (a− b) < [φ̄φ]abφνaφ̄bν >c=< φνbφ̄bν >c − < φ̄aνφνa >c

(repeated indices are not summed).
The proof of this identity consists of making the change of variables:

φU = φU ; φ̄U = U †φ̄ .

and following some steps parallel to those one takes in commutative quantum field
thaory when deriving the usual Ward identities.

1The Landau ghost can be recovered in the limit Ωren → 0.
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Figure 1. The Ward identity

2. Constructive Aspects

Constructive field theory build functions whose Taylor expansion is perturba-
tive field theory [10, 11]. Formal power series being asymptotic to infinitely many
smooth functions, perturbative field theory in a deep sense is no theory at all. The
main advantage of perturbative field theory is that connected functions are simply
the sum of the connected Feynman graphs. But it diverges because there are too
many such graphs.
In fact connectedness only requires the (classical) notion of a spanning tree. To
summarize constructive theory, let’s say that it is all about working as much as
possible with the trees only. This is the constructive golden rule:

“Thou shall not know all the loops, or thou shall diverge!”

The constructive program of A. Wightman, J. Glimm, A. Jaffe and followers partly
failed! It was partly a physical failure because no natural four dimensional field
theory could be identified and fully built within this program. This is because only
non-Abelian gauge theories are UV asymptotically free. The constructive program
went on, but mostly as a set of rigorous techniques applied to many different areas
of mathematical physics [12].
It was also partly a mathematical failure because the main tool of constructive
theory, the cluster amd Mayer expansion of Glimm, Jaffe and Spencer uses a
discretization through a lattice (e.g. of cubes) which violates the natural rotation
invariance of the theory. Non-canonical intermediate tools are not very appealing
to mathematicians.
Some constructive revival could come from NCQFT, because of the absence of
the Landau ghost explained in the previous section. But it does not seem that
NCQFT with its non-local vertices can be treated through cluster expansion. The
difficulty can be traced to the inabilty of the usual constructive methods to treat
matrix models uniformly as the size of the matrix increases. A matrix field has
N2 components and at a given vertex four different indices meet. The scaling of
the vertex is only 1/N , but this is because each propagator identifies two matrix
field indices with two others, rather than one. Therefore matrix models apparently
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clash with the constructive golden rule. The knowledge of the full loop structure
of the graph, not only of a tree, seems necessary to recover the correct power
counting, for instance a single global N2 factor for vacuum graphs.
A new idea to solve this problem has been provided recently [13]. Matrix φ4 models
can be decomposed with respect to an intermediate matrix field. Integrating over
the initial field leads to a perfect gas of so called loop vertices for this intermediate
field. Performing the tree expansion directly on these loop vertices, all indices loops
then appear as the correct number of traces of products of interpolated resolvents,
which can be bounded because of the anti-Hermitian character of the intermediate
field insertions.
This idea in turn provides a way to repack the ordinary φ4 model into a convergent
series without using any cluster and Mayer expansion, hence any ”non-canonical”
tools [14].
The main idea is to use a canonical symmetric tree formula [12], not on the ordinary
lines of the graph but on the dual lines which correspond to the intermediate field
propagators. In this way Bosonic constructions of φ4 fields can be brought almost
to the same level of simplicity than the Fermionic ones.
In conclusion solving NCQFT problems can also provide the right way to better
understand ordinary QFT.
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Fredholm modules over higher rank lattices

Michael Puschnigg

We addressed th following question: Let Γ be a discrete group and let α ∈
KK∗(C∗

r (Γ),C) be a K-homology class of the reduced group C∗-algebra C∗
r (Γ).

Under which conditions can α be represented by a bounded Fredholm module
which is finitely summable over the group ring CΓ?
Such ”regular” K-cycles are much more accessible than general ones, there is a
single character formula for the index due to Connes, etc.
It is known (by results of Connes) that there are lots of finitely summable K-cycles
(bounded ones) over hyperbolic groups. It turns out that the situation for higher
rank lattices is quite different:

Theorem 1. Let Γ be a lattice in a product of simple Lie groups of real rank
≥ 2. Then no nonzero class of KK∗(C∗

r (Γ),C) can be represented by a finitely
summable Fredholm module.

More generally

Theorem 2. Every finitely summable Fredholm module over the group ring of
a higher rank lattice as in theorem 1 is homotopic to a Fredholm module whose
underlying Hilbert space is finite dimensional.

Both results are more or less straightforward consequences of the work of Bader,
Furman, Gelander and Monod on the rigidity of affine actions of higher rank
lattices on Lp-spaces. Their work leads to

Theorem 3. Let Γ be a higher rank lattice and let E = (H, ρ, F ) be a p-summable
Fredholm module over CΓ for 1 < p <∞. Then H1(Γ, lp(H)) = 0.

One observes that theorem 3 ⇒ theorem 2 ⇒ theorem 1.

Non-commutative algebraic geometry and the representation theory of
p-adic groups

Paul Baum

(joint work with Anne-Marie Aubert, Roger Plymen)

Let G be a reductive p-adic group. Examples are GL(n, F ), SL(n, F ) etc. where
F can be any finite extension of the p-adic numbers. The smooth dual of G is the
set of equivalence classes of smooth irreducible representations of G. Equivalently,
the smooth dual of G is the set of isomorphism classes of non-degenerate (left) HG
modules where HG is the Hecke algebra of G. Thus HG is the convolution alge-
bra of all locally-constant complex-valued compactly-supported functions defined
on G. This a dense, but not holomorphically closed, subalgebra of the reduced
C∗-algebra of G. The main topological invariant of HG is its (purely algebraic)
periodic cyclic homology.
Associated to any irreducible HG module is its null-space. This determines a
bijection between the smooth dual of G and the set of primitive ideals of HG.



Noncommutative Geometry 2569

On the set of primitive ideals of HG impose the Jacobson topology, and consider
the connected components. J. Bernstein assigns to each connected component a
complex torus and a finite group acting on the torus by automorphisms. He then
defines a map (known as the infinitesimal character or the central character) from
the connected component to the quotient of the complex torus by the action of
the finite group. This quotient affine variety will be referred to as the ordinary
quotient.
A conjecture, due to A. M. Aubert, P. F. Baum, and R. J. Plymen asserts that
there is a certain resemblance between the infinitesimal character and the pro-
jection of the extended quotient onto the ordinary quotient. More precisely, the
conjecture asserts that the ideal in HG corresponding to the connected compo-
nent is equivalent via the equivalence relation introduced in [1] to the coordinate
algebra of the ordinary quotient. In particular, the isomorphism of periodic cyclic
homology so obtained makes the infinitesimal character and the projection of the
extended quotient onto the ordinary quotient topologically indistinguishable. Also,
the conjecture asserts that the elementary steps connecting the ideal to the coor-
dinate algebra of the extended quotient can be chosen so that when the resulting
bijection (between the connected component and the extended quotient) is used
to give the connected component the structure of a complex affine variety, then
the infinitesimal character becomes a morphism of algebraic varieties. Finally,
the conjecture states that the infinitesimal character algebraically deforms to the
projection of the extended quotient onto the ordinary quotient, and that this de-
formation is given by a finite set of cocharacters of the complex torus.
Due to results of M. Solleveld, the above conjecture is closely related to Baum-
Connes for G, and hence the above conjecture can be viewed as an attempt to
build a bridge between BC and the representation theory of p-adic groups.
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On the Index Theory of SL(3, C)

Robert Yuncken

This work concerns an application of noncommutative harmonic analysis to non-
commutative geometry. The particular motivation here is the Baum-Connes Con-
jecture with coefficients for semisimple Lie groups. In this particular instance, we
will work entirely with the groups SL(n,C), and particularly with SL(3,C) which
is the simplest group for which the conjecture is unknown. However, the methods
used here seem quite general and should have broader application.
Let us begin with the motivation. Let G be a semisimple Lie group. We will not
give a description of the Baum-Connes conjecture here—for good introductions
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to the conjecture and its many applications, we refer the reader to [2]. What
is important here is a method of proof for the conjecture which was initiated by
G. Kasparov in the 1980’s, and which has been successful in proving the conjecture
for all the rank-one semisimple Lie groups. Kasparov’s approach can be broken
into two broad steps as follows:

(1) Construct a ‘nice’ model for a canonical idempotent γ ∈ KKG(C,C).
(Again, see [2] for a description and properties of the γ-element.)

(2) Show, by means of a homotopy argument, that γ = 1 in KKG(C,C).

If these two steps can be carried out, then the conjecture follows.
This method was successfully carried out for all the rank-one semisimple Lie
groups: for the Lorentz groups SO0(n, 1) in [5], for SU(n, 1) in [4], and for the
groups Sp(n, 1) in [6], [3]1. The question is whether this method can be carried
out for the higher-rank groups. To this end, we describe a solution to step one
of the above recipe in the case of SL(3,C). It should be noted from the outset
that step two will be impossible in KK-theory, since Kazhdan’s property T is an
obstruction to having γ = 1. One would have to look for some weaker kind of
homotopy in order to complete a proof of the conjecture.
The following two theorems, when juxtaposed, strongly suggest an approach to
constructing γ for any semisimple Lie group G. Let B denote the minimal para-
bolic (‘Borel’) subgroup of G, and let X be the homogeneous space G/B.

Theorem 1 (Kasparov). Suppose θ ∈ KKG(C(X ),C) is such that θ 7→ 1 ∈
KKK(C,C) under the forgetful map. Then θ 7→ γ ∈ KKG(C,C).

Theorem 2 (Bernstein-Gelfand-Gelfand [1]). There is a differential complex con-
sisting of direct sums of homogeneous line bundles over X and G-equivariant dif-
ferential operators between them which resolves the trivial representation 1 of G.

Indeed, the proof of the conjecture in each of the rank-one cases begins with
the construction of an equivariant KK-element based upon some variant of the
Bernstein-Gelfand-Gelfand (BGG) complex of Theorem 2. The difficulty in each
specific case lies in the analysis: how to package the unbounded differential opera-
tor provided by the BGG complex into the form of a bounded equivariant Fredholm
module.
Looking to the case of higher rank groups, the homogeneous space X admits a
number of natural fibrations, and the BGG complex involves differential operators
tangential to these various fibrations. Roughly speaking, in order to carry out the
analysis one needs a theory for directionally elliptic operators which can simulta-
neously take account of each fibration direction in some compatible way. There
are strong reasons which suggest that the pseudodifferential calculus approach of
[5], [4] will not work in the higher rank case (see, for instance, [7, Chapter 5]).
Instead, we appeal to noncommutative harmonic analysis.
For simplicity, let us now restrict to the case G = SL(3,C). Let K = SU(3) be the

1The first proof, due to Lafforge, uses slightly different methods. The unpublished alternative
proof later announced by Julg is more sympathetic to the approach being discussed here.
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maximal compact subgroup of G, and consider the two subgroups

K1 =




0
SU(2)

0
0 0 1




and

K2 =




1 0 0
0
0

SU(2)


 .

By using the representation theory of the lattice of subgroups K ≥ K1,K2 ≥ 1, we
are able to define a lattice of operator ideals A ≥ K1,K2 ≥ K on the L2-section
spaces of the BGG-line bundles. In this construction, K1 and K2 play the role of
operators ‘directionally compact’ along the fibres of the two natural fibrations of
X , while K is the ideal of genuinely compact operators.
We now apply these constructions to index theory. We prove that the operators
of multiplication by a continuous function f ∈ C(X ), and of pull-back by a group
element g ∈ G, all belong to A. Next, we construct a bounded (‘normalized’)
version of the directional BGG-operators, and prove that their commutators with
multiplication and pullback operators are ‘directionally compact’, meaning that
they belong to K1 or K2, according to their directionality. Finally, using a vari-
ation of the Kasparov product, all of the above data can be used to produce an
equivariant K-homology element which represents the γ-element, as desired.
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[3] P. Julg, La conjecture de Baum-Connes á coefficients pour le groupe Sp(n, 1), (French)
[The Baum-Connes conjecture with coefficients for the group Sp(n, 1)] C. R. Math. Acad.
Sci. Paris 334 (2002), no. 7, 533–538.

[4] P. Julg, G. Kasparov, Operator K-theory for the group SU(n, 1), J. Reine Angew. Math.
463 (1995), 99–152.

[5] G. Kasparov, Lorentz groups: K-theory of unitary representations and crossed products,
(Russian) Dokl. Akad. Nauk SSSR 275 (1984), no. 3, 541–545.
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Chern character for equivariant K-theory

Thomas Schick

(joint work with Paul Baum)

Equivariant homology theories play a more and more important role in modern
geometric topology. In particular, they feature in various isomorphism conjectures,
to compute e.g. the K- or L-theory of groups.
We are interested in the case of proper (and cocompact) actions of discrete or of
totally disconnected group G on a space X . In the later case, we require that all
orbits are discrete (then the action is called “smooth”).
We want to calculate (via an explicit and simple Chern character) the equivariant
topological K-theory of X , by definition the K-theory of the crossed product C∗-
algebra C∗(G,C0(X)). A general, but less explicit version of the Chern character
is given by Voigt in [6, 7, 5], for discrete groups by Lück and Oliver in [4]. We first
show that this group is equal to the set of equivariant homotopy classes of maps
from X to Fred(HG), the space of Fredholm operators on HG = L2(G)⊗ l2(N).
Replacing Fred(HG) by an equivariantly homotopy equivalent Banach Lie group
model Freed(HG) as in [3], we can use a canonically defined explicit and G-
invariant Alexander-Spanier cochain representing the Chern character.
Using this explicit cochain, we define for each f : X → Freed(HG) (i.e. each
element of K∗

G(X)) an invariant Alexander-Spanier cochain ch(f) (with complex
coefficients) on the space

X̂ := {(g, x) ∈ G×X | gx = x,< g >⊂ G precompact}.

Such an invariant cochain can also be considered as an Alexander-Spanier cochain

on X̂/G. The map [f ] 7→ [ch(f)] is by definition the Chern character, an isomor-
phism after complexification.
Note: this is worked out in detail if G is discrete; a couple of details need to be
checked for G totally disconnected but not necessarily discrete (like Sln(Qp)). The
special case of compact totally disconnected G has been treated by Paul Baum and
Peter Schneider [1], using the description of equivariant K-theory of X in terms
of equivariant vector bundles.
Given a continuous equivariant map f : X → Freed(HG) and g ∈ G, the cocycle

ch(f) is on the component Xg := {(x, g) ∈ X̂ | gx = x} given as follows: the
image of f |Xg : Xg → Freed(HG) is contained in the set of g-invariant operators.
On this subset, the Chern character cochain c canonically splits as a sum

c|Freed(HG)g =
∑

λ∈ ˆ<g>

cλ

labeled by the characters of the cyclic group < g >. The invariant Alexander-
Spanier cochain is then on Xg given as

∑

λ∈ ˆ<g>

λ(g)f∗cλ.
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For a geometric Chern character in the dual theory, i.e in equivariant K-homology,
a suitable geometric model should be used. In the non-equivariant case, such a
model is given in [2]. Equivariant extensions, in particular to totally disconnected
groups, are work in progress.
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Four variations on spectral triples

Alain Connes

Let us recall the basic paradigm of noncommutative geometry:

Definition 1. A spectral triple (A,H, D) is given by an involutive algebra A rep-
resented in Hilbert space H and a self-adjoint operator D with compact resolvent
such that the commutators [D, a] are bounded for all a ∈ A.

An even spectral triple is endowed with a Z/2-grading

γ = γ∗ ∈ L(H) , γ2 = I

which commutes with the action of A, and fulfills

(2) Dγ = −γD.
Before doing any variation on this theme I explained how the classification of finite
noncommutative geometries of KO-dimension 6 modulo 8 leads naturally to the
standard Model after crossing with a 4 dimensional manifold and applying the
spectral action principle. This is joint work with Ali Chamseddine ([1]) based on
our previous collaboration with Matilde Marcolli ([4]). The Standard Model is
based on the gauge invariance principle with gauge group U(1)× SU(2)× SU(3)
and suitable representations for fermions and bosons. We propose a purely gravi-
tational explanation: space-time has a fine structure given as a product of a four
dimensional continuum by a finite noncommutative geometry F . The raison d’etre
for F is to correct the K-theoretic dimension from four to ten (modulo eight). Our
road to F is through the following steps

(1) We classify the irreducible triplets (A,H, J).
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(2) We study the Z/2-gradings γ on H.
(3) We classify the subalgebras AF ⊂ A which allow for an operator D that

does not commute with the center of A but fulfills the “order one” condi-
tion:

(3) [[D, a], b0] = 0 ∀ a, b ∈ AF .
The classification of the irreducible finite noncommutative geometries of K-theo-
retic. dimension six shows that the dimension (per generation) is a square of an
integer k. Under an additional hypothesis of quaternion linearity, the geometry
which reproduces the Standard Model is singled out (and one gets k = 4) with the
correct quantum numbers for all fields. The spectral action applied to the product
M ×F delivers the full Standard Model, with neutrino mixing, coupled to gravity,
and makes predictions (the number of generations is still an input).
The four variations are

(1) Spectral triples with boundary
(2) Type II and spectral triples
(3) Type III and spectral triples
(4) The role of the gµν

The first variation is joint work with Chamseddine ([3]). We showed that us-
ing natural local boundary conditions for the Dirac operator on manifolds with
boundary, the spectral action gives the key combination of curvatures

−
∫

M

R
√
gd4x− 2

∫

∂M

K
√
hd3y

needed for gravity. The abstract notion that emerges comes from the failure of (2)
for the self-adjoint extension. Thus the first variation is based on the following

Definition 4. A spectral triple is ∂-even if H is endowed with a Z/2- grading γ
such that [γ, a] = 0 for a ∈ A and DomD ∩ γDomD is dense in H with

(5) (Dγ + γD) ξ = 0, ∀ξ ∈ DomD ∩ γDomD.

The second variation is joint work with M. Marcolli and part of our forthcoming
book ([5]). The main point is that type II spectral triples allow one to construct
noncommutative spaces Xz which are pure of dimension z, i.e. whose operator
D = Dz fulfills:

(6) Tr(e−λD
2

) = πz/2λ−z/2, ∀λ ∈ R∗
+ ,

corresponding to the basic rule of dimensional regularization in physics:

(7)

∫
e−λk

2

dzk = πz/2λ−z/2, ∀λ ∈ R∗
+ .

Then, at least for one loop fermionic graphs the DimReg procedure in the presence
of γ5 is geometrically encoded by the product of the space-time by the above spaces
Xz i.e. by replacing D by D′′ with

(8) D̄ = D ⊗ 1 , D̂ = γ ⊗Dz , D′′ = D̄ + D̂ .



Noncommutative Geometry 2575

The aim of the third variation is to reconcile spectral triples with type III situa-
tions. This is joint work with Henri Moscovici ([6]). We explain a simple twisting of
the notion of spectral triple which allows to incorporate type III examples, such as
those arising from the transverse geometry of codimension one foliations. We show
that the classical cyclic cohomology valued Chern character of finitely summable
spectral triples extends to the twisted case and lands in ordinary (untwisted) cyclic
cohomology. The index pairing with ordinary (untwisted) K-theory continues to
make sense and the index formula is given by the pairing of the Chern characters.
This opens the road to extending the local index formula to the type III case. The
basic definition is:

Definition 9. Let σ be an automorphism of A, then an odd σ-spectral triple
(A,H, D) is given by an action of A in the Hilbert space H, while D is a self-
adjoint operator with compact resolvent and such that

(10) Da− σ(a)D is bounded ∀ a ∈ A .

The content of the last variation is the following Theorem:

Theorem 11. Let g = (gµν) ∈ Mn(L(H)) be an invertible positive matrix of
operators in Hilbert space H.
Let Dµ be invertible operators in H and

(12) D2 =
∑

µ,ν

Dµg
µνD∗

ν .

Let dzµ = D−1
µ . Then ds2 = D−2 is given by

(13) 〈ξ, ds2 ξ〉 = inf∑
µ ξ

µ=ξ

∑

µ,ν

〈dzµξµ, gµνdzνξν〉, ∀ξ ∈ H

where g−1 = (gµν) is the inverse of g = (gµν) in Mn(L(H)).
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Noncommutative tori and the Riemann–Hilbert correspondence

Walter D. van Suijlekom

(joint work with Snigdhayan Mahanta)

We study the interplay between noncommutative tori and noncommutative elliptic
curves. The first have their origin in noncommtuative differential geometry à la
Connes, and the second are more affiliated to noncommutative algebraic geome-
try. We link the two via a category of equivariant differential modules on C∗ which
turns out to be equivalent to Rep(Z2) [3].
We adopt the philosophy that a noncommutative space can be described by the
category of its representations (restricted to the setting one works with: continu-
ous, smooth, algebraic etc.). For instance, in noncommutative geometry one thinks
of an algebra as describing a noncommutative space. It suffices to consider the
category of representations Mod(A) of this algebra A, since the algebra itself can
be reconstructed as the automorphisms of the identity functor. Another instance
of this philoshophy can be found as a starting point of noncommutative algebraic
geometry. Classically, it is possible to reconstruct a scheme from the category of
its coherent sheaves (this result is known as the Gabriel-Rosenberg theorem).
The noncommutative torus Tθ was extensively studied ever since its invention
[1, 6, 7]; it is described by the (smooth) algebra Aθ generated by two unitaries U1

and U2 that satisfy the relation

U1U2 = e2πiθU2U1,

where θ is an irrational real number. It turns out that the algebra Aθ gives a
noncommutative description of the ill-defined quotient space S1/θZ; in fact, Aθ ≃
C∞(S1) ⋊θ Z so that in the case that θ is rational, Aθ is in fact Morita equivalent
to C∞(S1/θZ). We consider the category introduced recently by Polishchuk and
Schwarz which turned out to be well-suited for a connection to algebraic geometry
[5, 4]. The objects in this category Vect(Tτθ ) are finite projective modules M over
the noncommutative torus, equipped with a connection ∇ associated to the basic
derivation δτ = τδ1 + δ2 on Tθ. The category Vect(Tτθ ) is an abelian category.
Noncommutative elliptic curves Bq were introduced by Soibelman and Vologodsky
[8] as a description of the ill-defined quotient C∗/qZ with q = e2πiθ and θ still
irrational. The category Bq consists of qZ-equivariant coherent sheaves on C∗ and
turns out to be abelian as well.
Let us introduce the category Bτq of qZ-equivariant coherent sheaves on C∗ equipped

with a qZ-equivariant connection∇ that is associated to δ = τzd/dz. Equivalently,
it can be described as finite presentable modules overO(C∗) with a qZ-action and a
connection. Clearly, forgetting the connection defines a faithful and exact functor
to Bq (it turns out that Bτq is abelian as well). For the construction of a functor
to Vect(Tτθ ) we introduce the following map:

ψ : O(C∗)→ Aθ,
∑

n∈Z

fnz
n 7→

∑

n∈Z

fnU
n
1 .
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The map is essentially restricting a holomorphic function on C∗ to the unit circle.
In fact, it is injective since, if a holomorphic function vanishes on the unit circle,
it must vanish on the whole of C∗.
With this homomorphism, Aθ can be given the structure of a module over O(C∗)
and the induced functor ψ∗ defines a faithful and exact functor from Bτq to Vect(Tτθ ).

It is given explicitly by the association (M,σ,∇) 7→ (M̃, ∇̃) where

M̃ = M ⊗O(C∗) Aθ, ∇̃ = ∇⊗ 1 + 1⊗ δτ .

Next, we study the properties of the category Bτq . It is not only an abelian category
as mentioned above, but even a Tannakian category. Although it is possible to
show this abstractly, it is more illustrative to directly establish an equivalence with
the category of finite dimensional representations of a group. After all, that is the
characteristic property of a Tannakian category. Via a qZ-equivariant version of
the Riemann–Hilbert correpondence on C∗ we derive that

Bτq ≃ Rep(Z2).

The group Z2 arises essentially in the following way: one copy of Z is the funda-
mental group of C∗. This is the usual Riemann–Hilbert correspondence between
(germs of) solutions to the differential equation ∇U = 0 and a representation of
the fundamental group π1(C∗, z0) = Z, which is established via the monodromy
representation (see for instance [2]). The second copy of Z comes from the action
of qZ on the module M , or, in other words on each fiber of the corresponding sheaf
on C∗. The compatibility between the connection and the Z-action implies that
one gets the direct product Z× Z.
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Z qZ

C∗
π1(C∗, z0) ≃ Z

z0

Figure 1. The qZ-equivariant Riemann–Hilbert correspondence
on C∗. Vertical lines denote germs of solutions of ∇U = 0; there
are two commuting actions of Z by the monodromy representation
of π1(C∗, z0) and the fiberwise action of qZ.

The Dirac operator on compact quantum groups

Sergey Neshveyev

(joint work with Lars Tuset)

Let G be a compact simple simply connected Lie group, g its complexified Lie
algebra. Fix a maximal torus in G and choose a system of simple roots. For each
integral dominant weight λ we fix an irreducible unitary representation πλ : G →
B(Vλ) with highest weight λ. Then the group von Neumann algebra W ∗(G) of
G is the C∗-product of the algebras B(Vλ). The algebra U(G) of unbounded

operators affiliated with W ∗(G) is the algebraic product
∏
λB(Vλ). Denote by ∆̂

the comultiplication W ∗(G)→W ∗(G)⊗̄W ∗(G).
Consider the invariant form (·, ·) on g normalized such that for the dual form on
g∗ we have (α, α) = 2 for short roots α. Let {xk}k be a basis in g such that
(xk, xl) = −δkl. Put

t = −
∑

k

xk ⊗ xk ∈ g⊗ g ⊂ U(G ×G).

Denote by Cl(g) the complex Clifford algebra of g and by γ : g→ Cl(g) the canon-
ical embedding, so Cl(g) is generated by γ(x), x ∈ g, and γ(x)2 = (x, x)1. Fix
a spin module, that is, an irreducible representation s : Cl(g) → B(S). Then the
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Dirac operator on G can be written as

D = (∂ ⊗ s)(D),

where ∂ is the representation of Ug by left-invariant differential operators,

D =
∑

k

(
xk ⊗ γ(xk) +

1

2
⊗ γ(xk)ãd(xk)

)
∈ Ug⊗ Cl(g)

and

ãd(x) =
1

4

∑

k

γ(xk)γ([x, xk])

is a lifting of the adjoint action of g onto itself to a homomorphism g→ spin(g).
For q ∈ (0, 1) consider now the q-deformation Gq of G. Denote by U(Gq) the
algebra of unbounded operators affiliated with the von Neumann algebra W ∗(Gq).
Recall that it can be considered as a completion of the quantized universal en-
veloping algebra Uqg. Denote by ∆̂q the comultiplication on W ∗(Gq) and by
R ∈ U(Gq ×Gq) the universal R-matrix.
The irreducible representations of Gq are again classified by integral dominant
weights, so we have a canonical identification of the centers ofW ∗(G) andW ∗(Gq).
Choose a ∗-isomorphism ϕ : W ∗(Gq) → W ∗(G) extending this identification. Fix
~ ∈ iR such that q = eπi~. It follows from the work of Kazhdan and Lusztig [4]
that there exists a unitary element F ∈W ∗(G)⊗̄W ∗(G) such that

(1) (ϕ⊗ ϕ)∆̂q = F∆̂ϕ(·)F−1;
(2) (ε̂⊗ ι)(F) = (ι⊗ ε̂)(F) = 1, where ε̂ is the trivial representation of G;
(3) (ϕ⊗ ϕ)(R) = F21q

tF−1;

(4) the unitary Φ = (ι⊗ ∆̂)(F−1)(1⊗F−1)(F ⊗ 1)(∆̂⊗ ι)(F) coincides with
Drinfeld’s KZ-associator Φ(~t12, ~t23) [2, 3].

Define the universal quantum Dirac operator Dq ∈ U(Gq)⊗ Cl(g) by

Dq = (ϕ−1 ⊗ ι)((ι ⊗ ãd)(F)D(ι ⊗ ãd)(F∗)).

Then we define the quantum Dirac operator Dq by

Dq = (∂q ⊗ s)(Dq),
where ∂q is the left regular representation ofW ∗(Gq) on L2(Gq). ThereforeDq is an
unbounded self-adjoint operator on L2(Gq)⊗S. In the particular case G = SU(2)
this is exactly the operator defined in [1].
Our main result is now formulated as follows.

Theorem 1. [5] The triple (C[Gq], L
2(Gq) ⊗ S, Dq) is a Gq-equivariant spectral

triple of the same parity as the dimension of G.

The key point is boundedness of commutators. It turns out it is equivalent to the
following property: the commutator

[(π ⊗ ι⊗ γ)(t23), (π ⊗ ι⊗ ãd)(Φ)]
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is a bounded element of B(Vπ)⊗U(g)⊗Cl(g) for any finite dimensional represen-
tation π : G → B(Vπ). Using that Φ is defined via monodromy of the Knizhnik-
Zamolodchikov equations, this property is proved by expressing the commutators
above in terms of solutions of appropriate differential equations.
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A diagram calculus for KK and the noncommutative Riemann-Roch
theorem

Jonathan Rosenberg

(joint work with Jacek Brodzki, Mathai Varghese, and Richard Szabo)

This talk is motivated by the desire to:

• develop some of the formalism for dealing with noncommutative space-
times in mathematical physics;

• establish a general formula for D-brane charges; and
• find a version of Grothendieck-Riemann-Roch suited to the noncommuta-

tive world.

However, before getting to these topics, I would like to explain a convenient short-
hand or “diagram calculus,” found in our papers [1] and [2], for keeping track of
the [generalized] Kasparov product in KK theory, or similar product structures
in other bivariant theories as described, for example, in the books [4] and [5].
The idea is to represent an element of a bivariant group such as KK(A⊗B,C⊗D)
by a diagram with input nodes labeled by the tensor factors A and B in the first
variable, and with output nodes labeled by the tensor factors C and D in the sec-
ond variable. Two such diagrams can be multiplied (concatenated) if some subset
of the output nodes of the first diagram matches a corresponding subset of input
nodes of the second diagram. Then the associativity property of the Kasparov
product amounts to the assertion that one can do concatenation in any order.
(When one considers also KK1 and not just KK0, then sometimes some sign
changes are also involved, but these follow the usual rule for graded commuta-
tivity.) The diagram calculus is especially convenient when dealing with multiple
products, such as those that occur in the KK proof of the Atiyah-Singer Index
Theorem.
The next section of the talk concerns Poincaré duality in KK theory. This was
also discussed in Heath Emerson’s talk. Two (separable) C∗-algebras A and B
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are said to be a (strong) PD pair (of mod-2 dimension d) if there are elements
∆ ∈ KKd(A⊗B,C), ∆∨ ∈ KK−d(C, A⊗B) with the properties

∆∨ ⊗B ∆ = 1A ∈ KK0(A,A) ,

∆∨ ⊗A ∆ = (−1)d 1B ∈ KK0(B,B) .

The algebra A is called simply a PD-algebra if (A,A◦) is a PD pair, A◦ the op-
posite algebra to A. Poincaré duality in this sense is not especially rare—if A is
KK-equivalent to a commutative C∗-algebra, as when A is an inductive limit of
type I algebras, then A is always part of a PD pair provided K•(A) is finitely
generated as an abelian group, and when this is the case, A is a PD algebra if
and only if either rankK0(A) = rankK1(A) (in this case we can take d = 1) or
TorsK0(A) ∼= TorsK1(A) (in this case we can take d = 0).
Poincaré duality makes it possible to define Gysin maps. Following Connes-
Skandalis [3], if f : A → B is a ∗-homomorphism of C∗-algebras, a K-orientation
for f is a functorial way of defining a KK-element f ! ∈ KK(B,A). If A and B
are PD algebras, such a K-orientation can be defined as a Gysin map,

f ! = (−1)dA∆∨
A ⊗A◦ [f◦]⊗B◦ ∆B,

where [f◦] is the KK class of the ∗-homomorphism f◦ : A◦ → B◦.
Now we can explain the Todd class and the noncommutative Riemann-Roch the-
orem. If HL is Puschnigg’s local cyclic homology [5], there is a functorial Chern
character KK → HL. So if A is a PD algebra for KK with fundamental class
∆ and dual fundamental class ∆∨, Ch(∆) and Ch(∆∨) define a PD structure for
A in HL. (We are ignoring a technical issue concerning tensor products pointed
out to us by Ralf Meyer, but usually one can get around this.) However, often
one wants to use a different pair of fundamental classes in HL, say Ξ and Ξ∨.
For example, if A = C(M), M a spinc manifold, the Chern character sends the
K-theory fundamental class to the Poincaré dual of the Todd class, and not to
the usual choice of a fundamental class in rational homology. Then we define the
[noncommutative] Todd class of A, which depends on these choices, to be

Todd
(
A

)
:= Ξ∨ ⊗A◦ Ch

(
∆

)

in the ring HL0(A,A).

Theorem 1 (Noncommutative Riemann-Roch). Suppose A and B are strong
PD algebras with given KK and HL fundamental classes. Then one has the
Grothendieck-Riemann-Roch formula,

Ch(f !) = (−1)dB Todd(B)⊗B fHL!⊗A Todd(A)−1.

We conclude with a noncommutative version of the “formula for D-brane charges”
of [6]. A fundamental class ∆ of a strong PD algebra A is said to be symmetric if
σ(∆)◦ = ∆ ∈ KKd(A⊗A◦,C), where

σ : A⊗A◦ −→ A◦ ⊗A
is the involution x ⊗ y◦ 7→ y◦ ⊗ x and σ also denotes the induced map on K-
homology.
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Theorem 2. Suppose that A satisfies the UCT for local cyclic homology, and
that HL•(A) is a finite dimensional vector space. If A has symmetric (even-
dimensional) fundamental classes in both K-theory and in cyclic theory, then the
modified Chern character

Ch⊗A
√

Todd(A) : K•(A)→ HL•(A)

is an isometry with respect to the inner products

〈α, β〉 = (α× β◦)⊗A⊗A◦ ∆

and
(x, y) = (x× y◦)⊗A⊗A◦ Ξ.
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Group cocycles and the ring of affiliated operators

Andreas Thom

(joint work with Jesse Peterson)

1. Introduction

The computations of ℓ2-homology have been algebraized through the seminal work
of W. Lück, which is summarized and explained in detail in his nice compendium
[8]. This extend abstract is a report about results obtained in [10].
Our first theorem gives an identification of dimensions of cohomology groups,
where the coefficients vary among the canonical choices LG, ℓ2G and UG.

Theorem 1. Let G be a countable discrete group.

β
(2)
k (G) = dimLGH

k(G,UG) = dimLGH
k(G, ℓ2G) = dimLGH

k(G,LG).

Moreover, if β
(2)
k (G) = 0 for some k, then Hk(G,UG) = 0.

In [3] it is shown that for a finitely generated non-amenable discrete group, the
first ℓ2-Betti number vanishes if and only if the first cohomology group with values
in the left regular representation vanishes, (see also Corollary 3.2 in [9]). As a
corollary we may drop the assumption that the group is finitely generated.
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Corollary 1. Let G be a non-amenable countable discrete group, then β
(2)
1 (G) = 0

if and only if H1(G, ℓ2G) = 0.

The following theorem is an affirmative answer to Conjecture 2 in [5].

Theorem 2. Let G be an countable and discrete group which is amenable. Every
1-cocycle with values in ℓ2G is either bounded or proper.

There is a partial converse to the preceding result.

Theorem 3. Let G be a group with β
(2)
1 (G) 6= 0 and assume that there exists

an infinite amenable sub-group. There exists a 1-cocycle with values in ℓ2G on G
which is neither bounded nor proper.

2. Free subgroups

2.1. Restriction maps and free subgroups. Throughout this section, we are
assuming that G is a torsionfree discrete countable group and most of the time
also that it satisfies the following condition:

(⋆) Every non-trivial element of ZG acts without kernel on ℓ2G.

Condition (⋆) is known to hold for all right orderable groups and all residually
torsionfree elementary amenable groups. No counterexample is known.
Let G be a discrete group, we use the notation Ġ to denote the set G \ {e}. The
main result here is the following theorem.

Theorem 4. Let G be a torsionfree discrete countable group. There exists a family
of subgroups {Gi | i ∈ I}, such that

(i) We can write G as the disjoint union:

G = {e} ∪
⋃

i∈I
Ġi.

(ii) The groups Gi are mal-normal in G, for i ∈ I.
(iii) If G satisfies condition (⋆), then Gi is free from Gj, for i 6= j.

(iv) β
(2)
1 (Gi) = 0, for all i ∈ I.

Remark 1. It follows from Theorem 7.1 in [10], that the set I is infinite if the first
ℓ2-Betti number of G does not vanish.

Corollary 2. Let G be a discrete countable group satisfying condition (⋆). Assume
that the first ℓ2-Betti number does not vanish. Let F be a finite subset of G. There
exists g ∈ G, such that g is free from each element in F . In particular, G contains
a copy of F2.

Remark 2. Corollary 2 confirms the feeling that a sufficiently non-amenable group
contains a free subgroup. Note, that various weaker conditions like non-amenability
itself or uniform non-amenability have been proved to be insufficient to ensure the
existence of free subgroups, at least in the presence of torsion.

Using results from [2] we obtain the following result.
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Corollary 3. Let G be a torsionfree discrete countable group satisfying condition
(⋆). If the first ℓ2-Betti number does not vanish, then the reduced group C∗-algebra
C∗
red(G) is simple and carries a unique trace.

The following result is a generalization of the main result of J. Wilson in [12]
for torsionfree groups which satisfy (⋆). For this, note that a group G with n

generators and m relations satisfies β
(2)
1 (G) ≥ n−m− 1.

Corollary 4 (Freiheitssatz). Let G be a torsionfree discrete countable group which

satisfies (⋆). Assume that a1, . . . , an ∈ G generate G and ⌈β(2)
1 (G)⌉ ≥ k. There

exist k + 1 elements ai0 , . . . , aik among the generators such that the natural map

π : Fk+1 → 〈ai0 , . . . , aik〉 ⊂ G

is an isomorphism.

Corollary 5. Let G be a finitely generated torsionfree discrete countable group
which satisfies (⋆). Then

eS(G) ≥ 2⌈β(2)
1 (G)⌉+ 1,

for any generating set S. Here, eS(G) denotes the exponential growth rate w.r.t.
the generating set S.

In particular, a torsionfree group satisfying condition (⋆) has uniform exponential
growth if its first ℓ2-Betti number is positive.

3. Notions of normality

We now want to review some notions of normality of subgroups which are more
or less standard, and introduce some notation. A subgroup H ⊂ G is called:

(i) normal iff gHg−1 = H , for all g ∈ G,
(ii) s-normal iff gHg−1 ∩H is infinite for all g ∈ G, and
(iii) q-normal iff gHg−1 ∩H is infinite for elements g ∈ G, which generate G.

We say that a subgroup inclusion H ⊂ G satisfies one of the normality properties
from above weakly, iff there exists an ordinal number α, and an ascending α-chain
of subgroups, such that H0 = H , Hα = G, and Upβ<γHβ ⊂ Hγ has the required
normality property.

Example 1. The inclusions

GLn(Z) ⊂ GLn(Q), Z = 〈x〉 ⊂ 〈x, y | yxpy−1 = xq〉 = BSp,q

are inclusions of s-normal subgroups. The inclusion

F2 = 〈a, b2〉 ⊂ 〈a, b〉 = F2

is q-normal but not s-normal.
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3.1. ℓ2-invariants and normal subgroups. The two main results in this sub-
section are Theorem 5 and Theorem 6. We derive several corollaries about the
structure of groups G with β

(2)
1 (G) 6= 0.

Theorem 5. Let G be a countable discrete group and suppose H is an infinite

wq-normal subgroup. We have β
(2)
1 (H) ≥ β(2)

1 (G).

Corollary 6. Let H ⊂ K ⊂ G be a chain of subgroups and assume that H ⊂ G
is wq-normal and [K : H ] <∞. Then

[K : H ] · β(2)
1 (G) ≤ β(2)

1 (H).

Corollary 7. Let G be a torsionfree discrete countable group and let H ⊂ G be

an infinite subgroup. If β
(2)
1 (H) < β

(2)
1 (G), then there exists a proper malnormal

subgroup K ⊂ G, such that H ⊂ K.

Corollary 8. Let G be a countable discrete group and let H ⊂ G be an infinite
wq-normal subgroup. Let K ⊂ G be a subgroup with H ⊂ K and assume that

β
(2)
1 (G) > n. Then, K is not generated by n or less elements.

The second main result in this section is the following.

Theorem 6. Let G be a countable discrete group and suppose H is an infinite

index, infinite ws-normal subgroup. If β
(2)
1 (H) <∞, then β

(2)
1 (G) = 0.

Corollary 9. Let G be a countable discrete group with β
(2)
1 (G) > 0. Suppose that

H ⊂ G is an infinite, finitely generated ws-normal subgroup. Then H has to be of
finite index.

Note that the result applies in caseH contains an infinite normal subgroup. Hence,
this result is a generalization of the classical results by A. Karass and D. Solitar in
[7], H. Griffiths in [6], and B. Baumslag in [1]. A weaker statement with additional
hypothesis was proved as Theorem 1(2) in [4].

Corollary 10 (Gaboriau). Let G be a group with an infinite normal subgroup of

infinite index, which is either finitely generated or amenable. Then β
(2)
1 (G) = 0.

Remark 3. A generalization of Gaboriau’s result to higher ℓ2-Betti numbers was
obtained by R. Sauer and the second author in [11]. There it was shown that for

a normal subgroup N ⊂ G with all β
(2)
p (N) = 0, for p < q, and β

(2)
q (N) finite, it

follows that β
(2)
p (G) = 0, for p ≤ q. The proof uses a Hochschild-Serre spectral

sequence for discrete measured groupoids. For more results in this direction, see
[11].
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Hopf algebras of infinite primitive Lie pseudogroups and their cyclic
cohomology I

Henri Moscovici

(joint work with Bahram Rangipour)

The joint work with A. Connes [3] on the transverse index class of the hypoellip-
tic signature operator revealed the key role played by a certain Hopf algebra Hn
in the transverse geometry of codimension n foliations. Furthermore, the inner
structure of the computation proper, performed by applying the local index for-
mula [2], turned out to be controlled by a specific type of cyclic cohomology proper
to Hopf algebras. For the case of Hn, we proved that its Hopf-cyclic cohomology
is canonically isomorphic to the Gelfand-Fuks cohomology of the Lie algebra of
formal vector fields on Rn, fact that allowed us to express the outcome of the
index calculation in terms of classical geometric characteristic classes of foliations.
This talk reports on joint work with Bahram Rangipour, which refines the above
developments and extends their scope to cover all types of transverse geometric
structures. These are the classical geometries resulting from Elie Cartan’s clas-
sification [1] of infinite primitive Lie pseudogroups: general, volume preserving,
symplectic, and contact. It should be noted that the proof of Cartan’s classifi-
cation was completed only in mid-1960’s, cf. Guillemin, Quillen and Sternberg
[4], after being recast in the setting of linearly compact Lie algebras, cf. Singer
and Sternberg [7]. Along with the Lie algebra L(G) of germs of G-vector fields,
we associate to an infinite primitive Lie pseudogroup G a Hopf algebra H(G), and
prove that its periodic Hopf-cyclic cohomology is canonically isomorphic to the
Gelfand-Fuks cohomology of the Lie algebra L(G). In the particular case of Hn
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we also exhibit an explicit basis for its periodic cyclic cohomology, obtained from a
Hopf-algebraic version of the truncated Weil complex for gl(n,R).
Our construction of the Hopf algebra H(G), modeled after and extending that
of Hn to all infinite primitive Lie pseudogroups, can be viewed as an infinite-
dimensional analogue of the ‘bicrossed product’ for finite groups introduced by G.
I. Kac [5]. It relies on splitting the group G = G ∩ Diff(Rn) of globally defined
diffeomorphisms of type G (with n = 2m in the symplectic case and n = 2m+ 1
in the contact case), as a set-theoretical product G = G · N , where G is a Lie
group containing the linear isotropy group, and N is the (prounipotent) subgroup
consisting of those ψ ∈ G that preserve the origin to first order; G is actually a
subgroup of the group of affine motions in Rn in all cases but one, namely that
of the contact diffeomorphisms, when the corresponding pseudogroup is not ‘flat’,
i.e. does not contain the translations. Thus, any φ ∈ G factors uniquely in the
form φ = ϕ · ψ, with ϕ ∈ G and ψ ∈ N . Reversing the order and then applying
the canonical decomposition,

ψ · ϕ = (ψ ⊲ ϕ) · (ψ ⊳ ϕ),

one obtains a left action ψ 7→ ψ̃(ϕ) := ψ ⊲ ϕ of N on G, along with a right action
⊳ of G on N , both fixing the unit e ∈ G.
We define the Hopf algebra H(G) via its action on the crossed product algebra
A(G) = C∞(G) ⋊ N . Fix a basis {Xi}1≤i≤m of the Lie algebra g of G, and

thus a framing of G by left-invariant vector fields {X̃i}1≤i≤m. Let Uψ(g) = g ◦
ψ̃−1, g ∈ C∞(G), ψ ∈ N , and view A(G) as spanned by monomials f Uψ, f ∈
C∞(G). Extend X̃i to linear operators on A(G), X̃i(f Uψ) = X̃i(f)Uψ, and define

γji (ψ) ∈ C∞(G), with ψ ∈ N , by U−1
ψ X̃i Uψ =

∑m
j=1 γ

j
i (ψ) X̃j . Next, define

the linear operators Γji on A(G), by Γji (f U
−1
ψ ) = (γ(ψ))

−1
)ji f U

−1
ψ . As algebra,

H(G) is by definition the subalgebra of linear operators on A(G) generated by the

above operators X̃k’s and Γji ’s, i, j, k = 1, . . . ,m. In particular, it contains the

iterated commutators Γji,k1...kr
:= [X̃kr

, . . . , [X̃k1 ,Γ
j
i ] . . .], which are multiplication

operators by functions on G, γji,k1...kr
(ψ) := X̃kr

. . . X̃k1(γ
j
i (ψ)), ψ ∈ N . On the

other hand, for any a, b ∈ A(G), one has

X̃k(ab) = X̃k(a) b+
∑

k

Γjk(a) X̃j(b), Γji (ab) =
∑

k

Γki (a) Γjk(b).

By multiplicativity, every h ∈ H(G) satisfies a Leibniz rule of the form

h(ab) =
∑

h(1)(a)h(2)(b) (Sweedler notation).

We note that if cijk are the structure constants of g, [Xj , Xk] =
∑

i c
i
jkXi, the

following analogue of the Bianchi identity holds

Γkj,i − Γki,j =
∑

p,r

ckprΓ
p
jΓ

r
i −

∑

s

csjiΓ
k
s ;

iterated commutators with X̃k’s generate higher order identities.
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Theorem A. Let G be the Lie algebra generated by the operators X̃k and
Γji,k1...kr

.

(1) The algebra H(G) is the quotient of the universal enveloping algebra U(G)
by the ideal generated by the above “Bianchi identities” of all orders.

(2) The Leibniz rule determines uniquely a multiplicative coproduct
∆ : H(G)→ H(G)⊗H(G).

(3) H(G) is a Hopf algebra and A(G) an H(G)-module algebra.

We next describe the bicrossed product realization of H(G). Let F(N) = alge-

bra of functions on N generated by the functions ηji,k1...kr
(ψ) := γji,k1...kr

(ψ)(e),

ψ ∈ N . This definition is independent of the choice of basis for g. Moreover, F(N)
is a Hopf algebra with coproduct ∆F (ψ1, ψ2) := F (ψ1 ◦ ψ2), and with antipode
SF (ψ) := F (ψ−1), ψ ∈ N .
One defines a right F(N)-comodule coalgebra structure H : U(g) → U(g) ⊗ F(N)
as follows. Let {XI} be the PBW basis of U(g) induced by the basis of g. Then

U−1
ψ X̃I Uψ =

∑
J β

J
I (ψ) X̃J , with βJI (ψ) in the algebra of functions on G gener-

ated by γji,K(ψ), with I, J,K multi-indices. Evaluating at e ∈ G, one defines

H(X̃I) =
∑

J X̃J ⊗ βJI (·)(e),
which extends by linearization to a map H : U(g) → U(g) ⊗ F(N). Again, the
definition is independent of the choice of basis.
The right action ⊳ of G on N induces an action of G on F(N) and hence a left
action of U(g) on F(N); this turns F(N) into a left U(g)-module algebra.

Theorem B. With the above operations,

(1) U(g) and F(N) form a matched pair of Hopf algebras;
(2) the Hopf algebra H(G)cop is canonically isomorphic to the bicrossed product
F(N) ◮⊳ U(g).

We conclude by stating the relationship between Hopf-cyclic cohomology and Lie
algebra cohomology, associated to the Cartan-Lie pseudogroups.

Theorem C. Let G be a primitive Lie pseudogroup of infinite type.

(1) There is a canonical Hopf algebra H(G) with modular character δ ∈ H(G)∗
extending tr ◦ ad : g→ C, such that (δ, 1) is a modular pair in involution.

(2) The Z/2Z-graded periodic Hopf-cyclic cohomology groups HP ∗(H(G); Cδ)
of the Hopf algebra H(G) are canonically isomorphic to the Gelfand-Fuks
cohomology groups H∗

GF(L(G); C) of the Lie algebra L(G).
(3) More generally, for any Lie subalgebra h of the linear isotropy Lie algebra

go ⊂ g, one has a canonical isomorphism of Z/2Z-graded groups

HP ∗(H(G),U(h); Cδ) ∼= H∗
GF(L(G), h; C).

An outline of the methods of proof, which build on those initiated in [6], is given
in B. Rangipour’s talk.
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Hopf algebras of infinite primitive Lie pseudogroups and their cyclic
cohomology II

Bahram Rangipour

(joint work with Henri Moscovici)

In his talk Henri Moscovici outlined a procedure by which to every infinite primitive
Cartan-Lie pseudogroup G one can associate a canonical noncommutative nonco-
commutative Hopf algebra H(G), equipped with a modular character δ ∈ H(G)∗.
The prototypical example is that of the Hopf algebra Hn, first introduced in his
joint work with Alain Connes [2], that corresponds to the pseudogroup of all local
diffeomorphisms of Rn.
The main goal of the present talk is to explain the proof of the fundamental fact
that the Hopf cyclic cohomology of the Hopf algebra H(G) with coefficients in
the modular pair in involution (δ, 1), as well as its relative version, is canonically
isomorphic to the Gelfand-Fuks cohomology of the Lie algebra L(G) := Lie(G),
resp. its relative version.
We recall that H(G) is a bicrossed product Hopf algebra U ◮⊳ F , where U = U(g)
the enveloping Hopf algebra of a Lie algebra g = Lie(G) and F = F(N) is a Hopf
algebra of polynomial functions on a prounipotent group N . The groups G and N
are respectively the analogues of the affine and unipotent groups in the definition
of Hn. However, since we are also interested in relative Hopf cyclic cohomology,
it does not suffice to restrict ourselves to bicrossed product Hopf algebras. The
more general setup and the method of computation are as follows.
Let D be a left H comodule coalgebra and let C be a left module coalgebra. One
forms the cocrossed product coalgebra C ◮< D in the usual way. In addition,
if C is H module coalgebra and via its action and coaction becomes YD mod-
ule, then H acts diagonally on C ◮< D and makes it a H-module coalgebra. So
HCH(C ◮< D,M), for any SAYD M , is well defined (for the definition, see [5, 6]).
The main idea for its computation is to use the natural twisting map

top : C⊗D→ D⊗ C, top(c⊗ d) = c
<−1>

d⊗ c
<0>

,
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to identify the cyclic complex of C ◮< D with the diagonal of a natural bicocyclic
module made of H, C, D and M . The next step is to apply the cyclic Eilenberg-
Zilber theorem [7] to homologically exchange diagonal cyclic module for the total
mixed complex.
This idea has a long history, at least going back to the Künneth formula. However
in each new case, e.g, for groups, Lie algebras, algebras, coalgebras, Hopf algebras,
module coalgebras, etc. is difficult to derive the corresponding homological ma-
chinery, and one has to start anew from scratch. It is quite remarkable that this
method of computation somehow fits very well with the setting of Hopf algebras.
To wit, this machinery never brings up a bicocylic module, except in the case of
bicrossed product Hopf algebras.
Now if K is a Hopf subalgebra of H, then H acts on the coalgebra H ⊗K C and
makes it a module coalgebra. In addition if H acts on K as a module coalgebra,
then by considering the natural coaction of H on C defined by coadjoint coaction
one completes the needed ingredients for the machinary to compute the Hopf cyclic
cohomology of the cocrossed product C ◮< K. If one is as lucky, as we are in the
case of H(G), then H ≃ C ◮< K and hence there is a spectral sequence available to
compute the Hopf cyclic cohomology of H. To make a long story short, one deals
with the following quadricomplex derived from our bicocyclic module:

...

BU

��

...

BU

��

...

BU

��
C⊗ U⊗2

bF //

bU

OO

BU

��

F ⊗ U⊗2
bF //

BF

oo

bU

OO

BU

��

F⊗2 ⊗ U⊗2
bF //

BF

oo

bU

OO

BU

��

. . .
BF

oo

C⊗ U
bF //

bU

OO

BU

��

F ⊗ U
bF //

BF

oo

bU

OO

BU

��

F⊗2 ⊗ U
bF //

BF

oo

bU

OO

BU

��

. . .
BF

oo

C⊗ C
bF //

bU

OO

F ⊗ C
bF //

BF

oo

bU

OO

F⊗2 ⊗ C
bF //

BF

oo

bU

OO

. . .
BF

oo

One then uses a series of homological arguments, including the following: (1) the
Hopf cyclic cohomology of U(g) coincides with the Lie algebra cohomology of g

[2]; (2) the Connes boundary operator B is zero on the Hochschild cohomology
if the Hopf algebra under consideration is commmutative [8]. This simplifies the
above quadricomplex to the bicomplex

(Cp(N,∧qg∗), ∂, b),

where C•(N,∧•g∗) stands for the complex of algebraic cochains. One uses the
van Est isomorphism to identify the group cohomology of N with the Gelfand-
Fuks cohomology of n := LieN . This essentially proves the first part of following
theorem, while the rest is proved by similar but more elegant arguments.
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Theorem 1. Let G be a primitive Lie pseudogroup of infinite type, and let G =
G · N be the canonical decomposition of the corresponding group G of globally
defined transformations.

(1) There is a canonical isomorphism

H∗
GF(L(G); C) ∼= HP ∗(H(G); Cδ)

that extends the canonical isomorphisms

H∗(g; Cδ) ∼= HP ∗(U(g); Cδ), H∗(n; C) ∼= HP ∗(F(N); C),

where δ is the modular character of g.
(2) For any Lie subalgebra h of the isotropy Lie algebra g0, there is a canonical

isomorphism in relative cohomology

HP ∗(H(G),U(h); Cδ) ∼= H∗
GF(L(G), h; C).

One knows that the Gelfand-Fuks cohomology of the Lie algebra formal vector
fields is finite-dimensional and explicitly computed in most cases [3]. The first
expectation out of Theorem 1 is to transfer the Lie algebra cohomology classes
to get their counterparts in Hopf cyclic cohomology. Connes and Moscovici have
shown in [2] that, in principle, this can be done in the case of Hn, but they also
showed how difficult the task is. To overcome the main difficulty, one needs to
avoid reliance on the van Est isomorphism. To this end, we use the method out-
lined above, but this time we apply the machinery to the isotropy Hopf subalgebra
K := U(gln) instead of U . We then show that the truncated Weil complex is
quasi isomorphism with the Hopf cyclic complex, which provides an easier way to
transfer the classes.
So far we have talked only about the periodic Hopf cyclic cohomology. The
main obstacle in computing nonperiodic cyclic cohomology is not knowing the
Hochschild cohomology of the Hopf algebra under question. In the case of H1 one
uses the result of Gončarova [4], HHi(F) = C < ξi > ⊕C < ξ′i >, to compute the
cyclic cohomology as follows:

HC0(H1,Cδ) = 0, HC1(H1,Cδ) = C < 1⊗ ξ1 > ⊕C < 1⊗ ξ′1 > .

For p ≥ 2,HCp(H1,Cδ) is generated by:

Sq(T ), 1⊗ ξp, 1⊗ ξ′p, X ⊗ ξp−1 −
1

|ξp−1|
Y ⊗Xξp−1,

X ⊗ ξ′p−1 −
1

|ξp−1|
Y ⊗Xξ′p−1;

where T := X ∧ Y ⊗ 1 if p = 2q + 2, and T := 1⊗ ξ1, if p = 2q + 1.
The above method of computation represents a significant enhancement of our
techniques in [9], where we could only treat those Hopf algebras that are cocrossed
product as coalgebras, but whose underlying algebra structure is just that of a
‘straight’ tensor product.
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Noncommutative geometry and quantum group symmetries

Francesco D’Andrea

(joint work with L. Da֒browski, G. Landi and E. Wagner)

A key notion in Connes’ noncommutative geometry [2] is the one of unital spectral
triple, which is the data of an involutive complex unital algebra A of bounded op-
erators on a (separable) Hilbert space H and an unbounded self-adjoint operator
D on H with compact resolvent and bounded commutators with the algebra. This
notion, together with some further conditions, captures the essence of a spin struc-
ture over a spin manifold and generalizes it to the noncommutative framework.
The recent constructions of spectral triples for the manifold of the quantum SU(2)
group in [1, 3, 7, 8] and for some of its quantum homogeneous spaces (the equa-
torial [9] and standard [10] Podleś spheres) have provided a number of examples
showing that spaces with quantum group symmetries can be successfully studied
using the tools of noncommutative geometry.
We completed this analysis in [11] by constructing regular spectral triples for all
Podleś quantum spheres S2

qt, which are two-parameter (q ∈ (0, 1) and t ∈ [0, 1])

noncommutative deformations of the round sphere S2 [12]. The representation of
the algebra A(S2

qt) by left multiplication on two components vectors in A(S2
qt)⊗C2

can be explicitly described in a basis of harmonic spinors which are the ‘q-analogue’
of Penrose chiral spinors. With this representation, and with a (generalized) Dirac
operator D with the same spectrum of the classical Dirac operator of the round
sphere S2, we constructed a spectral triple which is ‘equivariant’ under the natu-
ral action of the Drinfeld-Jimbo deformation Uq(su(2)). More generally, for any
fixed N ∈ 1

2Z, by using the representations in [13] we constructed [5] an equivari-
ant spectral triple whose Dirac operator DN has always undeformed spectrum,
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Sp(DN ) = {1, 2, 3, . . .}. We checked the non-triviality of the Fredholm modules
canonically associated to these spectral triples by pairing their Chern-Connes char-
acter with a deformation of the Bott projection: the result of the pairing, which
is 2N , proves in particular that these spectral triples are all inequivalent.
Among the conditions for a ‘real’ spectral triple, a particular role is covered by the
regularity condition, which is the starting point for the development of an abstract
pseudo-differential calculus. If a spectral triple (with finite metric dimension) sat-
isfies this condition, one can define its ‘dimension spectrum’ Σ ⊂ C as the set of
singularities of zeta-type functions associated to the triple. Connes-Moscovici local
index formula [4] yields a ‘local representative’ of the periodic cyclic cohomology
class of a regular spectral triple, provided the dimension spectrum of the triple
is known. Unfortunately there is no a canonical way to compute the dimension
spectrum in the case of algebras coming from quantum groups.
In [3] the dimension spectrum for the spectral triple of [1] on SUq(2) was worked
out by constructing a ‘symbol map’ from order zero pseudodifferential operators
on SUq(2) to a noncommutative version of the cosphere bundle. The same strategy
has been used in [8] for the spectral triple on SUq(2) given in [7].
On Podleś spheres the idea which allowed the computation of the dimension spec-
trum was to use the embedding of the algebra A(S2

qt) into the algebra A(SUq(2))
of the quantum SU(2) group. Using this embedding we obtained a (quite sur-
prising) simplification of the spinorial representation: it turns out that modulo an
ideal of ‘smoothing operators’ the spinorial representation can be approximated
by a very simple representation coming from the infinite-dimensional irreducible
representations of A(SUq(2)). This approximation allowed to express zeta-type
functions of operators in A(S2

qt) in terms of the Riemann zeta-function, and to
prove that the dimension spectrum is Σ = {1, 2} as expected from an analysis of
the ‘commutative’ limit S2.
A similar work has been performed on a higher dimensional example, the 4-
dimensional orthogonal quantum sphere [6].
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Hopf-Hochschild (co)homology of module algebras

Atabey Kaygun

Our goal in this talk is twofold. First, we would like to draw attention to a
class of algebras admitting compatible actions of bialgebras, called “module alge-
bras” by formulating two interesting moduli problems and solve them. Second, we
would like to define a version of Hochschild homology and cohomology suitable for
module algebras.
We demonstrate that the moduli space of all Ore extensions on a fixed k-algebra
A is the space of all O-module algebra structures on A over a fixed Hopf algebra
O, which we call the Hopf-Ore algebra. We also determine the moduli space of
all H1-module algebra structures on the algebra of meromorphic functions on the
complex plane where H1 is the Connes-Moscovici Hopf algebra of codimension-1
foliations. The computation of this last moduli space is the first step in determin-
ing the moduli space of H1-module structures on the space of analytic functions,
thus the moduli space of all codimension-1 analytic foliations, on arbitrary Rie-
mannian manifolds and then other (pseudo-) manifolds.
Our second goal is motivated by the work of Tsygan et. al. [7, 15, 16, 17] which
indicate that the Hochschild cochain complex of an algebra (i.e. a noncommutative
space) is the replacement of the bundle of multi-vector fields over that noncom-
mutative space. We show that for a module algebra, i.e. a noncommutative space
which carries a Hopf symmetry, the underlying Hopf symmetry can be lifted to
the level of Hochschild cochain complex. Thus we arrive at the right noncommuta-
tive analogue of the bundle of equivariant multi-vector fields. Then we define the
Hopf-Hochschild cohomology as the cohomology of the Hopf-invariant cochains.
We show that in low dimensions, these Hochschild cohomology groups are

HH0
Hopf(A, V ) ∼= SymA(V B) and HH1

Hopf(A, V ) ∼= DerB(A, V )/Inn(A, V B)

the symmetricA-sub-bimodule ofB-invariant elements in V , and theB-equivariant
arbitrary V -valued derivations modulo the subspace of B-equivariant V -valued in-
ner derivations on A.
In the context of cyclic (co)homology and K–Theory, one of the most commonly
used tools dealing with module algebras has been crossed product algebras. There
is a large body of work dealing with algebras admitting actions of discrete groups
and compact Lie groups, e.g. [9, 11, 2, 5, 12, 8, 4], which utilize this tool to its
fullest extent. Also, there have been successful attempts in defining equivariant
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cyclic (co)homology and K–Theory for module algebras [3, 1, 14] again by using
crossed product algebras. We show that Hopf-Hochschild cohomology can also be
defined as the Ext-groups on the category of modules of the equivariant analogue
of the enveloping algebra of a crossed product algebra Ae ⋊B.
However, defining Hochschild homology of module algebras is not as straight for-
ward as defining Hochschild cohomology. The difficulty lies in the simple fact that
for a B-module algebra A, unlike the Hochschild cochain complex, the Hochschild
chain complex associated with this algebra need not be a differential graded B–
module. The obstruction which prevents this complex from being B–linear is triv-
ial whenever the bialgebra B is cocommutative, as in the case of group rings and
universal enveloping algebras. Yet the same obstruction is far from being trivial if
the underlying bialgebra is non-cocommutative. We investigate how much of the
Hochschild homology is retained after dividing this obstruction out. To this end,
we construct a new differential graded B–module QCH∗(A,B, V ) for a B–module

algebra A and a B–equivariant A–bimodule V . We define HHHopf
∗ (A,B, V ) the

Hopf–Hochschild homology of A with coefficients in V as the homology of the
complex k ⊗B QCH∗(A,B, V ).
We would like to point out that the same strategy worked remarkably well in the
case of cyclic cohomology of module coalgebras. In [13] we show that if we start
with the cocyclic bicomplex of a module coalgebra twisted by a stable anti-Yetter–
Drinfeld module, dividing the analogous obstruction results in the Hopf cyclic
complex of [10] which was an extension of the Hopf cyclic cohomology of Connes
and Moscovici [6]. At the end of the talk we show that the Hopf-Hochschild ho-
mology groups are isomorphic to certain higher Tor-groups over the category of
Ae ⋊B-modules as expected. We also compute these groups in low dimensions.
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Chern-Connes character and twisted equivariant cohomology

Ping Xu

(joint work with Jean-Louis Tu)

Twisted K-theory has attracted a lot of attention recently due to its close connec-
tion with mathematical physics. See [9] for a recent survey. In [11], we developed
the twistedK-theory for a differentiable stack X, where the twisted class is given by
a class in H3(X,Z) when the stack is proper. Our theory contains two important
special cases: (1) if the stack is an orbifold X, this defines the twisted K-theory
of an orbifold by a general class α ∈ H3(X,Z) [1]; (2) if the stack is the one corre-
sponding to the transformation groupoid M ×G→→M for a proper G action on M ,
we obtain the twisted equivariant K-theory K∗

G,α(M) where α ∈ H3
G(M,Z) (see

also [2, 7, 8]). General properties, including the Mayer-Vietoris exact sequence,

Bott periodicity, and the product structure Ki
α ⊗Kj

β → Ki+j
α+β are derived.

Our approach is essentially to follow the classical one using C∗-algebras due to
Rosenberg [10]. The main idea here is to transform the geometric question to a
question of C∗-algebras, for which many powerful K-theoretic techniques such as
KK-theory have been developed.
To obtain a C∗-algebra from a class H3(X,Z), we applied the general theory of
S1-gerbes over differentiable stacks developed in [4, 5]. Roughly speaking, dif-
ferential stacks can be considered as Lie groupoids up to Morita equivalence.
Under this picture, for a proper differentiable stack X, there is a bijection be-
tween elements in H3(X,Z) and Morita equivalence classes of Lie groupoid S1-

central extensions Γ̃ → Γ→→M . Now for a proper differentiable stack X and any
α ∈ H3(X,Z), the twisted K-groups K∗

α(X) are defined to be the K-groups of the
C∗-algebra C∗

r (Γ, α). In [11], we proved that C∗
r (Γ, α) contains a natural smooth

subalgebra C∞
c (Γ, L) which is stable under the holomorphic functional calculus.

Here Γ̃ → Γ→→M is a groupoid S1-central extension representing α ∈ H3(X,Z),

L = Γ̃×S1 C is the associated complex line bundle, and C∞
c (Γ, L) is the space of

compactly supported sections of L → Γ. Thus the Chern-Connes character is a
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map K∗
α(X)⊗ C

ch→ HP∗(C∞
c (Γ, L)).

As an important situation, we study this Chern-Connes character map for the
quotient stack [M/G], where G is a compact Lie group. In particular, for any
α ∈ H3

G(M,Z), using the geometry of equivariant gerbes, we introduce global
twisted equivariant cohomology H∗

G,global(M,α), which is a twisted version of the

global equivariant cohomology in the sense of Baum-Brylinski-MacPherson [3] and
Block-Getzler [6]. We also construct an explicit chain map from the periodic
cyclic chain complex of the algebra C∞

c (Γ, L) to this global twisted equivariant
cohomology cochain complex and conjecture that this is a quasi-isomorphism. An
important consequence of this conjecture is the following relation

K∗
G,α(M)⊗R(G) R

∞(G) ∼= H∗
G,global(M,α),

where R(G) is the representation ring of G and R∞(G) is the ring of smooth
conjugation invariant functions on the group G.
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Universal Deformation Formulas for Non-Abelian Lie Group Actions
and Symplectic Symmetric Spaces

Pierre Bieliavsky

I am currently interested in universal deformation formulas (‘UDF’) for non-
abelian Lie group actions on topological algebras, in the same spirit as Rieffel’s
work in the framework of deformation quantization for actions of Rd. Within this
context, I am particularly concerned with the interplay between geometrical, rep-
resentation theoretical and harmonic analytical aspects.
Roughly, a UDF for a given group S within a topological category of associative
algebras A is a procedure which, for every data of an algebra A ∈ A which the
group S acts on by automorphisms, produces a field of algebras {Aθ} in the initial
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category A and deforming A =: Ao (here θ is a parameter running in some topo-
logical space Θ and o is some base point in Θ).
The basic example [10], due to Rieffel, applies to the abelian group S = Rd and
relies on Weyl’s quantization: starting with a Fréchet algebra A together with a
(sufficiently regular) action α : Rd×A→ A and a skewsymmetric matrix θ ∈ so(d),
the following formula:

(1) a ⋆θ b :=

∫

Rd×Rd

ei x.y αx(a)αθ(y)(b) dxdy

defines an associative product, ⋆θ, on the space A∞ of smooth vectors of α in A.
The above integral sign denotes an oscillatory integral defined through a standard
integration by parts technique involving the Laplace operator ∆Rd on Rd. Observe
that the integral expression for Dirac’s distribution suggests that at θ = 0 the
deformed product coincides with the original one from A. When C⋆, the family
{(A∞, ⋆θ)} can be completed into a continuous field Aθ of C⋆-algebras over the
space Θ = so(d) deforming A = A0.
On the formal algebraic side, such a UDF corresponds to the data of a Drinfeld
twisting element based on a universal enveloping algebra, or more generally on a
Hopf algebra. Explicit expressions for such twists are very rare in the literature.
However, one finds the examples due to Zagier [12] and Giaquinto-Zhang [9] for
the case of the affine group G = ax + b. Zagier’s example comes from analytical
number theory (Rankin-Cohen brackets on modular forms). It has been used and
developed by Connes and Moscovici in their work on codimension one foliations
[8]. Giaquinto-Zhang’s example may be interpreted as the restriction of Moyal’s
product on R2 to an open orbit of the affine group. Both examples are formal with
respect to a finite dimensional parameter space.
The groups I consider are solvable Lie groups (see [1], and [5, 3] for developments),
more precisely, Iwasawa components S = AN of real semi-simple Lie groups G of
hermitian type (e.g. the affine group ax+b appears here as the Iwasawa component
of SL(2,R)). A geometrical study of various symplectic symmetric spaces attached
to such a semi-simple Lie group G led me to consider specific two- and three-point
functions on its Iwasawa component S. It turns out that the latter functions
constitute the phase and amplitude of oscillatory kernels on S× S defining, in an
analogous manner as in (1), non-formal UDF’s for the actions of S valid in the
category of Fréchet algebras[2].
The phase and amplitude functions admit elementary geometrical interpretations.
For instance, in the rank one situation1, I find UDF’s such as:

a ⋆ b =

∫

S×S

Kθ α(a)⊗ α(b) ,

where Kθ is an oscillating kernel of the form:

Kθ = Abθ e
i
θ
S .

1Higher ranks can be obtained by applying a split extension technique which is essentially
standard.
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The phase S of the oscillating kernel equals the symplectic area of a geodesic trian-
gle in the group manifold S with respect to a symmetric space geometry obtained
by partially contracting the curvature of the Hermitian symmetric space G/K 2.
In contrast, the amplitude A is only partially fixed by the geometry: it can be
modified arbitrarily by a factor3 which is the coboundary (for a certain natural
differential on the multiple-point function complex) of a pseudo-differential oper-
ator symbol bθ living on the boundary of G/K. In particular, the deformation
parameter space Θ is infinite dimensional. Surprisingly, the differential operator
playing the role of the flat Laplacian in the integration by parts procedure allowing
to define the oscillatory integral is here a power (depending on the dimension) of
the uncontracted Laplacian on the Hermitian symmetric space G/K 4. The latter
fact reveals a concrete geometrical interplay between the contracted and uncon-
tracted geometries considered here.
The contracted symmetric space whose geometry underlies the oscillating ker-
nel is a symplectic solvable analogue of conformally flat Riemannian (or pseudo-
Riemannian) symmetric spaces (i.e. with vanishing Weyl tensor)5. Its transvection
group being a solvable Lie group, one may want, in order to attend the semi-simple
context of the Hermitian space G/K, to modify the above construction in such a
way that the automorphism group of the resulting kernel would contain G rather
than its solvable contraction. In other words, one may want to ‘decontract’ the
situation. In a collaboration with Detournay and Spindel, we realized this pro-
gram for the case of G = SL(2,R) i.e. in the case of the hyperbolic plane
∆ = SL(2,R)/SO(2) 6. The key is to relate the associative kernels on ∆ to the
space of solutions for the evolution of a certain second order hyperbolic differential
operator. Typically, the resulting SL(2,R)-equivariant quantization kernels have
the form:

K∆
θ =

∫ ∞

0

t2J 1
θ
(t) eit S∆ dt ,

where Jµ denotes the Bessel function of first kind and where S∆ denotes a specific
three-point function on the hyperbolic plane closely related with a hyperbolic
triangle area. An interesting challenge consists in implementing an action of an
arithmetic Fuchian group Γ ⊂ SL(2,R). I plan to investigate this question in a
near future.
Actually, the above method works not only in the negatively curved case. Any
surface admitting a local structure of a coadjoint orbit of SL(2,R) can be treated
in the same way. At the formal level, every sl(2,R)-invariant star product can be

2Note that the Iwasawa decomposition of G yields a canonical S-equivariant symplectomor-
phism between G/K and S.

3Strictly speaking, the modifying factor being complex valued, the phase S could be modified
as well. But this modification is cohomologically inessential.

4More generally a power of a Damek-Ricci metric Laplacian on S could be chosen as well.
5These symplectic spaces are said to be of Ricci type in the literature.
6Unpublished; see Detournay’s PhD thesis (arXiv:hep-th/0611031 pp. 64-80). The higher

dimensional case is currently under investigation by one of my students. The rank one case
(G = SU(1, n)) is very likely to follow the exact same scheme as SL(2, R).
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produced by the above method, and, in particular, Zagier’s formal modular form
product may be derived from the flat nilpotent conical orbit case. The case of
the one-sheeted hyperboloids has not been investigated, however it would not be
surprising if it would produce an equivalent version of Unterberger’s Weyl calculus
on non-holomorphic automorphic forms [11].
I’ll finish with mentioning applications of the above non-abelian UDF’s as well
as possible developments. Analogously to noncommutative spherical manifolds
obtained from quantum torus actions [7], a first natural application consists in
producing new examples of noncommutative manifolds (spectral triples) such as
deformed locally anti de Sitter black holes (see [4] and [3] for developments) or
noncommutative hermitian symmetric spaces (in progress, jointly with Gayral and
Iochum). In a locally compact quantum group context, it is very likely that the
non-formal twists obtained (based on the full Borel in the Hermitian case) will
yield multiplicative unitaries in the sense of Baaj-Skandalis or Woronowicz. I
would like to study this question as well as the possibility of defining in this non-
formal context a notion of twisted Dirac operator in a similar spirit as Kostant’s
cubic Dirac operator in the formal case.
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The harmonic oscillator, its noncommutative dimension and the
vacuum of noncommutative gauge theory

Raimar Wulkenhaar

(joint work with Harald Grosse)

Renormalisable scalar quantum field theories on noncommutative Moyal space are
characterised by the appearance of a harmonic oscillator potential in the action
functional [1]. To make contact with noncommutative geometry, and also to extend
the model to gauge theory, one must understand the Moyal-oscillator space as a
spectral triple. This amounts to construct a Dirac operator such that its square
is the Schrödinger operator of the harmonic oscillator. All attempts to find such
a spectral triple in agreement with the original set of axioms [2] failed so far.
Recently, it was realised that many interesting noncommutative geometries, such
as the standard model [3], have different KO and spectral dimensions.
With this flexibility in mind, it it now not difficult to understand the harmonic
oscillator as a spectral triple. We describe here the four-dimensional case. For
details we refer to [4]. As the algebra we take the Schwartz class functions A4 =
S(R4) either with the commutative product or with the Moyal product

(f ⋆ g)(x) =

∫
d4y

d4k

(2π)4
f(x+ 1

2Θ · k) g(x+y) ei〈k,y〉 , f, g ∈ A4 .(1)

The Dirac operator D4 is constructed in the eight-dimensional Clifford algebra
with generators Γ1, . . . ,Γ8. In the Moyal case we take

D4 = iΓµ∂µ + ΩΓµ+4x̃µ ,(2)

where x̃µ := 2(Θ−1
µν x

ν . As usual greek indices run from 1 to 4 and Einstein’s sum

convention is used. In the commutative case, we replace ΩΓµ+4x̃µ by ωΓµ+4xµ.
Accordingly, the Hilbert space is H4 = L2(R4)⊗C16. Equivalently, one can regard
C16 ≃ Cliff(C4) and realise the first set Γ1, . . . ,Γ4 as usual Clifford multiplication
with standard 4D gamma matrices, whereas the action of Γµ+4 is constructed from
γµ and a graded sign. In the Moyal case, the algebra acts on H4 by componentwise
left Moyal multiplication L⋆ : A4 ×H4 → H4.
The only possibility for the grading operator is χ4 = Γ9 := Γ1 · · ·Γ8. Then, choos-
ing the Clifford generators such that Γ1, . . . ,Γ4 are real and Γ5, . . . ,Γ8 purely
imaginary, the only possible real structure is J4ψ := Γ9ψ̄ for ψ ∈ H4. This means
that the geometry has KO-dimension 0Mod8. At first sight, this seems to be re-
lated with the dimension of the Clifford algebra and the phase space dimension.
However, the KO-dimension is always zero for any harmonic oscillator dimension.
On the other hand, the metric dimension of the triple (A4,D4,H4) is four—if de-
fined in non-compact sense. First, if Θ is given by θ times the standard symplectic
form, one finds D2

4 = H4 ⊗ 116 + Ω̃⊗Σ4, where H4 = −∂µ∂µ + Ω̃2xµxµ, Ω̃ := 2Ω
θ ,

and Σ ∈M16(C) is the traceless spin matrix. Using the Mehler kernel

e−tH4(x, y) =
( ω

2π sinh(2ωt)

)2

e−
ω
4 coth(ωt)‖x−y‖2−ω

4 tanh(ωt)‖x+y‖2

,(3)
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for x, y ∈ R4, and the kernel representation of the Moyal product (1), one can

compute the Dixmier trace of L⋆(f)(D2
4 + 1)−

δ
2 as a residue:

Trω
(
L⋆(f)(D2

4 + 1)−
δ
2

)
= lim

s→1

(s− 1)

Γ( δs2 )

∫ ∞

0

dt t
δs
2 −3e−t

(Ω̃t)2

π2(1 + Ω2)2 tanh2(Ω̃t)

×
∫
d4x f(x) e

− Ω̃ tanh(Ω̃t)

1+Ω2 ‖x‖2

.(4)

For Schwartz-class functions f , the dimension spectrum is given by the even inte-
gers≤ 4, so that we regard the maximal value d = 4 as the spectral dimension. The
corresponding trace theorem allows one to express the scalar product for smooth
spinors by the Dixmier trace and the standard hermitean structure. However, if
we adjoin a unit to the algebra and take f = 1, then the compact dimension would
be 8. The non-compact version is the correct one, because the non-compact L2-
Hilbert space is essential in the quantisation of the spectrum of H4.
Now we can derive the spectral action [2]. To make the model more interest-
ing, we tensor (A4,D4,H4, χ4) with the Connes-Lott two-point spectral triple
(C⊕C,C2,Mσ1). Then, using [D4, L⋆(f)] = i(Γµ+ΩΓµ+4)(∂µf) due to [xν , f ]⋆ =
iΘνρ∂ρf , the fluctuated Dirac operators DA = D +

∑
i ai[D, bi] are of the form

DA =

(
D4 + (Γµ + ΩΓµ+4)L⋆(Aµ) Γ9L⋆(φ)

Γ9L⋆(φ̄) D4 + (Γµ + ΩΓµ+4)L⋆(Bµ)

)
,(5)

for real Yang-Mills fields Aµ, Bµ ∈ A4 and a complex Higgs field φ ∈ A4.
According to the spectral action principle [2], the most general form of the bosonic
action is

S(DA) = Tr
(
χ(D2

A)
)

=

∫ ∞

0

dt Tr(e−tD
2
A)χ̂(t) ,(6)

where χ̂ is the (inverse) Laplace transform of the weight function χ. We write

D2
A =: H4132 + Ω̃Σ412 − V and iterate the Duhamel expansion

e−t0(H0−V ) = e−t0H0 +

∫ t0

0

dt1
(
e−(t0−t1)(H0−V )V e−t1H0

)
(7)

to obtain an asymptotic expansion e−tD
2
A =

∑∞
z=−4 az(D2

A)tz. After long calcula-
tion, we obtain the following spectral action

S =
θ4χ−4

Ω4
+

2θ2χ−2

3Ω2
+

52χ0

45

+
χ0

2π2(1 + Ω2)2

∫
d4z

{( (1−Ω2)2

2 − (1−Ω2)4

3(1+Ω2)2

)
(FAµν ⋆ F

µν
A + FBµν ⋆ F

µν
B )

+
(
φ ⋆ φ̄+ 4Ω2

1+Ω2 X̃
µ
A ⋆ X̃Aµ −

χ−1

χ0

)2

+
(
φ̄ ⋆ φ+ 4Ω2

1+Ω2 X̃
µ
B ⋆ X̃Bµ −

χ−1

χ0

)2

− 2
(

4Ω2

1+Ω2 X̃
µ
0 ⋆ X̃0µ −

χ−1

χ0

)2

+ 2Dµφ ⋆ Dµφ
}

(z) +O(χ1) ,(8)

where χz =
∫ ∞
0
dt tz χ̂(t). In (8), X̃µ

A(x) := x̃µ

2 + Aµ(x) is a covariant coordinate

with gauge transformation Xµ
A 7→ uA ⋆ X

µ
A ⋆ uA. Similarly for X̃µ

B. By Dµφ =



Noncommutative Geometry 2603

∂µφ− iA ⋆ φ + iφ ⋆ B we denote the covariant coordinate of the Higgs field. The
gauge transformation of the latter is φ 7→ uA ⋆ φ ⋆ uB.
Some conclusions and comments:

• The square of covariant derivatives combines with the Higgs field to a
non-trivial potential. This was not noticed in [5, 6] where gauge theory
induced by scalar fields was derived. We observe here a much deeper
unification of the continuous geometry described by Yang-Mills fields and
discrete geometry described by the Higgs field than previously in almost-
commutative geometry. The distinction into discrete and continuous part
is no longer possible in general noncommutative geometries. Therefore,
the Higgs potential cannot be restricted to the Higgs field, it must include
the gauge field, too.

• The coefficient in front of the Yang-Mills action is positive for all Ω ∈ [0, 1[.
In the bosonic model of [5, 6] there was only the analogue of the negative
part, which leads to problems with the field equations.

• Most importantly, (8) is translation-invariant if we forget how X̃ is con-
structed: The transformation φ(x) 7→ φ(x+a) and XGµ(x) 7→ XGµ(x+a),
for G ∈ A,B, 0, leaves the action invariant. Thus, a frequent objection
against the renormalisable φ4

4-models disappears for the Yang-Mills-Higgs
spectral action.

We have found several solutions of the classical field equations resulting from the
spectral action. For pure Yang-Mills theory (i.e. φ = 0), there is an interesting
radial solution in terms of modified Bessel and Struve functions:

(X̃µ ⋆ X̃µ)(x) =
η2(1+Ω2)

4Ω2

(
1 +

π

2

(
I1(γ‖x‖2)− L−1(γ‖x‖2)

))
,(9)

where χ−1

χ0
= η2 and 4

√
2gΩ2

θ(1+Ω2) for the coupling constant given by 1
4g2 := (1−Ω2)2

2 −
(1−Ω2)4

3(1+Ω2)2 . For small distances ‖x‖ we have X̃µ ⋆ X̃µ ∼ ‖x‖2, which provides the

oscillator potential needed for renormalisation. At large distances, X̃µ ⋆ X̃µ ap-
proaches its asymptotic value where the Higgs type potential vanishes. The influ-
ence of this behaviour on renormalisation remains to be studied.
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