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Abstract. Statistical model-building is the science of constructing models
from data and from information about the data-generation process, with
the aim of analysing those data and drawing inference from that analysis.
Many statistical tasks are undertaken during this analysis; they include clas-
sification, forecasting, prediction and testing. Model-building has assumed
substantial importance, as new technologies enable data on highly complex
phenomena to be gathered in very large quantities. This creates a demand
for more complex models, and requires the model-building process itself to
be adaptive.

The word “paradigm” refers to philosophies, frameworks and methodolo-
gies for developing and interpreting statistical models, in the context of data,
and applying them for inference. In order to solve contemporary statistical
problems it is often necessary to combine techniques from previously separate
paradigms.

The workshop addressed model-building paradigms that are at the fron-
tiers of modern statistical research. It tried to create synergies, by delineating
the connections and collisions among different paradigms. It also endeavoured
to shape the future evolution of paradigms.

Mathematics Subject Classification (2000): 62-06,62A01,62C05,62G99.

Introduction by the Organisers

The development of statistics during the last century has involved largely disjoint
paradigms. Sometimes these have been complementary, for example in the case of
Bayesian and frequentist methodologies. In other instances they have been overlap-
ping, e.g. model-selection methods such as minimum description length methods
and Akaike’s information criterion; or evolutionary, e.g. parametric, semiparamet-
ric and nonparametric approaches; or developed along similar lines, e.g. para-
metric and nonparametric approaches to likelihood; or related in other ways,
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e.g. dimension-reduction methods and techniques for analysing high-dimensional
data. The mathematical theory behind these techniques is especially complex and
difficult. One example is the understanding and harnessing of the geometry of
likelihood, which is still a major task for theoretical statisticians.

Finding a statistical model may include graphical representation of the data,
calculation of relevant statistics, checking of putative models against the data,
and assessment of possible outliers or serial correlations. In other cases, such as
in nonparametric regression, the family of models is so large that a major aspect
of the problem is choosing a particular model from a very large class, for example
in the context of sparsity.

It is often only at the final stage of model specification that such formalised
strategies are employed. Examples include Akaike’s information criterion (AIC),
Bayes information criterion (BIC), minimum description length and stochastic
complexity (MDL) and cross-validation.

When statistical model selection is framed in a mathematical setting, it often
arises as an optimisation problem, and has many points of contact with applied
mathematics. The constraints, and hence the objective function, are determined by
the paradigm. In this context the type of topology (strong or weak), the methods
for computation and other mathematical issues play major roles. Statisticians
are forced to apply and also to develop mathematical theory in order to find the
techniques and concepts they need to understand the complex, real-world problems
that motivate advances in their subject.

In the past the paradigms of statistical model building were developed sepa-
rately. In the future, multiple paradigms will have to be used simultaneously.
Indeed, many frontier problems in statistics today already involve several different
concepts simultaneously. For example, techniques for analysing complex, high-
dimensional data sets often use methods for complexity measurement, dimension
reduction and classification. The demand for multiple paradigms in statistical
model building was a major motivator of the workshop.

Thus, the workshop drew together statisticians working on the development
and application of statistical model building, with the aim of critiquing different
approaches, assessing their usefulness, developing new techniques, and mapping
future directions for research.

The workshop was well attended, with 45 participants from all over the world,
among them many young researchers. We were able to bring together experts
from different fields of statistics: Bayesian methods, machine learning, likelihood
theory, minimum description length and others.

Each morning, especially towards the beginning of the workshop, somewhat
longer lectures were presented by senior researchers. The opening lecture was
given by L. D. Brown, followed by other review-type presentations during the
first three days for example by A.P. Dawid, S. Fienberg, R. Beran, R. Shibata, J.
Rissanen, P. L. Davies and A.B. Tsybakov.

These lectures gave rise to a lively floor discussion on Wednesday evening, on
the very meaning of statistical paradigms and on the new tasks for statistics in
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finding methods extracting important information from data. Particular attention
was focused on challenging statistical problems emerging from new research areas,
arising for example in the life sciences, physics, the social sciences, etc.

To characterise better these new challenges, which are often associated with
new data structures, talks of more applied type were presented during the last two
days, for example by G. Winkler, R. Carroll, A. Welsh, J. Ramsay and P. Hall.
These yielded further discussion, and also new research cooperations among the
participants.
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Abstracts

V -fold penalization: an alternative to V -fold cross-validation

Sylvain Arlot

One of the most widely used model selection techniques is V-fold cross-validation
(Geisser [7]). It estimates the prediction error of estimators built upon n(V −
1)V −1 < n data, which can be interpretated as overpenalization. From the asymp-
totical viewpoint, this can be suboptimal (when V is fixed) and it has to be cor-
rected, for instance following Burman [4]. However, when the sample size is small,
it may happen that V = 2 gives better results than V = 10, because overpenal-
ization is benefic in some cases [1]. The choice of V in V -fold cross-validation can
then be a difficult problem.

Following Efron’s resampling heuristics [5], we propose to use a V -fold resam-
pling scheme to define a new penalization procedure, called V -fold penalization
([2], Chap. 5). It generalizes Burman’s bias correction, and produces a flexible
procedure, where V is decoupled from the overpenalization factor.

In the framework of regression on a random design with heteroscedastic noise,
we prove several non-asymptotic results about V -fold subsampling, and more gen-
eral resampling schemes. In particular, V -fold penalization (with V fixed) satis-
fies a non-asymptotic oracle inequality with constant almost one, which implies
its asymptotic optimality. Hence, it improves on V -fold cross-validation. More-
over, choosing a particular family of models, we obtain an estimator adaptive to
the smoothness of the regression function and the heteroscedasticity of the noise.
Thus, V -fold penalties are more robust that Mallows’ Cp criterion.

The theoretical results concerning V -fold penalties stay valid for resampling
penalties with general exchangeable weights ([2], Chap. 6). In particular, they
can be applied to V -fold penalties with V = n, as well as bootstrap penalties
(defined by Efron [6]). This extends an asymptotical result on bootstrap penalties
in another framework (Shibata [11]). Using independent Rademacher weights, one
obtain a localized version of Rademacher complexities (Koltchinskii [8] ; Bartlett,
Boucheron and Lugosi [3]) that is much easier to compute than local Rademacher
complexities (Lugosi and Wegkamp [10] ; Koltchinskii [9]).

Although we have to assume a particular structure for the models (i.e. they
are all made of histograms), we believe that the same results hold in a much
more general framework. We for instance have partial results for general bounded
regression and binary classification ([2], Chap. 7).

A simulation study shows that V -fold penalties behave quite well in several
cases. Moreover, they often outperform V -fold cross-validation and Mallows’ Cp
penalties, in particular in difficult heteroscedastic situations. Their flexibility al-
lows to improve performances when the signal-to-noise ratio is small; this is ob-
tained by taking V large enough, together with overpenalization.
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The choice of V also appear to be quite easier: the performances of V -fold
penalties are always better when V increases. Then, V has only to be chosen
according to the computational complexity of the procedure, which is exactly the
same as the one of V -fold cross-validation.
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Statistical model versus fit versus data

Rudolf Beran

Until the mid-twentieth century, the main tools for most statisticians were prob-
ability models for data and mechanical calculators. In this pre-computer environ-
ment, grand and simple philosophical theories of statistics were inevitable. The
highly influential monographs by Wald , Savage, and Fisher in the 1950’s are cases
in point. Such a phase has not been unusual in the development of a science.
Within the intellectual frameworks of the pioneers, mathematical statistics has
seen impressive developments as a methodology for analyzing noisy data. But
have these ideas reached their limits?

Computer technologies have recalled to prominence the significant distinctions
among data, probability models, pseudo-random numbers, procedures, and their
numerical realizations. For instance, Tukey’s book on exploratory data analysis in
the mid-1970’s made no use of probability models, focusing on statistical proce-
dures and on non-probabilistic reasoning to support them. Yet, it also contains the
sentence: “Today’s understanding of how well elementary techniques work owes
much to both mathematical analysis and experimentation by computer.”
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A major technology typically has evident effects and subconscious effects on
human behavior. Once a major new technology establishes itself, the hidden ef-
fects of its predecessors become increasingly evident. Sharp perceptions of this
phenomenon include, “The medium is the message” (H. M. McLuhan) and “To a
man with a hammer, everything looks like a nail” (Mark Twain).

Statistics has succeeded remarkably in exporting ideas and formulations to the
statistical sciences, fields with names often ending in “metrics” that express their
basic concepts in statistical terms. However, data is rarely if ever certifiably
random. Standard model assumptions in math stat theory are strong idealiza-
tions. Our usual math stat tools do not suffice to evaluate emerging complex
data-analytic algorithms. Statistics: Challenges for the Twenty-First Century,
a report written in 2004 by a distinguished panel for the U.S. National Science
Foundation, has noted the intellectual gaps between current math stat theory and
present challenges in data analysis.

Through use of computer technologies, statistics has the potential to become an
experimentally supported information science, successor to its current formulation
as a mathematical philosophy. The success of statistical procedures is, in fact, an
empirical question. Statistics can speed its potential transition to an information
science by being clear-headed about these matters. Subjects, such as physics,
that made the transition from philosophy to science centuries ago (once pertinent
technologies allowed) offer models for interplay between theory and experiment.

A technical case-study explores these topics further. The distinct means of
a multi-way layout with one or more q-variate responses observed at each of p
factor-level combinations can be arranged systematically into a p × q matrix M ,
each row specifying a mean response. The study develops practical regularized
estimators of M that typically dominate, in asymptotic loss, the least squares fit
to the model. The construction first devises a class of candidate estimators as
the closure of a class of Bayes estimators for M ; and then finds the candidate
estimator with smallest estimated risk or loss. The candidate estimators rely on
affine shrinkage of s-fold projection decompositions of the least squares estimator of
M . As the number p of factor-level combinations in the multi-way layout tends to
infinity, the loss of the regularized estimator is seen to converge asymptotically to
that of the best candidate estimator. Adaptation over a class of s-fold projection
decompositions as well as over affine shrinkage matrices is the main technical
advance in this paper. Most importantly, the treatment is under a fixed effects
statistical model that makes minimal assumptions.
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A unified view of regression, shrinkage, empirical bayes, hierarchical
bayes, and random effects

Lawrence D. Brown

A wide range of statistical problems involve estimation of means or conditional
means of multidimensional normal distributions. There are many commonly em-
ployed classes of statistical models and related approaches to such problems. This
talk surveys the interrelations among some of these approaches, and proposes some
issues for further investigation.

The survey begins with a review of the background of shrinkage estimation.
Stein (1956) surprised the statistical world with his discovery that the ordinary
least squares estimator of a multivariate normal mean is not admissible in the usual
setting. James and Stein (1961) then produced their classic estimator which often
provides significant improvement over the ordinary estimator. ’Shrinkage’ is a core
feature of the estimator. An empirical Bayes interpretation of shrinkage was first
proposed by Stein (1962) and Lindley (1962). The interpretation was effectively
exploited by Efron and Morris (1972) and subsequently by many others. The
empirical Bayes interpretation and its hierarchical fully Bayes first cousin, as first
developed for this problem by Strawderman (1972), provide an important link to
the manifestations of shrinkage in the various contemporary methodologies. The
Bayesian viewpoint is also completely consistent with a random-effects view of the
situation. These perspectives in turn allow for a shrinkage motivation of familiar
ordinary linear regression.

Some analytic theory and data analyses illustrate the main points. The first
of the data-based illustrations uses Galton’s original data on adult heights. (See
Hanley (2004) for the data.) The goal is to use heights of daughters within a
family to predict the heights of the sons within that family. The second illustration
sketches an analysis of US baseball batting averages, with the goal being to use
each batters first half-season batting records in order to predict their second half-
season performance. (See Brown (2007) for a thorough analysis of this data.) After
preliminary manipulations both these examples involve estimation of means, and
out-of-sample predictions, based on heteroscedastic Gaussian data. The data is
moderately high dimensional (151 families and 567 batters, respectively).

It is (now) well-known that the observed sample means are themselves not de-
sirable estimators in such contexts. For homoscedastic data shrinkage estimation
ala James and Stein provides canonical frequentially motivated estimators that
dominate the sample means. Shrinkage is intimately related to three other ap-
proaches to estimation (and other inference) for such data, which we termed the
“three siblings”. These are Empirical Bayes, Hierarchical Bayes, and Random Ef-
fects. The close connection among these three and their close relation to minimax
shrinkage provides increased motivation for them. However, this does not pro-
vide much basis for choosing any one version from one among them as the version
of choice. Indeed, in the canonical homoscedastic setting there is little practical
difference in performance among them. There are, however, significant practical
differences in heteroscedastic settings.
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In the homoscedastic setting ordinary regression can also be viewed as a shrink-
age estimator. The view here is the converse of that in Stigler (1990) in which
shrinkage is interpreted as a version of ordinary regression. The interpretation
of regression as a version of shrinkage augments the understanding of (any one
of) the three siblings in heteroscedastic settings, and also further motivates their
use. This shrinkage idea is encapsulated in rough form in the regression paradox
that dates back to Galton’s original treatments of his data. In heteroscedastic
settings (as in the examples treated in our presentation) the general shrinkage
idea behind regression seems appropriate, but its insistence on fitting a linear
estimation/prediction form is not desirable.

For heteroscedastic problems, such as those considered here, there are significant
numerical differences among different implementations of the different procedures.
The most pronounced difference is that between the classical proposals for minimax
shrinkage (as, eg in Berger (1985, Theorem 5.20)) and the various formulas for
the three siblings. This difference has been noted by many researchers. See,
eg Casella (1980). Roughly, the classical minimax proposals shrink the most on
the dimensions where the variance is smallest. This type of behavior contrasts
with all the other proposals here which shrink the least on those dimensions, and
the classical minimax procedure is neither intuitively appealing nor numerically
efficient in the examples.

To remedy this, a different type of risk function is proposed as a criterion for
minimaxity (and admissibility) in problems such as ours that involve estimation
of several means of qualitatively exchangeable importance, a-priori. Suppose it is
desired to estimate the coordinate values {θi : i = 1, .., p} of the vector θ. The ordi-

nary squared-error risk function for a procedure δ, is R (θ, δ) = Eθ

(
‖δ (X) − θ‖2

)
.

We propose instead to judge a procedure by its ensemble risk. There are alternate
versions of ensemble risk that can be motivated from different perspectives, and
may lead to somewhat different results.

One version of this risk is

R
(
γ2, δ

)
=

∫
R (θ, δ)φp

(
θ; 0, γ2

)
dθ

where φp
(
θ; 0, γ2

)
denotes the p-dimensional normal density with iid coordinates

having mean 0 and variance γ2. (In this version the ensemble risk is a function of
only one hyper-parameter, γ2.)

Another version of ensemble risk can be defined as follows. Let θ(•) denote the
p-dimensional vector whose coordinates are the increasingly ordered coordinate
values of θ. Then define this version of ensemble risk as a function of the values
of θ(•) by

R
(
θ(•), δ

)
=

1

p!

∑

ψ:ψ(•)=θ(•)

R (ψ, δ).

We conjecture that many of the standard shrinkage type estimators are minimax

and nearly admissible for both R and R. (An appropriately chosen hierarchical
Bayes estimator should be minimax and admissible.)
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In the baseball batting example it is possible to provide an interesting com-
parison of the out-of-sample performance of several versions of empirical Bayes,
hierarchical Bayes and ordinary shrinkage estimators. It turns out that a non-
parametric empirical Bayes estimator suggested in Brown and Greenshtein (2007)
performs best, with the ordinary shrinkage estimator and a method-of-moments
parametric empirical Bayes estimator not far behind. Other versions of empirical
Bayes and hierarchical Bayes perform less well, although - as anticipated - all of
the methods dominate the ordinary, naive estimator. (Other numerical investiga-
tions we have performed suggest that the explanation for the weaker performance
of some of the methods may be a robustness issue related to structural features of
the baseball context that are not reflected in the motivation for these methods.)

Finally, it is noted that the general perspectives here extend considerably be-
yond the specific data structures of the examples. These perspectives apply to
a much wider variety of settings in which shrinkage is also appropriate. These
setting include multiple regression, longitudinal and panel data models, spatial
models (especially those appropriate for “Kriging”), penalized likelihood meth-
ods (“regularization”) involving quadratic penalty functions (especially smoothing
splines), and various nonparametric regression and density estimation problems.
Other setting involving varieties of shrinkage should be considered as being also
related.
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High-dimensional variable selection: faithfulness, strong associations
and the PC-algorithm

Peter Bühlmann

We consider the problem of variable selection in high-dimensional linear models
where the number of covariates greatly exceeds the sample size. In particular, we
present the concept of partially faithful distributions and discuss their role for in-
ferring associations between the response and the covariates. For partially faithful
distributions, a simplified version of the PC-algorithm [9] which is computationally
feasible even with thousands of covariates yields consistency for high-dimensional
variable selection under clearly weaker conditions than penalty-based approaches;
in fact, we prove that the PC-algorithm is consistent for very ill-posed design [1].
If partial faithfulness does not hold, we show that the PC-algorithm still consis-
tently identifies some strong associations which are related to notions of causality
[1].

The variable selection problem for high-dimensional models has recently gained
a lot of attraction. A particular stream of research has focused on estimators
and algorithms whose computation is feasible and provably correct [7, 13, 2, 3, 8,
11, 12]. As such, these methods distinguish themselves very clearly from heuris-
tic optimization of an objective function or stochastic simulation or search, e.g.
MCMC, which are often not really exploiting a high-dimensional search space.
Prominent examples of computationally feasible and provably correct (w.r.t. com-
putation) methods are penalty-based approaches, including the Lasso [10], the
adaptive Lasso [13] or the Dantzig selector [3].

We propose here a method for linear models which is “diametrically opposed” to
penalty-based schemes. Three reasons for another approach include the following:
(i) it can be worthwhile to infer stronger concepts of associations than what is
obtained from the usual regression coefficients, in particular when focusing on
causal relations; (ii) from a theoretical perspective, we prove that in the framework
of so-called partially faithful distributions, our method leads to consistent model
selection for almost arbitrary designs and hence for much more general situations
than what has been shown for the Dantzig selector, the Lasso or the adaptive Lasso;
(iii) from a practical perspective, it can be very valuable to have a “diametrically
opposed” method in the tool-kit for high-dimensional data analysis, raising the
confidence for relevance of variables if they have been selected by say two very
different methods. We will address all these reasons, without prioritizing one over
the other.

Our method is a simplification of the PC-algorithm [9] which has been shown
to be consistent for estimating high-dimensional directed acyclic graphs [6]. The
simplification arises because selecting variables in a linear model is easier than as-
signing a directed association in a graphical model. In [1] we prove consistency for
variable selection in high-dimensional linear models where the number of covariates
can greatly exceed the sample size. For the ordinary problem of inferring the non-
zero regression coefficients, we introduce and assume the framework of partially
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faithful distributions. Partial faithfulness is novel and weaker than the faithful-
ness condition from graphical models [9, cf.]. Assuming such partial faithfulness
in a linear model, which is arguably only a mild requirement, our simplified PC-
algorithm is asymptotically consistent under almost arbitrarily ill-posed designs;
essentially, we only need that the variables are identifiable in the population case
and there are no conditions on the coherence or minimal sparse eigenvalues of the
design. Furthermore, causal relations and stronger notions of associations than
what is represented by the regression coefficients can be important. In partic-
ular, when faithfulness fails to hold, these concepts distinguish themselves very
clearly from the regression-type associations. We also prove that for non-faithful
distributions, the PC-algorithm is consistent for inferring some strong associations
between the response variable and the covariates.

Moreover, the PC-algorithm is computationally feasible in high-dimensional
problems: its computational complexity is crudely bounded by a polynomial in p,
the dimension of the covariate space, and we illustrate that our implementation in
R has about the same magnitude for computing time as the LARS-algorithm [4].
Our approach can also be adapted for preliminary reduction of the dimension of
the covariate space: we call it “correlation screening” and the method bears some
relations to “sure independence screening” [5].

Finally, we compare our PC-algorithm with the Lasso and the Elastic Net [14],
and we demonstrate the usefulness of having “diametrically opposed” methods
for analyzing a high-dimensional data-set on riboflavin production from bacillus
subtilis.
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Gene-environment interaction studies

Raymond J. Carroll

(joint work with Nilanjan Chartterjee)

Genetic epidemiologic studies often involve investigation of the association be-
tween a disease and a candidate genomic region of biologic interest. Typically, in
such studies, genotype information is obtained on multiple loci that are known
to harbor genetic variations within the region of interest. An increasingly pop-
ular approach for analysis of such multi-locus genetic data are haplotype-based
regression methods where the effect of a genomic region on disease-risk is mod-
elled through “haplotypes”, the combinations of alleles (gene-variants) at multiple
loci along individual homologous chromosomes. It is believed that association
analysis based on haplotypes, which can efficiently capture inter-loci interactions
as well as “indirect association” due to linkage-disequilibrium of the haplotypes
with unobserved causal variant(s), can be more powerful than more traditional
locus-by-locus methods.

A technical problem for haplotype-based regression analysis is that in tradi-
tional epidemiologic studies the haplotype information for the study subjects is
not directly observable. Instead, locus-specific genotype data are observed, which
contain information on the pair of alleles a subject carries on his/her pair of ho-
mologous chromosomes at each of the individual loci, but does not provide the
“phase information”, that is which combinations of alleles appear across multiple
loci along the individual chromosomes. In general, the genotype data of a subject
will be phase-ambiguous whenever the subject is heterozygous at two or more loci.
Statistically, the lack of phase information can be viewed as a special missing data
problem.

Recently, a variety of methods have been developed for haplotype-based anal-
ysis of case-control data using the logistic regression model [1]-[2]. Two classes
of methods, namely “prospective” and “retrospective” have evolved. Prospective
methods ignore the retrospective nature of the case-control design. In the classical
setting, without any missing data, justification of prospective analysis of case-
control data relies on the well known result about the equivalence of prospective
and retrospective likelihoods under a semiparametric model that allows the dis-
tribution of the underlying covariates to remain completely nonparametric. Even
with missing data, the equivalence of the prospective and retrospective likelihood
may hold, provided the covariate distribution is allowed to remain unrestricted.
For haplotype-based genetic analysis, however, complete nonparametric treatment
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of the covariates, including haplotypes, may not be possible due to intrinsic iden-
tifiability issues for the phase ambiguous genotype data. Thus, in this setting, the
proper retrospective analysis of case-control data requires special attention.

An attractive feature of the retrospective likelihood is that it can enhance effi-
ciency of case-control analysis by directly incorporating certain type of covariate
distributional constraints that are natural for genetic epidemiologic studies. The
assumptions of Hardy-Weinberg-Equilibrium (HWE) and gene-environment inde-
pendence are two prime examples of such constraints. The HWE model, which
specifies simple relationships between allele and genotype frequencies at a given
chromosomal locus, or between haplotype and diplotype (pair of haplotypes on
homologous chromosomes) frequencies across multiple loci, is a natural law for
a random mating large stable population. Often, it is also natural to assume
that a subject’s genetic susceptibility, a factor which is determined at birth, is
independent of his/her subsequent environmental exposures. However, if these
assumptions are violated in some situations, then retrospective methods can pro-
duce serious bias in odds ratio estimates. Thus, there is a need for alternative
flexible models for specifying the joint distribution of genetic and environmental
covariates that could be used to assess the sensitivity of the retrospective methods
to underlying assumptions as well as to develop alternative robust methods.

If it is the underlying biologic units through which a mechanism of gene is deter-
mined, then it is natural to allow for direct association between haplotypes and en-
vironmental exposures. Moreover, if such association could exist, then quantifying
the association between haplotypes and certain type of environmental exposures,
such as lifestyle and behaviorial factors, would be of scientific interest.

In this article, we propose methods for retrospective analysis of case-control
data using a novel model for the gene-environment distribution that can account
for direct association between haplotypes and environmental exposures. We as-
sume a standard logistic regression model to specify the disease risk conditional
on diplotypes and environmental exposures. In addition, we assume a polytomous
logistic regression model for specifying the population distribution of the diplo-
types conditional on the environmental exposures, with the intercept parameters
of the model specified in such a way that the marginal distribution of the diplo-
types can follow certain population genetic constraints such as HWE. Moreover,
by exploiting the equivalence of prospective and retrospective odds-ratios under
the polytomous regression model, we further incorporate certain constraints on the
diplotype-exposure odds-ratio parameters that could reflect specific “mode of ef-
fects” for the haplotypes. We allow the marginal distribution of the environmental
exposure to remain completely nonparametric.

Under the proposed modelling framework, we describe a “semiparametric” es-
timating equation method for inference about the finite dimensional parameters
of interest, namely the disease odds-ratios, haplotype frequencies and haplotype-
exposure odds-ratios. We develop a suitable expectation-maximization (EM) al-
gorithm to account for the phase-ambiguity problem. We study asymptotic theory
of the proposed estimator under the underlying semiparametric setting.
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We assess the finite sample performance of the proposed estimator based on
case-control data that were simulated utilizing haplotype patterns and frequencies
obtained from a real study. We also apply the proposed methodology to a case-
control study of colorectal adenoma to investigate whether certain haplotypes in
the smoking metabolism gene, NAT2, could modify smoking-related risk of col-
orectal adenoma and whether the same haplotypes could influence an individual’s
susceptibility to smoking as well. A SAS macro is available from the first author
to implement the methodology.
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Order selection in inverse regression models

Gerda Claeskens

(joint work with N. Bissantz, H. Holzmann, A. Munk)

In inverse regression models, Y = Kµ+ ǫ, the unknown regression function µ(.), is
not observed directly but only after application of an operator K, which cannot be
continuously inverted. For simplicity we assume K to be known. Thus, only noisy,
indirect observations Y for the function µ are available. We propose two omnibus
test statistics for use in inverse regression problems. Eubank and Hart (1992) first
studied lack-of-fit testing based on selecting an appropriate order of an orthogonal
series expansion. They named this order selection testing, since indeed one form
of the test statistic can be viewed as a test on the selected (or estimated) order
of the series. The selected order in such a test is obtained via a modified version
of Akaike’s (1973) information criterion. A similar type of test, though originally
introduced for testing the distribution function in a goodness-of-fit setting, uses
instead the Bayesian information criterion (Schwarz, 1978). These tests build
on the idea of a Neyman smooth test and were introduced by Ledwina (1994).
Both the order selection test and the Neyman smooth test extend naturally to
inverse regression modeling, where the orthogonal series expansion is canonically
given by the singular value expansion, and the ordering of the singular functions
is determined by the magnitude of the corresponding singular values.
We also introduce two model selection criteria which extend the classical AIC
and BIC to inverse regression problems. In a simulation study we show that
the ‘inverse’ order selection and Neyman smooth tests outperform their ‘direct’
counterparts in many cases. The theory is motivated by data arising in confocal
fluorescence microscopy. Here, images are observed with blurring, modeled as
convolution, and stochastic error at subsequent times. The aim is to reduce the
signal to noise ratio by averaging over the distinct images. In this context it
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is relevant to decide and test the hypothesis whether the images are still equal,
or have changed by outside influences such as moving of the object table. The
proposed tests are used for this purpose.
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Formal frameworks for causal modelling

A. Philip Dawid

There is currently a wide variety of statistical approaches to causal inference, of
greater or less formality, including structural equation models, Rubin’s potential
response model, and Pearl’s graphical causal networks. These are based on a
variety of distinct foundations, ingredients, assumptions and methods, and involve
a variety of conceptions of the effects of interventions, or of stable relationships
across regimes; a variety of views as to the role hypothetical and counterfactual
reasoning; and a variety of semantics and uses for algebraic, graphical and other
representations. But the different approaches are all in agreement that causal
inference requires significant modifications and extensions to standard statistical
machinery.

The foundational issues underlying these varying views, and their implications
for data analysis, deserve deeper examination than they typically receive. I survey
the field from a somewhat idiosyncratic philosophical viewpoint, and argue for a
number of heretical views, including the following:

The relationship between a causal model and the empirical world is subtle and
often misunderstood. Causal models are often used for purposes that they can
not support, such as extraction of causal conclusions from observational data.
Important distinctions, such as between prospective and retrospective assignation
of cause, are frequently overlooked. Some commonly accepted properties, such as
the deterministic nature of variables and the relationships between them, are at
variance with traditional statistical approaches and insights. Others are untestable
even in principle, but can make important differences to the inferences drawn. As a
counterbalance to these shortcomings of the various complex modern approaches,
I demonstrate the power of traditional statistical and decision-theoretic tools to
address causal issues simply and cleanly
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Non-crossing quantile curves

Holger Dette

(joint work with S. Volgushev)

The problem of crossing quantile estimates in quantile regression has been
mentioned by numerous authors [see e.g. He (1997) or Koenker (2005) among
many others]. In this paper an estimate of conditional quantiles is proposed, that
avoids the problem of crossing quantile curves [calculated for various p ∈ (0, 1)].
The method uses an initial estimate of the conditional distribution function in a
first step and solves the problem of inversion and monotonization with respect to

p ∈ (0, 1) simultaneously. For a given initial estimate F̂x(y) of the conditional
distribution function F (y|x) the (non-crossing) quantile curves are defined by

F̂−1
x,G(p) = (G−1 ◦ Ĥ−1

x )(p)(1)

where

(2) Ĥ−1
x (p) =
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Nhd

N∑
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)
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G is a given distribution function with supp(G) = R, Kd is a nonnegative kernel
and hd a corresponding bandwidth. Under some assumptions of regularity it is
shown that the weak convergence of
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implies that the corresponding quantile estimator converges also in law, i.e.
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The performance of the new procedure is illustrated by means of a simulation
study and some comparisons with the currently available procedures which are
similar in spirit with the proposed method, are presented.
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Approximating data

Laurie Davies

(joint work with Arne Kovac, Monika Meise)

The main paradigms of statistics, the frequentist and Bayesian ones, can be de-
scribed using the simple urn model. An urn contains an unknown number of
red and white balls and a finite sample of size n with replacement is taken. The
canonical model is the binomial b(n, θ) where the parameter θ is identified with the
proportion p of red balls in the urn. Using this model the Bayesian can introduce
concepts such as betting odds, coherence, utility, prior distributions for param-
eters, the likelihood principle, stopping rules, sufficient statistics and posterior
distributions. The frequentist can introduce the concepts of estimation, biased
and unbiased, loss functions, statistical tests, optimality, the Neyman-Pearson
lemma, likelihood, maximum likelihood, asymptotics and asymptotic optimality.
The advantage of this simple model is that it is simple. The model seems per-
fectly reasonable and there is no problem in identifying the parameter θ with the
proportion p. However the very simplicity of the situation is also its weakness as
the problem of the relationship between the model and the real world does not
arise. The situation changes if we take what is perhaps the next simplest situation,
that of a location model. Given data, say measurements of the amount of copper
(milligrams per litre) in a sample of drinking water, there is no longer a canonical
model. Indeed many different location models F (· − θ) are consistent with the
data and the concepts used for the urn are of no help in deciding which different
choices of F are appropriate. One reason for the lack of applicability of the con-
cepts is that they operate in a density (likelihood) based strong topology whereas
the adequateness of a model is decided at the level of distribution functions using a
weak topology. For this reason a concept of approximation in statistics cannot be
likelihood based. The problem of the choice of the model F in the example of the
location parameter can only be solved by some form of regularization. The func-
tion F should not offer precision for free and this leads to the choice of the least
informative model consistent with the data. It the data are consistent with the
normal model then this can be chosen as it minimizes the Fisher information and
is, in Tukey’s sense, bland or hornless. We turn now to non-parametric regression.
Suppose we have data (ti, y(ti)), i = 1, . . . n and wish to apply the model

Y (t) = f(t) + σZ(t), 0 ≤ t ≤ 1

where Z(t) is standard Gaussian white noise. Based on the behaviour of the partial

sums
∑k
i=j Z(ti)/

√
k − j + 1, 1 ≤ i ≤ j ≤ n we define an approximation region

An by

An =
{
f̂n : max

I
|wn(f̂n, I)| ≤ σ

√
τn(α) log n

}

where
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|I|
∑

ti∈I

(y(ti) − f̂n(ti))
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|I| is the number of points ti in the interval I and τn(α) is defined by

P

(
max
I

1√
|I|

∣∣∣
∑

ti∈I

Z(ti)
∣∣∣ ≤ σ

√
τn(α) log n

)
= α

It is easy to show that for data(ti, Y (ti)), i = 1, . . . n generated under the model
the region An is a universal, exact and non-asymptotic α-confidence region for f .
On replacing σ by

σn = 1.048358median(|y(t2) − y(t1)|, . . . , |y(tn) − y(tn−1)|)
the region becomes an honest rather an exact α-confidence region for f. Given An

all questions relating to adequate models for the data can be answered by some
form of regularization within An. These can be some form of shape regularization
such as minimizing the number of intervals of increase or decrease of all functions
in An, or they can be some form of smoothness regularization such as minimizing
the total variation of a derivative of all functions in An, or a combination of both.
Rates of convergence and honest confidence bounds can be obtained for any form
of regularization. The ideas can be extended to nonparametric density estimation.
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Bayesian mixed membership models for soft clustering and network
analysis

Stephen E. Fienberg

Many applications of statistics involving very large data sets utilize ideas on clus-
tering and classification where units can conceivably belong to multiple groups.
Bayesian mixed membership models provide a natural way to address such “soft”
clustering and classification problems. These models typically rely on four lev-
els of assumptions: population, sub ject, latent variable, and sampling scheme.
Population level assumptions describe a general structure of the population that
is common to all subjects. Subject level assumptions specify the distribution of
observable responses given the population structure and individual membership
scores. Membership scores are usually unknown and hence can also be viewed as
latent variables which can be treated as fixed or random in the model. Finally, the
last level of assumptions specifies the number of distinct observed characteristics
(attributes) and the number of replications for each characteristic.
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We describe three applications of mixed membership modeling: (i) to disability
indicators from the National Long Term Care Survey, (ii) abstracts and bibliogra-
phies of research reports in The Proceedings of the National Academy of Sciences,
(iii) protein-protein interactions in yeast. The last application involves extensions
to mixed-membership methods that incorporate stochastic block-modeling for net-
work analysis. Our methods include the computation of full posterior distributions
for application (i), as well as various forms of variational approximations for appli-
cations (ii) and (iii). In the examples, we also discuss issues of model assessment
and specification.
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Pre-modeling via BART

Edward I. George

(joint work with Hugh A. Chipman, Robert E. McCulloch)

Consider the canonical regression setup where one wants to learn about the re-
lationship between y, a variable of interest, and x1, . . . , xp, p potential predictor
variables. For the general purposes of discovering the form of f(x1, . . . , xp) ≡
E(Y | x1, . . . , xp) and making predictive inference about a future y, we propose an
approach called BART (Bayesian Additive Regression Trees). BART approximates
f by a Bayesian “sum-of-trees” model where fitting and inference are accomplished
via an iterative backfitting MCMC algorithm. By using a large number of trees,
which yields a redundant basis for f , we have found BART to be remarkably ef-
fective at finding highly nonlinear relationships hidden within a large number of
irrelevant potential predictors.

BART is motivated by ensemble methods in general, and boosting algorithms
in particular. As in boosting, each tree is constrained to be a weak learner that
contributes only a small amount to the fit. However, in contrast to boosting, BART
is based on a fully Bayes statistical model: a prior and a likelihood. This approach
enables a full and accurate assessment of uncertainty in model predictions, while
remaining highly competitive in terms of predictive accuracy.
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BART can also be viewed in the context of Bayesian nonparametrics. The
key idea is to use a model rich enough to respond to a variety of signal types,
but constrained by the prior from overreacting to weak signals. The ensemble
approach provides for a rich base model form which can expand as needed via
the MCMC mechanism. The priors are formulated so as to be interpretable,
relatively easy to specify, and provide results that are stable across a wide range
of prior hyperparameter values. The MCMC algorithm, which exhibits fast burn-
in and good mixing, can be readily used for model averaging and for uncertainty
assessment.

Lastly, BART can also be used to screen for relevant predictors, thereby provid-
ing an essentially nonparametric approach to variable selection in the sense that
it does not rely on an initial parametric model assumption for selection. As the
BART algorithm moves along, different potential predictors enter the sum-of-trees
model with different frequencies. Those that enter rarely or not at all are candi-
dates for elimination, and those that enter frequently are candidates for inclusion.
By varying the size of the sum-of-trees model, BART can identify those subsets of
x1, . . . , xp which contain the strongest predictive information, subsets which then
may used to obtain a parametric model. BART also provides an omnibus test:
the absence of any relationship between y and any subset of x1, . . . , xp is indicated
when BART posterior intervals for f reveal no signal.

The catch-up phenomenon

Peter Grünwald

(joint work with Steven de Rooij, Tim van Erven)

We consider inference based on a countable set of models (sets of probability
distributions), focusing on two tasks: model selection and model averaging. In
model selection tasks, the goal is to select the model that best explains the given
data. In model averaging, the goal is to find the weighted combination of models
that leads to the best prediction of future data from the same source.

An attractive property of some criteria for model selection is that they are
consistent under weak conditions, i.e. if the true distribution P ∗ is in one of the
models, then the P ∗-probability that this model is selected goes to one as the sam-
ple size increases. BIC [11], Bayes factor model selection, Minimum Description
Length (MDL) model selection [2] and prequential model validation [3] are exam-
ples of widely used model selection criteria that are usually consistent. However,
other model selection criteria such as AIC [1] and leave-one-out cross-validation
(LOO) [13], while often inconsistent, do typically yield better predictions. This
is especially the case in nonparametric settings, where P ∗ can be arbitrarily well-
approximated by a sequence of distributions in the (parametric) models under
consideration, but is not itself contained in any of these. In many such cases,
the predictive distribution converges to the true distribution at the optimal rate
for AIC and LOO [12, 8], whereas in general BIC, the Bayes factor method and
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prequential validation only achieve the optimal rate to within an O(log n) fac-
tor [10, 15, 5]. Here we reconcile these seemingly conflicting approaches [14] by
improving the rate of convergence achieved in Bayesian model selection without
losing its convergence properties. In this abstract we merely provide an exam-
ple that gives a novel analysis of the reason why Bayes sometimes converges too
slowly; this analysis then leads to a new approach, essentially an extension of a
Bayes/MDL-approach, which both achieves consistency and optimal convergence
rates. This extension is discussed in the conference paper [4].

Given priors on models and parameters therein, Bayesian inference is based on
the posterior distribution that is obtained by conditioning on observed outcomes.
In model selection the preferred model is the one with maximum a posteriori
probability. In prediction the marginal distributions p1, p2, . . . (defined as pk(x

n) =∫
θ∈Θk

pθ(x
n)w(θ) dθ)) are weighted according to the posterior, a process called

Bayesian Model Averaging (BMA). We denote the resulting distribution pbma.
In a sequential setting, the probability of a data sequence xn := x1, . . . , xn

under a distribution p typically decreases exponentially fast in n. It is therefore
common to consider − log p(xn), which we call the codelength of xn achieved by
p. This name refers to the correspondence between codelength functions and
probability distributions based on the Kraft inequality, but one may also think
of the codelength as the accumulated log loss that is incurred if we sequentially
predict the xi by conditioning on the past, i.e. using p(· | xi−1) [2, 5, 3, 9]. All
logarithms are taken to base 2, allowing us to measure codelength in bits.

Prediction using pbma has the advantage that the codelength it achieves on xn is

close to the codelength of pk̂, where k̂ is the index of best of the marginals p1, p2, . . .
Namely, given a prior w on model indices, the difference between − log pbma(x

n) =

− log(
∑

k pk(x
n)w(k)) and − log pk̂(x

n) must be in the range [0,− logw(k̂)], what-
ever data xn are observed. Thus, using BMA for prediction is sensible if we are
satisfied with doing essentially as well as the best model under consideration.
However, it is often possible to combine p1, p2, . . . into a distribution that achieves

smaller codelength than pk̂! This is possible if the index k̂ of the best distri-
bution changes with the sample size in a predictable way. This is common in
model selection, for example with nested models, say M1 ⊂ M2. In this case
p1 typically predicts better at small sample sizes (roughly, because M2 has more
parameters that need to be learned than M1), while p2 predicts better eventually.
Figure 1 illustrates this phenomenon. It shows the accumulated codelength dif-
ference − log p2(x

n) − (− log p1(x
n)) on “The Picture of Dorian Gray” by Oscar

Wilde, where p1 and p2 are the Bayesian marginal distributions for the first-order
and second-order Markov chains, respectively, and each character in the book is an
outcome. Note that the example models M1 and M2 are very crude; for this par-
ticular application much better models are available. In more complicated, more
realistic model selection scenarios, the models may still be wrong, but it may not
be known how to improve them. Thus, M1 and M2 serve as a simple illustration
only. We used uniform priors on the model parameters, but for other common
priors similar behaviour can be expected. Clearly p1 is better for about the first
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Figure 1. The Catch-Up Phenomenon

100 000 outcomes, gaining a head start of approximately 40 000 bits. Ideally we
should predict the initial 100 000 outcomes using p1 and the rest using p2. How-
ever, pbma only starts to behave like p2 when it catches up with p1 at a sample size
of about 310 000, when the codelength of p2 drops below that of p1. Thus, in the
shaded area pbma behaves like p1 while p2 gives higher probability to, and better
predictions of, those outcomes: since at n = 100 000, p2 is 40 000 bits behind, and
at n = 310 000, it has caught up, in between it must have outperformed p1 by
40 000 bits! The general pattern that first one model is better and then another
occurs widely, both on real-world data and in theoretical settings. We argue that
failure to take this effect into account leads to the suboptimal rate of convergence
achieved by Bayes factor model selection and related methods. We have developed
an alternative method to combine distributions p1 and p2 into a single distribution
psw, which we call the switch-distribution. Figure 1 shows that psw behaves like p1

initially, but in contrast to pbma it starts to mimic p2 almost immediately after p2

starts making better predictions; it essentially does this no matter what sequence
xn is actually observed. psw differs from pbma in that it is based on a prior distri-
bution on sequences of models rather than simply a prior distribution on models.
This allows us to avoid the implicit assumption that there is one model which is
best at all sample sizes. After conditioning on past observations, the posterior
we obtain gives a better indication of which model performs best at the current
sample size, thereby achieving a faster rate of convergence. Indeed, the switch-
distribution is related to earlier algorithms for tracking the best expert developed
in the universal prediction literature [6]; however, the applications we have in mind
and the theorems we prove are completely different. In the conference paper [4]
we show that model selection based on the switch-distribution is consistent (The-
orem 1), but unlike standard Bayes factor model selection achieves optimal rates
of convergence (Theorem 2). We also give a practical algorithm that computes the
switch-distribution for K (rather than 2) predictors in Θ(n ·K) time.
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Labour market modelling and hypothesis testing for functional data

Peter Hall

(joint work with Federico A. Bugni, Joel L. Horowitz and George R. Neumann)

Models for employment and wages can be based on economic theories of supply
and demand, leading to so-called “equilibrium job search models” that describe the
manner in which people move from job to job, or from employment to unemploy-
ment and back again. Some of these models are explicitly parametric in nature,
and prescribe stochastic processes that could conceivably be good approximations
to the real processes that generate observed data. In particular, certain equi-
librium search models specify the entire wage process up to a finite-dimensional
parameter. In these and other cases it is natural to test the theoretical model
against the data.

However, while the likelihood for such data can often be written down exactly,
and maximum likelihood estimators derived, it is far from clear how to determine
whether the model is adequate. In a wide range of related settings the approach
that is taken is to try to simplify the problem, for example by reducing the number
of degrees of freedom or the number of dimensions. However, sometimes greater
insight can be gained by representing the data in a way that is arguably more
complex than the data, for example by representing data vectors via graphs of
random functions, in place of plots of data points. The former is the approach we
take. Rather than directly address the goodness of fit problem for vectors of data,
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we focus on the random wage paths that are produced by graphing functionals of
those data.

A theoretical model for a stochastic process explicitly or implicitly specifies the
probability distribution of the random functions (or sample paths) that represent
realisations of the process. If the model depends on an unknown, finite-dimensional
parameter then the specification is up to the value of this parameter. Functional
data can be used to construct an empirical analog of the probability distribution of
the random functions (the empirical distribution of the data). Therefore, a test of
the hypothesis that the postulated model generated the data can be implemented
by comparing the empirical and theoretical distributions of the sample paths.
This amounts to testing a finite-dimensional parametric model of a probability
distribution, against a nonparametric alternative.

When the random variable of interest is finite-dimensional, the Cramér-von
Mises and Kolmogorov-Smirnov tests, among many others, can be used for this
purpose. We generalise the Cramér-von Mises test to distributions of random
functions, or infinite-dimensional random variables, that depend on an unknown
finite-dimensional parameter. Novel aspects of this approach include the intro-
duction of functional data methods for specification testing in econometrics, and
the development of parametric bootstrap methods that facilitate the use of tech-
niques based on integration over function spaces. The functional data view offers
new ways of conceptualising specification testing problems in econometrics, and
suggests new approaches to testing continuous-time models, such as models of
financial data, that are quite different from the equilibrium search model that
motivates the present work.

Specifically, suppose that the distribution of a random function Y depends on
an unknown, finite-dimensional parameter θ, and that we have a random sample
{X1, . . . , Xn} of n realisations of a random function X , that may be distributed
as Y for some value of θ. We develop a Cramér-von Mises type test of the null
hypothesis, H0, that the distribution ofX is identical to that of Y for some unspec-
ified value of θ. We present the test statistic and explain how to compute it; we
study the test statistic’s asymptotic distribution under fixed and local alternative
hypotheses; and we introduce a bootstrap procedure for computing critical values
for the test. Properties and performance of the method are illustrated by applying
it to the equilibrium job search model introduced and developed by Mortensen [4],
Burdett and Mortensen [2], Bowlus, Kiefer, and Neumann [1], and Christensen,
Lentz, Mortensen, Neumann and Werwatz [3]. This model aims to explain the
frequencies and durations of spells of unemployment, as well as the distribution
of wages among employed individuals. In particular, it provides an explanation
for why seemingly identical individuals have different wages. One of the model’s
outputs is a random function, Y say, that gives an individual’s wage as a func-
tion of time up to an unknown, vector-valued parameter. The model is tested in
the context of wage curves computed from data from the National Longitudinal
Survey of Youth, and shown not to provide a convincing fit.
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Adaptive choice of time varying copulae

Wolfgang Härdle

(joint work with Enzo Giacomini, Vladimir Spokoiny)

1. Introduction

Time series of financial data are high dimensional and have typically a non-
Gaussian behavior. The standard modelling approach based on properties of the
multivariate normal distribution therefore often fails to reproduce the stylized facts
(i.e. fat tails, asymmetry) observed in returns from financial assets.

Modelling distributions with copulae avoids the “procrustean bed” of normal-
ity assumptions, producing better fits of the empirical characteristics of financial
returns. A natural extension is to apply copulae in a dynamic framework with
conditional distributions modelled by copulae with time varying parameters. The
question though is how to steer the time varying copulae parameters.

In this paper we follow a semiparametric approach, locally selecting the time
varynig copula parameter. The choice is performed via an adaptive estimation
under the assumption of local homogeneity: for every time point there exists an
interval of time homogeneity in which the copula parameter can be well approxi-
mated by a constant. This interval is recovered from the data using local change
point analysis.

The obtained time varying dependence structure can be used in financial en-
gineering applications. Using copulae with adaptively estimated dependence pa-
rameters we estimate the Value-at-Risk (VaR) from DAX portfolios over time.
As benchmark procedure we choose RiskMetrics, a methodology based on condi-
tional normal distributions with a GARCH specification for the covariance matrix.
Backtesting underlines the improved performance of the proposed adaptive time
varying copulae fitting.

2. Value-at-Risk and Copulae

The VaR at level α from a portfolio w ∈ R
d is defined as the α− quantile from

the distribution of Lt (the P&L function) and depends on the specification of the
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d-dimensional distribution of its risk factors increments, here log-returns Xt. In
the copulae based approach the log-returns are modelled as:

(1) Xt,j = µt,j + σt,jεt,j

where µt,j = E[Xt,j | Ft−1] and σ2
t,j = E[X2

t,j | Ft−1], j = 1, . . . , d. The standard-

ised innovations εt = (εt,1, . . . , εt,d)
⊤ have joint cdf Fεt given by

(2) Fεt(x1, . . . , xd) = Cθ{Ft,1(x1), . . . , Ft,d(xd)}

where Ft,j is the cdf of εt,j and Cθ is a copula belonging to a parametric family
C = {Cθ, θ ∈ Θ}. For details on the above model specification see [2] and [3].

To obtain the Value-at-Risk in this set up, the copula dependence is estimated
from a sample of log-returns and used to generate P&L samples. Their quantiles
at different levels are the estimators for the Value-at-Risk, see [4].

3. Modelling with Time Varying Copulae

In fact, the cdf Fεt from (2) is modelled as Ft,εt = Cθt{Ft,1(·), . . . , Ft,d(·)} with
probability measure Pθt . In order to estimate the copula parameter we choose an
interval of homogeneity employing a local parametric fitting approach as intro-
duced by [1], [5] and [6].

The idea is to select for each time point t0 an interval It0 = [t0 −mt0 , t0] such
that θt can be well approximated by a constant value θ. The aim is to obtain
It0 as close as possible to the “oracle” interval, defined as the largest interval
I = [t0 −m∗

t0 , t0] for which the small modelling bias condition (SMB):

(3) ∆I(θ) =
∑

t∈I

K(Pθt , Pθ) ≤ ∆

for some ∆ ≥ 0 holds. Here θ is constant and K(·, ·) denotes the Kullback-Leibler
divergence. In the oracle interval, the parameter θt0 = θt|t=t0 can be “optimally”

estimated from I = [t0 −m∗
t0 , t0].

The adaptive Local Change Point (LCP) detection procedure “mimics” the
“oracle” in the sense that it delivers the same accuracy of estimation as the “oracle”
one. For a given point t0 the LCP starts with a family of nested intervals I0 ⊂
I1 ⊂ . . . ⊂ IK = IK+1 of the form Ik = [t0 − mk, t0]. Every interval Ik leads

to an estimate θ̃k of the copula parameter θt0 . The LCP sequentially tests the
homogeneity hypothesis for the copula parameter (i.e. θt = θ) against change
point alternative in each interval Ik using critical values zk. In case of rejection or
if the largest possible interval is reached the procedure stops and Ik̂ denotes the
latest accepted interval.

The critical values zk are sequentially selected by Monte Carlo simulation as
the minimal values providing:

Eθ∗
∣∣LIk

(θ̃k, θ̂k)
∣∣1/2 ≤ ρR(θ∗), k = 1, . . . ,K, θ∗ ∈ Θ.(4)
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RM MW LCP
α

0.05 0.01 0.05 0.01 0.05 0.01
AW 0.23 0.45 0.11 −0.49 0.11 −0.36
DW 0.04 0.14 0.06 0.08 0.06 0.10
AW 0.16 0.57 −0.10 −0.65 −0.09 −0.65
DW 0.04 0.16 0.06 0.09 0.06 0.08

Table 1. Average relative exceedance error over portfolios AW

and corresponding standard deviation DW for 2 groups of DAX
stocks across levels α and methods

where LI is the log-likelihood corresponding to interval I, θ̂k = θ̃k1{k≤k̂} +

θ̃k̂1{k>k̂} and R(θ∗) is the risk of the non-adaptive estimate θ̃k:

R(θ∗) = max
k≥1

Eθ∗
∣∣LIk

(θ̃k, θ
∗)
∣∣1/2.

For details, see [5]. The theoretical results from [6] indicate that the LCP proce-
dure provides the rate optimal estimation of the underlying parameter when this
smoothly varies with time. It has also been shown that the procedure is very
sensitive to structural breaks, providing the minimal possible delay in detection of
changes.

4. Empirical Results

The VaR from 2 groups of portfolios composed of 6 German stock is estimated
based on time varying Clayton copulae and RiskMetrics (RM) approaches. The
time varying copula parameters are selected by Local Change Point (LCP) and
moving window (MW) procedures. At each time t the estimated Value-at-Risk at
level α for a portfolio w is compared with lt, the exceedance ratio is given by

α̂w(α) =
1

T

T∑

t=1

1
{lt<V̂ aRt(α)}

and the relative exceedance error by

ew =
α̂w − α

α
.

We compute ew for a set W of random portfolios. The average relative exceedance
error over portfolios AW and the corresponding standard deviation DW (table 1)
are used to evaluate the performances of the time varying copulae and RiskMetrics
methods in VaR estimation.
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Model selection for cube root asymptotics

Nils Lid Hjort

1. Background: standard likelihood theory for regular models

It is convenient to first summarise two central results from the large-sample
theory for likelihoods in regular parametric families, pertaining respectively to the
behaviour of maximum likelihood (ML) estimators and the derivation of the Akaike
information criterion AIC. The purpose of this paper is to investigate what similar
(but more difficult) arguments lead to for the more complicated types of models
that are associated with cube root asymptotics, cf. Kim and Pollard (1990).

For i.i.d. observations X1, . . . , Xn from a data generating density f , for which
we employ a parametric family of approximations f(x, θ), introduce

An(θ) = n−1ℓn(θ) = n−1
n∑

i=1

log f(Xi, θ),

writing ℓn for the log-likelihood function. It converges pointwise a.s. to A(θ) =∫
f log fθ dy. Under regularity conditions, the ML estimator θ̂ = argmax(An)

tends a.s. to θ0 = argmax(A), which is also the least false parameter value under
Kullback–Leibler divergence.

A good model is one for which the attained Kullback–Leibler distance from g

to f(·, θ̂) is small, which is tantamount to a large value of A(θ̂). The AIC emerges
as an attempt to estimate this quantity unbiasedly. For this purpose, consider the

initial estimator An(θ̂) = n−1ℓn(θ̂). To see the amount with which An(θ̂) tends to

overestimate A(θ̂), consider the random function

Hn(s) = n{An(θ0 + s/
√
n) −An(θ0)}

=

n∑

i=1

{log f(Xi, θ0 + s/
√
n) − log f(Xi, θ0)}

= st
√
nUn − 1

2s
tJns+ op(1),
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where Un = n−1
∑n
i=1 u(Xi, θ0) is the average of the score functions at θ0, and Jn

converges in probability to

J = −A′′(θ0) = −Ef∂
2 log f(X, θ0)/∂θ∂θ

t.

Under weak regularity conditions, Hn tends in distribution to the random process
H(s) = stU − 1

2s
tJs, where U ∼ Np(0,K), with K = Varfu(X, θ0) and p the

parameter length.
We may derive two basic results from this. The first is that

Mn =
√
n(θ̂ − θ0) = argmax(Hn) →d M

= argmax(H) = J−1U ∼ Np(0, J
−1KJ−1),

a classic result about ML behaviour for large n. The second, with some modest
efforts, is that

An(θ̂) −A(θ̂) = εn + n−1Wn,

where εn is the average of zero-mean variables and

Wn = Hn(Mn) − n{A(θ̂) −A(θ0)}
→d H(M) − 1

2M
tA′′(θ0)M = H(M) + 1

2M
tJM = U tJ−1U.

Thus An(θ̂) tends to overshoot its target A(θ̂) with a random amount having mean
value close to p∗/n, where p∗ = Tr(J−1K). This is the rationale behind using

AIC = ℓn(θ̂) − p̂∗,

with p̂∗ any sensible estimator of p∗. See Claeskens and Hjort (2008, Ch. 2).

2. A quantile-based histogram model

Suppose inference is to be carried out for some density f with cdf F on the real
line. Consider its quantiles qj = F−1(j/k) for j = 1, . . . , k − 1. Treating these as
unknown parameters, a model emerges by taking Q = F−1 as a linear interpolator
between the Q(j/k) = qj . The corresponding F is also linear between quantile
points qj , with density

fk(x) =
1

k

1

qj − qj−1
for x ∈ (qj−1, qj).

This is one of the pyramid models worked with in Hjort and Walker (2008), where
the fine-ness parameter k may also increase with sample size.

The point is now that this family of densities is outside the standard regularity
scope associated with the theory summarised in Section 1, and is in fact instead in
the realm of cube root asymptotics. To indicate how this comes about, consider

An(q) =
k∑

j=1

{Fn(qj) − Fn(qj−1)} log(qj − qj−1),
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with Fn the empirical cdf. The ML estimator q̂ = (q̂1, . . . , q̂k−1) is the vector
that minimises An, and is consistent for the least false parameter vector q0 that
minimises

A(q) =

k∑

j=1

{F (qj) − F (qj−1)} log(qj − qj−1),

the limit of An. The key process to work with is now

Hn(s) = n2/3{An(q0 + s/n1/3) −An(q0)}, with s = (s1, . . . , sk−1)
t.

Working with densities on [0, 1], for convenience, and writing q0 = 0 and qk = 1,
one may prove convergence in distribution

Hn(s) →d H(s) = 1
2s

tA′′(q0)s+

k−1∑

j=1

djf(q0j )
1/2W ∗

j (sj),

where dj = aj(q
0) − aj−1(q

0) and aj(q) = log(qj − qj−1). Also, the W ∗
j are

independent two-sided Brownian motions.
As a corollary to this key result one obtains

n1/3(q̂ − q0) →d (M1, . . . ,Mk−1)
t = argmin(H).

The limit distribution is complicated, and generalises the so-called Chernoff dis-
tribution that Groeneboom (1989) and co-authors have worked with, to higher
dimensions. The distribution depends on quantities related to the unknown den-
sity f , but may all be estimated consistently, making in principle inference and
confidence intervals etc. possible, via simulations from the estimated distribution.

3. Selecting the fine-ness of the quantile histogram

The next challenge is to construct a mechanism for selecting the degree k of fine-
ness for the quantile-based histogram estimator fk. The AIC and BIC theories
do not work as such, since the model family is not smooth enough. One may
attempt to follow the line of arguments for the classic case, as per Section 1. With
appropriate additional efforts, exploiting the Hn process of Section 2, this may be
seen to lead to the following procedure. Let for each k

CIC(k) = n log k +

k∑

j=1

Nj(q̂j−1, q̂j) log(q̂j − q̂j−1) + n1/3k̂∗,

with Nj(a, b) = Fn(b)−Fn(a) the number of data points falling inside (a, b). Also,

k̂∗ is any consistent estimator of the quantity k∗, the mean value of

W = 1
2M

tA′′(q0)M −H(M) = −
k−1∑

j=1

djf(q0j )
1/2W ∗

j (Mj).

This Cube-root Information Criterion is then arguably the natural parallel to the
model-robust AIC method outlined at the end of Section 1.

The CIC method as given here is of course constructed specifically for the
quantile-based histogram model of Section 2. Its scope is considerably broader,
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however, since there are many important statistical models that exhibit the same
cube root asymptotics aspects; cf. again Kim and Pollard (1990). A case in point
is that of locally constant regression curves with unknown split points, where
methods of Banerjee and McKeague (2007) may be generalised and combined
with those of the present contribution to provide an instrument for selecting the
right amount of jumps in the best approximating model.
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Multiresolution and model choice

Arne Kovac

We consider various settings of the nonparametric regression problem where
for given data y1, . . . , yn at time points t1, . . . , tn we require an approximation f
that is simple and close to the data. Most approaches develop first an algorithm
that takes the data and some additional parameters like bandwidth and kernel
function for kernel estimators. In a second step another method is developed for
choosing the additional parameters, very often based on minimizing error criteria
on test beds like cross-validation. Typically these methods do not produce simple
approximations for complex data sets.

In this talk we study approaches that work the other way round and define
first a criterion for approximation, giving rise to a set of functions each being an
adequate model for the data. In a second step we aim to find a particular simple
function among them and try to minimize measures such as the number of local
extreme values.

The multiresolution criterion has turned out to be useful for defining approxi-
mation. Given noisy data y1, . . . , yn we require a function f to satisfy

(1)

∣∣∣∣∣
∑

i∈I

(yi − fi)

∣∣∣∣∣ < wI · σ

with wI =
√
|I| · 2 log(n) for all intervals I of some family I of subintervals of

{1, . . . , n} (Davies and Kovac, 2001; Davies, Kovac and Meise, 2007). This crite-
rion is very strict in the sense that approximations from most popular smoothing
methods like smoothing splines with cross validation, adaptive weights smoothing
or kernel estimators using local plug-in bandwidths do not usually satisfy this cri-
terion for complex data sets. Wavelet thresholding equipped with the universal
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τ =
√

2 log(n) threshold (Donoho et al, 1995) have residuals that satisfy simi-
lar multiresolution conditions, but usually still hurt some of the multiresolution
conditions in (1).

By replacing yi − fi with terms such as sign(yi − fi) (Kovac, 2002) or, more

generally, R′
i(f̂i) with data-dependent functions Ri (Dümbgen and Kovac, 2005)

the multiresolution criterion can be adapted to situations with outliers, quantile
regression or Poisson regression. An extension to inverse problems is also straight-
forward: Assume that K is some linear operator and that we want to use Kf
instead of f to approximate the data. Then we require a function to satisfy

∣∣∣∣∣
∑

i∈I

(yi − (Kf)i)

∣∣∣∣∣ < wI · σ for all I ∈ I.

The multiresolution criterion can also be used in the context of estimating
parameters of an ordinary differential equation. Here we model the data y as
noisy observations from an ODE

ẋ(t) = f(x, u, t|θ)

and want to estimate θ. Again it makes sense to only allow values for θ such that
the residuals of x satisfy the multiresolution criterion.

Extending the multiresolution criterion to two or more dimensions is not
straightforward, one possibility is to use a decomposition of the residuals using
wedgelets (Polzehl and Spokoiny, 2003).

There are several possible ways for maximizing simplicity among all adequate
functions. One way consists in minimising total variation (Davies, Kovac and
Meise, 2007):

n−1∑

i=1

|fi+1 − fi| = min s.t. f satisfies (1).

This leads to a linear program which can be computationally relatively expensive
for some data sets. The computational complexity of problems like

n∑

i=1

Ri(fi) +

n−1∑

i=1

λi|fi+1 − fi|

is considerably smaller and is for common choices of Ri not larger than O(n log(n))
using a generalization of the taut string algorithm (Dümbgen and Kovac, 2005).
The local penalty parameters can be chosen by the local squeezing technique
(Davies and Kovac, 2001) to make sure that the solution satisfies the multires-
olution criterion. Finally by using quick update steps it is possible to calculate
the solution for the first n data from the solution for the first n− 1 data without
recalculating most of the solution. This allows an extension to online processing
(Kovac and Wei, 2007).
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Least squares type estimation of the transition density of a particular
hidden Markov chain

Claire Lacour

We consider the following additive hidden Markov model:

Yi = Xi + εi i = 1, . . . , n+ 1

with (Xi)i≥1 a real-valued Markov chain, (εi)i≥1 a sequence of independent and
identically distributed variables and (Xi)i≥1 and (εi)i≥1 independent. Only the
variables Y1, ..., Yn+1 are observed. We assume that the transition of the Markov
chain , i.e. the distribution of Xi+1 knowing Xi, has a density Π, defined by
Π(x, y)dy = P (Xi+1 ∈ dy|Xi = x). The aim is to estimate this transition density
Π on a compact set A1 ×A2.

This model belongs to the class of hidden Markov models, and is also similar to
the so-called convolution model. As proceeded for this model, we use extensively
the Fourier transform. The restrictions on the error distribution and the rate of
convergence obtained for our estimator are also of the same kind.

The distribution of the noise (εi)i≥1 is assumed to be entirely known. Moreover,
we assume that its characteristic function q∗ε verifies the assumption

There exist γ > 0 and k0 > 0 such that ∀x ∈ R |q∗ε (x)| ≥ k0(x
2 + 1)−γ/2.

Among the so-called ordinary smooth noises, we can cite the Laplace distribution,
the exponential distribution and all the Gamma or symmetric Gamma distribu-
tions.

We also assume that the Markov chain is irreducible, positive recurrent and
stationary with unknown density f . This stationary density is assumed to be
bounded and verifies the condition

∀x ∈ A1 f(x) ≥ f0 > 0

The process (Xi) is assumed to be geometrically β-mixing. Many examples of
Markov chains satisfying these assumptions are given in [4]
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The estimation of the transition density of this kind of hidden Markov chain
is studied in [2]. His estimator is based on thresholding of a wavelet-vaguelette
decomposition. The drawback of this estimator is that it does not achieve the
minimax rate because of a logarithmic loss. Clémençon[5] describes an estimation
procedure by quotient of an estimator of the joint density and an estimator of the
stationary density f . The minimax rate is reached by this estimator if we assume
that f and Πf have the regularity α. But f can be much less regular than Π.
Our aim is then to find an estimator of the transition density which does not have
these disadvantages.

To estimate Π, we use an original contrast inspired by the least squares contrast.
The first idea is to connect our problem with the regression model. For any
function G, we can write

G(Xi+1) =

(∫
Π(., y)G(y)dy

)
(Xi) + ηi+1

where ηi+1 = G(Xi+1)−E[G(Xi+1)|Xi]. Then, for all function G, we can consider∫
ΠG as a regression function. The least squares contrast to estimate this regres-

sion function, if theXi were known, should be (1/n)
∑n
i=1[t

2(Xi)−2t(Xi)G(Xi+1)].
If
∫
G2 = 1, this contrast can be written (1/n)

∑n
i=1[

∫
T 2(Xi, y)dy−2T (Xi, Xi+1)]

by setting T (x, y) = t(x)G(y) i.e. T such that
∫
T (x, y)G(y)dy = t(x). It is this

contrast that is used in [4] but in our case, only the Y1, . . . , Yn+1 are known.
So we introduce two operators V and Q such that E[VT (Yi, Yi+1)|Xi, Xi+1] =
T (Xi, Xi+1) and E[QT 2(Yi)|Xi] =

∫
T 2(Xi, y)dy. It leads to the following con-

trast:

(1) γn(T ) =
1

n

n∑

i=1

[QT 2(Yi) − 2VT (Yi, Yi+1)].

The operators Q and V are found by a fast computation using the Fourier trans-
form which yields V ∗

T (u, v) = T ∗(u, v)/(q∗ε(−u)q∗ε(−v)) and Q∗
T (u) = V ∗

T (u, 0).
A collection of estimators is then defined by minimization of this contrast on

wavelet spaces Sm. We use compactly supported wavelets on the interval described
in [3], so that the functions in Sm are all supported in the compact A1 ×A2.

The minimization of the contrast on Sm needs further computation. Indeed,

by denoting (ψλ) a basis of Sm, a function Π̂(x, y) =
∑
âλψλ(x, y) minimizes the

contrast (1) if and only if GÂ = Z with

G =

(
1

n

n∑

i=1

Qψλψµ(Yi)

)

λ,µ

; Z =

(
1

n

n∑

i=1

Vψλ
(Yi, Yi+1)

)

λ

; Â = (âλ)λ

But G is not necessarily invertible, so we introduce the set Γ =
{
min Sp(G) ≥ 2

3f0
}

where Sp denotes the spectrum, i.e. the set of the eigenvalues of the matrix and
f0 is the lower bound of f on A1. On Γ, G is invertible and γn is convex so
that the minimization of γn admits the solution A = G−1Z. Thus we define

Π̂m = argminT∈Sm γn(T )1Γ.
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A method of model selection inspired by [1] and based on contrast (1) is used
to build an adaptive estimator. A data driven choice of model is performed via
the minimization of a penalized criterion. The chosen model is the one which
minimizes the empirical risk added to a penalty function. Our definitive estimator
is

Π̃ =

{
Π̂m̂ if ‖Π̂m̂‖2 ≤ n1/2,

0 else.

with
m̂ = arg min

m∈Mn

{γn(Π̂m) + pen(m)}.
In most cases in estimation of mixing processes, a unknown term, reflecting the

dependence between the variables, appears in the penalty. Here a conditioning
argument allows to lead us back to independent variables and thus to avoid such a
mixing term in the penalty. For an ordinary smooth noise with regularity γ, whe
choose the following penalty

pen(m) ≥ K0

f0

D4γ+2
m

n

and we obtain the rate of convergence n−α/(2α+4γ+2) if the transition Π is supposed
to belong to a Besov space with regularity α. Our estimator is then better than
the one of [2] which achieves only the rate (ln(n)/n)α/(2α+4γ+2). Moreover this
rate is obtained without supposing known the regularity of f , our estimator is
then adaptive.
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Conditional predictive inference post model selection

Hannes Leeb

This talk is about inference on future observations based on a model that has been
selected on the basis of the data and then has been fitted to the same data. I focus
in particular on situations where the number of candidate models is large, and
where the number of explanatory variables in a ‘good’ model can be large as well,
in relation to sample size. Such a situation is faced, for example, by Stenbakken
and Souders [3] who predict the performance of analog/digital converters from
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partial measurements by selecting 64 explanatory variables (measurements) from
a total of 8,192 based on a sample of size 88; further examples include [1, 2, 4].
Note that in these studies, the model that is selected, on the basis of the data,
is often quite complex in relation to sample size, in the sense that the number of
explanatory variables in the selected model and the sample size are of the same
order of magnitude. Also note that the total number of candidate models in these
studies exceeds sample size by several orders of magnitude. In such situations,
inferential tools that assess the predictors’ accuracy like, e.g., the mean-squared
error of the predictor, or prediction intervals, are needed.

I consider a Gaussian regression model with random design, where the number
of explanatory variables can be infinite, and where no regularity conditions are im-
posed on the unknown parameters. I use a variant of generalized cross-validation
to evaluate the performance of candidate models for prediction out-of-sample,1 to
select a ‘good’ model, and to conduct predictive inference based on the selected
model. The performance of the resulting model selector and the quality of pre-
dictive inference procedures are evaluated conditional on the training sample. I
describe the performance of these methods by explicit finite-sample performance
bounds. For example, I show that the proposed prediction interval is approxi-
mately valid and short with high probability, even in statistically challenging situ-
ations where the number of explanatory variables in a ‘good’ model is of the same
order as sample size, and where the total number of candidate models is of a larger
order than sample size. Here, approximately valid means that the prediction inter-
val’s actual coverage probability is close to the nominal level, and approximately
short means that its length is close to the length of a certain infeasible ‘predic-
tion interval’ that is based on actually knowing the ‘best’ candidate model. These
results hold uniformly over all data-generating processes under consideration.
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Robust model selection in generalized linear models

Samuel Müller

(joint work with Alan H. Welsh)

Model selection is fundamental to the practical application of statistics and there is
a substantial literature on the selection of linear regression models. A growing part
of this literature is concerned with robust approaches to selecting linear regression
models: see Müller & Welsh (2005) for references. The literature on the selection
of generalized linear models and the related marginal models fitted by generalized
estimating equations — though both are widely used — is much smaller and has
only recently incorporated robustness considerations: see Müller & Welsh (2007)
and Cantoni et. al. (2007) for references.

Our perspective on model selection is that a useful model should (i) parsimo-
niously describe the relationship between the sample data y and X and (ii) be able
to predict independent new observations. The ability to parsimoniously describe
the relationship between the sample data can be measured by applying a penalised
loss function to the observed residuals and we use the expected variance-weighted
prediction loss to measure the ability to predict new observations. In addition, we
encourage the consideration of different types of estimator of each of the models.
We intend to identify useful models whether or not a true model exists and our
interest is not restricted to a single best model but to the identification of use-
ful models (which make the selection criterion small). In this context, if a true
model exists and it is part of the full model, then consistency in the sense that a
procedure identifies the true model with probability tending to one is a desirable
property. We show that the concept of a true model is useful in order to establish
asymptotic results and to build model selection criteria such that they have the
potential to consistently select the true model. We present a generalization of the
robust bootstrap model selection criterion of Müller & Welsh (2005) to generalized
linear models. Under the ‘true model’ paradigm we show that the extension of the
methodology of Müller & Welsh (2005) from linear regression to generalized linear
models is less straightforward than expected but we are still able to improve on the
methodology of Mueller & Welsh (2005). For example the stratified bias-adjusted

m-out-of-n bootstrap estimator β̂c∗α,m − E∗(β̂
c∗
α,m − β̂cα) rather than the stratified

m-out-of-n bootstrap estimator β̂c∗α,m is used in estimating the expected prediction
loss. This achieves the same purpose but avoids the centering of the explanatory
variables and the requirement that we include an intercept in every model used in
Müller & Welsh (2005). Simulation results show that our procedure can be more
efficient than AIC or BIC even for non-robust simulation settings.
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Jumps

Axel Munk

(joint work with Leif Boysen, Volkmar Liebscher, Olaf Wittich)

We study the asymptotics for jump-penalized least squares regression aiming
at approximating a regression function by piecewise constant functions. Besides
conventional consistency and convergence rates of the estimates in L2([0, 1]) our
results cover other metrics like Skorokhod metric on the space of càdlàg functions
and uniform metrics on C([0, 1]) as well as convergence of the scale spaces, the
family of estimates under varying smoothing parameter. We will show that the
estimates used are in an adaptive sense rate optimal over a scale of approximation
spaces, including the class of functions of bounded variation, (piecewise) Hölder
continuous functions of order 1 ≥ α > 0 and the class of step functions. In the
latter setting, we will also deduce the rates known from changepoint analysis for
detecting the jumps. Our penalty is an l0 penalty which typically leads to an
optimization problem which cannot be computed in polynomial time. The present
situation is different, however, and we discuss a dynamic program which allows to
computes the LSE in O(n2) steps. It turns out, that for data of size ≈ 104 this
is sufficent on a PC, for data sets of larger size this is still a severe burden. To
overcome this problem we combine this with a forward search algorithm, which
allows to handle several millions observations. Our method is illustrated with
the reconstruction of ion channel activity measured from impedance tomography.
Finally this is combined with a statistical multiscale analysis in order to estimate
the number of jumps.
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Testing independence in nonparametric regression

Natalie Neumeyer

We consider independent and identically distributed data (X1, Y1), . . . , (Xn, Yn),
whereXi is d-dimensional and Yi one-dimensional. Under the purpose of modelling
the data via a homoscedastic regression model

Yi = m(Xi) + εi

with regression functionm(x) = E[Yi | Xi = x], where the error εi = Yi−E[Yi | Xi]
is independent of the covariate Xi, we propose a new test for the hypothesis

H0 : Xi and εi are independent.

We suggest a simple kernel based test statistic, i. e.

Tn =
1

n(n− 1)

n∑

i=1

n∑

j=1
j 6=i

1

hn
K
( ε̂i − ε̂j

hn

)

×
∫

(I{Xi ≤ x} − FX,n(x))(I{Xj ≤ x} − FX,n(x))w(x) dx,

where hn is a sequence of positive bandwidths, K a kernel function, I{·} the indi-
cator function, w a weight function, and FX,n denotes the empirical distribution
function of the covariates X1, . . . , Xn. Note that the errors εi are not observable
and, hence, are nonparametrically estimated by residuals ε̂i = Yi − m̂(Xi), where
m̂ denotes, for instance, a local polynomial estimator for the regression function.
Tn estimates an L2-distance of the conditional (given the errors) and uncondi-

tional distribution of the covariates, i. e.
∫ ∫ (

P (X1 ≤ x | ε1 = y) − FX(x)
)2

f2
ε (y)w(x) dy dx,

where FX denotes the covariate distribution function and fε the error density.
Were errors observable and residuals replaced by true errors the test statistic Tn

would coincide with the test for independence proposed by Zheng [5], which was
further investigated by Dette and Neumeyer [1]. It turns out that the replacement
of errors by residuals has no influence on the asymptotic distribution under the
null hypothesis, but it has under the alternative. Under typical regularity assump-
tions the test statistic (suitably standardized) has an asymptotic normal law both
under the null hypothesis and under fixed alternatives. Because the asymptotic
null distribution depends on unknown features of the data-generating process,
we recommend to apply resampling procedures. It can be shown in asymptotic
theory and it is supported by simulations that the classical residual bootstrap is
applicable.

Please note that the test statistic is asymmetric and that interchanging the roles
of covariates Xi and residuals ε̂i might on first glance seem to be a more canonical
way to consider the problem (considering the L2-distance between the conditional
error distribution given the covariate and the unconditional error distribution).
However, interchanging those roles has a substantial influence on the asymptotic
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behaviour of the test statistic. It causes unwanted bias and asymptotic theory is
so far only available for one-dimensional covariates, where it results in a normal
distribution with a rather complicated variance.

The proposed test statistic Tn can be adjusted to justify a regression model
with heteroscedastic variance, i. e. Yi = m(Xi) + σ(Xi)εi, where the covariates Xi

are independent of the errors εi = (Yi − E[Yi | Xi])/(var(Yi | Xi))
1/2.

Although the independence of error and covariate is a common assumption, to
the present author’s knowledge so far there are only two tests available in litera-
ture. In the homoscedastic model Einmahl and Van Keilegom [2] consider a very
innovative procedure based on a stochastic process of differences of the observa-
tions Yi, which converges weakly to a bivariate Gaussian process. The test avoids
estimating the regression function. In the heteroscedastic model Einmahl and Van
Keilegom [3] propose tests based on the difference of the empirical distribution
function of (Xi, ε̂i) and the product of the marginal empirical distribution func-
tions. The considered process converges weakly to a bivariate Gaussian process.
Both procedures are presented for one-dimensional covariates only and cannot eas-
ily be extended to the important multivariate case. In contrast the new procedure
is valid for multivariate covariates.
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On the distribution of penalized maximum likelihood estimators

Benedikt M. Pötscher

(joint work with Hannes Leeb, Ulrike Schneider)

Penalized maximum likelihood estimators have been studied intensively in the
last few years. A prominent example is the least absolute selection and shrink-
age (LASSO) estimator of Tibshirani (1996). Related variants of the LASSO
include the Bridge estimators studied by Frank and Friedman (1993), least angle
regression (LARS) of Efron, Hastie, Johnston, Tibshirani (2004), the smoothly
clipped absolute deviation (SCAD) estimator of Fan and Li (2001), or the adap-
tive LASSO of Zou (2006). Other estimators that fit into this framework are hard-
and soft-thresholding estimators. While many properties of penalized maximum
likelihood estimators are now well understood, the understanding of their dis-
tributional properties, such as finite-sample and large-sample limit distributions,
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is still incomplete. The probably most important contribution in this respect is
Knight and Fu (2000) who study the asymptotic distribution of the LASSO es-
timator (and of Bridge estimators more generally) when the tuning parameter
governing the influence of the penalty term is chosen so that the LASSO acts as a
conservative model selection procedure (that is, a procedure that does not select
underparameterized models asymptotically, but selects overparameterized models
with positive probability asymptotically). In that paper, the asymptotic distribu-
tion is obtained in a fixed-parameter as well as in a standard local alternatives
setup. Knight and Fu (2000) is complemented by a result in Zou (2006) who con-
siders the fixed-parameter asymptotic distribution of the LASSO when tuned to
act as a consistent model selection procedure. Zou (2006) also studies the fixed-
parameter asymptotic distribution of the adaptive LASSO. Another contribution
is Fan and Li (2001) who derive the asymptotic distribution of the SCAD estima-
tor when the tuning parameter is chosen so that the SCAD estimator performs
consistent model selection. The results in the latter paper are also fixed-parameter
asymptotic results. It is well-known that fixed-parameter (i.e., pointwise) asymp-
totic results can give a wrong picture of the estimators’ actual behavior, especially
when the estimator performs model selection; see, e.g., Kabaila (1995), or Leeb
and Pötscher (2005, 2007). Therefore, it is interesting to take a closer look at the
actual distributional properties of such estimators.

In this talk, which is based on Pötscher and Leeb (2007) and Pötscher and
Schneider (2007), we consider the finite-sample as well as the asymptotic distribu-
tions of the hard-thresholding, the LASSO (which coincides with soft-thresholding
in our context), the adaptive LASSO, and of the SCAD estimator in a simple
Gaussian model. We study both the cases where the estimators are tuned to per-
form conservative model selection as well as where the tuning is such that the
estimators perform consistent model selection. We find that the finite-sample dis-
tributions can be decisively non-normal (e.g., multimodal). Moreover, we find that
a fixed-parameter asymptotic analysis gives highly misleading results. In partic-
ular, the so-called “oracle property” which has been established for some of the
estimators considered above is shown to be highly misleading. Therefore, we also
discuss the asymptotic distributions of the estimators mentioned before in a gen-
eral ‘moving parameter’ asymptotic framework, which better captures essential
features of the finite-sample distribution and shows that the large-sample limits
retain the non-normality present in finite samples.

We also show that the finite-sample distribution of the estimators considered
can not be estimated in any reasonable sense, complementing results of this sort
in the literature (Leeb and Pötscher (2006a,b, 2008), Pötscher (2006)).

We note that penalized maximum likelihood estimators are intimately related
to more classical post-model-selection estimators. The distributional properties of
the latter estimators have been studied by Sen (1979), Pötscher (1991), and Leeb
and Pötscher (2003, 2005, 2006a,b, 2008).
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Parameter cascading for high dimensional models

James Ramsay

(joint work with David Campbell, Jiguo Cao, Giles Hooker)

High dimensional models often involve three classes of parameters. Nuisance pa-
rameters c are required to fit the data, are large in number, their number tends to
depend on how much data is available, often define localized effects on the fit, and
their values are seldom of direct interest. Structural parameters θ are the conven-
tional kind; a small fixed number and their values are of interpretive importance.
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Above these are the complexity parameters γ that define the overall complexity
of the solution.

This talk defines a general framework for parameter estimation that synthesizes
a variety of common approaches and brings some important new advantages. The
parameter cascade defines nuisance parameters as functions c(θ, γ) of structural
and complexity parameters, and in turn defines structural parameters as functions
θ(γ) of complexity parameters. These functional relationships are often defined
by choosing three different optimization criteria corresponding to each level.

It is common to define the lowest level or inner criterionL(c|θ, γ) as a regularized
loss function with the penalty controlled by γ, as in

J(c|θ, γ) =

N∑

i

[yi − β′zi − c′φ(ti)]
2

+e−γc′[

∫
‖d

2φ

dt2
− α0φ(t) − α1

dφ

dt
‖2dt]c

where x(t) = c′φ(t), zi is a p-vector of covariate values, and φ(t) is a vector of K
basis functions. There are three groups of parameters to estimate:

• The K coefficients in c defining the basis function expansion of x(t).
• The p+ 2 model parameters α and β defining the data fitting model and

the roughness penalty, respectively. For simplicity, we use θ to collect
these two vectors together; θ = (α′, β′)′.

• The single smoothing parameter γ.

The regularization assures that c(θ, γ) is smooth in a specified sense, and effectively
controls the degrees of freedom allocated to the nuisance parameters. But c(θ, γ)
may also be defined explicitly, or by an algorithm whose result depends on θ and γ,
as in kernel smoothing. This functional relationship between nuisance and other
parameters is a generalization of the familiar profiling procedure often used in
nonlinear regression, where the three optimization criteria are the same.

The middle level optimization is usually an unregularized measure of fit, such
as

H(θ|γ) =

N∑

i

[yi − β′zi − c(θ, γ)′φ(ti)]
2,

and the fact that the status of c as a parameter as been eliminated by replacing it
by a function of the other two classes implicitly ensures regularization. Of course
we need the derivative of c(θ, γ), and this is, by the Implicit Function Theorem,

dc

dθ
= −(

∂2F

∂θ2
)−1(

∂2F

∂θ∂c
).

Finally, the top level optimization is a measure of model complexity such as the
generalized cross-validation measure of predictive complexity

G(γ) ∼ ‖[I −A(γ)]y‖2

‖[I −A(γ)‖2
,
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where A(γ) is the smoothing operator, is effectively a Raleigh coefficient showing
the size of the residual vector [I−A(γ)]y relative to the size of the residual operator
I −A(γ). The Implicit Function Theorem again gives us dθ

dγ .

Estimation of confidence intervals and other inferential methods can proceed
at this point by classical methods such as the delta method. The application will
typically require further use of the Implicit Function Theorem to compute the
required derivatives.

This general framework can be seen to include a number of specific parameter
estimation strategies in common use, such as the process of removing nuisance
parameters by marginalizing a likelihood. Since the marginal likelihood

L∗(θ|y) =

∫
L(θ, c|y)p(c)dc

is a linear operation, it is necessarily the optimum of a functional quadratic opti-
mization problem, and in fact minimizes

J(c|θ, y) =

∫
[L(θ, c|y) − L∗(θ|y)]2eln p(c)+Cdc

for any constant C. We see here a functional regression problem in which function
L(θ, c|y) is approximated by a marginal function L∗(θ|y) conditional on specific
values of structural parameter θ and data y. What is missing in marginalization,
however, is any counterpart of smoothing parameter γ that permits a continuum
of regularization. But it seems perfectly feasible to remove this difficulty by ap-
pending a continuously controlled penalty to this definition of J(c|θ, y).

The parameter cascade procedure brings important advantages to parameter
estimation in the presence of nuisance parameters.

• Gradients and hessians at any level can be analytically computed using
the Implicit Function Theorem.

• Interval estimation methods are readily at hand.
• Compared to marginalizing out the nuisance parameters employed in

Bayesian approaches using MCMC, generalized profiling is
– much faster,
– much more stable,
– much easier to program,
– permits an adaptive control of the contribution of c to the fit,
– requires no “tuning” by an MCMC expert, and
– can be deployed to the user community much more conveniently.
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Sequential normalization and optimally distinguishable models

Jorma Rissanen

This talk is about two distinct topics: The first describes a universal model
for regression problems and time series which is strictly better than the plug-in
prequential model or the predictive MDL model. The second introduces a sense
of optimality to hypothesis testing by reducing the uncountable set of composite
hypotheses to, in effect, a few ’optimally distinguishable’ ones.

Consider a class of parametric models

Mk = {f(·; θ) : θ ∈ Ω ⊆ Rk},
where · represents a sequence of data points yn = y1, . . . , yn or (yn|xn) = {(yi|xi)}
of any type, and θ = θ1, . . . , θk denotes the parameters. The model class could
also be taken as the union M =

⋃
kMk, to handle ’nonparametric’ model classes

like histograms.
Consider the following nonpredictive representation of data

yt = â1(y
t)yt−1 + . . .+ âk(y

t)yt−k + êt

where the coefficients are the least squares estimates, their number initially such
that they can be uniquely calculated. This is an example of a more general regres-
sion problem. Define ŝt =

∑
i≤t ê

2
i . Because the parameter estimates depend on

yt, êt is not a prediction error, and the density function induced is not gaussian
but

f̂(yn) = p(y1)
∏

t

K−1
t−1

ŝ
−t/2
t

ŝ
−(t−1)/2
t−1

,

where p(y1) is a suitably selected initial density function, and

Kt−1 =

√
π

1 − dt
Γ

(
t− 1

2

)
/Γ(t/2)

dt = x′tVtxt

xt = col{yt−1, . . . , yt−k}.
Further, Vt = (XtX

′
t)

−1, where Xt is the regressor matrix defined by the columns
xi.

One can show that the density function is universal, capable of imitating or
estimating any normal one f(yn; a, σ2) induced by a k′th order AR model with

gaussian iid input ǫt, in the sense that n−1 ln(f̂(yn)/f(yn; a, σ2)) → 0, either
in the mean or almost surely or both. In the mean case the estimation error
is measured by the Kullback-Leibler distance. Moreover, the universal model is
optimal since the convergence rate is the fastest possible, or the distance measure
smallest possible.

As to the second part of the talk, a compact parameter space Ω can be parti-
tioned into equivalence classes, defined by the largest curvilinear rectangles
Bd/n(θ

i) within the ellipsoids δ′tJ(θi)δt = d/n, where δt = θ − θi and J(θ) is the

Fisher information matrix. The centers define a finite number of models f(yn; θi).
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There are two desired properties of a well separated family: The density functions
f(yn; θ) for θ ∈ Bd/n(θ

i) in each equivalence class should be close to its repre-

sentative f(yn; θi) so that they could be collapsed to it, and each representative
should assign a large probability mass to its equivalence class to make the adjacent
models different. If the CLT holds, these are conflicting properties for the family
constructed above, but ideally satisfied by the family

f̂(yn|θi) =

{
f(yn; θ̂(yn))/Qd/n(θ

i) if θ̂(yn) ∈ Bd/n(θ
i)

0 otherwise

where

Qd/n(θ
i) =

∫

θ̂∈Bd/n(θi)

g(θ̂; θ̂)dθ̂

and g(θ̂; θ) is the density function on the ML estimates.
We may ask for the value of the parameter d for which the desired real models

are as close as possible to the perfectly distinguishable models in terms of the KL
distance; i.e.

min
d
D(f̂(Y n|θi)‖f(Y n; θi)) = min

d

∫
f̂(yn|θi) log

f̂(yn|θi)
f(yn; θi)

dyn.

If the family of models Mk satisfies the CLT the optimal value d̂n → 3k as n
grows for all θ = θi.

The same value defines the quantization of the parameters providing a minimal
sufficient statistics decomposition of the models in the sense of Kolmogorov; see
[1], and optimal separation of noise from the learnable information in the data.

Testing a null hypothesis, say f(yn; θ0), against a composite hypothesis amounts
simply to accept it iff the ML estimate falls within its equivalence class. The error
probabilities, which do not require the untenable assumption of ’true’ hypotheses,
of such a decision is easy to evaluate.
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Some issues on variable selection with applications to longitudinal data

Elvezio Ronchetti

Variable selection is an important issue in statistical modelling. In this talk
we address three aspects related to the performance of standard model selection
criteria when (1) the signal-to-noise ratio is low, when (2) the number of variables
p is (much) larger than the number of observations n, and when (3) there are
deviations from the stochastic assumptions of the model (robustness issue).
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1. Low signal-to-noise ratio

This situation is common across economics and social sciences. We illustrate
the behavior of standard model selection criteria (such as AIC, BIC, etc.) in
predictability studies in finance, in the case of regression models based on financial
and macroeconomic factors for the prediction of stock and bonds returns. We
reproduce in a simulation setting two benchmark studies, namely those by Pesaran
and Timmermann(1995) and Bossaerts and Hillion(1999) and we find that the
limited out-of-sample forecasting power is mainly due to the low discrimination
power of standard model selection criteria. In particular a very large class of
indistinguishable models (from the model selected by a given criterion) appears.
Details can be found in Dell’Aquila and Ronchetti (2006).

2. p >> n

This situation becomes more and more important in a variety of applications,
including microarray data (p genes, n patients), financial data (p stocks, n obser-
vations in time), and data mining. For a regression model, Donoho and Stodden
(2006) give the relative error of LASSO in the estimation of the regression co-
efficients in the (δ, ρ) plane, where δ = n/p (degree of underdetermination) and
ρ = k/n (degree of sparsity) with k the number of non-zero coefficients in the
regression model. They show that there is a transition phase in the (δ, ρ) plane
and determine the breakdown point of LASSO.

3. The robustness issue

In the presence of small deviations from the assumed model, standard variable
selection criteria break down and fail to capture the important variables. In this
context it is important to develop variable selection procedures which are insen-
sitive to such small deviations and pick models which fit well the majority of the
data. We illustrate this point in the framework of longitudinal models which are
commonly used for studying data collected on individuals repeatedly through time.
While there are now a variety of such models available (Marginal Models, Mixed
Effects Models, etc.), the important issue of variable selection has been somewhat
neglected in this context. We discuss some recent proposals based on a generalized
version of Mallows’ Cp suitable for use with both parametric and nonparametric
models. We examine their performance and their robustness properties with pop-
ular marginal longitudinal models (fitted using GEE) and contrast results with
what is typically done in practice: variable selection based on Wald-type or score-
type tests. Details can be found in Ronchetti and Staudte (1994) and Cantoni,
Flemming, Ronchetti (2005).
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Practices of model building

Ritei Shibata

Model building plays a central role in the stream of data heading in the collection
toward decision making but it is not straightforward. Creating a model from data
is really a tough job, a kind of art, since phenomena behind the data and the
generating process have to be both modelled in a balance. It is clear that such
a goal can not be easily achieved by a simple data smoothing or by averaging
several possible models. Although a rough idea can be obtained by smoothing
or averaging, but a model really appreciated by scientists or people in industries
can be obtained only by continuous efforts, generous idea and constant interaction
with them. Also, it is worthy of note that application of a formal model selection
procedure like AIC is only powerful when the underlying models are all polished
well. I have reported several practices of model building, including stochastic
neural network modelling and clustered marked point process modelling. I hope
that accumulation of such practices will open the door to the new paradigm of
model building in the frame work of data science.
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Adaptive estimation in a linear inverse problem

Vladimir Spokoiny

(joint work with Céline Vial)

Consider a general set-up of a linear inverse problem when the observed data
Y from a Hilbert space HY are modelled by a linear operator equation

Y = AX + ε(1)

whereX is the unknown parameter vector from some Hilbert space HX , A : HX →
HY is a linear operator, and ε is a random Gaussian noise in HY with the known
correlation structure given by the covariance operator Σ. The goal is to estimate
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a linear functional θ = θ(X) which can be represented in the form 〈ϑ,X〉 for some
known element ϑ ∈ HX .

A naive estimation approach is based on the explicit least square solution of
the problem (1):

θ̃ = 〈ϑ, (A∗A)−A∗Y 〉 = 〈A(A∗A)−ϑ, Y 〉 = 〈φ, Y 〉
where A∗ is the conjugate operator to A, C− means a pseudo-inverse of C and
φ = A(A∗A)−ϑ. However, this approach cannot be efficiently applied if A is a
compact operator because the inverse of A∗A does not exists or is an unbounded
operator. One can regularize the problem if some additional information about
smoothness of the element X is available. This allows to replace (A∗A)− by
its regularization gα(A∗A) where gα means some regularized inversion and α is
the corresponding parameters. See, e.g., Goldenshluger and Pereversev (1999)
for typical examples. The quality of estimation heavily depends on the choice of
the regularization parameter α and its choice is a challenging problem. Usually
one fixes a finite ordered set of values α1 < α2 < . . . < αK and considers the
corresponding estimates

θ̃k = 〈φk, Y 〉, φk = Agαk
(A∗A)ϑ.

Now the original problem can be reformulated as follows: given a set of estimates

θ̃k for known vectors φk, build an estimate θ̂ of the functional θ which performs
nearly as good as the best in this family.

For a given sequence of estimates θ̃k = 〈φk, X〉 consider the sequence of nested
hypothesis Hk : θ1 = . . . = θk = θ. The proposed selection procedure is sequential:
we start with k = 2 and at every step k the hypothesis Hk is tested against
H1, . . . , Hk−1. If Hk is not rejected then we continue with the next larger k.
The final estimate corresponds to the latest accepted hypothesis. For testing Hk

against Hl with l < k, we check that the new estimate θ̃k belongs to the confidence

intervals built on the base of θ̃l. More precisely, we apply the test statistics:

Tlk =
(
θ̃l − θ̃k

)2
/vl , l < k,

where vl is the variance of θ̃l. Big values of Tlk indicate a significant difference

between the estimates θ̃l and θ̃k. The estimate θ̃k (or the hypothesis Hk) is
accepted if Hk−1 was accepted and Tlk ≤ zl for all l < k, that is, the new estimate

θ̃k belongs to the intersection of all the confidence intervals El(zl) built on the
previous steps of the procedure. The formal definition is given by

k̂ = max{k ≤ K : T ∗
lk ≤ zl l = 1, . . . , k − 1}, T ∗

lk = max
l<j≤k

Tlj .

Here the “critical values” z1, . . . , zK−1 are the parameters of the procedure which
are selected by the reasoning similar to the standard approach of hypothesis testing
theory: to provide the prescribed performance of the procedure under the simplest
(null) hypothesis. In the considered set-up, the null means X ≡ 0. In this case

it is natural to expect that the estimate θ̂k coming out of the first steps of the

procedure until the index k is close to the nonadaptive counterpart θ̃k. This
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particularly means that the probability of rejecting one of the estimates θ̃2, . . . , θ̃k
under the null hypothesis should be very small.

Suppose that the risk of estimation for an estimate θ̂ of θ is measured by E
∣∣θ̂−

θ
∣∣2r for some r > 0. Under the null hypothesis X ≡ 0, every estimate θ̃k fulfills

θ̃k = 〈φk, ε〉 and hence, it is a zero mean normal variable with the variance vk.
Therefore,

E0

∣∣v−1
k

(
θ̃k − θ

)2∣∣r = cr

where cr = E|ξ|2r and ξ is standard normal. We require that the parameters
z1, . . . , zK−1 of the procedure are selected in such a way that

E0

∣∣v−1
k

(
θ̂k − θ̃k

)2∣∣r ≤ αcr , k = 2, . . . ,K.(2)

Here α is the preselected constant which is similar to the confidence level of a
testing procedure. This gives us K − 1 conditions to fix K − 1 parameters. As
in the testing problem, we are interested to select the critical values as small as
possible under the constraint (2).

The theoretical results about the quality of the adaptive estimate θ̂ are estab-
lished under the following condition on the variances vk.

(MD): for some constants u0, u with 1 < u0 ≤ u, the variances vk satisfy

vk−1 ≤ uvk, u0vk ≤ vk−1, 2 ≤ k ≤ K.

Theorem. Assume (MD). Let θk = θ for all k ≥ 1. Then there are three
constants a0, a1 and a2 depending on r and u0, u only such that the choice

zk = a0 + a1 logα−1 + a2r log(vk/vK)

ensures (2) for all k ≤ K. Particularly, E0

∣∣v−1
K

(
θ̃K − θ̂

)2∣∣r ≤ αcr .

Let Bk means the covariance matrix of the vector θ̃(k). For k ≥ 1, define also
b(k) = (b1, . . . , bk)

⊤ with bk = θk − θ and

∆k
def
= b⊤(k)B−1

k b(k).

This quantity measures the “modeling bias” and allows to define the “oracle”
choice k∗ as the maximal index for which ∆k ≤ ∆. Now we present the following

“oracle” inequality which claims that the adaptive estimate θ̂ achieves essentially

the same accuracy as the “oracle” θ̃k∗ .
Theorem. Let k∗ be the maximal value k such that ∆k ≤ ∆. Then

E
∣∣v−1
k∗

(
θ̃k∗ − θ̂

)2∣∣r/2 ≤
√
αcre∆ + z

r/2
k∗ .
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Sparsity oracle inequalities

Alexander B. Tsybakov

This talk gives an overview of recent results on sparsity oracle inequalities (SOI),
mainly based on [1, 2, 3, 5]. Consider the regression model: assume that we observe
the pairs (X1, Y1), . . . , (Xn, Yn) ∈ R

d × R where

Yi = f(Xi) + ξi, i = 1, . . . , n.

Here the regression function f : R
d → R is unknown, the errors ξi are independent

Gaussian N (0, σ2) random variables andXi ∈ R
d are arbitrary fixed design points.

We study estimation of f based on the data (X1, Y1), . . . , (Xn, Yn).
Let {f1, . . . , fM} be a given dictionary of functions, fj : R

d → R. We approx-

imate the regression function f by a linear combination fλ(x) =
∑M

j=1 λjfj(x)

with weights λ = (λ1, . . . , λM ), where possibly M ≫ n. The number of non-zero

coordinates of a vector λ ∈ R
M denoted by M(λ) =

∑M
j=1 I{λj 6=0} characterizes

the sparsity of λ: the smaller M(λ), the “sparser” λ.

Consider the norm ‖f‖ =
√

1
n

∑n
i=1 f

2(Xi). Denote by 〈·, ·〉 the corresponding

scalar product, introduce the Gram matrix associated to the dictionary: Ψ =
(〈fj , fj′〉)1≤j,j′≤M , and denote by tr(Ψ) the trace of Ψ.
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Our target is to construct an estimator f̃n satisfying sparsity oracle inequality
(SOI), i.e., an inequality of the form

(1) E‖f̃n − f‖2 ≤ inf
λ∈RM

{
‖f − fλ‖2 +

M(λ)ln,M
n

}

with a factor ln,M which is at most logarithmic in M and n. We show that SOI
simultaneously implies several optimality properties: adaptivity to the sparsity
pattern in high-dimensional linear models if the true f is linear; minimax adap-

tivity to the smoothness of f if f̃n is used in classical nonparametric regression

framework; optimality of aggregation rates [6] if f̃n is viewed as an aggregate and
the functions fj as preliminary estimators based on a training sample considered
as frozen. We argue that proof of optimality of estimators for these seemingly
different problems can be done in a unified way via SOI.

One of the ways of constructing f̃n satisfying SOI is the following [5]. Consider
a “phantom” model Yi = fλ(Xi) + ξ′i where ξ′i are i.i.d. normally distributed
random variables with mean 0 and variance 2σ2. Let π be a prior distribution
on λ such that the components λj are i.i.d. with density τ−1q0(·/τ) where q0 is
the Student t3 density, so that q0(t) ∼ |t|−4, for |t| → ∞, and τ > 0 is a tuning

parameter. Define now the estimator f̃Bn as the Bayes posterior mean of fλ under
the “phantom” model and the prior π. Then the following result holds.

Theorem 1. Let f̃Bn be defined as above with τ = σ/
√
n tr(Ψ). Then

E‖f̃Bn − f‖2 ≤ inf
λ∈RM

{
‖fλ − f‖2 + Cσ2M(λ)

n

(
1+ log+

{√n tr(Ψ)

σ
‖λ‖∞

})}

+
3σ2

n

where ‖λ‖∞ = maxj=1,...,M |λj |, C > 0 is an absolute constant and log+ x =
max(log x, 0).

Consider now a particular setting. Assume that we deal with high-dimensional
linear regression model, i.e., f = fλ∗ with some λ∗ ∈ R

M , and possibly M ≫ n.
This is the framework considered in [4] among others who assumed in addition
that the functions fj are normalized: ‖fj‖ = 1, j = 1, . . . , n. For λ ∈ R

M we set

‖λ‖1 =
∑M

j=1 |λj |. Then we get the following corollary of Theorem 1.

Corollary 1. Let f̃Bn be defined as in Theorem 1. If there exists λ∗ ∈ R
M such

that f = fλ∗ and ‖fj‖ ≤ 1, j = 1, . . . ,M , we have

E‖f̃Bn − fλ∗‖2 ≤ Cσ2 min

(
M(λ∗) l∗n,M

n
, ‖λ∗‖1

√
l∗n,M
n

)
+

3σ2

n
(2)

where C > 0 is an absolute constant and l∗n,M is a logarithmic factor:

l∗n,M = 1+ log+

(√
nM

σ
‖λ∗‖1

)
.
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This corollary reveals an interesting effect: up to log-factors, the rate of con-

vergence of f̃Bn has two regimes: M(λ∗)/n and ‖λ∗‖1/
√
n, with the change point

at M(λ∗) ∼ ‖λ∗‖1
√
n. The two characteristics of sparsity, M(λ∗) and ‖λ∗‖1,

are involved. For M(λ∗) ≪ ‖λ∗‖1
√
n the rate is determined by M(λ∗), and

for M(λ∗) ≫ ‖λ∗‖1
√
n by ‖λ∗‖1. Note that previously known bounds for the

high-dimensional linear regression, cf. [1–5], are all of the order M(λ∗)/n, up to
log-factors. The bound (2) gives an improvement, as compared to those results, in
the situations when the vector λ∗ contains relatively many non-zero components,
for example, M(λ∗) > n but the norm ‖λ∗‖1 is still small. Furthermore, (2) holds
with no assumption on the dictionary {f1, . . . , fM}, except for the mere normal-
ization. This stays in contrast with very restrictive assumptions on the dictionary
needed to get bounds on the risks of the Lasso and Dantzig estimators [1–4].
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Flexible modelling based on copulas in nonparametric regression

Ingrid Van Keilegom

(joint work with Roel Braekers)

Consider the model Y = m(X) + ε, where m(·) = med(Y |·) is an unknown but
smooth median regression function. It is often assumed that ε and X are indepen-
dent. However, in many applications this assumption is violated. In this paper we
propose to model the dependence between ε and X by means of a copula model,
i.e.

(ε,X) ∼ Cθ(Fε(·), FX(·)),
where Cθ is a copula function depending on an unknown parameter θ. Since many
copula families contain the independent copula as a special case, the so-obtained
regression model is more flexible than the ‘classical’ regression model.

We estimate the parameter θ via a pseudo-likelihood method and prove the
asymptotic normality of the estimator, based on delicate empirical process theory.
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The procedure is illustrated by means of a simulation study, and the method is
applied on data on food expenditures in households.
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Regression models for survey data

Alan H. Welsh

(joint work with R.L. Chambers, D. Steel, S. Wang)

Most statisticians would agree that in modelling and inference, the structure of
the population is important and that the relationship of the sample to the popu-
lation is important. We consider the import of these statements in the context of
trying to model relationships between variables using survey data. We consider a
simple, abstract framework in which the information available on all the units in
the population is represented by auxiliary variables and the information available
on the in sample units alone is represented by survey variables. For simplicity, we
assume non-informative sampling given the auxiliary variables and full response
to the survey. We can consider two types of regression models. In disaggregated
analysis, interest is in relating one of the survey variables (the response) to the
other survey variables and the auxiliary variables while in aggregated analysis,
interest is in relating the response to the other survey variables, marginally to the
auxiliary variables. When the data on each unit in the population is independent,
the standard approach is to formulate regression models (usually linear) at both
levels and fit these by ordinary least squares using the sample data. By modelling
the joint distribution of the auxiliary and survey variables, we can explore the
relationship between the two analyses and derive the likelihood to see what the
(asymptotically efficient) maximum likelihood estimators look like. We find that
the standard approach is appropriate for disaggregated analysis: disaggregated
analysis is achieved by modelling the relationship between the response, the other
survey variables and the auxiliary variables, using the data from the in sample
units alone. On the other hand, we also show that the distribution of the auxiliary
variables affects the form of the aggregated model: we obtain linear models at
both levels when the joint distribution is Gaussian but, in general, the two models
are different and it does not make sense to impose the same form at both levels.
In particular, with nonlinear models (such as logistic and log-linear models), the
models incompatible if they are assumed to have the same form. Thus, the struc-
ture of the population (reflected in the auxiliary variables) matters. Also, even
when the joint distribution of the variables is Gaussian, the maximum likelihood
estimators of the parameters in the linear aggregated model are not the ordinary
least squares estimators based on the sample data. In fact, they turn out to be
the Pearson adjusted estimators which involve the auxiliary variables from all the
units in the population, not just those in the sample. Intuitively, the relationship
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between the auxiliary variables for the in sample units and the auxiliary variables
for the population is used to adjust for the effects of sampling. Thus, the relation-
ship between the sample and the population matters when we fit the aggregated
model.

Extraction of primitive features from time series by complexity
penalized M-estimation

Gerhard Winkler

(joint work with Felix Friedrich, Angela Kempe, Volkmar Liebscher, Darina
Roeske, Olaf Wittich)

We discuss the topic of the workshop along a particularly simple example. We
adopt a variational approach to the interpretation or explanation of time series,
starting from the most primitive instance of complexity penalized functionals on
the space of signals. Minimal points of such a functional can formally be inter-
preted as penalized M -estimators. They should exhibit a proper balance between
fidelity to data and some well-defined regularity condition.

To be more precise, let {1, . . . , n} be the discrete set of time points. Elements
of R

n will be interpreted as time series or signals x = (x1, . . . , xn). The set of
its jumps is J(x) = {i = 1, . . . , n − 1 : xi 6= xi+1}. The symbol |A| denotes the
cardinality of a set A. The functional we consider is of the form

Pγ : R
n × R

n −→ R, (x, y) 7−→ γ · |J(x)| +
n∑

i=1

(yi − xi)
2, γ ≥ 0,

with a control parameter γ. Vectors y represent data, and each signal x is a
candidate for their representation.

The functional is a sum of two terms; one of them rates fidelity to data and
the other one serves as a penalty or regularization term. The latter is designed
in order to drive the estimate towards step functions with as few plateaus - or
equivalently, as few jumps - as possible under the fidelity requirement. Hence it
extracts primitive morphological features - in the present case plateaus or jumps -
from data, and thus acts like a morphological filter. Emphasis is on the interpreta-
tion of data; there is no effort to restore some underlying true signal, in particular
there is nothing like denoising.

Therefore this approach may justifiably be called parsimonious since it is an
attempt to explain data in the sense of Ockham’s razor: Entia non sunt mul-
tiplicanda sine necessitate. This is similar in spirit to the work of P.L. Davies

and A. Kovac, see for example [3], who aim at an explanation of data by a mini-
mal number of modes, using L1-based approaches. For a deeper discussion of the
underlying ideas see P.L. Davies [2].

The above method is also sparse in the sense of D.L. Donoho, M.Elad and
V.N. Temlyakov, see [4]. In fact, O. Wittich et al. define and discuss dictio-
naries of appropriate indicator functions, see [22].
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The circle of these ideas is systematically and (in a narrow sense) completely
discussed in the series [19, 20, 7, 1, 21] of papers by the above authors, where
[1] is joint work with L. Boysen and A. Munck. It consists of an introduction
and overview [19], rigorous analytical results [20], fast algorithms [7], a statistical
analysis [1], and a synapsis in the context of Mumford-Shah functionals [21]. The
theory is exploited in [9] for the identification of biological noise and subsequently
in [11] for the quality control of microarrays from molecular biology.

A final remark might contribute to some discussions during the present confer-
ence. Formally, there is no probability involved. Therefore, we have an instance
of ‘statistics without probability’. On the other hand, one may - somewhat ar-
tificially - interpret the functional as a negative log-posterior, despite a proper
prior does not exist (because of invariance of the penalty w.r.t. to the addition of
constants). Others, in turn, might consider the penalty as a regularization in the
sense of numerical analysis. What an individual prefers seems to be a question of
taste, force of habit, or provenience. This is an instance of a ‘babel confusion of
tongues’ in the ‘brave new world of statistics’.
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Smooth interpolation

Henry Wynn

(joint work with Hugo Maruri-Aguilar)

1. Introduction

Techniques from computational commutative algebra were first applied to de-
sign of experiments in [5]. The fundamental principle is to study the design through
a related algebraic object: the design ideal. By this means a linear saturated model
for the response on the design can be constructed and confounding relations in-
duced by the design can be generalised to essentially, any design, see [6] and [7].

We are concerned about extending algebraic techniques to produce interpolators
which also satisfy desired smoothness properties. We give a general proposal and
illustrate with an example.
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2. Algebraic interpolation

For a set of nonnegative integers α = (α1, . . . , αk), a monomial is the power
product xα := xα1

1 · · ·xαk

k , and a polynomial is a linear combination of monomials.
Let R[x1, . . . , xk] = R[x] be the set of all polynomials in indeterminates x1, . . . , xk
and coefficients in R. R[x] is known as the polynomial ring. A term order ≺ on
R[x] is a total order on the set of all monomials in the indeterminates x1, . . . , xk.
The leading term of a polynomial is the highest term with respect to ≺ with non
zero coefficient.

A design D is a set of n distinct points in R
k, where k is the number of factors.

The design ideal is I(D) = {f ∈ R[x] : f(x) = 0, x ∈ D}, that is, the set of all
polynomials that, as polynomial functions, vanish over the design points.

Given a term ordering ≺, a Gröbner basis for I(D) is a finite subset G≺ ⊂ I(D)
such that the ideal generated by the set of leading terms of polynomials in G≺

coincides with the ideal generated by the leading terms of all polynomials in I(D),
see [2]. Computation of Gröbner bases is implemented in computer programs such
as CoCoA or Singular, see also [2].

Linear independence of monomials over a design can then be studied using the
design ideal. Given a term order ≺ and a Gröbner basis G≺ for I(D), G≺ =
{g1, . . . , gm}, then every polynomial f ∈ R[x] can be expressed modulo I(D) as

f =

m∑

i=1

gisi + r

where si ∈ R[x] and the remainder r is unique and is composed only with mono-
mials that cannot be divided by the leading terms of G≺. We call this set of
monomials as the set of standard monomials.

The quotient ring R[x]/I(D) is the set of equivalence classes created by the
above decomposition. As a R-vector space, R[x]/I(D) is isomorphic to the set
of polynomial functions ϕ : D 7→ R. Moreover, the set of standard monomials
forms a monomial basis for R[x]/I(D) and thus they form the support for any
interpolator model over the design. In other words, for a set of observations at the
design points {yx, x ∈ D}, algebraic techniques always identify the support for a
saturated model. We refer to this model as the algebraic interpolator ŷ(x), as it
satisfies ŷ(x) = yx for x ∈ D. Algebraic interpolators satisfy desirable properties
such as marginality, see [4] and are of minimal average degree, see [1].

3. Smoothing the interpolator

One potential drawback of algebraic interpolators is that they are not necessar-
ily smooth. A smooth version of the univariate algebraic interpolator is obtained
by considering

(1) ỹ(x) = ŷ(x) − s(x)g(x),

where g(x) is the single polynomial which forms the Gröbner basis in the univariate
case and s(x) ∈ R[x]. As g(x) = 0 for x ∈ D then ỹ(x) is still an interpolator.
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We select s(x) to be a high degree polynomial, that is st(x) =
∑t

i=0 θix
i. The

coefficients θ0, . . . , θt of st(x) are chosen to minimise a measure of smoothness for
ỹt(x) = ŷ(x) − st(x)g(x). The following measure of smoothness is proposed

(2) φ2 =

∫

X

|ỹ′′t (x)|2dx,

where the integration is carried out over a desired interval X ⊂ R.
The measure φ2 is quadratic in the unknown parameters θ0, . . . , θt, and the

minimum solution can be found in closed form. Let ỹ∗t (x) be the interpolator that
minimises Equation 2. The smooth interpolator ỹ∗t (x) is a linear in terms of the
observations yx. The minimal value of φ2 decreases to a limit, as function of t.

For example, consider the response values 1,−5, 2, 7 at design points 0, 1, 2, 3
and X = [0, 3]. The algebraic interpolator ŷ(x) gives a value of

√
φ2 of 63.023.

Using the method above described gives values 63.019, 44.168, 44.168, 42.329 for√
φ2 when using t = 0, 1, 2, 3, respectively.
For the present smoothing problem, if instead we minimise φ2 by searching over

all functions with absolutely continuous second derivatives, the minimum value of
φ2 is achieved with the cubic spline. This property of cubic splines was first shown
by [3]. In the example above, the minimal value of

√
φ2 using a cubic spline is

42.028.
The above procedure to smooth algebraic interpolators extends to problems for

which the design D lies in higher dimensions. The procedure starts with setting a
term order ≺ and then computing the algebraic interpolator ŷ(x) for a given data
set. The smooth interpolator is

(3) ỹ(x) = ŷ(x) −
m∑

i=1

si(x)gi(x),

where gi(x) are polynomials in the Gröbner basis for I(D) and si(x) are polyno-
mials of R[x] whose coefficients are selected to minimise a measure of smoothness.
For example, the simplest instance of si(x) is to set si(x) = θi, and then ỹ(x) has
m parameters. The measure of smoothness to minimise is

(4) φ2 =
∑(

∂2ỹ(x)

∂xi∂xj

)2

= ||H ||2 = trace(HTH),

where H is the Hessian matrix for ỹ(x). This minimisation problem is quadratic
in the parameters of the si(x) and the smooth interpolator ỹ∗(x) is linear on the
observations yx.

4. Further work

The algebraic methodology proposed in Section 3 produces a smooth polynomial
interpolator, which in a limiting condition, turns to a cubic spline. However, the
methodology still depends on the term ordering used and on the specified form for
si(x).

A proposal that avoids both inconveniences is to interpolate using dummy ob-
servations on a regular grid that contains the original design D. These dummy
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observations turn to be parameters which are selected to minimise Equation (4).
That is, for a set of observations yx taken on design points x ∈ D, to interpolate an
extended set {yx, zb} where zb are dummy observations taken at points {b} such
that the extended design {x, b} is a regular grid. The interpolator does not depend
on term orderings and the smoothing problem is quadratic in the parameters and
it has closed solution.

For example, consider observations 5,−4, 0,−1, 8 taken at the Latin hypercube
design points (−2,−2), (−1, 0), (0, 2), (1,−1), (2, 1). The extended design is a 5×5
grid with levels −2,−1, 0, 1, 2 for each variable. The minimisation problem returns
a smooth interpolator ỹ∗(x) whose value for

√
φ2 is 10.5. This compares favorably

with that for the algebraic interpolator of 28.2.
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Seminar für Statistik
ETH-Zentrum Zürich
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LEO D2
Leonhardstr. 27
CH-8092 Zürich
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