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Introduction by the Organisers

This is the first appearance of “Tropical Geometry” as the topic of an Oberwol-
fach workshop, though the subject figured earlier at the Forschungsinstitut as an
Oberwolfach Seminar on “Tropical Algebraic Geometry” in October 2004. The
workshop was organized by Eva-Maria Feichtner (U Bremen), Andreas Gathmann
(U Kaiserslautern), Ilia Itenberg (U Strasbourg) and Thorsten Theobald (U Frank-
furt) and brought together about 50 mathematicians from the many fields Tropical
Geometry touches upon. The workshop came timely as the subject develops into
a field of its own with numerous connections to diverse branches of mathematics.

Tropical Geometry can be considered as an algebraic geometry over the semifield
(R,max,+). The name was coined by French computer scientists to honor the
pioneering work of their Brazilian colleague Imre Simon on the max-plus semiring.
Alternatively, Tropical Geometry can be understood as the geometry resulting
from complex geometry by a certain degeneration process: complex toric varieties
are replaced by real linear spaces and, more generally, complex algebraic varieties
are replaced by polyhedral complexes, i.e., by piecewise-linear objects.
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The roots of Tropical Geometry extend at least to Bergman’s logarithmic limit
sets (in the 70’s), Viro’s patchworking construction (in the late 70’s), Maslov’s
dequantization of positive real numbers (in the 80’s), and to the use of idempotent
semirings in applications to optimization, control theory, and max-plus operators
(in the 90’s). In recent years, the various research directions have been fruitfully
merged, generalized and advanced to what is now called Tropical Geometry. Along
the way, deep connections to numerous branches of pure and applied mathematics
have been unveiled; among them e.g. algebraic geometry, symplectic geometry,
complex analysis, dynamical systems, geometric combinatorics, as well as com-
puter algebra, algebraic statistics, and phylogenetics.

Despite of the short time span of its recent development, Tropical Geometry
has already been widely recognized as an important discipline and as a unifying
viewpoint for the transition of algebro-geometric problems to combinatorial ones.
The aim of this Oberwolfach workshop was to furnish this newly emerging field
with an outstanding communication platform and to foster the interaction between
the various research directions that are involved.

Moreover, Tropical Geometry is still in a phase of forming its foundations: fun-
damental concepts, such as abstract tropical varieties, and basic definitions, such
as a proper notion of tropical intersection multiplicity, are still under construction.
It was therefore an additional goal of this workshop to advance the field through
discussions among people with different views of the subject.

In both respects, the workshop met all expectations: in 22 fifty-minutes talks
the current state of development was outlayed from various viewpoints. An after-
noon with half-hour talks by graduate students and an evening session featuring
a software presentation completed the picture. This part of the workshop is well
accounted for by the following collection of abstracts.

Most importantly - and only forthcoming activities and publications will indi-
rectly report on this - numerous informal discussions evolved between participants
with most different mathematical backgrounds. A fruitful atmosphere of exchange
developed during the week, notably thanks to the excellent facilities at the Math-
ematisches Forschungsinstitut.

On behalf of the participants, we wish to express our sincere thanks to the
Institute for hosting this workshop.

Eva-Maria Feichtner
Andreas Gathmann
Ilia Itenberg
Thorsten Theobald

January 2008
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Abstracts

Phase-tropical curves

Grigory Mikhalkin

Tropical manifolds and in particular tropical curves appear as a result of procedure
that disposes of arguments (or phases) of complex numbers. However, there is a
way to put these phases back to get phase-tropical manifolds. As it happens quite
often in Mathematics these two operations are not quite opposite to each other:
phase-tropical manifolds do not posess an honest complex-analytic structure, but
rather a certain degeneration of this structure.

In the talk we considered in details the case of phase-tropical curves and phase-
tropical morphisms from them to IRn and tropical hypersurface and complete
intersections in IRn. In the case when n = 2, the phase structure is real and the
morphism is an embedding we recover the famous patchworking construction of
Viro. More generally, we have the following theorem.

Theorem 1. If a phase-tropical morphism from a curve to a smooth hypersurface
or a complete intersection in IRn = (T×)n is regular then it comes as the limit of
a family of classical (complex) curves of the corresponding degree and genus under
a suitable renormalization.

Here regularity refers to the underlying tropical morphism (after forgetting the
phase) and means that the virtual dimension of the deformation space of tropical
morphism (computable from the Riemann-Roch theorem) coincides with the actual
dimension. The talk was illustrated by several applications of this theorem in
complex and real geometry.

References

[1] G. Mikhalkin, Tropical geometry and its applications, In Proceedings of the International
Congress of Mathematicians (Madrid 2006), 827-852.

[2] G. Mikhalkin, What is a tropical curve?, Notices of the AMS, 54 (2007), 511–513.
[3] O. Viro, Dequantization of real algebraic geometry on logarithmic paper, In European Con-

gress of Mathematics, Vol. I (Barcelona 2000), 135-146.

Amoebas and coamoebas (of discriminants)

Mikael Passare

(joint work with Lisa Nilsson)

Given an algebraic hypersurface Z = { z ∈ Cn
∗ ; f(z) = 0 }, the amoeba and the

coamoeba of Z are defined as Log (Z), respectively Arg (Z), where the mappings
Log and Arg are given by

Log (z) = (log |z1|, . . . , log |zn|) and Arg (z) = (arg z1, . . . , arg zn) .
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In this talk we focus on the case where n = 2 and Z is an inhomogeneous (or
reduced) discriminantal curve in the sense of Gelfand-Kapranov-Zelevinsky. We
start from an integer (N × 2)-matrix

B =




b1
...
bN





with the property that b1 + b2 + . . .+ bN = (0, 0), and such that its 2 × 2 minors
are relatively prime. One then defines the Horn-Kapranov parametrization ΨB by
the explicit formula

CP1 ∋ [s : t] 7→
( N∏

k=1

(bk1s+ bk2t)
bk1 ,

N∏

k=1

(bk1s+ bk2t)
bk2

)
,

and considers the image curve ZB = ΨB(CP1) ∩ C2
∗.

We shall present a result which relates the coamoeba ΣB = Arg (ZB) to a simple
convex polygon ΠB , which in turn determines the domain of convergence for the
associated hypergeometric Mellin–Barnes integral.

The convex polygon ΠB is defined to be the Minkowski sum of the line segments
[0, πb1], . . . , [0, πbN ]. It is thus a zonotope centered at the origin (0, 0), and its
boundary is obtained by placing the vectors ±πbk one after another according to
the cyclic direction ordering.

The coamoeba ΣB is also obtained by similarly placing vectors one after an-
other, but now only the vectors πb1, . . . , πbN and according to the projective cyclic
ordering; then one adds a mirror image.

Identifying the polygons ΠB and ΣB with their images (considered as simplicial
chains) under the natural projection R2 → (R/2πZ)2 = T2, one finds that the
chain ΠB + ΣB is a 2-cycle, and hence equal to mBT2 for some integer mB.

We then use the area formulas

π−2Area (ΠB) =
∑

j<k

∣∣det

(
bj
bk

) ∣∣ and π−2Area (ΣB) =
∑

j<k

det

(
bj
bk

)
,

where in the latter case it is important that the projective ordering go clockwise.
These formulas allow us to compute the multiplicity.

Theorem 1. The multiplicity mB of the chain ΠB + ΣB is given by the formula

mB =
1

2

∑

j<k

det+
(
bj
bk

)
,

where det+(·) = max(0, det(·)) and the summation is taken in accordance with

the clockwise projective ordering of the vectors bk.

Theorem 2. One has mB = dB := the normalized volume of conv (A), where A
is the Gale dual of B.
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In order to illustrate the content of the above theorems we now provide two
concrete examples.

Example 1. Here we take N = 3 and the three vectors b1 = (1, 0), b2 = (0, 1),
b3 = (−1,−1). Notice that this ordering is clockwise projective as required in
Theorem 1. The area computations become

π−2Area (ΠB) =
∣∣∣
∣∣∣∣
1 0
0 1

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣

1 0
−1 −1

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣

0 1
−1 −1

∣∣∣∣
∣∣∣ = 1 + 1 + 1 = 3 ;

π−2Area (ΣB) =

∣∣∣∣
1 0
0 1

∣∣∣∣+
∣∣∣∣

1 0
−1 −1

∣∣∣∣+
∣∣∣∣

0 1
−1 −1

∣∣∣∣ = 1 − 1 + 1 = 1 .

We see that the combined chain ΠB + ΣB precisely covers the torus T2, so that
in this case mB = 1, which agrees with the formula from Theorem 1:

mB =
1

2

∑

j<k

det+
(
bj
bk

)
=

1

2

(
1 + 0 + 1

)
= 1 .

Figure 1. The vectors πbk (left), the zonotope ΠB (center), and
the coamoeba ΣB (right) from Example 1.

Example 2. Now we let N = 5 and consider the five vectors b1 = (1,−1),
b2 = (−1, 2), b3 = (0,−2), b4 = (1, 3), and b5 = (−1,−2). Again we have a
clockwise projective ordering.
Computing the areas we get

π−2Area (ΠB) =
∣∣∣
∣∣∣∣

1 −1
−1 2

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣
1 −1
0 −2

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣
1 −1
1 3

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣

1 −1
−1 −2

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣
−1 2

0 −2

∣∣∣∣
∣∣∣

+
∣∣∣
∣∣∣∣
−1 2

1 3

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣
−1 2
−1 −2

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣
0 −2
1 3

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣

0 −2
−1 −2

∣∣∣∣
∣∣∣+
∣∣∣
∣∣∣∣

1 3
−1 −2

∣∣∣∣
∣∣∣

= 1 + 2 + 4 + 3 + 2 + 5 + 4 + 2 + 2 + 1 = 26 ;

π−2Area (ΣB) = 1 − 2 + 4 − 3 + 2 − 5 + 4 + 2 − 2 + 1 = 2 .
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Figure 2. The vectors πbk (left), the zonotope ΠB (center), and
the coamoeba ΣB (right) from Example 2.

From Theorem 1 we then obtain mB = (1 + 4 + 2 + 4 + 2 + 1)/2 = 7.
The Gale dual A is given by an 3 × 5 matrix satisfying AB = 0, and we can take

A =




1 1 1 1 1
2 1 0 2 3
3 2 0 1 2



 .

The columns of A are of the form (1, ak), k = 1, 2, . . . , 5, with the five points
ak ∈ N2 ⊂ R2. The meaning of Theorem 2, that is, the identity mB = dB, is
in this example that (twice) the area of the convex hull of the points a1, . . . , a5 is
equal to 7, see Figure 3.

Figure 3. The coamoeba after projection to T2 (left), and the
convex hull of the Gale dual (right).
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Intersecting Psi-classes on tropical M0,n

Hannah Markwig

(joint work with Michael Kerber)

Psi-classes Ψi are certain divisor classes on the space of stable curves, Mg,n,
which arise as the first Chern class of the line bundle Li whose fiver over a point
(C, x1, . . . , xn) is the cotangent space of C at xi. If g = 0 and

∑
ki = n − 3, the

following equality holds for their intersection: Ψk1
1 · . . . · Ψks

s =
(

n−3
k1...ks

)
. The aim

of this talk is to show that the analogous statement holds tropically.
First, we recall the tropical analogue of M0,n that we denote by M0,n and

introduce tropical Psi-classes as defined by Mikhalkin in [7]. Then we recall some
tropical intersection theory as announced by Mikhalkin in [6] and developed in
detail by Allermann and Rau in [1]. Finally, we show that Psi-classes are given as
the divisor of a rational function and we intersect the divisors.

An n-marked (rational) abstract tropical curve is a metric tree Γ without 2-
valent vertices and with n leaves, labeled by numbers {1, . . . , n}. The space M0,n

of all n-marked tropical curves is a polyhedral fan of dimension n− 3 obtained by
gluing copies of the space IRk

>0 for 0 ≤ k ≤ n−3 — one copy for each combinatorial
type of a tree with n leaves and exactly k bounded edges. Its face lattice is given
by τ ≺ σ if and only if the tree corresponding to τ is obtained from the tree
corresponding to σ by contracting bounded edges. For details, see [2], section 2,
or [4], section 2.

Let the coordinates of IR(n
2) given by 2-subsets (i, j) of {1, . . . , n}. We define a

map ϕn : M0,n → IR(n
2) : C 7→ dist({i, j})(i,j) where dist({i, j}) denotes the sum

of the lengths of all bounded edges on the path between the leaf marked i and the
leaf marked j.

Using this map, we can embed M0,n as a tropical fan (i.e. a fan satisfying the

balancing conditions) into IR(n
2)−n = IR(n

2)/W , where we divide out the subspace
W generated by trees with one bounded edge, a 2-valent vertex on one side and
an n-valent vertex on the other side. For a proof of this statement, see theorem
3.4 of [3], section 2 of [7] or theorem 3.4 of [8].

Definition 1 (see [7], definition 3.1.). For k ∈ [n], the tropical Psi-class Ψk ⊂
M0,n is the union of those closed (n − 4)-dimensional cones that correspond to
tropical curves where the leaf marked with k is adjacent to a vertex with valence
4. The weight of each cone is 1.
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Let X be a tropical fan of dimension n and 0 ≤ k ≤ n. Then Zk(X) denotes
the group of k-cycles of X , that is the group of k-dimensional subfans satisfying
the balancing condition (where negative weights are allowed).

Let ϕ be a piece-wise linear function on X . We call it a rational function.
Let for example ϕ : IR2 → IR : (x, y) 7→ max{0, x, y}. The following construc-

tion shows how to associate a divisor div(ϕ) (that is, an element in Z1(X)) to
a rational function ϕ. Roughly, this divisor should consist of the corner-locus of
the map ϕ. But we want to attach suitable weights. Consider the graph of ϕ in
X× IR. There is a unique way to make it a balanced fan by attaching cones in the
(0,−1)-direction. The weight of those cones is the weight that we want to attach
to the corresponding cone in the corner-locus of ϕ. In the example, all the weights
will be one.

0

x

y

IR2

ϕ

A general formula to compute the weight for a cone σ in the corner-locus of ϕ, i.e.
a codimension one cone of X , is the following: assume the full-dimensional neigh-
bours of σ are called τ1, . . . , τn, and assume they are generated by the vectors uτi/σ

(modulo σ) and have weight ωi. By the balancing condition, we have
∑
ωiuτi/σ =

0 (modulo σ). The corresponding vectors in the graph are (uτi/σ, ϕ(uτi/σ)). We
have to add a multiple of (0,−1) to make it balanced. The weight we need is
(
∑
ϕ(ωiuτi/σ) − ϕ(

∑
ωiuτi/σ)). Then sum is (

∑
ωiuτi/σ, ϕ(

∑
ωiuτi/σ)) which is

a vector in the codimension one cone of the graph of ϕ corresponding to σ.
In general, how can we intersect to cycles Z1 and Z2? If we assume that Z1 is of

codimension 1, and we manage to find a rational function ϕ such that div(ϕ) = Z1,
then we an just compute the divisor of ϕ on Z2.

For each subset I ⊂ {0, . . . , n} of cardinality 1 < |I| < n − 1, define a vector

vI ∈ IR(n
2)/W as the image under the “distance map” ϕn of a tree with one

bounded edge of length one, the marked ends with labels in I on one side of the
bounded edge and the marked ends with labels in {0, . . . , n} \ I on the other.

We define Vk := {vS : k 6∈ S and |S| = 2}.

Lemma 1. The linear span of the set Vk equals IR(n
2)−n = IR(n

2)/W .
The sum over all elements vS ∈ Vk is 0.

Consequently, we can write any v ∈ IR(n
2)−n uniquely as a combination v =∑

vS∈Vk
λSvS such that all λS > 0 for all S and at least one λS = 0. We will call

such a representation a “positive representation with respect to Vk”.

Lemma 2. Let k /∈ I. Then a positive representation of the distance vector vI

with respect to Vk is given by vI =
∑

S⊂I,vS∈Vk
vS .
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Now we can define a rational map fk sending each vector vS ∈ Vk to 1. Because

we can write each v ∈ IR(n
2)−n as a positive representation with respect to Vk, fk

can uniquely be extended to a piece-wise linear map.

Lemma 3. The divisor associated to the rational function fk is a multiple of the
k-th Psi-class, div(fk) =

(
n−1

2

)
Ψk.

Theorem 1. The intersection Ψk1
1 ·. . .·Ψks

s is the subfan of M0,n consisting of the
closure of the cones of dimension n− 3−

∑s
i=1 ki corresponding to tropical curves

satisfying: if i1, . . . , ir ⊂ {1, . . . , s} are adjacent to a vertex V then the valence
val(V ) of the vertex V is val(V ) = ki1 + · · · + kir + 3.

We define the weight w(V ) of such a vertex to be w(V ) =
(ki1+···+kir )!

ki1 !·...·kir ! , and the

weight of the cone as the product over the weights of all vertices.

It is an easy corollary that the formula mentioned in the beginning holds for
0-dimensional tropical intersections, too.

The proof of Theorem 1 is an induction on
∑
ki. In the induction step, we

intersect Ψk1
1 · . . . ·Ψks

s with div(f1). The result is equal to
(
n−1

2

)
·Ψk1+1

1 · . . . ·Ψks
s ,

and we have to show that it is equal to the subfan as described in the Theorem.
To do this, we compute the intersection with div(f1). For the general case, this is
a quite long computation, and several combinatorial identities have to be shown
(see [5]).

Example 1. Let n = 5. Let us compute div(f1) ·Ψ1. We need to check the cones
of codimension 1 in Ψ1 — that is, the cone {0}. The neighbors of {0} in Ψ1 —
that is, in this case, the top-dimensional cones of Ψ1 — correspond to tropical
curves with 1 at a 4-valent vertex:

1i

j

k

l

There are
(
4
2

)
= 6 of these cones. Each such cone is generated by the normal vector

vi,j. The sum over all normal vectors is 0. Hence the weight of {0} is given by∑
i,j∈{2,3,4,5},i6=j f1(vi,j) − f1(0) = 6. Thus the weight of {0} in div(f1) · Ψ1 is 6,

and using Lemma 3, the weight of {0} in Ψ1 · Ψ1 is 1. Analogously, we can show
that Ψ1 · Ψ2 is the cone {0} with weight 2.
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Mixed Fiber Polytopes and Tropical Elimination

Bernd Sturmfels

(joint work with Jenia Tevelev, Josephine Yu)

Let f1, . . . , fc ∈ C[x±1
1 , . . . x±1

n ] be Laurent polynomials whose Newton polytopes
are P1, . . . , Pc ⊂ Rn and suppose that the coefficients of the fi are generic. The
corresponding variety

X = {u ∈ (C∗)n : f1(u) = . . . = fc(u) = 0}

is a complete intersection of codimension c in the algebraic torus (C∗)n. Fix a
matrix A ∈ Z(n−c+1)×n, the map π : Rn → coker(A) ∼= Rc−1 and the induced
monomial map α : (C∗)n → (C∗)n−c+1.

Theorem 1 ([5],[8]). The Newton polytope of the hypersurface Y = α(X) is
affinely isomorphic to the mixed fiber polytope Σπ(P1, . . . , Pc).

Question: What is a mixed fiber polytope?

Consider the Minkowski sum Pλ = λ1P1 + · · · + λcPc with λ = (λ1, · · · , λc) ∈
(R≥0)

c and form its classical fiber polytope introduced in [2]

Σπ(Pλ) =

∫

q∈π(Pλ)

(π−1(q) ∩ Pλ) dq.

Theorem 2 (McMullen 2004 [6]). The fiber polytope is a homogeneous polynomial
of degree c in λ, i.e.

Σπ(Pλ) =
∑

i1+···+ic=c

λi1
1 · · ·λic

c Mi1,··· ,ic

where the Mi1,··· ,ic are polytopes. The mixed fiber polytope is defined to be

Σπ(P1, . . . , Pc) := M1,··· ,1.

Example 2. Consider the unmixed case, i.e. P1 = · · · = Pc = P . Then the mixed
fiber polytope Σπ(P, · · · , P ) equals the fiber polytope Σπ(P ) scaled by a factor c!.

Example 3. Assume that all fi are linear forms with full support. Then the mixed
fiber polytope is the secondary polytope of π(∆).
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Example 4. Implicitization of surfaces: Suppose we are given three Laurent poly-
nomials g1, g2, g3 ∈ C[x±1

1 , x±1
2 ]. These data defines a morphism

g : (C∗)2 −→ (C∗)3, (s, t) 7−→ (g1(s, t), g2(s, t), g3(s, t)) .

Under mild hypotheses, the closure of the image of g is a hypersurface Y ⊂ (C∗)3

and we want to compute its Newton polytope. In order to do this, we introduce three
new variables x1, x2 and x3 and consider the Laurent polynomials fi = xi−gi(s, t)
for 1 ≤ i ≤ 3. The subvariety defined by f1, . . . , f3 in (C∗)2 × (C∗)3 is a generic
complete intersection, namely the graph of the map g. Hence the image of g is
obtained by projecting the variety {f1 = . . . = fn = 0} onto the last n coordinates.

Question: Given the equations for X ⊂ (C∗)n, how can the Newton polytope of

Y = α(X) ⊂ (C∗)n−c+1 be computed?

The Newton polytope of Y can be computed using the following three constructions
from tropical geometry:

Construction 1 (Tropical complete intersections [4]).
The tropical complete intersection is the following subfan of the normal fan of
P1 + · · · + Pc:

Trop(X) = {v ∈ Rn : ∀ I ⊂ {1, . . . , c} : dim(facev(
∑

i

Pi)) ≥ |I|}

= {v ∈ Rn |MVc(facev(P1), · · · , facev(Pc)) > 0}

where the mixed volumes are the weights mv which make the fan balanced.

Construction 2 (Push-forward of tropical cycles [1],[7]).
The weights on the fan Trop(Y ) = A · Trop(X) are given by

mw =
1

deg(α)X

∑

v

mv[Lw ∩ Zn−c+1 : A(Lv ∩ Zn)],

where w is a regular point on Trop(Y ) with link Lw and the sum is over all
v ∈ Trop(X) with A · v = w.

Construction 3 (Recovering the Newton polytope [3]).
For generic u ∈ Rn−c+1, the i-th coordinate of the vertex faceu(Newton(Y )) is

∑

w∈(Trop(Y )∩(u+R≥0ei))

mw · [Zn−c+1 : (Lw + Zei)]
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Tropical compactifications of subvarieties of tori

Jenia Tevelev

It is well-known that subvarieties of algebraic tori have many unexpected geo-
metric properties that makes them similar to subvarieties of Abelian varieties. For
example, they are their own logcanonical models (a conjecture of Miles Reid). I
will try to explain this interplay of Mori theory and tropical geometry.

Tropical curves from log geometry

Bernd Siebert

(joint work with Mark Gross)

There are many approaches to tropical geometry, each bringing in new techniques
and applications. While this means it is hard to agree on one common framework,
I view this a sign of the vitality and reach of the field and do not see a need to
restrict to a single point of view. That said, I still want to advertise here one
point of view that I find extremely useful in making the connection to algebraic
geometry and which in my opinion has not yet obtained the attention it deserves.
Of all the approaches I am aware of, it is also the only one not working in some
ambient variety such as (C∗)N , PN or some other toric variety. It thus seems the
right tool for investigating abstract tropical varieties, a notion which we currently
have even more difficulties to agree on.

This approach is implicit in [2]. It is based on abstract log geometry [5],[3],
and it refines the transversal toric degeneration approach of [6],[7]. Log geometry
enhances the geometry on an algebraic variety by some kind of virtual information,
encoded in a monoid sheaf. The central definition runs as follows.

Definition 1. A log structure on a scheme X is a homomorphism

αX : MX −→ OX

of sheaves of (multiplicative) monoids such that αX : α−1
X (O×X) → O×X is an iso-

morphism. A log scheme is a pair (X,MX) with the morphism αX understood.
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To provide enough flexibility the sheaves should be taken in the étale topology.
Of course, this definition is far too general to be useful. The relation to toric geom-
etry comes by the following construction. Let P be a toric monoid, that is, given
by the integral points of a rational convex cone C ⊂ Rn. Then a homomorphism
of sheaves of monoids

ϕ : PX −→ OX

defines an associated log structure MX on X by

(1) MX :=
(
PX⊕O×X

)/{
(p, ϕ(p)−1)

∣∣ p ∈ ϕ−1(O×X)
}
, αX(p, h) := h·ϕ(p).

This construction has the effect of attaching O×X to P in such a way that O×X ≃
α−1

X (O×X). If X = Spec C[P ] is the toric variety defined by P the discrete part

MX := MX/α
−1
X (O×X)

of MX is a submonoid of a constructible sheaf on X , which is constant along any
torus orbit. The stalk at a point x ∈ X equals P/Px where Px is generated by
the powers of monomials that are invertible at x. Thus a neighbourhood of x is
isomorphic to Spec

(
C[MX,x]

)
×Ox where Ox is the torus orbit containing x.

As long as we work with log structures arising from some toric situation there is
really no need to write down MX , as one can always work with monomial functions
on the ambient space. The point of log geometry is to transfer toric techniques to
more general situations.
As an example let us look at a toric degenera-
tion of curves, defined by the fan in R2 with rays
(0, 1), (0,−1), (1, 0), (1,−a), (1, b), a, b > 0 (Figure 1). This
fan refines the fan of A1×P1. We thus obtain a toric blow up
X → A1×P1 contracting two P1. Moreover, the projection
to the second coordinate defines a flat map π : X → A1 with
general fibres π−1(t) = P1, t 6= 0, and with C := π−1(0) a
chain of three P1. Thus π can be viewed as a toric degen-
eration of P1 into a chain of three P1. For a, b > 1 the total
space X has two singular points of types Aa−1 and Ab−1,
located at the singular points of the central fibre C. These
singular points get reflected in the stalks of MX , which at
these points are isomorphic to the submonoids of N2 gen-
erated by (0, 1), (1, 0), (1,−k) for k = a, b, respectively.

(1,−a)

(1, 0)

(1, b)
(0, 1)

(0,−1)

Now the point is that we can restrict the log structure of X to C, by taking the
log structure associated via (1) to ι−1MX , ι : C → X the inclusion. This process
preserves the stalks of MX . Thus MC is a log structure on C that somehow
remembers the fact that C sits inside X . Moreover, the toric degeneration pa-
rameter t defines a section ρC of MC that even records the “speed” of smoothing
of the nodes: If X is described locally by xy = f(x, y, t) · tk then ρC determines
f(0, 0, 0).

In the talk I motivated and explained how to associate a tropical curve to a
stable map to the central fibre of a toric degeneration, provided we endow all
spaces with a log structure. To state the result, let π : X → A1 be a flat map of
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toric varieties. These are obtained from fans with support NR ×R≥0, analogously
to the one-dimensional example above. Here N ≃ Zn and NR := N ⊗Z R. The
intersection of this fan with NR×{1} defines a polyhedral decomposition P of NR

with vertices in bijection with the irreducible components of X0 := π−1(0). Let
MX0 be the induced log structure on X0 and ρX0 the section of MX0 defined by
t.

Now assume we have a stable map

f : C −→ X0,

so C is a nodal curve without infinitesimal automorphism relative to X0. If f
arises as the limit of embedded curves Ct ⊂ π−1(t), t 6= 0, we can lift f to a log
morphism making C into a (pre-) stable log curve, a notion investigated in [4].
The log structure of a pre-stable log curve (over the so-called standard log point)
has a similar shape as the toric example above; let ρC be the distinguished section
of MC thus defined. We obtain a homomorphism of monoid sheaves

f ♯ : f−1MX0 −→ MC

with f ♯(ρX0) = d · ρC for some d ∈ N \ {0}.
It is possible to extract the tropical curve in NR associated to the degeneration

Ct just from the limiting stable log map (f, f ♯). This works no matter if (f, f ♯)
arises as a limit or not. The vertices of this tropical curve are defined as follows.
Let η ∈ C be the generic point of an irreducible component of C. Then f(η) lies
in some minimal toric stratum of X0, say given by the cone C(σ) ⊂ NR × R≥0

over a cell σ ∈ P. It is then not hard to see that MX0,f(η) = C(σ)∨ ∩ (N∗ × N),

the integral points of the dual cone, while MC,η = N. Thus f ♯
η defines an integral

point (p, r) of C(σ) ∩ (N × N). Moreover, f ♯(ρX0 ) = ρC implies r = d. We define
the vertex pη of the associated tropical curve as p/d ∈ σ.

Similarly, one defines an interval or half-line lx for each nodal point x ∈ C.
Here is our result that hopefully will appear with full written details and in much
greater generality in the context of Gromov-Witten computations in the context
of our mirror symmetry program [2].

Theorem 1. It is possible to extract weights from the log morphism such that the
pη and lx are the vertices and edges of a tropical curve. In the case (f, f ♯) arises
as the limit t → 0 of a family of embedded curves Ct ⊂ π−1(t), it agrees with the
usual tropical curve.

The case when the image of C intersects only toric strata of codimension at most
one is treated in [6]. Some discussion of the situation with contracted components
can be found in [1].

References

[1] M. Gross: The Strominger-Yau-Zaslow conjecture: From torus fibrations to degenerations,
to appear in: Proceedings of Symposia in Pure Mathematics, AMS, Summer Institute in
Algebraic Geometry July 25 – August 12, 2005.



Tropical Geometry 3259

[2] M. Gross, B. Siebert: Mirror symmetry via logarithmic degeneration data I, J. Differential
Geom. 72 (2006), 169–338.

[3] F. Kato, Log smooth deformation theory, Tohoku Math. J. 48 (1996), 317–354.
[4] F. Kato: Log smooth deformation and moduli of log smooth curves, International J. Math.

11 (2000) 215–232.
[5] K. Kato, Logarithmic structures of Fontaine–Illusie, in: Algebraic analysis, geometry, and

number theory (J.-I. Igusa et. al. eds.), 191–224, Johns Hopkins Univ. Press, Baltimore,
1989.

[6] T. Nishinou, B. Siebert: Toric degenerations of toric varieties and tropical curves, Duke
Math. J. 135 (2006), 1–51.

[7] J. Tevelev: Compactifications of subvarieties of tori, Amer. J. Math. 129 (2007), no. 4,
1087–1104.

Parameterizing Tropical Curves

David E Speyer

One of the primary applications of tropical geometry is to the study of curves
in toric varieties. According to this perspective, one considers curves defined
over a field with a non-archimedean valuation. Given a curve X embedded in an
(algebraic) torus, one constructs a graph embedded in a real vector space. This
graph is known as the tropicalization of the curve. From the tropicalization of X ,
one tries to read off information about the degree and genus of the original curve
X , and its intersections with other subvarieties of the torus. In this introduction,
we will write X for a curve embedded in a torus T ∼= (K∗)n and we will write
Γ ⊂ Rn for the tropicalization of X .

In order to use these tropical methods, we need to know which graphs are trop-
icalizations of curves. We will refer to a graph which actually is the tropicalization
of a curve as a tropical curve. There are certain basic combinatorial conditions
which hold for any tropical curve. The first, the zero tension condition, is a de-
scription of the possible local structures of a tropical curve around a given vertex.
We can assign to X a multiset of lattice vectors, which we will call the degree of
X , from which we can determine the homology class represented by the closure of
X when this closure is taken in a suitable toric compactification of T . The second
combinatorial condition is that the directions of the unbounded rays of Γ are given
by the degree of X . Thirdly, we can show that, modulo some technical conditions,
the genus of X is greater than or equal to the first Betti number of Γ. We will
define a zero-tension curve of genus g and degree δ to be a graph which has first
Betti number g and obeys the obvious conditions to be the tropicalization of a
degree δ curve.

We attack the inverse problem: Given a zero-tension curve of genus g and degree
δ, when does it come from an actual curve of genus g and degree δ? And how
can we build such a curve explicitly? When g = 0, we can always find such a
curve and we can parameterize it by rational functions in an extremely explicit
manner. When dealing with curves of higher genus, there are some combinatorial
obstructions but, once these obstructions are overcome, we can also give explicit
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paramaterizations using nonarchimedean elliptic functions and their higher genus
analogues.

First, let us state what the tropicalization of a curve is. Let K be the fraction
field of a complete dvr, and let K be the algebraic closure of K. Let v : K →
Q ∪ {∞} be the valuation on K. Then, if T is a torus over K and X a curve over
K with φ a map X → T , the tropicalization Tropφ(X) is v(φ(X)).

We also must define the degree of a curve in a torus. LetX be a smooth algebraic
curve and let φ : X → T be an algebraic map. (Whenever φ is nonconstant, the
curve X is not complete.) Let X be the smooth complete curve compactifying X ;
we impose the condition that φ can not be extended to any point of X \X . Let x
be any point of X \X . Define σx, ρx and dx as before. Let ρ1, . . . , ρN be the set
of distinct values of ρx as x ranges over X \X . For 1 ≤ i ≤ N , let di =

∑
ρx=ρi

dx

and set σi =
∑

ρx=ρi
σx = diρi. We define the set {σ1, . . . , σN} to be the degree

of (φ,X). Note that this is defined without any choice of toric compactification
of T . Note also that

∑
σi = 0, because any rational function has equally many

zeroes and poles on X .
We now describe zero tension curves. These are the combinatorial models for

tropicalizations of curves. Let Γ be a metric graph with finitely many vertices and
edges. We permit edges of infinite length, as long as at least one of their endpoints
is of degree one, and we require every vertex of degree one to be at the end of
such an edge. Write ∂Γ for the set of degree 1 vertices of Γ. Let ι be a continuous
map Γ \ ∂Γ → Rn such that an edge e of Γ is taken to a translate of the vector
ℓ(e)σ(e), for some σ(e) ∈ Zn. (So, if ℓ(e) is infinite, the image of e is a ray or line
segment.) The slope σ(e) is only well defined up to sign; we write σv(e) for the
choice of sign pointing away from the endpoint v of e. So, if v1 and v2 are both
endpoints of e, then σv1(e) = −σv2(e). We require that the zero tension condition,∑

e∋v σv(e) = 0, hold for every vertex v not of degree 1. Such a pair (ι,Γ) is a
zero tension curve. The genus of a zero tension curve is its first betti number. We
define the degree of a zero tension curve as follows: Let D ⊂ Λ be the (finite)
set of values assumed by −ρv(e) as v ranges through ∂Γ. For each λ ∈ D, let
mλ =

∑
m(e) where the sum is over e with an endpoint v in ∂Γ such that −σv(e)

is a positive multiple of λ. Then the degree of (ι,Γ,m) is the set {mλ ·λ : λ ∈ D}.
The connection between tropicalization and zero tension curves is the following:

Theorem. Let X be a smooth curve over K and φ a map from X to T . Then
there is a zero tension curve (ι,Γ) such that ι(Γ) = Tropφ(X), the degree of (ι,Γ)
is the same as that of (φ,X) and the genus of Γ is less than or equal to that of X.

For curves of genus zero, there is no difficulty in reversing this result.

Theorem. Let (ι,Γ) be a zero tension curve of genus zero. Then there is a genus
zero curve X and a map φ : X → T such that ι(Γ) = Tropφ(X).

For curves of higher genus, there is an obstruction called superabundance, first
observed by Mikhalkin. If Γ has genus one, then (ι,Γ) is superabundant if the
image under ι of the cycle of Γ lands in a hyperplane. More generally, let (ι,Γ)
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be a zero tension graph in Rn. Let C1(Γ) be the vector space spanned by the
oriented edges of Γ. We write [e, v] for the basis vector of C1(Γ) corresponding
to the edge e, oriented away from its endpoint v. Then H1(Γ) is a quotient

of C1(Γ) in the obvious way; write [e, v] for the image of [e, v] in H1(Γ). Let

s : C1(Γ) → Rn ⊗H1(Γ) be the map [e, v] 7→ σv(e)⊗ [e, v]. The general definition
is that (ι,Γ) is superabundant if s fails to be surjective. It is a pleasant exercise
to see that this corresponds to the previous description when Γ has genus one.

Theorem. Let (ι,Γ) be a superabundant zero tension curve of genus one. Then
there is a genus one curve X and a map φ : X → T such that ι(Γ) = Tropφ(X).

Theorem. Let (ι,Γ) be a superabundant zero tension curve of genus g ≥ 2 and
assume that the residue field of K has characteristic zero. Then there is a genus g
curve X and a map φ : X → T such that ι(Γ) = Tropφ(X).

Tropical curves, theta functions and Riemann-Roch

Ilia Zharkov

(joint work with Grigory Mikhalkin)

Let Γ be a connected finite graph and V1(Γ) be the set of its 1-valent vertices.
We say Γ is a metric graph if the topological space Γ \ V1(Γ) is given a complete
metric structure and Γ is its compactification. In particular, all leaves have infinite
lengths. Introducing a new two-valent vertex on the interior of an edge is set to
give an equivalent metric graph, and a tropical curve C is an equivalence class of
such graphs. Its genus is g = b1(Γ) for any representative Γ.

The metric allows one to talk about affine and piece-wise linear functions on C
with integral slopes. At every vertex v we may define the set of outward primitive
tangent vectors ξi. Then any PL function f defines a divisor

(f) =
∑

p∈C

(

val(p)∑

i=1

∂f(p)

∂ξi
)p.

In general, a divisor D =
∑
aipi is a formal linear combination of points in C with

integral coefficients. We say: D1 ∼ D2 if D1 −D2 is a principal divisor, D ≥ 0 if
all ai ≥ 0, and D has degree degD =

∑
ai.

Let Aff be the sheaf of Z-affine functions. Define the integral cotangent local
system TZ

∗ on C by the following exact sequence of sheaves:

0 −→ IR −→ Aff −→ TZ
∗ −→ 0,

The rank g lattice of 1-forms ΩZ(C) (a.k.a. circuit lattice) on C is formed by
the global sections of TZ

∗. Let Ω(C)∗ be the vector space of IR-valued linear
functionals on ΩZ(C). Then the integral cycles H1(C,Z) form a lattice Λ in Ω(C)∗

by integrating over them. We define the tropical Jacobian (cf. [BHN97]) to be

J(C) := Ω(C)∗/H1(C,Z) ∼= IRg/Λ.
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Let us fix a reference point p0 ∈ C. Given a divisor D =
∑
aipi we choose

paths from p0 to pi. Integration along these paths defines a linear functional on
ΩZ(C):

µ̂(D)(ω) =
∑

ai

∫ pi

p0

ω.

For another choice of paths the value of µ̂(D) will differ by an element in Λ. Thus,

we get a well-defined tropical analog of the Abel-Jacobi map µ : Divd(C) → J(C).

Theorem 1 (Tropical Abel-Jacobi). For each degree d the map µ factors through

Picd(C), the group of divisors modulo linear equivalence:

Divd(C)

µ
%%K

K

K

K

K

K

K

K

K

K

// Picd(C)

φ

��

J(C)

so that φ is a bijection.

The metric on C defines a symmetric positive bilinear form Q on Ω(C)∗ by
setting Q(ℓ, ℓ) := length(ℓ) on simple cycles ℓ. That, in turn, defines a convex
Λ-quasi-periodic PL function on Ω(C)∗:

Θ(x) := max
λ∈Λ

{Q(λ, x) −
1

2
Q(λ, λ)}, x ∈ Ω(C)∗,

that can be thought as a section of a polarization line bundle on J(C). Its corner
locus defines the theta divisor [Θ] on the Jacobian.

For λ ∈ J(C) let [Θλ] = [Θ] + λ be the translated theta divisor on J(C). Let
Dλ := µ∗[Θλ] denote the pull back divisor of [Θλ] to the curve via the Abel-Jacobi
map µ : C → J(C).

Theorem 2 (Jacobi Inversion). For any λ ∈ J(C) the divisor Dλ := µ∗[Θλ] is
effective of degree g. There exists a universal κ ∈ J(C) (depends on p0) such that
µ(Dλ) + κ = λ for all λ ∈ J(C).

Corollary 3. Given a divisor D of degree d there is an effective divisor Dλ =
µ∗[Θµ(D)+κ] of degree g linearly equivalent to D + (g − d)p0. In particular, any
element in Picg has a canonical (i.e. independent of the base point p0) effective
representative in Divg(C).

The linear system |D| is the set {D′ ≥ 0 : D′ ∼ D}. For |D| 6= ∅ its dimension
dim |D| is the maximal integer r ≥ 0 such that for any divisor R ≥ 0 of degree
r the space |D − R| is non-empty. We set dim |D| = −1 when |D| = ∅. A point
q ∈ C is in supp |D| if |D − q| 6= ∅.

The degree 2g−2 divisorK :=
∑

p∈C(val(p)−2)p is called the canonical divisor.

Theorem 4 (Tropical Riemann-Roch, cf. [BN07], [GK06] and [MZ06]).

dim |D| − dim |K −D| = d− g + 1.

Theorem 5. Let D ∈ Divg(C). Then q ∈ supp |D| ⇐⇒ µ(q) ∈ [Θµ(D)+κ].
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Corollary 6 (Riemann’s Theorem). Wg−1 + κ = [Θ], where κ ∈ J(C) is the
constant from Theorem 2.
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Tropical linear algebra: old and new results

Stéphane Gaubert

Before the recent flourishing of tropical geometry, tropical algebraic structures
were considered by several communities under different names: extremal algebra,
max-algebra, max-plus algebra, idempotent algebra, incline algebra, . . . We present
here some results relating the tropical and pre-tropical civilizations. These concern
linear algebra.

The tropical analogues of the notion of vector space or module have been studied
under the name of idempotent spaces [14] or semimodules [4]. We shall rather use
the term “cone” to bring to light the analogy with classical convexity: a set C
of functions from a set X to R ∪ {−∞} is a max-plus cone if for all u, v ∈ C
and for all λ, µ ∈ R ∪ {−∞}, the function sup(λ + u, µ+ v) belongs to C. When
X = {1, . . . , n}, the elements of C will be seen as vectors of (R ∪ {−∞})n. The
tropical polytopes of Develin and Sturmfels [6] yield a remarkable class of max-plus
cones.

A classical result of convex analysis, the Minkowski theorem, shows that a finite
dimensional pointed closed convex cone is generated by its extreme rays. A similar
result holds for max-plus cones. We say that u ∈ C is an extreme generator of C if
u cannot be written as the supremum of two elements of C that are both different
from it.

Theorem (Tropical Minkowski, [3, 10]) Any vector of a closed max-plus cone
C ⊂ (R ∪ {−∞})n is the supremum of at most n extreme generators of C.

Extreme generators arise in particular, in an infinite dimensional setting, when
considering the compactifications of metric spaces. Let (X, d) denote a metric
space. Let ı denote the map sending any point x ∈ X to the function y 7→
−d(x, y) + d(b, y), where b ∈ X is an arbitrary (base) point. When (X, d) is
proper, the map ı is an embedding from X to the space of continuous functions
on X , equipped with the topology of uniform convergence on compact sets. A
horofunction is a map in clo(ı(X))\ı(X). The horofunctions constitute a boundary
which was defined by Gromov and further studied by Rieffel. A function h is a
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Busemann point if there exists an almost-geodesic xk ∈ X such that h = limk ı(xk).
By almost-geodesic, we mean that d(x1, x2)+ · · ·+d(xk−1, xk)−d(x1, xk) remains
bounded above as k → ∞.

Theorem (See [2, Th. 8.3]) A horofunction is a Busemann point if and only if
it is an extreme generator of the max-plus cone consisting of 1-Lipschitz functions
on X.

More generally, the result of [2] characterizes the extreme generators of an
eigenspace. This extends the finite dimensional max-plus spectral theorem (see [1]
for more background on this result). This is also related to Fathi’s characterization
of “weak-KAM solutions” by their restrictions to the Aubry set [7].

Another topic in classical convexity is separation. A first tropical separation
theorem was established by K. Zimmermann [18]. It was simplified and generalised
in [16] and in [4, 5]. The latter works rely on projections. The projection PC(x)
of a vector x on a closed max-plus cone C is defined as the maximal element of
C which is less than x. For all vectors u, let u− denote the vector obtained by
changing the sign of each entry of u. The separation theorem of [4] implies that if
C is a closed max-plus cone of (R ∪ {−∞})n, and if x 6∈ C, then, the set

H = {y | y · x− ≥ y · (PC(x))−}

contains C and not x. Here, “·” denotes the max-plus scalar product, so that
y · x− := mini yi − xi, where the convention −∞ − (−∞) = −∞ is understood.
The latter result is reminiscent of the separation theorem between a point and a
convex set in a Hermitean space, the map (y, x) 7→ y ·x− resembling a sesquilinear
form. When the entries of x and PC(x) are finite, the set H is closed in the usual
topology and it is called a Archimedean half-space. A perturbation argument [5]
allows one to separate a point from a closed max-plus cone by a Archimedean
half-space. This can be extended to the case of several max-plus cones, with an
explicit construction of the half-spaces in terms of cyclic projections.

Theorem (Separation of several max-plus cones [11]) If V1, . . . , Vk are closed
max-plus cones of (R ∪ {−∞})n with a zero-intersection, then, for every 1 ≤ i ≤
k, we can find a Archimedean half-space Hi containing Vi, in such a way that
H1, . . . , Hk also have a zero intersection.

By “zero intersection”, we mean an intersection reduced to the max-plus “zero”
vector, which has −∞ entries. This result is illustrated in the following figure,
representing two max-plus cones and a periodic orbit of the cyclic projector (left),
together with separating half-spaces supported at the points of this periodic orbit
(right). Here, a “non-zero” vector x of (R ∪ {−∞})3 is represented by the center
of gravity of the three vertices of the standard simplex, with respective masses
exp(xi), i = 1, . . . , 3. See [11] for details.
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Finally, let us point out another direction in which tropical linear algebra has
been developed. It concerns Perron-Frobenius theory. If A = (Aij) is a nonnega-
tive matrix, the spectral radius of A is known to be the maximal eigenvalue of A
with a nonnegative eigenvector. It is called the Perron root. We denote it by ρ(A).
Kingman [13] showed that the logarithm of the Perron root is a convex function
of the logarithms of the entries of A. This may be rewritten as

ρ(A ◦B) ≤ ρ(A(p))1/pρ(B(q))1/q

for all n×n nonnegative matrices A,B and for all p, q > 1 such that 1/p+1/q = 1.
Here, A(p) is the p-th Hadamard power of A, i.e. the matrix obtained by raising
every entry of A to the power p, and A ◦ B is the Hadamard product (entrywise
product) of A and B. Friedland [8] showed that

ρ∞(A) := lim
p→∞

ρ(A(p))1/p = max
i1,...,ik

(Ai1i2 · · ·Aiki1)
1/k ,

where the maximum is taken over all sequences of distinct elements of {1, . . . , n}.
The latter quantity is nothing but the maximal eigenvalue of A in the “max-times”
reincarnation of the tropical semiring. By taking p = ∞, we get

ρ(A ◦B) ≤ ρ∞(A)ρ(B) .

Some bounds for the modulus of the roots of a polynomial follow from this in-
equality. Indeed, if P (x) =

∑
0≤k≤n pkx

k is a polynomial with complex coeffi-
cients, define the tropical roots of P to be the points x ≥ 0 at which the maximum
max0≤k≤n |pk|xk is attained at least twice. The multiplicity of a tropical root
x is the greatest difference of two indices attaining the maximum in the above
expression. Let ζ1 ≥ . . . ≥ ζn denote the modulus of the roots of P , and let
α1 ≥ · · · ≥ αn denote the tropical roots, all roots being counted with multi-
plicities. We can bound ζ1 · · · ζk by considering the k-th exterior power of the
companion matrix of the polynomial P and applying the inequality above to well
chosen matrices. The simplest bound obtained in this way is:

ζ1 · · · ζk ≤ (k + 1)α1 · · ·αk .

However, Hadamard [12] gave an equivalent bound, which was perhaps not widely
known (Fujiwara proved in [9] the k = 1 case and Specht [17] proved the weaker
inequality ζ1 · · · ζk ≤ (k + 1)αk

1). Later on, Pólya improved the Hadamard bound

by replacing the k+1 factor by
√

(k + 1)k+1/kk, see [15]. Some bounds relying on
the matrix approach are obtained in a current work with Akian and Brandjesky.
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Tropical and Ordinary Convexity Combined

Michael Joswig

(joint work with Katja Kulas)

A set S ⊆ Rd+1 is called tropically convex if for all x, y ∈ S and for all λ, µ ∈ R we
have (λ⊙ x)⊕ (µ⊙ y) ∈ S. Here ⊕ is the component-wise minimum and ⊙ is the
tropical scalar multiplication, that is, λ⊙x = (λ+x0, . . . , λ+xd). Each tropically
convex set is invariant under tropical scalar multiplication. Hence we consider the
quotient TA

d = Rd+1/(R⊙ (0, . . . , 0)) which we call tropical affine space. Clearly,

TA
d can be identified with Rd via the map (x0, x1, . . . , xd) 7→ (x1−x0, . . . , xd−x0).
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Tropical polytopes, that is, tropical convex hulls of finitely many points in TA
d,

have been introduced by Develin and Sturmfels [2]. They have shown, in particular,

that tropical polytopes, or rather configurations of n points in TAd are equivalent
to regular subdivisions of the product of simplices ∆n−1 × ∆d.

We introduce polytropes as tropical polytopes which (via the above identification

of TA
d with Rd) are also convex in the ordinary sense. The Figure 1 shows

polytropes in the plane.

Figure 1. Four types of polytropes in TA
2. The tropical vertices

are red. The sketches of tropical hyperplanes indicate the facet
defining tropical halfspaces.

Polytropes, considered as ordinary polytopes, are precisely the alcoved polytopes
of Lam and Postnikov [6], or the bounded cells of the deformations of the Coxeter
hyperplane arrangement of type Ad studied by Postnikov and Stanley [7], or the

bounded intersections of apartments in affine buildings of type Ãd; see [5].
Our main result is the following.

Theorem 1. A d-dimensional polytrope is a tropical simplex, that is, it is the
tropical convex hull of d+ 1 points.

The (easy) proof uses the tropical halfspaces from [4] in an essential way. More-
over, via a result of Bruns and Römer [1], our theorem turns out to be equivalent
to the known fact that the Segre product of two full polynomial rings (over some
field K) has the Gorenstein property if and only if both factors are generated by
the same number of indeterminates. The latter statement is a special case of a
theorem of Goto and Watanabe [3].
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Donaldson-Thomas invariants for Calabi-Yau categories

Yan Soibelman

(joint work with Maxim Kontsevich)

Donaldson-Thomas theory, if understood categorically, should produce invari-
ants of the “moduli space of stable objects” in a triangulated category. This
point of view goes back to Thomas where (partially motivated by the ideas of
Homological Mirror Symmetry he suggested a dictionary between “complex” and
“symplectic” geometry of mirror dual Calabi-Yau manifolds . In particular, critical
points of the holomorphic Chern-Simons functional on a 3-dimensional Calabi-Yau
manifold M equipped with a holomorphic volume form Ω3,0

CSC(A0 + α) =

∫

M

Tr

(
1

2
∂A0α ∧ α+

1

3
α ∧ α ∧ α

)
∧ Ω3,0

correspond to the critical points of the functional

fC(A,L) =

∫ L

L0

(FA + ω)2

for the mirror dual Calabi-Yau manifold W equipped with the Kähler form ω. In
other words, holomorphic bundles on M correspond to the pairs: a Lagrangian
submanifold L ⊂ W and a flat connection A on a line bundle over L. In both
cases the virtual dimension of the moduli space of the objects is zero, hence ap-
propriately defined count of holomorphic vector bundles on M (i.e. holomorphic
Casson invariant) corresponds to the appropriately defined count of special La-
grangian submanifolds in W . In order to define the count rigorously one has to
impose some sort of stability condition on the objects. For example one can count
Hermitian Yang-Mills connections (i.e. stable holomorphic vector bundles) on the
“complex” side of the dictionary, and special Lagrangian submanifolds (SLAGs)
on the “symplectic” side. It was also observed that the holomorphic Casson in-
variant does not change when we deform the complex structure on M , but it does
change on “walls” of real codimension one as we deform the Kähler form (since
the notion of stability of a holomorphic vector bundle depends on it). Clearly
one has the “mirror dual” story for W and SLAGs. This wall-crossing phenome-
non is well-known in Donaldson theory of 4-dimensional manifolds. It should be
compared to the “chamber” structure of the space of stability conditions. Since
the functionals defining the notion of stability in the above example are additive
on exact sequences, one expects that the theory can be extended to the world of
derived categories.

The above considerations suggest that (at least part of) the Donaldson-Thomas
theory can be spelled out in the language of derived categories, or, more generally,
in a pure algebraic framework of Calabi-Yau categories. We discuss such a theory.
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It is concentrated around the idea of wall-crossing formula which plays an im-
portant role in Donaldson-Thomas theory. The approach is motivated by motivic
integration, cluster transformations and recent results on Calabi-Yau categories.

1. An example of the wall-crossing formula

In the case of holomorphic Casson invariant, the wall-crossing formulas describe
the behavior of invariants with respect to the (complexified) Kähler structure. In
the general categorical framework the role of the latter is played by a stability
condition in the sense of Bridgeland . It turns out that essential part of the
story does not depend on the details (e.g. the definition of DT-invariants, precise
meaning of the stability condition, etc.). We will see that it leads to a non-
trivial wall-crossing formula for DT-invariants. The wall-crossing formula below
reproduces correct BPS spectrum forN = 2, d = 4 super Yang-Mills theory studied
by Seiberg and Witten.

Let Λ be a free abelian group endowed with a skew-symmetric integer-valued
bilinear form 〈•, •〉. Consider a Lie algebra over Q with the basis (eγ)γ∈Λ such
that

[eγ1 , eγ2 ] = (−1)〈γ1,γ2〉〈γ1, γ2〉 eγ1+γ2 .

This Lie algebra is isomorphic (non-canonically) to the Lie algebra of Laurent
polynomials on the algebraic torus T := TΛ = Hom(Λ,Gm) , endowed with the
translation-invariant Poisson bracket associated with 〈•, •〉.

Let Z : Λ → C be an additive map which is generic in the sense that there
are no two Q-independent elements of the lattice which are mapped by Z into
the same real line. Otherwise we say that Z belongs to the wall of first kind (it
is called the wall of marginal stability in physics literature). Let us choose an
arbitrary norm ‖ • ‖ on the real vector space ΛIR = Λ ⊗ IR. Finally, assume that
we are given an even map Ω : Λ \ {0} → Z supported on the set B of such γ ∈ Λ
that ‖ γ ‖≤ C|Z(γ)| for some constant C > 0. Let V ⊂ IR2 be a sector which is
less than 180◦ and has the vertex at the origin, and C(V ) be the convex hull of
Z−1(V ) ∩B. We define an element AV ∈ GV := exp(

∏
γ∈Λ∩C(V ) Q · eγ),

AV :=

−→∏

γ∈C(V )∩Λ

exp

(
Ω(γ)

∞∑

n=1

enγ

n2

)
,

where the product is taken into a clockwise order, and GV is considered as a
pronilpotent group.

A generic path Zt, 0 ≤ t ≤ 1 in the space of the above additive maps Z intersects
the wall of first kind at t = t0 for which there is a lattice Λ0 ⊂ Λ of rank two such
that Zt0(Λ0) belongs to a real line IR · eiα ⊂ C.

The wall-crossing formula describes change of the values of Ω(γ) for γ ∈ Λ0. It
depends on the two-dimensional lattice Λ0 only. Denote by k ∈ Z the value of the
form 〈•, •〉 on a fixed basis of Λ0 ≃ Z2. We assume that k 6= 0, otherwise there
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will be no jump in values of Ω on Λ0. Let us consider the pronilpotent group gen-
erated by products of the following formal symplectomorphisms (automorphisms
of Q[[x, y]] preserving the symplectic form (xy)−1dx ∧ dy):

Ta,b : (x, y) 7→
(
x · (1 − (−1)abxayb)b, y · (1 − (−1)abxayb)−a

)
, a, b ≥ 0, a+ b ≥ 1.

Any exact symplectomorphism φ of Q[[x, y]] can be decomposed uniquely into
a clockwise and an anti-clockwise product which gives a wall-crossing formula:

φ =

−→∏

a,b

T
kca,b

a,b =

←−∏

a,b

T
kda,b

a,b

with certain exponents ca,b, da,b ∈ Q. These exponents play a role of Donaldson-
Thomas invariants. The passage from the clockwise order (when the slope a/b ∈
[0,+∞] ∩ P1(Q) decreases) to the anti-clockwise order (the slope increases) gives
the change of Ω|Λ0

as we cross the wall
In order to explain all these formulas we define the notion of motivic Hall

algebra. It is an algebra over the ring of motivic functions on the space of objects
of 3d Calabi-Yau category. In order to do this we assume that the space of objects
is a countable union of constructible sets (we call such categories ind-constructible).
The motivic analog of the element AV (we call them motivic Donaldson-Thomas
invariants) lives naturally in the motivic Hall algebra. The above elements AV

are obtained in a certain “quasi-classical limit” of the motivic DT-invariants.

Phenomena of tropical flavor in Lagrangian Floer theory

Fukaya Kenji

We consider a symplectic 2n manifold M which has a Hamiltonian action of T n

with moment map π : M → B. We assume the following for π−1(v) = T n
v .

For any nonconstant pseudo-holomorphic disc u : (D2, ∂D2) → (M,T n
v ), its

Maslov index ηT n
v
([u]) is not smaller than 2.

Other case we can study is a Lagrangian submanifold in Calabi-Yau three fold
with vanishing Maslov index.

In the first case we have a map

Φ(x1, · · · , xn : v1, · · · , vn)

where (x1, · · · , xn) ∈ H1(T n
v ; Λ0,nov) and v = (v1, · · · , vn) ∈ B. Φ is called poten-

tial function in [2] and is basically the same thing as what is called superpotential
by physisists. Here Λ0,nov is the universal Novikov ring, which consists of a formal
serise

∑
aiT

λi , with λi ≥ 0 converges to infinity as i→ ∞. (We do not use formal
parameter e in [2] here.)

In [1], Φ(0, · · · , 0 : v1, · · · , vn) is calculated in many cases. (There are earier
work by [4].) By a minor modification of their results, we can calculate Φ.
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In general, we can show that Φ is of the form

(1)
∑

i

eT fi(v)
n∏

j=1

y
∂fi/∂vi

i .

Here fi are affine functions whose partial derivative ∂fi/∂vi are integers and yi =
exi .

If

(2)
∂Φ

∂yi
= 0, i = 1, · · · , n

has a solution y = (y1, · · · , yn) (for some v = (v1, · · · , vn)), then the Floer homol-
ogy

HF ((T n
v , by), (T n

v , by))

does not vanish. Here by is the bounding chain in the sense of [2] that is by =
(log y1, · · · , log yn) ∈ H1(Tv; Λ0,nov).

Equation (2) can be studied by an argument with a flavor of tropical geometry.
It implies that there exists at least one v where (2) has a solution. Floer theory im-
plies that such T n

v is not displacable. Namely for any Hamiltonian diffeomorphism
ϕ : M →M , the intersection ϕ(T n

v ) ∩ T n
v is nonempty.

This conclusion is closely related to the earlier work by [3].
In the case M is Calabi-Yau and Maslov index of L ⊂M vanishes we can study

a similar superpotential and a similar structure theorem as (1) can be proved.
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Some application of tropical geometry to mirror symmetry

Mohammed Abouzaid

(joint work with Denis Auroux, Ludmil Katzarkov)

The best understood geometric procedure for realizing mirror symmetry relies on
the SYZ conjecture: given a manifold with a singular special Lagrangian torus
fibration over a base B, the mirror manifold is expected to be the “dual” torus
fibration over the same base; moreover, the mirror comes equipped with a holo-
morphic complex-valued superpotential W which counts in an appropriate way the
number of holomorphic discs with boundary on every fibre of the original fibration.
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Starting with C × C∗ together with the fibration

C × C∗ → R+ × R(1)

(a, b) 7→ (2π|a|2, log |b|),(2)

it is easy to compute that the mirror is U × C∗, where U = {z|0 < |z| ≤ 1} ⊂ C,
and the superpotential is the coordinate z on U . The torus fibration is simply a
product map

U × C → R+ × R(3)

(z, q) 7→ (log |z|, log |w|).(4)

This is one of the most basic toric situations, whose compact case has been
studied in considerable detail in [2, 3, 4]. A simple way to extend this construction
beyond the toric case is to consider an ǫ-symplectic blow-up of C × C∗ at (0, 1);
there is no induced toric structure on the blow up since (0, 1) is not a fixed point
of the torus action. Nonetheless, this space admits a singular Lagrangian fibration
over a base B which can be obtained as follows:

Start with R+ × R, remove the triangle with vertices (ǫ, 0), (0, 0), and (0, ǫ),
and glue its non-horizontal boundaries together along the affine map

(5) (u1, u2) 7→ (u1 − u2 + ǫ, u2).

The resulting space B therefore inherits an integral affine structure away from the
points (0, ǫ), which define a smooth Lagragian torus fibration in this region. It is
well known that this fibration can be extended to (0, ǫ), where the fibre becomes
a “focus-focus” singularity. Topologically, the fibre is homeomorphic to a nodal
elliptic curve; the result of collapsing an essential curve on the torus to a point.

To study mirror symmetry for this manifold, we consider the two region B+

and B− consisting of points in B whose first coordinate is respectively positive
and negative. It is easy to see that the mirrors of the regions lying over B± can
both be thought of as domains Ω± in C∗ × C∗, with coordinates, say (z1, x1) and
(z2, x2). To glue these two regions together, we use the map on Floer complexes of
the fibers induced by a path with endpoints in B− and B+. By taking into account
the behaviour of putative holomorphic discs with boundary on the torus, tropical
geometry suggests (and one can readily prove) that the correct identification is

z2 = z1(6)

x2 = x−1
1 (1 + eǫz1).(7)

This is by now a familiar expression in mirror symmetry, see, for example [6, 5].
The above identification yields a smooth mirror manifold (it’s a graph over the

(x1, x2) plane), with superpotential e−ǫ(x1x2 − 1). In particular, the origin of the
(x1, x2) plane is the unique critical point, and should be thought of as the mirror
to the zero dimensional Lagrangian immersion S0 → {pt}.

Motivated by an attempt to understand the mirrors to higher genus curves, we
extend this construction to complex curves

(8) C × {0} ⊂ (C∗)2 × C.
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The key idea is to exploit the fact that the symplectic topology of such a curve
is independent of its complex modulus, by considering a tropical degeneration
of the curve C and its image in R2 which we denote A (for amoeba). In the
limit, the amoeba converges to a graph in R2, whose edges correspond to pairs of
pants in C which are connected, along the edges, by flat cylinders. Since the SYZ
construction is completely local in this simple situation (including all “quantum
correction”), it is sufficient to construct the mirror of the blow up of (C∗)2 × C

along a curve C which is now assumed to be a generic hyperplane in (C∗)2. In
the tropical limit, the amoeba of such a hyperplane converges to a tree consisting
of three edges meeting at the origin. Moreover, away from the origin, and in a
neighbourhood of each edge, there is a choice of coordinate on (C∗)2 such that C
is locally symplectomorphic to a product hypersurface {pt} × C∗.

Upon blowing up (C∗)2 ×C along C, we can produce a singular torus fibration
on a base B whose singular locus can be identified with

(9) A× {ǫ} ⊂ R2 × {ǫ}.

v

u

v

w

u

w

Figure 1

The affine structure on the base B is more difficult to describe, but one can still
identify regions which correspond to the complement of the trivalent graph, and
on whose mirrors one can establish linear coordinates. Further, the fact that we
have a product decomposition along each edge implies that the monodromy acts
trivially on directions which are tangent to the edge. In particular, we can set up
our coordinate system with a global z coordinate, and the other coordinates as in
Figure 1.

Using the product decomposition again, it is easy to check that the result of
gluing the mirrors of all three regions is the variety

(10) {(z, u, v, w)|uvw = (1 + eǫz)}

equipped with the superpotential z. Observe that the mirror manifold is C3 and
that the critical locus of the superpotential is a union of three lines. One can easily
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check that C3 equipped with this superpotential is indeed the complex mirror
of the pair of pants by identifying the Fukaya category of the pair of pants (in
particular, the version introduced in [1]) with the category of matrix factorizations
of the Landau-Ginzburg mirror. In work in progress with Paul Seidel, we extend
the machinery developed in [1] to verify that this is in fact true for any curve
C ∈ (C∗)2.
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Computing tropical varieties

Anders Nedergaard Jensen

(joint work with Tristram Bogart, Komei Fukuda, David Speyer,
Bernd Sturmfels, Rekha Thomas)

The title of this talk coincides with the one of [1] where we presented algorithms
for computing tropical varieties. In this talk we will discuss these algorithms and
demonstrate the software Gfan [4] which contains an implementation of them. The
algorithms are no longer new but remain relevant as Gfan is an important research
tool for many of the people in the audience.

By a tropical variety we mean the closure in Rn of the image under coordinate-
wise valuation of a variety in (C{{t}}∗)n defined by an ideal I ⊆ Q[x1, . . . , xn].
Here C{{t}} denotes the field of Puiseux series. For simplicity we assume that I is
homogeneous. In [6] Speyer and Sturmfels gave an equivalent definition in terms
of initial ideals, namely they defined the tropical variety of I as the set of vectors
ω ∈ Rn such that the initial ideal inω(I) does not contain a monomial. This
definition is useful for computations as it describes the tropical variety of an ideal
in terms of Gröbner cones: We consider two vectors u, v ∈ Rn to be equivalent
if inu(I) = inv(I) and call the closure of an equivalence class a Gröbner cone of
I. The collection of all Gröbner cones is a polyhedral fan called the Gröbner fan
of I. It was first studied in [5]. Since the tropical variety defined by I is a union
of Gröbner cones it makes sense to equip the tropical variety with a polyhedral
structure. We let T (I) denote the subfan of the Gröbner fan consisting of all cones
contained in the tropical variety. Our goal is to compute T (I).
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The Gröbner fan of I can be computed by applying the Gröbner walk [2] to
traverse its maximal cones; see [3]. Now a naive method for computing T (I) is
to check for every Gröbner cone if its initial ideal is monomial-free. In general a
better method is needed since the Gröbner fan typically is much more complicated
than T (I). In [1] we gave a proof of connectedness of T (I) by ridge paths in case
of I being a prime ideal (over C). Given a maximal cone in T (I) as input this
property can be exploited to compute T (I) without computing the entire Gröbner
fan.

The tropical variety of I can also be defined as the intersection of all tropical
hypersurfaces of polynomials in I. A priori, this is an infinite intersection of trop-
ical hypersurfaces. A finite generating set of I whose tropical hypersurfaces cut
out the tropical variety of I is called a tropical basis. In [1] it was proved construc-
tively that a tropical basis always exists. We also presented a better algorithm for
computing such a basis in the case of a tropical curve. This algorithm serves as an
important subroutine in the traversal algorithm for prime ideals described above.

Many ideals possess symmetries which can be exploited in an enumeration of
the cones in T (I). Which tropical varieties can be computed in practise depends
not only on the number of orbits with respect to the symmetries but also on the
complexity of the Gröbner bases of the ideal. We have computed tropical varieties
with thousands of maximal cones, but have also found our methods to be infeasible
for some small examples.

It is common to consider tropical varieties of ideals in C{{t}}[x1, . . . , xn]. In
this case a tropical variety needs not be a polyhedral fan but may consist of
polyhedra which are not cones. However, if the ideal is defined by polynomials in
Q(t)[x1, . . . , xn] its tropical variety can be gotten by slicing T (J) with an affine
hyperplane where J is a suitable ideal in Q[x1, . . . , xm]. Thus, in most cases it is
no real restriction to consider only ideals in the polynomial ring over Q.

Our implementation Gfan is a collection of command line programs written in
C++ using the libraries GMP and cddlib for arithmetic and polyhedral compu-
tations respectively. Gfan runs on UNIX-like systems such as GNU/Linux and
MacOS X.
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Tropical duality of cluster varieties

Vladimir Fock

(joint work with Aleksandr Goncharov)

Cluster variety is an algebraic variety (strictly speaking, a scheme) defined by com-
binatorial data by explicit set of coordinate charts and transition functions. More
precisely, for any collection of combinatorial data, called seed one associates three
varieties A|I|, X|I|, and D|I|. These varieties possess canonical pre-symplectic, Pois-
son and symplectic structures, respectively. One defines also a discrete group D|I|

acting on all the three types of varieties and preserving the respective structures.
The manifolds X|I| and D|I| admit a quantisation (noncommutative deformation
of the algebra of functions) which is also D|I|-invariant.

Varieties admitting cluster descriptions are simple Lie groups, moduli spaces of
Stokes parameters, moduli of flat connections on Riemann surfaces, configuration
spaces of flags, Teichmüller spaces and their generalisations, the spaces of measured
laminations and some others. One of the important features of cluster varieties is
that they are defined not only over a field but also over semifields (semigroups w.r.t.
addition and groups w.r.t. the multiplication). For example, one can consider
Teichmüller space, space of measured laminations and the space of flat PSL(2,F)-
connections over a surface Σ as the same cluster manifold but defined over the
semifield R>0 of positive real numbers, tropical semifield Rt (which is ordinary R
as a set with maximum for the addition operation and ordinary addition for the
multiplication), and a field F, respectively.

Let us give the precise definitions:
A cluster seed, or just seed, I is a quadruple (I, I0, ε, d), where
i) I is a finite set;
ii) I0 ⊂ I is its subset;
iii) ε is a matrix εij , where i, j ∈ I, such that εij ∈ Z unless i, j ∈ I0.
iv) d = {di}, where i ∈ I, is a set of positive integers, such that the matrix

ε̂ij = εijdj is skew-symmetric.
The elements of the set I are called vertices, the elements of I0 are called frozen

vertices. The matrix ε is called exchange matrix, the numbers {di} are called
multipliers, and the function d on I whose value at i is di is called multiplier
function. We omit {di} if all of them are equal to one, and therefore the matrix ε
is skew-symmetric, and we omit the set I0 if it is empty.

An isomorphism σ between two seeds is a map I = (I, I0, ε, d) and I′ =
(I ′, I ′0, ε

′, d′) is an isomorphism of finite sets σ : I → I ′ such that σ(I0) = I ′0,
dσ(i) = di and εσi,σj = εij . Observe that the automorphism group of a seed may
be nontrivial.

For a seed I we associate a torus XI = (F×)I , called X -torus, another torus
AI = (F×)I , called X -torus and the third one DI = (F×)I×I called D-torus or
a double torus. We denote the standard coordinates on these tori by {xi|i ∈ I},
{ai|i ∈ I} and {yi, bi|i ∈ I}, respectively.
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The X -torus is equipped with the Poisson structure

(1) {xi, xj} = ε̂ijxixj

The A-torus is equipped with the pre-symplectic structure (closed 2-form ω
possibly degenerate)

(2) ω =
1

2

∑

i,j

ε̂ij
dai ∧ daj

aiaj

The D-torus is equipped with the symplectic form

(3) ωD =
1

2

∑

i,j

ε̂ij
dbi ∧ dbj
bibj

+
∑

i

d−1
i

dbi ∧ dyi

biyi

The inverse of this form is a nondegenerate Poisson structure which can be written
as

(4) {yi, yj} = ε̂ijyiyj , {yi, bj} = δi
jd

iyibj , {bi, bj} = 0

Observe that these sructures are constant in logarithmic coordinates.
Isomorphism between two X -tori XI and XI′ is a map given in coordinates by

xσ(i) = xi, where σ is an isomorphism of the seeds. Observe that there are much
less isomorphisms of X -tori then just isomorphisms of the corresponding Poisson
manifolds. Isomorphisms of A- and D-tori are defined analogously.

There exist the following maps between the tori:

(5) AI → XI, xi =
∏

j

a
εij

j ;

(6) AI ×AI → DI, yi =
∏

j

a
εij

j , bi = ai/ãi,

Here ãi are coordinates on the second AI-factor.

(7) DI → XI, xi = yi,

and

(8) DI → XI, xi = yi

∏

j

b
εij

j .

All the maps are compatible with the respective symplectic, pre-symplectic and
Poisson structures. Namely the map (5) is a composition of the quotient by the
kernel of the pre-symplectic form and a symplectic map to a symplectic leaf. The
map (6) maps the symplectic form to the pre-symplectic one. The map (7) is
Poisson, the map (8) is anti-Poisson (Poisson with the opposite Poisson structure
on the X -torus). The maps (7) and (8) are dual to each other in the sense on
Poisson pairs.

Let I = (I, I0, ε, d) and I′ = (I ′, I ′0, ε
′, d′) be two seeds, and k ∈ I − I0. A

mutation in the vertex k is an isomorphism µk : I → I ′ satisfying the following
conditions:
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(1) µk(I0) = I ′0,
(2) d′µk(i) = di,

(3) ε′µk(i)µk(j) =






−εij if i = k or j = k otherwise
εij if εikεkj < 0
εij + εik|εkj | if εikεkj ≥ 0

Two seeds related by a sequence of mutations are called equivalent.
Mutations induce rational maps between the corresponding seed tori, which are

denoted by the same symbol µk and are given by the formulae

xµk(i) =






x−1
k if i = k
xi(1 + xk)εik if εik ≥ 0
xi(1 + (xk)−1)εik if εik ≤ 0

.

for the X -torus,

aµk(i) =






∏
j|εjk>0

a
εjk

j +
∏

j|εjk<0

a
−εjk

j

ak
if i = k

ai if i 6= k

for the A-torus and

bµk(i) =






(1 + xk)−1
∏

j|εjk>0

b
εjk

j + (1 + (xk)−1)−1
∏

j|εjk<0

b
−εjk

j

bk
if i = k

bi if i 6= k

yµk(i) =






y−1
k if i = k
yi(1 + yk)εik if εik ≥ 0
yi(1 + (yk)−1)εik if εik ≤ 0

.

for the D-torus.
Since in the sequel we shall extensively use compositions of mutations called

also cluster transformations we would like to introduce a shorthand notation for
them. Namely, we denote an expression µµi(j)µi by µjµk, µµµi(j)

µi(k)µµi(j)µi by

µkµjµi, and so on.
Mutations have the following properties (valid for mutation of seeds as well as

for mutations of respective tori):

• Every seed I = (I, I0, ε, d) seed is related to other seeds by exactly ♯(I−I0)
mutations.

A1: µiµi = id
A1 ×A1 If εij = εji = 0 then µiµjµjµi = id.

A2: If εij = −εji = −1 then µiµjµiµjµi = id. (This is called the pentagon
relation.)

B2: If εij = −2εji = −2 then µiµjµiµjµiµj = id.
G2: If εij = −3εji = −3 then µiµjµiµjµiµjµi = id.
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By id we mean here an isomorphism of the seeds or tori. Conjecturally all relations
between mutation follow from these ones.

Given a seed one can produce a ♯(I − I0) seeds by mutations. Continuing this
procedure one obtains a ♯(I−I0)-valent tree whose vertices are seeds (or seed tori)
and edges are pairs of mutually inverse mutations. Obviously if we start from any
other seed from the tree we obtain the same tree. Every two tori of the tree are
related by exactly one composition of mutations. Call two points of two different
tori equivalent if they are related by the composition of mutations. The cluster
manifold (denoted by X|I|, A|I| or D|I| depending on which kind of tori are used)
is the affine closure of disjoint union of the tori quotiented by the equivalence
relation.

Each particular seed tori can be considered as a coordinate chart of the cor-
responding cluster manifolds and compositions of mutations can be considered as
transition functions between the charts.

Mutations respect the Poisson structure when acting on X tori, pre-symplectic
structure when acting on A-tori and symplectic when acting on D-tori. Thus the
cluster manifolds X|I|, A|I| and D|I| acquire the respective structures. (In fact
the formula for mutation of the matrix ε can be considered as a corollary of this
property and the mutation formulae for, say, X -tori).

Mutations commute with the maps (5),(6),(7) and (8) thus these maps are
defined between the respective cluster varieties compatible with pre-symplectic,
symplectic and Poisson structures thereof.

Mutations are rational maps with positive integral coefficients and thus the
cluster manifold can be defined not only over a field but over any semifield as
well. For semifields without -1 (like the semifields of positive real numbers or the
tropical semifields) the mutations are isomorphisms and thus the whole manifold
is isomorphic to every coordinate torus.

The symmetry group D|I| of a cluster manifold permuting the seed tori is called
the (generalised) mapping class group of the cluster manifold. The name comes
from the case of Teichmüller space, when this group is the actual mapping class
group. The group depends on the equivalence class of a seed only and is common
for cluster manifolds of types X , A and D. Every sequence of mutations together
with an isomorphism of the initial and the final seed gives an element of the
mapping class group. Conversely, given a seed, every mapping class group element
can be presented by a sequence of mutations starting from the given seed together
with the isomorphism between the final seed and the initial one. Two sequences of
mutations different by the relations A1–G2 correspond to the same mapping class
group elements.

Consider the ring of algebraic functions on a cluster manifold in more details.
The ring of algebraic functions O(XI) (resp. O(DI), O(AI)) on every torus is
the ring of Laurent polynomials of cluster variables. This ring contains a subring
of Laurent polynomials with integral coefficients OZ and a semiring of Laurent
polynomials with positive integral coefficients OZ

>0 also depending of course of the
seed and of the type of the torus. A cluster transformation in general does not
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presereve the ring O since it is birational. The ring of algebraic functions on the
whole cluster manifold is the intersection of inverse images of the rings O under all
possible cluster transformations of a seed tori. In other words the ring O consists of
Laurent polynomials which stay Laurent under all possible cluster transformations.
The celebrated result of Fomin and Zelevinsky called Laurent phenomenon claims
that for any cluster variety A|I| of type A the coordinate functions belong to

the ring OZ. The ring O contains a subring OZ and a subsemiring OZ
>0. The

latter is additively generated by Laurent polynomials from O with positive integral
coefficients indecomposable into a sum of two such polynomials. Such elements
of the semiring OZ

>0 are called irreducibles. The main conjecture, proven for a
sufficiently wide class of cluster manifolds describes the structure of the set of
irreducible Laurent polynomials:

(1) The set of irreducible Laurent polynomials is a basis in the ring O.
(2) The set of irreducible Laurent polynomials for the cluster variety X|J|

(resp. A|I|, D|I|) is canonically isomorphic to the set of points of the
cluster variety A|I|(Z

t) (resp. X|I|(Z
t), D|I|(Z

t)).

One can consider this property as a duality between cluster varieties of type X
(resp. A, D) and the tropical cluster varieties of type A, X and D, respectively.

The correspondence between irreducible Laurent polynomials and points of the
dual tropical variety is especially simple for the variety of type X . In this case
the coordinates of the corresponding point of the tropical variety are given by
multidegree of the highest term of the corresponding Laurent polynomial.

Example.
Let us consider the simplest nontrivial example: the seed I = {I, ε} with I =

{1, 2} and ε12 = 1. There are exactly 5 isomorphism classes of seed tori equivalent
to a given one, however all the five seeds are isomorphic, thus the mapping class
group is Z/5Z.

The simplest geometric meaning has the space X . It is the space of 5-tuples of
points (p1, . . . , p5) on the projective line P 1 such that pi 6= pi+1 (mod 5) and mod-

ulo the automorphisms of P 1. The 5-tuple of coordinate systems on this space
is numerated by triangulations of the pentagon with vertices 1, . . . , 5. For every
internal diagonal one associates the cross-ratio of the four points of the quadri-
lateral which this diagonal cuts into halves. Mutations correspond to removing a
diagonal and replacing it by another one of the quadrilateral. The same variety
over R>0 is the configuration space of 5-tuples of points on RP 1 with prescribed
cyclic order.

The A-space is the space of collections of 10 nonvanishing vectors v1, . . . , v10
in F2 equipped with a nonzero bivector V ol. The collections are considered up
to the action of the group SL(2,F) of linear transformations preserving V ol and
subject to the relations vi = −vi+5 (mod 10) and vi ∧ vi+1 (mod 10) = V ol. The

map X|I| → X|I| is given by the obvious projection of F2 − {0} → P 1. For the
internal diagonal of the pentagon with ends i and j one associates the coordinate
vi ∧ vj/V ol.
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The D variety is the space of flat SL(2,F) connections on a sphere with 5
different points on the equator removed with parabolic monodromy around these
points. Consider the associated vector bundle and choose a monodromy invariant
section about each singular points. Then trivialise the bundle over the northern
hemisphere. The five chosen sections give five vectors v1, . . . , v5 in F2. The same
procedure over the southern hemisphere gives five vectors w1, . . . , w5 in another
copy of F2. Given a triangulation of the pentagon we associate to every internal
diagonal two coordinates x and b. The coordinate x is just the cross ratio of four
points in P 1 defined by the vectors vi standing at the corners of the quadrilateral
cut by the diagonal (just like for the X -space). The coordinate b is given by b =
(vi∧vj)/(wi∧wj), where i and j are the ends of our diagonal. The two projections
to the X variety are obviously given by projectivising the collections of vectors {vi}
and {wi}, respectively. The same manifold over R>0 can be identified with the
space of complex structures on a sphere with five punctures on the equator.

Given a triangulation of the pentagon one can describe the basis of the ring OZ

of the corresponding X -variety explicitly as a set of Laurent polynomials Pa,b(x, y)
of two variables x, y parameterised by two integers a, b as follows:

Pa,b(x, y) =






xayb if a ≤ 0, b ≤ 0
xayb(1 + x−1)−b if a ≤ 0, b ≥ 0
xayb(1 + x−1)−b(1 + y−1 + x−1y−1)a if a ≥ 0, b ≤ 0
xayb(1 + y−1)(1 + y−1 + x−1y−1)a−b if a ≥ b ≥ 0
xayb(1 + y−1)a if b ≥ a ≥ 0

One can easily check that this set of Laurent polynomials is invariant under simul-
taneous mutation of the variables x, y and of the variables a, b.
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Applications of tropical geometry to groups and manifolds

Stephan Tillmann

A tropical variety is a set fashioned from valuations. Applying this point of view,
the following are tropical varieties: Bergman’s logarithmic limit set; the geometric
invariants of groups by Bieri, Neumann and Strebel; and the set of ideal points
of an affine algebraic set in the sense of Morgan and Shalen. (The geometric
invariants of groups are in fact the complements of tropical varieties; should they
be termed temperate varieties?)

To motivate the applications of tropical geometry to groups and manifolds, I
will describe how valuations arise in the analysis of deformations of a hyperbolic
manifold M. All valuations considered are real-valued and of rank one. The key
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observation is that valuations associated to ideal points of certain affine algebraic
sets —arising from linear representations of the fundamental group of M, π1(M)—
encode information about actions of π1(M) on certain trees. Constructions by
Culler, Morgan and Shalen have formalised this relationship and form part of
the standard repertoire in the field of low dimensional topology, see [3, 12, 14,
15, 16]. In this setting, a valuation can be thought of as the length function
of an action on an IR–tree. Dual to such an action is a geometric object in M
(such as an essential codimension-one submanifold or a transversely measured
essential lamination) and some information about this object can be determined
from properties of the valuation. This interplay has been used successfully to
prove many results concerning the topology and geometry of 3–manifolds; see, for
instance, [1, 9, 11, 17].

Using Bergman’s logarithmic limit set and ideal hyperbolic triangulations, a
variant of the constructions of Culler, Morgan and Shalen is given in [18] which,
combined with work of Bogart, Jensen, Speyer, Sturmfels and Thomas [8], leads
to new algorithms in the study of ideally triangulated 3–manifolds.

Equivalent definitions of, and facts about, Bergman’s logarithmic limit set from

[2, 4] are then recalled. The geometric invariant of groups, Σ̂, due to Bieri and
Strebel [7, 6] can now be introduced as the complement of a generalisation of

this tropical variety, since the complement of Σ̂ is understood via ring-theoretic
valuations in a formally analogous way to one of the definitions of the logarithmic
limit set. The exposition then changes gear and the geometric invariant, Σ, of

groups due to Bieri, Neumann and Strebel [5] is defined as a generalisation of Σ̂
and key applications are given. The complement of Σ is understood via group-
theoretic valuations due to work by Brown [10]. Last, computational aspects of
the geometric invariants of groups using Gröbner basis methods are discussed.
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Floor decomposition of plane tropical curves and Caporaso-Harris
type formulas

Erwan Brugallé

(joint work with Lucia Lopez de Medrano, Grigory Mikhalkin)

Let d ≥ 1 and ω a generic configuration of 3d− 1 points in CP 2. Consider the
set C of algebraic irreducible rational curves of degree d in CP 2 passing through
all points of ω. The set C is finite, and if d is fixed, then the cardinal of C
does not depend on ω. The numbers N(d) = ♯C are known as genus 0 Gromov-
Witten invariants of CP 2. These invariants were first computed by Kontsevich,
and Caporaso and Harris gave another formula to compute these numbers.

When ω is a real configuration of points (i.e. when conj(ω) = ω), then it is
natural to consider the set

RC = {real algebraic curves in C}

Now the cardinal of RC depends on ω. However, Welschinger proved that counting
curves in RC with respect to some sign, one obtain a number which depends only
on d and r, where r is the number of pairs of complex conjugate points in ω. We
denote by W (d, r) this invariant. The numbers W (d, 0) were first computed by
Itenberg, Kharlamov and Shustin.

Thanks to Mikhalkin’s Correspondence Theorems, and their improvement in
the case r 6= 0 by Shustin, previous invariants can be computed tropically.

Jointly with Mikhalkin, we developed a technique based on what we called floor
decomposition of tropical curves which allow the simultaneous computation of all
Welschinger invariants W (d, r) and genus 0 Gromov-Witten invariants of CP 2.
In particular, this technique allows one to turn the algebraic count into a purely
combinatorial problem.



3284 Oberwolfach Report 57/2007

Jointly with Lopez de Medrano, we studied closer the combinatorial problem
arising from floor decomposition. In this way, we proved recursion formulas to
compute the numbersW (d, r). In particular, we obtain relations between Gromov-
Witten invariants and Welschinger invariants.

These formulas generalize the one obtained by Caporaso and Harris for the
numbers N(d) (proved by Gathmann and Markwig in the tropical set up) and the
one obtained by Itenberg, Kharlamov and Shustin for the numbers W (d, 0).

The space of tropically collinear points is shellable

Josephine Yu

(joint work with Hannah Markwig)

Let (R,⊕,⊙) be the tropical semiring where the tropical addition ⊕ is taking
minimum and the tropical multiplication ⊙ is the usual addition. We will work in
the tropical projective space TP

d−1 = Rd/(1, . . . , 1)R obtained by quotienting out
the tropical scalar multiplication.

The space Td,n is the tropical variety of the determinantal ideal generated by
3 × 3 minors of a d× n matrix of indeterminates. Develin conjectured in [1] that
Td,n is shellable for all d and n and proved his conjecture for d = 3 (or n = 3).
Here we prove his conjecture for all d and n.

The space Td,n is the space of d×n real matrices of tropical or Kapranov rank 2.

Thus we can understand an element of Td,n as n points on a tropical line in TPd−1.

A tropical line in TPd−1 is a one dimensional polyhedral complex in TPd−1 which
is combinatorially a tree with unbounded edges in directions e1, . . . , ed and the
balancing condition at each vertex as follows. At a vertex V , let u1, . . . , uk be the
primitive integer vectors pointing from V to its adjacent vertices. The balancing
condition holds at V if u1 + · · ·+ uk = 0 in TP

d−1. A configuration of n points in
TPd−1 is called tropically collinear if there is a tropical line which passes through
the n points. Td,n is the space of all such configurations.

The space Td,n is a polyhedral fan in Rd×n. We can derive a simplicial fan
structure on it using moduli spaces of tropical curves and the space of phylogenetic
trees Tn+d. Since Td,n is closed under simultaneous translation of all points and
under choosing different representatives for each point, we mod out by these actions
and obtain a pointed simplicial fan. We then intersect this fan with the unit sphere
centered at the origin to obtain a simplicial complex, which we will also call by
Td,n by abuse of notation.

A parametrized tropical line is an abstract tropical curve (a leaf-labeled tree)
Γ together with a map

h : Γ → TPd−1,

such that the image h(Γ) is a tropical line as defined above. Our parametrized
tropical lines are equipped with certain marked points xi. The evaluation maps
send a tuple (Γ, h, xi) to h(xi) ∈ TP

d−1. We show that Td,n is the image of the
moduli space of n-marked parametrized tropical lines under the evaluation map.
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Moduli spaces of tropical curves can be used to derive results in enumerative
tropical geometry. This is why these moduli spaces attracted a lot of attention
recently (see e.g. [5], [4] or [3]). Their simplicial fan structure equals the struc-
ture of the space of trees, Tn+d (see [3]). In fact, we can identify Td,n with the
subcomplex of the space of trees Tn+d on which the evaluation map is injective, a
subcomplex induced on the vertices corresponding to “bicolored splits”, the splits
that contains both colors on both sides.

In [7], Trappmann and Ziegler showed that the space of trees Tn+d is shellable.
Since we derive our simplicial complex structure for Td,n using the space of trees
Tn+d, we use a similar method to show that the space Td,n is shellable. We also
compute the homology of Td,n by counting how many times “a loop is closed”.
Our main results can be summarized as follows:

Theorem. The simplicial complex Td,n is shellable and has the homotopy type of
a wedge of n + d − 4-dimensional spheres. The number of spheres is equal to the
number of simultaneous partitions of an (n−1)-set and a (d−1)-set into the same
number of non-empty ordered parts. This number equals

min(n−1,d−1)∑

k=1

(k!)2S(n− 1, k)S(d− 1, k),

where S(m, k) =
1

k!

k∑

i=1

(−1)k−i

(
k

i

)
im is the Stirling number of the second kind.
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Geometric properties of logarithmic limit sets over the reals

Daniele Alessandrini

Logarithmic limit sets of complex algebraic sets have been first studied in [4], and
they were further studied by many people, for example in [7]. The logarithmic
limit set of a complex algebraic set is a polyhedral complex of the same dimension
as the algebraic set, it is described by tropical equations and it is the image, under
the component-wise valuation map, of an algebraic set over an algebraically closed
non-archimedean field. We can extend these properties to the real case, see [1] for
details.

Let V ⊂ (R>0)
n

be a real semi-algebraic set. We apply the Maslov dequan-
tization to V : for t ∈ (0, 1) the amoeba of V is

At(V ) = {(log( 1
t )

(x1), . . . , log( 1
t )

(xn)) | (x1, . . . , xn) ∈ V }

the logarithmic limit set is the limit of the amoebas

A0(V ) = lim
t→0

At(V )

To study the set A0(V ) we use the following property: the point (0, . . . , 0,−1)
is in A0(V ) if and only if there exists a sequence (xk) ⊂ V and a1, . . . , an−1 > 0
such that (xk)→(a1, . . . , an−1, 0). This proposition shows that the special point
(0, . . . , 0,−1) is particularly easy to control. If we want to study another point
x ∈ Rn, we can act on Rn by linear maps, moving x to the special point.

Let B = (bij) ∈ GLn(R), then B acts linearly on Rn. By conjugation with the
componentwise logarithm map, B acts on (R>0)

n
:

B(x) = (xb11
1 xb12

2 · · ·xb1n
n , . . . , xbn1

1 xbn2
2 · · ·xbnn

n )

If V ⊂ (R>0)
n
, then B(A0(V )) is the logarithmic limit set of B(V ). Anyway, if

the entries of B are not rational, B(V ) is not semi-algebraic. The category of
semi-algebraic sets is too small for our methods.

We need to work in a more general setting: sets definable in an o-minimal,
polynomially bounded structure with field of exponents R. For example the struc-
ture OSR of real closed field expanded with all the power functions is o-minimal,
polynomially bounded, with field of exponents R (see [6]).

Theorem 1. Let V ⊂ (R>0)
n be a set definable in an o-minimal, polynomi-

ally bounded structure with field of exponents R. Then the logarithmic limit set
A0(V ) ⊂ Rn is a polyhedral cone, and dimA0(V ) ≤ dim V .

In the real case, the behavior of logarithmic limit sets is less regular than the
behavior they have in the complex case. It is easy to show examples where
dimA0(V ) < dimV , and where A0(V ) is not equidimensional. Also the com-
binatorics is not well understood.

Let V ⊂ (C∗)
n

be an algebraic hypersurface with real equation f , and let
V>0 = V ∩ (R>0)

n, its positive part. Then A0(V ) is a polyhedral fan, dual to
the Newton polytope of f . The set A0(V>0) is a subset of A0(V ), a polyhedral
complex, but it is not always a subcomplex. For example, consider the “Cartan
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umbrella” V = {(x, y, z) ∈ (C∗)
3 | x2(1−(z−2)2) = x4 +(y−1)2}. Then A0(V>0)

is only the ray in the direction (−1, 0, 0), but this set is in the interior of a face of
the dual fan of f = x4 + x2(z2 − 4z + 3) + y2 − 2y + 1.

Let S be an o-minimal, polynomially bounded structure with field of exponents
R. The Hardy field can be defined as the set of germs of definable functions of one
variable:

H(S) = {(f, ε) | f : (0, ε) −→ R definable }/ ∼

(f, ε) ∼ (g, ε′) ⇔ ∃δ > 0 : f|(0,δ) = g|(0,δ)

The set H(S) inherit an S-structure from R, that is an elementary extension.
In particular H(S) is a non-archimedean real closed field, with a surjective real
valuation.

Let W ⊂ (H(S)>0)
n be a definable set. We define the Log map as:

Log : (H(S)>0)
n ∋ (x1, . . . , xn) −→ (−v(x1), . . . ,−v(xn))

Theorem 2. The set Log(W ) ⊂ Rn is a polyhedral complex, and dim(Log(W )) ≤
dim(W ).

If W is a semi-linear set (a polyhedron) these objects were studied in [5]. These
objects are very similar to the Positive Tropical Varieties (see [8]) but there are
examples where they differs.

Let V ⊂ (R>0)
n be a definable set in S, and let V ⊂ (H(S)>0)

n be its extension
to the Hardy field. We have

Theorem 3.

lim
t→0

At(V ) = A0(V ) = Log(V )

In the general case, we can construct a family of definable sets Vt ⊂ (R>0)
n

such that

lim
t→0

At(Vt) = Log(W )

this construction is a generalization of the patchworking families, see [9]. If W is
defined by a first order formula φ:

W = {(x1, . . . , xn) | φ(x1, . . . , xn, f1, . . . , fm)}

where f1, . . . , fm ∈ H(S) are germs of definable functions, then

Vt = {(x1, . . . , xn) ∈ (R>0)
n | φ(x1, . . . , xn, f1(t), . . . , fm(t))}

Finally, we can describe logarithmic limit sets with tropical equations. A pos-
itive formula in the symbols OSR is a first order formula containing only the
connectives ∨ and ∧ and the quantifiers ∀, ∃. (No ¬,⇒,⇔). Every subset of
(R>0)

n
that is defined by a quantifier-free positive formula is closed. Every closed

semi-algebraic set is defined by a positive quantifier-free formula.
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Theorem 4. Let V ⊂ (R>0)
n

be a set definable by a positive formula in the sym-

bols OSR with parameters in R>0. Note that every closed semi-algebraic set satis-
fies the hypothesis. Then there exists a positive formula φ(x1, . . . , xn, y1, . . . , ym)
and parameter a1, . . . , am ∈ R>0 such that

V = {x | φ(x1, . . . , xn, a1, . . . , am)}

A0(V ) = {x | φT(x1, . . . , xn, 0, . . . , 0)}

Where φT is the formula φ where the operations are interpreted tropically, i.e.
“+” becomes “max” and “·” becomes “+”.

Our motivations for this work come from low-dimensional topology, see [2] and
[3]. Let T c

RPn(M) denote parameter space of convex real projective structures on a
closed orientable n-manifold M such that π1(M) is torsion free, virtually centerless
and Gromov hyperbolic (for example M can be every hyperbolic manifold whose
fundamental group is torsion-free). The space T c

RPn(M) can be identified with
a closed semi-algebraic subset of the character variety Char(π1(M), SLn+1(R)).
We can construct compactifications of semi-algebraic sets using inverse systems of
logarithmic limit sets. The boundary points are tropical images of the extension
of the semi-algebraic set to a real closed non-archimedean field F with a surjective
real valuation. In particular the points of ∂T c

RPn(M) are the tropical images of
elements of Char(π1(M), SLn+1(F)), where F is as above. Using this fact we can
give a geometric interpretation of the boundary points of T c

RPn(M) as actions on
“tropical projective spaces”, constructed using a generalization of the Bruhat-Tits
buildings for SLn+1(F).
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A tropical Riemann-Roch theorem

Michael Kerber

(joint work with Andreas Gathmann)

Let Γ be a connected metric graph and let Div(Γ) denote the free abelian group
generated by the points of Γ. An element D =

∑n
i=1 aiPi ∈ Div(Γ) is called a

divisor, and its degree is defined to be the integer deg(D) :=
∑n

i=1 ai. If D =∑n
i=1 aiPi has the property that ai ≥ 0 for all i ∈ {1, . . . , n}, then D is called

effective, written D ≥ 0. For a given graph Γ, we define its canonical divisor by

KΓ =
∑

P∈Γ

(val(P ) − 2)P ∈ Div(Γ),

where val denotes the number of edges adjacent to P .

A rational function f on Γ is defined to be a continuous, piecewise-linear real-
valued function with integer slope and only a finite number of pieces. To each
rational function f , we have an associated divisor (f) ∈ Div(Γ) defined by

(f) =
∑

P∈Γ

ordP (f) ∈ Div(Γ)

where the integer ordP (f) equals the sum of slopes of f on every edge emanating
from the point P .

For a given divisor D we denote by R(D) the space of all rational functions f
on Γ such that (f) + D is effective. For each divisor D we define its dimension
r(D) to be

r(D) = min
E≥0,R(D−E)=∅

deg(E) − 1.

Theorem 1. Let D be a divisor of degree deg(D) on a graph Γ of genus g(Γ).
Then the following equation holds:

r(D) − r(KΓ −D) = deg(D) + 1 − g(Γ).

The proof given in [GK06] of this tropical analogue of the Riemann-Roch theo-
rem in algebraic geometry is an extension of an analogous result on combinatorial
graphs recently obtained by M. Baker and S. Norine [BN07]. An alternative proof
was independently found by G. Mikhalkin and I. Zharkov [MZ06].
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Tropical bases by regular projections

Kerstin Hept

(joint work with Thorsten Theobald)

This talk gives a short introduction to our recent paper about tropical bases [5].
Given a field K with a real valuation ord : K → R̄ = R ∪ {∞} (i.e. K = Q

with the p-adic valuation, the field K = C{{t}} of Puiseux series with the natural
valuation) we can extend the valuation map to an algebraic closure K̄ and then
to K̄n via

ord : K̄n → R̄n, (a1, . . . , an) 7→ (ord(a1), . . . , ord(an)) .

Let f =
∑

α cαx
α be a polynomial in K[x1, . . . , xn]. The tropicalization of f is

defined as

trop(f) :=
⊕

α

ord(cα) ⊙ xα = min
α

{ord(cα) + α1x1 + · · · + αnxn}

and the tropical hypersurface of f is

T (f) := {w ∈ Rn : the minimum in trop(f) is attained at least twice in w}

For an ideal I ⊳K[x1, . . . , xn], the tropical variety of I is T (I) =
⋂

f∈I T (f)

or equivalently (if the valuation is nontrivial) by the topological closure T (I) =

ordV(I) where V(I) ⊂ (K̄∗)n is the variety of I.

A tropical basis of the ideal I is a finite generating set F of I, such that

T (I) =
⋂

f∈F

T (f)

Bogart, Jensen, Speyer, Sturmfels, and Thomas initiated the systematic com-
putational investigation of tropical bases [2], by providing both Gröbner-related
techniques for computing tropical bases as well as by providing lower bounds on
the size. They showed that for 1 ≤ d ≤ n there is a linear ideal I ⊳ C[x1, . . . , xn]
such that any tropical basis of linear forms of I has size at least 1

n−d+1

(
n
d

)
.

We showed that there are indeed short bases if we drop the assumption on the
degree of the polynomials:

Theorem 1 (Theobald-H.). Let I ⊳K[x1, . . . , xn] be a prime ideal generated by
the polynomials f1, . . . , fr. Then there exist g0, . . . , gn−dim I ∈ I with

T (I) =
n−dim I⋂

i=0

T (gi)

and thus G := {f1, . . . , fr, g0, . . . , gn−dim I} is a tropical basis for I of cardinality
r + codim I + 1.
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To prove the result we need the result of Bieri and Groves [1] that there exist
codim I + 1 projections π0, . . . , πcodim I : Rn → Rdim(I)+1 such that

T (I) =

codim I⋂

i=0

π−1
i πi(T (I)) .

This leaves to show that for an arbitrary projection π : Rn → Rdim(I)+1 the
preimage π−1π(T (I)) is a tropical hypersurface. To show this let m = dim(I) and
the projection be described by

π : Rn → Rm+1, x 7→ Ax

with a regular rational matrix A whose rows are denoted by a(1), . . . , a(m+1) and
let u(1), . . . , u(n−(m+1)) ∈ Qn be a basis of the kernel of π. Define the ideal

J :=
〈
g ∈ K[x1, . . . , xn, λ1, . . . , λl] :

g = f(x1

n−(m+1)∏

j=1

λj
u
(j)
1 , . . . , xn

n−(m+1∏

j=1

λj
u(j)

n ) for some f ∈ I
〉
.

Then we have the following theorem:

Theorem 2 (Theobald-H.). Let I ⊳ K[x1, . . . , xn] be an m-dimensional prime
ideal and π : Rn → Rm+1 be a rational projection. Then π−1(π(T (I))) is a
tropical variety with

π−1(π(T (I))) = T (J ∩K[x1, . . . , xn])

T (J ∩K[x1, . . . , xn]) is a tropical hypersurface if the projection is m-dimensional.

Example 5. Let I be generated by

f1 := 2 + y − 4x2y + x2y2 + 2xy2, f2 := xyz − 2z + 4xyz2 − 2 + z2

For the first projection π2 we take the one with kernel (0, 0, 1), so it is the projection
on the plane z = 0. Then J ∩K[x, y, z] is generated by f1. As π1 we choose the
projection with kernel 〈(1, 1, 0)〉. This defines the second polynomial f3 in the
tropical basis by J ∩K[x, y, z] = 〈f3〉.
The last projection determines the tropical variety, we take (2, 4, 1) as a kernel for
π0. The polynomial f4 defining the elimination ideal has 63 terms.

T (f1) T (f1) ∩ T (f3) T (f1)∩T (f3)∩T (f4)

= T (I)
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Some tropical geometry of algebraic groups, minimal orbits, and
secant varieties

Jan Draisma

1. Secant varieties and minimal orbits

Given a variety X embedded in a projective space PV , the (k − 1)-st secant
variety of X , denoted kX , is the closure of the union of all (k− 1)-spaces spanned
by k points on X . We usually require that X spans PV , so that kX = PV for k
sufficiently large. We often work with the cone C in V over X rather than with
X , and write kC for the cone over kX . Secant varieties appear in applications
as diverse as phylogenetics [2, 5, 12], complexity theory [10, 11], and polynomial
interpolation [1]. The references in this note are by no means complete, but they
themselves contain many further relevant references.

Example 3. Consider “matrix multiplication of two 2 × 2-matrices”, which can
be thought of as a tensor T in V = C4 ⊗ C4 ⊗ C4, and take C equal to the set
of pure tensors in this tensor product. Then the ordinary procedure for multipli-
cation, which needs 8 scalar multiplications, shows that T lies in 8C. Strassen
realised that by taking clever linear combinations, T can be written as a sum of 7
pure tensors. This shows that T ∈ 7C, and Strassen used this fact in an algorithm
for multiplication of n× n-matrices which needs less than n3 multiplications [11].
Recently Landsberg proved that T 6∈ 6C [10]—which means that T cannot be ap-
proximated with tensors of rank 6, a much stronger and more difficult statement
than that T itself does not have rank 6.

Example 4. In phylogenetics, one tries to reconstruct evolution from genetic data
of species alive today. One approach runs as follows: given n strings of nucleotides
A,C,G, T of DNA of n species and given a hypothetical evolutionary tree leading
to those n species, one wants to decide whether the tree matches the data. First,
the data leads to an empirical probability distribution on {A,C,G, T }n, which can
be thought of as an element of (C4)⊗n. On the other hand one has a parameterised



Tropical Geometry 3293

variety, the General Markov Model, of probability distributions that match the tree.
To test whether the tree matches the data, one tries to find the equations defining
the model, which can then be tested on the empirical distribution. Allman and
Rhodes reduced the quest for equations defining the model for general trees to the
case of stars, trees of diameter at most 2 [2]. For the star with 3 leaves, this model
is 4C, where C is the set of pure tensors in (C4)⊗4—for which we unfortunately
do not know equations yet. On a side note, Allman and Rhodes prove only that
their procedure would yield set-theoretic equations; we recently showed that they
generate the full ideal.

Theorem 5 ([9]). The Allman-Rhodes equations generate the full ideal of the
phylogenetic model.

Example 6. The case where V = Sd(Cn) and C is the set of pure powers ld

with l ∈ Cn is closely related to polynomial interpolation. The dimensions of the
secant varieties kC are known from the ground-breaking work of Alexander and
Hirschowitz [1].

This illustrates the omnipresence of secant varieties in mathematics and ap-
plications. Two important problems concerning them are: first, to find equa-
tions for kC; and second, more modestly, to determine the dimension of kC. We
now concentrate on the second problem. Typically one expects dim kC to be
min{k dimC, dimV }—an obvious upper bound—but one has a hard time proving
that this is the case. This is already difficult in the toric case where V = Cn and
C is given as the closure of the image of a monomial map f : Cm → Cn—all exam-
ples above are of this type. Using tropical geometry we have proved the following
lower bound.

Theorem 7 ([8]). Suppose that f = (xα)α∈A, where A is some subset of Nm of

cardinality n. Assume that A lies on an affine hyperplane, so that C := im f is
indeed a cone. For any k-tuple l = (l1, . . . , lk) of affine-linear forms on Rm let
Ci(l) denote the subset of A where li is strictly smaller than all other lj , j 6= i.
Then

dim kC ≥
k∑

i=1

(1 + dimAffR Ci),

where AffR Ci is the affine span of Ci in Rm.

To find good lower bounds with this theorem, one has to maximise the sum on
the right-hand side over all k-tuples l, or, equivalently, over all regular subdivisions
of Rm into k parts. In general this optimisation problem is not easy. Nevertheless,
Baur and I have determined the secant dimensions of many embedded varieties in
this manner.

Theorem 8 ([3]; see also [6]). The secant varieties of (P1)i for i = 1, 2, 3, P2,
P1 × P2, in all equivariant embeddings, are as expected, with an explicit list of
exceptions.
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In her Master’s thesis [4], Brannetti has reproved the Alexander-Hirschowitz
theorem for Sd(C4), for all d, with the method of [8]. These result lead to the
following intriguing question.

Question 1. Is the lower bound of Theorem 7, optimised over all k-tuples l, always
the exact dimension of kC? I know of no counter-examples.

Apart from these toric examples, we have also applied this approach to other
minimal orbits X . Our results include a parameterisation of the cone C over X
that when tropicalised hits a full-dimensional subset of the tropicalisation of C.
For the smallest interesting case, where X is the collection of all incident point-
line pairs in P2, we computed all secant dimensions of X in all SL3-equivariant
embeddings into projective spaces [3]. Related approaches to secant varieties,
which also study their degrees and equations, are [7, 13].

2. Tropical algebraic groups

With Tyrrell McAllister I have initiated the study of tropicalising algebraic
groups. There are many issues here: what coordinates to use? Does one expect a
tropical multiplication on the result? I report some preliminary observations.

Proposition 9. The tropicalisation of SLn, with respect to matrix entries, is a
monoid with respect to tropical matrix multiplication.

Also, using Egerváry’s theorem on minimal-weight matchings one can describe
the maximal cones of this tropicalisation. For a not-so-easy example consider the
orthogonal group On = {g | ggT = 1}. The choice for this non-split form is
perhaps justified by the following beautiful observation.

Proposition 10. The tropicalisation of On contains the matrices (dij)ij satisfying
dii = 0, dij = dji, and dij + djk ≥ dik, as well as the closure of this set of matrices
under tropical multiplication.

(Note that these metric matrices form a cone of dimension
(
n
2

)
= dimOn.) This

is already rather interesting: combinatorially it is not clear why that closure should
still have dimension

(
n
2

)
(and not larger). This ends my preliminary account of

tropical geometry of algebraic groups.
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Real Zeuthen numbers for two lines

Benoit Bertrand

In this talk I tackle the following enumerative problem. Given l lines and k =
d(d + 3)/2 − l points in CP 2, how many nonsingular complex algebraic curves
of degree d pass through the k points and are tangent to the l lines? This is a
particular instance of the Zeuthen problem. For generic configurations of points
and lines there is a finite (and invariant) number of solutions to the problem.
Denote this Zeuthen number Nd(l).

Consider the corresponding question for real data: assume that the points and
the lines are real, how many degree d real curves pass through the k points and
are tangent to the l lines? In other words, what values can take the real Zeuthen
number NR

d (l, C) of real solutions? This number most often depends on the con-
figuration C of points and lines chosen. However the number of complex solutions
is clearly always an upper bound for the number of real solutions.

NR

d (l, C) ≤ Nd(l)

Whether there exists a generic configuration for which all the solutions are real
is a natural and classical question in real enumerative geometry. It is said that
the problem is maximal if such a configuration exists. In other words a problem
is maximal if the number of real solution is equal the the upper bound given by
the number of complex solution.

For l = 1 it was shown by F. Ronga [Ron00] that the Zeuthen problem is
maximal in the above sense (i.e. all the curves can be real). In [Ber07] (on which
this extended abstract is based) I prove that the problem for 2 lines is also maximal.

Theorem 1. For any integer d ≥ 2 there exists a configuration C of 2 real lines
and d(d+ 3)/2− 2 real points such that all the degree d curves passing through the
points and tangent to the lines are real:

NR

d (2, C) = Nd(2)
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The techniques I use are those developed by Mikhalkin in [Mik05]. The state-
ment is proved using correspondence theorems to tropicalize the problem. A gen-
eral correspondence theorem for curves subject to tangency (and incidence) con-
ditions is given in [Mik] but here only tangencies with respect to toric divisors are
needed and the required correspondence theorem can be deduced from [Mik05] or
[Shu05]. I use a lattice path algorithm to count the number of real tropical curves
and find a configuration when this number is maximal.
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Adelic amoebas

Sam Payne

Let K be a field, with ν : K∗ → R a group homomorphism. For instance, if K
is the field of rational numbers then ν could be a p-adic valuation or − log | |∞.
Let T be a torus with character lattice M . To each point x ∈ T (K) we associate
its “tropicalization” Trop(x), which is the point in the vector space Hom(M,R)
given by the composition

M
evx−−→ K∗

ν
−→ R.

For points over a finite extension L ⊂ K, we can define Trop(x) similarly, by the
composition

M
evx−−→ L∗

NL/K
−−−−→ K∗

ν/[L:K]
−−−−−→ R.

Similarly, we can define the tropicalization of points over the completion of K with
respect to the norm exp(ν) and its algebraic extensions.

If X is a subvariety of T , we define the amoeba of X to be the closure of the
image ofX(Kν) in Hom(M,R), whereKν is the algebraic closure of the completion
of K with respect to exp(ν).

We now fix K to be either a number field or the function field of a curve k(C).
Let S be the set of places of K, or canonical representatives of the equivalence
classes of norms on K. For instance, if K is the field of rational numbers, then
S is the set of p-adic norms | |p, together with the archimedean norm | |∞. If
K = C(t), then S = P1(C). These norms extend uniquely to the algebraic closure
of K, and we have the product formula

∏

p∈S

|a|p = 1.
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For example, if K is the field of rational numbers and a is 3/4, then we have
|a|2 = 4, |a|3 = 1/3, |a|p = 1 for all primes greater than three, and |a|∞ = 3/4.
Then 4 · (1/3) · (3/4) = 1.

The adelic amoeba of X is the union of its amoebas with respect to the places
p in S. The radial projection of the adelic amoeba to the sphere is of particular
interest. Its image is closed and was studied in relation to questions from algebra
about finite generation of modules over subsemigroups of abelian groups [1] and
questions from dynamical systems about expansiveness along halfspaces [3].

In this talk, I presented several examples of adelic amoebas and proved the
following results.

Theorem 1. Suppose X is a hypersurface and K is a number field. If the radial
projection of the adelic amoeba of X is not surjective then X is a translate of a
subtorus by a torsion point.

Theorem 2. Suppose X is a hypersurface and K = k(C) is the function field of
a curve. If the radial projection of the adelic amoeba of X is not surjective then
X is defined over k.

The converse in each case is clear. If X is a translate of a subtorus by a torsion
point then the adelic amoeba of X is a hyperplane, and if X is defined over k then
the adelic amoeba of X is a fan, so the radial projections are not surjective.

The proof in the function field case is algebraic and essentially elementary. In
the number field case, the proof that I gave relies on a deep theorem of Zhang
from diophantine geometry that says that the Zariski closure of the set of torsion
points in a subvariety of a torus is a finite union of translates of subtori by torsion
points [5].

For details, generalizations to higher codimension, relations to a conjecture of
Einsiedler, Kapranov, and Lind [2, Conjecture 2.3.5], and further references, see
[4].
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The Maslov dequantization and related dequantization procedures for
mathematical structures and objects

Grigory L. Litvinov

(joint work with coauthors)

Tropical mathematics can be treated as a result of a dequantization of the
traditional mathematics as the Planck constant tends to zero taking imaginary
values, see [1, 3–6, 8]. This kind of dequantization is known as the Maslov de-
quantization and it leads to a mathematics over tropical algebras like the max-plus
algebra. The so-called idempotent dequantization is a generalization of the Maslov
dequantization. The idempotent dequantization leads to idempotent mathematics
over idempotent semirings. For example, the field of real or complex numbers can
be treated as a quantum object whereas idempotent semirings can be examined
as “classical” or “semiclassical” objects (a semiring is called idempotent if the
semiring addition is idempotent, i.e. x⊕ x = x).

Tropical mathematics is a part of idempotent mathematics. Tropical algebraic
geometry can be treated as a result of the Maslov dequantization applied to tra-
ditional algebraic geometry ( O. Viro, G. Mikhalkin).)

In the spirit of N.Bohr’s correspondence principle there is a (heuristic) corre-
spondence between important, useful, and interesting constructions and results
over fields and similar results over idempotent semirings. A systematic applica-
tion of this correspondence principle leads to a variety of theoretical and applied
results, see, e.g., [1–10].

In the framework of idempotent mathematics, a new version of functional anal-
ysis is developed from idempotent variants of basic theorems (e.g., of the Hahn-
Banach type) to the theory of tensor products, nuclear operators and nuclear
spaces in the spirit of A. Grothendieck as well as basic concepts and results of the
theory of representation of groups in idempotent linear spaces, see, e.g., [3–8].

Last time the Maslov dequantization and related dequantization procedures are
applied to different concrete mathematical objects and structures, see, e.g., [6, 8,
10].

Examples:

(1) The Legendre transform can be treated as a result of the Maslov dequan-
tization of the Fourier-Laplace transform (V.P. Maslov).

(2) If f is a polynomial, then a dequantization procedure leads to the Newton
polytope of f . Using the so-called dequantization transform it is possible
to generalize this result to a wide class of functions and convex sets, see
[6].

(3) An application of dequantization procedures to linear operators leads to
spectral properties of these operators [10].

(4) An application of a dequantization procedure to metrics leads to the
Hausdorff-Besicovich dimension including the fractal dimension [10].
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(5) An application of a dequantization procedure to measures and differential
forms leads to a notion of dimension at a point [10]. This dimension can
be real-valued (e.g. negative).
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Piecewise polynomials in Tropical Geometry

Eric Katz

(joint work with Sam Payne)

It is familiar for tropical geometers to consider piecewise linear functions. Tropi-
cal polynomials are convex piecewise linear functions, and one can associated trop-
ical hypersurfaces to them [7, 9]. These tropical hypersurfaces are tropical cycles,
that is, integrally-weighted rational polyhedral complexes satisfying the balancing
condition. Observe that if we are in the constant coefficient case (where the tropi-
cal polynomials are defined as f(x) = mini(x ·ui)), the tropical hypersurfaces will
be fans. Another use of piecewise linear functions is in the Tropical Intersection
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Theory [1] as developed by Allermann and Rau. Here, a Cartier divisor φ on a
tropical cycle C is defined as a piecewise linear section of a tropical line bundle
on C. This Cartier divisor has an associated Weil divisor which is a tropical cycle
supported on the non-linear locus of φ. Intersection theory on IRn is built up from
the operation of intersecting with Cartier divisors.

It is natural to ask what role piecewise polynomial functions play in tropical
geometry. We consider the constant coefficient case. Fix a complete rational fan
∆ in IRn. Our piecewise polynomial functions will be polynomials on the cones in
∆ and they will lead to tropical cycles supported on ∆. The notions of piecewise
polynomial functions and tropical cycles can be rephrased in terms of the toric
variety X(∆). Let T be the open torus in X(∆) and M ∼= Zn its character lattice.
Fulton and Sturmfels [3] show that the Chow cohomology groups, Ak(X(∆)) are
isomorphic to the groups of codimension k Minkowski weights. A Minkowski
weight is a function c : ∆(k) → Z from the (n− k)-dimensional cones of ∆ to the
integers that satisfies a balancing condition. By may view a Minkowski weight c
as the tropical cycle supported on ∆ given by

∑

σ∈∆(k)

c(σ)σ.

Payne [8] showed that the space of piecewise polynomial functions on ∆ is isomor-
phic to the equivariant Chow cohomology A∗T (X(∆)).

There is a canonical homomorphism:

ι∗ : A∗T (X) → A∗(X)

induced by the inclusion of X into the finite dimensional approximation of the
Borel mixed space [2]. This homomorphism is well-understood in the smooth case
and is described by equivariant localization. In [4], we give a combinatorial de-
scription for the general case. We first describe the map ι∗ : An

T (X) → An(X). Let
Sym±M denote the Z-graded ring obtained by inverting homogeneous elements
in Sym∗M . For σ ∈ ∆(0), we define an equivariant multiplicty eσ ∈ Sym−n. The
equivariant multiplicity is characterized by two properties:

(1) If σ1, . . . , σr are the maximal cones in a rational polyhedral subdivision of
σ, then

eσ = eσ1 + · · · + eσr ;

(2) if σ is unimodular, spanned by a basis e1, . . . , en for M∨, then

eσ =
1

e∗1 · · · e
∗
n

.

It is non-trivial to show that such an equivariant multiplicity exists. The definition
of eσ is the principal part of the Hilbert series counting points in the dual cone
σ∗. If f is a degree n piecewise-polynomial on ∆, and fσ is the restriction of f to
the top-dimensional cone σ, then

ι∗(f) =
∑

σ∈∆(0)

fσeσ.
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Here, ι∗(f) turns out to be an integer which we view as the value of a Minkowski
weight on the unique 0-dimensional cone in ∆. In the smooth case, eσ is 1

eT (NV (σ)/X ) ,

the reciprocal of the equivariant Euler class of the torus fixed point V (σ) in X . In
this case, the formula for ι∗(f) reduces to the standard localization formula. Now,
we define ι∗ in other degrees. For a cone τ , let ∆τ

∆τ = {γ +Nτ/Nτ |γ ∈ Star(τ)}.

Then X(∆τ ) = V (τ). Given f , a degree k piecewise polynomial, for τ ∈ ∆(k),
we may consider the restriction of f to Ak

T (X(∆τ )) and compute c(τ) ∈ Z by
applying ι∗. The resulting function c is proven to be a Minkowski weight.

This map ι∗ naturally fits into the framework of tropical geometry. The map

ι∗ : A1
T (X) → A1(X)

is the familiar map taking a tropical polynomial to its tropical hypersurface. Since
ι∗ is a ring homomorphism, it takes the product of a number of tropical poly-
nomials, viewed as piecewise linear functions to the intersection of their tropical
hypersurfaces, viewed as a tropical cycle. From this, in a future paper [5], we
will give the proof that the tropical intersection product defined by Allermann
and Rau is equivalent to the intersection product defined by Mikhalkin [7] and
Fulton-Sturmfels [3]. The proof employs a notion that generalizes tropical Cartier
divisors. These are equivariant Minkowski weights (c, f) where c is a Minkowski
weight and f is a degree d piecewise polynomial function defined on the support
of c. One can associate to (c, f) a tropical cycle which is codimension d in the
support of c. These notions have natural extensions to the non-constant coefficient
case.

Using these combinatorial localization techniques, we can also give a new proof
of Bernstein’s theorem on the number of zeroes of a system of polynomials in (C∗)n

[6]. Given Laurent polynomials g1, . . . , gn ∈ C[x±1 , . . . , x
±
n ], let ∆ be the common

refinement of the normal fans of the Newton polytopes of {g1, . . . , gn}. Each gi

can be viewed as an equivariant divisor fi ∈ A1
T (X(∆)). The number of common

zeroes of {g1, . . . , gn} is bounded by the degree of the following intersection

ι∗(f1) · · · · · ι
∗(fn) = ι∗(f1 . . . fn) ∈ An(X(∆)).

By rewriting our combinatorial localization formula for ι∗(f1 . . . fn) as the principal
part of a certain Hilbert series and using Brion’s formula, we can show that the
degree is exactly the mixed volume of the Newton polytopes.
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Gale duality for complete intersections

Frank Sottile

(joint work with Frédéric Bihan)

This talk is based upon the preprint [4]. A complete intersection in (C×)n+m

defined by Laurent polynomials,

(1) f1(x1, . . . , xm+n) = · · · = fn(x1, . . . , xm+n) = 0 ,

where each polynomial fi contains the same monomials {1, xα1 , . . . , xαl+m+n} may
also be viewed as the intersection of a codimension n affine linear space L in
Cl+m+n with the image of (C×)m+n under the map

ϕ : (C×)m+n ∋ x 7−→ (xα1 , . . . , xαl+m+n) ∈ (C×)l+m+n ⊂ Cl+m+n .

When the exponent vectors {α1, . . . , αl+m+n} span the integer lattice Zm+n, the
map ϕ is injective and the complete intersection (1) in (C×)m+n is scheme-theo-
retically isomorphic to the intersection ϕ((C×)m+n) ∩ L.

Suppose that ψ : Cl+m → L parameterizes L. Then ψ−1(ϕ((C×)m+n) ∩ L) is
also isomorphic to the original complete intersection (1). In the coordinates for
Cl+m+n, ψ is given by degree 1 polynomials p1(y), . . . , pl+m+n(y), and the inverse
image of (C×)l+m+n is the complement MH of the arrangement H of hyperplanes
in Cl+m defined by

∏
i pi(y) = 0. If z1, . . . , zl+m+n are coordinates for Cl+m+n,

then ϕ((C×)m+n) is defined in (C×)l+m+n by all monomial equations zβ = 1,
where β = (b1, . . . , bl+m+n) ∈ Zl+m+n is a vector such that

b1α1 + b2α2 + · · · + bl+m+nαl+m+n = 0 .

The monomial zβ pulls back to a master function on MH ,

p(y)β := (p1(y))
b1 · (p2(y))

b2 · · · (pl+m+n(y))bl+m+n .

Letting β1, . . . , βl form a basis for the free abelian group of all such linear relations,
we see that the pullback ψ−1(ϕ((C×)m+n) ∩ L) is a complete intersection in MH

defined by the system of master functions,

(2) p(y)β1 = p(y)β2 = · · · = p(y)βl = 1 .

We say that the system of polynomials (1) in (C×)m+n is Gale dual to the system
of master functions (2) in MH .
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The isomorphism between schemes defined by Gale dual systems was a key idea
behind the new fewnomial bounds in [1, 2, 3]. The number of positive solutions of
a system of n polynomials in n variables with l + n+ 1 monomials is at most

e2+3
4 2(l

2)nl .

This dramatically improves Khovanskii’s bound [5], which is 2(l+n
2 )(n+1)l+n.

We close with an example. Let n = l = 2 and m = 0 and consider the system

(3)
x3y2 = x4y−1 − x4y − 1

2 ,

xy2 = x4y−1 + x4y − 1 .

in (C×)2. This is isomorphic to ϕ((C×)2) ∩ L, where L is defined by

z1 − (z3 − z4 −
1
2 ) = z2 − (z3 + z4 − 1) = 0 , and

ϕ : (x, y) 7−→ (x3y2, xy2, x4y−1, x4y) = (z1, z2, z3, z4) .

Let s, t be new variables and set

p1 := s− t− 1
2 p3 := s

p2 := s+ t− 1 p4 := t

Then ψp : (s, t) 7→ (p1, p2, p3, p4) parametrizes L.
The primitive weights (−1, 3, 2,−2) and (3,−1, 1,−3) annihilate the exponents:

(x3y2)−1(xy2)3(x4y−1)2(x4y)−2 = (x3y2)3(xy2)−1(x4y−1)(x4y)−3 = 1 .

The polynomial system (3) in (C×)2 is equivalent to the system of master functions

(4)
s2(s+ t− 1)3

t2(s− t− 1
2 )

=
s(s− t− 1

2 )3

t3(s+ t− 1)
= 1 .

in the complement of the hyperplane arrangement st(s+ t− 1)(s− t− 1
2 ) = 0.

x = 0

y = 0

s = 0

t = 0

s+ t− 1 = 0

s− t− 1
2 = 0

The polynomial system (3) and the system of master functions (4).
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