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Abstract.

Percolation as a mathematical theory is more than fifty years old. During
its life, it has attracted the attention of both physicists and mathematicians.
This is due in large part to the fact that it represents one of the simplest
examples of a statistical mechanical model undergoing a phase transition,
and that several interesting results can be obtained rigorously.

In recent years the interest in percolation has spread even further, follow-
ing the introduction by Oded Schramm of the Schramm-Loewner Evolution
(SLE) and a theorem by Stanislav Smirnov showing the conformal invariance
of the continuum scaling limit of two-dimensional critical percolation. These

results establish a new, powerful and mathematically rigorous, link between
lattice-based statistical mechanical models and conformally invariant models
in the plane, studied by physicists under the name of Conformal Field Theory
(CFT).

The Arbeitsgemeinschaft on percolation has attracted more than thirty
participants, most of them young researchers, from several countries in Eu-
rope, North America, and Brazil. The main focus has been on recent devel-
opments, but several classical results have also been presented.

Mathematics Subject Classification (2000): 60K35, 82B43, 82B27, 60G18.

Introduction by the Organisers

Percolation as a mathematical theory was introduced by Broadbent and Hammer-
sley [4, 5] about fifty years ago to model the spread of a gas or a fluid through
a porous medium. To model the randomness of the medium, they declared the
edges of the d-dimensional cubic lattice independently open (to the passage of the
gas or fluid) with probability p or closed with probability 1− p. Since then, many
variants of this simple model have been studied, attracting the interest of both
mathematicians and physicists.
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Mathematicians are interested in percolation because of its deceiving simplicity
which hides difficult and elegant results. For the physicists, percolation is maybe
the simplest statistical mechanical model undergoing, as the value of the parameter
p is varied, a phase transition with all the standard features typical of critical
phenomena (scaling laws, a conformally invariant scaling limit, universality). On
the applied side, percolation has been used to model the spread of a disease, a fire
or a rumor, the displacement of oil by water, the behavior of random electrical
circuits, and more recently the connectivity properties of communication networks.

The work of mathematicians has concentrated on the behavior of the model both
at the critical point pc and away from it. However, despite the fact that we have
had for some time a good understanding of the subcritical (p < pc) and supercritical

(p > pc) phases (see [11, 9, 2]), a complete and rigorous understanding of the
“critical behavior” has proved more difficult and until recently seemed to be out
of reach (despite various important achievements–see, e.g., [12] and again [11, 9, 2]
as general references).

Meanwhile, the problems encountered by mathematicians did not prevent the
physicists from studying the critical point and its vicinity using theoretical physics
methods. This enterprise was particularly successful in two dimensions where
the (powerful but not mathematically rigorous) tools of Conformal Field Theory
(CFT) produced many predictions describing the behavior of the model at pc or
as p → pc, including various critical exponents.

Recently, the introduction by Oded Schramm [17] of the Schramm-Loewner
Evolution (SLE) has provided a new powerful and mathematically rigorous tool
to study continuum scaling limits of critical lattice models. While CFT focuses on
correlation functions, SLE describes the behavior of macroscopic random curves
present in those models, such as percolation cluster boundaries. There is a one-
parameter family of SLEs, indexed by a positive real number κ, which appears
to contain essentially all possible candidates for the conformally invariant scaling
limits of interfaces from two-dimensional critical systems. One exciting aspect of
SLE techniques applied to the study of critical lattice models is the fact that it
combines methods from at least three different areas of mathematics, i.e., discrete
probability, stochastic processes, and complex analysis.

Thanks to the work of Lawler, Schramm, Werner on SLE (see [13, 20] and
references therein) and of Smirnov [18], in recent years tremendous progress has
been made in the study of two-dimensional critical percolation. The main power of
SLE stems from the fact that it allows to compute different quantities (for example,
percolation crossing probabilities and various percolation critical exponents [14,
19]), thus giving a mathematically rigorous confirmation of the predictions made
by physicists using CFT methods. Moreover, SLE has provided a totally new
perspective, which has resulted in a much deeper understanding of the random

geometry of the scaling limit of two-dimensional critical percolation (see [6, 7, 8]).
Two-dimensional critical percolation and its continuum scaling limit have been

the main theme of the Arbeitsgemeinschaft, which has also included a series of
three lectures on SLE by Vincent Beffara. However, although progress in this area
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represents maybe the single most exciting recent development within the field,
since its introduction percolation has continued to produce a wealth of beautiful
results and has been an important paradigm for the behavior of other random
systems and an important tool for the study of various other models. Today, it
is still a very active area of research, strategically placed at the interface between
probability and statistical physics. For this reason, the Arbeitsgemeinschaft has
touched upon other important recent developments in areas such as percolation in
high dimensions [3, 10] and on trees and nonamenable graph [15, 16], and Voronoi
percolation [1].

In order to make the lectures accessible to all the participants, the topics of the
first two talks were carefully selected to provide a concise introduction to some of
the main techniques and results on which modern percolation theory is built. A
successful open problem session on Wednesday afternoon was attended by most of
the participants. On Friday afternoon, the program was complemented by a series
of six short talks by some of the participants on their own research topics.

The Arbeitsgemeinschaft has attracted more than thirty researchers from vari-
ous European countries, North America, and Brazil. The majority were advanced
Ph.D. students and young postdocs, which has resulted in an informal and lively
atmosphere that has proved very effective for learning and exchanging ideas. Most
of the talks have been followed by many questions and interesting discussions. The
meeting has also profited from the presence of some more senior researchers who
have been instrumental in leading the discussions following some of the more tech-
nical talks.
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Abstracts

Introductory talk I

Jacob van den Berg

Consider the graph of which the vertices are the integer points in the plane, and
where each vertex has an edge with each of the four vertices to which it has distance
1. This graph is called the square lattice. Suppose each edge, independently of
the others, is declared open (1) with probability p and closed (0) with probability
1 − p. Percolation theory, introduced by Broadbent and Hammersley in the mid-
fifities as a model of a porous medium, studies the connectivity properties of this
random network. An open path is a path in the graph of which each edge is open.
One of the first questions concerned the probability that from a given vertex, say
the vertex 0 := (0, 0), infinitely many vertices can be reached by open paths:

θ(p) := Pp(∃ an infinite open path starting in 0).

It is easy to see that θ(p) is non-decreasing in p and that θ(0) = 0 and θ(1) = 1.
This leaves open the possibility that θ(p) > 0 for all p > 0 or that θ(p) = 0
for all p < 1, which would not be very interesting. (In fact, the latter is what
happens if we do percolation on the integer line instead of on the square lattice).
However, as Broadbent and Hammersley showed, this model has an interesting
critical behaviour: There is a value pc, strictly between 0 and 1, such that θ(p) = 0
if p < pc and θ(p) > 0 if p > pc. One part of this result follows from the following
claim

(1) θ(p) = 0 for all p <
1

4
.

This claim (1) can be proved quite easily, as follows: Let An denote the event that
there is an open self-avoiding (s.a.) path of length n starting in 0. (The length of
a path is the number of edges in the path). Obviously θ(p) ≤ Pp(An), for each n.
Further, it is also clear that the number of s.a. paths of length n starting in 0 is
at most 4n. Hence, for each n,

θ(p) ≤ Pp(An) ≤ (4p)n.

If p < 1/4, the r.h.s. goes to 0 as n → ∞. This proves (1)
The other part of the above mentioned Broadbent-Hammersley result follows

immediately from

(2) θ(p) > 0 for all p >
3

4
.

Part of the proof of (2) is very similar to that of (1), but an additional feature
is needed, involving the notion of duality. In general, the dual lattice of a planar
lattice is the lattice whose vertices correspond with the midpoints of the faces of
the original lattice, and where two vertices have an edge if their corresponding
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faces in the original lattice are adjacent. Thus, in the case of the square lattice,
the dual lattice is again a square lattice: it is the original lattice shifted over the
vector (1/2, 1/2). (This self-duality is special; for instance, the dual lattice of
the regular triangular lattice is not triangular but hexagonal). Since each edge
in the dual lattice corresponds with exactly one edge in the original lattice, a
configuration in the original lattice induces a configuration on the dual lattice:
simply declare a dual edge open if and only if the corresponding original edge is
open. The importance of duality for percolation comes from the following fact:
Each finite open cluster (maximal connected open subgraph) in S is surrounded
(in fact, ‘bordered’) by a circuit of closed edges in the dual lattice. So to prove (2)
it suffices to show that for p > 3/4 the probability that there is a closed circuit
around 0 in the dual lattice is smaller than 1. Finally, that the latter is indeed
smaller than 1 can be proved in a way very similar to the proof of (2), namely by
counting the number of circuits (around 0, or more generally around a given box)
of a certain length.

The above model is called bond percolation (on the square lattice). Analogously,
one can assign random states to the vertices instead of the edges. Then we speak
of site percolation. Of course percolation can be (and has been) studied on many
other graphs, for instance the three-dimensional cubic lattice.

In the sixties and seventies much effort was made in the determination (or
approximation) of the value of pc. The famous proof by Kesten (in 1980) that for
bond percolation on the square lattice pc = 1/2 is not only interesting in itself but
involved powerful techniques which turned out to be of much more general use in
percolation.

Another important object of study is the asymptotic behaviour (for large n)
of the probability π(n) that there is an open path from 0 to some point at dis-
tance larger than n from O. If p < pc, π(n) goes to 0 exponentially. (On the
square lattice this result was strongly connected with the result, and its proof,
that pc = 1/2; More generally, for the cubic lattice in any dimension, this expon-
tial decay was proved by Menshikov and, independently by Aizenman and Barsky
around 1986). Very different is the case p = pc. It was predicted by physicists
around 1980 that in that case π(n) behaves asymptotically as a power of n; in
particular, for the square lattice and other ‘nice’ planar lattices it was predicted
that π(n) behaves asymptotically as n−5/48. Arount 1997 a rigorous mathematical
proof of such result still looked hopeless. However, only about five years later, the
breakthroughs by Lawler, Schramm and Werner and by Smirnov (which are exten-
sively discussed in other talks in this Arbeitsgemeinschaft) led to a rigorous proof
(for site percolation on the triangular lattice) of this and many other so-called
power laws.

The rest of this introductory talk is used to state three of the main basic tech-
niques, the FKG and BK inequalities and Russo’s formula. These results, each
of which involves the notion of increasing events, hold in a much more general
context than percolation, but here I will state them in the language and context
of percolation. First, an event A is said to be increasing if it has the property
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that if a configuration ω belongs to A, then any new configuration which can be
obtained from ω by making one or more closed edges open, also belongs to A.

The FKG inequality says that if A and B are increasing events, then

Pp(A ∩ B) ≥ Pp(A)Pp(B).

The BK inequality also involves two increasing events but goes in the other
direction: It says that if A and B are increasing events, then the probability that
A and B ‘occur for disjoint reasons’, is at most Pp(A)Pp(B). Instead of giving a
general and formal definition of ‘to occur for disjoint reasons’ I give an example
which is typical in percolation: Let v, w, x, y be vertices and let A be the event
that there is an open path from v to w and B the event that there is an open path
from x to y. Then the event

{A and B occur for disjoint reasons}
is the event that there are disjoint open paths from v to w and from x to y.

Russo’s formula involves another notion that needs explanation. Let A be an
event involving only finitely many edges, say e1, · · · en. Let ω be a configuration.
We say that edge ei is pivotal (w.r.t. A and ω), if either ω or ω(i) (but not both)
is in A; here ω(i) is the configuration obtained from ω by ‘flipping’ the state of ei.
Let the random variable N(A) denote the number of pivotal edges for A. Russo’s
formula says that if A is increasing, then

d

dp
Pp(A) = Ep(N(A)),

where Ep stands for the expectation w.r.t. the distribution Pp.
Most of this introductory talk is based on Chapters 1 and 2 in [1]

References
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Introductory talk II: Uniqueness of the infinite cluster and RSW
theory

Michael Damron

The first part of the talk follows the Burton and Keane proof [1]. Consider the

probability space (Ω = {0, 1}E
d

, F, P) where Ed is nearest neighbor edges of Zd,
F = cylinder sets, and P is translation invariant. We also suppose that P satisfies
the following property:

Let e ∈ Ed and let Te = σ(Tf : f 6= e). For any element ω ∈ Ω declare the edge
e occupied if ω(e) = 1 and vacant if ω(e) = 0. We say that the measure P satisfies
the finite energy property if

0 < P(ω(e) = 1|Te) < 1

Note that this is equivalent to the corresponding event with the edge e vacant.
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Fact: Let Λ be a finite box and φ : Ω → Ω be such that for all f /∈ Λ, ω(f) =
(φ(ω))(f). If P has the finite energy property and P(A) > 0 then P(φ(A)) > 0.

We will use this in the proof of the following theorem. Let N(ω) be the number
of infinite (1) clusters in the configuration ω.

Theorem: P({ω : N(ω) > 1}) = 0
By ergodic decomposition we assume that the measure P is ergodic so that N

is a.s. constant. If we connect distinct infinite clusters with (1) paths in a large
box we see that N cannot be any finite number larger than 1. To show that N
cannot be infinite, we make a definition. For any vertex v ∈ Zd we cal v a triple
point if the following three conditions hold: (a) v is in an infinite (1) cluster, (b)
exactly 3 edges adjacent to v are occupied, and (c) the removal of v and all its
adjacent edges splits the infinite (1) cluster, of which v is a member, into 3 infinite
clusters. We count the number of triple points in a finite box Λ with |Λ| = n
and let Λ → Zd. Translation invariance gives the expected number of such points
grows like nd but, on the other hand, the tree-like structure of triple points gives
that the number cannot grow faster than nd−1. Details can be found in [1].

The second part of the talk concerns the Russo-Seymour-Welsh estimates. We
consider Bernoulli site perclation on Z2 with probability p of each site having a
marking of (+) and with probability 1−p a marking of (-). Let Pp be the product
measure associated with the model. We say that two sites are (+) connected if
there exists a nearest-neighbor path of vertices, each with a (+) marking, connect-
ing the two sites. We say that two sites are (-) *connected if they are connected
by a nearest-neighbor *path of vertices (diagonal connection is allowed), each
with a (-) marking. Define the rectangle R(a, b) = [−a, a] × [−b, b] and the event
C(a, b) = {there is a (+) path connecting the left and right sides of R(a, b)}. Let
θ(p) be the probability that the origin is in an infinite connected (+) cluster.

Theorem: If θ(p) > 0 then

lim
n→∞

Pp(C(n, n)) = 1

lim
n→∞

Pp(C(2n, n)) = 1

lim
n→∞

Pp(C(3n, n)) = 1

We finish with two definitions. Let C be the finite connected (+) cluster of
the origin and let C̄ be the finite *connected (-) cluster of the origin. Let S(p) =
Ep(|C|) and let S̄(p) = Ep(|C̄|).

Theorem: If θ(p) > 0 then

max(S(p), S̄(p)) < ∞
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Mini-course on SLE processes

Vincent Beffara

SLEκ is a two-dimensional stochastic process defined as the solution to Loewner’s
equation

∂tgt(z) =
2

gt(z) − βt

in the complex upper-hal plane, where βt =
√

κBt is a real-valued Brownian
motion with variance parameter κ > 0. It was introduced by Oded Schramm as a
candidate for the scaling limit of various critical, discrete two-dimensional models
of statistical physics, such as self-avoiding walks, spanning trees, percolation and
the Ising model. It has since then been proved to indeed be the scaling limit of such
models in several cases, notably (in the framework of this Arbeitsgemeinschaft)
critical site percolation on the triangular lattice, as shown by Stanislav Smirnov.

The aim of this mini-course was to provide a quick introduction to SLE for
non-specialists, focusing on the case of critical percolation; as such, it articulates
with a few other talks of the week to produce a (mostly) self-contained proof of
convergence of the critical percolation exploration process to an SLE with κ = 6.

As can easily be seen from the definition, the domain of gt is the complement
in the upper-half plane H of a random compact set Kt, and gt maps Ht := H \Kt

conformally to H. A very technical result by Rohde and Schramm is the existence
of a trace of the process; more precisely, wih probability 1, there exists a continuous
curve γ in H̄ such that the following happens: For every positive t, Ht is the
(unique) unbounded connected component of H \ γ([0, t]).

The structure of the process strongly depends on the value of the parameter κ:
almost surely,

• If 0 < κ 6 4, then γ is a simple curve (i.e., it has no double point); it has
Hausdorff dimension 1 + κ/8;

• If 4 < κ < 8, γ has double points but no self-crossing. It still has Haus-
dorff dimension, and thus Lebesgue measure 0, but Kt itself has positive
measure;

⋃

Kt is the whole half-plane;
• If κ > 8, then γ is space-filling, in the sense that it almost surely contains

every point of H̄.

One of the main advantages of SLE is that it relates two-dimensional geometrical
properties of random curves to features of a one-dimensional process (the driving
process βt), which makes it amenable to computations using standard tools of
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stochastic analysis. Two representative examples of such computations are the
following.

• Take κ > 4, so that γ is sure to hit the real axis. The probability that it
touches the half-line (x, +∞) before the half-line (−∞, y) (for y < 0 < x)
can be expressed as the solution of a differential equation in x/(x − y),
obtained via Itô’s formula. In the case κ = 6, one obtains Cardy’s formula,
describing crossing probabilities for critical percolation in large rectangles,
and this, together with Smirnov’s result, is enough to obtain a statement
of convergence for cluster boundaries in the scaling limit. (It is not enough
to obtain convergence of the exploration process to the SLE trace though,
as explained in a separate talk this week.)

• One can describe the way γ approaches a small, fixed disk contained in
the upper-half plane, and estimate hitting probabilities for SLE through
a leading eigenvalue computation applied to a one-dimensional diffusion.
As a result, one can compute the so-called bichromatic two-arm exponent

of percolation, which happens to be 1/4, i.e. 2 − d where d = 7/4 is the
Hausdorff dimension of the curve.

Another, more natural way of computing critical exponents is to use another ver-
sion of Loewner’s equation known as radial SLE. It is defined by solving Loewner’s
equation in a punctured disk instead of a half-plane; the differential equation is
then

∂tgt(z) = gt(z)
eiβt + gt(z)

eiβt − gt(z)
,

where again βt is real-valued Brownian motion with appropriate variance.
Some of the critical exponents can then be seen as leading eigenvalues of the

generators of various one-dimensional diffusions on the interval [0, 2π] — this was
explained in more detail in another talk of the meeting.

Good references on SLE processes are multiplying at an exponential rate; a
good idea is to refer to the book of Lawler [1] and perform a breadth-first search
from there. As another possible starting point, one can choose Werner’s Saint
Flour lecture notes [2] instead.
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pc + p∗

c
= 1

András Bálint

We consider Bernoulli site percolation on the square lattice Z2: we declare each
vertex open with probability p, closed with probability 1 − p, independently for
different vertices. Writing pc for the critical value, and p∗c for the critical value of
Bernoulli site percolation on the matching lattice of Z2 (which can be obtained
from Z2 by adding edges along the diagonals), our goal is to prove pc +p∗c = 1. We
follow the proof described in [3]. A simple but crucial observation for the proof
is that whatever the configuration of states of the vertices is, fixing a rectangle
R, there is either an open horiztonal crossing or a closed vertical ∗-crossing in
R, but never both. The other tools we use in the proof are Russo’s formula, a
Russo-Seymour-Welsh theorem, and a finite size criterion (fsc) stating that having
high enough probability for a crossing in a rectangle in the long direction implies
positive probability for percolation of the origin. We prove fsc as in [3], by a
coupling of the site percolation with a 1-dependent bond percolation, however,
the formulation of the argument is taken from [1].

As pc +p∗c ≥ 1 follows easily from the fact that in case of p > pc, there is Pp-a.s.
at least one open circuit surrounding the origin, we focus on proving pc + p∗c ≤ 1.
By assuming the opposite, we may choose values p1 < p2 between 1 − p∗c and pc.
Following Kesten’s idea [2], we consider an increasing event A, namely that there
is an open horizontal crossing in a large square S, and show that the probability
of A increases too rapidly in the interval p ∈ [p1, p2]. We do that by giving the
uniform lower bound 1/(p2 − p1) on the expected number of pivotal vertices for
A (which holds for all p ∈ [p1, p2]) by showing that the probability of finding the
lowest horizontal open crossing π and several closed ∗-paths (i.e. paths in the
matching lattice) from the top of S to π is high enough. Then Russo’s formula
ensures that

min
r∈[p1,p2]

d

dp
Pr(A) >

1

p2 − p1
.

This leads to the desired contradiction as it implies

Pp2 (A) − Pp1 (A) ≥ +(p2 − p1) min
p∈[p1,p2]

d

dp
Pr(A) > 1.

Finally, we note that essentially the same proof works in case of Bernoulli bond
percolation on Z2 (in fact, the proof in the bond percolation case [2] chronologically
preceded the proof in the site percolation case [3]). This yields that the sum of
the critical value and the critical value for the dual lattice is 1. As Z2 and its
bond dual are isomorphic, the two critical values are equal. We obtain this way
Kesten’s celebrated result that the critical value for Bernoulli bond percolation on
the square lattice equals 1/2.
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Cardy’s formula on the triangular lattice

Vincent Vargas

The purpose of this talk is to present Smirnov’s proof of Cardy’s formula on the
triangular lattice. More specifically, we consider site percolation on the triangular
lattice at critical probability pc = 1/2 with mesh size δ > 0. We will call black
sites open and white sites closed. We will denote by Pδ the underlying probability
measure. Let (D, P1, P2, P3, P4) be a counterclockwise marked Jordan domain. For
all i, let Ai denote the arc of ∂D oriented counterclockwise that starts at point Pi

and ends at point Pi+1. For all i, we consider the probability Pδ(Ai → Ai+2) that
there exists an open (black) path from Ai to Ai+2. As δ goes to 0, the probability
Pδ(A1 → A3) converges to a limit f(D, P1, P2, P3, P4). This limit is conformally
invariant; if φ is a conformal map that sends the marked domain (D, P1, P2, P3, P4)
onto the marked domain (φ(D), φ(P1), φ(P2), φ(P3), φ(P4)), one has the identity:

f(D, P1, P2, P3, P4) = f(φ(D), φ(P1), φ(P2), φ(P3), φ(P4)).

In the equilateral triangular case, one gets the following simple and explicit ex-
pression:

f(D, P1, P2, P3, P4) = d(P3, P4)/d(P3, P1),

where d is just the euclidean distance.
The idea of the proof of this result, as given by Smirnov, is to consider point P4

as a complex variable and to work in the 3-marked Jordan domain (D, P1, P2, P3).

Then one can define similarly as above three arcs (Ãi)1≤i≤3 between the points
(P1, P2, P3). The key idea is to consider three applications (gδ

i )1≤i≤3 defined on D
and given by:

gδ
i (z) = P

δ(∃ black crossing Ãi−1 → Ãi+1 that separates z from Ãi).

Then, it is obvious that f(D, P1, P2, P3, P4) is the limit as δ goes to 0 of gδ
2(P4).

The problem is therefore to study the family (gδ
i )1≤i≤3. This study is divided into

two parts:

• Part 1: the family (gδ
i )1≤i≤3 is equicontinuous (key theorems used: Ascoli,

Russo-Seymour-Welsh estimates).
• Part 2: Characterize the limit family (gi)1≤i≤3(key theorems used: Mor-

era’s theorem, color swapping lemma, Russo-Seymour-Welsh estimates).

Part 2 is the most original part of Smirnov’s proof. By using a the color swap-
ping lemma along with discrete complex integration in a very elegant way, it is
possible to show that on a triangle T :

∀1 ≤ i ≤ 3,

∫

T

gi+1(z)dz = j

∫

T

gi(z)dz,
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where j is the cube root of unity. The relations above along with the boundary
conditions uniquely determine the family (gi)1≤i≤3.
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Scaling relations for 2D-percolation

Artem Sapozhnikov

In my talk I will summarize the results obtained in the paper [1].
We consider an independent site or bond percolation on a periodic graph in two

dimensions. Let Cx be the open cluster at x. The size of a cluster at x is denoted
by |Cx|. We say that two sites x and y are connected, x ↔ y if they belong to the
same open cluster. One of the main characteristics of the percolation process is
the percolation probability

θ(p) = Pp(|C0| = ∞).

It is well known that there is a critical probability pc = sup{p : θ(p) = 0} ∈ (0, 1)
such that there is almost surely no infinite open cluster for p ≤ pc and there is the
unique infinite open cluster for p > pc. The average size of a finite cluster at the
origin is

χf (p) = Ep{|C0|; |C0| < ∞} =

∞
∑

n=1

nPp(|C0| = n).

For p < pc, χf (p) coincides with the expected cluster size Ep|C0|. The correlation
length is defined as

ξ(p) =

(

1

χf (p)

∑

y

|y|2Pp(0 ↔ y, |C0| < ∞)

)
1
2

,

where |y| = max{|yi|, i = 1, 2} for y = (y1, y2).
It is conjectured in the physics literature that the above characteristics obey

the power law behaviour as p → pc:

θ(p) ≈ (p − pc)
β , for p > pc;

χf (p) ≈ |p − pc|−γ ;

ξ(p) ≈ |p − pc|−ν ,

where A(p) ≈ |p−pc|ζ stays for log A(p)/ log |p−pc| → ζ as p → pc. Moreover, it is
believed that the corresponding exponents are universal for a general class of peri-
odic graphs. In [1] it is shown that given ξ(p) ≈ |p−pc|−ν as p → pc and Ppc(0 ↔
∂B(n)) ≈ n−δ, θ(p) and χf (p) have the above mentioned asymptotic with β = νδ



2806 Oberwolfach Report 48/2007

and γ = 2(ν−β). It is also shown in [1] that ξ(p) ≈ |p−pc|−ν as p → pc is implied
by Ppc(there are 4 alternating paths (2 open and 2 occupied) from 0 to ∂B(n)) ≈
n−δ4 . These results allowed to relate the behaviour of the process near the critical
point with its behaviour at the criticality.

In the talk I will give the proofs of the above mentioned relations between the
critical exponents.
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Convergence of 2D critical percolation to SLE6

Michael J. Kozdron

The goal of this lecture is to explain the convergence of the critical site perco-
lation exploration path on the triangular lattice to the trace of chordal SLE6 for
Jordan domains; detailed lecture notes [4] are available from the speaker’s website.
Our primary reference is the recent paper by Camia and Newman [2] and we cite
many results verbatim from that work. The speaker makes no claims of originality,
but it is hoped that by highlighting some key elements of the proof in a slightly
different way than is done in [2], the interested party can use this present work as
a companion to help increase his or her understanding of [2]. At various times in
the lecture we will be a little casual with certain hypotheses. We hope that this
lack of precision will allow us to better capture the key ideas of [2].

It should be noted that a recent preprint by W. Werner [9] contains lecture
notes from a short course given at the 2007 IAS/Park City Mathematics Institute
on Statistical Mechanics. Lecture 3 in those notes is concerned with a proof of
this convergence result, but Werner follows a different approach than Camia and
Newman. In fact, Werner’s notes [9] contain six lectures and a set of exercises on
critical site percolation on the triangular lattice that coincide with the topic of
this Arbeitsgemeinschaft; we highly recommend reading them.

The primary theorem that we will be concerned with is the following precise
formulation of the convergence of the percolation exploration path to SLE6 as
given by the theorem below.

Let T denote the standard two-dimensional triangular lattice with lattice spac-
ing 1, and let H denote the hexagonal lattice which is dual to T . For δ > 0, we
write δH to denote the hexagonal lattice with lattice spacing δ. Let D ⊂ C be
a bounded, simply connected Jordan domain. That is, D is a simply connected
domain whose boundary ∂D is a Jordan curve (i.e., ∂D is a simple closed curve
which is homeomorphic to the unit circle). Suppose that Dδ ⊂ δH is a Jordan set
which approximates D. That is, Dδ is a simply connected subset of the hexagonal
lattice with lattice spacing δ whose external site boundary is a simple closed loop
of hexagons such that Dδ is a discrete approximation to D. Suppose further that
a, b ∈ ∂D are distinct boundary points, and let aδ, bδ ∈ ∂Dδ be the corresponding
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external boundary vertices (or e-vertices). Without being more precise about this
exact approximation, we denote by (D, a, b) the simply connected Jordan domain
with two distinguished boundary points, and let its δ-scale approximation be de-
noted by (Dδ, aδ, bδ). Essentially, we think of choosing Dδ ≡ D∩δH. (But this may
not produce a simply connected Dδ so we do need to be careful.) A bit more tech-
nically, we assume that Dδ, aδ, and bδ are chosen so that (Dδ, aδ, bδ) → (D, a, b)
in the Carathéodory sense as δ ↓ 0. If we now consider Dδ with distinguished
e-vertices aδ and bδ, then we can see that these two distinguished boundary points
partition the (topological) boundary of Dδ into two disjoint arcs. Associate to
all external boundary hexagons on one of the arcs the colour “red” and associate
to all boundary hexagons on the other arc the colour “white.” (The colour red
shows up clearly when an electronic version of this note is displayed on screen.
However, in this printed version, red appears as grey instead.) Perform critical
site percolation on Dδ; that is, for each remaining interior hexagon colour it either
red with probability 1/2 or white with probability 1/2. There will be a resulting
interface joining aδ with bδ; that is, a simple path connecting aδ to bδ with the
property that all hexagons on one side of the path will be white while all hexagons
on the other side of the path will be red. We call this path/interface the (critical
site) percolation exploration path and denote it by γδ

D,a,b. As δ ↓ 0, it is this path
that converges to chordal SLE6 in D from a to b.

Figure 1 shows schematically one way of producing the percolation exploration
path. Given the realization of the percolation configuration with the boundary
conditions (as shown on the left of Figure 1) we then “swallow any islands” by
swapping the colour of an “island” with the colour of the “ocean” surrounding it.
This produces two disjoint sets—one coloured red and the other coloured white.
The percolation exploration path is exactly the interface between these two sets. If
we now delete all of the hexagons, then what remains is the percolation exploration
path as shown on the right of Figure 1.

Theorem (Camia and Newman [2]). Let (D, a, b) be a Jordan domain with two

distinct selected points on its boundary ∂D, and suppose that Dδ ⊂ δH are Jordan

sets with two distinct selected e-vertices aδ, bδ ∈ ∂Dδ such that (Dδ, aδ, bδ) →
(D, a, b) as δ ↓ 0. If γδ

D,a,b denotes the percolation exploration path inside Dδ from

aδ to bδ, then γδ
D,a,b converges in distribution as δ ↓ 0 to γD,a,b, the trace of chordal

SLE6 inside D from a to b.

There are essentially two main parts to the proof. The first is a character-
ization of SLE6, and the second is the fact that any subsequential limit of the
exploration path satisfies this characterization. The actual proof of the theorem is
relatively short once all of the preliminary lemmas and preparatory theorems have

been established.

Proof. Consider (Dδ, aδ, bδ) → (D, a, b) and γδ
D,a,b, the percolation exploration

path. The law of γδ
D,a,b is a distribution on curves. An earlier result of Aizenman
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Figure 1. On the left is the realization of the percolation config-
uration with the imposed boundary conditions, and on the right
is the resulting exploration path.

and Burchard [1] (in particular, Theorem A.1) is that this family γδ
D,a,b converges

in distribution along subsequential limits δk ↓ 0 to the law of some curve γ. Since
the filling of any subsequential limit γ̃D,a,b ≡ limδk↓0 γδk

D,a,b satisfies the spatial
Markov property and the hitting distribution of γ̃ is determined by Cardy’s for-
mula, it follows that the limit is unique and that the law of γδ

D,a,b converges as
δ ↓ 0 to the law of γD,a,b, the trace of chordal SLE6 in D from a to b. �

Remark. As a historical note, we mention that a beautiful argument due to
Schramm [6] showed that if the scaling limit of the exploration path exists and
is conformally invariant, then it must be SLEκ for some κ. The value κ = 6 is
then obtained by noting that Cardy’s formula is satisfied only by SLE6. The proof
of this result was announced by Smirnov in 2001 [7], although a detailed proof
did not appear until 2005 in an appendix of a preprint by Camia and Newman.
Their paper [2], based on that appendix, presents that proof in an essentially
self-contained form. We also mention that convergence of the exploration path to
SLE6 was used by Smirnov and Werner [8]; and Lawler, Schramm, and Werner [5]
to rigorously derive the values of various percolation critical exponents. Camia
and Newman also used the convergence to obtain the full scaling limit of criti-
cal percolation in two dimensions. Lectures by P. Nolin and C. Hongler during
the current Arbeitsgemeinschaft will discuss these critical exponents and the full
scaling limit, respectively.
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[1] M. Aizenman and A. Burchard. Hölder regularity and dimension bounds for random curves.
Duke Math. J., 99:419–453, 1999.

[2] F. Camia and C. M. Newman. Critical percolation exploration path and SLE6: a proof of
convergence. Probab. Theory Related Fields, 139:473–519, 2007.



Arbeitsgemeinschaft: Percolation 2809

[3] M. J. Kozdron. On the scaling limit of simple random walk excursion measure in the plane.
ALEA Lat. Am. J. Probab. Math. Stat., 2:125–155, 2006.

[4] M. J. Kozdron. Convergence of 2D critical percolation to SLE6. Notes from a lecture given at
the Mathematisches Forschungsinstitut Oberwolfach during the Arbeitsgemeinschaft: Per-
colation held October 8–13, 2007. Available online at stat.math.uregina.ca/∼kozdron.

[5] G. F. Lawler, O. Schramm and W. Werner. One arm exponent for critical 2D percolation.
Electron. J. Probab., 7:1–13 (paper no. 2), 2002.

[6] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel
J. Math., 118:221–288, 2000.

[7] S. Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling
limits. C. R. Acad. Sci. Paris Sér. I Math., 333:239–244, 2001.

[8] S. Smirnov and W. Werner. Critical exponents for two-dimensional percolation. Math. Res.
Lett., 8:729–744, 2001.

[9] W. Werner. Lectures on two-dimensional critical percolation. Lectures given at the 2007
IAS/Park City Mathematics Institute on Statistical Mechanics. Preprint, 2007. Available
online at arxiv:math.PR/0710.0856.

Convergence of percolation to CLE6

Clément Hongler

Consider site percolation on a planar graph. Color the open sites in white and the
closed ones in black. Such a percolation configuration can described by the set of
its black and white clusters. The boundaries of these clusters form a collection of
nested loops on the dual graph. For instance, if we perform site percolation on the
triangular lattice, we get a collection of loops on the hexagonal lattice. Here we
are interested in describing this set of loops in the case of critical site percolation
on the triangular lattice at the scaling limit (when the mesh size of the lattice
tends to 0).

The proof of this result relies mainly on the fact that in this model the discrete
path called exploration path that separates black and white sites (in the case of a
domain with one arc on the boundary colored white and the other black) converges
in distribution to the continuum process SLE6 as the mesh tends to 0. We give an
algorithm using iteratively the exploration path that exhausts the set of loops and
construct in a similar way the limit measure using SLE6 instead of the discrete
path.

Basically take a domain with monochromatic boundary (say white), create arti-
ficial boundary conditions pretending part of the boundary is of the other color (say
black), launch an exploration process in this artificial setup, get some subdomains
(the connected components of the complementary of the path in the domain) which
have either monochromatic boundary conditions or mixed ones (one arc white and
one arc black). In the domains with mixed boundary, launch another exploration
process and eventually get smaller subdomains all with monochromatic boundary.
In all the monochromatic domains obtained at the first or second step, iterate
inductively the algorithm, until having exhausted all loops.

From now, it should be intuitive that the same algorithm using SLE6 and
iterated infinitely many times is a good candidate for being the limit of the discrete
algorithm. Mainly two things are to be checked in order to get convergence. The
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first is to verify that the subdomains given by the exploration path and SLE6 are
the same in the limit. The second is to ensure that the number of steps needed
to explore all the loops of a given size is stochastically bounded, uniformly with
respect to the mesh size; that is, that the number of steps needed to do so does
not blow up.

Finally we give some basic properties of the limit, which is a measure on the
set of infinite collection of nested loops in our domain. The first is its conformal
invariance: if the domain is mapped conformally onto another domain, the measure
in the image domain will be the same (in law) as the image by the conformal map
of the measure in the starting domain. The second is the so-called restriction-
renewal property: if one removes a collection of loops, what remains is the same as
independent copies of the measure in the subdomains which are the complementary
of the removed collection.
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One–arm exponent for 2D percolation at the critical point

Pierre Nolin

The setting is two-dimensional site percolation, on the triangular lattice. We
discuss the so-called “arm events”: these are exceptional events referring to the
existence of some number j of disjoint monochromatic crossings – “arms” – of
annuli of the form Sn,N := {z : n < |z| < N} (n < N). These events are useful
because they can be combined together, and they turn out to be instrumental
to study critical and near-critical percolation. Their asymptotic behavior can be
described precisely using SLE(6): they follow power laws, governed by the “arm
exponents”.

We focus here on the case j = 1: this is the one–arm event, simply denoting the
existence of a black crossing Sn  SN . We follow the proofs of [1, 3]. A similar
derivation (with some non-trivial differences however), still using SLE(6), can be
made for a larger number of arms, but only if we assume the existence of at least
one black arm and one white arm: these are the “multichromatic arm exponents”,
computed in [2].

We first need to introduce the radial SLE, with parameter κ = 6. There exists
a simple relation between radial and chordal SLE(6): up to some disconnection
time, their laws (as curves) are the same.

For percolation, we define a “radial” exploration process, the scaling limit of
which is radial SLE(6). In an annulus, the existence of a black crossing is related
to the fact that this exploration process, starting from the outer boundary, does
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not close any counter-clockwise loop before reaching the inner boundary. The
probability of this last event is roughly the same as the probability that a radial
SLE(6) does not close any counter-clockwise loop before some given time.

We then perform computations for this process (for which we can use stochastic
calculus), and we get that for percolation, the probability to cross an annulus with
radii r and R tends to f1(r/R) when the mesh size decays to 0, for some function
f1 satisfying

f1(η) ∼ η5/48+o(1)

as η → 0+.
The property of quasi-multiplicativity for percolation then allows to return to

the discrete setting and we obtain the desired estimate for one arm:

P1/2(0 ∂SN) = N−5/48+o(1)

as N → ∞.
We finally review some consequences of these derivations on the characteristic

functions used to describe percolation (like the density of the infinite cluster or
the characteristic length), more precisely how the corresponding critical exponents
can be derived.

References

[1] G.F. Lawler, O. Schramm, W. Werner, One-arm exponent for critical 2D percolation, Elec.
J. Probab. 7 (2002), paper no.2.

[2] S. Smirnov, W. Werner, Critical exponents for two-dimensional percolation, Math. Res.
Lett. 8 (2001), 729–744.

[3] W. Werner, Critical two-dimensional percolation, Lecture notes from the IAS/Park City
2007 summer school, preprint (2007).

Lace expansion and percolation in high dimensions

Markus Heydenreich

Consider bond percolation on the hypercubic lattice Zd, d ≥ 2, where we fix a
parameter p ∈ [0, 1], and make every bond in the graph (independently of other
bonds) open with probability p, and closed otherwise. The connected component
in the subgraph of open bonds are called clusters. For two sites x, y ∈ Zd, we
write {x ↔ y} for the event that the two are in the same cluster, i.e., they are
connected via a path of open bonds. The probability of this event is denoted by
τp(x, y). Let further denote

χ(p) :=
∑

x∈Zd

τp(0, x)

the expected cluster size or susceptibility, and θ(p) the probability that the ori-
gin belongs to a cluster of infinitely many sites. A fundamental question is the
behaviour of the model around the critical point

pc := inf{p | θ(p) > 0} = sup{p | χ(p) < ∞},



2812 Oberwolfach Report 48/2007

where equality between the two characterizations of pc is due to Menshikov [10]
and Aizenman–Barsky [1].

Our interest is the critical and near-critical behaviour of percolation, and we
use the notion of critical exponents to describe it. To this end, we consider the
exponents γ and β given by

χ(p) ≍ 1

(pc − p)γ
as p ր pc,

θ(p) ≍ (p − pc)
β as p ց pc.

We emphasize that if β exists and is strictly positive, then θ(pc) = 0. It is believed
that critical exponents are universal, i.e., minor modifications of the model, like
changes in the underlying lattice, leave the critical exponents unchanged (though
pc differs). Their values depend on the dimension d. However, it is predicted that
there is an upper critical dimension dc = 6, such that the critical exponents take
the same value for all d > dc. These values are the mean-field values of the critical
exponents, and for percolation these mean-field values are γ = 1 and β = 1, which
coincide with the corresponding critical exponents obtained for percolation on an
infinite regular tree, see [6, Section 10.1]. Nevertheless, a rigorous proof for these
mean-field values is established only for d ≥ 19, and that is what we are focussing
now.

We introduce the triangle diagram

∇p :=
∑

x,y∈Zd

τp(0, x) τp(x, y) τp(y, 0),

and say that the triangle condition is satisfied whenever the critical triangle dia-
gram ∇pc is finite. This triangle condition plays a key role in the understanding of
high-dimensional percolation. In particular, the triangle condition implies γ = 1
(as proven by Aizenman–Newman [2]) and β = 1 (Barsky–Aizenman [3]). For a
textbook-style proof of these facts we refer to [11, Section 9].

Theorem 1 (Hara–Slade 1990). For bond-percolation on Zd in dimension d ≥ 19,
the triangle condition ∇pc < ∞ is satisfied.

The proof uses the lace expansion, a technique invented by Brydges and Spencer
[5] to study weakly self-avoiding walk. They use an algebraic expansion involving
a certain class of graphs called laces, which gave the lace expansion its name. In
1990, Hara and Slade [7] presented the lace expansion for percolation, where the
algebraic expansion is replaced by an inclusion-exclusion expansion.

Here is a brief sketch of some ideas from the proof of Theorem 1. We first use
an inclusion-exclusion expansion of the two-point function τp(x, y) to obtain
(1)
τp(x, y) = δx,y + (τp ∗ Jp) (x, y) +

(

Π(M)

p ∗ Jp ∗ τp

)

(x, y) + Π(M)

p (x, y) + R(M)

p (x, y),

where

• δx,y refers to the Kronecker delta-function;
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• Jp(x, y) =

{

p if (x, y) is a bond,

0 otherwise;

• Π(M)
p (x, y) is obtained as an alternating sum of certain configurations aris-

ing from the inclusion-exclusion expansion;
• R(M)

p (x, y) is a remainder term, and is proven to vanish as M → ∞.

The superscript M indicates the level of expansion. The Jp-terms arise from
pivotal bonds in the expansion.

As a second step, we bound Π(M)
p (x, y) and R(M)

p (x, y) in terms of the triangle
diagram ∇p. These bounds are called diagrammatic bounds since the quantities
Π(M)

p (x, y) and R(M)
p (x, y) can be represented by certain diagrams, and the under-

lying structure expressed with the help of these diagrams is heavily used to obtain
the bounds.

We finally use a so-called bootstrap argument. Suppose we could show the
following “improvement of the bounds”: If (for any p < pc) the triangle diagram
∇p is smaller than some uniform constant, say ∇p < 4, then indeed it must be
small than 3. Since ∇p is monotone in p and ∇0 = 1, this implies ∇p < 3 for
all p ∈ [0, pc], and in particular ∇pc < ∞. Unfortunately, we cannot quite show
the improvement of the bounds directly for the triangle diagram. Instead, we
consider the Fourier transform τ̂p of the two-point function τp. A Fourier version
of Eq. (1) and the diagrammatic bounds imply an improvement of the bounds for
certain functionals of τ̂p. In turn, the bounds on these functionals of τ̂p give rise
to sufficient bounds on the triangle diagram.

Recall that the triangle condition is conjectured to hold for d > 6. To support
this conjecture, Hara–Slade [7] prove this fact for a spread-out version of the model,
where more bonds are added to the lattice. More precisely, consider a lattice with
bonds between any two sites that are of distance at most L from each other, where
L is a parameter of the model. For this spread-out model it is proven that the
triangle condition is satisfied for d > 6 provided that L is sufficiently large.

The talk is mainly based on the work by Borgs et al. [4], where the lace expan-
sion is applied to percolation on finite graphs, but their clever use of trigonometric
bounds applies verbatim to the infinite setting. The interested reader might con-
sult the Saint-Flour lecture notes by Gordon Slade [11, Section 10] for the expan-
sion and the diagrammatic bounds, and [8] for an implementation of the bootstrap
argument.

An alternative approach to the lace expansion is the inductive method, where
the bootstrap argument is replaced by induction. This approach is outlined in the
lecture notes by van der Hofstad [9].

There are many extensions of the method leading to a variety of results for
high-dimensional percolation, like identification of the scaling limit of the incipient
infinite cluster, asymptotics for pc as d → ∞, and various other critical exponents.
We refer to [11] for references and discussion.
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Sharp thresholds

Jeffrey E. Steif

While sharp thresholds are very relevant in percolation, they can be better
appreciated in a more general context. The context here will be that we have an
increasing event A ⊆ {0, 1}n and we look at how Pp(A) behaves as a function of p
and in particular whether for large n a ‘sharp threshold’ arises meaning that this
function goes very quickly from being small to being large. (Pp here is product
measure with density p.)

One of the key concepts that is relevant to sharp thresholds and is a very
natural and interesting concept in itself is the notion of influence. For i = 1, . . . , n,
the influence of i on A at level p, denoted by Ip

i (A) is the Pp-probability of the
event that ‘i is pivotal for A’ meaning that flipping the value Xi changes whether
A occurs or not. We mention right away that Russo’s formula (also proved by
Margulis) tells us that the derivative of Pp(A) is simply

∑

i

Ip
i (A).

Fix p at the moment to be 1/2 and we ask if there is some i with large influence?
No if A is the empty set and so to avoid trivial matters, we assume now P1/2(A)
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is bounded between (say) 1/4 and 3/4. A natural quantity to look at is

Jn := inf
A:P1/2(A)∈[1/4,3/4]

sup
i

I
1/2
i (A)

and to see how it behaves as n goes to ∞.
Taking n odd and letting A be the majority event (meaning there are more

1’s than 0’s), it is easy to see (using 1-d random walk results) that each influence
is of order 1/

√
n and so Jn behaves at most like 1/

√
n. An edge-isoperimetric

inequality for the cube shows that Jn is at least 1/n (the sum of the influences is
the same as the edge boundary). A more sophisticated example by Ben Or and
Linial shows that Jn is at most log(n)/n. For this, break 1, . . . , n into subintervals
of length log2(n) − log2 log2(n) and let A be the event that at least one of these
subintervals is all 1’s.

Kahn, Kalai and Linial (using a beautiful argument using Fourier analysis
and Beckner’s inequality) show in fact that this is sharp meaning Jn is at least
c log(n)/n. They showed in fact that for all events A and for all p, there is an i
such that

Ip
i (A) ≥ c log(n)/n min{Pp(A), 1 − Pp(A)}.

Friedgut and Kalai pointed out that this result together with Russo’s formula fairly
easily leads to a sharp threshold for invariant events A meaning that A is invariant
under a transitive action of 1, . . . , n. (Note that in this case all the influences are
the same.) More precise, Pp(A) goes from ǫ to 1 − ǫ within an interval of length
c log(1/2ǫ)/ logn. This holds for graph properties in particular since they are
invariant under the transitive subgroup of permutations of the edges coming from
permutations of the vertices.

Friedgut and Kalai conjectured that for graph properties, the threshold interval
should be much smaller, of order 1/(logn)2. Later Bourgain and Kalai proved this
and related the threshold interval with how big of a subgroup leaving A invariant
exists.

Of course, not all events A have large threshold such as {X1 = 1} but Friedgut
and Bougain have results that sort of say that if there is not a sharp threshold,
then there is a good reason for it meaning that the event more or less depends on
a fixed number of variables.

Much earlier, Russo obtained an approximate 0-1 law which basically said that
if all influences (both as p and i vary) are small, then there is a sharp threshold.
The proof was more qualitative and was not based on Fourier analysis as these
later proofs are.

Finally, we mention that one of the key steps in Kesten’s proof that the critical
parameter is 1/2 in 2D was the following. He showed that had the critical value
been larger, then in the interval between 1/2 and pc, a certain crossing event would
have a large threshold which he proved by showing with his hands that the sum of
the influences is large. Russo had proofs which also explained how this threshold
was a key part of the proof and later on Bollobas and Riordan explained how one
could get this needed sharp threshold out of the Friedgut-Kalai threshold result.
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An exposition of the Bollobás-Riordan proof that pc = 1/2 for random
Voronoi percolation in the plane

Jakob Erik Björnberg

The Voronoi percolation model in R2 is defined as follows: let p ∈ [0, 1] and let
Z+, Z− be independent Poisson processes of rates p and 1 − p respectively. The
Voronoi cell of z ∈ Z := Z+ ∪ Z− by is the set of points x ∈ R2 closer to z than
to any other point of Z. Call z and its cell black if z ∈ Z+ and white otherwise.
We are interested in the proability that there is an infinite path of adjacent black
cells, one of which contains the origin. Bollobás and Riordan proved in [1] that
this probability is positive iff p > 1/2.

The fact that no percolation occurs for p ≤ 1/2 may be considered standard,
because the famous argument of Zhang applies to this model. The major achieve-
ment of [1] is to show that percolation occurs for p > 1/2. The main steps are
similar to those for bond percolation on Z2, but the first two steps are (much)
harder:

(1) Find a Russo-Seymour-Welsh (RSW) type result at p = 1/2, saying roughly
that the probability of crossing a long rectangle does not vanish as the size
of the rectangle gets large;

(2) Moving up to an arbitrary p > 1/2, use a sharp-threshold result to show
that with the new parameter such crossings are extremely likely;

(3) Finally paste together crossings of rectangles, obtaining the result by com-
parison with a “known” model (in this case 1-independent percolation on
Z2).

The main focus of this talk is to give an exposition of the RSW-result (step
one) in [1]; in light of the other recent applications of this argument [3, 4] we
feel that an awareness of the techniques employed would benefit all students of
percolation. Before we give some more details about this part of the argument,
let us first indicate quite briefly what the main problems (and their solutions) are
for the second step. In order to be able to apply one of the currently known sharp
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threshold theorems, it is necessary to transfer the problem to a discrete product
space. It is thus necessary to find an event A, say, such that (i) A has probability
that is not too small, and (ii) even a “cruder” (discretized) version of A implies
the existence of rectangle crossings in the continuum. It turns out that the right
event A to consider is the existence of a “robust” rectangle crossing, i.e. one that
is not sensitive to small perturbations of the points of Z. To achieve properties
(i) and (ii) it is necessary to increase p in two steps. Property (i) transpires after
the first increase, because it turns out that one can couple the processes with the
higher and lower parameters in such a way that a crossing in the lower process
implies a robust crossing in the higher—showing this is the hardest part of the
whole argument. Once this is done, an application of the Friedgut-Kalai theorem
during the second increase boosts the probability of a crossing to almost 1.

Now we give the main ideas for the RSW part of the argument. Let h(ρ, s)
denote the probability that there is a black path crossing the rectangle [0, ρs]×[0, s]
horizontally.

Theorem 2. Let p = 1/2, and ρ > 1. Then lim sups→∞ h(ρ, s) > 0.

This implicitly uses the fact that h(1, s) = 1/2 > 0 for all s, but a result
analogous to Theorem 2 holds for arbitrary values of p; see also [3] for some
extensions.

Here is an outline of the proof of Theorem 2. We assume the conclusion to be
false, i.e. that for some ε > 0 we have lims h(1+ε, s) = 0. The first step is to use the
FKG inequality to see that in fact the limit is zero for all ε > 0. Using symmetry
and the FKG inequality again, this statement may be strengthened to say that
with high probability (whp) as s → ∞, any horizontal crossing of some rectangle
(of arbitrary dimensions) has very tightly controlled maximal and minimal heights.
In fact, given δ > 0, any such crossing is up to δs just as “tall” as it is “wide”.
Now consider the fact that for a path to traverse a horizontal distance of s, it
must first traverse a distance of 0.99s. The bound just mentioned applied to the
thinner rectangle will contradict the bound for the wider one (for δ small enough)
unless the path goes back almost to where it started before completing the longer
crossing. This is because when it first crosses the narrow rectangle the path has
to have maximum height almost exactly 0.495s, but the maximum height of the
whole path must be almsot exactly 0.5s, i.e strictly higher. It follows that whp any
crossing of a rectangle that is s wide contains two disjoint subcrossings of rectangles
that are 0.99s wide. See Figure 1. This argument may of course be repeated for
each of these subpaths, giving the absurd (but not quite contradictory!) conclusion
that every crossing contains 16 disjoint crossings of rectangles that are 0.96s wide.
This indicates that the length of a crossing of a recangle grows very fast as a
function of the width of the rectangle—indeed, too fast.

To rigorously prove this, the next crucial ingredient is some form of asymptotic
independence. We use the fact that an appropriate (but small) modification L̃ of
the length L of the shortest horizontal crossing of a rectangle is a random variable
that is independent for two rectangles that are distance Ω(s) apart. If a crossing
of a rectangle of width s and height 2s is shorter than x say, then one of its 16
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0.01s 0.99s

Figure 1. The key step to arrive at the contradiction which
proves the result is to show that any crossing contains two disjoint
subcrossings of rectangles almost as wide.

subcrossings must be shorter than x/16. It is possible to show, using again the
strict control on the vertical span of crossings, that this slightly shorter crossing
must in fact traverse two of a bounded number of rectangles of with 0.47s and
height 2 · 0.47s, that are at least 0.01s apart. Since L̃ for these small rectangles
are independent, this “squares” the probability of L̃ being small. This type of
argument lets us obtain that if the width of our rectangle goes up by a factor
(1/0.47) ≈ 2 then the length of a shortest crossing goes up by a factor 16. But

using elementary arguments one may show that L̃ is whp o(s3), finally giving the
desired contradiction.
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Multiscale methods

Bernardo N.B. de Lima

In this talk, we consider an oriented percolation model in a random environment,
this model was proposed and studied by Kesten, Sidoravicius and Vares in [4].

Consider the following North-East oriented site percolation model on Z2
+. Given

the parameters δ, p and ∆ ∈ [0, 1], for each line Hi := {(x, y) ∈ Z2
+; x+y = i}, ∀i ∈

Z+ we associate the 0-1 (‘good’ or ‘bad’) random variable, ξi, independently of
each other and

P (ξi = 1) = δ = 1 − P (ξi = 0), ∀i ∈ Z+.

Given the configuration of good (0) and bad (1) lines, (ξi), we declare each
vertex of Z2

+ as ‘open’ or ‘closed’, independently each other, with the following
conditional distribution

(1) Pδ,p,∆(v is open|ξi, ∀i) =

{

∆, if ξ‖v‖ = 1
p, if ξ‖v‖ = 0

If Yv is the random variable that indicates if v is open or closed, we can observe
that Yv and Yu are positive correlated whenever the vertices v and u belong to the
same line. For this reason the Peierls argument doesn’t work, then to prove phase
transition in this model a multiscale renormalization scheme is used to prove the
following result

Theorem [4] Given any ∆ > 0 and p > pc one can find some δ∗(p, ∆) > 0
such that

Pδ,p,∆(0 ↔ ∞) > 0, ∀δ < δ∗.

Here pc is the percolation threshold for the ordinary independent site percolation
on Z2

+. This result has connections to several questions in probability theory:
Winkler’s problem of compatibility of sequences, existence of percolation of arbi-
trary words (introduced in [1]) when p is close to 1 and the question of percolation
on the Random Stretched Lattice in dimension two (this model was introduced
and studied in [3]).

The proof of this theorem is rather involved and at this talk we will discuss
the main ideas on a simplified version of the problem, the so called ‘hierarchical
model’, and with p being close enough to 1. The main reference for this simplified
version is the Part II of [2].

Given some large natural number L, define the sequence (ξ̃L
j )j as

ξ̃L
j := max{k ∈ Z+; Lk|j }.

The L-Hierarchical binary sequence (ξL
j )j is obtained from (ξ̃L

j )j replacing each k
(k ≥ 2) by a string of k consecutive 1’s and shifting the rest of the sequence k − 1
units to the right.
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Now, given the L-Hierarchical sequence, (ξL
j )j , and the parameters p and ∆ ∈

(0, 1), we declare each vertex v ∈ Z2
+ as open or closed, independently of each

other, with probability defined by

(2) PL,p,∆(v is open) =

{

∆, if ξL
‖v‖ = 1

p, if ξL
‖v‖ = 0

Introducing several new definitions : renormalized sites, seeds, s-passability, sρ-
dense kernel... we gave the main ideas of the multiscale renormalization scheme
and proved the analogous statement in the Hierarchical context.

Theorem There exists some p∗ < 1, such that, given any ∆ > 0 and p > p∗

one can find some L∗(p, ∆) > 0 large enough, such that

PL,p,∆(0 ↔ ∞) > 0, ∀L > L∗.
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Overview of percolation on nonamenable graphs

Alexander Fribergh

The study of percolation on general graphs has developed during the last twenty
years. The aim of this talk is to give ideas about the methods which are available
to study percolation on such graphs. The main reference for this talk is the book
[1].

We need to restrict slightly the term general graphs, most study has been done
on graphs that look the same from every vertex. These graphs are called transitive.

Definition : If G has the property that for every pair of vertices x, y, there is

an automorphism of G that takes x to y, then G is called transitive.

The notion of transitivity is enough to get a very nice result on the number of
infinite clusters.

Theorem : If G is a transitive connected graph, the number of infinite clusters

is constant a.s. and equal to either 0, 1 or ∞.
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One subclass of great importance arises from group theory. Let Γ be a finitely
generated group and S = {g±1

1 , . . . , g±1
n } a symmetric set of generators.

Definition : The Cayley graph of Γ is the graph X(Γ, S) := (V, E) with V := Γ
and [g, h] ∈ E iff g−1h ∈ S.

A notion of great importance concerning percolation is amenability and consti-
tutes the heart of this talk. This has links to the growth rate of the graph.

Definition : We define the edge-isoperimetric constant of G = (V, E) to be

ιE(G) = inf

{ |∂EK|
|K| , ∅ 6= K ⊂ V is finite

}

,

where ∂EK = {[u, v] ∈ E, u ∈ K, v ∈ V − K}.
Then we can define amenability

Definition : A graph G is said to be amenable if ιE(G) = 0. Otherwise it is

nonamenable.

Nonamenable graphs grow very quickly, so there is space for multiple infinite
clusters to coexist. This is not possible on an amenable graph.

Theorem : If G is a connected transitive amenable graph, then Pp-a.s., there

is at most one infinite cluster.

As a consequence the transition phase on an amenable graph is very simple.
In fact even on nonamenable graphs the transition phase is not very complicated.
Let us set

• pc(G) := sup{p ≥ 0, θ(p) = 0} where θ(p) := P[0 ↔ ∞].
• pu(G) := inf{p ≤ 1, there exists a unique p-infinite cluster}.

Those two thresholds are enough to describe the transition phase using the
following theorem.

Theorem :Let G be a transitive graph. Set p2 > p1 > pc(G). In standard

coupling, every infinite p2-cluster contains an infinite p1-cluster.

On nonamenable Cayley graphs most proofs are related to invariant percolation.
Let Γ be a group that acts by automorphisms on a graph G.

Definition

• A probability measure on the subgraphs of G is a Γ-invariant percolation

model if it is invariant under the action of Γ.

• An invariant percolation model P is a bond percolation model if P[V (ω) =
V (G)] = 1.

The invariant percolation is used with the mass-trasport principle. It is a central
technique which appeared in 1998 in the context of percolation on nonamenable
graphs. It is more or less the only existing technique.
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Definition : A function m(x, y, ω) ∈ [0,∞] is diagonally invariant if it verifies

that m(x, y, ω) = m(γx, γy, γω) for all γ ∈ Γ.

Theorem :
For m(., ., .) diagonally invariant, we have

∀x ∈ Γ,
∑

y∈Γ

M(x, y) =
∑

y∈Γ

M(y, x),

where M(x, y) = E[m(x, y, ω)] for any invariant P.

This theorem is the key tool in the proof of the following theorem.

Theorem : If G is a nonamenable Cayley graph, then θ(pc(G)) = 0.

The proof of this result can be found in [2]. Through this presentation the main
results available nowadays are presented.
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Short talk I: Mean field forest fire model

Balázs Ráth

(joint work with Bálint Tóth)

We consider continuous-time Markov process with a finite state space: the set
of all simple graphs on n vertices. At a certain time an edge may be occupied or
vacant. Vacant edges become occupied with rate 1

n independently. At the same
time lightnings strike each vertex independently with rate λ(n). If a lightning
strikes a vertex, the fire spreads along the edges of the connected component of
that vertex, and burns them. The number of vertices remain unchanged, but the
connected component that was hit is turned immediately into a set of isolated
vertices.

The special case λ(n) ≡ 0 is the well-known Erdős-Rényi random graph process.
Let

vn
k (t) =

1

n
· the number of vertices contained in components of size k at time t

It is natural to expect that the law of large numbers hold: limn→∞ vn
k (t) = vk(t)

where v1(t), v2(t), . . . are deterministic functions of t.
In the Erdős-Rényi case, the phase transition of the random graph can be

observed by looking at
(

vk(t)
)∞

k=1
: for t < 1, we have

∑∞
k=1 vk(t) = 1 and vk(t)

decays exponentially. This is the subcritical phase. For t > 1,
∑∞

k=1 vk(t) < 1,
indicating the presence of the giant component in the supercritical phase. vk(t)
decays exponentially in the supercritical phase as well. t = 1 is the critical time:
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vk(t) ≍ k− 3
2 in the critical phase. 3

2 is the critical exponent of the cluster size
distribution in mean field percolation.

The critical forest fire model is characterized by 1
n ≪ λ(n) ≪ 1. If the rate

of forest fires is in this regime, then the fire has no effect on small components
in the limit, but destroys giant components immediately. The deterministic func-
tions vk(t) are identical to that of the Erdős-Rényi limit in the subcritical phase,
but evolve differently after the critical time: for every t > 1, we have

∑∞
k=1 = 1

and vk(t) ≍ k− 3
2 , this phenomenon is called self-organized criticality. The func-

tions vk(t) can be identified as the solution of the critical controlled Smoluchowski
coagulation equation.

Short talk II: A phase transition between strong amenability and
anchored expansion

Florian Sobieczky

Certain percolative partial graphs of the horocyclic product of two homogeneous
trees are considered. Removal of edges by a Bernoulli bond-percolation process is
carried out only on a subset of the set of edges. By its construction, the connected
component containing a preassigned root is the horocyclic product of two random
trees, sampled from the augmented Galton Watson measure [1, 2]. Given that the
percolation results from the horocyclic product of two trees realized as samples of
two independent augmented Galton Watson measures with equal growth, we show
almost sure strong amenability. For another subclass of these random product
graphs, sufficient closeness to an unsymmetric horocyclic product guarantees an-
chored expansion [3, 4]. This implies the existence of a phase-transition between
strong amenability and weak non-amenability (=anchored expansion).
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Short talk III: Uniqueness of the infinite cluster for oriented
percolation and the contact process.

Jan Swart

Recall that a graph is called transitive if for each two vertices there exists an
automorphism of the graph that maps the first vertix onto the second. There exists
an extensive literature about (unoriented) percolation on general transitive graphs.
In particular, it is known that one has uniqueness of the infinite cluster whenever
the graph is amenable, while it is conjectured (and proved in several special cases)
that on any nonamenable graph there exists an intermediate parameter regime
where there are infinitely many infinite clusters.

One wonders if it is possible to state and prove an analogue result for oriented
percolation, or for the closely related graphical representation of the contact pro-
cess, which we recall now. Let E and V be the edge and vertex sets of a transitive
graph G, respectively, and let E × R := {(i, t) : i ∈ E, t ∈ R}. We interpret t as
the time coordinate, which is usually plotted upwards. For each i ∈ E, at times
chosen according to an independent rate one Poisson processes, we draw a recovery
symbol ∗ at the point (i, t). For each ordered pair (i, j) such that [i, j] ∈ V , at
times chosen according to an independent Poisson processes with rate λ ≥ 0, we
draw an arrow from (i, t) to (j, t). We write (i, t) (j, u) if there exists an upward
path in E ×R from (i, t) to (j, u) that may jump from one vertex to another over
arrows but must avoid recovery symbols. Now, for each A ⊂ E,

(1) ηA
t := {j ∈ E : ∃i ∈ A s.t. (i, 0) (j, t)}

defines a Markov process (ηA
t )t≥0, taking values in the subsets of E, started in the

initial state ηA
0 = A. This process is called the (nearest-neighbor) contact process

on G with infection rate λ.
For given (i, t) ∈ E × R, let

(2) ~C(i,t) := {(j, u) : (i, t) (j, u)}

denote the oriented cluster at (i, t). We write (i, t)  ∞ if ~C(i,t) is infinite. For
the nearest-neighbor process on Z, it has been shown in [Swa05, Lemma 4] (see
also [WZ06, Thm 1.4] for an analogue statement concerning oriented percolation)
that

(3) ~C(i,t)△
~C(j,s) is compact a.s. on the event that (i, t) ∞ and (j, s) ∞.

Here A △ B := (A ∪ B)\(A ∩ B) denotes the symmetric difference between two
sets A and B. Equation (3) says that if (i, t) and (j, s) each belong to an infinite
cluster, then these infinite clusters are eventually equal.

Grimmett and Hiemer [GH02] have proved the much weaker statement that for
the nearest-neighbor process on Zd

(4)
∃(k, u) s.t. (i, t) (k, u), (j, s) (k, u), and (k, u) ∞

a.s. on the event that (i, t) ∞ and (j, s) ∞.
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This says that each two infinite clusters contain a third infinite cluster in their
intersection.

It is an interesting question if one can prove either weak cluster uniqueness in the
sense of (4) or strong cluster uniqueness in the sense of (3) for more general graphs
G, and what should be the right condition on G. It seems that the Burton-Keane
proof [BK89] (which proves cluster uniqueness for unoriented percolation on any
transitive amenable graph) cannot be adopted to the oriented setting. Indeed, one
may wonder if amenability is the right property to look at. A simple subadditivity
argument shows that each contact process has a well-defined exponential growth
rate:

(5) r := lim
t→∞

1
t log E

[

|ηA
t |
]

(A finite, nonempty).

It is known that there exist amenable graphs with exponential growth (e.g., the
lamplighter group). Here are two open problems: does cluster uniqueness (weak
or strong) hold if the exponential growth rate r from (5) is zero? If the compact
process survives (i.e., percolates) on an exponentially growing graph, is r then
necessarily positive? For nonamenable graphs, I hope to answer the latter question
positively in work in progress [Swa05].
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Short talk IV: Maximal flow in first passage percolation

Marie Théret

The model of first passage percolation that we study is the following: on the graph
(Zd, Ed), we consider a family of independent and identically distributed variables
(te, e ∈ Ed), where te is a non negative real number. We interpret te as the
capacity of the edge e, i.e., the maximal amount of fluid that can cross the tube
e per unit of time. This yields a straightforward definition of the maximal flow
φB , the maximal amount of liquid that can pass through B from its bottom to its
top per unit of time using only edges inside B, under the condition of capacity on
these edges and without loss of liquid inside the box; vertices at the top and the
bottom of B can been seen as sources and sinks. The max-flow min-cut theorem
provides an equivalent expression for φB, namely the minimal capacity of a set
of edges (i.e. the sum of the capacities of the edges that belong to the set) that
disconnects the bottom from the top of B. If we identify the dual of an edge as
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a plaquette of side length one, orthogonal to it and that cuts it in its middle, we
can interpret such separating set of edges as a separating surface of plaquettes.

In 1987 Kesten proved a law of large number for φB (see [1]): in dimension 3,
under some conditions (exponential moment, P(te = 0) small enough, height of the
box not too big), φB grows linearly in surf(B), the surface of the basis of B. Our
work addresses the large deviations for φB/surf(B). The upper large deviations
are of volume order (see [2]). This can be proved by comparing the separating
surface of plaquettes in the box which minimizes the capacity with a separating
surface of plaquettes in an infinite cylinder whose intersection with the cylinder’s
boundary is prescribed. The capacity of this second object is sub-additive, because
the fixed boundary conditions allow us to glue together separating surfaces in
adjacent cylinders. We then use the classical Cramér Theorem to conclude. In
fact, we obtain a large deviation principle.

The lower deviations are of surface order, and they are more complicated to
study. A partial result is that the probability that the renormalized flow is very
small decays exponentially fast with the surface of the basis of B, under very weak
conditions on P(te = 0) and the height of B. This can be shown in the case of
Bernoulli percolation by an argument of coarse graining, and can then be carried
over to our model with a general law for the capacities (see [3]). This result is
about to be extended thanks to certain concentration inequalities (this is a joint
work with Raphaël Rossignol), and it tunrs out that a large deviation principle
holds here too.
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Short talk V: Fluctuation estimates for last-passage percolation

Márton Balázs

(joint work with Eric Cator, Timo Seppäläinen)

We study the last-passage growth model on the planar integer lattice with expo-
nential weights. We change the rates of the exponential weights on the axes in
order to form boundary conditions that represent the equilibrium exclusion pro-
cess as seen from a particle right after its jump. The variance of the last-passage
time in a characteristic direction is of order t2/3. With more general boundary
conditions that include the rarefaction fan case it is also possible to show that the
last-passage time fluctuations are still of order t1/3, and also that the transversal
fluctuations of the maximal path have order t2/3. We adapted and then built on
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a recent study of Hammersley’s process by Cator and Groeneboom, and also uti-
lized the competition interface introduced by Ferrari, Martin and Pimentel. The
arguments are entirely probabilistic, and no use is made of the combinatorics of
Young tableaux or methods of asymptotic analysis.
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Short talk VI: One-dimensional transient random walks in random
environment in the sub-ballistic regime

Olivier Zindy

(joint work with Nathanaël Enriquez, Christophe Sabot)

The main result about transient RWRE with zero asymptotic speed was obtained
by Kesten, Kozlov and Spitzer in [3] who proved that, when normalized by a
suitable power of n, the hitting time of the level n converges towards a positive
stable law whose index corresponds to the power of n lying in the normalization.
In [1], our purpose is to characterize this positive stable law.

The proof chooses a radically different approach than previous ones dealing with
the transient case. While the proof in [3] is mainly based on the representation of
the trajectory of the walk in terms of branching processes in random environment
(with immigration), our approach relies heavily on Sinai’s interpretation of a par-
ticle living in a random potential. However, in the recurrent case, the potential
one has to deal with is a recurrent random walk and Sinai introduces a notion of
valleys which does not make sense anymore in our setting where the potential is
a (let’s say negatively) drifted random walk. Therefore, we introduce a different
notion of valley which is closely related to the excursions of this random walk
above its past minimum. It turns out that a result of Iglehart gives an equivalent
of the tail of the height of these excursions. Now, as soon as one can prove that the
hitting time of the level n can be reduced to the time spent by the random walk
to cross the high excursions of the potential above its past minimum, between 0
and n, which are well separated in space, an i.i.d. property comes out, and the
problem is reduced to the study of the tail of the time spent by the walker to cross
a single excursion.

It turns out that this tail involves the expectation of the functional of some
meander associated with the random walk defining the potential. Now, this func-
tional is itself related to the constant that appears in Kesten’s renewal theorem.
These last two facts are contained in [2]. Now, in the case when the transition
probabilities follow some Beta distribution a result of Chamayou and Letac gives
an explicit formula for this constant which yields finally an explicit formula for
the parameter of the positive stable law which is obtained at the limit.
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Open problem: Is there a RSW theorem for anisotropic percolation?

Jakob Erik Björnberg

We consider bond percolation on the square lattice with horizontal and vertical
edge parameters ph and pv, respectively, satisfying ph + pv = 1. This model is
critical and self-dual, see [1, Section 11.9]. Let H(a, b) be the event that there is
an open horizontal crossing of the rectangle [0, a] × [0, b]. It is a well-known and
extremely important fact that in the case ph = pv = 1/2, we have

• An a-priori bound saying that P (H(n, n)) ≥ 1/2 > 0 for all n, and
• A conditional extension result saying that, if an a-priori bound of the form

P (H(n, n)) ≥ c1 > 0 does hold, then for k = 1, 2, . . . there are constants
ck > 0 such that also P (H(kn, n)) ≥ ck.

Our question is simply: do corresponding results hold for general ph, pv as above?
Some clarifications are necessary. On the one hand, it is not hard to show that

a conditional extension result for crossings of rectangles does hold (only horizontal
reflection symmetry is needed, so the method due to Smirnov explained in [2,
Section 1.3] works). But for squares there is no known a-priori bound. On the
other hand, for shapes other than squares an a-priori bound is known: letting

Dn = {(x, y) ∈ R
2 : |x| + |y − 1/2| ≤ n + 1/2}

be an “off-set diamond”, we have that there is probability exactly 1/2 of having
an open crossing from the upper left to the lower right side, for all n. But for
this shape there is no known extension result to, say, “elongated diamonds”. So
the question may be rephrased: is there a class of “shapes” such that an a-priori
bound and some form of conditional extension result hold simultaneously?

This question is vague about what classes of shapes we wish to consider. Let
us illustrate what we want by considering rectangles again. In Kesten’s book [3,
Lemma 7.1], it is shown that there are constants A, B, c1 > 0 and a function f(n)
satisfying A log n ≤ f(n) ≤ eBn, such that for large enough n,

P (H(n, f(n))) ≥ c1 and P (H(f(n), n)) ≥ c1.

Rectangles of this form have aspect ratio n/f(n) depending on n. This a-priori
bound was sufficiently strong for Kesten to deduce that the critical surface is
indeed ph + pv = 1, but is less useful for studying scaling limits of the model.
Yet another version of our question may therefore be: can the bounds on f(n) be
improved? Can we take f such that n/f(n) has a nontrivial limit?
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Finally, note that the a-priori bound for diamonds coupled with horizontal
reflection symmetry do not necessarily imply results of the form we want. To show
this, Vincent Beffara gave the example of a type of percolation on the triangular
lattice, where each horizontal line is open or closed with probability 1/2.
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An open problem in anisotropic percolation

Bernardo N.B. de Lima

This open problem proposed by E. Andjel some years ago is described as follows.
We consider an anisotropic independent bond percolation model on Z2

+, i.e. we

suppose that the vertical edges of Z2
+ are open with probability p and closed with

probability 1 − p, while the horizontal edges of Z2
+ are open with probability αp

and closed with probability 1 − αp, with 0 < p, α < 1. Let x = (x1, x2) ∈ Z2
+,

with x1 < x2, and x′ = (x2, x1) ∈ Z2
+. It is natural to ask how the two point

connectivity function Pp,α(0 ↔ x) behaves, and whether anisotropy in percolation
probabilities implies the strict inequality Pp,α(0 ↔ x) > Pp,α(0 ↔ x′). In general,
this question is open and the note [1] gives an affirmative answer in some regions
of the parameters involved.
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