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Introduction by the Organisers

The workshop Modulformen, organised by Siegfried Böcherer (Mannheim), To-
moyoshi Ibukiyama (Osaka) and Winfried Kohnen (Heidelberg) was held October
28 -November 3, 2007. This meeting was attended by 24 participants with different
backgrounds reflecting some of the many aspects of the theory of modular forms.
One of the callenging features of this theory is that techniques using Whittaker
models do not apply here. On the other hand, the theory is very rich in explicit
structures and has immediate connections to arithmetic and geometry.

Some of the main topics (presented in one-hour talks) are

• Maass forms and their role in arithmetic and geometry ( Bruinier, Bring-
man)

• Application to Algebraic Geometry (Dummigan, Yoshida, Gritsenko)
• The fine structure of modular forms for GSp(4) ( Poor, Wakatski, Roberts,

Schmidt)
• Properties of explicit liftings ( Panchishkin, Katsurada, Heim, Schulze-

Pillot)
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The third and forth topic are not only interesting in their own right but they
are also a testing ground for general conjectures. We explictly mention the theory
of newforms by Roberts and Schmidt for GSp(4).
Explicit liftings can be viewed as examples for Langlands functoriality. The em-
phasis is on the explicit description of these liftings in terms of modular forms (not
only representations). A prototype is the Duke-Imamoglu-Ikeda-lifting, which ap-
peared in several talks.
Other talks dealt with theta series, Poincare series, generation of spaces of modu-
lar forms, converse theorems and spherical functions on p-adic spaces. Beyond the
talks, there was much opportunity for scientific interaction among the participants.
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Özlem Imamoḡlu (joint with Cormac O’Sullivan)
Poincare series and second order modular forms . . . . . . . . . . . . . . . . . . . . . 3004

Bernhard Heim
Arithmetic trace formula and Hecke duality . . . . . . . . . . . . . . . . . . . . . . . . . 3006

Rainer Schulze-Pillot
Local Theta correspondence and the Lifting of Duke, Imamoglu and Ikeda 3008



Modulformen 2957

Abstracts

Heegner divisors, L-functions and harmonic weak Maass forms

Jan Hendrik Bruinier

(joint work with Ken Ono)

1. Introduction and Statement of Results

Half-integral weight modular forms play important roles in arithmetic geometry
and number theory. Thanks to the theory of theta functions, such forms in-
clude important generating functions for the representation numbers of integers
by quadratic forms. Among weight 3/2 modular forms, one finds Gauss’ function
(q := e2πiτ throughout)

∑

x,y,z∈Z

qx
2+y2+z2 = 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + · · · ,

which is essentially the generating function for class numbers of imaginary qua-
dratic fields, as well as Gross’s theta functions which enumerate the supersingular
reductions of CM elliptic curves.

In the 1980s, Waldspurger [Wa], and Kohnen and Zagier [KZ, K] established
that half-integral weight modular forms also serve as generating functions of a
different type. Using the Shimura correspondence [Sh], they proved that certain
coefficients of half-integral weight cusp forms essentially are square-roots of central
values of quadratic twists of modular L-functions. When the weight is 3/2, these
results appear prominently in works on the ancient “congruent number problem”
[T], as well as the deep works of Gross, Zagier and Kohnen [GZ, GKZ] on the
Birch and Swinnerton-Dyer Conjecture.

In analogy with these works, Katok and Sarnak [KS] employed a Shimura cor-
respondence to relate coefficients of weight 1/2 Maass forms to sums of values and
sums of line integrals of Maass cusp forms. We investigate the arithmetic proper-
ties of the coefficients of a different class of Maass forms, the weight 1/2 harmonic
weak Maass forms.

A harmonic weak Maass form of weight k ∈ 1
2Z on Γ0(N) (with 4 | N if

k ∈ 1
2Z\Z) is a smooth function on H, the upper half of the complex plane, which

satisfies:

(i) f |k γ = f for all γ ∈ Γ0(N);
(ii) ∆kf = 0, where ∆k is the weight k hyperbolic Laplacian on H;
(iii) There is a polynomial Pf =

∑
n≤0 c

+(n)qn ∈ C[q−1] such that f(τ) −
Pf (τ) = O(e−εv) as v → ∞ for some ε > 0. Analogous conditions are
required at all cusps.

Throughout, for τ ∈ H, we let τ = u+ iv, where u, v ∈ R, and we let q := e2πiτ .
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The polynomial Pf , the principal part of f at ∞, is uniquely determined. If Pf
is non-constant, then f has exponential growth at the cusp ∞. Similar remarks
apply at all of the cusps.

Spaces of harmonic weak Maass forms include weakly holomorphic modular
forms, those meromorphic modular forms whose poles (if any) are supported at
cusps. We are interested in those harmonic weak Maass forms which do not arise
in this way. Such forms have been a source of recent interest due to their con-
nection to Ramanujan’s mock theta functions (see [BO1, BO2, Zw1, Zw2]). For
example, it turns out that

(1) Mf(τ) := q−1f(q24) + 2i
√

3 ·Nf (τ)

is a weight 1/2 harmonic weak Maass form, where

Nf (τ) :=
i√
3π

∑

n∈Z

Γ(1/2, 4π(6n+ 1)2v)q−(6n+1)2

is a period integral of a theta function, Γ(a, x) is the incomplete Gamma function,
and f(q) is Ramanujan’s mock theta function

f(q) := 1 +

∞∑

n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

This example reveals two important features common to all harmonic weak
Maass forms on Γ0(N). Firstly, all such f have Fourier expansions of the form

(2) f(τ) =
∑

n≫−∞

c+(n)qn +
∑

n<0

c−(n)W (2πnv)qn,

where W (x) = Wk(x) := Γ(1−k, 2|x|). We call
∑

n≫−∞ c+(n)qn the holomorphic
part of f , and we call its complement its non-holomorphic part. Secondly, the non-
holomorphic parts are period integrals of weight 2−k modular forms. Equivalently,
ξk(f) is a weight 2− k modular form on Γ0(N), where ξk is a differential operator
which is essentially the Maass lowering operator.

Every weight 2−k cusp form is the image under ξk of a weight k harmonic weak
Maass form. The mock theta functions correspond to those forms whose images
under ξ1/2 are weight 3/2 theta functions. We turn our attention to those weight
1/2 harmonic weak Maass forms whose images under ξ 1

2
are orthogonal to the

elementary theta series. Unlike the mock theta functions, whose holomorphic parts
are often generating functions in the theory of partitions (for example, see [BO1,
BO2]), we show that these other harmonic weak Maass forms can be “generating
functions” simultaneously for both the values and central derivatives of quadratic
twists of weight 2 modular L-functions.

Although we treat the general case in [BrOn], to simplify exposition, here we
assume that p is prime and that G(τ) =

∑∞
n=1BG(n)qn ∈ Snew2 (Γ0(p)) is a nor-

malized Hecke eigenform with the property that the sign of the functional equation
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of

L(G, s) =

∞∑

n=1

BG(n)

ns

is ǫ(G) = −1. Therefore, we have that L(G, 1) = 0.
By Kohnen’s theory of plus-spaces [K], there is a half-integral weight newform

(3) g(τ) =

∞∑

n=1

bg(n)qn ∈ S+
3/2(Γ0(4p)),

unique up to a multiplicative constant, which lifts to G under the Shimura cor-
respondence. For convenience, we choose g so that its coefficients are in FG, the
totally real number field obtained by adjoining the Fourier coefficients of G to Q.
It turns out that there is a weight 1/2 harmonic weak Maass form on Γ0(4p) in
the plus space, say

(4) fg(τ) =
∑

n≫−∞

c+g (n)qn +
∑

n<0

c−g (n)W (2πnv)qn,

whose principal part Pfg has coefficients in FG, which also enjoys the property

that ξ 1
2
(fg) = ‖g‖−2g, where ‖g‖ denotes the usual Petersson norm.

A calculation shows that if n > 0, then

(5) bg(n) = −4
√
πn‖g‖2 · c−g (−n).

The coefficients c+g (n) are more mysterious. We show that both types of coefficients
are related to L-functions. To make this precise, for fundamental discriminants D
let χD be the Kronecker character for Q(

√
D), and let L(G,χD, s) be the quadratic

twist of L(G, s) by χD. These coefficients are related to these L-functions in the
following way.

Theorem 1: Assume that p is prime, and that G ∈ Snew2 (Γ0(p)) is a newform.
If the sign of the functional equation of L(G, s) is ǫ(G) = −1, then the following
are true:

(1) If ∆ < 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then we have

L(G,χ∆, 1) = 32‖G‖2‖g‖2π2
√
|∆| · c−g (∆)2.

(2) If ∆ > 0 is a fundamental discriminant for which
(

∆
p

)
= 1, then

L′(G,χ∆, 1) = 0 if and only if c+g (∆) is algebraic.

Remark 1: In Theorem 1 (2), we have that L(G,χ∆, 1) = 0 since the sign of
the functional equation of L(G,χ∆, s) is −1. Therefore it is natural to consider
derivatives in these cases.

Remark 2: The fg are uniquely determined up to the addition of a weight 1/2
weakly holomorphic modular form with coefficients in FG. Furthermore, absolute
values of the nonvanishing coefficients c+g (n) are typically asymptotic to subexpo-
nential functions in n. For these reasons, Theorem 1 (2) cannot be simply modified
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to obtain a formula for L′(G,χ∆, 1). It would be very interesting to obtain a more
precise relationship between these derivatives and the coefficients c+g (∆).

Theorem 1 (1) follows from Kohnen’s theory (see Corollary 1 on page 242 of
[K]) of half-integral newforms, the existence of fg, and (5). The proof of Theorem
1 (2) is more difficult, and it involves a detailed study of Heegner divisors. We
establish that the algebraicity of the coefficients c+g (∆) is dictated by the vanishing
of certain twisted Heegner divisors in the Jacobian of X0(p). This result, when
combined with the work of Gross and Zagier [GZ], will imply Theorem 1(2).

Our argument depends on the construction of canonical differentials of the
third kind for twisted Heegner divisors. We produce such differentials of the form
η∆,r(z, f) = − 1

2∂Φ∆,r(z, f), where Φ∆,r(z, f) are automorphic Green functions
on X0(N) which are obtained as liftings of weight 1/2 harmonic weak Maass
forms f . To define these liftings, we generalize the regularized theta lift due to
Borcherds, Harvey, and Moore (for example, see [Bo1], [Br]). We then employ
transcendence results of Waldschmidt and Scholl (see [W], [Sch]), for the periods
of differentials, to relate the vanishing of twisted Heegner divisors in the Jacobian
to the algebraicity of the corresponding canonical differentials of the third kind.
By means of the q-expansion principle, we obtain the connection to the coefficients
of harmonic weak Maass forms.
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Families of Siegel Modular Forms, Their L-Functions, and Lifting
Conjectures (A research report)

Alexei Panchishkin

Let p be a prime, and let Γ = Spg(Z) be the Siegel modular group of genus g.
L-functions of Siegel modular forms are described in terms of motivic L-functions
attached to Spg, and their analytic properties are given. Rankin’s lemma of higher
genus is established. A general conjecture on a lifting from GSp 2m ×GSp 2m to
GSp 4m (of genus g = 4m) is formulated.

We study p-adic families of zeta functions and Siegel modular forms. Critical
values for the spinor L-functions and p-adic constructions are discussed. Construc-
tions of p-adic families of Siegel modular forms are given using Ikeda-Miyawaki
constructions.

We discuss the following topics:

1) L-functions of Siegel modular forms
2) Motivic L-functions for Spg, and their analytic properties
3) Critical values and p-adic constructions for the spinor L-functions
4) Rankin’s Lemma of higher genus
5) A lifting from GSp 2m ×GSp 2m to GSp 4m (of genus g = 4m)
6) Constructions of p-adic families of Siegel modular forms
7) p-adic versions of Ikeda-Miyawaki constructions

A holomorphic lifting from GSp2m ×GSp2m to GSp4m : a conjecture.

Conjecture 1 (on a lifting from GSp 2m × GSp 2m to GSp 4m). Let f and g be
two Siegel modular forms of genus 2m and of weights k > 2m and l = k − 2m.
Then there exists a Siegel modular form F of genus 4m and of weight k with
the Satake parameters γ0 = α0β0, γ1 = α1, γ2 = α2, · · · , γ2m = α2m, γ2m+1 =
β1, · · · , γ4m = β2m for suitable choices α0, α1, · · · , α2m and β0, β1, · · · , β2m of
Satake’s parameters of f and g.

One readily checks that the Hodge types of M(Sp(f))⊗M(Sp(g)) and M(Sp(F ))
are the same (of rank 24m) (it follows from Künneth’s-type formulas).

An evidence for this version of the conjecture comes from Ikeda-Miyawaki con-
structions ([Ike01], [Ike06], [Mur02]): let k be an even positive integer, h ∈ S2k(Γ1)
a normalized Hecke eigenform of weight 2k, F2n ∈ Sk+n(Γ2n) the Ikeda lift of h of
genus 2n (we assume k ≡ n mod 2, n ∈ N).

Next let f ∈ Sk+n+r(Γr) be an arbitrary Siegel cusp eigenform of genus r
and weight k + n + r, with n, r ≥ 1. If we take n = m, r = 2m, k := k + m,
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k+n+r := k+3m, then an example of the validity of this version of the conjecture
is given by

(f, g) = (f, F2m(h)) 7→ Fh,f ∈ Sk+3m(Γ4m),

(f, g) = (f, F2m) ∈ Sk+3m(Γ2m) × Sk+m(Γ2m).

Another evidence comes from the Siegel-Eisenstein series

f = E2m
k and g = E2m

k−2m

of even genus 2m and weights k and k − 2m: we have then

α0 = 1, α1 = pk−2m, · · · , α2m = pk−1,

β0 = 1, β1 = pk−4m, · · · , β2m = pk−2m−1,

then we have that

γ0 = 1, γ1 = pk−4m, · · · , γ2m = pk−1,

are the Satake parameters of the Siegel-Eisenstein series F = E4m
k .

A similar property can be checked for the Klingen-Eisenstein series: their con-
struction is compatible with the conjecture.

Remark 1. If we compare the L-function of the conjecture (given by the Satake
parameters γ0 = α0β0, γ1 = α1, γ2 = α2, · · · , γ2m = α2m, γ2m+1 = β1, · · · , γ4m =
β2m for suitable choices α0, α1, · · · , α2m and β0, β1, · · · , β2m of Satake’s param-
eters of f and g), we see that it corresponds to the tensor product of the spinor
L-functions, and this function is not of the same type as that of the Yoshida’s
lifting [Yosh81], which is a certain product of Hecke’s L-functions.

We would like to mention in this context Langlands’s functoriality: The denom-
inators of our L-series belong to local Langlands L-factors (attached to represen-
tations of L-groups). If we consider the homomorphisms

LGSp2m = GSpin(4m+ 1) → GL22m , LGSp4m = GSpin(8m+ 1) → GL24m ,

we see that our conjecture is compatible with the homomorphism of L-groups

GL22m ×GL22m → GL24m , (g1, g2) 7→ g1 ⊗ g2, GLn(C) = LGLn.

However, it is unclear to us if Langlands’s functoriality predicts a holomorphic
Siegel modular form as a lift.

A general program. We plan also to extend our previous p-adic constructions
to other situations using the following techniques:

1) Construction of modular distributions Φj with values in an infinite dimen-
sional modular tower M(ψ).

2) Application of a canonical projector of type πα onto a finite dimensional
subspace Mα(ψ) of Mα(ψ).

3) General admissibility criterion. The family of distributions πα(Φj) with

value in Mα(ψ) give a h-admissible measure Φ̃ with value in a module of
finite rank.
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4) Application of a linear form ℓ of type of a modular symbol produces dis-
tributions µj = ℓ(πα(Φj)), and an admissible measure from congruences
between modular forms πα(Φj).

5) One shows that certain integrals µj(χ) of the distributions µj coincide
with certain L-values; however, these integrals are not necessary for the
construction of measures (already done at stage 4).

6) One shows a result of uniqueness for the constructed h-admissible mea-
sures : they are determined by many of their integrals over Dirichlet char-
acters (not all).

7) In most cases we can prove a functional equation for the constructed mea-
sure µ (using the uniqueness in 6), and using a functional equation for the
L-values (over complex numbers, computed at stage 5).
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Hypergeometric series, automorphic forms and mock theta functions

Kathrin Bringmann

There are famous examples of hypergeometric series that are modular forms.
To state one, denote by p(n) the number of partitions of n. By Euler we have

(1) P (q) :=
∑

n=1

p(n) qn =
q

1
2

η(z)
,
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where η is Dedekins’ η-function. The theory of modular forms can be employed
to show many important properties of p(n). For example Rademacher used the
circle method to prove an exact formula for p(n). Moreover p(n) satisfies some
nice congruence properties, including the Ramanujan congruences:

p(5n+ 4) ≡ 0 (mod 5), p(7n+ 5) ≡ 0 (mod 7), p(11n+ 6) ≡ 0 (mod 11).

The function P (q) can also be written as a hypergeometric series, namely

(2) P (q) = 1 +

∞∑

n=1

qn
2

(1 − q)2(1 − q2)2 · · · (1 − qn)2
.

It is an open problem to show directly the modularity of P (q) using this expan-
sion. The literature on further examples that relate hypergeometric series and
modular form is extensive and it is an active area of of research to obtain more
of those and to also interpret them because they have applications for example
in number theory, Lie theory, combinatorics, and physics. However, there is no
comprehensive theory that really describes the interplay between hypergeometric
series and automorphic forms. The situation is further complicated by the mock
theta functions, a collection of 22 series such as

(3) f(q) :=

∞∑

n=0

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2

which were defined by Ramanujan in his last letter to Hardy. Even if (2) and (3)
look similar, (3) is not just a modifications of the Fourier expansion of modular
forms and therefore until recently little was known about the mock theta functions.

The last couple of years things started to become clearer. Through my work
with K. Ono combined with work of Zwegers it is now known that the mock theta
functions are the holomorphic parts of weak Maass forms, the non-holomorphic
parts are certain Mordell-type integrals. Weak Maass forms are generalizations
of modular forms, in that they satisfy a transformation law, and (weak) growth
conditions at cusps, but instead of being meromorphic, they are annihilated by
the weight k hyperbolic Laplacian. I constructed in joint work with K. Ono [7, 8]
building on work of Zwegers [12] an infinite family of weak Maass forms arising
from Dyson’s rank generating functions. Recall that Dyson defined the rank of a
partition to be its largest part minus the number of its parts. We let N(m,n) the
number of partitions of n with rank m and define the generating function

(4) R(w; q) := 1 +
∞∑

n=1

∞∑

m=−∞

N(m,n)wmqn = 1 +
∞∑

n=1

qn
2

(wq)n(w−1q)n
,

where (a; q)n :=
∏n−1
j=0

(
1 − aqj

)
. If we set w = 1 in (4), we recover the partition

generating function P (q), i.e., a weight − 1
2 modular form. Moreover if w = −1, we

obtain the generating function for the number of partitions with even rank minus
the number of partitions with odd rank and this equals the mock theta function
f(q).
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Theorem 1. ([8]) If w 6= 1 is a root of unity, then the functions R(w; q) are
the holomorphic parts of weight 1

2 weak Maass forms. The non-holomorphic parts
have the form

∫ i∞

−z̄

Θw(τ)√
−i(τ + z)

dτ,

where Θw is a cuspidal weight 3
2 theta function.

Viewing the rank generating functions in the framework of weak Maass forms
has found many applications, including an exact formula for the coefficients of f(q)
[7], asymptotics for N(m,n) [2], and congruences for N(s, t;n) [8], the number of
partitions of n with rank congruent to s modulo t, which give a combinatorial
decomposition of congruences for p(n). The next natural question that arises in
this context is whether there is a connection to usual modular forms. The answer
is yes, this was for example essential for the proof of the above mentioned congru-
ences since the restriction of the Fourier expansion of the occuring Maass forms
to certain residue classes turned out to have no non-holomorphic part. Therefore
we were able to employ techinques of Serre and Shimura. Moreover there are re-
lations between non-holomorphic parts of different Maass forms, which “explain”
interesting identities involving Maass forms. Famous examples are the so-called
mock theta conjectures of Ramanujan, a list of ten identities involving mock theta
functions. These confirmed to be very difficult to prove since mock theta functions
are not modular forms and were only proven by Hickerson in the late 80’s [10].
From the new perspective described above the mock theta conjectures arise natu-
rally in the theory of Maass forms from linear relations between non-holomorphic
parts. We obtain theorems like the following.
Theorem 2. ([9]) Suppose that t ≥ 5 is prime, 0 ≤ r, s < t and 0 ≤ d < t. Then
the following are true: Assume either

(1) If
(
1−24d
t

)
= −1 or

(2)
(
1−24d
t

)
= 1. If r, s 6≡ ± 1

2 (1 + α) (mod t), for any 0 ≤ α < 2t satisfying

1 − 24d ≡ α2 (mod 2t),

Then

(5)

∞∑

n=0

(N(r, t; tn+ d) −N(s, t; tn+ d)) q24(tn+d)−1

is a weight 1
2 weakly holomorphic modular form.

Theorem 2 is optimal since for all other pairs r and s (apart from trivial cases)
we have that (5) is the holomorphic part of a weak Maass form which has a
non-vanishing non-holomorphic part. Using Theorem 2 one can prove concrete
identites including the mock theta conjectures using the valence formula.

It turns out that the theory of weak Maass forms can also be employed to relate
class numbers to interesting combinatorial statistics. To state our results, we let
H(−N) be the Hurwitz class number, i.e., the number of classes of quadratic forms
of discriminant −N , where each class C is counted with multiplicity 1

Aut(C) . By
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[11] one knows that

H(q) := − 1

12
+

∑

n≥1
n≡0,3 (mod 4)

H(−n)qn

is the holomorphic part of a weak Maass forms of weight 3
2 . Next recall that

an overpartition is a partition, where the first occurence of a number may be
overlined. We denote by p(n) the number of overpartitions of n. We consider the
following mock-theta-type function for overpartitions:

f(q) :=
∑

n

α(n)qn =
∑

n

(pe(n) − po(n) ) qn,

where pe(n) denotes the number of overpartitions of n with even and po(n) the
number of overpartitions with odd rank. Suprisingly this function has a totally
different behavior than Ramanujan’s mock theta function f(q). In [4] the author
proved that f is the holomorphic part of a weak Maass form. Moreover we showed
recently that there is a natural connection to Hurwitz class numbers.
Theorem 3. ([5]) We have

f(−q) = −16H(q) − 1

3
Θ3(z).

In particular we can write α(n) in terms of class numbers. For example if n ≡ 1, 2
(mod 4), then

α(n) = 4(−1)n+1H(−4n).

This result is interesting in two ways, namely first of all it relates an algebraic
statistic a class number to a combinatorial statistic a rank difference. Secondly
it provides a mock theta function with total different behavior than Ramanujan’s
mock theta functions. For example the coefficients of f(q) grow exponentially
whereas the coefficients of f(q) only grow polynomial. Also one can conclude other
interesting properties of the coefficients of f(q) from properties of class number
like congruences like the following:

pe(1052n+ 256) ≡ po(1052n+ 256) (mod 61).

Recently I found a new class of functions that are related to hypergeometric
series. These function “live” between the classical quasimodular forms and weak
Maass forms and to describe this I call a function a quasiweak Maass form if it is a
linear combination of derivatives of weak Maass forms. The forms that I consider
are the generating functions for certain 2-marked Durfee symbols. I don’t want to
give the definition of those combinatorial objects here since it requires setting up a
lot of notation and only consider the analytic meaning of these objects. Andrews
showed that we have the following generating function of 2-marked Durfee symbols:

(6) R2(q) :=
∑

m1,m2>0

q(m1+m2−1)2+m1

(q)2m1
(qm1)2m2

=
1

(q)∞

∑

n∈Z\{0}

(−1)n+1 q
3n
2 (n+1)

(1 − qn)2
.

Difficulties in relating (6) to a weak Maass form arise due to double poles and
more severely from the fact that the summation only runs over the incomplete
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lattice Z \ {0}. The problems mentioned before are responsible for the fact that
additional terms arise in the transformation law of R2(q), which I managed to
identify as quasimodular components. Define the function

M(z) := R2(24z) e−2πiz −N (z) − 1

24η(24z)
+
E2(24z)

8η(24z)
,

where as usual E2(z) is the quasimodular weight 2 Eisenstein series. Moreover the
non-holomorphic integral is given by

N (z) ∼
∫ i∞

−z̄

η(24τ)

(−i(τ + z))
3
2

dτ.

Theorem 4. ([3]) The function M(z) is a weak Maass form of weight 3
2 .

As an application I solved two conjectures of Andrews. The function R2(q) is
also crutial for understanding k-marked Durfee symbols for k > 2 which I am
planning to study in joint work with Garvan and Mahlburg [6]. We are planning
to construct quasiweak Maass forms of arbitrary high weight.
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Consequences for standard zeta values of conjectures of Bloch-Kato
and Harder

Neil Dummigan

Let f be a classical Hecke eigenform of level one and weight 2k − 2, with k

even. Then there is a Saito-Kurokawa lift f̂ of weight k and genus 2. Let p
be a large prime divisor of the algebraic part of the near-central critical value
L(f, k). (For simplicity, imagine that the field of coefficients is Q, but this is not
necessary.) Then, assuming that p is not a congruence prime for f , and another
weak condition, there exists another Hecke eigenform F (of weight k, level one and

genus 2), not a Saito-Kurokawa lift, such that the Hecke eigenvalues of f̂ and F
are congruent modulo p. Hence, for any prime ℓ,

λ(ℓ) ≡ ℓk−1 + ℓk−2 + aℓ (mod p),

where λ(ℓ) is a Hecke eigenvalue for F , and f =
∑
anq

n. This was proved by
Katsurada [Ka], and a similar theorem independently by Brown [Br].

This congruence implies that a 4-dimensional (mod p) Galois representation
ρF,p attached to F is reducible, with a 2-dimensional factor isomorphic to the
(mod p) representation ρf,p attached to f (assumed irreducible), and two one-
dimensional factors isomorphic to twists of the trivial representation. Brown shows
that from this reducible representation (which depends on a good choice of invari-
ant Zp-lattice inside a p-adic representation ρF,p) may be extracted a non-trivial
extension of ρf,p, producing an element of order p in an appropriate Bloch-Kato
Selmer group, as predicted by the factor of p in L(f, k). That this element satisfies
the necessary local conditions follows from the fact that ρF,p is unramified away
from p and crystalline at p. The non-triviality of the extension depends on the
irreducibility of ρF,p.

Inside the exterior square of ρF,p is a twist of ρf,p, so we can also get an
element of order p in a Selmer group for a representation whose L-function is,
more-or-less, the standard zeta-function L(F, s, St), and according to the Bloch-
Kato conjecture [BK] we should see p appear in certain ratios of critical values
of L(F, s, St). Under a further weak assumption, this can be confirmed using

L(f̂ , s,St) = ζ(s)L(f, s+ k− 1)L(f, s+ k− 2) and the congruence between f̂ and
F .

According to a conjecture of Harder [Ha], [vdG] there exist vector-valued Siegel
modular forms satisfying congruences a bit like those for F , modulo large prime
divisors of the algebraic parts of other critical values of L(f, s), further right than
s = k. Faber and van der Geer [FvdG], [vdG] have produced compelling numer-
ical evidence for this conjecture in special cases. If we accept it then, imitating
the above constructions, we expect to see these primes dividing certain ratios of
standard zeta values for these vector-valued forms. Here we can no longer use the
formula for the standard zeta function of a Saito-Kurokawa lift, but heroic cal-
culations by Ibukiyama and Katsurada, using pullback formulas and differential
operators, have confirmed one case numerically (subject to checking some techni-
cality). Some additional similar predictions can be made, using the elements of
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Selmer groups, associated to vanishing of L(f, s) at the central point s = k − 1,
constructed by different methods by Skinner-Urban [SU] and Nékovař [N].
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On the computation of modular forms of half-integral weight

Nils-Peter Skoruppa

We indicate a method for a systematic and explicit generation of a basis for a given space of half

integral modular forms on Γ0(4N) with arbitrary nebentype.

Preliminary remarks

The computational theory of elliptic modular forms of integral weight is mean-
while quite well understood. The most efficient method for calculating modular
forms is based on the theory of modular symbols and goes back directly to [Ma].
It was used (with several improvements by various authors) by Henri Cohen, the
author and Don Zagier to produce in the late 80’s tables of modular forms [modi]
and later by William Stein to produce another extensive database of modular
forms [St]. This method is now implemented (mainly by William Stein) into the
computer algebra systems MAGMA and SAGE.

Shimura showed [Sh] that modular forms of half-integral weight are intimately
connected to forms of integral weight. This connection became even more impor-
tant by Waldspurger’s theorem relating values of the twisted L-series of newforms
of integral weight at the critical point to the Fourier coefficients of associated half-
integral weight forms. A famous application of these ideas to classical number
theory is Tunnell’s theorem on congruent numbers.

Despite their importance for the arithmetic theory of modular forms of integral
weight there is no good algorithm to compute systematically half-integral weight
forms. The main method used so far1 was described in Basmaji’s thesis [Ba,

1William Stein implemented this recently in SAGE.
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pp. 55]: If N is divisible by 4, if k = 2l − 1 denotes an odd integer, and if we set

θ2 =
∑

n∈2Z+1 q
n2

and θ3 =
∑

n∈Z q
n2

(where q, for z in the upper half plane, is

the function exp(2πiz)), then the image of the map2

S k
2
(4N,χ) → Sl

(
4N,χχl−4

)
× Sl

(
4N,χχl−4

)
, f 7→ (fθ2, fθ3)

equals the set of all pairs of modular forms (f2, f3) in S2(4N,χ) which satisfy
f2θ3 = f3θ2. This method is for example implemented in recent versions of SAGE.
The disadvantages of this method lie at hand: It is based on a prior computa-
tion of modular forms of integral weight. It is not compatible in any sense with
Hecke theory. Even if one is interested in only a single Hecke eigenform of half-
integral weight one needs to compute first of all basis for the spaces S 3

2
(4N,χ)

and S2(4N,χ), where the the assumption that N is divisible by 4 becomes then
especially annoying.

We suggest a different approach, which overcomes the listed disadvantages. This
approach is based on modular symbols. It allows to produce closed formulas for
the Fourier coefficients of modular forms of half-integer weight in a very direct
way. In fact, this idea behind this method is not really new. It was developed
and used in [Sk1], [Sk2], [Sk3] to produce closed formulas for Jacobi forms (on the
full modular group) of arbitrary weight and index. A more detailed account of
this method will be published elsewhere [Sk4]. For simplicity we discuss in the
following only the case of half-integral modular forms of weight 3

2 .

Statement of Results

The starting point to derive formulas for generators of a space S 3
2
(4N,χ) are

the following two theorems. Note that we use S 3
2
(4N,χ) for the space of non

trivial cusp forms, i.e. the orthogonal complement with respect to the Petersson
scalar product of the space of all cusp forms f of weight 3

2 on Γ0(4N) and with
character χ which are linear combinations of theta series of the form

∑
n nψ(n)qtn

(t an integer and ψ a Dirichlet character).

Theorem 1 ([Sh]). Let t be a positive squarefree integer. Then the application

f =
∑

n>0

cf (n) qn 7→
∑

n>0

∑

d|n

(χχ−4t) (n/d) af
(
td2
)
qn,

defines a map

St,χ : S 3
2
(4N,χ) → S2(2N,χ

2).

This map commutes with all Hecke operators T (p) with gcd(p, 2N) = 1.

(Note that the precise level 2N of the image of the maps St,χ was only conjec-
tured in [Sh] and later proved in [Ni].)

2For a half-integral or integral integer k and a Dirichlet character χ we use Sk(N, χ) for the

space of (non trivial, if k = 3

2
, see below) cusp forms on Γ0(N) of weight k and nebentype χ. If k

is half-integral then N is assumed to be divisible by 4. For a discriminant D, we use χD for the

Dirichlet character modulo D which, for odd primes p, equals the usual Legendre symbol
(

D
p

)
.
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Theorem 2 ([Sk2]). For every positive integer m, the application

f 7→ λf , λf (c) :=
∑

s∈P1(Q)

cs

(∫ ∞

s

+

∫ ∞

−s

)
f(z) dz =:

∫

c+
f

(c =
∑
s cs(s) ∈ Z[P1(Q)]0) defines an isomorphism

π : S2(m,χ) → HomΓ0(m)

(
Z[P1(Q)]0,C(χ)

)ev.

resHomΓ0(m) (Z[P1(Q)],C(χ))
ev. .

This isomorphism commutes with all Hecke operators T (p).

Here the notations are as follows. By Z[P1(Q)] we denote the free abelian group
generated by elements (s), where s runs through the points of the rational projec-
tive line P1(Q), and by Z[P1(Q)]0 we denote its subgroups of elements c =

∑
s cs(s)

with
∑

s cs = 0. The semigroup of regular integral 2×2 matrices acts on this group
by linear extension of its natural action on P1(Q). We use C(χ) for the Γ0(m)-
module with underlying vector spaceC and the action3 ([a, b, c, d], z) 7→ χ(d)z. The
vectors spaces whose quotient appears on the right of the claimed isomorphism are
the spaces of all even Γ0(m)-equivariant maps from Z[P1(Q)]0 (resp. Z[P1(Q)]) into
C(χ). Here a map λ is called even if λ (

∑
cs(−s)) = λ (

∑
cs(s)). The map res

restricts a λ on Z[P1(Q)] to Z[P1(Q)]0. Finally, for a natural number l, the Hecke
operator T (l) is defined on each of the two spaces on the right by

(T (l)λ) (c) =
∑

R=[a,b,c,d]

χ(a)λ(Rc),

where R runs through a system of representatives for the set of integral 2×2 matri-
ces R = [a, b, c, d] of determinant l with c divisible by m modulo left multiplication
by Γ0(m). (Note that χ(a) = 0 unless a is relatively prime to m.)

The quotient on the right of the isomorphism of the last theorem, but with the
restriction to even maps dropped, can be naturally identified with the dual of the
space

C(m,χ) := ker
([
Z[P1(Q)]0 ⊗Z C(χ)

]
Γ0(m)

→ [Z[P1(Q)] ⊗Z C(χ)]Γ0(m)

)
,

where the subscript Γ0(m) indicates that we consider the respective spaces of
Γ0(m)-coinvariants.

We now fix a natural number N and a squarefree natural number t and consider
the composed map

L∗
t,χ = π ◦ St,χ : S 3

2
(4N,χ) → S2(2N,χ

2) → C2N (χ2)∗.

By dualising this map and identifying the dual space S 3
2
(4N,χ)∗ with the space

S 3
2
(4N,χχ4N ) we obtain a map

Lt,χ : C(2N,χ2) → S 3
2
(4N,χχ4N ).

3We use [a, b, c, d] for the matrix

(
a b
c d

)
.
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The natural map S 3
2
(4N,χχ4N ) → S 3

2
(4N,χ)∗ to which we refer is given explicitly

by f 7→ 〈·, ιW4Nf〉. Here ι and W4N denote the maps (ιf)(z) = f(−z) and

(W4Nf) (z) = f (−1/4Nz)
(
−i

√
4nτ

)−3/2
, respectively, and we use the Petersson

scalar product. It can be checked that then Lt,χ is in fact Hecke-equivariant (with
respect to the Hecke operators T (p) with p relatively prime to 4N). Moreover,
from the preceding explanations it is not hard to verify that the images of the Lt,χ
with t running through all squarefree integers exhaust the space S 3

2
(4N,χχ4N).

Hence, for deducing from these considerations an effective algorithm to compute
modular forms of weight 3

2 in closed form we have to answer the question whether
we are able to compute the Lt,χ in an explicit way.

By its very definition the map Lt,χ is defined by the identity

〈g, ιW4NLt,χ(c)〉 =

∫

c+
St,χ(g) (g ∈ S 3

2
(4N,χ).

Now, the maps St,χ are theta liftings, i.e. there exists a so-called theta kernel
θt,χ(z, τ), which transforms in the first variable under Γ0(4N) like an element
in S 3

2
(4N,χ) and which transforms in the second variable under Γ0(2N) like an

element in the space which is obtained from S2

(
2N,χ2

)
by taking the complex

conjugates of its forms, and such that

St,χ(g)(τ) = 〈g, θt,χ(·, τ)〉
Explicit formulas for the theta kernels in question have be obtained in [Ni] and [Ci].

Inserting θt,χ in the defining identity for Lt,χ we obtain after some obvious
manipulations the formula

Lt,χ(c) = W4N ι

∫

c+
θt,χ(·, τ) dτ .

It is a priori not clear whether this is a sensible formula since θt,χ is only real
analytic and since we need to interchange taking scalar products and integration
along hyperbolic lines. However, it can be verified by analyzing explicit expressions
for θt,χ that this formula holds in fact true.

It turns out that the right hand side of the last formula can indeed be computed
explicitly and is, moreover, given by a simple and appealing combinatorial formula.
The method of computation is in essence the same as in [Sk1]. Details have been
worked out (for special cases) by Reinhard Steffens [Sts] in his diploma thesis. We
state the final result here in a slightly weaker form.

Theorem 3 ([Sts], [Sk4]). For natural numbers D whose squarefree part does not
divide 4Nt, the D-th Fourier coefficient of Lt,χ (

∑
s cs (s)) is given by

∑

Q∈FN (4NDt)

χt(Q)
∑

s

cs sign (Q(s)) .

Here, for a natural number ∆, we use FN (∆) for the set of all binary integral
quadratic forms Q(x, y) = ax2 + bxy + cy2 such that b2 − 4ac = ∆ and such that
N |a and 2N |b. Moreover, for any such form, we use χt(Q) = χ(a/N)χ−4t(a/N)
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(in particular χt(Q) = 0 if gcd(a, 4N) 6= 1) and signQ(s) for the sign of Q(x, y)
if s = [x : y].

We leave it to the reader to verify that the inner sum in the given formula is
different from 0 for only finitely many Q. The assumption on D can be dropped
for the cost of adding certain more complicated terms to the given formula. The
given formula can be interpreted in terms of intersection numbers of certain cycles
on the modular curve X0(2N). We finally mention that a similar theorem (with
suitable modifications) holds true for arbitrary half integral weight. Details and
proofs will be published elsewhere [Sk4].
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Even unimodular lattices with a complex structure and their theta
series

Aloys Krieg

Let K be an imaginary quadratic number field with class number 1, ring of integers
OK and discriminant DK . We consider Ck, k ∈ N, with the standard Hermitian
scalar product. The lattices Λ under consideration are given by C-linearly inde-
pendent vectors

b1, . . . , bk ∈ Ck with Gram matrix S = (〈bν , bµ〉)
satisfying

Λ = OKb1 + . . .+ OKbk, 〈λ, λ〉 ∈ 2Z for all λ ∈ Λ, detS =

(
2√
|DK |

)k
.
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Note that we have

〈λ, µ〉 ∈ 2√
DK

OK for all λ, µ ∈ Λ

and that these Λ are even unimodular Z-lattices of rank 2k (cf. [3]). Such lattices
exist if and only if k ≡ 0 (mod 4). There are only finitely many isometry classes
of such lattices for fixed k.

The associated theta series on the Hermitian half-space

Hn =
{
Z ∈ Cn×n; 1

2i
(Z − Z

tr
) positive definite

}

are given by

Θ
(n)
Λ (Z) =

∑

(λ1,...,λn)∈Λn

eπi·trace((〈λν ,λµ〉)·Z), Z ∈ Hn.

They are Hermitian modular forms of weight k (cf. [2], [3]) with respect to

Γn(K) := {M ∈ O2n×2n
K ; MJM

tr
= J}, J =

(
0 I
−I 0

)
.

Theorem 1 ([6],[4]). Let K = Q(
√
−1). The numbers of OK -isometry classes of

even unimodular Z-lattices of rank 2k with the structure of OK-modules are given
by

k 4 8 12
♯ 1 3 28

.

If k = 8 the three Hermitian theta series are linearly independent if and only if
n ≥ 4.

In this case there exist two lattices for k = 8, which are non-isometric as OK-
modules, but are both isometric to D+

16 as Z-lattices. In particular there exists
a Hermitian analog of the Schottky form over K = Q(

√
−1). If k = 12 all the

lattices from the Niemeier list have got the structure of OK-modules.

Theorem 2 ([5]). Let K = Q(
√
−3). The numbers of OK-isometry classes of

even unimodular Z-lattices of rank 2k with the structure of OK-modules are given
by

k 4 8 12
♯ 1 1 5

.

The dimensions of the spaces of cusp forms spanned by the associated Hermitian
theta series for k = 12 are given by

n 0 1 2 3 4
dim 1 1 1 1 or 2 1 or 0

.

It is conjectured that there is a non-trivial cusp form of degree 4, which is a
linear combination of theta series. There is no Hermitian analog of the Schottky
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form over K = Q(
√
−3). The root systems of the lattices for k = 12 are

3E8, 4E6, 6D4, 12A2, ∅.

Now we can ask the same kind of questions over the Hurwitz quaternions O.

Theorem 3 ([1],[4]). The numbers of O-isometry classes of even unimodular
Z-lattices of rank 4k with the structure of O-modules are given by

k 2 4 6 8
♯ 1 1 3 11

.

If k = 6 the associated theta series on the quaternionic (or even on the Siegel)
half-space are linearly independent if and only if n ≥ 2.

The root systems of the lattices for k = 6 are

3E8, 6D4, ∅.
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Paramodular cusp forms

Cris Poor

(joint work with David Yuen)

1. Abstract

We are gathering evidence for a degree two version of the Shimura-Taniyama
conjecture. Our part in this project revolves around computing S2

2(K(p)), the
Siegel modular cusp forms of weight 2 and degree 2 for the paramodular group
K(p) for primes levels p. For a natural number N , the paramodular group K(N)
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is defined by:

K(N) = Sp2(Q) ∩




∗ ∗ ∗/N ∗
N∗ ∗ ∗ ∗
N∗ N∗ ∗ N∗
N∗ ∗ ∗ ∗


 , for ∗ ∈ Z.

In 1980, H. Yoshida conjectured that for every abelian surface defined over Q,
there exists a group and a degree two Siegel modular form of weight two for that
group with the same L-function. He supported this conjecture by constructing
lifts and giving specific examples of GL(2)-type, see [3].

The Paramodular Conjecture, given below, posits the paramodular groupK(N)
as the group corresponding to a simple rational abelian surface of squarefree con-
ductor N . Accordingly, we are studying spaces of Siegel paramodular cusp forms.
We believe that the examples given here are the first nonlifts of weight two found.
Although we have verified the equality of some Euler factors in our examples, we
have not proven the equality of any L-functions.

We have been motivated by the following degree two version of the Shimura-
Taniyama Conjecture, as explained to us by A. Brumer. For a more general
statement and details, see the future article [2] by A. Brumer and K. Kramer.

1. Paramodular Conjecture. Let N ∈ N be odd and squarefree. Let a totally
real number field K of degree d over Q be given. Let O be its ring of integers.
There is a bijection between Hecke newforms f ∈ S2

2 (K(N))
new

whose eigenvalues
generate K over Q and isogeny classes of simple abelian varieties A defined over
Q of dimension 2d and conductor Nd with endomorphisms, also defined over Q,
by O.

In this correspondence, the product of the spinor L-functions of the Galois con-
jugates of f is equal to the Hasse-Weil L-function of A.

This conjecture may be generalized further but here we wish to focus on the
simplest case:

2. Paramodular Conjecture for rational abelian surfaces of prime con-
ductor. Let p be a prime. There is a bijection between Hecke eigenforms with
rational eigenvalues f ∈ S2

2 (K(p)) that are not Gritsenko lifts and isogeny classes
of rational abelian surfaces A of conductor p. In this correspondence, we have

L (A, s,Hasse-Weil) = L (f, s, spin) .

Our computations here cover primes p < 479. To the extent that our compu-
tations are conclusive, there is a perfect match between these two sets of data.
In particular, there are rational nonlift Hecke eigenforms where the Paramodular
Conjecture indicates there should be and there are none where it indicates there
should be none. We have found examples of nonlift Siegel modular cusp forms
for p = 277, 349, 353, 389, 461, 523 and (two) for 587. In all of these cases, the
rational abelian surfaces are known, see [2], and the Euler 2 and 3 factors of the
abelian surface agree with those of the nonlift Hecke eigenform. The case p = 587
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is particularly interesting because there is one nonlift in the plus space and one
nonlift in the minus space.

Theorem 1.1. For primes p < 499 and not in {277, 349, 353, 389, 461}, S2
2 (K(p))

is spanned by Gritsenko lifts.

The first entry in the exceptional set is p = 277 and the known surfaces of
that conductor are all isogenous to the Jacobian A277 of the curve y2 + y =
x5 + 5x4 + 8x3 + 6x2 + 2x.

Theorem 1.2. The subspace of Gritsenko lifts in S2
2 (K(277)) has dimension 10

whereas S2
2 (K(277)) has dimension 11. There is a rational Hecke eigenform f

that is not a Gritsenko lift. The Euler factors of L(f, s, spin) for q = 2, 3, 5 and
the linear coefficients of the Euler factors for q = 7, 11, 13 agree with those of
L(A277, s,Hasse-Weil).

The abelian surface A277 has rational 15-torsion. We have the following agree-
ment on the modular side.

Theorem 1.3. Let f be as in Thm. 1.2 and be chosen so that f ∈ S2
2 (K(277)) (Z)

has Fourier coefficients of unit content. Let the first Fourier Jacobi coefficient of
f be φ ∈ J2,277 and let R = Grit(φ) ∈ S2

2 (K(277)) (Z). We have f ≡ R mod 15.

We find nonlift paramodular cusp forms of weight 2 by computing integral
closures. This involves using the dimension formulae of Ibukiyama to compute
Sk2 (K(p)) for k = 4 and 8. We find a meromorphic weight 2 form f = H/g that
we believe is holomorphic, where H ∈ S4

2(K(p)) and g ∈ S2
2(K(p)) is a Gritsenko

lift; then we show that f2 = F for some F ∈ S4
2(K(p)). That is, we verify the

weight 8 identity H2 = g2F . This proves that f ∈ S2
2(K(p)).

The method of integral closure is also useful for weight three. Ash, Gunnells
and McConnell [1] asked for Siegel modular forms of weight 3 with certain Euler
factors. We have constructed nonlifts in S3

2(K(p)) with these Euler factors for
p = 61, 73 and 79.
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On generalizations of the Shimura–Taniyama conjecture

Hiroyuki Yoshida

Let E and F be number fields. Let M be a motive over F with coefficients in
E. We are interested in:

Problem: Find a connected reductive algebraic group G defined over F , an
automorphic representation π of G(FA) and a representation r of the L-group LG
such that

L(M, s) = L(s, π, r).

The answer (G, π, r) to this question is not unique in general. The main point
of this article is to find G as small as possible. Then we could derive other answers
by the functoriality principle. (The existence of π on GL(d), d = rank(M) is a
folklore conjecture.)

I thank Professor D. Blasius and Dr. K. Hiraga for useful discussions.

We assume that M is of pure weight w and is polarizable. Let d be the rank
of M . Fix an embedding F →֒ C. On the Betti realization HB(M), we have an
E-rational Hodge structure of weight w. Generalizing the case E = Q, we can
define the Hodge group Hg(M) as follows. It is the smallest algebraic subgroup
H of GL(HB(M)) defined over E such that H(E ⊗ C) contains h(S(R)). Here,
as usual, S = RC/R(Gm) and h is a morphism of S into GL(HB(M)) associated
to the Hodge structure. We can show that Hg(M) is connected reductive.

For a finite place λ of E, we have a λ-adic representation

ρλ : Gal(F/F ) −→ GL(Hλ(M)) ∼= GL(HB(M))(Eλ).

Generalizing the standard conjecture due to Mumford-Tate-Serre ([4]) for the case
E = Q, we conjecture

Conjecture A. There exists an algebraic subgroup H of GL(HB(M)) defined
over E such that: (i) H is independent of λ. (ii) Im(ρλ) is Zariski dense in H .
(iii) The identity component H0 of H is equal to Hg(M).

Hereafter we assume Conjecture A.
Let v be a finite place of F . Choose λ so that (v, λ) = 1. By a standard proce-

dure due to Deligne ([1]), we can construct a representation W ′
Fv

(Eλ) −→ H(Eλ)
with discrete topology on H(Eλ). Here W ′

Fv
is the Weil-Deligne group scheme.

Taking an embedding Eλ →֒ C, we obtain a representation ψv : W ′
Fv

(C) −→
H(C).

For an infinite place v of F , we can also define a representation ψv : WFv (C) −→
H(C) using the Hodge structure on HB(M).

Now let K be the finite Galois extension of F such that

H0(C) ∩ ρλ(Gal(F/F )) = ρλ(Gal(F/K)), Gal(F/K) ⊃ Ker(ρλ).
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Then we have the fundamental commutative diagram
(R)
1 −−−−→ ρλ(Gal(F/K)) −−−−→ ρλ(Gal(F/F )) −−−−→ Gal(K/F ) −−−−→ 1

y
y

∥∥∥

1 −−−−→ H0(C) −−−−→ H(C) −−−−→ Gal(K/F ) −−−−→ 1.

Here H0 = Hg(M) and both rows are exact. The second exact sequence in (R)
does not split in general. But it defines a homomorphism

Gal(K/F ) −→ Out(H0) = Aut(H0)/Inn(H0).

Choosing a splitting of H0, we can lift this map to a homomorphism

µH0 : Gal(K/F ) −→ Aut(H0).

We can find a connected reductive algebraic group G defined over F so that (i)
G is quasi-split. (ii) LG0 = H0(C). (iii) µG = µH0 . Here µG is the homomorphism
of Gal(K/F ) into Aut(LG0) defined by the action on the based root datum.

Now let F = {a(σ), f(σ, τ)}, σ, τ ∈ Gal(K/F ) be the factor set of Gal(K/F )
taking values in H0(C) obtained from the exact sequence in the second row of
(R). Here a(σ) ∈ Aut(H0(C)), f(σ, τ) ∈ H0(C).

Theorem 1. Let Z(H0(C)) be the center of H0(C). Assume that a(σ) acts
on Z(H0(C)) as the identity and Z(H0(C)) is connected. Then there exists a
finite Galois extension L of F containing K such that the factor set F splits after
the inflation by the canonical map Gal(L/F ) −→ Gal(K/F ).

Call such a field L a splitting field for ρλ.

Theorem 2. A splitting field for ρλ always exists.

Let L be a splitting field for ρλ. We form the L-group
LG = LG0 ⋊Gal(L/F ).

Then take r as the canonical composite map LG −→ H(C) −→ GL(HB(M))(C);
we can show that ψv lifts to the Langlands parameter φv : W ′

Fv
(C) −→ LG. Now

we can formulate a generalized Shimura-Taniyama conjecture.

Main Conjecture. Take a quasi-split connected reductive algebraic group
G defined over F and define r and φv as above. Then there exists an irreducible
automorphic representation π = ⊗vπv of G(FA) such that L(s, π, r) = L(M, s).
Moreover

(i) πv ∈ Πφv (G/Fv) (= the L-packet attached to φv).
(ii) π is cuspidal if M is absolutely irreducible.
(iii) π is tempered.
(iv) π is essentially unitary

Remark 1. The π corresponding to M is not unique in general. To know which
π will appear in the tempered spectrum, we need the (conjectural) multiplicity
formula due to Labesse-Langlands ([3] and Kottwitz. To deduce more precise
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information (holomorphy of automorphic forms, for example), we need to know the
structure of the L-packet Πφv (G/Fv). Non-tempered π will appear if we consider
a mixed motive.

Remark 2. The Tate conjecture implies that M is irreducible if and only if ρλ
is irreducible.

Remark 3. We can show that the center of Hg(M) is the 1-dimensional torus
if the λ-adic representation restricted to a sufficiently small open subgroup is
absolutely irreducible. Is it true that the center of Hg(V ) is Gm when V is
an irreducible Hodge structure? Since no algebraicity conjecture for the Hodge
structure is known, such and similar questions are interesting.

N.B. Theorem 2 was stated in my talk at Luminy, June, 2007. As I found a
subtle gap in my proof in September, I let Theorem 2 retreat to a hypothesis in
my talk. Now I have filled up the gap. The details will appear elsewhere.

I would like to end this article with my personal recollections. My first visit
to the institute was the summer of 1980. I gave a talk on the following theorem:
Let A be an n-dimensional abelian variety defined over F with sufficiently many
complex multiplications. Then there exists a finite Galois extension K of F and
a representation ρ of WF,K into GL(2n,C) such that L(s,A/F ) = L(s, ρ,WF,K).
Here WF,K denotes the relative Weil group. My result was published in the next
year ([5]). In my talk, I asked the following question. Does there exist an A for
which ρ is not equivalent to a direct sum of monomial representations? It is my
pleasure to report that I found such an A during the research sketched in this
article.
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Explicit dimension formulas for spaces of vector valued Siegel cusp
forms of degree two

Satoshi Wakatsuki

In this talk we gave a trace formula and some explicit dimension formulas for
Siegel cusp forms of degree two. We also discussed the surjectivity of the Witt
operator as an application of our explicit dimension formulas. In this note we do
not write up our trace formula, because the formula is too long. So we describe a
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detail of the explicit dimension formula for Γe(1) and the surjectivity of the Witt
operator (this part is a joint work with Tomoyoshi Ibukiyama).

Our trace formula is a step towards getting explicit computable formulas and
numerical values of traces. In case of cusp forms of one variable, explicit trace
formulas were studied by Eichler et al.. We have not gotten explicit trace formula
yet. But we obtained explicit dimension formulas for arithmetic subgroups of any
levels for each Q-form of Sp(2;R) by our trace formula in [7], though the details
are omitted here. For the scalar valued case, the explicit dimension formulas were
already known. As for some congruence subgroups of the split Q-form, Tsushima
already gave the dimension formulas for the vector valued case in [6]. By our trace
formula, we generalized the explicit dimension formulas for the scalar valued case,
Christian [2], Morita [5], Arakawa [1] and Hashimoto [3] to the vector valued case
via the Selberg trace formula.

We give some definitions shortly. We put

Sp(2;R) =

{
g ∈ GL(4;R) ; g

(
0 I2

−I2 0

)
tg =

(
0 I2

−I2 0

)}
.

Let H2 = {Z ∈M(2;C) ; tZ = Z, Im(Z) is positive definite }. The group Sp(2;R)

acts on H2 as g ·Z := (AZ+B)(CZ+D)−1 for Z ∈ H2, g =

(
A B
C D

)
∈ Sp(2;R).

Let ρk,j : GL(2;C) → GL(j + 1;C) be the irreducible rational representation of

the signature (j + k, k) (j, k ∈ Z≥0), i.e. ρk,j = detk ⊗Symj where Symj is the
symmetric j-tensor representation of GL(2;C). Let χ be a 1-dimensional unitary
representation of Γ such that [Γ : ker(χ)] <∞. Let Sk,j(Γ, χ) be the space of Siegel
cusp forms of type (ρk,j , χ,Γ), i.e. the space of holomorphic functions f : H2 →
Cj+1 satisfying (i) f(γ · Z) = ρk,j(CZ + D)f(Z)χ(γ) for all γ =

(
A B
C D

)
∈

Γ, Z ∈ H2, (ii) |ρk,j(Im(Z)1/2)f(Z)|Cj+1 is bounded on H2, where Im(Z)1/2 ∈
SM(2;R) and (Im(Z)1/2)2 = Im(Z). If χ is trivial, we denote Sk,j(Γ, χ) simply
by Sk,j(Γ). Let Γ(1) = Sp(2;Z) and Γ(2) = {γ ∈ Γ(1) ; γ ≡ I4 (mod2)}. Let Γe(1)
be the normal subgroup of Γ(1) such that [Γ(1) : Γe(1)] = 2, Γe(1)/Γ(2) ∼= A6,
and Γ(1)/Γ(2) ∼= S6, where S6 is the symmetric group of degree six and A6 is the
alternative group of S6. The unitary character sgn follows from the signature of
S6

∼= Γ(1)/Γ(2).
From now, we shall discuss the explicit dimension formula for Sk,j(Γe(1)), and

the images of the Witt operator related to Sk,j(Γ(1)) and Sk,j(Γ(1), sgn). We note
on dimC Sk,j(Γ(1), sgn) = dimC Sk,j(Γe(1)) − dimC Sk,j(Γ(1)). For the dimension
formula of Sk,j(Γ(1)), we refer to [6] and [7].

The notation t = [t0, t1, . . . , tl−1; l;m] means that t = tn if m ≡ n (mod l). We
note that dimC Sk,j(Γe(1)) = 0 if j is odd. In case of j = 0, the dimensions of
Sk,0(Γe(1)) were calculated by Igusa [4]. In case of j > 0, the following result is
new.
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Theorem k ≥ 5. j is even.

dimC Sk,j(Γe(1)) =

2−63−35−1(j + 1)(k − 2)(j + k − 1)(j + 2k − 3) − 2−63−2(j + 1)(j + 2k − 3)
+2−43−1(j + 1) + 2−63−2(−1)k(j + k − 1)(k − 2)

−2−43−1(−1)k(j + 2k − 3) + 3 · 2−6(−1)k

−2−3[(−1)j/2,−1, (−1)j/2+1, 1; 4; k] + 2−4[1, (−1)j/2,−1, (−1)j/2+1; 4; k]
+2−23−3 ([(j + k − 1),−(j + k − 1), 0; 3; k] + [(k − 2), 0,−(k − 2); 3; j + k])
−2−23−2 ([1,−1, 0; 3; k] + [1, 0,−1; 3; j + k])− 3−2 ([0,−1,−1; 3; k] + [1, 1, 0; 3; j + k])
+2−23−2 ([−(j + k − 1),−(j + k − 1), 0, (j + k − 1), (j + k − 1), 0; 6; k]

+[(k − 2), 0,−(k − 2),−(k − 2), 0, (k − 2); 6; j + k])
−2−23−1 ([−1,−1, 0, 1, 1, 0; 6; k] + [1, 0,−1,−1, 0, 1; 6; j + k])

+2−6(−1)j/2(j + 2k − 3) + 2−6(−1)j/2+k(j + 1) − 2−3(−1)j/2

+3−3(j +2k−3)[1,−1, 0; 3; j]+2−13−3(j +1)[0, 1,−1; 3; j +2k]−2−13−1[1,−1, 0; 3; j]
+2−13−2C2 + 2 · 5−1C3 + 2−3C′

4,

where C2 = [1, 0, 0,−1, 0, 0; 6; k] (j = 6n), [−1, 1, 0, 1,−1, 0; 6; k] (j = 6n + 2),
[0,−1, 0, 0, 1, 0; 6; k] (j = 6n + 4), C3 = [1, 0, 0,−1, 0; 5; k] (j = 10n),
[−1, 1, 0, 0, 0; 5; k] (j = 10n + 2), 0 (j = 10n + 4), [0, 0, 0, 1,−1; 5; k] (j = 10n + 6),
[0,−1, 0, 0, 1; 5; k] (j = 10n + 8), C′

4 = [1, 1,−1,−1; 4; k] (j = 8n),
[−1, 1, 1,−1; 4; k] (j = 8n + 2), [−1,−1, 1, 1; 4; k] (j = 8n + 4),
[1,−1,−1, 1; 4; k] (j = 8n + 6) for n ∈ Z≥0.

Numerical examples of dimC Sk,j(Γe(1)).
j k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 1 0 0 0 1 1 1 1 1 1 2 2 3 2 2 3 4

2 0 0 0 0 0 1 0 1 0 1 1 2 3 3 2 3 4 7

4 0 0 0 0 0 1 1 1 1 2 3 4 4 5 6 7 9 11

6 0 1 0 1 2 2 2 4 4 5 5 8 9 11 12 13 16 19

8 1 1 0 1 2 4 4 4 5 7 9 11 13 15 16 19 23 27

Numerical examples of dimC Sk,j(Γ(1), sgn) = dimC Sk,j(Γe(1)) − dimC Sk,j(Γ(1)).
j k 4∗ 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0 0 1 0 0 0 1 0 1 0 1 0 2 0 3 0 2 0 4

2 0 0 0 0 0 1 0 1 0 1 0 2 1 3 0 3 1 6

4 0 0 0 0 0 1 0 1 0 2 1 3 1 4 2 5 3 8

6 0 1 0 1 1 2 1 3 2 4 2 6 4 8 5 9 7 13

8 1 1 0 1 1 3 2 3 2 5 4 7 6 10 7 12 10 17

(∗) Our theorem is not valid for k = 4. As for (j, k) = (0, 4), Igusa calculated it
in [4]. As for k = 4, j > 0, the values are expected.

We define the Witt operator W as f(Z) −→ f

(
τ 0
0 ω

)
. Put Vk,j = {f(τ, ω) =

(fj−ν(τ, ω))0≤ν≤j ; fj−ν(τ, ω) = (−1)kfν(ω, τ), fj−ν(τ, ω) ∈ Sk+j−ν(SL2(Z)) ⊗
Sk+ν(SL2(Z))}.
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Theorem k ≥ 10. j is even.

dimC Sk,j(Γ(1)) − dimC Sk−5,j(Γ(1), sgn) = dimC Vk,j .

The Witt operator from Sk,j(Γ(1)) to Vk,j is surjective for k ≥ 10.

The surjectivity follows from the equality of the dimension formulas and the
fact that f/θ5 ∈ Sk−5,j(Γ(1), sgn) if Wf = 0 for f ∈ Sk,j(Γ(1)), where θ5 ∈
S5,0(Γ(1), sgn). We do not know the explanation for the surjectivity, but this
property is interesting.

We also got another equality of the dimensions related to the Witt operator. Put
Wk,j = {f(τ, ω) = (fj−ν(τ, ω))0≤ν≤j ; fj−ν(τ, ω) = (−1)k+1fν(ω, τ), fj−ν(τ, ω) ∈
Sk+j−ν (SL2(Z), sgn) ⊗ Sk+ν(SL2(Z), sgn)}.
Theorem k ≥ 10. j is even.

dimC Sk,j(Γ(1), sgn) − dimC Sk−5,j(Γ(1))
= dimC Wk,j

+

{
[1, 0, 0; 3; j]− dimC Sk(SL2(Z), sgn) − dimC Sj(SL2(Z), sgn) k ≡ 0 (mod2)

[1, 0, 0; 3; j]− dimC Sj(SL2(Z), sgn) + dimC Sk+j−5(SL2(Z)) k ≡ 1 (mod2)
,

where we put formally dimC Sj(SL2(Z), sgn) = 2−23−1(j−1)+3−1[1, 0,−1; 3; j]−
2−2(−1)j/2 for any j.
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Non-degenerate Siegel vectors in local representations of GSp(4)

Brooks Roberts

(joint work with Ralf Schmidt)

In this report we discuss part of our work on the local theory of Siegel modular
forms of degree two with respect to the Siegel congruence subgroups Γ0(N). Sup-
pose that F is a non-archimedean field of characteristic zero with ring of integers
o, prime ideal p in o, and generator ̟ for p. For n a non-negative integer, let
Γ0(p

n) be the subgroup of GSp(4, o) of elements k such that

k ∈




o o o o

o o o o

pn pn o o

pn pn o o


 .

Let (π, V ) be an irreducible, admissible representation of GSp(4, F ) with trivial
central character. We let V0(n) be the subspace of vectors v in V such that
π(k)v = v for k in Γ0(p

n). We refer to the elements of V0(n) as Siegel vectors of
level n.

Our research goal is to understand the Siegel vectors in all irreducible, admis-
sible representations of GSp(4, F ) with trivial central character. In general, there
are no conjectures about such fixed point spaces. At the same time, understanding
these fixed point spaces is essential for relating Siegel modular forms with level to
automorphic representations. In [RS], we determined the structure of all of the
spaces of vectors fixed by the paramodular congruence subgroups of GSp(4, F ) of
arbitrary level. In [RS] we found that there is always uniqueness at the minimal
non-zero paramodular level, that oldforms are obtained from a newform via three
level raising operators, and that the minimal paramodular level is the conductor
Nπ of the L-parameter corresponding to the representation. As concerns Siegel
vectors, we are far from having a complete theory, though we can say that the
theory of Siegel vectors will be rather different from that governing paramodular
vectors. In particular, there is no uniqueness at the minimal non-zero Siegel level,
oldforms are not obtained from a newform via three level raising operators even
if there is uniqueness at the minimal Siegel level, and the minimal Siegel level is
usually lower than the conductor of the L-parameter.

There is a basic decomposition of V0(n) into a direct sum of four subspaces,
and in this report we discuss some of our results about one of the components of
this decomposition. For Siegel modular forms, this decomposition appears in [S].
To define the endomorphism of V0(n) whose eigenspaces form the decomposition
assume that n ≥ 2. If v is in V0(n), then we consider the vector

∑

x∈o/p

π(




1 x̟−1

1
1

1


)v.
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Typically, this vector is not again in V0(n). However, we can trace this vector into
V0(n) and thus define an operator called µ : V0(n) → V0(n). An explicit formula
for µ(v) is:

∑

x∈o/p

π(




1 x̟−1

1
1

1


)v +

∑

x,z∈o/p

π(




1 z
1

1 −z
1







1
1 x̟−1

1
1


)v.

Two facts may be deduced from this formula. First, the second sum can be
rewritten to involve only elements of the unipotent radical of the Siegel parabolic
subgroup. Second, the formula does not depend on the level n. As a consequence,
we find that µ is diagonalizable and that for any eigenvalue c, the space V0(n)c is
contained in V0(n+1)c. Some further analysis shows that the possible eigenvalues
for µ are q(q + 1), q, 2q and 0, so that we have the eigenspace decomposition:

V0(n) = V0(n)q(q+1) ⊕ V0(n)q ⊕ V0(n)2q ⊕ V0(n)0.

One can prove that the q(q+1)-eigenspace is obtained in a simple way from vectors
of lower level:

V0(n)q(q+1) = π(




1
1

̟
̟


)(V0(n)).

The other eigenspaces, however, are more mysterious. In this report we describe
some of our results about the 2q-eigenspace.

We will begin by delineating a useful theoretical tool called the P3-filtration of
V . To define the P3-filtration we need to define some subgroups of GSp(4, F ). Let

ZJ =




1 ∗
1

1
1




︸ ︷︷ ︸
center of Jacobi group

⊂ GJ =




1 ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

1




︸ ︷︷ ︸
Jacobi group

⊂ Q =




∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗




︸ ︷︷ ︸
Klingen parabolic

⊂ GSp(4, F ).

It is easy to verify that ZJ is normal in Q, and one can further check that there
is a natural isomorphism

Q/ZJ · Z ∼−→ P3 =



∗ ∗ ∗
∗ ∗ ∗

1


 ⊂ GL(3, F ),




∗ ∗ ∗ ∗
a b z
c d x

1


 7→



a b z
c d x

1


 ,

where Z is the center of GSp(4, F ). Recalling that our representation (π, V )
of GSp(4, F ) has trivial central character, we see that the subspace V (ZJ ) of
V spanned by the vectors v − π(z)v for v in V and z in ZJ is a Q-module,
and that VZJ = V/V (ZJ) is a Q/ZJ · Z ∼= P3-module. We call VZJ the P3-
module of V ; it can be thought of as the local version of the 0-th Fourier-Jacobi
coefficient. Furthermore, it turns out that VZJ has finite length as a P3-module,
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and that the P3 filtration can be computed, with irreducible subquotients defined
by representations of GL(0, F ) = 1, GL(1, F ) = F× and GL(2, F ). For more
information, see [RS]. The following lemma implies that no information is lost by
projecting 2q-vectors to VZJ :

Lemma. Let v ∈ V0(n)2q. If the image of v under the projection V → VZJ is
zero, then v = 0.

Using the P3-filtration we can prove the following results about 2q-vectors in
non-generic representations. In fact, our results in this case are even more precise
than stated.

Theorem. Assume that π is non-generic. Then dimV0(n)2q is bounded by the
number of irreducible subquotients of VZJ that are defined by unramified characters
of F×, so that dimV0(n)2q ≤ 2 for all n ≥ 2. Moreover, if π is supercuspidal, then
V0(n)2q = 0 for all n ≥ 2.

To study 2q-vectors in generic representations we also use zeta integrals. As-
sume that π is generic and let W(π, ψ) be the Whittaker model of π. For W in
W(π, ψ) let Z(s,W ) be the zeta integral of W as explained in [RS]. Also, let s2 be
the Weyl group element in GSp(4, F ) as defined in [RS]. The following theorem
implies that 2q-vectors can be studied using zeta integrals.

Theorem. If W ∈ V0(n)q(q+1) ⊕ V0(n)q ⊕ V0(n)0, then Z(s, π(s2)W ) = 0. If
W ∈ V0(n)2q, then W = 0 if and only if Z(s, π(s2)W ) = 0.

The following is our current main theorem about 2q-vectors in the case of generic
representations. In particular, it implies that if π is generic, then π admits non-
zero Siegel vectors. In the theorem α′, β′ : V0(n) → V0(n + 1) are certain level
raising operators. We will not recall the formula for α′; the operator β′, however,
is just inclusion.

Theorem. Assume that π is generic. Define

Mπ =





(Nπ + 1)/2 if Nπ is odd,

Nπ/2 if Nπ is even and ε(1/2, π) = 1,

Nπ/2 + 1 if Nπ is even and ε(1/2, π) = −1.

Then dimV0(n)2q ≤ n−Mπ + 1 for n ≥ 2. Moreover, dimV0(n)2q = n−Mπ + 1
and V0(n+ 1)2q = α′V0(n)2q + β′V0(n)2q for n ≥ Nπ + 1.

This work was supported by the National Science Foundation of the United
States of America.
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Siegel vectors in Saito–Kurokawa representations of GSp(4)

Ralf Schmidt

(joint work with Brooks Roberts)

Let F be a p-adic field, o its ring of integers, p the maximal ideal of o, and ̟ a
generator of p. Inside the group

GSp(4, F ) = {g ∈ GL(4, F ) : tgJg = λ(g)J, λ(g) ∈ F×},
where

J =




1
1

−1
−1


 ,

we consider the Siegel congruence subgroup

Γ0(p
n) = GSp(4, o) ∩




o o o o

o o o o

pn pn o o

pn pn o o




of level pn. Let (π, V ) be an irreducible, admissible representation of GSp(4, F )
with trivial central character. Motivated by global considerations, our goal is to
understand the spaces

V0(n) := {v ∈ V : π(g)v = v for all g ∈ Γ0(p
n)}.

These spaces are related by a simple level raising operator

β : V0(n) → V0(n+ 1),

given by applying π(diag(1, 1, ̟,̟)). Let ψ be a fixed character of F with con-
ductor o. Let

ZJ = {n(z) =




1 z
1

1
1


 : z ∈ F},

and let V (ZJ , ψ−1) be the subspace of V spanned by all elements of the form
π(n(z))v−ψ−1(z)v, where v ∈ V and z ∈ F . It is easy to verify that the quotient
VZJ ,ψ−1 := V/V (ZJ , ψ−1) carries an action of the Jacobi group

GJ =




∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∗


 ⊂ GSp(4, F ).

We call VZJ ,ψ−1 the Fourier-Jacobi module associated to (π, V ).

Lemma. Let p : V → VZJ ,ψ−1 be the projection. Let v ∈ V0(n) for some n ≥ 1.
Then p(v) = 0 if and only if v ∈ β(V0(n− 1)).
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The lemma implies that the spaces V0(n) can be studied in the Fourier-Jacobi
module. Therefore it is desirable to compute these modules more explicitly. It
is known (see [BS]) that VZJ ,ψ−1 , like every representation πJ of GJ for which

ZJ acts via the character ψ−1, can be written as πJ = π̃ ⊗ π−1
SW

, where π̃ is a

(genuine) representation of the metaplectic group S̃L(2, F ), and where π−1
SW

, the
Schrödinger–Weil representation, is a certain representation, independent of πJ ,
of the double cover of GJ . The metaplectic representation π̃ is irreducible if and
only if πJ is irreducible. It turns out that if π is generic, then VZJ ,ψ−1 has infinite

length as a GJ–module. Therefore, the use of the Fourier-Jacobi module in the
generic case is limited, and other methods like zeta integrals are more promising.
Representations for which Fourier-Jacobi modules are particularly useful are the
Saito–Kurokawa representations. These are defined as theta liftings θ(π̃, ψ) from

a representation π̃ (always assumed to be genuine) of S̃L(2, F ); here, θ(π̃, ψ) is as
defined in [W2]. A global version of the following result is stated in [PS].

Theorem. Let π̃ be an irreducible, admissible representation of S̃L(2, F ), and let
π = θ(π̃, ψ) be its theta lifting to GSp(4, F ). Then the Fourier-Jacobi module of π
is irreducible as a representation of the Jacobi group. More precisely, πZJ ,ψ−1 =

π̃ ⊗ π−1
SW

.

At least in the case of odd residue characteristic, this theorem reduces the study
of the spaces V0(n) in a Saito–Kurokawa representation π = θ(π̃, ψ) to the study of

the spaces of vectors in π̃ invariant under Γ0(p
n) := {

[
a b
c d

]
∈ SL(2, o) : c ∈ pn}.

As an example, we consider representations of the form π = χ1GL(2) ⋊ χ−1,

where χ is a character of F× such that χ2 6= ν±1 and χ 6= ν±3/2; here, ν stands for
the normalized absolute value on F , as in [ST]. In the classification of [RS], these
are representations of type IIb. The corresponding π̃ is a metaplectic principal se-
ries representations π̃χ. The structure of invariant vectors in π̃χ can be completely
determined, and leads to the following structure of Siegel vectors in π. First, if
χ(−1) = −1, then there are no Siegel vectors of any level. Assume that χ(−1) = 1.
Then the minimal n for which V0(n) 6= 0 is n = 2k, where pk is the conductor
of χ. But unless k = 0, there is no unique newform: We have dim(V0(2k)) = 2
for k ≥ 1. For n ≥ 2k ≥ 2 we have dim(V0(n)) = (n − 2k + 1)(n − 2k + 2). All
the oldforms can be obtained by applying two simple level raising operators to
the Siegel vectors at level 2k and 2k + 1. In particular, there are four primitive
vectors, two at level 2k and two at level 2k + 1.

This work was supported by the National Science Foundation of the United
States of America.
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Hecke Operators on Siegel Theta Series

Lynne H. Walling

Given a positive definite quadratic form Q on a Z-lattice L, we can construct
a Siegel theta series attached to L; the Fourier coefficients of the theta series tell
us how many times L represents lower dimensional quadratic forms. The Hecke
operators help us study Fourier coefficients of a modular form.

We assume here that the rank of L is 2k (k ∈ Z), and that Q is scaled so that
Q(L) ⊆ 2Z. We show the following.

Theorem Let θ(genL) be the average Siegel theta series attached to L, p a
prime not dividing the level of L. For j ≤ k,

θ(genL)|T ′
j(p

2) = λj θ(genL)

where λj = pEβ(n, j)(pk−1 + χ(p)) · · · (pk−j + χ(p)) where T ′
j(p

2) is a particular

linear combination of Tℓ(p
2), 0 ≤ ℓ ≤ j, χ is the quadratic character associated to

L, E is a simple (explicit) expression, and β(m, r) is the number of r-dimensional
subspaces of an m-dimensional space over Z/pZ. When j > k (χ(p) = 1), j ≥ k
(χ(p) = −1),

θ(L)|T ′
j(p

2) = 0.

When χ(p) = 1,

θ(genL)|T (p) = (pk−1 + 1) · · · (pk−n + 1)θ(genL),

and when χ(p) = −1,

θ(genL)|T (p)2 = ((pk−1 − 1) · · · (pk−n − 1))2θ(genL).

Recall that the Siegel theta series attached to L is

θ(L; τ) =
∑

C

e{ tCACτ}

where C varies over Z2k,n, τ ∈ {X + iY : symmetric X,Y ∈ Rn,n, Y > 0 },
and e{∗} = exp(πiTr(∗)). (Here Y > 0 means that the quadratic form represented
by the matrix Y is positive definite.) We set θ(genL) =

∑
L′

1
o(L′)θ(L

′) where L′

varies over the isometry classes in the genus of L, and o(L′) is the order of the
orthogonal group of L′. (L′ is in the genus of L if, locally everywhere, L′ and L
are isometric.)

In earlier work with J.L. Hafner, we found explicit matrices giving the action
of the Hecke operators T (p), Tj(p

2) (1 ≤ j ≤ n). When analyzing the action of



2990 Oberwolfach Report 51/2007

the Tj(p
2) on the Fourier coefficients of a Siegel modular form, we encountered

incomplete character sums; to complete these, we replace Tj(p
2) by

T̃j(p
2) = pj(k−n−1)

∑

0≤ℓ≤j

β(n− ℓ, j − ℓ)Tℓ(p
2)

where β(m, r) is the number of r-dimensional subspaces of an m-dimensional space
over Z/pZ.

We write the Fourier series of a Siegel modular form F as

F (τ) =
∑

clsΛ

c(Λ)e∗{Λτ}

where clsΛ varies over isometry classes of even integral, positive semi-definite rank
n lattices (oriented when k is odd), and

e∗{Λτ} =
∑

G

e{tGTGτ},

T a matrix for the quadratic form on Λ, G ∈ O(T )\GLn(Z) if k is even, G ∈
O+(T )\SLn(Z) if k is odd. Then with Hafner we showed that the Λth coefficient

of F |T̃j(p2) is ∑

pΛ⊆Ω⊆ 1
p
Λ

pE(Λ,Ω)αj(Λ,Ω)c(Ω)

whereE(Λ,Ω) is given by an explicit expression in terms of n, j and the multiplicity
of the invariant factors of Ω in Λ, and αj(Λ,Ω) is the number of totally isotropic,
codimension n − j subspaces of Λ ∩ Ω/p(Λ + Ω). (We get a similer but simpler
formula for the Λth coefficient of F |T (p).)

Applying the coset representatives directly to θ(L), we obtain

θ(L; τ)|T̃j(p2) =
∑

Λ⊆L


 ∑

pΛ⊆Ω⊆ 1
p
Λ

p∗αj(Λ,Ω)


 e{Ωτ}

(where e{Ωτ} =
∑

G e{tGTGτ}, T a matrix for the quadratic form on Ω, G ∈
GLn(Z)). Now we interchange the order of summation to get

θ(L; τ)|T̃j(p2) =
∑

Ω⊆ 1
p
L

Ω integral


 ∑

pΩ⊆Λ⊆ 1
p
Ω∩L

p∗αj(Λ,Ω)


 e{Ωτ}.

Given Ω, we construct the Λ in the inner sum using a two-step modulo p con-
struction, simultaneously computing αj(Λ,Ω). We find that the sum on Λ can be
described by a doubly indexed sum of products of functions of the form

δ(m, r) = (pm + 1) · · · (pm−r+1 + 1), µ(m, r) = (pm − 1) · · · (pm−r+1 − 1),

β(m, r) (as defined earlier), and ϕℓ(Ω1); here Ω = 1
pΩ0 ⊕ Ω1 ⊕ pΩ2 where Ωi ⊆ L

with Ω0,Ω1 primitive in L modulo p, and ϕℓ(U) is the number of dimension ℓ
totally isotropic subspaces of a Z/pZ-space U .
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We compare θ(L)|T̃j(p2) to
∑

Kj
θ(Kj) where the Kj are sublattices of 1

pL so

that the invariant factors {L : Kj} consist of j factors 1
p , j factors p, 2(k − j)

factors 1, and with Kj ∈ genL. Notice that we have the constraint that such Kj

do not exist unless j ≤ k (χ(p) = 1), j < k (χ(p) = −1). For j thus constrained,
we count which (even) integral, rank n Ω ⊆ 1

pL lie in each Kj; we find that
∑

Kj

θ(Kj ; τ) =
∑

Ω⊆ 1
p
L

Ω integral

bj(Ω)e{Ωτ}

where bj(Ω) is given by a sum of products of the functions δ, µ, β, ϕℓ(Ω1) (as
described above).

We compare θ(L)|T̃j(p2) to
∑
Kj
θ(Kj); they do not quite match up, although

their “leading” terms do. Hence, adjusting our operators again, we get
∑

0≤q≤j

uj(q) θ(L)|T̃j−q(p2) =
∑

0≤q≤j

vj(q)
∑

Kj−q

θ(Kj−q).

Averaging over genL quickly yields our result for j constrained as described above.
When j does not meet these constraints, we realize θ(L)|T ′

j(p
2) as a linear

combination of θ(L)|T ′
ℓ(p

2), ℓ ≤ k when χ(p) = 1, ℓ < k when χ(p) = −1. We
immediately obtain θ(L)|T ′

j(p
2) = 0 for such j.

The arguments to analyze θ(genL)|T (p) and θ(genL)|T (p)2 are similar but sim-
pler.
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On a set of products of two Eisenstein series which generates the
space of cusp newforms

Yves Martin

(joint work with Winfried Kohnen)

1. Products of Eisenstein series and main results

For positive integers s and n let rs(n) be the number of representations of n as
a sum of s integral squares. It is well know that r4(n) can be expressed in term
of powers of divisors of n. One way to explain this formula is that r4(n) is related
to the n-th Fourier coefficient of a modular form of weight 2 over a congruence
subgroup, and that such space of modular forms is generated by Eisenstein series.
If we want to generalize this fact for larger, even s, one is forced to consider the
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following issue; how to write the n-th Fourier coefficient of a cusp form using
powers of divisors of n in some simple way.

In [3] O. Imamoglu and W. Kohnen solve this problem for all s ≡ 0 mod 8 and
s ≥ 16 via the following result.

Theorem 1. (Imamoglu-Kohnen) Let k ≥ 2. The set of products
{
E∞
r (τ)E0

2k−r(τ) | 4 ≤ r ≤ 2k − 4, r even
}

spans the vector space of cusp forms of weight 2k over Γ0(2).

Here

E∞
r (τ) =

1

2(2r − 1)ζ(r)
{2rEr(2τ) − Er(τ)} ,

E0
r (τ) =

2r/2

2(2r − 1)ζ(r)
{Er(τ) − Er(2τ)} ,

and Er(τ) denotes the Eisenstein series of weight r and level 1.
The purpose of this note is to report on work in progress towards a generalization

of this theorem. More precisely, we want to describe a set of Eisenstein series and
products of two Eisenstein series which generate the space of modular forms of
weight 2k over the group Γ0(q) with q prime. To this end, we consider

Er(τ) = 2ζ(r) +
2(−2πi)r

Γ(r)

∞∑

n=1

σr−1(n)e(nτ)

for any positive integer r > 2, and

Er,ψ(τ) = 2L(ψ, r) +
2Gψ(−2πi)r

qrΓ(r)

∞∑

n=1

σr−1,ψ(n)e(nτ)

for a positive integer r and any Dirichlet character ψ mod q with ψ(−1) = (−1)r.
Here Gψ is equal to the Gauss sum associated to ψ (resp. 1) if ψ is primitive (resp.
trivial) and σr−1,ψ(n) =

∑
d|n ψ(d)dr−1. In this definition the series with r = 1, 2

are obtained by analytic continuation and (r, ψ) 6= (2, ψ0), where ψ0 denotes the
trivial character mod q.

If we denote by Mr(N,χ) (resp. Sr(N,χ)) the space of modular forms (resp.
cusp forms) of weight r and character χ over the group Γ0(N), we have

Er(τ) ∈ Mr(1), Er(qτ) ∈ Mr(q) and Er,ψ(τ) ∈ Mr(q, ψ).

Consider next the following modular forms in M2k(q):

Gr(τ) = Er(τ)E2k−r(τ) and Ft,ψ(τ) = Et,ψ(τ)E2k−t,ψ(τ),

where 4 ≤ r ≤ k even, 1 ≤ t ≤ k and ψ is any Dirichlet character mod q such
that ψ(−1) = (−1)t, (t, ψ) 6= (2, ψ0). Then our main results (which may not be in
their final form) are

Claim 1 Let q be a prime. The collection

{E2k(τ), E2k,ψ0(τ), Gr(τ), Gr(qτ), Ft,ψ(τ) | for r, t, ψ as above}
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spans the vector space M2k(q).

Claim 2 Let q be a prime. There are simple and explicit orthogonal projection
operators pr± from S2k(q) onto the spaces S±

2k(q) of new and old cusp forms so
that {

pr+
(
F ∗
t,ψ(τ)

)
| for t, ψ as above

}

generates the space of newforms S+
2k(q). Here F ∗

t,ψ(τ) denotes the cuspidal part

of Ft,ψ(τ).

2. Some remarks about the proofs

It is not difficult to see that the first claim follows from the second one plus the
fact that M2k(1) is generated by E2k(τ) and the set of products Gr(τ) (see for
example remark in [5]).

The proof of the second claim depends mainly on two basic ideas that we il-
lustrate in the case of the products Ft,ψ(τ) with ψ a primitive character mod q.
Using the Rankin-Selberg method and some algebraic manipulations one gets the
following expression for the Petersson inner product of f(τ) and Fr,ψ(τ) whenever
f(τ) is a Hecke eigenform.

Lemma 1. Let f(τ) ∈ S2k(q) be a normalized eigenform for all Hecke operators
Tn with gcd (n, q) = 1. If 1 ≤ r ≤ 2k− 1 is an integer and ψ a primitive character
mod q such that ψ(−1) = (−1)r, then

〈f(τ), Fr,ψ(τ)〉 =
(−i)rΓ(2k − 1)Gψ

22k−3(2π)2k−r−1Γ(r)qr
L(f ; 2k − 1)L(fψ; 2k − r).

Here L(f ; s) denotes the Hecke L-function of f(τ) and Γ(s) is Euler’s Gamma
function. This identity was established by Rankin for modular forms of level 1
and generalized by Zagier [5] to arbitrary congruence subgroups and multiplier
systems with large enough weights.

The other important ingredient in the proof of claim 2 comes from the Eichler-
Shimura theory for congruence subgroups (see [1]). The period polynomial of a
cusp form g(τ) of weight 2k = w + 2 is

Pg(X) =

∫ i∞

0

g(τ)(X − τ)wdτ =

w∑

j=0

(−1)j
(
w
j

)
rj(g)X

w−j.

Its coefficient rj(g) is related to the special value L(g; j + 1) of the L-function. If
V is the space of polynomials with complex coefficients of degree at most w, there
is a function Φ− from S2k(q) into cohomology group H1

P (Γ0(q), V ) given by

Φ−(g)(γ,X) =
1

2

∫ i∞

γ(i∞)

g(τ) (X − τ)
w
dτ − 1

2

∫ i∞

−γ(i∞)

g(τ) (X + τ)
w
dτ

for all g(τ) in S2k(q) and γ in Γ0(q). This is an injective homomorphism from
S2k(q) into H1

P (Γ0(q), V ). Using a particular set of generators γq,a of Γ0(q) for
which we can write Φ−(g)(γq,a, X) in terms of Pg(X) and Pgψ (X), we get
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Lemma 2. Let f(τ) be a Hecke eigenform in S+
2k(q) with f |2k[Wq](τ) = ±f(τ),

where Wq is the Fricke involution. Then the following statements are equivalent.
i) f(τ) is the zero function.
ii) L(fψ, r) = 0 for all integers 1 ≤ r ≤ 2k− 1 and all Dirichlet characters ψ mod
q such that ψ(−1) = (−1)r, (r, ψ) 6= (2, ψ0).

Claim 2 now follows from Lemma 1, Lemma 2 and a suitable linear algebra
argument.
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Two applications of the spectral theory on the three dimensional
hyperbolic space to Hermitian modular forms

Yoshinori Mizuno

(joint work with Roland Matthes)

Imai [2] discovered how one can apply the spectral theory on the upper half-
plane to Siegel modular forms of degree two. Take a Fourier series on the Siegel
upper half-space whose Fourier coefficients are unimodular invariant and increase
reasonably. Let Z = it1/2W be a variable on the Siegel upper half-space, where t >
0 andW is a positive definite real symmetric matix of size two whose determinant is
one. Identifying W with a variable τ on the upper half-plane, we have the Roelcke-
Selberg spectral decomposition of the Fourier series as a function of τ . Then
each spectral coefficient with respect to any eigenfunction is the inverse Mellin
transform of a certain Dirichlet series now called by a Koecher-Maass series. Thus
we can analyze the Fourier series on the Siegel upper half-space by studying each
spectral coefficient, in other words by studying each Koecher-Maass series. Using
this principle, Imai formulated a converse theorem for Siegel modular forms. In
fact Duke-Imamoglu [1] gave a new proof of Saito-Kurokawa lift for Siegel modular
forms by Imai’s converse theorem combined with Katok-Sarnak’s correspondence
for Maass forms [3]. In my talk, a three dimensional analogue of Katok-Sarnak’s
correspondence is given and two applications of the spectral theory on the three
dimensional hyperbolic space to Hermitian modular forms are indicated. Let K be
an imaginary quadratic field of discriminant −D, O its ring of integers, χK = (−D∗ )

the Kronecker symbol ofK and D−1 the inverse different. Let H = {P = z+rj; z ∈
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C, r > 0} be the three dimensional hyperbolic space. An automorphic function on
H is any function U(P ) on H satisfying the following three conditions.

(G-i)U(γP ) = U(P ) for all γ ∈ SL2(O).
(G-ii)U(P ) is a C2-function on H with respect to x, y, r, P = x + yi + rj ∈ H
which verifies a differential equation −∆U = λU with some λ ∈ C, where ∆ =

r2( ∂
2

∂x2 + ∂2

∂y2 + ∂2

∂r2 ) − r ∂∂r is the hyperbolic Laplace-Beltrami operator on H.

(G-iii)U(P ) is of polynomial growth at all cusps of SL2(O).

Let P2 be the set of all positive definite hermitian matrices of size two and PS2

the determinant one surface of P2. We identify PS2 with the three dimensional
hyperbolic space H by

(
(|z|2 + r2)r−1 zr−1

zr−1 r−1

)
→ P = z + rj

and extend any automorphic function U(P ) on H to a function on P2 by setting
U(T ) = U(PT ), where PT corresponds to detT−1/2T , in other words T ∈ P2 is
identified with PT ∈ H by

T =

(
a b

b d

)
→ PT =

b

d
+

√
detT

d
j.

Our Katok-Sarnak type result gives a correspondence between the space of auto-
morphic functions on the three dimensional hyperbolic space H and the space of
Maass forms of weight −1 with respect to Γ0(D) on the upper half-plane H1. For
µ ∈ C let T+

µ denote the vector space consisting of all functions f(τ) on the upper
half-plane H1 = {τ = u+ iv; v > 0} satisfying the following three conditions.

(M-i) Each f(τ) is a C2-function of u = ℜτ and v = ℑτ verifying the transforma-
tion formula

f(γτ) = χK(d)(cτ + d)−1f(τ), γ =

(
a b
c d

)
∈ Γ0(D)

and it is of polynomial growth at all cusps of Γ0(D).
(M-ii)f(τ) has a Fourier expansion of the form f(τ) =

∑
l∈ZB(l, v)e(lu), where

the Fourier coefficients B(l, v) for l 6= 0 are given by

B(l, v) = b(l)v1/2W−sgn(l)/2,µ/2(4π|l|v).
(M-iii)If aD(l) = 0 then B(l, v) = 0, where

aD(l) = ♯{b ∈ D−1/O;DN (b) ≡ −l (mod D)}.

The following is a three dimensional analogue of Katok-Sarnak [3] for cusp eigen-
functions and Duke-Imamoglu [1] for non-cusp eigenfunctions.
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Theorem 1. Let U(P ) be an automorphic function on H which is the Eisenstein
series on SL2(O) or belongs to a complete orthonormal set of eigenfunctions for
−∆ in L2(SL2(O) \H). Assume that −∆U = (1 − µ2)U with some µ ∈ C. Then
there exists f(τ) ∈ T+

µ which satisfies the relation

b(l) = l−1
∑

T∈SL2(O)\L+
2 , D detT=l

U(T )/ǫ(T )

for any natural number l, where ǫ(T ) is the oder of the unit group of T , L+
2 is the

set of all half integral positive definite hermitian matrices of size two

L+
2 =

{
T =

(
a b
b̄ d

)
> O; a, d ∈ Z, b ∈ D−1

}
,

the summation extends over all T ∈ L+
2 such that D detT = l modulo the action

T → [U ]T = UT tU of the group SL2(O).

This is one of our main tools to apply the spectral theory on the three dimensional
hyperbolic space to Hermitian modular forms. In my talk, two applications in
case of the Gaussian number field are indicated. The first is to give a new proof
of Saito-Kurokawa lift for Hermitian modular forms by a converse theorem. The
second is to obtain an explicit arithmetic formula for the Fourier coefficients of
Hermitian-Eisenstein series of degree two with square-free odd levels.
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Period and congruence of the Ikeda lift

Hidenori Katsurada

In this report, we consider Ikeda’s conjecture on the period of the Ikeda lift and
its application.

Let k and n be positive even integers. Let f(z) =
∑∞

m=1 a(m) exp(2πimz) be

a primitive form in S2k−n(Γ1). Furthermore let f̃(z) =
∑
e c(e) exp(2πiez) be the

Hecke eigenform in Kohnen’s plus subspace S+
k−n/2+1/2(Γ0(4)) corresponding to f

under the Shimura correspondence. Then Ikeda [Ik1] showed that there exisits a
Hecke eigenform In(f)(Z) in Sk(Γn) whose standard L-function is ζ(s)

∏n
i=1 L(s+

k−i, f). We call In(f) the Ikeda lift of f. We note that I2(f) is the Saito-Kurokawa
lift of f.
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To state our first main result, put

ΓC(s) = 2(2πi)−sΓ(s),

and

ξ̃(s) = ΓC(s)ζ(s).

Let αp ∈ C such that αp+α−1
p = p−k+n/2+1/2a(p). For a Dirichlet character χ we

define the L-function L(s, f, χ) of f twisted by χ as

L(s, f, χ) =
∏

p

{(1 − αpp
−s+k−n/2−1/2χ(p))(1 − α−1

p p−s+k−n/2−1/2χ(p))}−1,

and put

Λ(s, f, χ) = ΓC(s)L(s, f, χ).

In particular, if χ is the principal character we write L(s, f, χ) and Λ(s, f, χ)
as L(s, f) and Λ(s, f), respectively. Furthermore, L(s, f, Ad) be the adjoint L-
function by

L(s, f,Ad) =
∏

p

{(1 − α2
pp

−s)(1 − α−2
p p−s)(1 − p−s)}−1,

and put

Λ̃(s, f, Ad) = ΓC(s)ΓC(s+ 2k − n− 1)L(s, f, Ad).

Then our first main result of this report is:

Theorem 1. (Joint with H. Kawamura, [K-K1], [K-K2]) There exists an integer
α(n, k) such that

〈In(f), In(f)〉
〈f̃ , f̃〉

= 2α(n, k)Λ(k, f)ξ̃(n)

n/2−1∏

i=1

Λ̃(2i+ 1, f, Ad) ξ̃(2i)

This was conjectured by Ikeda [Ik2]. We note that the above result in case
n = 2 has been proved by Kohnen and Skoruppa [K-S].

Next, let Ln denote the Hecke ring over Z associated with the Hecke pair
(GSp2n(Q)+ ∩M2n(Z), Γn). For an element T ∈ Ln, we define the Hecke operator
f |kT as usual (cf. [A].) If f is an eigenfunction of a Hecke operator T ∈ Ln ⊗ C,
we denote by λf (T ) its eigenvalue. Furthermore, we denote by Q(f) the field
generated over Q by eigenvalues of all T ∈ Ln.

Let K be an algebraic number field, and O = OK the ring of integers in K. Let
f be a Hecke eigenform in Sk(Γn) and M be a subspace of Sk(Γn) stable under
Hecke operators T ∈ Ln. Assume that M is contained in (Cf)⊥, where (Cf)⊥ is
the orthogonal complement of Cf in Sk(Γn) with respect to the Petersson product.
Let K be an algebraic number field containing Q(f). A prime ideal P of OK is
called a congruence prime of f with respect to M if there exists a Hecke eigenform
g ∈M such that

λf (T ) ≡ λg(T ) mod P̃
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for any T ∈ Ln, where P̃ is the prime ideal of OKQ(g) lying above P. If M = (Cf)⊥,
we simply call P a congruence prime of f.

Now returning to the case of the Ikeda lift, let f be a primitive form in
S2k−n(Γ1). Let K be an algebraic number field containing all the Hecke fields of
primitive forrms in S2k−n(Γ1). To formulate our conjecture exactly, let Ω(f, j;AP)

(j = ±) be canonical periods or the Eichler-Shimura periods arising from the
Eichler-Shimura isomorphism (cf. Hida [H].) This Ω(f, j;AP) is uniquely deter-

mined up to constant multiple of units in AP. For j = ±, 1 ≤ l ≤ 2k − n− 1, and

a Dirichlet character χ such that χ(−1) = j(−1)l−1, put

L(l, f, χ) = L(l, f, χ;AP) =
Γ(l)L(l, f, χ)

τ(χ)(2π
√
−1)lΩ(f, j;AP)

,

where τ(χ) is the Gauss sum of χ. In particular, put L(l, f ;AP) = L(l, f, χ;P) if

χ is the principal character. Furthermore, put

L(l, f,Ad) =
Λ̃(l, f,Ad)

〈f, f〉 .

Then it is well-known that L(l, f, χ) belongs to the field K(χ) generated over K
by all the values of χ, and L(l, f,Ad) belongs to Q(f) (cf. [Z].) Let Sk(Γn)∗ be
the subspace of Sk(Γn) generated by all the Ikeda lifts In(g) of primitive forms
g ∈ S2k−n(Γ1). We remark that Sk(Γ2)

∗ is the Maass subspace of Sk(Γ2). The
second main result of this report is as follows:

Theorem 2. Let K and f be as above. Let P be a prime ideal of K. Furthermore
assume that
(1) P divides L(k, f)

∏n/2−1
i=1 L(2i+ 1, f,Ad).

(2) P does not divide

ξ̃(2m)

n∏

i=1

L(2m+ k − i, f)L(k − n/2, f, χD)D(2k − 1)!

for some integer 2 ≤ m ≤ k/2 − n/2, and for some fundamental discriminant D
such that (−1)n/2D > 0.
(3) The q-th Fourier coefficient of f is not divided by P if P divides q.
(4) P does not divide

Cn.k〈f, f〉
Ω(f,+, AP)Ω(f,−, AP)

,

where Cn,k = 1 or
∏
p≤(2k−n)/12(1+p+ · · ·+pn−1) according as n = 2 or not.ThenP is a congruence prime of In(f) with respect to (Sk(Γn)∗)⊥.

We note that results similar to above have been proved by Brown [B], and
Katsurada [K] independently in case n = 2.
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Modular forms of small weights and applications to the algebraic
geometry

Valery Gritsenko

The global Torelli theorem for projective K3 surfaces was first proved by Pia-
tetskii-Shapiro and Shafarevich 35 years ago, opening the way to treat moduli
problems for K3 surfaces. The moduli space of polarised K3 surfaces of degree
2d is a quasi-projective variety of dimension 19. For general d very little has
been known about the Kodaira dimension of these varieties. In my joint paper
[GHS07] with K. Hulek (Hannover) and G. Sankaran (Bath) we presented an
almost complete solution to this problem. Our main result is

Theorem 1. The moduli space of 2d-polarised K3 surfaces is of general type for
d > 61 and for d = 46, 50, 54, 58, 60.

In this talk I mainly describe the automorphic part of the solution. A short
description of the algebro-geometric ideas of our proof you can find in the Bour-
baki talk of C. Voisin (see [V07]) or in my talk given at Arbeitstagung in Bonn
(http://www.mpim-bonn.mpg.de/at2005).

The moduli space of the polarised K3 surfaces is a modular variety of orthogonal
type. Let L be an integral even lattice of signature (2, n) and ( , ) the associated
bilinear form. By DL we denote a connected component of the homogeneous type
IV complex domain of dimension n

D(L) = {[v] ∈ P(L⊗ C) | (v, v) = 0, (v, v̄) > 0}+.
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O+(L) is the index 2 subgroup of the integral orthogonal group O(L) that leaves
DL invariant. Any subgroup Γ of O+(L) of finite index determines the modular
variety

FL(Γ) = Γ \D(L).

This is a quasi-projective variety of dimension n. The classical problem is to
determine the birational type of this variety. We obtain the moduli space of 2d-
polarised K3 surfaces if

L = L2d = 2U ⊕ 2E8(−1)⊕ < −2d >, Γ = Õ+(L2d),

where U is the unimodular hyperbolic plane and Õ+(L2d) denotes the subgroup of
the orthogonal group which acts trivially on the discriminant group of the lattice
L2d.

I would like to note that the Mumford–Hirzebruch proportionality principle for
the orthogonal group gives us a good result about the general type of the modular
orthogonal varieties only if its dimension is big enough (n ≥ 35). See [GHS05] and
[GHS06]. If the dimension is smaller than 26 we use the method of cusp forms
of small weights. Some applications of this method you can find in [G94], [GH95]
and [GS96].

The next theorem follows from the results obtained in [GHS07].

Theorem 2. Let n > 8 and let assume that there exists a non-zero cusp forms Fk
of weight k < n vanishing on the branch locus of the modular projection D(L) →
FL(Γ). Then the Kodaira dimension of this modular variety FL(Γ) is maximal,
i.e., it is equal to n.

To construct such a cusp form for n < 26 we use the quasi pull-back of the
Borcherds function Φ12. Let L2,26 = 2U ⊕ 3E8(−1) be the unimodular lattice
of signature (2, 26). The Borcherds function Φ12 ∈ M12(O

+(L2,26), det) is the
unique modular form of weight 12 and character det with respect to O+(L2,26).
Φ12 is the denominator function of the fake Monster Lie algebra and it has a lot of
remarkable properties. In particular, the zeros of Φ12(Z) lie on rational quadratic
divisors defined by (−2)-vectors in L2,26, i.e., Φ12(Z) = 0 if and only if there exists
r ∈ L2,26 with r2 = −2 such that (r, Z) = 0 and the multiplicity of the rational
quadratic divisor in the divisor of zeros of Φ12 is 1. In the context of the moduli
of K3 surfaces this function was firstly used in [BKPS].

Let l ∈ E8(−1) satisfy l2 = −2d. The choice of l determines an embedding of
L2d into L2,26 as well as an embedding of the corresponding homogeneous domain
D(L2d) into D(L2,26). We put Rl = {r ∈ E8(−1) | r2 = −2, (r, l) = 0}, and
Nl = #Rl. Then the function

Fl =
Φ12(Z)∏

{±r}∈Rl
(Z, r)

∣∣∣∣∣
D(L2d)

∈M
12+

Nl
2

(Õ+(L2d), det)

is a non-trivial modular form of weight 12 + Nl
2 vanishing on all (−2)-divisors. In

[GHS07] we proved that this form is a cusp form if the set Rl is not empty and
that Fl(Z) is zero along the branch divisor of the modular projection.
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According to Theorem 2 and the construction of the quasi pull-back the main
point for us is the following. We want to know for which 2d > 0 there exists a
vector l ∈ E8, l

2 = 2d, which is orthogonal to at least 2 and at most 12 roots.

Theorem 3. Such a vector l in E8 does exist if

4NE7(2d) > 28NE6(2d) + 63ND6(2d).

The numbers of representations NE6(2d) and ND6(2d) of 2d by the correspond-
ing quadratic form are Fourier coefficients of weight 3 Eisenstein series for Γ0(3)
and Γ0(4) respectively. NE7(2d) is the Fourier coefficient e4,1(d, 0) of the Jacobi-
Eisenstein series E4,1(τ, z) of weight 4 and index 1. (A general good organized
formula for the singular series of the quadratic forms of odd rank see in [GHS08].)
Using the exact formulae for the Fourier coefficients we prove that the last inequal-
ity is true for d > 143. A more detailed analyze of the these root systems gives us
the result of Theorem 1.
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Bourbaki (2007) no 981, 21 pp.

Spherical functions on p-adic homogeneous spaces

Yumiko Hironaka

Let G be a linear algebraic group and X a G-homogeneous affine algebraic
variety both defined over a p-adic field k, where we assume a minimal k-parabolic
subgroup B of G has an open orbit Xop.

A nonzero K-invariant function Ψ on X = X(k) is called a spherical function on
X if it is a common H(G,K)-eigen function, where H(G,K) is the Hecke algebra
of G = G(k) with respect to a maximal compact open subgroup K. Spherical
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functions on homogeneous spaces are an interesting object to investigate and basic
for the study of harmonic analysis on G-space X .

The explicit formula of spherical functions for group cases are given by I. G. Mac-
donald [M] and also by W. Casselman [C] by representation theoretical method.

In Theorem 1 we will give an expression of spherical functions based on the
data of G and their functional equations with respect to (a subgroup of) the Weyl
group, which is a refinement of a result in [H1] inspired by a technique used by
O. Offen [O]. Then we formulate functional equations attached to a simple root
(Theorem 2), and explain they are reduced to those of p-adic local zeta functions
of small prehomogeneous vector space of limited type (Theorem 3).

We explain some more details. Let {fi(x) | 1 ≤ i ≤ n} be a set of basic regular
relative B-invariant on X and ψi ∈ X(B) the corresponding rational character. We
denote X1(B) =< ψi | 1 ≤ i ≤ n >. We assume that G = KB = BK.

For x ∈ X , s ∈ Cn and B-open orbit Xu in Xop(k), we define

ωu(x; s) =

∫

K

|f(k · x)|su dk,(1)

where dk is the normalized Haar measure on k, | | is the absolute value on k and

|f(x)|su =

{ ∏n
i=1 |fi(x)|si if x ∈ Xu

0 otherwise.
(2)

The right hand side of (1) is absolutely convergent if Re(si) ≥ 0, 1 ≤ i ≤ n,
analytically continued to a rational function on qsi , and it gives a spherical function
on X .

We assume that
(A) : |B\X| < ∞ and for each x ∈ X, x /∈ Xop there exists ψ in X1(B) such that
ψ 6≡ 1 on Bx;

(B) : There exists x0 ∈ Xop and a complete set R of representatives of K\X such
that U · x ⊂ B · x0 for every x ∈ R.

The Weyl group W of G with respect to B acts on X(B) and X(B)C = X(B)⊗C.
Let δ be the modulus character of B and H = Gx0(k), and set

W0 =
{
σ ∈W

∣∣∣ σ(|ψ|sδ− 1
2 ) = δ−

1
2 on B ∩H

}
.

Theorem 1 Let x ∈ R and U be the index set of open B-orbits Xν satisfying
Xν ⊂ G · x. Then, for generic s ∈ Cn, we have

(ων(x; s))ν∈U =
1

Q

∑

σ∈W0

γ(σ(s))Bσ(s)

(∫

U

|f(u · x)|σ(s)
ν du

)

ν∈U

,

where the scalar Q and the rational function γ(s) of qsi are explicitly given by the
group G, U is the Iwahori subgroup compatible with B and the matrix Bσ(s) is
given by the functional equation

(ων(x; s))ν∈U = Bσ(s) (ων(x;σ(s)))ν∈U .
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Next, we consider how we obtain functional equations for σ ∈ W attached to
a simple root α. Let P = Bα (the standard parabolic subgroup) and consider a
k-rational representation

ρ : P −→ Rk′/k(GL2),(3)

where Rk′/k is the restriction of scalars for a finite unramified extension k′/k. We
assume the following for ρ

(C): ρ(P) = Rk′/k(GL2) or Rk′/k(SL2), ρ(σ) =

(
0 1
−1 0

)
, ρ−1(B2) ⊂ B,

and ρ(K ∩ P) ⊃ Rk′/k(SL2)(Ok),

where B2 is the Borel subgroup of ρ(P) consisting of upper triangular matrices.
Hereafter we assume (A) and (C).

Theorem 2 Let x ∈ Xu and Ju be the index set of open B-orbits Xν satisfying
P ·Xν = P ·Xu. Assume that σ ∈ W0 and set ε ∈ Qn by σ(δ)δ−1 = |ψ|2ε. Then

ωu(x; s) =
1 − q−2d−

∑
i eisi

1 − q−2d−
∑
i ei(σ(s)i−εi)

×
∑

ν∈Ju

γuν(s) · ων(x;σ(s) − ε),

where d = [k′ : k], γuν(s)’s are rational functions of q
si
e , e = [X(B) ∩ X1(B)Q :

X1(B)], ei = degv f̃i(x, v) (cf. below).

The group P×Rk′/k(GL1) acts by (p, r) ·(x, v) = (p ·x, ρ(p)vr−1) on X×V with
open orbit, where V = Rk′/k(M21). Then there exist regular relative invariants

f̃i(x, v) on X× V satisfying f̃i(x, v0) = fi(x), 1 ≤ i ≤ n (v0 = t(1, 0)).

Theorem 3 Denote by Pu the stabilizers of xu ∈ Xu in P. Then the space (ρ(Pu)×
Rk′/k(GL1),V) is a prehomogeneous vector space defined over k, open orbits in
Vop(k) are parametrized by the same Ju as for B\P · xu in Theorem 2, and there
are functional equations between open orbits
∫

V

FV (φ)(v)
∣∣∣f̃(xu, v)

∣∣∣
s

u
dv =

∑

ν∈Ju

γuν(s)

∫

V

∣∣∣f̃(xu, v)
∣∣∣
σ(s)−ε

ν
dv (φ ∈ S(V )),

where ε and γuν(s) are the same as in Theorem 2,
∣∣∣f̃(x, v)

∣∣∣
s

ν
is defined similarly

as in (2) and FV (φ) is the Fourier transform of φ.
Further, the identity component of ρ(Pu) × Rk′/k(GL1) is isomorphic to

Rk′/k(GL1 ×GL1) over the algebraic closure of k.

If X(B) and X1(B) have the same rank, by shifting s for δ
1
2 , one has functional

equations between s and σ(s) (cf. [H2]).
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Poincare series and second order modular forms

Özlem Imamoḡlu

(joint work with Cormac O’Sullivan)

In this talk we report on joint work with Cormac O’Sullivan where, following Pe-
tersson, we study the parabolic, hyperbolic and elliptic expansions of holomorphic
cusp forms and the associated Poincaré series and show how these ideas extend to
the space of second-order cusp forms.

Let Γ ⊆ PSL be a Fuchsian group of the first kind acting on the upper half
plane H. We write x+ iy = z ∈ H and set dµz to be the SL2-invariant hyperbolic
volume form dxdy/y2. Assume the volume of the quotient space Γ\H is equal to
V <∞.

Let (f |kγ)(z) := f(γz)/j(γ, z)k and N be the natural numbers {1, 2, 3, . . .} and
N0 = N∪{0}. For n ∈ N0, the C-vector space of n-th order modular forms, Snk (Γ),
is defined recursively as follows. Let S0

k(Γ) consist only of the function H → 0.
For n > 1, let Snk (Γ) contain all holomorphic functions f : H→ C that satisfy

(1) f |k(γ − 1) ∈ Sn−1
k (Γ) for all γ ∈ Γ.

For all parabolic elements π of Γ we also require

(2) f |k(π − 1) = 0.

Finally f must decay rapidly in each cusp. Induction shows Sn1

k ⊆ Sn2

k for any
two integers 0 6 n1 6 n2. Therefore Sk ⊆ Snk and higher-order forms are a
generalization of the usual cusp forms.

The identity in Γ is I = ± ( 1 0
0 1 ). The remaining elements may be partitioned

into three sets: the parabolic, hyperbolic and elliptic elements. As is well-known,
the relation (f |kγ)(z) = f(z) for parabolic elements γ leads to a Fourier expansion
of f associated to each cusp of Γ. A family of corresponding parabolic Poincaré
series can be constructed whose inner products with f produce these Fourier co-
efficients. Much less well-known are Petersson’s hyperbolic and elliptic Fourier
expansions, and Poincare series introduced in [1]. The series Petersson constructs
are all examples of relative Poincaré series.
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Theorem 1. Let Γ0 be a subgroup of Γ and φ a holomorphic function on H

satisfying φ|kγ = φ for all γ in Γ0 and

(3)

∫

Γ0\H

|φ(z)|yk/2 dµz <∞.

Then the relative Poincaré series

(4) P [φ](z) :=
∑

γ∈Γ0\Γ

(φ|kγ)(z)

converges absolutely and uniformly on compact subsets of H to an element of Sk.

In this work we show how the ideas of Petersson extend naturally to the second-
order space S2

k. Let Hom0(Γ,C) be the homomorphisms from Γ to C that are 0
on the parabolic elements of Γ. By well known theorem of Eichler and Shimura
there exist unique f+, f− in S2(Γ) so that

L(γ) =

∫ γz

z

f+(w) dw +

∫ γz

z

f−(w) dw.

The right-side above is independent of z and the path of integration in H. Set

(5) Λ+
L(z) :=

∫ z

i

f+(w) dw, Λ−
L (z) :=

∫ z

i

f−(w) dw.

Then clearly, for all z in H, L(γ) = Λ+
L(γz) − Λ+

L(z) + Λ−
L (γz)− Λ−

L (z).
Our first theorem show that the following relative Poincaré series, twisted by

such a homomorphism, are second-order forms.

Theorem 2. Let Γ0 be a subgroup of Γ and φ a holomorphic function on H

satisfying φ|kγ = φ for all γ in Γ0. Let L ∈ Hom0(Γ,C) with L(γ) = 0 for all γ
in Γ0. If ∫

Γ0\H

(
1 + |Λ+

L(z)| + |Λ−
L (z)|

)
|φ(z)|yk/2 dµz <∞

then
P [φ, L](z) :=

∑

γ∈Γ0\Γ

L(γ)(φ|kγ)(z)

converges absolutely and uniformly on compact subsets of H to an element of S2
k.

Theorem 2 allows us to construct parabolic, hyperbolic and elliptic second-order
Poincaré series. We show that, whenever they exist, these Poincaré series of order
1 and 2 always span their respective cusp form spaces.

The final theorem of this talk gives an inner product for second order modular
forms. More precisely let

S = Γ∞\H = {z ∈ H : −1/2 6 ℜ(z) < 1/2}.
For any two functions f , g on H with period 1 we define the pairing 〈f, g〉∗n =
〈f, g〉∗nk to be the coefficient of (s− 1)−n in

(6) V

∫

S

f(z)g(z)yk+s dµz.



3006 Oberwolfach Report 51/2007

We prove

Theorem 3. For n = 2 the pairing 〈 , 〉∗2k is an inner product for the space S2
k/S

1
k.

For f, g in Sk = S1
k we have 〈f, g〉∗1k = 〈f, g〉/V where 〈f, g〉 is the usual Petersson

inner product.

References

[1] Petersson, H. : Einheitliche Begründung der Vollständigkeitssätze für die Poincaréschen Rei-
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Arithmetic trace formula and Hecke duality

Bernhard Heim

In the first part of my talk I presented a new arithmetic trace formula [7]. This
formula relates special values of various kinds of automorphic L-functions. Let
g ∈ Sk(SL2(Z)) be a newform of integer weight k. Let (fi)i ∈ S2k−2 and (gj)j ∈ Sk
be primitive eigenbasis. The trace formula compares the weighted average

∑
i of

special values of the non-trivial piece of the triple L-function L(fi ⊗ Sym2(g), ck)
evaluated at the central value ck and the average

∑
j of the triple L-function

L(g⊗ g⊗ gj, 2k− 2) and an error term expressed by special values D(g, s) related

to the Rankin L-function attached to g. This special value L(fj ⊗ Sym2(g), ck)
and the related triple L-function recently played a prominent role in the proof
of the Gross-Prasad conjecture of Saito-Kurokawa lifts given by Ichino [8]. More
generally Ikeda stated in [10] a conjecture on the explicit value of a certain period
which involves the central value of L-functions (Conjecture 5.1) of the type studied
in this paper. There the non-vanishing of the central value is essential. Recently
some progress has been obtained by Katsurada and Kawamura [11].

Theorem 1 [Heim 07] Let k be an even positive integer. Let g ∈ Sk be a primitive
Hecke eigenform. Then we have

(1)

dimS2k−2∑

i=1

L̂(fi, 2k − 3) L̂
(
fi ⊗ Sym2(g), 2k − 2

)

‖ fi ‖2‖ g ‖4

= (−1)k/2 · 2k−2
dimSk∑

j=1

L̂(g ⊗ g ⊗ gj , 2k − 2)

‖ g ‖4‖ gj ‖2

+κ1

(
D̂(g, 2k − 2)

π
k
2 −1 ‖ g ‖2

)2

+ κ2
D̂(g, 2k − 2)

π
k
2−1 ‖ g ‖2

.
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Here (fi)i and (gj)j are primitive Hecke eigenbases of S2k−2 and Sk and the con-

stants κ1 and κ2 can be explicitly given. We have

κ1 = (−1)(−1)k/224 Γ(k)2

(2k − 2)B2k−2Γ(k/2)2
,(2)

κ2 = (−1)(−1)k/222k+1 Γ(k + 1)

(2k − 2)BkΓ(k/2)
.(3)

Here ˆ denotes the completion of the related L-function and Bk the k-th Bernoulli
number. We gave a sketch of the proof and indicated several applications.

The concept of Hecke Duality was motivated with an example related to the
non-vanishing of the triple L-function evaluated at the center [8], [5] and the
characterization of Saito-Kurokawa lifts. The general concept is the following: Let
Gn = Spn, GSpn, U(n, n), Spn⋉Hn, . . . . be any classical group. Let A(Gn) denote
the space of automorphic forms on Gn and Hn the related Hecke algebra. Further
we fix a canonical imbedding j : j1 × j2 : Gn×Gn →֒ G2n and define the following
subspace of all automorphic forms on G2n:

(4) E(G2n) := {F ∈ A(G2n)| j1(T )F = j2(T )F, T ∈ Hn}.

Theorem 2 [Heim 06] The space of Saito-Kurokawa lifts

MSk

k = E(Sp2) = E(GSp2).

Let (n, r,m) be related to the positive integral quadratic form nx2 + rxy +my2

and let A(n, r,m) be the Fourier coefficients of a Siegel cusp form of degree 2.
Then F is a Saito-Kurokawa lift if and only A (n, r, pm) −A (np, r,m) is equal to

(5) pk−1

(
A

(
n

p
,
r

p
,m

)
−A

(
n,
r

p
,
m

p

))

for all T = (n, r,m) and for all primes p. Pitale and Schmidt[12] improved the
result to the statement almost all primes. Recently we obtained a result, which
says that if the condition is satisfied for all prime p outside a subset of primes with
Dirichlet density smaller then 1/8 then the form has to be a Saito-Kurokawa lift [6].

Theorem 3 [Bringmann, Heim 07] Let G = Sp2 ⋉H2 and A(G) the space J2
k,m

of Jacobi forms of degee 2, weight k and index m. Let m = 1 or a prime then we
have

(6) ∅  E(G)  J2
k,m

up to some minor conditions on the weight k.

Finally I reported on a joint project with Paul Garrett.
Theorem 4 [Garrett, Heim 07] The space of Ikeda lifts satisfies the Hecke duality
property.
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Theorem 5 [Garrett, Heim 07] Let F be a Siegel cuspform of degree 2. Let F be
a Hecke eigenform with respect to the even Hecke algebra and let the standard L-
function has the same form as a Saito-Kurokawa lift, then F is a Saito-Kurokawa
lift.

This can be seen as a certain weak multiplicity one result for Sp2, which was
only known for GSp2 until know.
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Local Theta correspondence and the Lifting of Duke, Imamoglu and
Ikeda

Rainer Schulze-Pillot

Let f be an elliptic modular form of weight 2k for the full modular group SL2(Z).
By τ we denote the irreducible cuspidal automorphic representation of GL2(A)
associated to f . It was conjectured by Duke and Imamoglu and proven by Ikeda
in [1] that for any n ≡ k mod 2 there exists a nonzero Siegel cusp form F = F2n(f)
of weight n + k for the group Sp2n(Z) ⊆ SL4n(Z) whose standard L-function is
equal to

ζ(s)

2n∏

i=1

L(s+ k + n− i, f),

where L(s, f) is the usual Hecke L-function of f . We call F2n(f) the Duke-
Imamoglu-Ikeda (short: DII) lift of degree 2n of f and denote the corresponding
automorphic representation of Sp2n(A) by π(2n, τ). Ikeda has announced a rep-
resentation theoretic version of this lifting which works for slightly more general
τ and also for arbitrary totally real grozund field E instead of Q.



Modulformen 3009

In [2] it is proved as a side remark that F2n(f) is not a linear combination of theta
series of even unimodular positive definite quadratic forms of rank m = 2(n+ k)
if n is bigger than k, whereas for n = k ≡ 0 mod 2 the DII liftings lie in the space
generated by theta series subject to a conjecture on L-functions of elliptic cuspidal
Hecke eigenforms. The proof uses Böcherer’s characterization of the cuspidal Siegel
eigenforms that lie in the space of theta series by special values of their standard
L-functions.
Using the description of the local theta correspondence between representations of
local orthogonal and local symplectic groups in terms of the Bernstein–Zelevinsky
data of the representations in [5, 3] we prove the following results:

Theorem Let V be a vector space over E of even dimension 2r with a nondegen-
erate quadratic form q.

(1) If 2n > r − 1 and there is a finite place v of E for which the completion
Vv of the quadratic space (V, q) is not split (i. e. is not an orthogonal sum
of hyperbolic planes) the representation π(2n, τ) is not in the image of the
theta correspondence with O(V,q)(AE).

(2) If 2n > r the representation π(2n, τ) is not in the image of the theta
correspondence with O(V,q)(AE).

Corollary Let f be an elliptic modular form of weight 2k and ν ∈ N0.
Then for n > k − ν the DII-lift F2n(f) is not a linear combination of theta series
of positive definite quadratic forms with pluriharmonic forms of degrees ν′ ≥ ν.

In particular for n > k the DII-lift F2n(f) is not a linear combination of theta
series attached to positive definite quadratic forms (with or without pluriharmonic
forms).

Proposition The generalized Duke–Imamoglu–Ikeda lift π(2n, τ) can not be con-
structed by a series of theta liftings between groups Gi, where for each i the pair
Gi, Gi+1 consists (in either order) of a symplectic or metaplectic group and an
orthogonal group, starting with the representation associated to f on SL2 or the

representation on the metaplectic group S̃L2 associated to the form g which corre-
sponds to f under the Shimura correspondence.

On the positive side we have using [4] the (purely local)

Theorem For n = k the local components πp of the representation π(F2n(f)) of the
Duke-Imamoglu-Ikeda lift F2n(f) are in the image of the local theta correspondence
with the split quadratic space over Qp of dimension 4n = 2(k + n) (which is the
orthogonal sum of 2n hyperbolic planes) for all (finite) primes p.

The component π∞ at the real place is in the image of the theta correspondence
with the orthogonal group of the positive definite quadratic space over R of di-
mension 4n and also in the image of the theta correspondence with the orthogonal
group of the quadratic space of dimension 4n and signature (4n− 1, 1) over R.
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