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Introduction by the Organisers

Dispersive equations occur as asymptotic models for the propagation of linear
and nonlinear waves. Mathematically they display an interplay between linear
dispersion and nonlinear focusing and defocusing effects. They are linked to diverse
areas of mathematics and physics, ranging from nonlinear optics over oscillatory
integrals to integrable systems. The workshop focused on a PDE based approach
to dispersive equations.

Current activities covered by the workshop include:

(1) Progress in understanding critical nonlinear Schröder equations. General-
ized Morawetz estimates and an induction on energy improved our under-
standing on the interaction of waves for nonlinear Schrödinger equations,
which led to a treatment of many such critical equations.

(2) The study of dispersive equations with variable coefficients. During the
last few years our understanding of wave propagation in nonhomogeneous
situations improved considerably and there are now several interesting
results on general relativity linearized at the Schwarzschild metric. This
may be seen as a step towards nonlinear stability of the Schwarzschild
metric.
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(3) The large time asymptotics of solutions, including asymptotics of multisoli-
ton solutions in the nonintegrable case and sharp asymptotics of singular
solutions.

There is a large number of promising young mathematicians working in this
area. The meeting was attented by 45 participants. The organizers gave a strong
preference to talks by young researchers.
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Abstracts

Scattering for the Gross-Pitaevskii equation

Kenji Nakanishi

(joint work with Stephen Gustafson and Tai-Peng Tsai)

We study asymptotic behavior of solutions for the nonlinear Schrödinger equation:

iψt + ∆ψ = ±|ψ|2ψ, ψ(t, x) : R
1+d → C,(1)

as t → ∞. There is a vast literature on this problem especially in the scattering
theory when the solution satisfies

ψ(t, x) → 0 (|x| → ∞),(2)

in such a sense as ψ(t) ∈ L2
x(R

d) or H1
x(R

d). Since the spatial decay is intimately
connected with the time decay through the dispersive nature of the equation, it is
often assumed, to make the problem easier, that the solutions or the initial data
decay sufficiently fast at the spatial infinity. That may be natural if one regards
the equation as a model to describe instantaneous reaction to spatially localized
disturbance, where the time and space infinity refers in reality to the region far
away from the disturbance.

But why should one start with the 0 solution to perturb? The second simplest
and natural, but more general choice is the plane wave, which is also uniform in
space-time with constant |ψ|. Then the boundary condition for perturbed solutions
becomes

|ψ(t, x)| → C 6= 0 (|x| → ∞).(3)

In fact, it is more natural than the zero boundary condition in various physical
contexts such as superfluid, Bose-Einstein condensation and nonlinear optics.

By using the scaling and Galilean invariance of the equation, we can reduce
the question to the case ψ = e∓it. Furthermore, by changing ψ 7→ e∓itψ we can
reduce to the case ψ = 1 for the equation

iψt + ∆ψ = ±(|ψ|2 − 1)ψ, ψ(t, x) : R
1+d → C,(4)

with the boundary condition

|ψ(t, x)| → 1 (|x| → ∞).(5)

This equation is often called Gross-Pitaevskii equation in those physical contexts.
By decomposing the solution into the background constant and the perturbation
ψ = 1 + u, we get

iut + ∆u∓ 2u1 = ±(2|u|2 + u2 + |u|2u),(6)

where u = u1 + iu2, (u1, u2) ∈ R2.
Now it is easy to observe in the focusing case (the − sign), the linearized

operator has exponentially growing mode and so there is no chance to have any
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stability. Hence we are naturally forced to assume the defocusing nonlinearity with
the sign + in the rest. By further change of variable

u = Uv1 + iv2, U :=
√

−∆/(2 − ∆),(7)

we can transform the linear part into a complex linear form. Then we have the
equation for v

ivt −Hv = 3u2
1 + u2

2 + |u|2u1 + iU−1(2u1u2 + |u|2u2),(8)

where H =
√
−∆(2 − ∆).

Then it seems natural to approximate the solution by the linear evolution e−iHt.
For large time asymptotic, it means the scattering problem for the equation of v.
This problem appears to have several difficulties compared with the zero boundary
condition.

(1) The linear part contains a nonlocal operator, which is inconvenient to
exploit spatial decay property.

(2) The nonlinearity contains quadratic terms which are supposed to decay
slower than the cubic ones. When considering perturbation of solitary
wave (with the zero boundary condition), we also get quadratic terms,
but they are usually easy to treat because they are multiplied with the
solitary wave, which decays exponentially in space. That is not the case
for our background solution with no decay.

(3) Some nonlinear terms contain the operator U−1, which is singular at the
zero frequency. It is especially bad for time decay, because those quadratic
terms are resonant mostly at the zero frequency. Namely the operator
would enhance those interactions which does not decay well.

(4) Our boundary condition destroys those invariance such as scaling and
Galilean, which play important roles to derive a priori dispersive estimates
in the zero boundary condition.

In addition, one should keep in mind that there exist global solutions which do
not disperse, such as traveling waves and stationary vortexes.

Despite of those apparent difficulties, we have succeeded in getting scattering
results for d ≥ 2 in [5, 6]. Roughly speaking, those results are as follows:

(1) For d ≥ 4, if the initial data is sufficiently small in Hd/2−1, then the
solution v approaches a linear solution e−iHtϕ in the same space as t → ∞.
one can also start with a prescribed asymptotic ϕ.

(2) For d = 3, we can construct unique solution v which is asymptotic to a
given profile e−iHtϕ if ϕ ∈ H1 ∩H1

p with some p < 3/2.
(3) For d = 2, we can construct global solution for a prescribed asymptotic

profile, if ϕ is sufficiently smooth and decays fast, but the asymptotic
behavior should be modified as follows:

v +H−1|u|2 ∼ v+ − i

∫ t

∞
e−iH(t−s)|Uv+(s)|2ds, v+ = e−iHtϕ.(9)
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Those results are based on the nonlinear transform

z = U−1u1 +H−1|u|2 + iu2,(10)

which magically removes the singularity and further brings decay at ξ = 0 in all the
quadratic terms. Actually one can observe that the above transform is somehow
canonical in view of the conserved energy:

∫
|∇ψ|2 +

(|ψ|2 − 1)2

2
dx

=

∫
|∇u|2 + 2|u1|2 + 2|u|2u1 +

|u|4
2
dx

=

∫
|∇u2|2 +

[√
2 − ∆u1 +

|u|2√
2 − ∆

]2

−
[ |u|2√

2 − ∆

]2

+
|u|4
2
dx

=

∫
|∇z|2 +

(U |u|2)2
2

dx.

(11)

Thus the linear transform u 7→ v is the unique one which removes the quadratic
part in the nonlinear energy, and the quadratic transform u 7→ z is the unique one
which removes the cubic term as well. In particular, finite energy implies uniform
bound in Ḣ1 of z, but not of v. Using this fact, we can prove

Theorem 1. Let d = 3. Then for any ϕ ∈ Ḣ1, there exists a global solution
ψ = 1 + u of (4) such that z = U−1u1 +H−1|u|2 + iu2 satisfies

lim
t→∞

‖z(t) − e−iHtϕ‖Ḣ1 = 0.(12)

The same asymptotic does not necessarily hold for v, because H−1|u|2 6∈ Ḣ1

for general finite energy solutions. We cannot claim the uniqueness of z for given
ϕ, because we use the compactness argument.

There is a lower bound on the energy of traveling waves on R3 [1], and it is
conjectured [2] that solutions with energy below that bound should disperse for
large time. The above theorem suggests a natural embodiment for it, namely the
scattering in Ḣ1 for z, showing at least that there are plenty of solutions with such
asymptotic behavior.

The proof is based on a uniform estimate on the nonlinearity in the equation

izt −Hz = 2u2
1 + |u|2u1 − 4iH−1∇ · (u1∇u2) + iU(|u|2u2)(13)

in the sum of Lorentz spaces

L6/5,1
x (R3) + L1

x(R
3),(14)

and the decay estimates

‖e−iHtϕ‖B0
∞,2

. |t|−3/2‖ϕ‖B0
1,2
, ‖e−iHtϕ‖L1

t (L∞
x +L1

x) . ‖ϕ‖L6/5,1,(15)

combined with the compactness argument using the conservation law to derive
the strong convergence (cf. [7] for the zero boundary condition.) More precisely,
we take the weak limit T → ∞ of the sequence of solutions zT with the initial
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data zT (T ) = e−iHTϕ, for which we may assume smallness of the L6
x norm, for

appropriate sequence of T , to ensure invertibility of the transform u 7→ z. We
use the global wellposedness in the finite energy class [3]. The strong convergence
follows from the convergence of the energy as T → ∞ and t→ ∞.

Surprisingly, a similar result for the zero boundary condition is not available
in the same setting, because in that case the L2

x bound (conservation) plays an
essential role (cf. [4] for the definitive result in H1

x). As far as we know, there is no
scattering result in that case assuming only the finiteness of energy, even starting
from the asymptotic data.

In this sense, we might expect that the nonzero constant has stronger stability
than the trivial solution. However proving the above conjecture looks extremely
difficult, for example from the scaling speculation. It seems more feasible and still
interesting to get a scattering result starting from initial data with some spatial
decay in three dimensions.
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Strichartz estimates on Schwarzschild space-times

Jason Metcalfe

(joint work with Daniel Tataru, Mihai Tohaneanu)

Two of the more robust ways of measuring dispersion for solutions to the wave
equation are the localized energy estimates and the Strichartz estimates. For
the wave equation on Minkowski space-time R × Rn, these say, respectively, that
solutions u to �u = (∂2

t − ∆)u = 0 satisfy

(1) sup
j

‖〈x〉−1/2∇u‖L2
t,x(R×{|x|≈2j}) . ‖∇u(0, · )‖2, n ≥ 3

and

(2) ‖|D|−ρ∇u‖Lp
tL

q
x(R+×Rn) . ‖∇u(0, · )‖2.
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For the latter, we require that (p, q, ρ) be Strichartz admissible which we define to
mean that 2 ≤ p, q ≤ ∞,

(3) ρ =
n

2
− n

q
− 1

p
,

2

p
≤ n− 1

2

(
1 − 2

q

)
,

and (p, q, ρ) 6= (2,∞, 1) when n = 3. We say that the Strichartz exponents are
sharp if equality holds in the second equation in (3).

For simplicity of exposition, we shall only explore estimates for solutions to
homogeneous equations here. In the flat case, there are also well known estimates
for the inhomogeneous equation where the forcing term is in a dual space. The
estimates below also have similar analogs.

We wish to explore to what extent these estimates carry over to variable coef-
ficient settings and, in particular, to Schwarzschild space-times. While Strichartz
estimates for variable coefficient wave equations are known to hold locally in time,
there is still relatively little known concerning global estimates.

An outgoing paramatrix was constructed in [3] which allows one to roughly say

global-in-time localized energy =⇒ global-in-time Strichartz.

This proof is based on the earlier construction [5] for Schrödinger equations. After
reducing to a half-wave equation, we conjugate by a time-dependent FBI trans-
form. A second order term in the asymptotic expansion is nontrivial, and we are
left with a degenerate parabolic equation. The bounds from [5], which are based
on the maximum principle, can then be referenced. Moreover, if the perturbation
is small, the necessary frequency-localized versions of the localized energy esti-
mates are shown using a positive commutator argument, which in turn yields the
Strichartz estimates.

As an example of an asymptotically flat perturbation which is not small, we
examine the wave equation on Schwarzschild space-times. The Schwarzschild
space-time is the simplest solution to Einstein’s equations in vacuum which con-
tains a black hole. We restrict our analysis to the exterior of the black hole
(t, r, ω) ∈ R × (2M,∞) × S2, and the line element is given by

ds2 = −
(
1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dω2.

A key obstacle, which is not encountered for small perturbations, is the existence
of trapped rays. For the Schwarzschild space-time, trapping occurs at the event
horizon r = 2M and the photon sphere r = 3M .

Solutions to the homogeneous wave equation �gφ = 0, where

�g = −
(
1 − 2M

r

)−1

∂2
t + r−2∂r

(
1 − 2M

r

)
r2∂r + r−2∆S2 ,

have a conserved energy

E[φ](t) =

∫ [(
1 − 2M

r

)−1

(∂tφ)2 +
(
1 − 2M

r

)
(∂rφ)2 + |6∇φ|2

]
dx,
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where 6∇ denotes the angular derivatives. In analogy to (1), we prove

(4)∫

t>0

∫ [
c0r

(
1 − 2M

r

)
(∂rφ)2 + c0t

(
1 − 2M

r

)−1

(∂tφ)2 + c0ω|6∇φ|2 + c0φ2
]
dx dt

. E[φ](0),

where dx = r2 dr dω. Here

c0r =
1

r2
(
1 − ln

(
1 − 2M

r

))2 , c0t =

(
1 − 3M

r

)2

r2(1 − ln
(
1 − 2M

r

))2

c0ω =
1

r

(
1 − 3M

r

)2

, c0 =
1

r4
(
1 − 2M

r

)
(1 − ln

(
1 − 2M

r

)
)2
.

Estimates of this form have been previously shown in [1] and [2]. These works
proceed by expanding into spherical harmonics and choosing a different multiplier
on each harmonic. We instead focus on finding a single multiplier which permits
us to avoid the spherical harmonic decomposition. Our multiplier roughly looks

like X = f(r)
(
1 − 2M

r

)
∂r where

f(r) =





1
r2

[(
r2

3 + 2Mr + 10M2
)
(r − 3M) + 8M3 ln

(
r−2M
M

)]
, r ∈ (2M, 3M),

9M
2

r−3M
r− 3M

2

, r ∈ [3M,∞).

This is not quite sufficient as it is not bounded near r = 2M , where one needs to
“smooth it out”. While relatively elementary, the estimate (4) plays an important
role in the analysis. Since it is lossless away from r = 2M , r = 3M , and r = ∞, it
allows us to glue together analyses which are performed separately in the regions
surrounding these points.

In the estimate (4), notice, in particular, the vanishing of the coefficients at
r = 2M and r = 3M which is a result of the trapping. We hope to be able to take
the losses at these points to be logarithmic in both cases. Roughly, we prove that
the coefficients c0ω and c0t can be replaced by

cω =
1

r

(
1 − ln

∣∣∣1 − 3M

r

∣∣∣
)2

, ct =

(
1 − ln

∣∣∣1 − 3M
r

∣∣∣
)2

r2
(
1 − ln

(
1 − 2M

r

))2

respectively. To prove this, we may localize to a neighborhood of r = 3M , take
the Fourier transform in t, and expand in spherical harmonics (indexed with λ).
The estimates are easy unless λ and the time frequency variable have a delicate
balance. In this case, the following serves as a fairly representative model problem:

u′′ + λ2(x2 ± ε)u = f, near r = 0.

Estimates for solutions to this equation are proved using a WKB approximation.
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Finally, we prove global Strichartz estimates which are roughly of the form

∥∥∥
(
1 − 2M

r

) 1
2

(
1
p− 1

q + 1
2

)

|D|1−ρφ
∥∥∥
LpLq

. E[φ](0)

for nonsharp Strichartz exponents. Here |D| is a pseudodifferential operator which
looks roughly like the derivatives occurring in the energy. There are also estimates
available for sharp Strichartz exponents, but these necessitate a logarithmic loss.

Using (4), we may analyze the regions near r = 2M, 3M,∞ separately. In the
bounded regions near r = 2M and r = 3M , the global Strichartz estimates follow,
via fairly standard arguments, from the local-in-time Strichartz estimates (see,
e.g., [4]) and the localized energy estimates (with the improved coefficients near
r = 3M). Outside of a sufficiently large ball, the perturbation becomes small, and
thus, in a region near ∞, the analysis from [3] can be referenced.
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The Schrödinger equation with a large magnetic potential

Michael Goldberg

(joint work with M. Burak Erdoğan, Wilhelm Schlag)

We prove Kato smoothing bounds and a full range of Strichartz estimates for the
Schrödinger equation in Rn, n ≥ 3, with a time-independent first order self-adjoint
perturbation [2]. In other words, propagation of solutions is given by eitH with H
taking the form

H = −∆ + L = −∆ + i(A(x) · ∇ + ∇ ·A(x)) + V (x).

The coefficients of the potential must decay faster at infinity than the natural
scaling rates of the equation (|x|−1 for each Aj(x) and |x|−2 for V (x)), however
no smallness condition governing the size of the potential is assumed.

Because of the large size of the perturbation, bound-state solutions certainly
may exist. These are confined to the nonpositive spectrum of H , and an additional
assumption is imposed that zero energy should neither be an eignvalue nor a
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resonance. It follows that the bound states ofH form a finite-dimensional subspace
of L2(Rn). Our result asserts the validity of the propagator bounds

‖〈x〉− 1
2−ǫ|∇| 12 eitHf‖L2

tL
2
x
≤ C‖f‖2

‖eitHf‖Lp
tL

q
x
≤ C‖f‖2,

2
p + n

q = n
2 , p ∈ (2,∞]

for all initial data which are orthogonal to the space of bound states.
These estimates for the free equation [3], [7] are derived from L1 → L∞ mapping

estimates for the convolution operator e−it∆, t 6= 0. The same dispersive bounds
do not hold in general for eitH , even after projecting onto its continuous spectrum.
Counterexamples with A ≡ 0 are known in dimensions n ≥ 4 [5] and the case of
nontrivial magnetic potentials is entirely open.

There is an alternative path toward proving Strichartz estimates, described in
[8], which uses Kato smoothing as the intermediate step. Precisely, one requires
that the perturbation L be factorized as a finite sum of terms Z∗

jWj , where each
Wj is H-smooth and each Zj is smooth with respect to the Laplacian. So long as

|∇| 12A is bounded, terms like A · ∇ can be split so that each factor possesses half

of a derivative and pointwise decay at the rate |x|− 1
2−ǫ. Such operators are well

known to be ∆-smooth [6].
The criterion of choice for testing whether they are also H-smooth is to deter-

mine whether the resolvents R(λ2) = (H − (λ + i0)2)−1 are bounded from the

weighted Sobolev space 〈x〉− 1
2−ǫH

1
2 to its dual, uniformly over all λ ∈ R. Once

again this is well known for the free resolvent R0(λ
2) = (−∆ − (λ+ i0)2)−1. The

perturbation appears here in the form of a multiplicative correction

R(λ2) = (I + R0(λ
2)L)−1R0(λ

2)

thus it suffices to prove boundedness of (I +R0(λ
2)L)−1 uniformly over λ ∈ R.

At each value of λ, existence of the operator inverse can be established via the
Fredholm Alternative and Agmon’s bootstrapping method [1]. By continuity this
process gives a uniform bound when λ is restricted to a compact set in R. Recent
results [4] suggest that eigenvalues at zero energy need not be excluded so long
as the associated eigenfunction belongs to 〈x〉−1L2(Rn). In very high dimensions
(n ≥ 7) no zero-energy assumption would be needed at all. In three dimensions,
however, extra decay of L2 static solutions is not generic.

The argument for large λ proceeds by expanding the inverse operator as a
Neumann series, with a significant complication arising from the fact that (unless
A ≡ 0) the norm of R0(λ

2)L is bounded from below by a large constant as λ→ ∞.
The Neumann series still converges thanks to a key estimate on higher powers of
R0(λ

2)L. For any r > 0 there exists an exponent m <∞ so that

lim sup
λ→∞

‖(R0(λ
2)L)m‖ ≤ (2r)m.

The free resolventR0(λ
2) consists of convolution against a kernel |x|2−nK(λ|x|),

with function K(r) ∼ e1λrr(n−3)/2 as r → ∞. Let {Ωj}Nj=1 be a partition of unity
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on the sphere. Decomposing R0(λ
2) into convolutions with a directed kernel

|x|2−nK(λ|x|)Ωj( x
|x|)

leads to an Nm-fold decomposition of the iterated integral operator (R0(λ
2)L)m.

Terms where two of the chosen functions Ωj have disjoint support are shown to
be small by a variation of the Riemann-Lebesgue Lemma. Terms where the sup-
ports overlap gain no benefit from oscillation, however their strong directionality
eventually leads to norm improvement (similar to iteration of a Volterra operator).
Because m is not determined a priori, the partition of unity may require sets of
very small diameter. It is important that estimates for the directed resolvent be
uniform with respect to this size parameter. We are fortunately able to control
the norm of this type of oscillatory integral using Hörmander’s variable-coefficient
Plancherel theorem.
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A uniqueness property of the Kerr spaces

Alexandru D. Ionescu

(joint work with Sergiu Klainerman)

My talk was concerned with several models related to proving “no hair” theorems
for smooth black holes. Our first model theorem is in the Minkowski space (M =
R × Rd,m) of dimension d+ 1. We define the subsets of M
(1) E = {(t, x) ∈ M : |x| > |t| + 1},
and

(2) H = δ(E) = {(t, x) ∈ M : |x| = |t| + 1}.
Let E = E ∪H. We start with a uniqueness property of solutions of systems of

wave equations on E .
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Theorem 1. (Uniqueness in the Minkowski spaces) Assume N ≥ 1, φI ∈ C2(M),

and AJI , B
J,l
I ∈ C0(M) for any I, J = 1, . . .N and l = 0, . . . , d. Assume that, for

any I = 1, . . . , N ,

(3) �(φI) =

N∑

J=1

AJI · φJ +

N∑

J=1

d∑

l=0

BJ,lI · ∂l(φJ ) on E .

Assume that φI ≡ 0 on H for any I = 1, . . . , N . Then φI ≡ 0 on E for any
I = 1, . . . , N .

As a corollary, we have a uniqueness property of solutions of systems of nonlinear
wave equations on E .

Corollary 2. Assume Φ(i) = (φ
(i)
1 , . . . , φ

(i)
N ), φ

(i)
I ∈ C2(M), i = 1, 2, I =

1, . . . , N , are solutions of the system of nonlinear wave equations on E
(4) �(φI) = ΓI(t, x,Φ, ∂0Φ, . . . , ∂dΦ) for I = 1, . . . , N.

If Γ1, . . . ,ΓN ∈ C1(M× RN × . . .× RN ) and Φ(1) ≡ Φ(2) on H, then

Φ(1) ≡ Φ(2) on E .
We remark that Corollary 2 is a pure uniqueness statement. The corresponding

initial-value problem is ill-posed. Our proof of Theorem 1 is based on the method
of Carleman estimates.

We consider now a similar model in the Kerr spaces. The Kerr spaces are the
only known explicit solutions that model rotating black holes in vacuum. They
depend on two parameters: m (the mass of the black hole) and J (the angular
momentum of the black hole). We assume m > 0 and a = J/m ∈ [0,m). In
standard Boyer-Lindquist coordinates (r, t, θ, φ) ∈ (r+,∞)×R× (0, π)× S1, r+ =
m+ (m2 − a2)1/2, the metric in the exterior region E4 of the Kerr space K4(m, a)
is (see [2])

(5) −ρ
2∆

Σ2
(dt)2 +

Σ2(sin θ)2

ρ2

(
dφ− 2amr

Σ2
dt

)2

+
ρ2

∆
(dr)2 + ρ2(dθ)2,

where

(6)





∆ = r2 + a2 − 2mr;

ρ2 = r2 + a2(cos θ)2;

Σ2 = (r2 + a2)2 − a2(sin θ)2∆.

Let H = δE4 denote the event horizon of the Kerr space K4(m, a) and ξ = ∂t
the Killing vector field on K4(m, a).

Theorem 3. (Uniqueness in the Kerr spaces) Assume W , A, B, C are smooth
tensor fields in the Kerr space K4(m, a), and

(7)

{
�gWα1...αk

= Aβ1...βk
α1...αk

Wβ1...βk
+Bβk+1β1...βk

α1...αk
Dβk+1

Wβ1...βk
;

LξWα1...αk
= Cβ1...βk

α1...αk
Wβ1...βk

,

in E4. If W ≡ 0 on H then W ≡ 0 on E4 ∪ H.
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Our proof of Theorem 3 is also based on the method of Carleman estimates.
This theorem is an important ingredient in the proof of a conditional “no hair”
theorem for smooth manifolds.
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The Kadomtsev-Petviashvili-II equation in critical spaces

Sebastian Herr

(joint work with Martin Hadac, Herbert Koch)

We report on the results obtained in the recent preprint [3] concerning the Cauchy
problem for the Kadomtsev-Petviashvili-II equation

(ut + uxxx + uux)x + uyy = 0 in (0,∞) × R
2

u|t=0 = u0

(KP-II)

for initial data u0 in the non-isotropic Sobolev spaces Ḣ− 1
2 ,0(R2) and H− 1

2 ,0(R2).
These are spaces of tempered distributions, defined via

‖u0‖
Ḣ− 1

2
,0 :=

(∫

R2

|ξ|−1|û0(ξ, η)|2dξdη
) 1

2

<∞ and

‖u0‖
H− 1

2
,0 :=

(∫

R2

(1 + ξ2)−
1
2 |û0(ξ, η)|2dξdη

) 1
2

<∞,

respectively. The equation (KP-II) models the propagation of weakly transverse
water waves in the long wave regime with small surface tension. The homogeneous
space Ḣ− 1

2 ,0(R2) is a natural data space in the sense that its norm is invariant
under the symmetries of the equation, namely translation, scaling, and Galilean
invariance.

The Cauchy problem (KP-II) has attracted a lot of attention. We mention only
a few previous results and refer the reader to these works for further references: It
has been shown by J. Bourgain [1] that (KP-II) is globally well-posed in L2(T2; R)
and L2(R2; R). Later, H. Takaoka [6] proved local well-posedness in the homoge-

neous spaces Ḣs,0(R2) in the full subcritical range s > − 1
2 . P. Isaza–J. Mej́ıa [4]
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derived global well-posedness in Hs,0(R2; R) for s > − 1
14 . Recently, it has been

proved by M. Hadac [2] that (KP-II) is locally well-posed in the inhomogeneous
spaces Hs,0(R2) in the full subcritical range s > − 1

2 .
We are interested in well-posedness and scattering for the (KP-II) equation

in critical spaces. In [3] the following small data global well-posedness result is
obtained:

Theorem 1 (cp. [3]). There exists a space Ż− 1
2 ([0,∞)) ⊂ C([0,∞); Ḣ− 1

2 ,0(R2))
and δ > 0, such that for all initial data

u0 ∈ Ḣ− 1
2 ,0(R2) satisfying ‖u0‖

Ḣ− 1
2

,0 < δ

there exists a unique global solution

u ∈ Ż− 1
2 ([0,∞))

of (KP-II). Moreover, the flow map u0 7→ u is analytic.

Additionally, local well-posedness of the (KP-II) equation is proved:

Theorem 2 (cp. [3]). The equation (KP-II) is locally well-posed for arbitrarily

large initial data, both in Ḣ− 1
2 ,0(R2) and in H− 1

2 ,0(R2). The time of existence
may depend on the frequency profile of the data.

Moreover, it is shown that for small data the global solutions from Theorem 1
scatter to free solutions:

Theorem 3 (cp. [3]). There exists δ > 0, such that for initial data

u0 ∈ Ḣ− 1
2 ,0(R2) satisfying ‖u0‖

Ḣ− 1
2

,0 < δ

there exists u+ ∈ Ḣ− 1
2 ,0(R2) with the property that the unique solution

u ∈ Ż− 1
2 ([0,∞)) ⊂ C([0,∞); Ḣ− 1

2 ,0(R2))

with u(0) = u0 of the (KP-II) satisfies

‖u(t) − e−t(∂
3
x+∂−1

x ∂2
y)u+‖

Ḣ− 1
2

,0(R2)
→ 0 (t→ ∞).

The proofs of the above Theorems 1, 2 and 3 are based on sharp bilinear esti-
mates and the contraction mapping principle. It is crucial to construct suitable
function spaces which

• have the correct behaviour with respect to scaling,
• contain functions which are close to free solutions, at least in the sense

that all elements satisfy the linear and bilinear Strichartz estimates,
• and allow us to take into account the bilinear structure of the nonlinearity,

e.g. in terms of the resonance identity,

such that eventually we are able to close bilinear estimates on the Duhamel term
in these spaces. Following H. Koch–D. Tataru [5], we use the atomic space U2

and the space V 2 of bounded 2-variation as building blocks for the definition
of our solution spaces and the linear theory. We examine the duality, continuous
embeddings into various function spaces, and interpolation type properties of these
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spaces and provide linear and bilinear Strichartz estimates. Finally, we show how
the bilinear estimates can be derived by exploiting these properties.
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The cubic nonlinear Schrödinger equation in two space dimensions

Monica Visan

(joint work with Rowan Killip and Terence Tao)

We consider the Cauchy problem for the cubic nonlinear Schrödinger equation
(NLS)

(1) iut + ∆u = ±|u|2u
in two space dimensions with L2

x initial data. When the nonlinearity appears with
the ‘+’ sign, we refer to it as defocusing, while the ‘−’ sign corresponds to the
focusing case.

The cubic nonlinearity is the most common nonlinearity in applications. It
arises as a simplified model for studying Bose–Einstein condensates [3, 4, 11],
Kerr media in nonlinear optics [6, 13], and even freak waves in the ocean [2, 5].

From a mathematical point of view, the cubic NLS in two dimensions is re-
markable for being mass-critical. The name is a testament to the fact that there
is a scaling symmetry

u(t, x) 7→ λu
(
λ2t, λx

)
, λ > 0

that leaves both the equation and the mass invariant. Mass is a term used in
physics to represent the square of the L2

x-norm:

M(u(t)) :=

∫

R2

|u(t, x)|2 dx.

For (1), this is a conserved quantity.
Our main result is to construct global strong L2

x(R
2) solutions to (1) for spher-

ically symmetric initial data. More precisely, we prove
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Theorem 1 ([9]). Let u0 ∈ L2
x(R

2) be spherically-symmetric; in the focusing case
assume also that M(u) < M(Q). Then there exists a unique global strong solution
u to (1). Moreover, ∫

R×R2

|u(t, x)|4 dx dt ≤ C(M(u))

and there exist u± ∈ L2
x(R

2) such that

‖u(t) − eit∆u±‖2 → 0 as t→ ±∞.

This result has recently been extended to treat the corresponding mass-critical
equations in all higher dimensions; see [10].

The ground state Q in the statement of Theorem 1 is the unique positive radial
Schwartz solution to the elliptic equation

∆Q+Q3 = Q.

Note that u(t, x) := eitQ(x) is a solution to (1) and hence Theorem 1 is sharp in
the focusing case in the sense that solutions with mass equal to that of the ground
state may have infinite L4

t,x-norm. In fact, the pseudoconformal symmetry, that
our equation enjoys, allows us to construct solutions with mass equal to that of
the ground state but which blow up in finite time, for example,

u(t, x) := |t|−1e−
i|x|2

4t + i
tQ(x/t),

which blows up at time t = 0.
The local theory for (1) was worked out by Cazenave and Weissler [1]. They

constructed local-in-time solutions for arbitrary initial data in L2
x(R

2); however,
due to the critical nature of the equation, the resulting time of existence depends
on the profile of the initial data and not merely on its L2

x-norm. Cazenave and
Weissler also constructed global solutions for small initial data.

To attack the question of global existence for large data, we follow the ap-
proach of Kenig and Merle [7]. More precisely, using a concentration-compactness
technique based on a linear profile decomposition of Keraani [8] (see also [14]), we
reduce matters to studying a very special class of solutions, that is, solutions which
are almost periodic modulo scaling (see the definition below) and which blow up
in both time directions in the sense of infinite L4

t,x-norm.

Definition 1 (Almost periodicity modulo scaling). A spherically-symmetric so-
lution u with lifespan I is said to be almost periodic modulo scaling if there exist
a function N : I → R+ and a function C : R+ → R+ such that∫

|x|≥C(η)/N(t)

|u(t, x)|2 dx ≤ η and

∫

|ξ|≥C(η)N(t)

|û(t, ξ)|2 dξ ≤ η

for all t ∈ I and η > 0. We refer to the function N as the frequency scale function
for the solution u and to C as the compactness modulus function.

Further analysis allows us to reduce the proof of Theorem 1 to precluding the
following three scenarios:
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• soliton-like solution, that is, a global solution such that N(t) = 1 for all t ∈ R;
• double low-to-high frequency cascade, that is, a global solution such that

sup
t∈R

N(t) <∞ and lim inf
t→−∞

N(t) = lim inf
t→+∞

N(t) = 0;

• self-similar solution, that is, a solution defined on (0,∞) such that N(t) = t−1/2

for all t > 0.
In all three scenarios, the key step is to prove that u has additional regularity,

indeed, more than one derivative in L2
x. At first glance, additional regularity

may seem unreasonable since u is a priori only known to have finite mass and
dispersive equations such as (1) do not exhibit global smoothing properties. As
such, additional regularity should be viewed as an expression of the fact that in
each of the three scenarios, the solution u is a minimal-mass blowup solution.

Additional regularity for the self-similar solution is proved by iterating various
versions of the Strichartz inequality (including a recent refinement of that inequal-
ity in the spherically symmetric case due to Shao [12]) and taking full advantage
of the self-similarity to control the motion of mass between frequencies. The ex-
istence of the self-similar solution is disproved by noting that H1

x solutions are
global (see [16] for this result in the focusing case), while the self-similar solution
is obviously not.

Higher regularity in the remaining two cases is obtained by exploiting the global
existence together with the almost periodicity modulo scaling and the Duhamel
formula both in the past and in the future. If done naively, neither of these
Duhamel integrals are absolutely convergent. However, using the decomposition
into incoming waves (which we propagate backwards in time) and outgoing waves
(which we propagate forward in time), we can successfully exploit the radial sym-
metry of the solution. In this way, we obtain convergent integrals and regularity is
then obtained by a simple iteration argument. To preclude the double high-to-low
frequency cascade we use the additional regularity together with the conservation
of energy, while in order to disprove the existence of soliton-like solutions we use
a truncated version of the virial identity.
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Mathematical results related to dispersion management in nonlinear

optical fibers

Markus Kunze

1. Introduction

Traditionally the transmission of optical pulses in nonlinear fiber optics was inti-
mately connected to the classical soliton solution of the NLS equation that arises
as a ground state of the equation, after averaging out the rapid oscillations of the
power. This standard optical soliton decays like ∼ e−|x| and preserves its shape
during propagation by compensating the constant dispersion in the fiber through
the nonlinearity. Starting at about 1995, however the concept of dispersion-
managed optical solitons (DM solitons) was introduced. The basic set-up for these
devices consists in two optical fibers of opposite dispersions that are concatenated
into a line. Furthermore, a periodic chain of amplifiers is used to compensate for
the fiber losses. It turned out that in real-world applications DM solitons could
be used for highly efficient data transmission, in particular leading to an excellent
performance in systems that are designed with a large variation of the dispersions
in two adjacent pieces of the line, along with a low average.

To motivate the equation that will be of interest to us in this short survey,
consider an optical fiber extended in the z-direction of R3. It is assumed that
the fiber has a constant circular cross-section in the transversal x, y-directions. A
z-segment of length L+ and dispersion β+ > 0 is followed by a segment of length
L− and dispersion β− < 0. Then the piece [0, L+] ∪ [L+, L+ + L−] is periodically
repeated along the z-axis. In order to make some simplifying assumptions it is
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supposed that the fiber is unimodal and supports a monochromatic wave. Denoting
ω1 a fixed frequency and k1 the associated wave number, the ansatz E(x, y, z, t) =
κA(z, t)Φ(x, y)ei(k1z−ω1t) is made for the electromagnetic field E. Here Φ is a
(transversal) eigenfunction. To lowest order in κ the equation

iAz + β2(z)Att + iβ3(z)Attt + |A|2A = 0

formally arises [10] from the Maxwell equation for E, where β2(z) = β+ in [0, L+]
and β2(z) = β− in ]L+, L+ + L−[, and also a non-constant third order dispersion
function β3(z) has been included. Due to the periodic change of the dispersion and
the periodic amplification, the system will exhibit rapid oscillations of the pulse
width and power. This fast dynamics is averaged out by replacing βj(z) with
ε−1βj(ε

−1z) and performing a formal averaging over ε on one segment. Renaming
z → t, t → x, A→ u, the resulting propagation equation for the slow dynamics is
found to be

(1) iut + β2uxx + iβ3uxxx + 〈Q〉(u) = 0,

where 〈Q〉(u) =
∫ 1

0 T (−t)(|T (t)u|2T (t)u) dt is the averaged nonlinearity for the
function u(t, x) = (T (t)u)(x) solving iut+β2uxx+iβ3uxxx = 0 and T (0)u = u. The
constants βj ≥ 0 denote the residual dispersions; for instance, β2 = L+β+ +L−β−

for β2(z) as described above.

2. Summary of Results

First we consider the case where β3 = 0. In [18] it was shown that the averaging
outlined above is mathematically justified. Hence it is reasonable to look for
ground state solutions, i.e., minimizers of the functional H(u) = α

∫
R
|ux|2 dx −∫ 1

0

∫
R
|T (t)|4 dx dt under the constraint

∫
R
|u|2 dx = 1. Note that a minimizer u∗

leads to the periodic solution u(t, x) = eiωtu∗(x) of (1) for some ω, and hence
to a nearly stable pulse for the non-averaged equation. If α > 0, then H has a
minimizer; see [21, 4]. The regularity of such minimizers and further properties
are investigated in [19]. If α = 0, then H still has a minimizer [7], and such
minimizers also arise as the singular limit α → 0+ of minimizers uα for α >
0 [6]. From a technical viewpoint, the difficulty of such a result is due to the
invariances of the functional, and furthermore it is owed to the fact that there a
no bounds on minimal sequences (uj)j∈N

in spaces different from L2(R). In [7]

a new and general method was devised that relies on applying the concentration
compactness principle to both unit-mass sequences (uj)j∈N

and (ûj)j∈N
(‘two-

level concentration compactness’). The paper [16] reproved the existence of a
minimizer u∗ with different methods (using Xs,b-spaces) that also allowed to show
that u∗ ∈ C∞(R)∩L2(R) is smooth. For x ∈ R2, there is no minimizer, and there
is also no minimizer for x ∈ R, if |T (t)|4 is replaced by |T (t)|6 in H ; see [16].

Closely related to H at α = 0 is the functional Hs(u) = −
∫

R

∫
R
|T (t)|6 dx dt.

Refining the method from [7], it was proved in [8] that the constraint variational
problem for Hs admits a minimum, i.e., the best constant S > 0 in the Strichartz
inequality ‖u‖L6

tx(R×R) ≤ S‖u0‖L2(R) is attained. In [1], this result was reproved
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by a more elementary method that relies on interpreting the space-time Fourier

transform ũ3(τ, ξ) in a clever way as a (τ, ξ)-dependent inner product and the
Strichartz estimate as an application of the Cauchy-Schwarz inequality to this
inner product. In particular, as the cases of equality in the Cauchy-Schwarz in-
equality are known, the best constant could be evaluated to be S = 12−1/12 with

corresponding minimizer u∗(x) = e−|x|2 (and all orbits thereof under the symme-
try groups). In two dimensions, x ∈ R2, and |T (t)|6 in Hs replaced by |T (t)|4, the
best constant is 2−1/2 and obtained from the same minimizer. Furthermore, [1]
contains similar results for some Strichartz inequalities for wave equations. Yet
by another method, without making use of the Fourier transform at all, similar
results are obtained in [2].

For the case β3 > 0 in (1), i.e., higher-order dispersion, the existence of a
minimizer is due to [11, 12] in the case of non-zero average dispersion. For zero
average dispersion see [9], where also certain dispersion relations of order higher
than three could be included; once again, this paper relies on the method of two-
level concentration compactness.

Further references related to the subject of dispersion management include [3,
5, 14, 15, 20, 22, 23].

Quite recently, also so-called diffraction-managed optical fibers attracted some
interest [13, 17]. Mathematically, here the continuous problem for x ∈ R has to
be replaced by a discrete version.
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Loss of regularity for super-critical nonlinear Schrödinger equations

Rémi Carles

(joint work with Thomas Alazard)

We consider the nonlinear Schrödinger equation with defocusing, smooth, nonlin-
earity:

i∂tψ +
1

2
∆ψ = |ψ|2σψ, σ ∈ N, x ∈ R

n.

The critical index given by scaling arguments is

sc =
n

2
− 1

σ
.

We assume sc > 0 (the nonlinearity is L2 super-critical). If ψ|t=0 ∈ Hs with
0 < s < sc, it is known that the Cauchy problem is ill-posed in Hs [5]. We show
that this is even worse: there is a loss of regularity (in any space dimension).
A consequence of this result is easy to state for energy super-critical problems:
assume n > 3 and σ > 2/(n−2). We can find a sequence of initial data (ϕλ)0<λ61

in the Schwartz class, and a sequence of time tλ → 0, such that the mass and the
nonlinear energy of ϕλ go to zero as λ→ 0, and

∥∥ψλ
(
tλ

)∥∥
Hs → +∞ as λ→ 0, ∀s > 1,

where ψλ is the solution to the nonlinear Schrödinger equation with data ϕλ.
Since for strong solutions, the energy is conserved, and for weak solutions, it is at
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most the initial energy, this result is sharp. This result is in the same spirit of the
pioneering work of G. Lebeau [6] for the wave equation. However, it seems that the
method of G. Lebeau does not work so nicely in the case of Schrödinger equation;
our proof follows a different approach, which is inspired by WKB analysis and fluid
mechanics. This both simplifies and generalizes the proof in [4], which treated only
the case σ = 1.

The proof proceeds in three steps. First, we reduce the problem to the study
of the nonlinear Schrödinger equation in a high frequency régime:

iε∂tu
ε +

ε2

2
∆uε = |uε|2σ uε ; uε(0, x) = a0(x),

where a0 is any non-trivial function in the Schwartz class, independent of the
semi-classical parameter ε. The main result then follows from the fact that for t
of order 1 (as ε → 0), uε is exactly ε-oscillatory. The rest of the analysis consists
in establishing this fact.

Second, we consider the expected limiting system: seeking uε ≈ aeiφ/ε, let

(1)





∂tφ+
1

2
|∇φ|2 + |a|2σ = 0 ; φ|t=0 = 0.

∂ta+ ∇φ · ∇a+
1

2
a∆φ = 0 ; a|t=0 = a0.

In terms of (∇φ, |a|2), it is a compressible, isentropic Euler equation. Because of
the possible presence of vacuum, this problem is not directly hyperbolic. Using
an intermediate nonlinear change of unknown function due to T. Makino, S. Ukai
and S. Kawashima [7], we show that this system is well-posed in Sobolev space,
with a loss of at most one derivative.

The last step consists in proving a mild convergence of uε to the Euler type
system, using a modulated energy functional à la Y. Brenier [3]. By mild conver-
gence, we mean that we do not need to describe the asymptotic of uε in L2 (for
instance). Essentially, we need to know the behavior of |uε| and |∇uε| only:

‖(ε∇− i∇φ)uε‖2
L∞([0,T ];L2) +

∥∥∥
(
|uε|2 − |a|2

)2 (
|uε|2σ−2 + |a|2σ−2

)∥∥∥
L∞([0,T ];L1)

= O(ε2).

Using Hölder’s inequality, we give a rigorous meaning to the approximations:

‖ε∇uε(t)‖L2 ≈ ‖uε(t)∇φ(t)‖L2 ≈ ‖a(t)∇φ(t)‖L2 .

Using small time properties of the solution to (1), we see that there exists τ > 0
independent of ε such that the last term is positive at time t = τ . This shows that
uε has become ε-oscillatory at time τ , hence the result.

Note that the study of (1) does not suffice to infer the limiting behavior of the
wave function itself, due to more subtle modulation phenomena:

∥∥∥uε(t) − a(t)eiφ
(1)(t)eiφ(t)/ε

∥∥∥
L2

→ 0 as ε→ 0, for t = O(1),
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where φ(1)(t, x) = O(t) is L∞, and is non-trivial in general. Also, it is not possible
to prove the above mentioned convergence by applying the Gronwall lemma for
Schrödinger equations. In view of this aspect, the proof proposed to show the loss
of regularity phenomenon is rather cheap: we establish the minimal information
needed to conclude (we do not need to consider φ(1)). See [1] for the proof. Note
also that this proof allows to consider weak solutions of the nonlinear Schrödinger
equation, even if we have proved in a subsequent work [2] that, at least when n 6 3,
the solution uε remains a strong solution on the time interval that we consider.
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On global well-posedness for defocusing L
2-critical NLS in 1D

Nataša Pavlović

(joint work with Daniela De Silva, Gigliola Staffilani, Nikolaos Tzirakis)

1. Introduction

In the talk we presented our recent result [13] on global well posedness for the
following Cauchy problem for a defocusing nonlinear Schrödinger (NLS) equation:

iut + ∆u = |u|p−1u,(1)

u(x, 0) = u0(x) ∈ Hs(Rn), t ∈ R,(2)

with p = 5 and n = 1.
Some of the important attributes of the NLS such as conserved or monotone

quantities are at low regularities, and to utilize them one needs to establish exis-
tence theory at low regularities. Before we summarize local well-posedness results
for (1)-(2), a scaling property of (1) is recalled. Precisely, if u(x, t) solves (1) then

uλ(x, t) = λ−
2

p−1 u(xλ ,
t
λ2 ) is a solution of (1) too and

‖uλ(x, 0)‖Ḣsc = ‖u(x, 0)‖Ḣsc ,
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where sc denotes the scaling invariant Sobolev regularity sc = − 2
p−1 + n

2 . The

Ḣsc scaling invariance inspires the heuristic that one should expect to have local
well-posedness in Hs with s ≥ sc. Indeed, Cazenave and Weissler [3] proved that
(1)-(2) is locally well-posed in Hs(Rn) for s > sc. A more general version of local
well-posedness, in the sense that the time of existence depends on the profile of
u0, is obtained for Hsc initial data [20, 4].

The problem (1)-(2) with p = 4
n + 1 is referred to as the L2-critical, since in

that case sc = 0. Although the question addressing local well-posedness for the
L2-critical NLS is settled there are many issues to be addressed among which is
global well-posedness. In order to recall known global well-posedness result we
first look at the following conservation laws of (1):

• Mass conservation: ‖u(t)‖L2 = ‖u0‖L2 .
• Energy conservation: E(u)(t) = 1

2

∫
|∇xu(x, t)|2dx+ 1

p+1

∫
|u(x, t)|p+1dx =

E(u0).

In the case of the L2-critical problem the energy conservation combined with the
local well-posedness of the problem in Hs(Rn) with s ≥ 0 implies that the local
in time solution can be extended to a global solution for initial data in Hs(Rn)
with s ≥ 1. It is conjectured that the problem is globally well-posed in time for all
data for which the local theory is valid. We note that global well-posedness and
scattering for the L2-critical problem in L2(Rn) has been proved recently [19, 18]
in all dimensions n ≥ 2 for spherically symmetric data. As in the case of energy
critical problem [2, 11, 22, 17], the proof relies upon a combination of several
sophisticated tools. It remains a subtle problem to establish global existence of
solutions to L2-critical NLS corresponding to arbitrary infinite energy initial data.

Below we describe how we combine the I-method with a Morawetz type estimate
to improve global well-posedness for (1)-(2) with p = 5 and n = 1.

2. Global existence for the NLS on R

The following Cauchy problem is considered:

iut + ∆u = |u|4u,(3)

u(x, 0) = u0(x) ∈ Hs(R), t ∈ R,(4)

As a special case of the initial value problem (1)-(2), it is known that (3)-(4)
is locally well-posed in Hs(R) with s ≥ sc = 0. Existence of global solutions to
(3)-(4) corresponding to initial data below the energy threshold was first obtained
in [7], [8] using the I-method. The gap between known local and global well-
posedness was further filled out in [21], where global well-posedness was obtained
in Hs(R) with s > 4/9.
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In [13] we proved the following result:

Theorem 2.1. The initial value problem (3)-(4) is globally well-posed in Hs(R),
for any 1 > s > 1

3 . Moreover the solution satisfies

(5) sup
t∈[0,T ]

‖u(·, t)‖Hs(R) ≤ C(1 + T )
s(1−s)
2(3s−1)

where the constant C depends only on s and ‖u0‖L2 .

We prove Theorem 2.1 by combining the I-method with an interaction Morawetz
type estimate for the smoothed out version Iu of the solution. Such a Morawetz
estimate for an almost solution, that we call “almost Morawetz”, is the main nov-
elty of our approach. We remark that recently a similar approach has been used
in the L2-critical case in 2D [5].

Before we outline the main steps of the proof, we say a few words about the
above mentioned tools: the I method and the “almost Marawetz estimate”. An
important contribution in understanding evolution of rough initial data was ob-
tained by introduction of the I method, that can be thought of as a refinement
of Bourgain’s Fourier truncation method [1]. The first steps towards the formal-
ization of the I-method appear in the context of nonlinear wave maps, see Keel
and Tao [15], [16]. In its more sophisticated and current version the I-method
was first introduced by Colliander et al (see, for example, [7, 8, 9]). The idea is
to control the behavior in time of a rough solution by controlling the energy of a
smoothed out solution. More precisely, one replaces the conserved quantity E(u),
which is no longer available for s < 1, with an “almost conserved” variant E(Iu)
where I is a smoothing operator of order 1−s. However Iu is not a solution to (1)
and hence we expect an energy increment. This increment is quantifying E(Iu) as
an “almost conserved” energy. The approach of combining the I-method with an
interaction Morawetz estimate goes back to [10] where authors derived and used
a two-particle Morawetz estimate to improve global well-posedness of (1)-(2) with
p = 3 in Hs(R3). Fang and Grillakis [14] obtained a local in time interaction
Morawetz estimate in R2 and combined it with I-method to improve global well-
posedness for (1)-(2) with p = 3 in Hs(R2). A similar approach based on a local
in time interaction Morawetz estimate yielded progress in global well-posedness
for the L2-critical problem in higher dimensions [12]. However until recent work
[6] there was no available interaction Morawetz inequality in 1D. The authors in
[6] found an elegant way to overcome a dimensional obstacle and obtained the
following four-particle interaction Morawetz estimate in 1D:

(6) ‖u‖8
L8

t∈[0,T ]
L8

x
. sup
t∈[0,T ]

‖u‖2
Ḣ1/2‖u‖6

L2.

We remark that for initial data below H1/2 the estimate (6) is not useful any-
more. In order to overcome that difficulty we introduced an interaction Morawetz
estimate for the smoothed out solution that we call “almost Morawetz” estimate,
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which is an a priori estimate of the form

‖Iu‖8
L8

t∈[0,T ]
L8

x
. sup

t∈[0,T ]

‖Iu‖Ḣ1‖Iu‖7
L2 + Error.

Using harmonic analysis estimates of Coifmann and Meyer type we show that the
the Error terms are negligible in some sense.

In order to prove the global well-posedness result stated in Theorem 2.1 we
combine the above mentioned tools via the following steps (for details, see [13]):
Step 1: Establish local well-posedness for the I system.

Step 2: Prove almost conservation of the modified energy.

Step 3: Obtain Global well-posedness. Here the main idea is to interpolate
the information on Iu coming from the almost Morawetz estimate with apriori
bounds on Iu that are based on conservation of energy, with a goal to obtain the
information about Iu in the Strichartz space L6

tL
6
x which controls the local well-

posedness. Then one glues the intervals of local well-posedness to obtain a global
solution taking advantage of the I-method and rescaling.

We believe that this new “almost Morawetz” estimate (which shall be modified
to suit the new nonlinear term) can be used together with I-method to improve
global well-posedness for (1)-(2) with monomial nonlinearities in 1D.
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Blow up for critical nonlinear wave equations

Wilhelm Schlag

We will discuss blow-up for nonlinear hyperbolic equations of the critical type.
More precisely, we study the energy critical wave map equation from 2 + 1 dimen-
sions into S2 as well as the quintic semilinear focusing equation in 3+1 dimensions.
Blow up solutions are constructed through a rescaling procedure starting from spe-
cial stationary solutions. In the wave map case, these are ground state harmonic
maps, and in the semilinear case they are the Talenti-Aubin solutions. In both
cases, the rescaling is prescribed, in contrast to the modulational approach in
which solutions are constructed via a process that finds an appropriate ODE for
the scaling law.

Solutions to the generalizwed Korteweg-de Vries equations with a

prescribed asymptotic behavior

Raphaël Côte

Given p > 1, we consider the generalized Korteweg-de Vries equations

(gKdV)

{
ut + (uxx + |u|p)x = 0, t, x ∈ R,
u(t = 0) = u0,

From [4], these equations are locally well-posed in H1, and even in L2 in L2 critical
case p = 5 (which we denote (cKdV)). A fundamental feature of (gKdV) is the
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existence of explicit travelling wave solutions : the solitons. Let Q be the unique
profile (up to translation) to

Q > 0, Q ∈ H1(R), and Qxx +Qp = Q.

Then the soliton Rc,x0 = Qc(x−x0 − ct) = c
1

p−1Q(
√
c(x−x0 − ct)) is a solution to

(gKdV). Notice that solitons are exponentially decaying and travel to the right.
Denote U(t) the linear group, that is U(t)φ is the unique solution to ut+uxxx =

0, u(t = 0) = φ, or explicitly Û(t)φ = eitξ
3

φ̂.
We construct solutions to (gKdV), defined for large enough times, which, as

times goes to +∞, behave (in H1) as the sum of a linear solution and of N
solitons.

Theorem 1 (Non-linear wave operator, subcritical case [1]). Let p = 4. Let

V ∈ H5,1 ∩ H2,2 be such that x
4/3
+ D5

xV ∈ L2 and x8
+V ∈ H1. Let N ∈ N,

0 < c1 < . . . < cN and x1, . . . , xN ∈ R, we introduce the N solitons Rj(t, x) =
Qcj(x − xj − cjt). Then there exists u∗ ∈ C([T0,+∞[, H4), for some T0 ∈ R,
solution to (gKdV) (with p = 4), such that :

∥∥∥∥u
∗(t) − U(t)V −

N∑

j=1

Rj(t)

∥∥∥∥
H4

≤ Ct−1/3.

Theorem 2 (Non-linear wave operator, critical case [2]). Let p = 5. Let V ∈ H1

be such that x2+δ0
+ V ∈ L2 for some δ0 > 0. Let N ∈ N, 0 < c1 < . . . < cN and

x1, . . . , xN ∈ R, we introduce the N solitons Rj(t, x) = Qcj(x − xj − cjt). Then

there exists u∗ ∈ C([T0,+∞[, H1), for some T0 ∈ R, solution to (cKdV), such
that :

∥∥∥∥u
∗(t) − U(t)V −

N∑

j=1

Rj(t)

∥∥∥∥
H1

→ 0 as t→ ∞.

The decay on the right condition on V corresponds to small interaction of the
linear term U(t)V with the solitons. In the critical case, the requirements seem
almost optimal for the method.

The proof of these results follows the following scheme. We introduce a sequence
of time Sn → ∞ as n→ ∞, and the solutions un, which have exactly the desired

profile at time Sn : un(Sn) = U(Sn)V +
∑N
j=1 Rj(Sn). Our goal is to obtain

uniform estimates on the error term un(t)−U(t)V +
∑N

j=1 Rj(t) on some interval

with fixed lower bound [T0, Sn].
The proof of the uniform estimates goes in two main steps. First, we rely on

the work of Martel, Merle and Tsai [5] regarding the stability of a sum of solitons,
and we obtain a control on the right. Introduce the cut-off function between the
solitons and the linear term : ψ(x) = 1 − 2

π arctan(expx) and

ψ0(t, x) = ψ(x− σ0t), where σ0 = min{c1, c2 − c1, . . . , cN − cN1}/2.
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Then we have

(1) ‖wn(t)‖L2(1−ψ0(t)) ≤
∫ Sn

t

‖U(t)V ‖L2(1−ψ0(t)dt+ ...

The term on the right hand side should be understood as interaction between
the linear term and the solitons. Using our decay assumptions on V , we get a
polynomial decay with arbitrary order.

The second step is to obtain global estimates. For this, we relie on two result
of linear scattering for small data : the work Hayashi and Naumkin [3] in the case
p = 4, and the work of Kenig Ponce and Vega [4] in the critical case p = 5.

In the critical case, the linear estimates of [4], along with (1) allows to conclude
that for some fixed function η(t) → 0 as t→ ∞,

‖wn(t)‖L2 ≤ η(t),

which is the desired uniform decay estimates.
In the case p = 4, the solitons prevent a nice cancellation which was at the heart

of the estimates in [3]. Hence we need to strenghten the settings : we derived H4

uniform decay bounds, using “almost conservation” laws. We can then bootstrap
the estimates, and obtain :

‖wn(t)‖H4 ≤ C/t1/3.

The proof of the Theorems then follows form a compactness argument on un.
The uniqueness of u∗(t) is unclear, although one has uniqueness in the cases

of a pure solitons behavior (see [6]) or pure linear behavior. A second question is
the restriction to p = 4 : from [3], one could expect a cosntruction of a non linear
wave operator in the whole range p ∈ (3, 5).
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Strichartz estimates for the Schrödinger equation with time

dependent magnetic potentials and applications

Atanas Stefanov

This talk is based on the series of works [6], [7] and [13], which were motivated by
concrete systems of PDE’s arising in mathematical physics. More precisely, the
concern is to address the well-posedness and scattering properties of the Modified
Schrödinger map (MSM) system and the Maxwell-Schrödinger system.

The MSM system is roughly in the form

(1) ∂tu− i∆u+A(u) · ∇u = N(u) (t, x) ∈ R1+n,

where A ∼ |∇|−1Q(u, ū), N(u) behaves like a power nonlinearity, so that N(u) =
O(u3). The local well-posedness and the global regularity issues for the original
Schrödinger map problem has been largely settled1 in [1], [2], [3], [8], [9].

The other basic example is the Maxwell-Schrödinger system, which in Coulomb
gauge is represented by

(2)

∣∣∣∣
i∂tψ + ∆Aψ = (−∆)−1(|ψ|2)ψ, (t, x) ∈ R1+3

�A = PIm(ψ̄∇Aψ)

where the magnetic Laplacian ∆A =
∑n

j=1(∂j − iAj(t, ·))2 and P is the Leray

projection. The problem for well-posedness has been considered in [11], [12],
and in[7], with the last paper establishing existence and uniqueness for (ψ,A) ∈
H7/8+ × H1+. A recent work [4] establishes local well-posedness for data in the
energy space (ψ,A) ∈ H1 ×H1.

As one sees, both of these PDE’s exhibit a Schrödinger equation with first order
perturbation structure. This prompts the natural question: under what conditions
on A(t, x), the “magnetic” Schrödinger equation with time dependent potential

(3) ut − i∆u+A(t, x) · ∇u = 0,

one has Strichartz estimates for u? A lot of important results have been achieved
in that direction.

• (Georgiev-Stefanov-Tarulli, [6]) Let d ≥ 3 and

‖∇A‖L∞Ld/2 + sup
k

∑

m

2m‖A<k‖L∞
tx(|x|∼2m) ≤ ε << 1.

Then Strichartz estimates hold in the form ‖u‖Lq
tL

r(Rd ≤ C‖u(0)‖L2,

where q, r ≥ 2 : 2/q + d/r = d/2.
• (Erdogan-Goldberg-Schlag, [5]) Let d ≥ 3, A = A(x). Assume2

< x >1+ |A(x)|+ < x >2+ |∇A(x)| ≤ C.

and 0 is not a resonance nor eigenvalue. Then Strichartz estimates hold
true.

1With the notable exception of the global regularity for small data in dimensions n = 2 and
the case of small initial data in the critical Sobolev class Ḣ3/2(R3).

2Note that smallness is not required here.
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• (Tataru, [14]; Marzuola-Metcalf-Tataru, [10]) Let d ≥ 3. If3

∑

m

2m‖A‖L∞
tx(|x|∼2m) ≤ ε << 1.

then Strichartz estimates hold true.

The common pitfall of all these results for the applications is that they require
essentially a pointwise bound in the form “|A(t, x)| ≤ ε|x|−1−”, which is usually
unavalaible for the concrete magnetic potentials arising in the nonlinear problems,
such as (MSM) or (MS).

As an attempt to remedy this problem, we refer to [13]4. Scale invariant con-
ditions of Lp type are found under which the Strichartz estimates hold true. Just
to give a flavor of these, it is required among other things that

∑

k

2k(d+3)/2 sup
U∈SU(d)

sup
x

‖Ak(t, x+ Uz)‖L1
tL

2
z2,...,zd

L1
z1

+

+2k(d−1)/2 sup
U∈SU(d),x(t)

‖(|∂2Ak| + |∂tAk|)(t, x(t) + Uz)‖L1
tL

2
z2,...,zd

L1
z1

) << 1.

Note that the conditions are reminiscent of the well-known Mizohata necessary
condition for well-posedness of (3) supt,x,θ∈Sn−1 Im

∫
A(t, x + zθ) · θdz| <∞.

One of the main results in [13] is that one can actually solve the (MSM) with
small Cauchy data in high dimensions d ≥ 6. The dimensional restrictions come as
a consequence of the L1

t requirements on the magnetic potentials displayed above.
Next, we give an outline of the parametrix construction in [13]. It is standard

that one needs v, so that v : ‖v(0, x)−fk‖L2 ≤ ε‖fk‖L2 , ‖v‖Lq
tL

r
x
≤ C‖fk‖L2 , ‖vt−

i∆v +A<k∇v‖L1L2 ≤ ε‖fk‖L2. Modulo some minor correction terms, we choose

(4) v(t, x) =

∫
eiσ(t,x,ξ/|ξ|)e−4π2t|ξ|2e2πi〈ξ,x〉f̂(ξ)dξ

where (modulo a technical correction term)

σ(t, x, ξ/|ξ|) =

∫ ∞

0

〈A<k(t, x+ zξ/|ξ|), ξ/|ξ|〉dz.

We then employ the following decomposition in Fourier space: for fixed l < k,
consider the sets Z lj := {ξ : |ξ/|ξ| − θlj | < 2l−k}, j = 1, . . . , 2(k−l)(d−1). Then
observe that

σ ∼
∑

l<k

∑

j

∫ ∞

0

〈Al(t, x+ zθlj), θ
l
j〉dz.

It is important to note that the Fourier support properties of v hold relatively
nicely under eσ = 1 + σ + . . .+ σn/n! + . . ..

3This is just a particular case of much more general theorem. Also in the same theorem, the
smallness assumption may be removed if one is willing to place an extra ‖u‖L2

t L2
x(|x|<M) for

some M >> 1 of the right hand side of the Strichartz estimates.
4The approaches in [1], [2], [3], [8], [9] are somewhat similar. The main difference is that the

specific structure of the Schrödinger maps plays a major role, while the approach of [13] is to
work with general A.
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After some computations, one can see that v(0, x) = f + O(A) and by a
combination of energy and dispersive estimates, one shows ‖v‖Lq

tL
r
x
≤ C‖fk‖L2 .

This is all done under smallness, but no temporal decay requirements for A.
Finally, to establish vt − i∆v + A<k∇v ∈ L1L2 requires placing A in L1

t (X)
spaces as indicated above. One could of course imagine placing the error term

vt− i∆v+A<k∇v ∈ L2
tL

2d/(d+2)
x (or a combination of other dual Strichartz space

or even X0,−1/2,∞) in order to weaken the temporal requirements of A, but the
techniques of [13] at this point rely too strongly on L2

x based methods. In any
case, it is hoped that the parametrix construction (4) will lend itself usefull in any
further attempts at lowering the temporal decay requirements on the magnetic
potential A and the subsequent applications to the nonlinear problems at hand.
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On low regularity local well-posedness of the Derivative Nonlinear

Schrödinger Equation with periodic initial data

Axel Grünrock

(joint work with Sebastian Herr)

This is an account on joint work with S. Herr, see [GH07].
The Cauchy problem for the derivative nonlinear Schrödinger equation with

periodic initial value

i∂tu(t) + ∂2
xu(t) = i∂x(|u|2u)(t) , t ∈ (−T, T )

u(0, x) = u0(x) , x ∈ T
(1)

is considered for data u0 in the function spaces Ĥs
r (T), defined by the norms

‖u0‖Ĥs
r (T) = ‖〈ξ〉sû0‖ℓr′ξ

,
1

r
+

1

r′
= 1.

Local well-posedness of (1) is shown in the parameter range

s ≥ 1

2
, 2 ≥ r >

4

3
,

thus we obtain a generalisation of Herr’s H
1
2 (T) - result [H06]. For related results

concerning the nonperiodic case see [G05].
Important elements of the proof are:

• an adaption of the gauge transform (GT) to the periodic setting,
• essential cancellations caused by certain correction terms, which arise nat-

urally from this variant of the GT,
• new function spaces of Xs,b-type, which are based on mixed Lp-spaces on

Fourier side, and, finally,
• elementary geometrical refinements of the number of divisors argument,

which serve as a substitute for the L6 Strichartz type estimate.

Concerning the second parameter r, we must leave open the question, whether
or not there is local well-posedness for r ≤ 4

3 . Nonetheless we present a counterex-
ample showing that our result is optimal within the framework we use here.
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Bilinear virial identities

Fabrice Planchon

(joint work with Luis Vega)

We present bilinear virial identities for the nonlinear Schrödinger equation, which
are extensions of the Morawetz interaction inequalities ([5]). We recover and ex-
tend known bilinear improvements to Strichartz inequalities and give applications
to various nonlinear problems, most notably on domains with boundaries.

Let n ≥ 1, p ∈ R, p ≥ 1, ε ∈ {−1, 1}, and u, v solutions to

(1) i∂tu+ ∆u = ε|u|p−1u and i∂tv + ∆v = ε|v|p−1v.

We introduce several quantities which will play a key role: given a function f , its
Radon transform is

(2) R(f)(s, ω) =

∫

x·ω=s

f dµs,ω,

where µs,ω is the induced measure on the hyperplane x · ω = s. We set

(3) Iω(ε, u, v) =

∫

x·ω>y·ω
(x · ω − y · ω)|u|2(x)|v|2(y) dxdy,

A simple computation leads to

(4) İω(ε, u, v) = ∂tIω(ε, u, v)

= i

(∫

x·ω>y·ω
(u∇xū− ū∇xu)(x)|v(y)|2 − (v∇y v̄ − v̄∇yv)(y)|u(x)|2 dy dx

)
.

We may now state our first result.

Theorem 1. Let ω ∈ Sn−1, u solution to (1). Let x = (x⊥, xω) with xω = x · ω.
Then

(5)

∫

s

|∂s(R(|u|2))(s, ω)|2 ds+ ε
p− 1

p+ 1

∫

s

R(|u|2)R(|u|p+1) ds

+

∫

s

∫

x·ω=s

|u(x⊥, xω)∂xωu(y
⊥, xω) − u(y⊥, xω)∂xωu(x

⊥, xω)|2 dx⊥dy⊥dxωds

=
1

4
∂tİω(ε, u, u) =

1

4
∂2
t Iω(ε, u, u).

In other words, Iω(ε, u, u) is a convex function in time.

In the specific 1D case, one has actually the following bilinear identity.

Theorem 2. Let n = 1, u, v two solutions to (1), then

(6) 4

∫

x

(∂x(uv̄))
2 dx+ 2ε(1 − 2

p+ 1
)

∫

x

|u|2|v|p+1 + |v|2|u|p+1 dx = ∂2
t I(ǫ, u, v).

In order to turn these bounds into useful nonlinear control, we use
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Proposition 1. Let ω be fixed, then

(7) |Iω| ≤ ‖u‖2
L2

x
‖v‖2

Ḣ
1
2

+ ‖v‖2
L2

x
‖u‖2

Ḣ
1
2
.

From Theorem 1 and Proposition 1, one may deduce the following bound (which
we learned at Oberwolfach has been obtained simultaneously and independently
by J. Colliander, M. Grillakis and N. Tzirakis, [3]).

Proposition 2. Let u be a solution to (1), with ε = 0, 1. Then

(8)

∫ T

0

‖∇x|
3−n

2 (|u|2)‖2
L2

x
dt . ‖u‖2

L2
x
‖u‖2

Ḣ
1
2
.

This follows readily from averaging the previous bounds on ω.
Theorem 1 may be used in a different direction, recovering a known bound for

the linear equation (see [1]).

Proposition 3. Let u and v be two solutions to (1), with ε = 0 and data u0, v0.
Assume moreover that supp û(ξ) ⊂ {|ξ| ≤ 2k} and supp v̂(ξ − ξ0) ⊂ {|ξ| ≤ 2k},
with |ξ0| ∼ 2j and k << j (hence, the Fourier supports are separated and at
distance roughly 2j). Then

(9) ‖uv̄‖2
L2

t,x
. 2(n−1)k−j‖u0‖L2

x
‖v0‖L2

x
.

Now, let Ω ⊂ Rn be a domain with a smooth boundary ∂Ω, and u the solution
to

(10) i∂tu+ ∆u = ε|u|p−1u, with u|∂Ω = 0.

Define

(11) R(f)(s, ω) =

∫

x·ω=s∩Ω

f dµs,ω.

and

(12) Iρ =

∫

x,y∈Ω

ρ(x− y)|u|2(x)|u|2(y) dxdy.

We may now state our result.

Theorem 3. Let ω ∈ Sn, ρω(z) = |z · ω|, and u solution to (10). Then

(13)

∫

s

|∂s(R(|u|2))(s, ω)|2 ds+ ε
p− 1

p+ 1

∫

s

R(|u|2)R(|u|p+1) ds

+

∫

s

∫

x·ω=s

|u(x⊥, xω)∂xωu(y
⊥, xω) − u(y⊥, xω)∂xωu(x

⊥, xω)|2 dx⊥dy⊥dxωds

−
∫

x∈∂Ω,y∈Ω

|u|2(y)∂nρω(x − y)|∂nu|2(x) dSxdy = ∂2
t Iρω .

We now illustrate how to obtain useful estimates from Theorem 3 when one has
control of the boundary term.
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Proposition 4. Let Ω be Rn \ Σ, where Σ is star-shaped. Assume moreover
ε = 0, 1 (linear or defocusing). Then

(14)

∫ T

0

∫

x∈∂Ω

|∂nu|2 dSx . sup
t∈[0,T ]

‖u‖2

Ḣ
1
2
0 (Ω)

.

Note that, more generally, for the linear equation, the result of Proposition
4 holds for unbounded domains, assuming one does not have any trapped rays.
In fact, for such domains, the local smoothing estimate holds ([2]), and a simple
integration by part argument (with a normal vector field, close to the boundary)
yields control of the boundary term. As such, one obtains

Theorem 4. Let ω ∈ Rn be an unbounded domain with no trapped rays, u solution
to the linear equation (10) (ε = 0). Then

(15) ‖|∇x|
3−n

2 (|u|2)‖L2
t,x

. ‖u0‖2
L2(Ω) sup

t∈[0,T ]

‖u‖2

Ḣ
1
2
0 (Ω)

.

A typical application of our result is to obtain scattering for the defocusing
nonlinear Schrödinger equation, with 1+4/n < p < 1+4/(n−2) (L2-supercritical

and Ḣ1-subcritical). This was already observed in [5] for n = 3 and in [4] for
n = 1. One should point out that, unlike in the original proofs of [6](n ≥ 3) and
[7](n ≤ 2), one obtains polynomial bounds on space-time norms in term of the
mass and energy.

On the exterior domain with no trapping condition, one may obtain scattering
results as well, but in a restricted range (due to the lack of Strichartz estimates
for the linear equation).
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Global solution for the Maxwell-Schrödinger system in the energy

space

Ioan Bejenaru

(joint work with Daniel Tataru)

The Maxwell-Schrödinger system in R3+1 describes the classical approximation to
the quantum field equations for an electrodynamical nonrelativistic many body
system. It has the form

(1)





iut − ∆Au = φu

− ∆φ+ ∂t divA = ρ, ρ = |u|2

�A+ ∇(∂tφ+ divA) = J, J = 2Im(ū,∇Au)

where A represents the magnetic potential and u is the complex scalar field of
nonrelativistic charged particles,

(u,A, φ) : R
3 × R → C × R × R

3

and ∇A = ∇− iA, ∆A = ∇2
A.

The system is invariant under the gauge transform:

(u′, φ′, A′) → (eiλu, φ− ∂tλ,A + ∇λ)
where λ : R3×R → R. To remove this degree of freedom we need to fix the gauge.
In this article we choose to work in the Coulomb gauge

(2) divA = 0

Under this assumption, the system can be rewritten as:

(3)

{
iut − ∆Au = φu

�A = PJ

where φ = (−∆)−1(|u|2) and P = 1−∇div∆−1 is the projection on the divergence
free vectors functions - also called Helmholtz projection. We consider the above
system with a set of initial data chosen in Sobolev spaces:

(u(0), A(0), At(0)) = (u0, A0, A1) ∈ Hs ×Hσ ×Hσ−1

The gauge condition (2) is conserved in time provided the initial data (A0, A1)
satisfies it due to the form of the second equation in (3).

The charge and energy associated to the system are

Q(u) =

∫

R3

|u|2dx

E(u) =

∫

R3

|∇Au|2 +
1

2
(|At|2 + |∇xA|2) +

1

2
|∇φ|2dx

The local well-posedness of the system in various Sobolev spaces above the energy
level is known, see [3], [2] as well as the existence of weak energy solutions [1]. The
main outstanding problem which we seek to address is the well-posedness in the
energy space.

Our main result is
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Theorem 1. The Maxwell-Schrödinger system (3) is globally well-posed in the
energy space H1 ×H1 × L2.

Well-posedness in our context is meant to be in the standard way. We prove
that for N be sufficiently large and for each initial data

(u0, A0, A1) ∈ HN ×HN ×HN−1

there exists an unique global solution

(u,A) ∈ C(R, HN ) × C(R, HN ) ∩ C1(R, HN−1).

Then we show that for rough initial data

(u0, A0, A1) ∈ H1 ×H1 × L2

there exists a global solution

(u,A) ∈ C(R, H1) × C(R, H1) ∩ C1(R, L2).

which is the unique strong limit of the smooth solutions above.
Finally we establish that the rough solutions (u,A) depend continuously on the

initial data.
The nonlinearities on the right hand side of both equations in (3) are fairly

mild. Indeed, if ∆A were replaced by ∆ then it would be quite straightforward
to iteratively close the argument in Xs,b or Strichartz spaces. Thus the main
difficulty stems from the linear magnetic Schrödinger equation.

For the magnetic potential A it is quite reasonable to hope to obtain an Xs,b

type regularity. Consequently, most of our analysis is devoted to the study of the
linear equation

(4) iut − ∆Au = f, u(0) = u0

Previous approaches establish Strichartz estimates with a loss for this equation
in a perturbative manner, starting from the free Schrödinger equation. This fails
for A in the energy space, and instead one needs to study directly the dispersive
properties for the linear magnetic Schrödinger equation.

For a short frequency dependent time we produce a direct wave packet parame-
trix which equals the free flow modulo a phase correction. For larger time scales we
instead obtain a weaker generalized wave packet decomposition. Together, these
structures provide enough information in order to establish the required linear and
multilinear dispersive estimates.
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Wave packet parametrices for evolutions governed by pdo’s with

rough symbols

Jeremy Louis Marzuola

(joint work with Jason L. Metcalfe, Daniel I. Tataru)

In this talk we consider evolution equations of the form

(1)





(Dt + aw(t, x,D) + ibw(t, x,D))u = f, in R+ × Rn

u(0) = u0, in Rn

where a(t, x, ξ) and b(t, x, ξ) are real symbols which are continuous in t and smooth
with respect to x and ξ. The following abstract is mostly taken from the intro-
duction given in [5].

The operator aw(t, x,D) is selfadjoint; if b = 0 then this formally guarantees
that the above evolution is L2 well-posed and the corresponding evolution oper-
ators S(t, s) are L2 isometries. The bw term rougly contributes to the growth or
decay of energy along the flow, depending on whether b is negative or positive.

We are interested in the phase space localization properties of the evolution
operators S(t, s). These are best described in terms of the Bargman transform,

(2) (Tf)(x, ξ) = 2−
n
2 π− 3n

4

∫
e−

1
2 (x−y)2eiξ(x−y)f(y) dy,

which is an isometry from L2(Rn) to the subspace of L2(R2n) of functions satisfying
the Cauchy-Riemann type relation

(3) i∂ξTf = (∂x − iξ)Tf.

The inversion formula is

(4) f(y) = 2−
n
2 π− 3n

4

∫
e−

1
2 (x−y)2eiξ(y−x)(Tf)(x, ξ) dxdξ .

One would like to describe the phase space localization of S(t, s) relative to the
Hamilton flow corresponding to (1). This is given by

(5)

{
ẋ = aξ(t, x, ξ)

ξ̇ = −ax(t, x, ξ)
We denote by χ(t, s) the corresponding family of cannonical transformations, and
by

t→ (xt, ξt)

the trajectories of the Hamilton flow.
This problem has already been considered in [9], [2]. There, they study the

class S
0,(k)
00 of symbols which satisfy the bounds

(6) |∂αx ∂βξ a(x, ξ)| ≤ cαβ , |α| + |β| ≥ k.

The main result has the form
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Theorem 1. [9],[2] Assume that the symbol a(t, x, ξ) satisfies a(t, x, ξ) ∈ S
0,(2)
00

uniformly with respect to t. Then
a) The Hamilton flow is bilipschitz.
b) The kernel K(t, s) of the phase space operator T ∗S(t, s)T decays rapidly away

from the graph of the Hamilton flow,

(7) |K(t, x, ξ, s, y, η)| . (1 + |(x, ξ) − χ(t, s)(y, η)|)−N .

However, for applications to nonlinear evolution equations one would like to
relax the above class of symbols and replace uniform bounds by an integrability
condition. For instance, in the context of the wave equation related results have
been obtained in [8] under assumptions which correspond to replacing the L∞

bounds in (6) with L1
tL

∞
x .

In this article we go one step further and restrict the time integrability to the
bicharacteristic rays. This is a much more natural condition from the point of
view of applications. One motivation for this already appears in early works of
Mizohata [6, 7] which is concerned with the bw type terms. They consider the
equation

Lu := ∂t − i∆ +

n∑

j=1

bj(x)∂xj + c(x, t)u = f(x, t),

and show that a necessary condition for L to be well-posed in H∞ is the bound

(8) sup
x∈Rn,ω∈Sn−1,R>0

∣∣∣∣∣Im
∫ R

0

b1(x + rω) · ωdr
∣∣∣∣∣ <∞.

A slightly stronger version of (8) was shown to be sufficient for L2 wellposed-
ness in [1]. In the case where ∆ is replaced by the variable coefficient operator
ajk(x, t)∂j∂k, then our assumptions are a natural extension of this condition.

Another motivation for this work comes from the study of general quasilinear
Schrödinger equations. In [3] and [4], well-posedness is established in highly regular
Sobolev spaces by using estimates for the corresponding linear equation.

Given a symplectic flow χ in R × R2n we introduce the symbol class S(k)L1
χ of

symbols q, which are smooth in (x, ξ), continuous in t and satisfy

(9) sup
x,ξ

∫ 1

0

|∂αx ∂βξ q(t, χ(t, 0)(x, ξ))|dt ≤ cαβ , |α| + |β| ≥ k.

Then our condition for the symbol a is implicit, namely a ∈ S(2)L1
χ where χ

is the Hamilton flow of a defined by (5). For the symbol b we will assume that
b ∈ S(1)L1

χ. Given such a and b we introduce the notation

(10) κN = max
2≤|α|+|β|≤N

caαβ+ max
1≤|α|+|β|≤N

cbαβ , κ0 = max
|α|+|β|=2

caαβ+ max
|α|+|β|=1

cbαβ

where caαβ and cbαβ are as in (9) corresponding to the symbols a and b.
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The other important parameter in our analysis corresponds to (8). We set

(11) M = sup
x,ξ

sup
0≤t0≤t1

∫ t1

t0

b(t, xt, ξt)dt

and assume that M is finite. Then our main result is

Theorem 2. [5] a) Assume that the symbol a(t, x, ξ) satisfies a(t, x, ξ) ∈ S(2)L1
χ.

Then the Hamilton flow defined by (5) is globally well defined and bilipschitz.
b) Assume in addition that b is a symbol in S(1)L1

χ so that M given by (11) is
finite and the following relation holds for some large N :

e2Mκ0κ4N ≪ 1.

Then the kernel K(t, s) of the phase space operator T ∗S(t, s)T decays rapidly away
from the graph of the Hamilton flow,

(12) |K(t, x, ξ, s, y, η)| . (1 + |(x, ξ) − χ(t, s)(y, η)|)−N .

The proof of part a) involves a simple application of Gronwall’s inequality and
the boundedness of the derivatives of a. For part b), the result follows by taking
linearizations of a and b, which gives us an ODE along the flow for a function
v = Tu

(13) (Dt + a+ i(ax∂ξ − aξ∂x) − ξaξ + ib)v = Ev, v(0) = v0 = Tu0.

Apply Gronwall’s inequality to the quadratic error term, then use a simple calculus
lemma to move to higher derivatives of a and the control we have on the flow to
change variables in order to apply the assumptions on a and b.
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Global existence for Gross-Pitaevskii equation on exterior domains of

dimension three

Ramona Anton

Abstract. We prove global well-posedness in the energy space for the defocusing
Gross-Pitaevskii equation on exterior domains of dimension three. The main ingre-
dients are a description of the energy space inspired by that of P.Gérard [11] and
a Strichartz estimate with loss of derivatives obtained combining a semi-classical
Strichartz estimate [2, 6] with a smoothing effect on exterior domains [9].

The Gross-Pitaevskii equation is a cubic non-linear Schrödinger equation that
appears in recent works on superfluidity and Bose-Einstein condensates (e.g. [1]):

(1)





i∂tu+ △u = (|u|2 − 1)u, on R × Ω
u|t=0

= u0, on Ω
∂u
∂ν |R×∂Ω = 0.

It is a Hamiltonian equation, associated with the Hamiltonian

E(u) =
1

2

∫

Ω

|∇u|2dx+
1

4

∫

Ω

(|u|2 − 1)2dx,

also called Ginzburg-Landau energy. For smooth enough data the energy is pre-
served in time, E(u(t)) = E(u0). The natural energy space is

E = {u ∈ H1
loc(Ω), ∇u ∈ L2(Ω), |u|2 − 1 ∈ L2(Ω)}.

Notice that this energy space is not a linear space. Previous results where shown
by P.E.Zhidkov [17, 18] in Zhidkov space X1(R), by F.Béthuel – J.-C. Saut [5] in
the space of functions 1+H1(Rd) for d = 2, 3 and recently by P.Gérard [11] in the
energy space E, for Ω = Rd, d = 2, 3, 4. Following the work of P.Gérard [11], we
show that, for Ω ⊂ R3,

(2) E = {c+ v, c ∈ C, |c| = 1, v ∈ Ḣ1(Ω), |v|2 + 2ℜ(vc−1) ∈ L2(Ω)}.
This is a complete metric space for the distance

δE(c+ u, c̃+ ṽ) = |c− c̃|+ ||∇v −∇ṽ||L2(Ω) + |||v|2 + 2ℜ(c̄v) − |ṽ|2 − 2ℜ(¯̃cṽ)||L2(Ω).

Solving (1) is equivalent with solving the Duhamel integral equation :

(3) u(t) = eit△u0 − i

∫ t

0

ei(t−τ)△F (u(τ))dτ,

where F (u) = (|u|2 − 1)u. The classical method of solving this equation consists
in using a fixed point method in order to obtain a local existence result in E.
Moreover, the fixed point method ensures that the conservation laws are verified.
If the existence time depends only on E(u0) and not on the profile of u0 ∈ E, then,
as E(u(t)) = E(u0), we can bootstrap the argument and obtain global existence.

In order to apply this program here, since E 6⊂ L2, we have to analyze the action
of the linear Schrödinger flow eit△ on E. We shall use a Strichartz inequality
adapted to the exterior domain Ω = ∁Θ.
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A Strichartz inequality [16, 12, 13, 14] is a space-time estimate of the linear flow
that reads, on Rd : for all (p, q) such that 2

p + d
q = d

2 , p ≥ 2, (p, q, d) 6= (2,∞, 2) :

(4) ||eit△u0||Lp(R,Lq(Rd)) ≤ c||u0||L2(Rd).

On Rd it follows from ||eit△u0||L∞(Rd) ≤ c

|t|
d
2
||u0||L1(Rd), called the dispersive

L1 → L∞ estimate. In the Euclidean case this is a consequence of the exact form
of the linear flow, known thanks to the Fourier transform.

As opposed to the Rd case, for bounded domains, the dispersive L1 → L∞

estimate fails for every t > 0. Following the approach of Burq-Gérard-Tzvetkov
[8] on compact Riemannian manifolds we proved [2] a Strichartz estimate with loss
of derivatives on domains (d = 2, 3) with compact boundaries using the double
manifold. On the double manifold the regularity of the coefficients of the metric
is only Lipschitz. To overcome this difficulty we regularize the coefficients of the
metric at a frequency depending of the frequency of the initial data (see also
[4]) and optimize the supplementary loss in the end. Using a similar method,
Blair-Smith-Sogge [6] improved on the loss of derivatives. However, the loss is too
important to obtain an existence result for d = 3.

In dimension three we restrict ourselves to the case of exterior domains. The
non-trapping condition has been assumed by many authors in order to ensure
dispersion. On the exterior of a non-trapping obstacle, Ω = ∁Θ, a light ray
that propagates according to the laws of geometric optics quits any compact set
in a finite interval of time. As the energy propagates along the geodesics, we
have intuitively the dispersion of the flow. Let us mention the work of Staffilani-
Tataru [15] : under the assumption (Rd, g), g non-trapping, they show a Strichartz
estimate identical with (4). An important argument is the Kato smoothing effect
which holds for such geometries.

Burq-Gérard-Tzvetkov [9] showed that Kato smoothing effect holds on the exte-
rior of non-trapping obstacles. We combine this with the semi-classical Strichartz
estimate [2, 6] holding on small intervals of time depending on the frequency of
the initial data. From Staffilani-Tataru [15] we know that, away from the obstacle,
Strichartz estimate holds without loss of derivatives. Close to the obstacle we have
a loss :

(5) ||eit△u0||Lp([−T,T ],Lq(Ω)) ≤ c||u0||
H

1
3p

+ǫ
(Ω)
.

For u0 ∈ E, the decomposition (2) holds : u0 = c0 + v0, c0 ∈ C, |c| = 1, v0 ∈
Ḣ1(Ω). We have eit△u0 = u0 + eit△−1√

−△
√−△v0 and we show that eit△ : E → E.

Moreover,

sup|t|<T δE(eit△u0, e
it△ũ0) ≤ cδE(u0, ũ0).

From (5) we obtain ||eit△u0||Lp
TL

∞(Ω) ≤ 1 + c||∇v0||L2(Ω). We denote by uL(t) =

eit△u0 the linear flow associated with u0 ∈ E. We show that w = u − uL, the
non-linear part in the Duhamel formula (3), always belongs to H1(Ω). We prove
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that

Φ(w) = −i
∫ t

0

ei(t−τ)△F (uL + w)(τ)dτ

has a fixed point in XT = C([−T, T ], H1(Ω)) ∩ Lp([−T, T ], L∞(Ω)), for some
T = T (E(u0)). From the conservation of the energy we obtain global existence in
the energy space.

Some interesting open problems are the stability of special solutions of the
Gross-Pitaevskii equation on exterior domains. For example, imposing Dirichlet
boundary conditions we have that the minimizer of the energy is not a constant,
as opposed to the Rd case. The exterior of a cylinder is also an interesting domain
for the Gross-Pitaevskii equation, as it describes the motion of a laser in a plasma.
Obtaining some Strichartz estimate adapted to this domain would allow to address
the Cauchy problem.
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A Centre-Stable Manifold for the Focussing Cubic NLS in R1+3

Marius Beceanu

Consider the focussing cubic nonlinear Schrödinger equation in R3:

(1) iψt + ∆ψ = −|ψ|2ψ.
From a physical point of view, the NLS equation in R3 with cubic nonlinearity
and the focussing sign (1) describes, to a first approximation, the self-focussing of
optical beams due to the nonlinear increase of the refraction index. As such, the
equation appeared for the first time in the physical literature in 1965, in [Kel].
It admits special solutions of the form eitαφ, where φ ∈ S(R3) is a positive (φ > 0)
solution of

(2) −∆φ+ αφ = φ3.

The space of all such solutions, together with those obtained from them by rescal-
ing and applying phase and Galilean coordinate changes, called standing waves, is
the eight-dimensional manifold of functions of the form ei(v·+Γ)φ(· − y, α).
We investigate the stability of standing waves under small perturbations and prove
the existence of a codimension-one asymptotically stable manifold.
For a parameter path π = (vk, Dk, α,Γ) such that ‖π̇‖∞ + ‖〈t〉π̇(t)‖1 <∞, define
the soliton path W (π(t)) with the respective speed, displacement correction, scale,
and complex phase correction at time t. The main result is the following:

Theorem 1. There exists a local codimension-one Lipschitz manifold N in Σ =
H1 ∩ |x|−1L2, containing the eight-dimensional manifold of standing waves, such
that equation (1) has a global solution ψ if we start with initial data ψ(0) on the
manifold N .

Furthermore, the solution depends Lipschitz continuously on the initial data and
decomposes into a moving soliton and a dispersive term: ψ = W (π(t))+R(t), with

(3) ‖π̇‖∞ + ‖〈t〉π̇(t)‖1 ≤ C‖ψ(0) −W (π(0))‖Σ

and

(4) ‖R‖L∞
t L2

x∩L2
tL

6
x∩〈t〉−1/2L2

tL
6+∞
x

≤ C‖ψ(0) −W (π(0))‖Σ.

The dispersive term scatters: R(t) = eit∆f0 + oL2(1), for some f0 ∈ L2.
Moreover, for a solution ψ of initial data ψ(0) ∈ N , one has that ψ(t) ∈ Σ for

all t and ψ(t) ∈ N for sufficiently small t.
Finally, N is a centre-stable manifold for this equation in the sense of Bates,

Jones [BatJon].

Outline of the proof The proof is based on the modulation method introduced
by Soffer and Weinstein for the L2-subcritical case and adapted by Schlag to the
L2-supercritical case. An important part of the proof is the Keel-Tao endpoint
Strichartz estimate in R3 for the nonselfadjoint Hamiltonian obtained by lineariz-
ing (1) around a standing wave solution.
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All results in this paper depend on the standard spectral assumption that the
Hamiltonian

(5) H =

(
∆ + 2φ(·, α)2 − α φ(·, α)2

−φ(·, α)2 −∆ − 2φ(·, α)2 + α

)

has no embedded eigenvalues in the interior of its essential spectrum.
Under this assumption, we completely describe the spectrum of H following [Sch].
It consists of an absolutely continuous part (−∞,−α] ∪ [α,∞), a generalized
eigenspace at zero with four eigenvectors and four generalized eigenvectors, and
two conjugate imaginary eigenvalues.
Linearize the solution to equation (1) around a soliton by writing Ψ = W + R,
where W = eiθφ(x − y, α) is a moving soliton, determined by the parameter path
π = (Γ, D, α, v), while R is an error that needs to be controlled, satisfying its own
equation.
The main difficulty lies in dealing with the unstable mode of the equation, which
corresponds to the imaginary eigenvalue iσ of H. To address this, [Sch] showed
that the solution of the linearized equation does not grow exponentially in time if
and only if the initial data Z(0) is on a certain codimension-one manifold, tangent
to Ker(P+(0)). This choice eliminates the effect of the unstable eigenvalue.
Another difficulty lies in the presence of the zero eigenvectors. Left unchecked, the
generalized zero eigenspace would lead to polynomial growth of the solution. We
impose an orthogonality (modulation) condition that bounds the zero eigenspace
component of the solution and leads to a system of modulation equations for the
parameter path π. However, π must satisfy a condition of the form 〈t〉π̇(t) ∈ L1.
The modulation equations translate it into

(6)

∫ ∞

0

t‖R(t)‖2
6+∞ dt <∞.

Since this condition goes beyond the decay provided by Strichartz or smoothing
estimates, in order to achieve it we need to impose a decay condition on the initial
data R(0).
Schlag [Sch] dealt with this problem by imposing an L1 decay condition on the
initial data and using L1 → L∞ dispersive estimates. In this manner, he proved
global existence and decay properties for H1∩W 1,1 initial data on a codimension-
one manifold.
A more convenient estimate is

Lemma 2. Consider the equation

(7) i∂tU + HPcU = RHS(t), U(0) given.

Then, for q < 4/3, β < 2/q − 1,

(8)

∫ ∞

0

〈t〉2β‖PcU‖2
6+∞ dt ≤ C(‖U(0)‖q∩2 + ‖RHS‖〈t〉−βL2

tL
1∩6/5
x

)2.
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This leads to the condition that R(0) ∈ L4/3−ǫ. The equation is H1/2-critical.
Thus, with the help of endpoint Strichartz estimates we prove global existence
for small initial data in H1/2 ∩ L4/3−ǫ on the codimension-one submanifold that
eliminates the unstable eigenvalue. However, this Banach space is not invariant
under the action of the Hamilton flow, so we need to replace it with the weaker
space Σ of the main theorem.

References

[BatJon] P. W. Bates, C. K. R. T. Jones, Invariant manifolds for semilinear partial differential
equations, Dynamics Reported 2 (1989), pp. 1-38.

[KeeTao] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. Math. J. 120 (1998), pp. 955-
980.

[Kel] P. L. Kelley, Self-focusing of optical beams, Phys. Rev. Lett. 15, pp. 1005-1008 (1965).
[Sch] W. Schlag, Stable Manifolds for an orbitally unstable NLS, preprint 2004, to appear in

Annals of Mathematics.

The Interaction Morawetz Inequality on R2

James Colliander

(joint work with Manoussos Grillakis and Nikolaos Tzirakis)

0. Generalized Virial Identity

This talk describes work1 with M. Grillakis and N. Tzirakis. We recall discussion
from [4] inspired by [7] and [3]. Suppose φ : Rt×Rdx → C nicely solves i∂tφ+∆Φ =
N . We define the Morawetz action with virial weight a : Rd → R of φ to be

Ma[φ](t) =

∫

Rd

∇a · 2Im(φ∇φ)(t)dx.

Local conservation identities produce the generalized virial identity

(1) ∂tMa[φ] =

∫

Rd

(−∆∆a)|φ|2 + 4ajkℜ(φjφk) + 2aj{N , φ}jp dx

where {N , φ}p = ℜ[N∇φ − φ∇N ] and aj denotes ∂xja, etc. Suppose i∂tu +
∆u = F ′(|u|2)u for u : Rt × R3

x → C with F ′ ≥ 0, so defocusing. The tensor
product φ(t, x1, x2) = u(t, x1)u(t, x2) satisfies2 a defocusing equation on Rt × R6

x;
the choice a(x1, x2) = |x1 − x2| in (1) and calculations imply the interaction
Morawetz estimate on R3

x, valid for all defocusing equations:

(2)

∫ T

0

∫

R3
x

|u(t, x)|4dxdt . ‖u0‖3
L2

x
‖∇u(t)‖L∞

T L2
x
.

1At this Oberwolfach workshop, F. Planchon announced [9] similar results obtained indepen-
dently and simultaneously in work with L. Vega.

2This idea is due to Andrew Hassell.
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1. Improved L4
t,x(Rt × R2

x) Estimate with T 1/3 loss

For an analog of (2) in two space dimensions, consider a(x1, x2) = f(|x1−x2|) with
f smooth, convex and depending upon a parameter M , such that, for |x| . M ,
f(|x|) = (2M)−1|x|2[1 − log(|x|M−1)] and f(|x|) = C|x| for |x| ≫ M . The
calculations leading to (2) produce an error term of unfavorable sign in the region
|x1 − x2| & M which may be crudely estimated using mass conservation. The
choice M = T 1/3 produces the interaction Morawetz estimate with T 1/3 loss valid
for all defocusing equations

(3)

∫ T

0

∫

R2
x

|u(t, x)|4dxdt . T 1/3‖u0‖3
L2

x
‖∇u‖L∞

T L2
x

+ T 1/3‖u0‖4
L2

x
.

This estimate was obtained in [5], improving upon [6] which had T 1/2.

2. Optimal Virial Weight Function

Efforts to absorb the error term into the left side of (3) failed but led to a new
estimate. Set w(s) = s−3 for s ≥ 1 and zero otherwise; r = |x|. We implicitly
define a (up to boundary conditions) by

∆a(r) =
1

r0

∫ ∞

r/r0

s log(
r0s

r
)w(s)ds ≥ 0.

Explicit calculations reveal a perfect square and the limit as r0 ց 0 gives

(4)

∫ T

0

∫

R2×R2

{|u(t, x1)|2 − |u(t, x2)|2}2

|x1 − x2|3
dx1dx2dt . sup

t∈[0,T ]

Ma[u1u2].

The left side of (4) involves [1] the Besov B
1
2 ,2
2 norm. Thus, any finite energy

defocusing Schrödinger evolution u : Rt × R2
x → C satisfies

(5) ‖u‖2
L4

tL
8
x

. ‖D1/2|u|2‖2
L2

t,x
. ‖u‖3

L∞
t L2

x
‖∇u‖L∞

t L2
x
.

Inequality (5) resembles the bilinear Strichartz estimate from [2].

3. Vector Commutator Proof

A vector commutator proof of (5) generalizes to higher dimensions. On R2, we
have the Fourier transform formula F−1(|ξ|−1) = c2|x|−1 so write D−1f(x) =∫

R2 |x − y|−1f(y)dy. We define the vector commutator operator X = [x,D−1] so

Xf(x) =
∫

R2
x−y
|x−y|f(y)dy. Let ρ(t, x) = 1

2 |u(t, x)|2 and p(t, x) = ℑ(u∇u)(t, x).
Calculations show that ∂jX

j = D−1 and

∂jX
kf = (D−1δkj + [xk, Rj ])f

where Rj = ∂jD
−1 has symbol

ξj

|ξ| . Finally, we define the action

M(t) = 〈X · p(t)|ρ(t)〉.
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Local mass and momentum conservation identities for defocusing Schrödinger
equations and rearranging shows that Ṁ(t) = S1 + S2 + S3 + S4 with Si ≥ 0, i =
1, · · · , 4 and S3 = ‖D1/2ρ‖2

L2
x
. Thus, we recover (5),

∫ t

0

‖D 1
2 ρ(t)‖2

L2
x
dt ≤M(t) −M(0) ≤ 2‖u‖3

L∞
t L2

x
‖∇u‖L∞

t L2
x
.

On Rd, we have the formula F−1(|ξ|1−d) = cd|x|−1 and can generalize the
preceding discussion with X = [x,D1−d] and maintain S1, S2, S3, S4 ≥ 0 but with

S3 = ‖D 3−d
2 ρ‖2

L2
x

to obtain: any finite energy defocusing Schrödinger evolution

u : Rt × Rdx → C satisfies

‖D 3−d
2 |u|2‖2

L2
t,x

≤ 2‖u‖3
L∞

t L2
x
‖∇u‖L∞

t L2
x
.

Thus, the vector commutator approach also recovers (2).

4. Simplified proof of Nakanishi’s Scattering Result

Suppose u solves i∂tu+∆u = |u|p−1u with initial data u0 ∈ H1(R2
x), p > 3. Define

the Strichartz space S1 via ‖u‖S1 = supq,r ‖〈∇〉u‖Lq
tL

r
x
, 2
q + 2

r = 2
2 , 2 ≤ q, r ≤

∞, (q, r) 6= (2,∞). Based on (5), we can decompose Rt = ∪Jj=1Ij into disjoint
intervals Ij on which ‖u‖L4

Ij
L8

x
= δ ≪ 1 with J = J(u0) < ∞. Using Duhamel’s

formula, finite energy, Strichartz estimates and Hölder’s inequality, we have for
some ǫ > 0 that for all j

‖u‖S1
Ij

. ‖u0‖H1 + ‖u‖ǫL4
Ij
L8

x
‖u‖p−ǫ

S1
Ij

.

Since J <∞, u is globally bounded in S1.
This proof gives a better quantification on the spacetime size of u than in [8].

Using the I-method and a Morawetz bootstrap (as in [3]), scattering also holds
for defocusing L2(R2)-subcritical problems with nonlinearity |u|2ku, 2 ≤ k ∈ N,
for initial data u0 ∈ Hs provided 1 > s > 1 − 1

4k−3 .
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Stability of multipeakons

Luc Molinet

(joint work with Khaled El Dika)

Abstract. The Camassa-Holm equation possesses well-known peaked solitary
waves that are called peakons. Their orbital stability has been established by
Constantin and Strauss in [4]. We present here a result on the stability of ordered
trains of peakons as well as on the stability of multipeakons.

The Camassa-Holm equation (C-H)κ, κ ≥ 0,

(1) ut − utxx = −2κux − 3uux + 2uxuxx + uuxxx, (t, x) ∈ R
2,

can be derived as a model for the propagation of unidirectional shalow water
waves over a flat bottom by writing the Green-Naghdi equations in Lie-Poisson
Hamiltonian form and then making an asymptotic expansion which keeps the
Hamiltonian structure ([3], [13]). It was also found independently by Dai [7] as a
model for nonlinear waves in cylindrical hyperelastic rods.

(C-H) is completely integrable (see [3]). It possesses among others the following
invariants

(2) E(v) =

∫

R

v2(x) + v2
x(x) dx and F (v) =

∫

R

v3(x) + v(x)v2
x(x) + 2κv2(x) dx

and can be written in Hamiltonian form as

(3) ∂tE
′(u) = −∂xF ′(u) .

For κ > 0 it possesses smooth positive solitary waves ϕκ,c with speed c > 2κ whose
orbital stability has been proved in [5] by applying the classical spectral method
initiated by Benjamin [2] (see also [12]). In [11], following the general method
developed in [14] (see also [10]), the authors proved the stability of ordered trains
of such solitary waves. It is worth recalling that this general method requires
principally two ingredients : A property of almost monotonicity which says that
for a solution close to ϕκ,c, the part of the energy traveling at the right of ϕκ,c(·−ct)
is almost time decreasing; A dynamical proof of the stability of the solitary wave
using the spectral approach (as in [2] or [12] for instance).

In this talk we consider the Camassa-Holm equation in the case κ = 0, that is

(4) ut − utxx = −3uux + 2uxuxx + uuxxx, (t, x) ∈ R
2.
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Henceforth, we refer to (4) as the Camassa-Holm equation (C-H). (4) possesses
also solitary waves but they are non smooth and are called peakons. They are
given by

u(t, x) = ϕc(x − ct) = cϕ(x − ct) = ce|x−ct|, c ∈ R.

Their stability seems not to enter the general framework mentioned above . How-
ever, Constantin and Strauss [4] succeeded in proving their orbital stability by a
direct approach. In this work, following the general strategy initiated in [14](note
that due to the reasons mentioned above, the general method of [14] is not directly
applicable here ), we combine the monotonicity result proved in [10] with localized
versions of the estimates established in [4] to derive the stability of the trains of
peakons.

Before stating the main result we have to introduce the function space where
we will define the flow of the equation. For I a finite or infinite interval of R, we
denote by Y (I) the function space1

(5) Y (I) :=
{
u ∈ C(I;H1(R)) ∩ L∞(I;W 1,1(R)), ux ∈ L∞(I;BV (R))

}
.

We are now ready to state our main result.

Theorem 1. Let be given N velocities c1, .., cN such that 0 < c1 < c2 < .. < cN .
There exist γ0, A > 0, L0 > 0 and ε0 > 0 such that if u ∈ Y ([0, T [), with
0 < T ≤ ∞, is a solution of (C-H) satisfying

(6) ‖u0 −
N∑

j=1

ϕcj (· − z0
j )‖H1 ≤ ε2

for some 0 < ε < ε0 and z0
j−z0

j−1 ≥ L, with L > L0, then there exist x1(t), .., xN (t)
such that

(7) sup
[0,T [

‖u(t, ·) −
N∑

j=1

ϕcj (· − xj(t))‖H1 ≤ A(
√
ε+ L−1/8)

and

(8) xj(t) − xj−1(t) > L/2, ∀t ∈ [0, T [ .

As discovered by Camassa and Holm [3], (C-H) possesses also special solutions
called multipeakons given by

u(t, x) =

N∑

i=1

pj(t)e
−|x−qj(t)| ,

where (pj(t), qj(t)) satisfy some differential system. In [3] and furthermore in
[1] the asymptotic behavior of the multipeakons is studied. In particular, the
limits as t tends to +∞ and −∞ of pi(t) and q̇i(t) are determined. Combining

1
W 1,1(R) is the space of L1(R) functions with derivatives in L1(R) and BV (R) is the space

of function with bounded variation
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these asymptotics with the preceding theorem we get the following result on the
stability of the variety Λ of H1(R) defined by

Λ :=
{
v =

N∑

i=1

pje
−|·−qj |, (p1, .., pN ) ∈ (R+)N , q1 < q2 < .. < qN

}
.

Corollary 2. Let be given N positive real numbers p1, .., pN and N real numbers
q1 < .. < qN . For any B > 0 and any γ > 0 there exists α > 0 such that if
u0 ∈ H1(R) satisfies u0 − u0,xx ∈ M+ with

(9) ‖u0 − u0,xx‖M ≤ B and ‖u0 −
N∑

j=1

pj exp(· − qj)‖H1 ≤ α

then

(10) ∀t ∈ R, inf
P∈(R+)N ,Q∈RN

‖u(t, ·) −
N∑

j=1

pj exp(· − qj)‖H1 ≤ γ .

As mentioned above, the proof of the stability of trains of peakons does not
enter the general framework ([14], [10], [11]) on orbital stability of ordered trains
of solitary waves. However, the strategy of combining the orbital stability of a
single solitary wave with a monotonicity result seems to be quite robust.
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On the focusing energy-critical nonlinear Schrödinger equation

Xiaoyi Zhang

(joint work with Rowan Killip, Monica Visan)

We consider the initial value problem for focusing energy-critical nonlinear
Schrödinger equation

(1)

{
iut + ∆u = −|u| 4

d−2u,

u(x, 0) = u0(x)

in dimension d ≥ 3. The minus sign in front of the nonlinearity corresponds to
the ”focusing” case.

The equation (1) is called ”energy critical” as the natural scaling transformation

(2) u(t, x) → uλ(t, x) = λ−
d−2
2 u(

t

λ2
,
x

λ
)

leaves both the equation (1) and the energy

(3) E(u(t)) =
1

2
‖∇u(t)‖2

2 −
d− 2

2d
‖u(t)‖

2d
d−2
2d

d−2

invariant.
From the classical result of Cazenave and Weissler [1], [2], we know that (1) is

locally wellposed; however, due to the critical nature of the problem, the lifespan of
the local solution depends on the profile of the initial data, rather than merely on
its Ḣ1 norm. Nevertheless, when the Ḣ1 norm of u0 is small enough, the solution
is global and scatters.

On the other hand, the equation (1) admits a global soliton solution. That is,

W (t, x) = W (x) =
1

(1 + |x|2
d(d−2))

d−2
2

∈ Ḣ1
x(R

d)

solves the static nonlinear Schrödinger equation:

∆W + |W | 4
d−2W = 0.

It is believed that the ground state W is the minimal kinetic energy blowup so-

lution; here, by blowup we understand that the L
2(d+2)

d−2

t,x -norm is infinite. In this
paper, we verify the conjecture in the spherical symmetric case.
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Theorem 1. Let d ≥ 3 and let u be a spherically symmetric solution to (1) with
maximal lifespan I. Assume also that

sup
t∈I

‖∇u(t)‖2 < ‖∇W‖2.

Then I = (−∞,∞) and

∫

R

∫

Rd

|u(t, x)|
2(d+2)

d−2 dxdt ≤ C(E0).

A more effective criterion for wellposedness can be obtained from Theorem 1
via coercive properties of the ground state W .

Corollary 2. Let d ≥ 3 and let u0 ∈ Ḣ1
x(R

d) be spherically symmetric and such
that ‖∇u0‖2 < ‖∇W‖2 and E(u0) < E(W ). Then the corresponding solution u to
(1) is global and moreover

∫

R

∫

Rd

|u(t, x)|
2(d+2)

d−2 dxdt ≤ C(E(u0)).

For d = 3, 4, 5, Corollary 2 was proved by Kenig-Merle [3]. Their paper also
contains Theorem 1 for d = 3, 4, 5.

The result in Theorem 1 is sharp in the sense that W is a solution to (1) which
blows up at infinity in both time directions.

Moreover, in this paper, we also prove the following concentration result:

Theorem 3. (Blowup solutions concentrate kinetic energy). Let u be a spherically
symmetric solution to (1) that blows up at time T ∗ ∈ [−∞,+∞]. Assume also that

lim sup
t→T∗

‖∇u(t)‖2 <∞.

If T ∗ is finite, then there exists a sequence tn → T ∗ such that for any sequence

Rn ∈ (0,∞) obeying |T ∗ − tn|−
1
2Rn → ∞,

lim sup
n→∞

∫

|x|≤Rn

|∇u(tn, x)|2dx ≥ ‖∇W‖2
2.

If |T ∗| = ∞, then there exists a sequence tn → T ∗ such that for any sequence

Rn ∈ (0,∞) obeying |tn|− 1
2Rn → ∞,

lim sup
n→∞

∫

|x|≤Rn

|∇u(tn, x)|2dx ≥ ‖∇W‖2
2.

In order to prove Theorem 1, we follow the concentration compactness approach
of Kenig and Merle [3]. More precisely, using a concentration-compactness tech-
nique based on linear profile decomposition [4], we reduce matters to studying a
special type of solution.
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Definition 1. (Almost periodicity modulo scaling). Let d ≥ 3. A solution u to
(1) with lifespan I is said to be almost periodic modulo scaling if there exists a
function N : I → R+ and a function C : R+ → R+ such that for all t ∈ I and
η > 0,∫

|x|≥C(η)/N(t)

|∇u(t, x)|2dx ≤ η and

∫

|ξ|≥C(η)N(t)

|ξ|2|û(t, ξ)|2dξ ≤ η.

We prove that any failure of Theorem 1 must be caused by a very special type
of solution.

Theorem 4. (Reduction to almost periodic solutions). Suppose d ≥ 3 is such
that Theorem 1 failed. Then there exists a spherically symmetric maximal-lifespan
solution u : I × Rd → C such that supt∈I ‖∇u(t)‖2 < ‖∇W‖2, which is almost
periodic modulo scaling and blows up both forward and backward in time. Moreover,
we have the frequency bound

inf
t∈I

N(t) > 0.

We preclude the existence of the solutions that satisfy the criteria in Theorem 4,
thus prove Theorem 1 by the following rigidity result.

Theorem 5. (Rigidity). There are no spherically symmetric solutions u : I ×
Rd → C to (1) that are almost periodic modulo scaling and obey

sup
t∈I

‖∇u(t)‖2 < ‖∇W‖2, ‖u‖
L

2(d+2)
d−2

t,x (I×Rd)

= ∞, and inf
t∈I

N(t) > 0.
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