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Introduction by the Organisers

The workshop on Coding Theory has brought together leading researchers in
several key areas of mathematical coding theory. On the side of many mathe-
maticians there were computer scientist and electrical engineers present. Parti-
cipants came from many countries and the group included both senior and junior
researchers.

Ever since its conception in the late 1940’s, the theory of error-correcting codes
has established itself as one of the central areas in mathematics.

Coding theory lies naturally at the intersection of a large number of disciplines
in pure and applied mathematics: algebra and number theory, probability theory
and statistics, communication theory, discrete mathematics and combinatorics,
complexity theory, and statistical physics, are just but a few areas which have
brought about very interesting applications in coding theory in recent years. The
multitude of methods and means to construct and analyze codes and their proper-
ties suggests that a workshop with the explicit aim of bringing together researchers
in different sub-fields of coding theory is necessary for cross-fertilization of ideas
and global advancement of the field.

The following topics were covered during the workshop.
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Combinatorial and probabilistic coding theory: This area has experi-
enced a huge revival in recent years because of its success in the design of codes
with superior performance. Very roughly, in this area combinatorial structures
are used to construct error-correcting codes, and properties of these structures
are used to design and analyze efficient encoding and decoding algorithms for the
codes. One of the most prominent examples in this area is furnished by the class
of LDPC codes. These codes are constructed from sparse bipartite graphs. More
generally Michael Tanner showed in the 80’s how to construct ‘general codes on
graphs’.

The sparsity of the graph provides methods for construction of low complexity
encoders and decoders. The graphs need to be designed in such a way as to facili-
tate an optimal operation of the algorithms. To achieve this goal researchers have
developed and applied methods from probability theory and statistics, algebra,
discrete mathematics, number theory, and statistical physics.

Algebraic coding theory: Algebraic coding theory primarily investigates
codes obtained from algebraic constructions. Prime examples of this area of coding
theory are codes from algebraic geometry, and codes obtained from algebraically
constructed expander graphs. This discipline is almost as old as the coding theory
itself, and has attracted (and continues to attract) some of the brightest minds in
the field. Among the most exciting advances in this field in recent years has been
the invention of list-decoding algorithms for various classes of algebraic codes. Such
decoding algorithms yield for a received word a short list of codewords that have
at most a given distance τ to the received word. The size of the list depends on the
distance τ . The methods in this field are mostly algebraic and make use of various
properties of multivariate polynomials, or more generally, the properties of “well-
behaved” functions in the function field of an irreducible variety. Methods from
algebraic geometry are very important in this area. On the computational side
the field naturally embedds in the theory of Gröbner bases. There are emerging
relationships between this area and codes on graphs, the leading question being
whether or not it is possible to match the superior performance of graph-based
codes with list-decoding algorithms, or at least with algorithms that are derived
from list-decoding algorithms.

Theoretical computer science: Theoretical computer science has contrib-
uted a large number of ideas to coding theory. The above mentioned analysis
and design of LDPC codes, and the conception of list-decoding algorithms are two
prime examples of such contributions.

The reader will find it interesting to study in more details the summary of the
talks collected in this report.
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Patrick Solé (joint with San Ling)
Nonadditive Quantum Codes from Z4-Codes . . . . . . . . . . . . . . . . . . . . . . . . 3213



3184 Oberwolfach Report 56/2007

Jürgen Bierbrauer
A direct approach to LP-bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3214

Michele Elia
Some Observations on the Continued Fraction of

√
N and Factorization 3214

Alfred Wassermann (joint with Michael Kiermaier)
Computing the minimum Lee weight of the Z4-linear Quadratic Residue
Codes of length 72 and 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3216

Alexander Vardy
Multivariate Interpolation Decoding:
Reaching the Ultimate Limit of List Error-Correction . . . . . . . . . . . . . . . . 3217

Frank R. Kschischang (joint with Danilo Silva, Ralf Koetter)
A Rank-Metric Approach to Error Control in Random Network Coding . 3219

Marcus Greferath
On a Method to Overcome the Draw-backs of Cycles in the Tanner graph
of a Low-Density Parity-Check Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3221

Gilles Zémor (joint with Alexander Barg)
Hypergraph codes and their decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3224

Jürgen Bierbrauer (joint with Gohar Kyureghyan)
Crooked binomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3226

Daniel Augot
Multivariate generalizations of the Guruswami-Sudan decoding algorithm 3227

Jean-Pierre Tillich (joint with Thomas Camara, Harold Ollivier, David
Poulin)
Quantum codes suitable for iterative decoding . . . . . . . . . . . . . . . . . . . . . . . 3230
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Abstracts

Error correction for network coding channels

Ralf Koetter

(joint work with Frank R. Kschischang)

Random network coding is a powerful and elegant tool for distributing information
in networks, distributed storage systems, and peer-to-peer networking. Neverthe-
less, it typically assumes that all information forwarding devices cooperate in an
error free fashion. In fact, without any protection, a single error in one received
packet would typically render the entire transmission useless when the erroneous
packet is combined with other received packets to deduce the transmitted message.

We derive coding schemes that are capable of protecting against both erroneous
packets as well as incomplete transmissions. The framework considers random net-
work coding as a kind of ”non-coherent” transmission over a channel modeled as
multiplication with a random matrix over Fq. The information bearing quantity
that can be used on such a channel is the choice of subspace to be transmitted,
which naturally leads to code design in the Grassmannian graph. We present
the above described framework, present a Reed-Solomon code type construction
based on rank error correcting codes of Gabidulin, and formulate a number of
open algebraic coding questions. Of particular interest in this talk are the connec-
tions to error correction in the case of an intelligent and fully informed adversary
and, consequently, the list decoding properties of the defined Reed-Solomon type
codes. While some aspects of the interpolation based approaches of Sudan can be
generalized other require substantially different techniques.

References

[1] R. Koetter and F. Kschischang, Coding for Errors and Erasures in Random Network Coding,
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Self-dual codes and invariant theory

Gabriele Nebe

(joint work with Eric Rains and Neil Sloane)

In our joint book [2] we formalize the notion of a Type of a self-dual code. This
is a quadruple ρ := (R, V, β, Φ) where R is a finite ring, V a left R-module (the
alphabet of the code), β : V × V → Q/Z a nonsingular biadditive form such that
the right R-module

M := {βr : (x, y) 7→ β(x, ry) | r ∈ R}
is isomorphic to RR and closed under the involution τ : M → M, mτ (x, y) :=
m(y, x). The finite group Φ is a sub R-qmodule of the set of all quadratic mappings
from V to Q/Z, such that x 7→ m(x, x) ∈ Φ for all m ∈ M and (x, y) 7→ ϕ(x +
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y) − ϕ(x) − ϕ(y) ∈ M for all ϕ ∈ Φ. Then a code C of Type ρ and length
N is a submodule C ≤ V N such that C is self-dual i.e. C = C⊥ := {x ∈
V N |

∑N
i=1 β(xi, ci) = 0 for all c ∈ C} and C is isotropic, which means that∑N

i=1 ϕ(ci) = 0 for all ϕ ∈ Φ and c ∈ C.

For the doubly-even self-dual binary codes, R = V = Z/2Z, β(x, y) = 1
2xy and

ϕ0(x) := 1
4x2, so that Φ = {ϕ0, 2ϕ0, 3ϕ0, 0}.

The main theorem of our book [2] is
Theorem. Let ρ be a Type such that R is a direct product of matrix rings over
chain rings (i.e. the left ideals are linearly ordered by inclusion). Then the C-
vectorspace spanned by the complete weight enumerators of codes of Type ρ is the
full invariant ring of the associated Clifford-Weil group C(ρ).
Here

C(ρ) = 〈mr, dϕ, he | r ∈ R∗, ϕ ∈ Φ, e symmetric idempotent in R〉 ≤ GL|V|(C)

where
generator cwe invariant since
mr : xv 7→ xrv C is a code
dϕ : xv 7→ exp(2πiϕ(v))xv C is isotropic
he : xv 7→ 1√

|eV |

∑
w∈eV exp(2πiβ(v, w))xw+(1−e)v C = C⊥

Since we allow R to be non-commutative, this theorem includes higher genus
weight enumerators. The complete weight enumerator of genus m is cwem(C) =
cwe(Rm ⊗C) and the code Rm ⊗C ≤ (V m)N is a self-dual code over the alphabet
V m which is an Rm×m-module. The associated Clifford-Weil group is C(ρm) =:
Cm(ρ).

We then get a surjective linear mapping φm : cwem(C) 7→ cwem−1(C) from the
invariant ring Inv(Cm(ρ)) onto Inv(Cm−1(ρ)), which yields an orthogonal decom-
position

⋆ InvN(Cm(ρ)) = K(N)
m ⊥ K

(N)
m−1 ⊥ . . . ⊥ K

(N)
0

where KN
a is isomorphic to the kernel of the restriction of φa to the homogeneous

degree N -invariants InvN(Ca(ρ)).
This is analogous to the decomposition of the space of modular forms into cusp

forms, which is invariant under the Hecke algebra. It is hence natural to search for
a coding theory analogue of Hecke-operators. The paper [1] generalizes a lattice
theoretic construction (see for instance [3]) of Hecke-operators to codes over finite
fields. To this aim let FN := {C ≤ FN

q | C is of Type ρ} denote the family of
self-dual codes of Type ρ over the finite field Fq. Then FN = [C1] ∪ . . . ∪ [Ch]
is the disjoint union of permutation equivalence classes. Define a linear opera-
tor T on C[C1] ⊕ . . . ⊕ C[Ch] ∼= Ch by T ([C]) :=

∑
D∈FN ,D∼C [D] where D ∼ C

iff D and C are neighbors, which means that D∩C has codimension 1 in C and D.

Theorem. T acts on InvN(Cm(ρ)) by mapping cwem(C) to
∑

D∈FN ,D∼C cwem(D).
The decomposition ⋆ is exactly the eigenspace decomposition of T .
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A functional view of upper bounds on codes

Alexander Barg

(joint work with Dmitry Nogin)

In the problem of bounding the size of codes in compact homogeneous spaces,
Delsarte’s polynomial method gives rise to the most powerful universal bounds on
codes. Many overviews of the method exist in the literature; see for instance Lev-
enshtein (1998). The purpose of this report is to present a functional perspective
of this method and give some examples.

Let X be a compact metric space whose isometry group G acts transitively
on it. The zonal polynomials associated with this action give rise to a family
of orthogonal polynomials P(X) = {Pκ} where κ = 0, 1, . . . is the total degree.
These polynomials are univariate if G acts on X doubly transitively (the well-
known examples include the Hamming and Johnson graphs and their q-analogs
and other Q-polynomial distance-regular graphs; the sphere Sn−1 ∈ Rn) and are
multivariate otherwise.

Let 〈f, g〉 =
∫ 1

−1
fgdµ be the inner product in L2([−1, 1], dµ) where dµ(x) is

a distribution on [−1, 1] induced by the invariant measure on G. By Delsarte’s
fundamental theorem, the size of the code C ⊂ X whose distances take values in

[−1, s] is bounded above by |C| ≤ inff∈Φ f(1)/f̂(0) where Φ = {f : f(x) ≤ 0, x ∈
[−1, s]; f̂(0) > 0, f̂(i) ≥ 0, i = 1, 2, . . . }, where f̂(i) = 〈f, Pi〉 are the Fourier
coefficients of f .

In the univariate case, the best asymptotic upper bounds on codes in a large
class of spaces arise by taking f(x) = (x − s)(Kk(x, s))2, where Kk(x, s) :=∑k

i=0 ‖Pi‖−2Pi(s)Pi(x) is the k-th reproducing kernel (f(x) is called the MRRW
polynomial), while for finite parameters better bounds are obtained from the Lev-
ensthein polynomials (Levenshtein 1978). We show how the MRRW and Lev-
ensthein polynomials arise naturally as stationary points of the moment func-
tional F(f) =

∫
fdµ. This enables us to link analytic methods of deriving the

bounds to a spectral (linear-algebraic) approach recently introduced in Bachoc
(2006) and developed by the authors (Barg and Nogin 2006). The spectral ap-
proach is particularly useful in the case of multivariare zonal polynomials (such
as infinite Grassmann spaces and the Niederreiter-Rosenbloom-Tsfasman or NRT
space). We comment on the derivation of bounds in the NRT space (Barg and
Purkayastha 2007) and observe that the link established above enables one to
pursue Levenshtein-type bounds in the multivariable case.
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Graph codes with Reed-Solomon component codes - I

Tom Hoeholdt

(joint work with Jorn Justesen)

We consider specific cases of the codes based on bipartite expander graphs. The
nodes are labeled by the points and lines of a finite geometry, and there is a
branch connecting a line node to any node labeled by a point on the line. The
code symbols are associated with the branches, and the symbols connected to a
given node are restricted to be codewords in a Reed-Solomon (RS) code over the
field that is used for constructing the geometry.

These codes were introduced by Tanner in 1981 ([3]) and since then a consid-
erable number of results have been obtained ([1], [2], [4], ans [5]).

Let G = (V, E) be an n- regular bipartite graph, without loops and multiple
edges, with vertex set V = V1 ∪ V2. That the bipartite graph is n-regular means
that each vertex of V1 is connected to n vertices of V2 and each vertex of V2

is connected to n vertices of V1. Let x1, x2, . . . , xm be the vertices in V1 and
y1, y2, . . . , ym the vertices in V2 and define the m × m matrix M = mij by

mij =

{
1 if xi is connected to yj

0 else

The adjacency matrix of the bipartite graph is

A =

(
0 M

MT 0

)

Thus each row has n 1s and the largest eigenvalue of A is n and the corresponding
eigenvector is the all-ones vector. It is known ([6]) that −n ≤ λi ≤ n where λi is
any eigenvalue and that the second largest eigenvalue λ is closely related to the
expansion properties of the graph. Let C1 be a linear n, k1, d1 code and C2 a linear
n, k2, d2 code both over the finite field F (q).
We now construct a code C of length N = mn over F (q) by associating F (q)
symbols with the edges of the graph (with a selected numbering) and demanding
that the symbols connected to a vertex of V1 (in the chosen order) shall be a
codeword of C1 and that the symbols on the edges connected to a vertex of V2 (in
the chosen order) shall be a codeword of C2. It is clear that C is a linear code.

The rate R of C satisfy

R ≥ r1 + r2 − 1 where r1 =
k1

n
and r2 =

k2

n
The minimum distance D of the code C satisfies

D ≥ md1
d2 − λβ

n − λβ
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where

β =
λ(d1 − d2) +

√
λ2(d1 − d2)

2
+ 4d1d2(n − d1)(n − d2)

2d1(n − d2)

If d1 = d2 = d we get

D ≥ dm
d − λ

n − λ
For short component codes the bound is not useful, but we can get a simple

lower bound by the following consideration: Starting from a vertex in the right
set, n vertices in the left set can be reached in one transition, and n(n−1) vertices
in the right set can be reached from these vertices. If they are assumed to be
distinct, the minimum distance is always lower bounded by

D ≥ d(d(d − 1) + 1) = d(d2 − d + 1)

Any nonzero vertex on the right side has at least d nonzero branches connecting
to vertices in the left set, and these reach d(d − 1) vertices in the right set with
nonzero branches.

Certain bipartite graphs derived from generalized polygons have perfect expan-
sion properties.[4]. The generalized polygons are incidence structures consisting
of points and lines where any point is incident with the same number of lines and
any line is incident with the same number of points. A generalized N-gon defines
a bipartite graph G that satisfies the following conditions:

• For all nodes u, v ∈ G, d(u, v) ≤ N , where d(u, v) is the length of the
minimum path connecting u and v.

• If d(u, v) = h < N , then there is a unique path of length h connecting u
and v.

• Given a node u ∈ G there exists a node v ∈ G such that d(u, v) = N .

We note that this implies that the girth of the bipartite graph is at least 2N . Most
of this paper is concerned with graphs from finite planes, and in this context the
3-gons are derived from finite projective planes.

Let M be an incidence matrix for a projective plane with m = q2 +q+1 points,
(x : y : z), and q2 + q +1 lines of the form ax+ by + cz = 0. The graph is invariant
to an interchange of the two sets of variables.

Thus each row has q + 1 1s and the largest eigenvalue of A is q + 1 and the
corresponding eigenvector is the all-ones vector. The graph may be seen as a
simple expander graph: The eigenvalues are ±q + 1 and ±√

q ( all real since A is
symmetric).

Starting from a node in the right set, q + 1 nodes in the left set can be reached
in one transition, and q(q + 1) nodes in the right set can be reached from these
nodes. The graph can be used to define a code by associating a symbol with each
branch and letting all branches that meet in a node satisfy the parity checks of an
(n, k, d) RS code where n = q + 1 . Thus the length of the total code is

N = mn = (q2 + q + 1)(q + 1)

It is sometimes more convenient to let M be an incidence matrix for an Eu-
clidean plane with m = q2 points, (x, y), and q2 lines of the form y = ax + b. The
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lines of the form x = c are omitted, and in this way the graph is invariant to an
interchange of the two sets of variables.

Thus each row has q 1s and the eigenvalues are ±q, ±√
q and 0.

All branches that meet in a node satisfy the parity checks of an (n, k, d) RS
code with n = q. Thus the length of the code is

N = q3

The dimension of the graph code derived from a finite plane is lower bounded
by

K ≥ N − 2m(n − k)

since the last term is the total number of parity checks in the component codes.
However, these checks are not all linearly independent. To find the actual dimen-
sion we must specify how the symbols of the component codes are mapped onto
the branches. In the Euclidean plane, the node corresponding to a particular pair
(a, b) connect to node (x, y) whenever y = ax + b.

The codewords can be found by evaluating polynomials in x of degree less than
k for all values of x. Since y is a linear function of x, we can also evaluate a
polynomial in x and y of degree less than k in the q pairs. With this specification
of the code we have:

The dimension of the graph code based on a Euclidean plane over F (q) is

k3 for k ≤ q
2

m(2k − n) + (n − k)3 for k > q
2

The number of linearly independent monomials of degree < k is k3.
Since a graph code is described by the properties of a large parity check matrix,

it is not immediately clear how encoding can be performed in a simple way [3].
Here we describe an encoding of codes from Euclidean planes based on evaluations
of a suitable set of polynomials.

We represent an edge in the bipartite graph by a quadruple (x, y, a, b) in F (q)
4

where y = ax + b. A codeword is then obtained by evaluation of a polynomial
from ( a subset of ) F (q)[X, Y, A, B]. We therefore have that polynomials which are
equivalent modulo the ideal I spanned by Xq−X, Y q−Y, Aq−A, Bq−B, Y −AX−B
evaluate to the same codeword and therefore we only have to consider polynomials
in V = F (q)[X, Y, A, B]/I. Our first task is to find the dimension of V as a vector
space over F (q). This can be done by finding a Groebner basis of I with respect
to some monomial order and then finding the leading monomials. The result is

The dimension of V as a vector space over F (q) is q3.
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Graph codes with Reed-Solomon component codes - II

Jorn Justesen

(joint work with Tom Hoeholdt)

We consider codes based on bipartite expander graphs. The nodes are labeled by
the points and lines of a finite geometry, and there is a branch connecting a line
node to any node labeled by a point on the line. The code symbols are associated
with the branches, and the symbols connected to a given node are restricted to be
codewords in a Reed-Solomon (RS) code over the field that is used for constructing
the geometry.

The right codes correct all error patterns of weight at most T1, the left codes
correct T2 errors. Initially we let T1 = T2 = T . A total of W errors are assumed
to occur at randomly chosen positions. Since the decoding is independent of
the codeword and the error values, it is sufficient to consider the error graph, a
bipartite graph with N + N vertices and W randomly chosen branches. If T is
not too small, the probability of decoding errors when more than T errors occur,
approximately 1/T !, is insignificant. The analysis clearly also applies exactly to
the case of erasure correction.

If the decoding of the component codes is repeated until a stable result is
obtained, a decoding failure occurs if the error graph contains a T + 1 core: A
k-core in a graph is a subgraph with the property that all vertices have degree at
least k.

The existence of cores in random graphs has been a subject of considerable
interest in graph theory. In particularly the following result due to Pittel et al. is
important [1]: Let G be a random graph with n vertices and w edges. With high
probability a k connected core exists when w > ckn/2, but not for smaller w. The
core includes a large fraction of the vertices. Here ck is defined in terms of the
Poisson distribution

σ(j) = e−λλj/j!

πk(λ) =
∑

j≥k−1 σ(j)

ck = minλ[λ/πk(λ)], λ > 0

Thus c3 = 3.35, c4 = 5.14, c5 = 6.80, c6 = 8.37, c9 = 12.78. Asymptotically
ck ≈ k +

√
k log k.

The result applies without change to random bipartite graphs. This can be
proved by making a small modification in the simplified proof of the basic result,
which was given in [2]. The degree of a vertex is initially interpreted as the number
of half-edges associated with the vertex. These half-edges are later combined in
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pairs to make the actual edges of the graph. The following algorithm simultane-
ously specifies the random graph and removes edges connected to vertices of low
degree:

- Remove a half-edge from a light vertex (degree < k)
- Remove a randomly selected half-edge (which becomes the other part of

the complete edge)
- Repeat the process as long as there are light vertices

The proof in [2] goes on from here to analyze the evolution of the degree distri-
bution as a stochastic process. For the complete bipartite graph, the only modifi-
cation is that the steps are:

- Remove a half-edge from a light vertex on the right
- Remove a randomly selected half-edge from the left (to complete the edge)
- Repeat these steps with right and left reversed

If the graph code is based on a random bipartite graph with the given degree, we
can continue the selection process from the error graph to the complete code graph
(assuming that no vertex has more than N errors). In the bipartite graph derived
from a projective plane, a given vertex on the right is connected to q+1 vertices on
the left, and these have edges connecting to the remaining q(q + 1) right vertices.
Thus if the vertices are chosen in the relevant subsets, all edges have the same
probability of being removed in the last step, and thus the distribution evolves as
in the original graph.

Thus for a given error correcting radius, T , the performance is asymptotically
the same for product codes, more sparse random graph codes, and codes con-
structed from geometries. Simulations indicate that although graphs from geome-
tries have smaller second eigenvalues than random graphs, codes based on random
graphs have a small advantage in performance.

In the actual decoding of graph codes we remove all light vertices on one side in
each step. Initially the number of errors on each side follows a Poisson distribution
since N is large compared to T . The average number of errors that are decoded
on the left when all component codes are decoded can then be found from this
distribution as

∑
j≤T je−mmj/j!

We now introduce the simplifying assumption that these decoded positions are
randomly distributed on the right vertices. A similar approach was discussed as an
informal introduction in [1]. We prove that if the degrees of the vertices on one side
of the graph follow a truncated Poisson distribution, a randomly chosen subset of
the branches are removed, and all resulting light vertices are removed, the degree
distribution of the remaining vertices is again a truncated Poisson distribution.

The calculation of the mean value of a truncated Poisson distribution is facili-
tated by the following identity, which is a standard result in traffic theory.

∑
j>T je−mmj/j! = m

∑
j≥T e−mmj/j! = mπT+1(m)

This explains why the summation in the definition of π starts at k− 1 rather than
k. We omit the subscript.
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We can now describe the evolution of the degree distribution:
Theorem 1: If the total number of errors in initially W = MN , the number

of errors in each right code follows a Poisson distribution with mean M . After
the first decoding, the number of errors per vertex on the left follows a Poisson
distribution with mean

m(1) = Mπ(M)

The degree distribution after each of the following stages of decoding follow a
truncated Poisson distribution with parameters

m(j) = Mπ(m(j − 1))

This simple recursion follows from the independence assumption using the above
identity.

If the initial value, M , is less than min{m/π(m)}, m(j) converges to zero,
while for M less than this threshold, m converges to the largest value such that
m′ = Mπ(m′).We then have

Theorem 2: In the limit of large N , a graph code with 2N nodes and component
RS codes correcting a fixed number of errors, T , can be decoded by iterated
decoding of the component codes to correct W = NM errors, when

M < minm{m/π(m)}
The iteration can be illustrated graphically as a sequence of points on the line

m = x and the graph of Mπ(x).
For small values of T , experiments indicate that the best performance (highest

rate for a given fraction of corrected errors), is obtained with different values of T ,
T1 and T2 on the right and left respectively. The original proof of cores in random
graphs is not easily modified to work with different values of T in subsets of the
vertices. However, in our analysis such a change is easily made. If the definition
of the function π is modified to alternate between T1 and T2, the parameters are
still updated by the same recursion.

The errors are corrected if the initial number of errors is below a certain thresh-
old, but for larger values the decoding process reaches a stationary point with a
pair of parameters, (m′, m”). The iteration can be illustrated graphically (in the
form well-known from EXIT graphs) as a staircase line between the graph of π(x)
for T1 and a reflected version of the graph of π(x) for T2. The graphic indicates
that the decoding threshold is reached when these two curves touch.

Asymptotically the error probability is dominated by the probability of small
cores, and it is thus a fairly large negative power of N . For realistic code lengths,
the predicted sharp threshold at W errors is observed, but no sufficiently good
bound on the probability of a large core is presently available.
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A Factor-Graph Approach to Universal Channel Decoding

Pascal O. Vontobel

In the last decade it has become more and more clear how one can efficiently
achieve reliable communication close to capacity when the channel law is known.
A very helpful tool in deriving such codes / decoders has been the factor-graph /
message-passing iterative decoding framework [1, 2, 3].

Some work has also been done for formulating decoders when the channel law is
not known, see e.g. [4, 5, 6, 7, 8, 9]. However, in these papers the channel law was
never totally unknown (the channel was within a very specific class of channels)
and / or the decoders could rely on the presence of training sequences or pilot
symbols. In this talk we study the case where the channel law is unknown except
that it is a discrete memoryless channel (DMC) with known input and output
alphabet. Our setup is universal in the sense that no training sequence is allowed,
i.e. no position of the channel code is allowed to be fixed to a certain symbol.

We remark that papers and books that discuss universal decoding include [10,
11, 12, 13, 14, 15, 16, 17, 18, 19, 18, 20, 21, 22]. However, the practicality of most
of the proposed schemes is not quite clear. In this talk, we discuss a variety of
approaches for solving this problem efficiently. It turns out that it is worthwhile
to design decoders which try to minimize the symbol error probability. This is in
contrast to the usual approach where the block error probability is minimized.

For more information, see [23].
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Weight Enumeration for Convolutional Codes

Heide Gluesing-Luerssen

(joint work with Gert Schneider)

The weight enumerator of a block code counts the number of codewords of given
weight. It turned out to be one of the most important invariants for the per-
formance of a block code. In particular, it is a well-known fact of block code
theory that the weight enumerator of a code completely determines that of the
dual code. More precisely, they are related by the famous MacWilliams Iden-
tity found in 1962. For a k-dimensional code C ⊆ Fn

q with weight enumera-

tor we(C) :=
∑

v∈C Wwt(v) ∈ C[W ] it reads as we(C⊥) = q−kH
(
we(C)

)
, where

H : C[W ]≤n −→ C[W ]≤n, f(W ) 7−→ (1 + (q − 1)W )nf( 1−W
1+(q−1)W ). The abun-

dant practical and theoretical applications have been studied ever since.
In this talk I want to discuss possible generalizations of this result to convolu-

tional codes. A convolutional code of length n is a direct summand of the module
F[z]n endowed with the Hamming weight for polynomial vectors, see, e. g., [5] for
details. For these codes the weight enumerator of block code theory can be gener-
alized in a twofold way. A fairly straightforward generalization leads to a formal
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power series in two variables with the coefficients being the number of codewords of
given weight and length in a meaningful way. In [7] Shearer and McEliece proved
that there is no MacWilliams identity for this type of weight enumerator.

A second generalization is given by the weight adjacency matrix. This matrix
is defined best by considering state space realizations of the encoder. Thus, let
C = imG ⊆ F[z]n be a convolutional code with minimal and basic encoder matrix
G ∈ F[z]k×n. From linear systems theory one can deduce that there exist con-
stant matrices A, B, C, D with entries in F = Fq such that the encoding identity∑

t≥0 utz
tG =

∑
t≥0 vtz

t is equivalent to

xt+1 = xtA + utB, vt = xtC + utD for all t ≥ 0 and where x0 = 0.

Here ut ∈ Fk and vt ∈ Fn for all t ≥ 0. Moreover, it is known that the length of the
internal state vector xt can be made identical to the degree, say δ, of the code. The

system gives rise to the weight adjacency matrix Λ = (λX,Y )X,Y ∈Fδ ∈ C[W ]q
δ×qδ

,
where

λX,Y := we({XC + uD | u ∈ Fk : Y = XA + uB}).
Thus, at position (X, Y ) the weight adjacency matrix is the weight enumerator

of the set of all outputs v = XC + uD corresponding to all those inputs u ∈ Fk

which steer the state X to the next state Y = XA + uB. It is well-known that
this matrix gives quite detailed information about the performance of the code,
see also [4, Sec. 3.10]. Moreover, it can be used to compute the classical weight
enumerator of the code mentioned above, see [6, Thm. 3.1] or [2, Thm. 3.8].

Obviously, the weight adjacency matrix is not an invariant of the code since
it depends on both the chosen encoder and the minimal realization. However,

the non-uniqueness can be nicely described. Indeed, if Λ, Λ′ ∈ C[W ]q
δ×qδ

are
two weight adjacency matrices for a given code, obtained via possibly different
minimal and basic encoders and different minimal state space realizations, then
there exists a state space isomorphism T ∈ GLδ(F) such that Λ′

X,Y = ΛXT,Y T for

all (X, Y ) ∈ Fδ × Fδ, see [2] for details. In other words, the two matrices differ
only by a state space isomorphism. This gives rise to an invariant Λ(C) of the
code, defined as the orbit under the canonical group action of GLδ(F) on Λ. We
call Λ(C) the generalized weight adjacency matrix of the code.

Now we are in a position to formulate our MacWilliams Identity. Let ζ ∈ C∗ be
a primitive p-th root of unity, where p is the characteristic of the field F = Fq and
let τ : Fq −→ Fp be the usual trace function. We define the MacWilliams matrix

H := q−
δ
2 (ζτ(XY T))X,Y ∈Fδ ∈ Cqδ×qδ

.

It is straightforward to show that H is invertible. Then the generalized weight
adjacency matrices of a k-dimensional convolutional code C ⊆ Fq[z]n of degree δ
and its dual C⊥ := {w ∈ F[z]n | wvT = 0 for all v ∈ C} satisfy

Λ(C⊥) = q−kH
(
HΛ(C)T H−1

)
.

For details see [3]. Thus, just like in the MacWilliams identity for block codes
the generalized weight adjacency matrix of the code C completely determines that
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of the dual code, and no representation of the code is needed. The result also
generalizes a set of identities developed in [1] for convolutional codes of degree 1.
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Minimal trellis realization by inspection for convolutional codes over
finite rings

Margreta Kuijper

(joint work with Raquel Pinto)

In this presentation I consider convolutional codes over finite rings of the type
Zpr . These are motivated by Trellis Coded Modulation systems. I address the
open problem of determining the minimal number of trellis states in terms of a
polynomial encoder.

In the literature (starting with Forney’s early papers in the 70s, [3, 2]) concepts
from system theory such as row reducedness have made their way into the alge-
braic theory of convolutional codes. In the coding community the concept of row
reducedness is more commonly known as “predictable degree property”. However,
until recently, this theory was not fully developed for the ring case. The recent
paper [5] develops a concept of row reducedness for polynomial matrices over Zpr .
A central concept is the concept of ”p-generator sequence” which was first intro-
duced in [9] for modules in Zpr . The paper [5] develops this concept further for
polynomial modules in Zpr [z] and achieves a novel generalization of the predictable
degree property for polynomial matrices over Zpr .

There is a considerable amount of literature concerning minimal trellis construction
for convolutional codes over Zpr , see e.g. [2, 8, 6, 7, 4, 1, 10] In particular, [2] pro-
vides a canonical minimal trellis construction from the code sequences. However,
the literature does not provide a straightforward method to construct a minimal
trellis from a polynomial encoder nor an expression for the minimal number of
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trellis states in terms of some kind of McMillan degree (“complexity”) as in the
field case. In this presentation I present solutions to both of these open problems.

In particular, I present a simple method to construct a minimal trellis from a left
prime polynomial encoder. The trellis is in controller canonical form and has a
minimal number of trellis states. Also, I express the minimal number of trellis
states as pδ, where δ is the sum of the ”p-degrees” from [5] of the associated
module, which is an invariant of the code. In the field case δ equals the McMillan
degree of the code times r which is the classical formula. I propose a new concept of
”minimality” of a polynomial encoder where there is a direct relationship between
the sum of the row degrees of the minimal encoder and the minimal number of
trellis states, just as in the field case.
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Fourier Spectra on Finite Fields and Subspaces of Matrices

Gary McGuire

Let Vn denote any n-dimensional vector space over F2. The Fourier transform
of a function f : Vn −→ Vm is defined by

f̂(a, b) :=
∑

x∈Vn

(−1)〈b,f(x)〉+〈a,x〉

for a ∈ Vn and b ∈ Vm, b 6= 0. The angular brackets 〈 , 〉 denote any inner
product on the relevant vector spaces. The Fourier spectrum of f is the subset of

Z consisting of the set of values of f̂ , over all a and b (b 6= 0), and is independent
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of the inner products used. If m = 1 then Vm = V1 = F2 and any function
f : Vn −→ F2 is called a Boolean function.

We give a connection between the Fourier spectrum of Boolean functions and
subspaces of skew-symmetric subspaces where each nonzero element has a lower
bound on its rank. This work is all implicit in Delsarte and Goethals [1].

Let L(n, k, F ) denote the maximal dimension of a subspace of Mn,n(F ) all of
whose nonzero elements have rank at least k. Let LS(n, k, F ) denote the maxi-
mal dimension of a subspace of Mn,n(F ) all of whose nonzero elements are skew-
symmetric and have rank at least k. We will discuss the calculation of this function
in the case of F = F2 and k large. In particular, we discuss LS(n, n − 1, F2) and
LS(n, n − 3, F2) when n is odd and its relationship to the Fourier spectrum of
functions. These methods carry over easily to finite fields of odd characteristic,
and are well known [1]. We will discuss carrying over the methods to infinite
fields, and proving results on L(n, k, F ) and LS(n, k, F ) when F is an infinite field
permitting a cyclic extension of degree n. Some results on this can be found in [2]
and [3].

Connections have been found between subspaces of matrices with good rank
properties and spacetime coding, and also network coding.
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MinRank and Rank Decoding: similarity and cryptographic relevance

Françoise Levy-dit-Vehel

In this talk, we study a very natural problem in linear algebra called MinRank
(MR), that was originally introduced by Buss, Frandsen and Shallit in 96 [10]. We
consider matrices M with entries from R∪{x1, . . . , xk}, where R is a commutative
ring and the xi are distinct variables. The statement of MR is as follows:

Input: N, n, r, k ∈ N∗, M ∈ MN×n(R ∪ {x1, . . . , xk}).
Question: decide whether min(λ1,...,λk)∈R rank(M(λ1, . . . , λk)) ≤ r.

Our motivation is cryptographic applications; we thus consider this problem over
a finite field Fq. We show here how close MR is to a well-known problem in coding
theory, namely the Rank Decoding problem (RD):

Input: N, n, k ∈ N∗, G ∈ Mk×n(FqN ), c ∈ Fn
qN , r ∈ N∗.

Question: decide whether there exists a vector m ∈ Fk
qN , such that e = c − mG

has rank rank(e |Fq) ≤ r ?
Here, rank(e |Fq) is the rank of the (N ×n) matrix representing e in a basis of FN

q
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over Fq.
Then we recall some complexity results, in particular a simple reduction of MR
from Maximum Likelihood Decoding that shows MR is NP-complete. On the
other hand, we show that RD is poly-time many-one reducible to MR; but it is not
known whether RD is NP-complete.

Next, we survey methods to address those two problems. Two methods have
been proposed to solve MR: the kernel method and the MQ-solving method [3].
The kernel method consists in choosing some vectors of Fn

q at random, and then
tune the xis - i.e. solve a linear system - so that the matrix M(x1, . . . , xk) admits
those vectors in its kernel. Then, with some easy computed probability, this ma-
trix is of rank ≤ r. Repeating this experiment a sufficient number of times allows

to find a matrix with this property. This method works in O(q⌈
k
n
⌉rk3), and thus

is relevant for small r in very small fields.
The MQ-solving method is somehow dual to the previous one. The idea is to ex-
press an instance of MR as one of MQ, which is the problem of solving multivariate
quadratic equations over a finite field. We try to find a set of independent vectors
of a special form in the kernel of matrix M(x1, . . . , xk). Putting the constraints
into equations yields a quadratic system with unknowns a subset of coordinates
of these vectors, together with the vector (x1, . . . , xk). The results obtained so
far are experimental: solving the resulting quadratic system with a Gröbner basis
algorithm, we can reach instances of MR with small r.

For general instances of RD, the best algorithm known is due to Ourivski and
Johannssson [8], that we explain below: let d be the minimum rank distance of the
code. Let c ∈ Fn

qN be the received word. Then, if m ∈ Fk
qN is such that e = c−mG

has smallest rank r - where r ≤ t = ⌊(d− 1)/2⌋ - then the code Ce with generator
matrix (

G
c

)
=

(
Ik 0
m 1

) (
G
e

)

has words of rank exactly r. Moreover, the codewords of rank r are exactly the
(scalar) multiples of e. Thus, the problem is “reduced” to the one of finding a
minimum weight codeword - say ǫe, ǫ ∈ F∗

qN - in the code Ce.

Let Gsyst be the generator matrix of Ce in systematic form, i.e. Gsyst = (Ik+1 R),

R ∈ M(k+1)×(n−k−1)(FqN ). We have e = (e1, e1R), e1 ∈ Fk+1
qN . Thus, we need to

find e1 such that rank((e1, e1R) |Fq) = r.
We can write e in the form

e = XA,

where X = (x0, . . . , xr−1) is an incomplete basis of FqN over Fq and A = (αi,j) ∈
Mr×n(Fq) is of full rank r. With obvious notation, letting A = (A1 A2), we get
e = (e1, e1R) = X(A1, A2), yielding the system over FqN :

(1) (x0, . . . , xr−1)A1R = (x0, . . . , xr−1)A2,

with unknowns αi,j , x0, . . . , xr−1.
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Let Ω = (ω0, . . . , ωN−1) be a basis of FqN over Fq. We can express each xi and each
coefficient of R with respect to Ω. Doing so, system (1) can be rewritten as a system
over Fq. At this point Ourivski and Johannsson propose two strategies. The first
one consists in guessing the unknowns αi,j contributing to quadratic terms in the
system, and then to solve the resulting linear system. This strategy is of complexity
O((rN)3q(r−1)(k+1)) The other strategy is very similar to the approach proposed
by Stern and Chabaud in [1]: it consists in guessing a suitable basis X for e, and
then to solve a linear system. The complexity is then O((k + r)3r3q(N−r)(r−1)).

With L. Perret, we have done improvements of this algorithm, by considering
a slightly modified system including the equations given by the syndrome of c,
and using a Gröbner basis algorithm to solve it [7]. For small values of r, the
practical results given by this approach are much better than those of Ourivski
and Johannsson.

Finally, we present cryptographic applications of MR and RD: MR can serve as
a tool for cryptanalysis in schemes like hfe [6] and ttm [4]; on the designing side,
both problems are relevant for constructing authentication schemes [2, 3], but for
encryption, the use of RD did not prove successful [9], whereas there has been no
proposal for encryption based on MR. We end the talk with some open problems
concerning the potential use of MR for solving coding theory problems, as well as
about whether one can find a reduction proving the NP-completeness of RD.
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Eigenvalue bounds on the pseudocodeword weight of expander codes

Deepak Sridhara

(joint work with Christine A. Kelley)

Expander graphs are of fundamental interest in mathematics and engineer-
ing and have several applications in computer science, complexity theory, de-
randomization, designing communication networks, and coding theory [1]. In
this talk, we focus on one prominent application of expander graphs – namely,
the design of low-density parity-check (LDPC) codes. Low-density parity-check
codes are a class of codes that can be represented on sparse graphs and have been
shown to achieve record breaking performances with graph-based message-passing
decoders. Graphs with good expansion properties are particularly suited for the
decoder in dispersing messages to all nodes in the graph as quickly as possible.
Expander codes are families of graph-based codes where the underlying graphs
are expanders. That is, every element of the family is an expander and gives rise
to an expander code. The codes are obtained by imposing code-constraints on
the vertices (and possibly, edges) of the underlying expander graphs [2, 3, 4]. It
has been observed that graphs with good expansion lead to LDPC codes with
minimum distance growing linearly with the block length. In fact, one method of
designing asymptotically good linear block codes is from expander graphs [2]. We
refer to these expander-based LDPC codes as expander codes.

The popularity of LDPC codes is that they can be decoded with linear time com-
plexity using graph-based message-passing decoders, thereby allowing for the use
of large block length codes in several practical applications. In contrast, maximum-
likelihood (ML) decoding a generic error-correcting code is known to be NP hard.
A parameter that dominates the performance of a graph-based message passing
decoder is the minimum pseudocodeword weight, in contrast to the minimum dis-
tance for an optimal (or, ML) decoder. The minimum pseudocodeword weight
of the graph has been found to be a reasonable predictor of the performance of
a finite-length LDPC code under graph-based message-passing decoding and also
linear programming (LP) decoding [5, 6, 7].

In this talk, we consider four different ways of obtaining LDPC codes (or, ex-
pander codes) from expander graphs. For each case, we first present the known
lower bounds on the minimum distance of expander codes based on the expan-
sion properties of the underlying expander graph. We then extend the results to
lower bound the minimum pseudocodeword weight on the binary symmetric chan-
nel (BSC). These bounds are useful in predicting the performance of expander
codes under graph-based iterative decoding and linear programming decoding and
also show that expander codes provide a guaranteed level of error-protection with
iterative and LP decoding.
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Some preliminary definitions followed by our main results on the pseudocode-
word weight of expander codes are given below.

Definition 1. A simple LDPC code is defined by a bipartite graph G (also called, a
Tanner graph) whose left vertices are called variable (or, codebit) nodes and whose
right vertices are called check (or, constraint) nodes and the set of codewords are
all binary assignments to the variable nodes such that at each check node, the
modulo-two sum of the variable node assignments connected to the check node is
zero, i.e., the parity-check constraint involving the neighboring variable nodes is
satisfied.

Equivalently, the LDPC code can be described by a (binary) incidence matrix
(or, parity-check matrix) wherein the rows of the matrix correspond to the con-
straint nodes of G and the columns correspond to variable nodes and there is a
one in the matrix at a row-column entry whenever there is an edge between the
corresponding constraint node and variable node in G. The LDPC code is in fact
the null space of this parity-check matrix.

The above definition can be generalized by introducing more complex con-
straints instead of simple parity-check constraints at each constraint node, and
the resulting LDPC code will be called a generalized LDPC code. A pseudocode-
word of an LDPC Tanner graph G is defined as follows.

Definition 2. A finite degree ℓ cover of G = (V, W ; E) is a bipartite graph Ĝ

where for each vertex xi ∈ V ∪ W , there is a cloud X̂i = {x̂i1 , x̂i2 , . . . , x̂iℓ
} of

vertices in Ĝ, with deg(x̂ij
) = deg(xi) for all 1 ≤ j ≤ ℓ, and for every (xi, xj) ∈ E,

there are ℓ edges from X̂i to X̂j in Ĝ connected in a 1 − 1 manner.

Definition 3. Suppose that ĉ = (ĉ1,1, ĉ1,2, . . . , ĉ1,ℓ, ĉ2,1, . . . , ĉ2,ℓ, . . . ) is a codeword

in the Tanner graph Ĝ representing a degree ℓ cover of G. Then a pseudocodeword
p of G is a vector (p1, p2, . . . , pn) obtained by reducing a codeword ĉ, of the code

in the cover graph Ĝ, in the following way:

ĉ = (ĉ1,1, . . . , ĉ1,ℓ, ĉ2,1, . . . , ĉ2,ℓ, . . . ) → (
ĉ1,1+ĉ1,2+···+ĉ1,ℓ

ℓ ,
ĉ2,1+ĉ2,2+···+ĉ2,ℓ

ℓ , . . . ) =
(p1, p2, . . . , pn)=p,

where pi =
ĉi,1+ĉi,2+···+ĉi,ℓ

ℓ .

From the above definition, it is easy to show that for a simple LDPC constraint
graph G, a pseudocodeword p = (p1, p2, . . . , pn) is a vector that satisfies the
following set of inequalities:

(1) 0 ≤ pi ≤ 1, for i = 1, 2, . . . , n,

and further, if variable nodes i1, i2, . . . , id participate in a check node of degree
d, then the pseudocodeword components satisfy

(2) pij
≤

∑

k=1,2,..d,k 6=j

pik
, for j = 1, 2, .., d.

Extending the above for generalized LDPC codes, it can similarly be shown that
on a generalized LDPC constraint graph G, a pseudocodeword p = (p1, p2, . . . , pn)
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is a vector that satisfies the following set of inequalities:

(3) 0 ≤ pi ≤ 1, for i = 1, 2, . . . , n,

and further, if variable nodes i1, i2, . . . , id participate in a constraint node of
degree d and that constraint node represents a subcode [d, rd, ǫd], then the pseu-
docodeword components satisfy

(4) (dǫ − 1)pij
≤

∑

k=1,2,..d,k 6=j

pik
, for j = 1, 2, .., d.

The weight of a pseudocodeword p on the binary symmetric channel (BSC) is
defined as follows [8].

Definition 4. Let e be the smallest number such that the sum of the e largest
components of p is at least the sum of the remaining components of p. Then, the
BSC pseudocodeword weight of p is

wBSC(p) =

{
2e, if

∑
e largest pi =

∑
remaining pi

2e − 1, if
∑

e largest pi >
∑

remaining pi

The minimum BSC pseudocodeword weight of an LDPC constraint graph G on
the BSC is the minimum weight among all pseudocodewords obtainable from all
finite-degree lifts of G. This parameter is denoted by wBSC

min . In this talk, we
present lower bounds on wBSC

min using the expansion properties of the underlying
LDPC Tanner graph G for the following cases of expander codes.

Case 1:

Definition 5. Let 0 < α < 1 and 0 < δ < 1. A (c, d)-regular bipartite graph G
with n degree c nodes on the left and m degree d nodes on the right is an (αn, δc)
expander if for every subset U of degree c nodes such that |U | < αn, the size of
the set of neighbors of U , |Γ(U)| is at least δc|U |.

For an LDPC code described by a Tanner graph G that is (c, d)-regular bipartite
with n left vertices of degree c and m right vertices of degree d and that is also an
(αn, δc) expander, we prove the following:

Theorem 1. If δ > 2/3+1/3c such that δc is an integer, the LDPC code obtained
from the (αn, δc) expander graph G as above has a pseudocodeword weight

wBSC
min >

2(αn − 1)(3δ − 2)

(2δ − 1)
− 1.

The proof involves combinatorial arguments such as Hall’s matching theorem and
is not a simple extension of the proof for lower bounding the minimum distance.
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Case 2:
Suppose G is a d-regular graph and an1 (n, d, µ) expander. Then, an LDPC code is
obtained from G by interpreting the edges in G as variable nodes and the degree d
vertices as constraint nodes imposing constraints of an [d, rd, ǫd] linear block code.
That is, the Tanner graph G′ of the LDPC code is the edge-vertex incidence graph
of G. The resulting LDPC code has block length N = nd/2 and rate R ≥ 2r − 1.
For such an LDPC code, we show the following lower bound on its minimum
pseudocodeword weight, using combinatorial arguments as earlier.

Theorem 2. The LDPC code obtained from an (n, d, µ) expander graph G has a
minimum BSC pseudocodeword weight lower bounded as follows:

wBSC
min ≥ Nǫ

( ǫ
2 − µ

d )

(1 − µ
d )

.
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Coding-Theoretic Problems in Genetics: Superimposed Codes for
Compressed Sensing DNA Microarrays

Olgica Milenkovic

(joint work with Wei Dai)

We consider the problem of algebraic construction of projection matrices for in-
teger-valued compressed sensing DNA microarrays. In this context, we introduce
a new family of codes, termed weighted Euclidean superimposed codes (WESCs).

1A simple, graph G is said to be a (n, d, µ) expander if G has n vertices, is d-regular, and the
second largest eigenvalue of G (in absolute value) is µ.
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This family generalizes the class of Euclidean superimposed codes, used in mul-
tiuser identification systems. WESCs allow for deterministic discrimination of
bounded, integer-valued linear combinations of real-valued codewords, and can
therefore also be seen as a specialization of compressed sensing schemes. We
present lower and upper bounds on the largest size of a member of the WESCs
family, and show how to use classical coding-theoretic and new compressed sensing
analytical tools to devise low-complexity decoding algorithms for WESCs.

DNA microarrays are two-dimensional arrays of spots containing a large num-
ber of unique DNA identifiers placed on a solid substrate. The identifiers are short,
single-stranded DNA sequences called probes. During the experiment, a solution
of single-stranded target DNA sequences is poured over the DNA microarray. The
target DNA sequences in the solution are labeled with fluorescent tags, and under
appropriate experimental conditions, they bond (hybridize) with their complemen-
tary probes. Upon removal of the sequences in the solution that did not hybridized
with any of the existing probes, and upon measuring the intensity of fluorescence
of each spot, one can estimate the concentration of target DNA sequences.

This traditional approach to DNA microarray design and testing has a major
shortcoming. Very frequently, the probes are considerably under-utilized - i.e.,
although the number of potential DNA sequences is very large, the actual number
of DNA sequences in a solution is relatively small [1]. Consequently, an efficient
microarray design should explore the inherent sparsity in target DNA vectors in
order to reduce the number of required array spots.

Compressed sensing (CS) is a new sampling method that is suitable for estima-
tion and detection of sparse target signals. A signal is said to be K-sparse if it can
be represented by only K ≪ N significant coefficients in some space of dimension
N , where N ≫ K [2, 3]. When the signal is projected onto a properly chosen basis
of the transform space, its accurate representation relies only on a small number
of coefficients. Encoding of a K-sparse discrete-time signal x of dimension N is
accomplished by computing a measurement vector y that consists of m ≪ N linear
projections, y = Φx. Here, Φ represents an m×N matrix, usually over the field of
real numbers. Consequently, the measured vector represents a linear combination
of columns of the matrix Φ, with weights prescribed by the non-zero entries of the
vector x. Although the reconstruction of the signal x ∈ RN from the (possibly
noisy) projections is an ill-posed problem, the prior knowledge of signal sparsity
allows for accurate recovery of x.

CS techniques can be explored for the design of a new DNA microarray technol-
ogy, termed compressed sensing (CS) DNA microarrays [1]. In CS microarray ex-
periments, the integer-valued vector x is sparse and has entries that correspond to
the number of different RNA molecules in a cell’s cytoplasm. Usually, the number
of RNA macromolecules in a wild-type cell is used as the zero-level measurement,
and deviations from this value (which can be both positive and negative, integer-
valued) represent the actual measurement. Since the number of RNA molecules
in a cell at any point in time is upper bounded due to energy constraints, and
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due to intracellular space limitations, the deviations are assumed to be finite and
relatively small compared to the number of different RNA types.

As a result, the CS DNA microarray probe-target affinity sensing matrix Φ has
the following properties. First, its entries φi,j are required to lie in the interval
[0, 1], and second, its columns are required to have || · ||1 or || · ||2 norm equal to one.
Along with the aforementioned assumption that x is integer-valued and sparse, the
two constraints on Φ give rise to a new coding theoretic paradigm, termed weighted
Euclidean Superimposed Codes (WESCs). We present upper and lower bounds
on the achievable rates of WESCs that depend on the sparsity of the vector x
and the range of integer-values t that its components can take. We also describe
a simple, yet efficient, correlation decoder for WESCs and a code-construction
method based on spherical codes.
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Coset decoding of two-point codes

Iwan Duursma

(joint work with Seung Kook Park)

Matthews [8] introduced two-point codes as a generalization of one-point codes. In
some cases, the parameters of two-point codes are better than those of one-point
codes.

Homma and Kim [4, 6, 5, 3] determined the actual minimum distance of two-
point codes from Hermitian curves. The full statement of their result contains
many cases that are proved in different papers. The proof extends a method for
one-point codes introduced by Yang and Kumar [10].

Kirfel and Pellikaan [7] give a different and shorter proof for the minimum
distance of Hermitian one-point codes. In his thesis, Seung Kook Park [9] extends
that method to Hermitian two-point codes. His result is a one line formula for
the actual minimum distance of Hermitian two-point codes and a shorter proof.
Moreover, the proof translates into a decoding algorithm for decoding up to half
the actual distance.

The method applies to two-point codes in general. For this we introduce the
notion of a discrepancy which generalizes the notion of a nongap. Discrepancies
are defined for a choice of a curve together with two distinct points on the curve.
We illustrate the methods with constructions of linear secret sharing schemes for
multi-party computation [2], [1].
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1. Discrepancies

In this section, we define the discrepancies of two points on a curve, which is
one of the main tools for obtaining our results.

Let X be an algebraic curve (absolutely irreducible, smooth, projective) of
genus g over a finite field F3 and let F3(X) be the function field of X over F3.
Let P∞ and P0 be two distinct rational points on X . For f ∈ F3(X)\{0}, (f)∞
denotes the pole divisor of f , (f)0 the zero divisor of f and (f) = (f)0 − (f)∞
the divisor of f . Given a divisor G on X defined over F3, let L(G) denote the
vector space over F3 consisting of functions f ∈ F3(X)\{0} with (f) + G ≥ 0 and
the zero function. Let l(G) denote the dimension of L(G) as an F3-vector space.
When G is of the form aP∞ + bP0 then the functions in L(G) have poles only
at P∞ or at P0, of order at most a or b, respectively. For the rational function
field F3(x) let P∞ be the simple pole of x and P0 the simple zero of x. Then,
for a, b ≥ 0, L(aP∞ + bP0) = 〈x−b, . . . , xa〉 is of dimension a + b + 1. For an
arbitrary function field, we aim to describe the dimension of L(aP∞ + bP0), for
(a, b) ∈ Z × Z. We will do this by defining a permutation σ : Z −→ Z such that
dimL(aP∞ + bP0) = |{n ∈ Z : n ≤ a, σ(n) ≤ b}|.

For a given a ∈ Z, let b ∈ Z be minimal such that there exists

f ∈ L(aP∞ + bP0)\L((a − 1)P∞ + bP0).

Then

(1) L(aP∞ + bP0) 6= L((a − 1)P∞ + bP0)

and, by minimality of b,

(2) L(aP∞ + (b − 1)P0) = L((a − 1)P∞ + (b − 1)P0).

The number b is uniquely determined by the properties (1) and (2). We have the
following diagram:

L(aP∞ + bP0)

iiiiiiiiiiiiiiiii

6=

UUUUUUUUUUUUUUUUU

L(aP∞ + (b − 1)P0)

=

UUUUUUUUUUUUUUUUU

L((a − 1)P∞ + bP0)

iiiiiiiiiiiiiiiii

L((a − 1)P∞ + (b − 1)P0)

UUUUUUUUUUUUUUUUU

iiiiiiiiiiiiiiiii

From the diagram we conclude that

(3) L(aP∞ + bP0) 6= L(aP∞ + (b − 1)P0)

and

(4) L((a − 1)P∞ + bP0) = L((a − 1)P∞ + (b − 1)P0).
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Together, properties (3) and (4) are equivalent to the properties (1) and (2). They
express that a is minimal such that there exists

f ∈ L(aP∞ + bP0)\L(aP∞ + (b − 1)P0).

(Defintion) For a given a ∈ Z, let b ∈ Z be such that

L(aP∞ + bP0) 6= L((a − 1)P∞ + bP0)

and

L(aP∞ + (b − 1)P0) = L((a − 1)P∞ + (b − 1)P0).

We call the ordered pair (a, b) a discrepancy pair. Let Γ ⊂ Z × Z be the set of all
the discrepancy pairs.

The uniqueness of a and b in a discrepancy pair (a, b) shows that Γ is the graph
of a permutation σ : Z −→ Z defined by σ(a) = b. Let m > 0 be minimal such that
m(P0−P∞) is a principal divisor, and let h be a function with (h) = mP0−mP∞.
Then (a, b) ∈ Γ if and only if (a+m, b−m) ∈ Γ. The permutation σ is completely
determined by its images on a set of representatives for the integers modulo m.
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A voltage graph approach to the analysis of LDPC codes

Christine A. Kelley

(joint work with Judy L. Walker)

We consider a voltage graph viewpoint from topological graph theory wherein
specific lifts of graphs are determined via “voltage assignments”, i.e., assignments
of elements of a so-called voltage group, to the edges of a base graph, thus making
the lifting entirely algebraic. This algebraic characterization of lifts is a powerful
tool for analyzing several graph properties of the resulting lifts using the properties
of the base graph. In an entirely different context, various researchers have looked
at constructing families of LDPC codes by taking random lifts of a specially chosen
base graph, or “protograph”, yielding the so-called “protograph codes” [1]. The
idea exploited in these constructions is that the properties of the base graph may
shed light on the properties of the covering graphs, and therefore on the resulting
codes. Indeed, random lifts of graphs have been heavily studied. While these codes
have exhibited good performance, many of these constructions appear adhoc and
there is a lack of a mathematical theory in designing these graph-based codes. In
this work, we aim to bridge this gap by unifying several different families of graph-
based codes under one common framework—namely, codes on graphs arising as
voltage graphs [2]. By using the tools of topological graph theory, we are able to
better understand the properties of such codes.

An algebraic construction of specific covering spaces for graphs was introduced
by Gross and Tucker in the 1970s [3]. Given a graph X = (VX , EX) where each
edge in X has a positive and negative orientation, a function α, called an ordinary
voltage assignment, maps the positively oriented edges to elements from a chosen
finite group G, called the voltage group. The negative orientation of each edge is
assigned a voltage that is the inverse element of the voltage assigned to its positive
orientation. The base graph X , together with the function α, is called an ordinary
voltage graph. The values of α on the edges are referred to as voltages. A new
graph Xα, called the (right) derived graph, is a degree |G| lift of X and has vertex
set VX × G and edge set EX × G, where if (u, v) is a positively oriented edge in
X with voltage h ∈ G, then there is an edge from (u, g) to (v, gh) in Xα for each
g ∈ G.

In the case that the voltage group is the symmetric group Sn on n elements,
one can also view the pair (X, α) as a permutation voltage graph. The permutation
derived graph Xα has vertex set VX × {1, . . . , n} and edge set EX × {1, . . . , n}. If
π ∈ Sn is a permutation voltage on the edge e = (u, v) of X , then there is an edge
from (u, i) to (v, π(i)) in Xα for i = 1, 2, . . . , n. Note that Xα is a degree n lift
of X rather than a degree n! lift as it would be if viewed as an ordinary derived
graph as discussed above.

For an edge e, let e− and e+ denote the negative and positive orientations,
respectively, of e. A walk in the voltage graph X with voltage assignment α
may be represented by the sequence of oriented edges as they are traversed, e.g.
W = eσ1

1 eσ2
2 . . . eσn

n where each σi is + or − and e1, . . . , en are edges in G. In this
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setting, the net voltage of the walk W is defined as the voltage group product of
the voltages on the edges of W in the order and direction of the walk.

Voltage graphs have been successfully used to obtain many instances of graphs
with extremal properties; see for example [4, 5, 6].

In this talk we explain how some popular families of quasi-cyclic LDPC codes
can be interpreted as permutation voltage graphs in a straightforward manner,
using the constructions in [7, 8] as examples. The Tanner graph of a TSF code [7]
may be viewed as the derived graph arising from a permutation voltage assignment
on the complete bipartite graph Kℓ,k on ℓ right and k left nodes, where the voltage
assignments come from the symmetric group Sm on m elements, and the voltages
are permutation elements that yield the shifts as given in the construction. For
example, the entry Iaibj in the parity-check matrix corresponds to the edge between
the ith left node, i = 0, . . . , k − 1, and the jth right node, j = 0, . . . , ℓ − 1 in the
base graph Kℓ,k and has a voltage equal to a permutation element that yields a
circulant shift of aibj (mod m). In a similar way, the array-based codes of [8] may
be interpreted in this light.

In the following, we completely classify all submatrices, or equivalently, sub-
graphs, that generate cycles that must exist in the derived graph based on the
structure of the base graph. We start by formalizing this notion of inevitable
cycles suggested in [10] by introducing the term abelian-forcing walk.

A backtrackless, tailless closed walk W is abelian-forcing if for each edge in
W , the number of traversals in the positive direction is the same as those in the
negative direction.

Lemma 1. An abelian-forcing walk W on X has net voltage 0 for any voltage
assignment α to any abelian voltage group G. Hence each lift Wg of W in Xα, for
g ∈ G, is a cycle of length |W |.

We define U to be an abelian-forcing graph if there is an abelian-forcing walk
on U which uses every edge of U .

For a graph X , we define a positive integer n to be an abelian-inevitable cycle
length for X if, for every abelian group G and every voltage assignment α of G on
X , the derived graph Xα must have a simple cycle of length n.

For the classification, we will need terminology for two main types of subgraphs.
Define an (a, b, c)-theta-graph, denoted by T (a, b, c), to be a graph consisting of two
vertices v and w, each of degree three, that are connected to each other via three
disjoint paths of (edge) lengths a ≥ 1,b ≥ 1, and c ≥ 1, and define a (a1, a2; b)-
dumbbell graph, denoted D(a1, a2; b) to be a connected graph comprised of two
edge-disjoint cycles of lengths a1 ≥ 1 and a2 ≥ 1 that are connected by a path of
length b ≥ 0. In the case that b = 0, we get a bouquet of two circles, which we
refer to as a degenerate dumbbell graph.

The next result classifies the subgraphs that give rise to abelian inevitable
cycles, namely the abelian-forcing graphs.
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Theorem 1. If X has an abelian-forcing walk of length n, then n is an abelian-
inevitable cycle length for X . In particular,

(1) if X has a subgraph isomorphic to T (a, b, c) then 2(a+b+c) is an abelian-
inevitable cycle length for X .

(2) If X has a subgraph isomorphic to D(a1, a2; b) then 2(a1 + a2) + 4b is an
abelian-inevitable cycle length for X .

Moreover, every abelian forcing walk arises from either a theta graph or a (possibly
degenerate) dumbbell graph.

We can now generalize the observation by Exoo in [4] by the following:

Proposition 1. If there is an abelian-forcing walk of length n on X , then n is
an abelian-inevitable cycle length for X . In particular, for every abelian voltage
assignment α, the girth of Xα is at most

• 2(a + b + c) if X contains an (a, b, c)-theta graph.
• 2(a1 + a2) + 4b if X contains an (a1, a2; b)-dumbbell graph.

The utility of this voltage graph viewpoint may been seen when one analyzes the
girth g of the Tanner graph of the TSF codes. The girth is the length of the smallest
cycle in the graph, and is important as it measures the number of iterations of
decoding for which the messages passed along the graph remain independent.
Indeed, iterative decoding is optimal on cycle-free graphs. It was shown in [7]
that the [155, 64, 20] TSF code in Section III has girth 8 and, more generally, all
codes in the family have girth at most 12. The base graphs in the TSF construction
all contain the complete bipartite graph K2,3 as a subgraph, and K2,3 is the theta
graph T (2, 2, 2). Thus, Proposition 1 immediately gives that the girth of the
Tanner graphs of the TSF codes is at most 12.

We note that Theorem 4 in [9] is incorrect; the proof assumes the overlaps are
consecutive although the statement does not. Since Theorems 1 and 3 in [10] rely
on this result, they are incorrect as well. We now give a correct version of Theorem
3 of [10]:

Theorem 2. Let X be a graph of girth g. Then every abelian-inevitable cycle
length for X is at least 3g.

We are currently applying this voltage-graph analysis to understand other prop-
erties of the derived graphs and their implications for the resulting graph-based
codes. Simultaneously, we are investigating constructions of LDPC codes by spe-
cific voltage assignments. We are considering both the application of one voltage
group to a sequence of base graphs and also the use of a tower of groups as voltage
groups applied to a specific base graph to generate these families of LDPC codes.
The techniques may yield new codes as well as improve existing constructions.
Our preliminary results suggest that using appropriate non-abelian groups for the
voltage assignments may yield superior codes. This novel voltage graph approach
is not limited to LDPC codes; rather, it can be applied in the algebraic design
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of other graph-based codes such as turbo codes, repeat-accumulate codes, serial-
concatenated codes, etc. Indeed, some constructions of repeat accumulate codes
have offset functions that can be related to the voltage assignment function.
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Nonadditive Quantum Codes from Z4-Codes

Patrick Solé

(joint work with San Ling)

In the present work, we construct binary non additive quantum codes from
binary Z4-linear codes. The argument is based on a description of quantum codes
in terms of orthogonal arrays [1],combined with Delsarte celebrated theorem on
the equivalence of unrestricted (viz not necessarily linear) codes with given dual
distance and orthogonal arrays of given strength [2].
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A direct approach to LP-bounds

Jürgen Bierbrauer

Based on a self-contained account of the classical linear programming bounds for
codes and orthogonal arrays we give an elementary description of the linear pro-
gramming bounds for ordered codes, ordered orthogonal arrays (OOA) and tms-
nets. The latter were introduced by Niederreiter in the context of uniform distribu-
tion and numerical integration. They live in an association scheme (Niederreiter-
Rosenbloom-Tsfasman space) which generalizes the Hamming scheme. The main
result is a description in terms of a family of polynomials which generalize the
Krawtchouk polynomials of coding theory. The Plotkin bound and the sphere
packing (Rao) bound for ordered codes are consequences. We also derive a qua-
dratic bound and illustrate by giving some improvements on the parameter bounds
for tms-nets. Now that a polynomial description of the LP-bound in NRT-space is
available one may attack various problems, for example the classification of perfect
codes (the case of equality in the sphere packing bound is described by a Lloyd
polynomial) and MDS-codes. Further parameters of tms-nets may be excluded by
using polynomials of small constant degree.
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Some Observations on the Continued Fraction of
√

N and
Factorization

Michele Elia

The factorization of a composite integer N is a problem of great importance for
many theoretical and practical reasons. Several factoring methods are based on
properties of the continued fraction of

√
N , a subject-matter that has received

great attention, although many properties are still unproved, and many more may
remain to be discovered.
The continued fraction expansion of

√
N is periodic with period τ , and is denoted

as √
N = {a0, a1, a2, · · · , aτ−2, aτ−1, 2a0}

where the overbar identifies the periodic part. Within a period, the coefficients aj

satisfy a condition of symmetry ai = aτ−i for 1 ≤ i ≤ t − 1. The fractions of the
sequence

A0

B0
=

a0

1
,
A1

B1
=

a0a1 + 1

a1
,
A2

B2
=

a0a1a2 + a0 + a2

a1a2 + 1
, . . . ,

An

Bn
, . . .

are called convergents; numerators and denominators satisfy the recurrences
{

Aj = ajAj−1 + Aj−2

Bj = ajBj−1 + Bj−2 ∀j ≥ 2 ,
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with initial conditions A0 = a0, B0 = 1, and A1 = a0a1 + 1, B1 = a1. Given
a sequence of convergent, we may define two sequences, ∆j = A2

j − NB2
j and

Ωj = AjAj−1 − NBjBj−1, which have the following properties:

(1) ∆j is a norm element in Q(
√

N).

(2) |∆j | < 2
√

N and |Ωj | <
√

N for every j ≥ 1.

(3) For a given |a| <
√

N , the Diophantine equation X2−NY 2 = a is solvable
if and only if a = ∆j for some j, [1, 3].

(4) The sequence ∆j is periodic with with period τ , and within a period it
satisfies the symmetry condition ∆τ−j−2 = ∆j for 1 ≤ j ≤ τ − 3.

(5) The sequence Ωj is periodic with period τ , and within a period it satisfies
the symmetry condition Ωτ−j−1 = (−1)τ−1Ωj for 1 ≤ j ≤ τ − 2.

(6) ∆τ−1 = (−1)τ , thus Aτ−1 +
√

NBτ−1 is a unit in Q(
√

N).
(7) The matrix

Mτ−1 =

[
−Aτ−1 NBτ−1

−Bτ−1 Aτ−1

]

is involutory, that is M2
τ−1 = I, with eigenvalues ±1 if ∆τ−1 = 1, or

neg-involutory, that is M2
τ−1 = −I, with eigenvalues ±i if ∆τ−1 = −1.

(8) The sequences ∆m and Ωm satisfy the following recurrent relations
{

∆m+1 = ∆m−1 + am+1(Ωm+1 + Ωm)
Ωm+1 = Ωm + am+1∆m

Assuming ∆τ−1 = 1, thus τ is even, an eigenvector of Mτ−1 associated to the
eigenvalue 1 is [Aτ−1 − 1, Bτ−1]

T , and denoting with d the greatest common divi-
sor of Aτ−1−1 and Bτ−1, it is immediately clear that numerator and denominator

of the ( τ
2 − 1)-th convergent are Aτ/2−1 = Aτ−1−1

d and Bτ/2−1 = Bτ−1

d .

Let N be a square-free composite integer, and let u = u0 +
√

Nu1 be the funda-
mental unit in Q(

√
N) of positive norm 1. We say that u splits N whenever u0 +1

and u0 − 1 are divisible by some proper factors m1 and m2 of N = m1m2. In
particular, u splits N = pq, when p is a factor of u0 + 1 and q is a factor of u0 − 1,
or conversely. The following theorem is thus proved [4].

Theorem 1. If the norm of the fundamental unit u ∈ Q(
√

N) is 1, and some

factor of N is a square of a principal integral ideal in Q(
√

N), then u splits N .

Corollary 1. Under the same assumptions as the Theorem, the smaller of the
two factors of N = pq is a factor of ∆τ/2−1 = A2

τ/2−1 − NB2
τ/2−1. In particular,

if p and q are congruent 3 mod 4, with p < q, then ∆τ/2−1 = (q|p)p, where (q|p)
is the Legendre symbol.

Using properties of convergent and related sequences, it is possible to show that
the infrastructure method of Shanks [2] can be applied to the sequence ∆j . Thus
big and small jumps can be made up and down along the sequence. Therefore, if
the period τ is known, the element ∆τ/2−1 can be reached with a number of steps
of the order O(log N), a result that implies the factorization of N in deterministic
polynomial time.
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In conclusion, two interesting problems arise naturally:

1), (old): Is it possible to compute exactly or approximately, with an im-
precision of the order O((log τ)α1 ), the period τ from N in deterministic
polynomial time O((log τ)α2)?

2), (possibly new): Given an ordered set At of t + 1 pairs

(∆m, Ωm) , (∆m+1, Ωm+1) , . . . , (∆m+t, Ωm+t) ,

with t small, is there any criterion for deciding whether At lies either in the
first or in the second middle part of the period in deterministic polynomial
time O((log N)α3)?
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Computing the minimum Lee weight of the Z4-linear Quadratic
Residue Codes of length 72 and 80

Alfred Wassermann

(joint work with Michael Kiermaier)

The quadratic residue codes over the integers modulo 4 contain codes of high
minimum Lee distance [3]. Via the Gray map, these codes can be transformed
into nonlinear binary codes of double length. So it is possible to compare the
Gray images with classical binary linear codes.

By computer search we revealed that the Lee weight of the quadratic residue
code QR(72) of length 72 and dimension 36 over the ring Z4 is equal to 22 and
the Lee weight of the quadratic residue code QR(80) of length 80 and dimension
40 over the ring Z4 is equal to 26.

The currently best known binary linear [144, 72] code has minimum Hamming
distance 22 and the best known self-dual binary linear code has minimum Ham-
ming distance 20, see [6]. The currently best known binary linear [160, 80] code is
a self-dual code with minimum Hamming distance 24, see [5].

Z4-code Best known binary code
n Lee weight n Hamming weight

Z4-QR-code: 72 22 144 22
Z4-QR-code: 80 26 160 24

We computed the minimum Lee weight of these codes by an adaption of the
well known algorithm for the binary case, see [2] and [1, pp. 70–77]. In order to
compute the Lee weight, the Z4-code is projected to its binary image. For this
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projected code we enumerate all necessary codewords as described in [1, pp. 70–
77], and compute their Hamming weight. Further, for each of these codewords the
possible liftings of the coordinates to Z4 has to be tested.

The running time on a standard computer of the algorithm was below 5 minutes
on the QR-code of length 72 and below 4 hours for the QR-code of length 80.
For the code of length 72 the computation of the minimum Lee weight with the
computer algebra system MAGMA, version 2.13, [4], was stopped after 10 hours
without producing a result.
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Multivariate Interpolation Decoding:
Reaching the Ultimate Limit of List Error-Correction

Alexander Vardy

One of the central questions in coding theory is this: what is the largest possible
fraction of errors that a code of rate R can correct? We consider the case of ad-
versarial errors, with error-correction defined in the list-decoding sense. Due to
a series of groundbreaking papers in the past decade, we now have a complete an-
swer to this question: the ultimate error-correction radius of 1−R can be reached
and, moreover, it can be reached constructively with polynomial-time decoding.

It was recognized early on [4] that decoding Reed-Solomon codes is equivalent
to the problem of reconstructing univariate polynomials from their noisy evalu-
ations. In the late 1990s, Sudan [6] and Guruswami-Sudan [2] came up with the
idea of list-decoding Reed-Solomon codes using bivariate polynomial interpolation.
List decoding means that a decoder produces a small (often, constant-size) list of
codewords that, hopefully, contains the codeword that was transmitted. Guru-
swami and Sudan [2] proved that this will always happen if the fraction of errors
is bounded by τGS = 1 −

√
R. This is strictly more than the classical decoding

radius τRS = (1−R)/2, for all rates. The algorithm of [2] was further extended to
algebraic soft-decision decoding of Reed-Solomon codes by Koetter and Vardy [3].

For a number of years, it was widely believed that the Guruswami-Sudan [2] de-
coding radius τGS = 1 −

√
R might be the best possible. However, Parvaresh and
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Vardy [5] showed that even more errors can be corrected. The work of [5] is based
upon two key ideas: transition from bivariate to multivariate interpolation and
encoding two or more correlated polynomials in each transmitted symbol. Specif-
ically, while conventional Reed-Solomon codes can be described by the mapping
f(X) 7→

(
f(x1), f(x2), . . . , f(xn)

)
, where f(X) ∈ Fq[X ] is the message polynomial

of degree < k, the (trivariate) Parvaresh-Vardy codes of [5] are described by the
mapping:

(1) f(X) 7−→ g(X) =
(
f(X)

)a
mod e(X) 7−→ f(x1) f(x2) · · · f(xn)

g(x1) g(x2) · · · g(xn)

where e(X) is an arbitrary irreducible polynomial of degree k and a is a sufficiently
large integer. The mapping (1) incurs a loss in rate, since of the two transmitted
polynomials f(X) and g(X), only f(X) carries information. Recently, Guruswami
and Rudra [1] showed that e(X) and a in (1) can be chosen in such a way that
g(X) = f(γX), where γ is a primitive element of Fq. This makes it possible to
“fold” the Parvaresh-Vardy codes back into Reed-Solomon codes, and thereby re-
cover the rate-loss inherent in (1). The final outcome of all this is the result
claimed in the first paragraph: using the “folded Reed-Solomon” codes of [1], the
error-correction radius of 1 − R can be reached. This achieves the information-
theoretic limits on list error-correction for the entire range of rates R ∈ [0, 1]. This
furthermore yields an improvement by a factor of two over conventional decoding
algorithms for Reed-Solomon codes.
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A Rank-Metric Approach to Error Control in Random Network
Coding

Frank R. Kschischang

(joint work with Danilo Silva, Ralf Koetter)

In random linear network coding [1, 2, 3], information is propagated in a commu-
nication network as fixed length packets of symbols drawn from a finite field F.
The collection of all such packets is a finite-dimensional vector space over F, here
called the “ambient space.” When an intermediate node between the transmitter
and receiver is granted a transmission opportunity, it sends a random F-linear
combination of the packets that it has so far received. The receiver collects these
randomly combined packets and attempts to infer (e.g., by inversion of a linear
system over F) the message selected by the transmitter.

Such a scheme is highly sensitive to the injection of packets containing errors,
as such corrupted packets may combine in the network with legitimate packets,
causing widespread packet corruption. The problem of error control in random
network coding is therefore of great interest.

In [4], a coding scheme was introduced in which the transmitter communicates
a message by injecting into the network a basis of a subspace V of the ambient
space from some suitable codebook C of spaces. The receiver gathers packets
spanning some space U . A metric between subspaces is defined in which the
distance d(U, V ) between two subspaces U and V of the ambient space is given
as d(U, V ) = dim(U + V ) − dim(U ∩ V ). Depending on the minimum distance
between the distinct codewords of C, correct decoding is possible when d(U, V ) is
small enough.

Although this approach seems to be the appropriate abstraction of the error
control problem in random network coding, one inherent difficulty is the absence
of a natural group structure on the set of all subspaces of the ambient space.
As a consequence, many of the powerful concepts of classical coding theory such
as group codes and linear codes do not naturally extend to codes consisting of
subspaces.

In this talk, we described the close relationship between subspace codes and
codes for the rank metric. Codewords in rank metric codes are n × m matrices
and the rank distance between two matrices is the rank of their difference. The
rank metric was introduced in coding theory by Delsarte [5]. Codes for the rank
metric were largely developed by Gabidulin [6] (see also [7]). An important feature
of the coding theory for the rank metric is that it supports many of the powerful
concepts and techniques of classical coding theory, such as linear and cyclic codes
and corresponding decoding algorithms [6, 7, 8, 9].

In the talk we showed that codes in the rank metric can be naturally “lifted”
to subspace codes in such a way that the rank distance between two codewords is
reflected in the subspace distance between their lifted images. In particular, if u
is an n×m codeword of a rank-metric code C over F, then the “lifting” I(u) of u
is the row space of the matrix [I|u], where I is the n× n identity matrix. Clearly
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I(u) is an n-dimensional subspace of Fn+m. The “lifting” I(C) of a rank-metric
code C is I(C) = {I(u) : u ∈ C}. Thus I(C) is a codebook of subspaces of Fn+m.

If two matrices u, v are separated by a rank distance dR, then it is easy to see
that I(u) and I(v) are separated by a subspace distance d = 2dR, i.e., the lifting
construction is distance preserving. From this it immediately follows that the
minimum subspace distance between codewords of I(C) is twice the minimum rank
distance between codewords of C. Good rank-metric codes (and in particular, the
maximum rank distance codes of Gabidulin) are therefore lifted to good subspace
codes.

In the talk we also discussed the problem of decoding, and showed that the
decoding problem for the random network coding channel (abstracted as the “op-
erator channel” of [4]) can be reformulated as a (generalized) decoding problem for
rank-metric codes, allowing many of the tools from the theory of rank-metric codes
to be applied to random network coding. In this generalized decoding problem,
the channel may supply partial information about the error in the form of erasures
(knowledge of an error location but not its value) and deviations (knowledge of an
error value but not its location).

For Gabidulin codes, an efficient decoding algorithm is proposed that can fully
exploit the correction capability of the code; in particular, it can correct any
pattern of ǫ errors, µ erasures and δ deviations provided 2ǫ +µ + δ ≤ d− 1, where
d is the minimum rank distance of the code.

The rank-metric approach thus provides a practical means to construct subspace
codes and also to decode them.
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On a Method to Overcome the Draw-backs of Cycles in the Tanner
graph of a Low-Density Parity-Check Code

Marcus Greferath

Introduction. Low-Density Parity-Check (LDPC) codes, although discovered
early in the history of coding theory [2], have attracted the attention of many
coding theorists during the recent years due to their rediscovery by MacKay [4].
They form a class of linear block codes that perform close to the Shannon limit and
allow for efficient decoding using what are called belief propagation algorithms.
The correctness of these algorithms goes back to Pearl [5] for the case that the
codes in question possess a parity-check matrix whose Tanner graph is free of
cycles. But also for codes not satisfying this requirement belief propagation de-
coding algorithms are used in spite of their (theoretical) incorrectness. Here they
perform tolerably well but certain draw-backs occur that are attributed to cycles
in the underlying Tanner graph. It has been shown in [1] that if the Tanner graph
contains exactly one cycle, then these draw-backs can be compensated for. This
does however not mean that belief propagation is proven to work correctly in the
presence of a single cycle.

The project at hand seeks to overcome the effects of cycles by use of random
processes that spare the assumption of independence of the distributions passed
along the edges of the graph in the decoding algorithm. In the context at hand we
focus on what is called the sum-product algorithm which allows for a particularly
elegant modelling of the operations involved by random processes.

Related approaches, particularly in the framework of what is called stochastic
computing, have been introduced in [6].

The underlying Algebra. Let R be an arbitrary finite ring with identity, and
denote by ∆(R) the set of all distributions on R, i.e. the set of all function f :
R −→ [0, 1] such that

∑
r∈R f(r) = 1. The operations in R are naturally extended

to operations on ∆(R): in fact we obtain two types of convolutions, the additive
and the multiplicative convolution which we define as follows:

(f ⊕ g)(x) :=
∑

a+b=x

f(a)g(b) and (f ⊗ g)(x) :=
∑

ab=x

f(a)g(b).

Abbreviating

δU (x) :=

{ 1
|U| : if x ∈ U,

0 : otherwise,

(and allowing for abuses of notation) we find that (∆(R),⊕, δ0) and (∆(R),⊗, δ1)
both form monoids, where the former is abelian. There are no general distributive
laws for elements of ∆(R), however we find that δr ⊗ (f ⊕ g) = (δr ⊗ f)⊕ (δr ⊗ g)
for all r ∈ R and f, g ∈ ∆(R). An according law holds for multiplication on the
right hand side. All in all ∆(R) turns out to be an R-bi-semi-module, by which
we summarize the following statements:
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(i) (∆(R),⊕, δ0) is an abelian monoid.
(ii) There is an action R × ∆(R) −→ ∆(R) defined by (r, f) 7→ rf := δr ⊗ f

such that all r ∈ R induce an endomorphism (r, ·) on ∆(R).
(iii) The same as (ii) on the right hand side of ∆(R).
(iv) r(fs) = (rf)s for all r, s ∈ R and f ∈ ∆(R).

In addition to what we have observed we introduce the following left division
mapping R × ∆(R) −→ ∆(R). For r ∈ R and f ∈ ∆(R) we set

(r, f) 7→ 1

r
f, where (

1

r
f)(x) :=

1∑
y∈R f(ry)

f(rx),

whenever the right hand side is defined. If not, we set 1
r f := δR, the uniform

distribution. Note that division even by non-units of R is defined in this context.

The Sum-Product-Algorithm. Let C be a set the elements of which are called
checks , and let S be a set of sites . Assume a low-density parity-check code with
a |C| × |S|-check matrix H is given. We can define an R-valued edge labelling
of the complete bipartite graph on C ∪ S. With the understanding to omit all
zero-labelled edges we then arrive at H being an R-valued edge labelling for the
Tanner graph G of the matrix in question.

Belief propagation decoding algorithms for this code proceed in the following
fashion. The channel output is given by a vector y ∈ ∆(R)S . Two sequences
(c2sn)n∈N and (s2cn)n∈N of ∆(R)-valued edge labellings of the graph G are defined
according to three basic laws:

(I) c2s0(e) := δR, the uniform distribution, and s2c0(e) := ys(e) for all e ∈ E.

(A) c2sn(e) := 1
−He

⊕
f:f 6=e

c(e)∈f

Hf s2cn−1(f)

(B) s2cn(e) := (1/Σ)·ys(e) ·
∏

f:f 6=e

s(e)∈f

c2sn−1(f). Here · and
∏

denote the pointwise

product (aka Hadamard product), and (1/Σ) is a normalisation ensuring
s2cn ∈ ∆(R).

The labellings c2s are called check-to-site messages, whereas the labellings s2c
are called site-to-check messages. If s2cn(e) is not defined because of a division by
0, then we set s2cn(e) := δR. In each step also a vertex labelling un : S −→ ∆(R)
is defined as

un(s) := (1/Σ) · ys ·
∏

e:s∈e

c2sn−1(e),

where (1/Σ) is again a normalising factor. If G is a tree, the sequence of all un

is known to converge towards an element u ∈ ∆(R)S that under hard decision
yields a word x ∈ RS minimising the symbol error probability. It is apparent that
the tree condition on G ensures independence of the distributions appearing. If
we understand these as the distributions of R-valued random variables, then step
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(A) computes the distribution of a linear combination of these variables, whereas
step (B) computes the (conditional) distribution that these variables coincide.

The proposed Random Processes. We propose to exchange passing of distri-
butions by passing of values of the random variables that they represent. For this
let the channel output again be given by y ∈−→ ∆(R)S . Two sequences (c2sn)n∈N

and (s2cn)n∈N of R-valued edge labellings of the graph G are defined according to
three basic laws:

(I’) c2s0(e) is sampled according to δR, the uniform distribution, and s2c0(e)
is sampled according to ys(e) for all e ∈ E.

(A’) Compute Q(e) := − ∑
f:f 6=e
c(e)∈f

Hf s2cn−1(f) and sample c2sn(e) from 1
He

Q(e).

(B’) Design c2sn as follows: For e ∈ E set s := s(e) and sample Q(s) according
to ys.

c2sn(e) :=

{
c2sn−1(e) : if |{Q(s)} ∪ {s2cn−1(f) : f 6= e, s ∈ f}| > 1
Q(s) : otherwise.

Assuming that the c2sn form a Markov process is in general weaker than the
assumption that G is a tree. Under this assumption however the distribution of
the variable c2s converges towards the desired conditional distribution introduced
in (B).

Similar to (B’) an according rule can then be formulated for the update random
variables (un)n∈N. The limit distribution of un is then expected to be an element
∆(R)S that under hard decision yields a word RS minimising the symbol error
probability.

Discussion. We have given up the classical parallelism of message passing in order
to assure convergence also in cases of graphs containing cycles. This step causes
a significant performance loss and is therefore only of theoretical value. Our main
idea however is based on the observation that the substituting sampling processes
do not hinge on strict independence assumptions on the variables. We therefore
envisage that this version of message passing will converge also for graphs that
are not trees. It will be a question of further research to explore if a quantum
version of this algorithm (i.e. a scheme that passes qudits instead of the original
distributions along the edges of the graph) can be proven to work correctly for
non-trees.
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Hypergraph codes and their decoding

Gilles Zémor

(joint work with Alexander Barg)

Let G = (V, E) be a balanced, ∆-regular bipartite graph with vertex set V =
V1 ∪ V2, |V1| = |V2| = n and |E| = N = ∆n edges. Let us choose an arbitrary
ordering of edges in E. For a given vertex v ∈ V this defines an ordering of edges
v(1), v(2), . . . , v(∆) incident to it. We denote this subset of edges by E(v). Given a
binary vector x ∈ {0, 1}N , let us establish a one-to-one correspondence between the
coordinates of x and the edges in E. For a given vertex v let x(v) = (xe, e ∈ E(v))
be the subvector that corresponds to the edges in E(v).

Let A[∆, R0∆, d0 = δ0∆] be a binary linear code of length ∆ and rate R0 =
dim(A)/∆. Define a bipartite-graph code as follows:

C(G; A) = {x ∈ {0, 1}N : ∀v∈V1∪V2 x(v) ∈ A}.
The rate of the code C is easily seen to satisfy

R(C) ≥ 2R0 − 1.

This construction (without the requirement that G be bipartite) was first intro-
duced by Tanner [6]. It was shown by Sipser and Spielman [4] that choosing for G
graphs with expanding properties yields constructive asymptotically good families
of binary linear codes. The term “expander codes” was coined to highlight this
result. More precisely, the distance of the code C(G; A) can be estimated from
below as follows [2]:

(1) d/N ≥ δ2
0

(
1 − λ

2d0

)2

where λ is the second eigenvalue of the graph G. In particular, if λ is small
compared to d0, then the relative distance δ = d/N is close to the value δ2

0 . Sipser
and Spielman also showed that expander codes can decode adversarial errors up
to a fraction of the designed distance with a low complexity iterative decoding
algorithm. This fraction was raised to 1/4 for bipartite-graph codes in [7] and
improved again to 1/2 in [5] and [2].

A number of variations to the bipartite construction have been introduced that
yield a better rate/designed distance tradeoff, see [1]. An alternative approach to
improve the designed distance was put forward in [3]. It consists of replacing the
underlying bipartite graph by a t-partite, t-uniform, ∆-regular hypergraph with
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vertex set V = V1 ∪ · · · ∪ Vt where every edge is incident to exactly one vertex in
Vi for every i. The definition of the t-partite hypergraph code is then the same
as that of a bipartite-graph code. The rate R of the hypergraph code C is readily
seen to satisfy

R ≥ tR0 − (t − 1).

In [3], Bilu and Hoory generalize the expansion property to hypergraphs, provide
constructions of hypergraphs with this property, and show that when it is satisfied
the minimum distance of the corresponding hypergraph code satisfies

(2) d/N ≥ δ
t

t−1

0 − ǫ

where ǫ is a quantity that can be made arbitrarily small by increasing the degree ∆
of the hypergraph. Note that when A is a code of large rate and small δ0, the lower
bound (2) for t > 2 becomes much better than the bound (1) for bipartite-graph
codes.

Decoding hypergraph codes is more challenging than decoding bipartite-graph
codes, however. In [3] Bilu and Hoory give an algorithm for even values of t that
is guaranteed to decode any pattern of eN errors with e less than

(3)

(
t − 1

t/2

)−2/t (
δ0

2

)(t+2)/t

− ǫ

where, again, ǫ is a quantity that can be made arbitrarily small by increasing the
degree ∆ of the hypergraph. This algorithm consists of log N iterations, each of
which has serial running time linear in the blocklength N .

The object of the present work is to improve on this fraction and get closer to
half the designed minimum distance (2) with low-complexity iterative decoding.
We obtain, neglecting ǫ-terms:
Theorem. For any α > 0, if the number of errors eN is such that

e ≤ (1 − α)δ
t/(t−1)
0 min

κ
max

λ
f(λ, κ)

with

f(λ, κ) =
[1 − t(1 − λ)/(κ − λ)]1/(t−1)

κt/(t−1)[λ + (1 − λ)/(κ − 1)]t/(t−1)

they can be corrected in time O(N log N).

Numerically, the first values of the decoding radius ρ given by the Theorem are

ρ ≥ δ
3/2
0

5.94
for t = 3 ρ ≥ δ

4/3
0

6.46
for t = 4.

For fixed values of t, decoding up to half the designed distance efficiently is still
an open problem.
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Crooked binomials

Jürgen Bierbrauer

(joint work with Gohar Kyureghyan)

Let F = GF (q), where q = 2r. A function f : F −→ F is almost perfectly
nonlinear (APN) if for every 0 6= a ∈ F the additive derivative δf,a defined by
δf,a(x) = f(x + a) + f(x) is two-to-one: it has q/2 different images (equivalently:
each image has precisely two preimages).

The APN function f is crooked if for every a the image δf,a(F ) is either a
hyperplane or the complement of a hyperplane of F (seen as an r-dimensional
vector space over GF (2).

Motivation comes from information transmission (sequences with extremal au-
tocorrelation properties), cryptography (S-boxes) and coding theory (cyclic codes,
Preparata codes).

In the long paper [2] we prove that binomial functions f(x) = xd + uxe can
be crooked only if both exponents d, e have 2-weight ≤ 2. This generalizes the
main result of [1] where it is proved that the only crooked power functions are the
Gold functions. The proof of [2] uses the projection argument from [1] and makes
extensive use of the action of the Galois group.

New crooked binomial functions were constructed in [3, 4, 5, 6]. In [7] succinct
constructions are given for the known crooked binomials. They consist of an
infinite family and one sporadic example. Here is a description of the infinite
family.
Let F = GF (qk), where q = 2s. Consider the trace and norm T, N : F −→ GF (q),
let q′ = 2i. Choose µ ∈ F such that N(µ) = 1 and the function f : F −→ F
defined by

f(x) = xq′+1 + µxqq′+qk−1

.
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Theorem 1. The function f(x) above is crooked when the following are satisfied:

• r = ks, k ∈ {3, 4}.
• The integers k, s, i are pairwise coprime and k | i + s.
• µ = ǫe, where ǫ is a primitive element of F = GF (2r), e is a multiple of

2s − 1 and coprime to 2k − 1.

The sporadic example is defined on GF (210). We construct it using the prop-
erties of a certain projective curve of genus 3 associated to it. There is numerical
evidence for the conjecture that this describes all crooked binomial functions.
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Multivariate generalizations of the Guruswami-Sudan decoding
algorithm

Daniel Augot

It appears that the Guruswami-Sudan list decodign algorithm has not yet been
properly analyzed in the multivariate case. By the multivariate case, it is meant
that the codes under consideration are obtained by evaluation of multivariate
polynomials over the points of the affine space An(Fq). The set of polynomials to
be evaluated is either:

L = {f(X1, . . . , XN ), deg f(X1, . . . , XN ) ≤ r},
in which case are obtained the generalized Reed-Muller codes (for simplicity, we
assume that r < q); or:

L = {f(X1, . . . , XN), degXi
f(X1, . . . , XN ) ≤ r; i = 1, . . . , N},

in which case is obtained the N times product code of the classical Reed-Solomon
code. Let us briefly sketch the algorithm for the Reed-Muller codes: Let τ be
the number of errors that will be corrected, and µ = nN − τ be the number of
positions with no errors. The received word, to be decoded, is a N -dimensional
array y = (yi1,...,iN

)(i1,...,iN )∈{1...n}N . This algortithm is as follows, where wdeg

denotes the weighted degree.
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input: (x1, . . . , xn) ∈ Fn
q , r, µ ∈ N, y = (yi1,...,iN

) the received word.
auxiliary parameters: a degree d et s an order of multiplicity.
interpolation: find a polynomial Q = Q(X1, . . . , XN , Z) such that

(1) Q(X1, . . . , XN , Z) 6= 0,
(2) wdeg1,...,1,rQ(X1, . . . , XN , Z) ≤ d,

(3) mult(Q; (xi1 , . . . , xiN
, yi1,...,iN

)) = s, (i1 . . . , iN ) ∈ {1 . . . n}N .
factorisation: Compute List = {f = f(X1, . . . , XN ) | Q(X1, . . . , XN , f) =

0}.
verification: return all f ∈ L such that deg f ≤ r, et d(f, y) < τ .

This generalization is straightforward, but the analysis can be done in various ways.
All analyses are to be done in two steps: first ensuring that the Q(X1, . . . , XN , Z) is
zero when evaluated over the solution which is sought for; then writing a sufficient
condition for the existence of the Q(X1, . . . , XN , Z) polynomial, regardless of the
received word.

Regarding this second condition, we require that, in the interpolation step,
the number of unknowns is greater than the number of equations. Indeed, each
condition mult(Q; (xi1 , . . . , xiN

, yi1,...,iN
)) = s implies

(
s+N
N+1

)
linear equations on

the coefficients of Q. On the other hand, the number of unknowns is given by the

condition wdeg1,...,1,rQ ≤ d. One can shows that this number is dN+1

(N+1)!r , and a

condition for the existence of the polynomial Q is

dN+1

(N + 1)!r
>

(
s + N

N + 1

)
nN ,

which can be simplified into

(1) d > N+1

√
nNrs(s + 1) . . . (s + N).

For the first condition, to conclude that the polynomial Qf = Q(X1, . . . , XN , f) is
actually zero, we need to bound the number of zeros of such a polynomial. In the
univariate case, this is simply achieved by using the fact that a polynomial can
not have more zeroes than its degree. In the multivariate case, things are not as
simple. A first analysis has been done by Pellikaan and Wu, using the theory of
Groebner bases and the notion of the footprint of an ideal. They end up with the
following radius:

(2)
τ

nN
≤

(
1 − N+1

√
r

n

)N

.

However, one can settle a simpler Lemma, which is a generalization of the Schwartz-
Zippel Lemma. Note also that it holds over any field.

Lemma 1. Let F be an arbitray field. Let Q(X1, . . . , XN ) ∈ F[X1, . . . , XN ] be
of total degree less than d. Let x1, . . . , xn be n distinct points in F. The sum
of multiplicities of Q(X1, . . . , XN ) over the nN points {(xi1 , . . . , xiN

); 1 ≤ i1 ≤
n, . . . , 1 ≤ iN ≤ n} ⊂ FN is less than or equal to dnN−1.

Proof. By induction. �
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Thus, to ensure that the polynomial Qf is identically zero, the parameters
must be such that Qf has more than dnN−1 zeros, counted with multiplicities. If
µ = nN −τ denote the number of positions (i1, . . . , in) such that f(xi1 , . . . , xiN

) =
yi1,...,iN

, then if

(3) sµ > dnN−1,

Qf is identically zero. Working out the conditions (1) and (3) leads to the following
bound for τ :

(4) τ ≤ nN − N+1

√
rnN (1 +

1

s
) . . . (1 +

N

s
),

which gives the following relative decoding radius, when s tends to infinity:

(5)
τ

nN
≤ 1 − N+1

√
r

n
,

an improvement over the Pellikaan and Wu’s radius.
But this is not the end of the story. Geil and Matsumoto, using the theory of

order domains (which encompasses both algebraic-geometry codes and multivari-
ate codes, as generalized Reed-Muller codes), could provide a Sudan-like algorithm
(that is to say, without multiplicities), which, on examples, appears to have a larger
decoding radius that what could be obtained using the Schwartz-Zippel Lemma.
They appear to use the so-called hyperbolic codes, which are an improvement of
the q-ary Reed-Muller codes, when q > 2. The remaining open problem is indro-
duce multiplicities in Geil and Matsumoto approach, which seems a difficult task
since such a notion is not taken into consideration in the order domain theory.

To conclude, in the present state of knowledge, the best radius which can ob-
tained is nM −

√
nM (nM − dM ), where dM is the minimum distance of the Reed-

Muller codes. This achieved by using an old result of Kasami, Lin and Peterson,
which relates Generalized Reed-Muller codes to subfield subcodes of Reed-Solomon
codes. This enables to decode the generalized Reed-Muller codes as classical Reed-
Solomon codes, using the usual Guruswami-Sudan algorithm. Note that this radius
coincides with the Johson bound in the q-ary case, when q is large enough.
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Quantum codes suitable for iterative decoding

Jean-Pierre Tillich

(joint work with Thomas Camara, Harold Ollivier, David Poulin)

The purpose of this talk is to discuss generalizations to the quantum setting of
LDPC codes and turbo-codes. These generalizations use a construction of quan-
tum error-correcting codes called “stabilizer codes” or “additive codes over GF (4)”
[1, 3]. The quantum parity-check matrix of such a quantum code of length n and
(quantum) dimension k consists of a (n− k)×n matrix with entries in GF (4) and
rows which are orthogonal with respect to the trace-hermitian inner product. The
minimum distance of such a code is the smallest Hamming weight of a row-vector
in GF (4)n which is orthogonal (again with respect to the trace-hermitian inner
product) to all the rows of the parity-check matrix but which can not be expressed
as a sum of these rows.

A quantum LDPC code is then nothing but a stabilizer code which admits
a sparse parity-check matrix of this form. We review the attempts which have
been made in this direction (semi-random constructions, quasi-cyclic construc-
tions, group-theoretic constructions, combinatorial constructions using designs)
[7, 4, 6, 2]. However, all these quantum LDPC codes have not yielded results
as spectacular as their classical counterpart. This is due to several reasons. First
there are issues with the code design. Due to the orthogonality constraints imposed
on the parity-check matrix, it is much harder to construct quantum LDPC codes
than classical ones. In particular, constructing the code at random will certainly
not do. In fact, it is still unknown whether there exist families of quantum LDPC
codes with non-vanishing rate and unbounded minimum distance and all known
constructions seem to suffer from a poor minimum distance for reasons which are
not always fully understood. Second, there are issues with the decoder. The Tan-
ner graph associated to a quantum LDPC code necessarily contains many 4-cycles
which are well known for their negative effect on the performances of iterative
decoding. Moreover, quantum LDPC codes are by definition highly degenerate
but their decoder does not exploit this property: rather it is impaired by it.

Generalizing turbo-codes to the quantum setting is a possible way to overcome
these problems. In particular, it is possible to define quantum serial turbo-codes [8]
in such a way that as for classical turbo-codes, there is complete freedom in choos-
ing the interleaver. This allows to use random constructions as in the classical set-
ting. For instance, it is known by using probabilistic arguments that in a classical
serial turbo-code scheme, using an inner convolutional code that is recursive yields
turbo-code families with unbounded minimum distance [5]. The generalization of
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this result to the quantum setting requires to address encoding issues such that be-
ing recursive and not catastrophic for a convolutional encoder. We first recall how
a certain binary matrix can be associated to the quantum encoding process and
how this enables to define such notions like a quantum convolutional encoder, and
properties such as being recursive and non catastrophic for this encoder. We show
that despite the fact that both recursive encoders and non catastrophic encoders
exist in the quantum setting, there are no encoders which meet these properties
at the same time. This hinders obtaining quantum serial turbo-codes with good
iterative decoding performances and polynomial minimal distance in the same way
as classical serial turbo-codes. However, although it is still possible to construct
interesting quantum serial turbo-codes from non-recursive and non-catastrophic
encoders. They can be decoded in a similar fashion as classical turbo-codes and
display good iterative decoding performance up to moderate block lengths even if
they have bounded minimum distance.
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A MacWilliams formula for Convolutional Codes

Patrick Solé

(joint work with Dimitrii Zinoviev)

The talk introduces the ideas of [1], where, regarding convolutional codes as poly-
nomial analogues of arithmetic lattices, we derive a Poisson Jacobi formula for
their trivariate weight enumerator. The proof is based on harmonic analysis on lo-
cally compact abelian groups as developed in Tate’s thesis to derive the functional
equation of the zeta function.
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On extremal codes of type II

Wolfgang Willems

(joint work with S. Bouyuklieva, E. O’Brien, and A. Malevich)

Among the extremal codes, the self-dual doubly-even codes C with parameters
[24m, 12m, 4m + 4] are of particular interest, since, by Assmus and Mattson, the
code words of a fixed non-trivial weight form a 5-design. By Mallows and Sloane,
m can not be arbitrarily long, and by S. Zhang, m ≤ 153. However, we know only
two examples, the [24, 12, 8] Golay code (m = 1) and the [48, 24, 12] quadratic
residue code (m = 2), both with a large simple automorphism group, namely the
Mathieu group M24 resp. PSL(2, 47). In order to find larger examples - if anyone
exists - the existence of a non-trivial automorphism might be helpful.

Thus we focus on Aut(C) in this talk. For m = 3 and m = 4 much has been done
over the last years. For instance, if a [72, 36, 16] code exists then its automorphism
group is solvable of order smaller or equal to 36; the automorphism group of a
putative [96, 48, 20] code has only prime divisors 2, 3 and 5.

Applying methods from modular representation theory we prove that particu-
lar primes can never occur as divisors in the order of the automorphism group.
Suppose that p is a prime and p | |Aut(C)|. If 12m ≤ p ≤ 24m then p = 24m− 1.
This observation rules out more than half of the possible 153 cases of m. In
the remaining 64 cases it turns out that p−1

2 is the order of 2 mod p unless

m = 18, 38, 46, 98, 112, 133 (exceptional cases). Since p−1
2 is in addition odd one

can now prove that C is an extended quadratic residue code in all non-exceptional
cases. In case p−1

2 splits (i.e. p−1
2 is not a prime) we finally use an algorithm

discovered by Karlin and MacWilliams to show that C is not extremal.
In summary we have proved: If p is a prime, m > 2 and 12m ≤ p ≤ 24m then

p does not divide the order of the automorphism group of C unless m is one of 22
cases which we can not decide at the moment.

To deal with these cases new ideas have to come in since the Karlin-MacWilliams
algorithm does not work. However the results we have obtained so far give some
evidence to

Conjecture. If C is a binary self-dual doubly even extremal code of length 24m
with m > 2 and p is a prime with p | |Aut(C)| then p ≤ 12m.
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A Mathematical View of Hybrid ARQ

Emina Soljanin

In applications with fluctuating channel conditions within a range of signal-to-
noise ratios (SNRs), such as mobile and satellite packet data transmission, the
so called incremental redundancy (IR) HARQ or Type II HARQ schemes achieve
higher throughput efficiency by adapting their error correcting code redundancy
to varying channel conditions. An IR-HARQ protocol operates as follows: At
the transmitter, the information bits are first encoded by an error detecting code
(usually cyclic redundancy check (CRC)) code, and then the CRC coded bits are
further encoded encoded by a “mother” error correcting code, which is in practice
usually systematic. Initially, only the systematic part of the codeword and a
selected number of parity bits are transmitted. The selected parity bits together
with the systematic bits form a codeword of a punctured mother code. Decoding
of this code is performed at the receiving end. If a retransmission is requested, the
transmitter sends additional parity bits possibly under different channel conditions
or at different power. Decoding is again attempted at the receiving end, where
the new parity bits are combined with those previously received. The procedure is
repeated after each subsequent retransmission request, until either the CRC test
is passed or all the parity bits of the mother code are transmitted.

To be able to mathematically study IR-HARQ, we model it as a scheme with
at most m transmissions where a bit is assigned to transmission j with probability
αj . Transmission j takes place if transmission j − 1 fails. Such random transmis-
sion assignment is not only a useful theoretical tool for analysis and performance
prediction, but can actually be implemented by an ”on-the-fly” dynamic version
of the algorithm described in [1], as follows:

Before the IR HARQ protocol starts:
(1) For each bit position i, i = 1, 2, . . . , n, generate a number θi indepen-

dently and uniformly at random over [0, 1).
(2) Compute λ1 as λ1 = 1 − α1.
(3) If θi ≥ λ1, assign bit i to transmission 1.

If transmission j − 1 fails for 2 ≤ j < m:
(1) Determine αj , if it was not predetermined.
(2) Compute λj as λj = λj−1 − αj .
(3) If λj ≤ θi < λj−1, assign bit i to transmission j.

If transmission m − 1 fails:
transmit at most all remaining bits.

We assume that the channel remains constant during a single transmission j,
and is described by its Bhattacharyya noise parameter γ(j). This parameter is
usually a convex function of the SNR determined by the model of the channel.

To operate the protocol transmitter needs to know how many bits and at which
power to send in the first transmission, and if transmission j − 1 fails, how many
bits and at which power to send in transmission j for 2 ≤ j ≤ m − 1. We assume
that the transmitter 1) wants to maximize the throughput 2) knows the mother
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code and data rates of the past transmissions, and 3) is informed by the receiver of
channel information of the past transmissions. The transmitter’s strategy is then
to send only as many codeword symbols as necessary to ensure a high probability
of successful maximum likelihood decoding assuming a high SNR channel during
the current transmission.

To derive the transmission rules, we assume that the decoding after transmission
j−1 failed. On the average, nαj bits will participate in the j-th transmission, and
the remaining (1−α1−· · ·−αj) ·n bits of the mother code will not be transmitted.
The idea is to treat them as if they are transmitted over a really bad channel, i.e.,
a channel with γ(j + 1) = 1, and compute γ(j), the average Bhattacharyya noise
parameter after the j-th transmission, as

γ(j) = α1 · γ(1) + · · · + αj · γ(j) + (1 − α1 − · · · − αj) · 1.

Our goal is to guarantee vanishingly small probability of error. It is shown in [1]
that that can be done by choosing αj or γ(j) or both so that

(1) γ(j) < exp(−c
[C]
0 ).

Here c
[C]
0 is a single parameter describing the mother code C, known as the code

noise threshold [2]. For the turbo code used in the cdma2000 standard and the
dominant packet size, this parameter was computed in [1] to be 0.5198.

Condition (1) can be written in a form which clearly shows the tradeoff between
the rate of the j-th transmission code and the signal power:

(2) αj(1 − γ(j)) > 1 − exp(−c
[C]
0 ) −

j−1∑

i=1

α(i)(1 − γ(i)).

To satisfy the above lower bound on the product of αj and 1−γ(j), the transmitter
can either increase the code redundancy αj or increase the signal power which
results in a decrease of γ(j) and increase of 1 − γ(j). An increase in redundancy
results in the lower throughput of the user while an increase in the power results
in a higher interference level experienced by other users in the network. Since γ(j)
is positive, there is a minimum redundancy requirement:

(3) αj > 1 − exp(−c
[C]
0 ) −

j−1∑

i=1

α(i)(1 − γ(i)).

This condition ensures that the probability of error of the ML decoding is bounded
by O(n−1/2) for high SNR. In the case of predetermined αj (as it is sometimes in
practice), the required signal power is specified by

(4) γ(j) <
exp (−c

[C]
0 ) − (1 − αj) +

∑j−1
i=1 α(i)(1 − γ(i))

αj
.

In this protocol, equations (2), (3), and (4) constitute the j-th transmission
rules after transmission j − 1 fails. Note that these equations imply that the
transmitter needs to know the channel gains of the previous ARQ transmissions
before it could decide how much redundancy or power is required for the current



Coding Theory 3235

transmission. Therefore, simple ACK and NACK messaging is not sufficient to
meet the need for power allocation or redundancy allocation at the transmitter
side. Note that the receiver knows what the transmitter is doing as long as the rules
of the transmission have been agreed upon, and the receiver and the transmitter
run identical and synchronized random number generators.

In addition punctured mother codes, another family of codes seem to be a
natural candidate for use in HARQ schemes. This is the class of Fountain Codes,
originally designed for reliable transmission of data over an erasure channel with
unknown erasure probability. The first class of efficient Fountain Codes were LT-
codes [4]. The codewords of an LT code are generated based on the k information
symbols by the means of a probability distribution on the numbers 1, . . . , k. Each
codeword symbol is obtained independently, by first sampling this distribution to
obtain a number d, and then adding the values of d randomly chosen information
symbols. Raptor codes are a modified version of LT codes in which the information
sequence of k symbols is pre-coded by a high rate, block code, and then the n
resulting symbols are used to generate the Raptor codeword symbols in the same
manner as for LT codes, [5]. Both, LT and Raptor codes were originally designed
for erasure channels, but performance of Raptor codes on arbitrary symmetric
channels have been studied in [6]. For a more general description of Fountain
codes, we refer the reader to [4], [5], and [6].

The ability of Raptor codes to produce, for a given set of k information symbols,
as many codeword symbols as needed for their successful decoding is what makes
these codes of interest for use in HARQ schemes. In [3], HARQ based on Raptor
codes is examined and compared to HARQ based on LDPC codes. Both theoretical
and simulation results showed that both LDPC and Raptor codes are suitable for
HARQ schemes. Which codes would make a better choice depends mainly on the
width of the signal-to-noise operating range of the HARQ scheme, prior knowledge
of that range, and other design parameters and constraints dictated by standards.
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Linear-Programming Decoding of Non-Binary Linear Codes

Vitaly Skachek

(joint work with Mark F. Flanagan, Eimear Byrne and Marcus Greferath)

A new approach for analysis of LDPC codes was proposed in [6], and it is based
on the consideration of so-called pseudocodewords and their pseudoweights. The
approach was further explored in [3], [5]. In [1] and [2], the decoding of binary
LDPC codes using linear-programming decoding was proposed, and the connec-
tions between linear-programming decoding and classical belief propagation de-
coding were established. Recently, pseudocodewords of non-binary codes were
defined and some bounds on the pseudoweights were derived in [4].

In this work, we extend the approach in [2] towards coded modulation, in par-
ticular to codes over rings mapped to non-binary modulation signals. As was
done in [2], we show that the problem of decoding may be formulated as a linear-
programming (LP) problem for the non-binary case.

More specifically, consider codes over finite rings (this includes codes over finite
fields, but may be more general). Denote by R a ring with q elements, by 0
its additive identity, and let R

− = R\{0}. Let C be a linear [n, k] code with
parity-check matrix H over R. The parity check matrix H has m ≥ n − k rows.

Denote the set of column indices and the set of row indices of H by I =
{1, 2, · · · , n} and J = {1, 2, · · · , m}, respectively. The notation Hj will be used
for the j-th row of H. Denote by supp(c) the support of a vector c. For each
j ∈ J , let Ij = supp(Hj) and dj = |Ij |, and let d = maxj∈J {dj}.

For j ∈ J , define the single parity check code Cj by

Cj = {(bi)i∈Ij
:

∑

i∈Ij

Hj,i · bi = 0}

Note that while the symbols of the codewords in C are indexed by I, the symbols
of the codewords in Cj are indexed by Ij .

Assume that the codeword c̄ = (c̄1, c̄2, · · · , c̄n) ∈ C has been transmitted over a
q-ary input memoryless channel, and a corrupted word y = (y1, y2, · · · , yn) ∈ Σn

has been received. Here Σ denotes the set of channel output symbols; assume that
this set either has finite cardinality, or is equal to Rl or Cl for some integer l ≥ 1.
In addition, assume hereafter that all information words are equally probable, and
so all codewords are transmitted with equal probability.

Define the following mapping

ξ : R −→ {0, 1}q−1 ⊂ Rq−1 ,

by

ξ(α) = x = (x(γ))γ∈R− ,

such that, for each γ ∈ R
−,

x(γ) =

{
1 if γ = α
0 otherwise.
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It can be extended in a natural way to a bijection on R
n:

Ξ : R
n −→ {0, 1}(q−1)n ⊂ R(q−1)n ,

according to

Ξ(c) = (ξ(c1) | ξ(c2) | · · · | ξ(cn)) .

For vectors f ∈ R(q−1)n, the notation

f = (f1 | f2 | · · · | fn)

will be used, where

∀i ∈ I, f i = (f
(α)
i )α∈R− .

This notation is used to write the inverse of Ξ as

Ξ−1(f) = (ξ−1(f1), ξ
−1(f2), · · · , ξ−1(fn)) .

We also define a function λ : Σ −→ R ∪ {±∞} by

λ = (λ(α))α∈R− ,

where, for each y ∈ Σ, α ∈ R
−,

λ(α)(y) = log

(
p(y|0)

p(y|α)

)
,

and p(y|c) denotes the channel output probability (density) conditioned on the
channel input. Extend λ to a map on Σn by λ(y) = (λ(y1) | λ(y2) | . . . | λ(yn)).

The LP decoder is represented by the following objective function

ĉ = Ξ−1(f̂) ,

where

(1) (f̂ , ŵ) = arg min
(f ,w)∈Q

λ(y)fT .

The polytope Q is a relaxation of the convex hull of all points f ∈ R(q−1)n, which
correspond to the codewords. This Q is defined with the help of auxiliary variables

wj,b for j ∈ J , b ∈ Cj .

The vector containing these variables will be denoted by

w =
(

wj,b

)
j∈J ,b∈Cj

,

with respect to some ordering on the elements of Cj .
The following constraints are imposed to describe the polytope Q:

∀j ∈ J , ∀b ∈ Cj , wj,b ≥ 0 ,(2)

(3) ∀j ∈ J ,
∑

b∈Cj

wj,b = 1 ,

and

∀j ∈ J , ∀i ∈ Ij , ∀α ∈ R
−, f

(α)
i =

∑
b∈Cj , bi=α wj,b .(4)
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The minimization of the objective function (1) over Q forms the relaxed LP
decoding problem. It is defined by n(q−1)+mqd−1 variables and at most m(qd−1+
d(q − 1) + 1) constraints.

The decoding algorithm works as follows. The decoder solves the LP problem
of minimizing the objective function (1) subject to the constraints (2)-(4). If
f ∈ {0, 1}(q−1)n, the output is the codeword Ξ−1(f). Otherwise, the decoder
outputs an ‘error’.

In this work, we show that the above relaxation of the LP leads to a solution
which has the ‘maximum likelihood (ML) certificate’ property, i.e. if the LP
outputs a codeword, then it must be the ML codeword. Moreover, we show that
if the LP output is integral, then it must correspond to the ML codeword. We
define the graph-cover pseudocodewords of the code, and the LP pseudocodewords
of the code, and prove the equivalence of these two concepts. This shows that the
links between LP decoding on the relaxed polytope and message-passing decoding
on the Tanner graph generalize to the non-binary case.

To demonstrate performance, LP decoding of the ternary Golay code is simu-
lated, and the LP decoder is seen to perform approximately as well as codeword-
error-rate optimum hard-decision decoding, and approximately 1.5 dB from the
union bound for codeword-error-rate optimum soft-decision decoding.
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Winterthurerstr. 190
CH-8057 Zürich
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