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Introduction by the Organisers

Physical Sciences and, in particular, Mechanics, have always played an important
role as a source of inspiration for Mathematics. They have suggested fundamental
problems, and stimulated the development of new techniques and tools. Now it
is a particularly exciting time for the interaction of Mathematics and Mechanics:
experimental developments in Mechanics and Biophysics at nano scales are posing
challenging questions and giving new opportunities to Mathematics.

This became very clear at this meeting. A broad spectrum of problems from
such diverse fields of applications as biology and biophysics, mechanics of nanos-
tructures, and crystal plasticity was presented.

From theoretical physics, recent concepts and paradigms such as self-organized
criticality, and non equilibrium statistical mechanics as applied to living systems
were discussed.
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Stochastic processes, calculus of variations, and pde’s, up to the theory of Boltz-
mann equation are the mathematical foundations of the recent results presented
at the workshop.

A new topic of attention with respect to the glorious tradition of this conference
series was the attempt to establish the foundations of engineering theories at the
mesoscopic scales from ab-initio calculations (quantum mechanics).

An important aspect of the meeting was also the contribution from experimen-
talists, from wetting and contact angle hysteresis phenomena, to intermittency in
plasticity, to electronic transport in semiconductors.

The success of the workshop was mostly due to the strong interaction among
participants, bridging different fields of expertise, particularly in the discussion on
classical fields such as dislocation mechanics, plasticity, kinetic theory and even
buckling phenomena in structural mechanics. We have witnessed that several
participants were coming out of the meeting with new ideas and new research
projects to pursue. Many expressed their appreciation for the open-minded spirit
with which problems were presented, and for the constructive spirit of the discus-
sions. The atmosphere at the Institute certainly contributed in a decisive way to
the success of the Workshop.

Antonio DeSimone, Stephan Luckhaus, and Lev Truskinovsky
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Abstracts

Viscometry of nanostructures

Richard D. James

Perhaps the most important flows studied in fluid mechanics are viscometric flows,
while the most important deformations for solids are those describing the bending
and twisting of beams. The former are the flows used to measure the viscosities
of fluids, and, in the important case of non-Newtonian fluids, they are used to
measure normal stress differences. In the case of solids, the bending and twisting of
beams, represented most primitively by the St. Venant solutions of linear elasticity,
are the basic solutions used to measure the elastic constants.

The purpose of this research is to give a precise atomic level analog of these
deformations. In essence, it is seen that all of these solutions have a common
atomistic foundation as solutions of the equations of molecular dynamics corre-
sponding to invariant manifolds of these equations. These results are substantially
independent of the nature of the atomic forces: it is only assumed that the atomic
forces are consistent with the formula for the force on an atom given by, say,
the Hellmann-Feynman formula based on Born-Oppenheimer quantum mechanics.
These solutions extend to regimes not contemplated by the continuum theories of
elasticity and fluid dynamics. For example, they can be used to simulate the bend-
ing and twisting of carbon nanotubes with a bending radius on the order of atomic
spacing. Some examples of this type are given in [1]. They also suggest interesting
atomic level analogs of the viscometric flows of fluids: for example, one can extend
a carbon nanotube at constant strain rate. Literally, one can “flow the nanotube”
and measure from the simulation an analog of extensional viscosity. All solutions
discussed are exact solutions of the equations of molecular dynamics under mild
hypotheses: no approximations are made.

The analysis begins with the specification of isometry groups. These are finite
or infinite groups consisting of orthogonal transformations and translations, g ∈ G
of the form g = (Q|c), Q ∈ SO(3), c ∈ R3. If g1 = (Q1|c1) and g2 = (Q2|c2) then
the product is g1g2 = (Q1Q2|Q1c2+c1), which corresponds to composition of map-
pings of the form g(x) = Qx+ c. These form isometry groups, and it is a classical
exercise to write down all such discrete groups. Those that contain three linearly
independent vectors are called the space groups, but the most interesting are per-
haps the ones without full periodicity. These were derived by descending from
space groups, and, as such, are given as abstract groups, i.e., labeled by symbols
that uniquely determine their multiplication tables. For the present application
we need the actual elements (the Q s and c s) rather than just the multiplication
tables. Also, the most convenient source for these are the International Tables of
Crystallography (volume E for the subperiodic groups), but, in fact, these tables
are not comprehensive: some groups are missing. For these reasons we have re-
derived all of these groups in explicit forms (i.e., formulas for the Q s and c s for
each group), see [2].
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Using the invariance of the expression for the forces under orthogonal trans-
formations and translations, and its invariance under permutations of atoms of
like species, one easily justifies the following results. Given a discrete group
G = {g1 = id, . . . , gN} (N can be infinite) of isometries, we assign initial posi-
tions x1,1(0), . . . , x1,M (0) and velocities ẋ1,1(0), . . . , ẋ1,M (0) of a finite number of
M of atoms, we solve the M equations
(1)

mj ẍ1,j = −∂ϕ(g1(x1,1(t)), . . . , g1(x1,M (t)), . . . , gN (x1,1(t)), . . . , gN(x1,M (t)))

∂x1,j
.

subject to the initial positions and velocities given above.
Now define xi,j(t) = gi(x1,j(t), i = 1, . . . , N, j = 1, . . . ,M, t > 0. The basic

theorem is that xi,j(t) also satisfy the equations of molecular dynamics. This
justifies the following method of simulation: simulate x1,1(t), . . . , x1,M (t) using the
equations of molecular dynamics, computing forces from all the atoms. Impose
that all other atoms adopt positions given by {gi(x1,j(t) : i = 1, . . . , N, gi ∈ G}.
The proof involves a simple substitution of these positions into the equations of
molecular dynamics and a verification that they are satisfied.

One can notice from this proof that in fact, certain time dependencies of the
group elements themselves are allowed, preserving the basic theorem. The most
general generically-allowed time dependence is that the translational part of the
group elements has to be affine in time. These collections of time-dependent
isometries still have to form groups, so this leads to an extension of the theorem
mentioned earlier: find all discrete groups of isometries whose elements have affine
dependence on time. This is given in [2]. One example mentioned above is the
extension of a carbon nanotube at constant strain rate.

Another example relies on the translation group {gν = (I|(I + tA)νiei) :
ν1, ν2, ν3 ∈ Z}, where A is a linear transformation on R3 and e1, e2, e3 are lin-
early independent vectors in R3. This gives rise to solutions that include Couette
flow of fluid mechanics (take A = a ⊗ n, a · n = 0). To compare with continuum
mechanics, one can take νiei ∼ x, so that in Lagrangian form these deformations
are represented at macroscopic level by y(x, t) = (I + At)x. These have Eulerian
velocity v(y, t) = A(I+At)−1y. If the constitutive relation for the stress σ has the
property that for purely time dependent velocity gradients (for all past time) we
have divσ = 0, it follows by elementary calculations that the equations of motion
ρ(vt +∇vv) = div σ are identically satisfied. This is why these flows are significant
in fluid mechanics: no matter what the fluid, these are possible motions. By mea-
suring the traction at the boundary corresponding to various A one can determine
directly properties of the constitutive relation, i.e., viscosities and normal stress
differences.

How representative are these solutions of the equations of molecular dynamics?
That is a key question that may be best approached by methods of nonlinear
dynamics. One may conjecture that if one does a sufficient number of simulations
using a sequence of larger and larger fundamental domains and corresponding
smaller and smaller subgroups, then one approximates in some average sense a
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generic solution of the equations of molecular dynamics with suitably restricted
initial conditions. Another possible way to understand these solutions is to look at
their counterparts in other theories of physics. Considering the example mentioned
in the preceding paragraph, we note that, using the heuristic language given above,

• ẋ1,j(t) are the velocities of atoms at 0.
• ẋ1,j(t) +A(I + tA)−1y are the velocities of atoms at y = (I +At)x.
• Hence, the probability of finding an atom with velocity v at position 0 at

time t equals the probability of finding an atom with velocity v + A(I +
tA)−1y at position y at time t.

Thus, if we think in terms of a molecular density function f(t, y, v), f : R ×
R3 × R3 → R≥, giving the probability of finding an atom with velocity v at t, y,
we are led to make the ansatz

(2) f(t, y, v +A(I + tA)−1y) = f(t, 0, v).

Substituting this ansatz into the Boltzmann equation, a quick calculation shows
that it reduces that equation: f(t, y, v) = g(t, v−A(I+At)−1y) gives the following
equation for g(t, w),

(3) gt + gw ·A(I +At)−1w = C[g],

where C represents the usual collisions operator. Apparently, Truesdell’s solution
[3] for the infinite set of moment equations in the simple shearing case follows
by taking moments of a g solving this equation. His solution has an interesting
feature. There is a transient part and a dominant part. The latter is of primary
importance. The dominant part apparently would be obtained by looking at the
long time limit of (3). It would be extremely interesting to find this limiting
equation, as it may give important information on the distribution of velocities in
highly nonequilibrium situations.

This report of ongoing work benefited from valuable discussions with Stefan
Müller, Traian Dumritica, Satish Kumar and Kaushik Dayal.

References
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The use of Γ-convergence in the analysis of problems with multiple
scales

Andrea Braides

(joint work with Lev Truskinovsky)

The notion of Γ-convergence of energies (see [5, 2, 3]) is designed to guarantee the
convergence of minimum problems; i.e.,

(1) Fε
Γ−→ F (0) =⇒ mε := minFε → m(0) := minF (0),

and (almost) minimizers of minFε converge to minimizers of F (0). This prop-
erty implies that sometimes the study of complex minimum problems involving
a (small) parameter ε can be approximated by a minimum problem where the
dependence on this parameter has been averaged out. This implication is valid if
some equi-coerciveness assumptions on Fε are satisfied (i.e., if we may find con-
verging minimizing sequences); throughout this paper we tacitly suppose that such
assumptions hold. Moreover, in order not to make the extraction of a Γ-converging
sequence a loss of generality, we will tacitly assume that our Γ-limits are computed
with respect to a separable metrizable convergence (which is usually the case).

In various cases the computation of the Γ-limit suggests the use of a specific
simplified theory for a complex problem depending on ε. This general paradigm
may be in contrast with the use of other theories by practitioners, or may provide
a poor approximation of the original functional in certain regimes. Our goal is to
develop a vocabulary in the direction of overcoming this apparent drawback in the
use of Γ-convergence. The proof of the results of this paper can be found in [4]
together with various examples.

Parameterized functionals. Minimum problems are often parametrized by
‘lower-order terms’, whose form does not greatly affect the Γ-limit, being either
continuous perturbations or in some way ‘compatible’ with Γ-convergence (this
often is the case for boundary conditions or volume constraints). However, the
overall dependence of the limit process on these parameters may be inaccurately
described by the Γ-limit.

Singular points. Let Fλ
ε be a family of parametrized functionals, with λ ∈ Λ.

We say that λ0 is a singular point if there exist mε, λ
′
ε → λ0 and λ′′ε → λ0 such

that (up to subsequences)

(2) Γ- lim
ε→0

(F
λ′

ε
ε −mε) 6= Γ- lim

ε→0
(F

λ′′

ε
ε −mε),

and one of the two limits is not trivial. If λ0 is not a singular point, we say
that it is a regular point. We then have the following result, which states that for
regular points the Γ-limit procedure provides a uniform approximation of minimum
problems.

Theorem (uniform convergence of minimum problems) If Λ is compact
and is composed of regular points, and if mε(λ) exist such that the limit

Γ- lim
ε→0

Fλ
ε =: F

(0)
λ
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exists and is not trivial, then we have

sup
Λ

∣
∣minFλ

ε − minF
(0)
λ

∣
∣ = o(1).

Remark (A necessary condition for regularity) λ 7→ minF
(0)
λ is continuous

at regular λ0.

Uniformly-equivalent functionals. A first observation is that equality of Γ-
limits gives an equivalence relation between families of energies; i.e., if Γ-limFε =
Γ-limGε then we say that Fε is equivalent to Gε. In this way the concept of
Γ-limit is substituted by that of its equivalence class; note that the domain of Fε

and Gε may be completely different. This concept actually needs a more general
definition.

We say that two families of parametrized functionals Fλ
ε and Gλ

ε are uniformly
equivalent at λ0 if for every sequences (εj , λj) converging to (0, λ0) such that there
exist mj such that the limits

(3) Γ- lim
j

(Fλj

εj
−mj), Γ- lim

j
(Gλj

εj
−mj)

exists, these are not trivial and are equal.

Theorem. Let Λ be compact, and let Fλ
ε and Gλ

ε be uniformly equivalent at all
λ ∈ Λ. Then we have

(4) sup
Λ

∣
∣minFλ

ε − minGλ
ε

∣
∣ = o(1).

At a singular point λ0 the computation of the Γ-limit with fixed λ0 is not
sufficient to accurately describe the behavior of minimum problems. We have
then to look at the different limits that we may obtain as λε → λ0.

Table of Γ-limits at λ0. The table of Γ-limits for Fλ
ε at λ0 are all sequences

(εj , λj), and functionals F
(0)
(εj ,λj)

with εj → 0, λj → λ0, and

F
(0)
(εj ,λj)

= Γ- lim
j
Fλj

εj
.

The behavior of parametrized energies at a singular point may be sometimes
analyzed in terms of curves in the ε−λ space, along which a regular Γ-development
exists. This is not the general case, but it is frequent in applications.

Rectifiability. Let λ0 be a singular point for Fλ
ε at scale 1. We say that Fλ

ε is
rectifiable at λ0 if energies Hp

ε exist and a function p = p(λ, ε) such that
(i) Hp

ε Γ-converge to Hp, and all p are regular points;

(ii) Fλ
ε = H

p(λ,ε)
ε for (λ, ε) in a neighbourhood of (0, λ0).

The following theorem states that for rectifiable Fλ
ε a simple uniformly-equiva-

lent family is given by Hp computed for p = p(λ, ε).

Theorem. Let Fλ
ε be rectifiable at λ0; then Fλ

ε is uniformly equivalent to Gλ
ε =

Hp(λ,ε) at λ0.
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Conclusions: construction of equivalent theories. From the analysis above
we can sketch a procedure to construct equivalent families of parametrized func-
tionals (theories) from a family Fλ

ε :

1. Identify singular points of Fλ
ε ;

2. Compute the table of Γ-limits at singular points;

3. Rectify the energies at singular points;

4. Match asymptotics; i.e., construct energies that are uniformly equivalent
to the Γ-limit (or Γ-development) far from singular points, and to the ‘rectified’
energies close to singular points.

Of course, the last point has not a unique answer, and additional criteria (simplic-
ity, computability, closeness to well-known theories, etc) can drive it.

Remark The process above can be extended to the case when in place of the
Γ-limit a development by Γ-convergence of Fλ

ε (see [1]) at some scale εα must be
taken into account.
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Super-hydrophobic strategies

David Quéré

Lotus or magnolia leaves and water striders legs have the common property
of repelling water. In my talk, I discussed how microstructures at the surface of
these materials induce this property. The nature of the design allows to generate
related features, such as oil repellency rebound for impacting drops, or interfacial
hydrodynamic slip. We concentrated on these unusual behaviors, and discussed
which material design permits such special property. This is shown to be the first
step for optimizing these surfaces - a question of current interest nowadays.
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Creating materials with desired properties

A. G. Ramm

1. Introduction

Let D ⊂ R
3 be a bounded domain, n2

0(x) be a continuous function in R
3,

n2
0(x) = 1 in D′ := R3\D, Imn2

0(x) ≥ 0. The scattering problem:

L0u0 := [∇2 + k2n2
0(x)]u0 = 0 in R

3, k = const > 0,

u0(x) = eikα·x + v0,
∂v0
∂r

− ikv0 = o

(
1

r

)

, r := |x| → ∞,

has a unique solution. Here α ∈ S2 is the incident direction and v0 is the scattered
field. Define q0(x) := q0(x, k) := k2 − k2n2

0(x). Since k > 0 is fixed, we drop the
k-dependence of q0. Then L0 = ∇2 + k2 − q0(x). The function n2

0(x) is called the
refraction coefficient. We pose the following problem:

Problem 1. How does one create a material with a desired refraction coefficient
n2(x) in D?

We prove that this is possible and give a recipe for doing this. If we know how
to solve Problem 1, we can pose the following problems:

Problem 2. Can one create a new material in D with negative refraction?
Negative refraction means that the group velocity in D is directed opposite to

the phase velocity.

Problem 3. Can one create a new material with a desired wave-focusing property?
This means that a plane wave at a fixed wavenumber k > 0 with a fixed incident

direction α will have a desired far-field pattern.
Our theory contains answers to these questions.

2. Theory

2.1. We solve Problem 1 by embedding many particles (small bodies) Dm =
B(xm, a) := {x : |xm − x| < a}, Dm ⊂ D, into D and requiring that in any open
subset ∆ ⊂ D the number of the embedded particles is given by the formula

(1) N (∆) =
1

a2−κ

∫

∆

N(x) dx
[
1 + ε(a)

]
, a→ 0,

where 0 < κ < 1, lima→0 ε(a) = 0, and N(x) ∈ C(D), N(x) ≥ 0 is an arbitrary
given function.

We assume that on the boundary Sm of Dm an impedance-type condition holds:
∂u
∂N = h(xm)

aκ u, where h(x) ∈ C(D), Imh(x) ≤ 0, is an arbitrary given function.
Finally, we assume that the distance d between neighboring particles is of the order

O(a
2−κ

3 ), a→ 0.
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The scattering problem in the medium with M embedded particles is

(2)

L0uM = 0 in R
3\D, ∂uM

∂N
=
h(xm)

aκ
uM on Sm, 1 ≤ m ≤M ;

uM (x) = u0(x) + vM (x),
∂vM

∂r
− ikvM = o

(
1

r

)

, r → ∞.

Here N is the unit normal to Sm, 1 ≤ m ≤M , pointing out into D.
Define the effective field ue(x), x ∈ D:

ue(x) =







uM (x) if lim
a→0

|x− xm|
a

= ∞, 1 ≤ m ≤M,

uM (x) −
∫

Sm
G(x, t)σm(t) dt if lim

a→0

|x− xm|
a

<∞.

Here L0G = −δ(x − y) in R
3, G satisfies the radiation condition (2), and σm,

1 ≤ m ≤M , are the functions from the formula

(3) uM (x) = u0(x) +
M∑

m=1

∫

Sm

G(x, t)σm(t) dt.

Assume that (1) holds for the embedded particles Dm ⊂ D, and the boundary

impedance of Dm is h(xm)
aκ , 0 < κ < 1. Suppose that the functions N(x) ≥ 0 in

(1) and h(x) = h1 + ih2, h2 := Imh ≤ 0, are found from the equations

(4) h1(x) =
p1(x)

4πN(x)
, h2(x) =

p2(x)

4πN(x)
,

where p(x) = p1(x) + ip2(x) is an arbitrary given function, Im p ≤ 0. In (4)
one may choose N(x) > 0 arbitrarily, and then h1(x) and h2(x) are uniquely
defined by (4). Assume, finally, that the distance d between neighboring particles

is d = O(a
2−κ

3 ), a→ 0.

Theorem. Under the above assumptions the new material in the domain D, created
by the embedding of the small particles, has the refraction coefficient

(5) n2(x) = n2
0 − k−2p(x).

Since p(x) = p1 + ip2, p2 ≤ 0, in the formula (4) is an arbitrary continuous
function, the function n2(x) in (5) can be any desired function n2(x) ∈ C(D),
Imn2(x) ≥ 0.

2.2. By choosing h = h(x, ω) depending on ω, where ω > 0 is the frequency,
one can create n2(x, ω) with a desired spatial dispersion, that is, with a desired
dependence of n2(x, ω) from ω. In particular, if n(x, ω) > 0 and

(6) n+ ω
∂n

∂ω
< 0,

then the new material with the refraction coefficient n2(x, ω) > 0 has negative
refraction, i.e., the group velocity ∇kω is directed opposite to the phase velocity
vph, where vph is directed along k0 = ∇k|k|.
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2.3. Given an arbitrary fixed f(β) ∈ L2(S2), an arbitrary small fixed ε > 0, an
arbitrary fixed k0 > 0, and an arbitrary fixed α0 ∈ S2, one can find q ∈ L2(D),
q = 0 in D′ = R3\D, such that

(7) ‖Aq(β) − f(β)‖L2(S2) < ε.

Here Aq(β) := Aq(β, α0, k0) is the scattering amplitude, corresponding to q, at
fixed α0 and k0, and q := k2 − k2n2(x). Given f(β) and ε > 0, a method is given
in [10] for finding q(x) (nonuniquely!) so that (7) holds.
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Entropy of Microstructure

Victor Berdichevsky

This talk presents several points made in the author’s papers [1] and [2].
•Thermodynamics concerns with the systems possessing at least two well sep-

arated time scales, and, thus, characterized by fast and slow variables. Thermo-
dynamic theory is a theory of slow variables for such systems - this was one of
major Boltzmann’s insights. Ons can say that thermodynamic equations are the
equations that are obtained by elimination of fast variables from the governing
equations.
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•Why the first and the second laws of thermodynamics hold true? The key
reason is that the underlying governing equations are ergodic, mixing and Hamil-
tonian. Absence of ergodicity or Hamiltonian structure would prevent the exis-
tence on macrolevel temperature and entropy. Absence of mixing yields violation
of the second law. These statements must be rectified in one respect: in fact, to
have the laws of thermodynamics on macrolevel, the microequations might pos-
sesses slightly more general structure than the Hamiltonian one. It is not clear
though, if that has any physical significance, because the Hamiltonian structure
of microequations is supported by all existing experimental evidences.

•We call the laws of thermodynamics obtained by elimination of fast degrees of
freedom from Hamiltonian equations primary thermodynamics. The characteristic
features of primary thermodynamics are the appearance of two new slow variables,
temperature and entropy, and the dissipation of energy of slow variables (the
total energy of fast and slow variables is conserved in isolated systems). It is
essential, that, under some assumptions, the equations for slow variables possess
a Hamiltonian structure, if dissipation is negligible. That indicates the existence
of quite peculiar ”Hamiltonian reciprocities” in macrophysical interactions. This
feature is a constraint for macroequations which is additional to the first two
laws of thermodynamics and to Onsager’s reciprocity principle, which is called
sometimes the third law of thermodynamics.

• The dissipative equations of primary thermodynamics can also possess two
well separated time scales. Two examples are plasticity and turbulence. In plas-
ticity of metals, the equations of primary thermodynamics are the equations of
dislocation dynamics (dislocation motion is usually slow compared with the mo-
tion of atoms of crystal lattices). In turbulence, the averaged characteristics of
fluid flow change slowly on the characteristic time scale of velocity fluctuations.
Elimination of fast degrees of freedom in primary thermodynamics yield the equa-
tions of secondary thermodynamics.

•If the fast variables in primary thermodynamics perform some chaotic motion,
then, after elimination of fast degrees of freedom and transition to the secondary
thermodynamics, two new slow variables appear, ”secondary entropy” and ”sec-
ondary temperature”. Their physical contents depend on the particular area. In
what follows, we consider micromechanics of solids, and the corresponding param-
eters are called microstructure entropy and microstructure temperature.

•By materials with microstructure we understand further the inhomogeneous
materials with the characteristic size of inhomogeneity much smaller than the char-
acteristic length of the macro-problem. To model the behavior of such materials,
one uses some finite set of parameters describing geometrical and physical fea-
tures of microstructure, denote these parameters by ρ1, ..., ρk. The problem that
arises in modeling of micro-inhomogeneous materials is that energy is not deter-
mined uniquely by any finite set of the parameters. We have to admit that energy,
E, can take different values for different samples even if these samples have the
same values of parameters, ρ1, ..., ρk. Thus, energy becomes a random number
and has some probability density function, f(E | ρ1, ..., ρk). We define entropy of
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microstructure, Sm(E, ρ1, ..., ρk), by the Einstein-type formula,

(1) f(E | ρ1, ..., ρk) = const eSm(E,ρ1,...,ρk).

Entropy of microstructure characterizes scattering of energy for a set of parameters
used to describe the microstructure.

•There are two qualitatively different situations in modeling of micro-inhomo-
geneous bodies: entropy of microstructure, Sm(E, ρ1, ..., ρk), can be a smooth
function of E or it may have a sharp maximum. In the latter case Sm contains a
large factor, N ,

(2) Sm(E, ρ1, ..., ρk) = NSm(E, ρ1, ..., ρk),

while Sm(E, ρ1, ..., ρk) is a smooth function ofE. As some examples show, the large
parameter, N , has the meaning of a ”number of inhomogenuities” in the random
structure: N = |V | /a3, a being the correlation radius of the microstructure.

In the case (2), the most probable value of energy, Ê, appears with overwhelming
probability. At this value function Sm(E, ρ1, ..., ρk) has maximum over E for fixed

ρ1, ..., ρk. The most probable value of energy, Ê, is a function of ρ1, ..., ρk,

(3) Ê = Ê(ρ1, ..., ρk).

Equation (3) can be considered as the equation of state of the body. Since
energy, up to small fluctuations, is a function of ρ1, ..., ρk, the parameters, ρ1, ..., ρk,
may be viewed as the thermodynamic parameters of the system.

The case when entropy of microstructure, Sm(E, ρ1, ..., ρk), does not have sharp
maximum is different: energy becomes an independent parameter of state addi-
tional to the parameters, ρ1, ..., ρk. To return to the usual framework of classical
thermodynamics, we have to admit that there is an additional parameter of state
which ”absorbs” the arbitrariness of energy for given ρ1, ..., ρk, entropy of mi-
crostructure, Sm, and

(4) E = E(Sm, ρ1, ..., ρk).

Function (4) can be viewed as the inversion of the function Sm(E, ρ1, ..., ρk)
introduced by (1).

•To find entropy of microstructure experimentally, one has to consider many
samples, to measure for each sample the values of the parameters, E, ρ1, ..., ρk,
determine probability density function and compute entropy of microstructure
from (1). In the case of crystal plasticity, when one is interested in modeling of
motion and nucleation of crystal defects, energy can be found experimentally, as
was suggested by Taylor and Quinney, by comparing the amount of heat needed
to melt the sample and the corresponding defectless monocrystal.

•In two examples (elastic bar, consisting of many sections with random proper-
ties, and small random Gaussian disturbance of homogeneous media) microstruc-
ture entropy was computed analytically.

• The concept of microstructure entropy seems quite important for modeling of
macrobehavior of micro-inhomogeneous bodies. An attempt to apply this concept
in modeling of plasticity of metals was made in [2]. For metals, the microstructure
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is the dislocation network, which evolves in the course of deformation. Modeling
was based on the assumption that microstructure entropy in an isolated system
has the tendency to decrease. Perhaps, this feature is of quite general nature, and
microstructure entropy of any isolated system decreases in time (in most cases,
i.e. if the initial conditions are not specially prepared).
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Electronic Structure Calculations at Macroscopic Scales

Michael Ortiz

(joint work with K. Bhattacharya, T. Blesgen, V. Gavini, J. Knap, P.
Suryanarayana)

Density functional theory (DFT) has provided insights into a broad range of
material properties. However its computational complexity has made bulk prop-
erties, especially those involving defects, beyond reach. We have developed a
computational scheme that enables the study of multi-million atom clusters using
orbital-free DFT (OFDFT) with no spurious physics or restrictions on geometry.
The key ideas are: (i) a real space formulation of DFT; (ii) a nested finite ele-
ment implementation of the formulation, and (iii) a systematic means of adaptive
coarse-graining, retaining full resolution where necessary and coarsening elsewhere
with no patches, assumptions or structure. We have demonstrated the method,
its accuracy under modest computational cost and the physical insights it offers
by means of several applications involving clusters, vacancies, di-vacancies and
prismatic dislocation loops in aluminium

Relaxation and microstructure formation in single-crystal plasticity

Sergio Conti

This talk discussed several applications of relaxation theory to models from the
deformation theory of crystal plasticity. The deformation theory of plasticity is
appropriate for loadings which lead to a locally monotone evolution of the internal
variables, and confers the boundary value problem of plasticity a well-defined
variational structure analogous to elasticity. The discreteness of the slip directions
in crystals introduces a nonconvex constraint, leading to the formation of fine-scale
structures.

We first study a geometrically nonlinear problem with a single slip system,
both without and with linear hardening. Then the plastic strain takes the form
Id + γs ⊗ m, where s and m are a fixed pair of orthonormal vectors in R

2 and
γ ∈ R. For simplicity we consider an elastically rigid problem, i.e. assume that
the elastic part of the deformation is a rotation, and neglect dissipation. For both
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cases, the quasiconvexification of the energy density can be determined in closed
form.

Theorem 1 (joint work with Florian Theil, see [5]). The quasiconvex envelope of
the function

(1) Ws(F ) =

{

|γ| if F = Q(Id + γs⊗m) Q ∈ SO(2)

∞ else.

is given by

W qc
s (F ) =

{

λ2(F ) − λ1(F ) if detF = 1 and |Fs| ≤ 1

∞ else.

Here λ1(F ) and λ2(F ) denote the singular values of F , i.e., the ordered eigenvalues
of U in the polar decomposition F = QU , Q ∈ SO(2), U = UT .

We remark that the function F 7→ λ2(F ) − λ1(F ) is isotropic, even if the
problem is clearly anisotropic. The orientation of the slip system survives in the
relaxation only through the condition |Fs| ≤ 1. This is different in the case with
self hardening.

Theorem 2 (From [2]). The quasiconvex envelope of the function

(2) Wr(F ) =

{

γ2 if F = Q(Id + γs⊗m) Q ∈ SO(2)

∞ else.

is given by

W qc
r (F ) =

{

|Fm|2 − 1 if detF = 1 and |Fs| ≤ 1

∞ else.

In the case of two slip systems the situation becomes substantially more com-
plex. The rank-one convex envelope can still be determined in closed form.

Theorem 3 (joint work with Nathan Albin and Georg Dolzmann, see [1]). The
rank-one convex envelope W rc of

W (F ) =







|γ| if F = Q(Id + γe1 ⊗ e2) for some γ ∈ R , Q ∈ SO(2) ,

|γ| if F = Q(Id + γe2 ⊗ e1) for some γ ∈ R , Q ∈ SO(2) ,

∞ otherwise

is given by

W rc(F ) =







(λ2 − λ1)(F ) if detF = 1,min{|Fe1|, |Fe2|} ≤ 1,

ψ(|Fe1|, |Fe2|) if detF = 1, 1 ≤ |Fe1| ≤ |Fe2|,
ψ(|Fe2|, |Fe1|) if detF = 1, 1 ≤ |Fe2| ≤ |Fe1|,
∞ if detF 6= 1,

where

ψ(α, β) =

∫ α

1

2s2√
s4 − 1

ds+
1

α

(√

α2β2 − 1 −
√

α4 − 1
)

.
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The relaxation is obtained with infinite-order laminates, partially supported at
infinity. This means that slip concentration is expected, with microstructure on
infinitely many length scales. Numerical estimates have shown that second-order
laminates are sufficient to achieve W rc within 2%, see [1] for details.

We then discuss a problem with many slip systems, within a linearized frame-
work. Precisely, let S = {si ⊗mi}i=1,...N be a set of slip systems, each (si,mi)
being an orthonormal pair in R

3; the set S is assumed to be sufficiently large (see
[4] for details; the usual sets for fcc and bcc metals satisfy this assumption). Let
u : Ω ⊂ R

3 → R
3 be the deformation, γ : Ω → R

N be the set of internal variables.
We assume no self-hardening and positive latent-hardening. Precisely, let

Γs =
{
γ ∈ R

N : ∃j, γi = 0 ∀i 6= j
}

be the set of single-slip slip parameters. Then we consider a latent hardening
function fLH : R

N → [0,∞] such that f(γ) = 0 for γ ∈ Γs. We focus on the
condensed energy

Wcond(ǫ) = min
γ∈RN

{

1

2
(C(ǫ− ǫp(γ)), ǫ− ǫp(γ) + τ

N∑

i=1

|γi| + fLH(γ)

}

,

where the plastic strain takes the form

ǫp(γ) =

N∑

i=1

γi
si ⊗mi +mi ⊗ si

2
.

The variational problem amounts at minimizing

E[u] =

∫

Ω

Wcond

(

∇uT + ∇u
2

)

dx

subject to appropriate boundary conditions. We show that the quasiconvex enve-
lope of Wcond equals its convex envelope. This determines also the relaxation of
E[u].

Theorem 4 (joint work with M. Ortiz, see [4]). The quasiconvex envelope of the
function Wcond equals its convex envelope

W ∗∗
cond(ǫ) = min

γ∈RN

{

1

2
(C(ǫ− ǫp(γ)), ǫ− ǫp(γ) + τ

N∑

i=1

|γi|
}

(both functions of strain are understood to be composed with projection onto sym-
metric matrices).

We remark that W ∗∗
cond(ǫ) corresponds to the case of zero latent hardening, i.e.,

to Wcond for fLH = 0. This means that, by developing microstructures in the form
of sequential laminates of finite depth, crystals can beat the single-slip constraint,
i. e., the relaxed constitutive behavior is indistinguishable from multislip ideal
plasticity. In turn, this means that, within this model, latent hardening has no
effect on the macroscopic material properties. An application of this relaxation
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result to finite-element simulations of an indentation test has been discussed in [3]
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Fluctuations in micro (and macro) scale plasticity

Michael Zaiser

Plasticity of crystalline solids proceeds in a sequence of intermittent bursts
with power-low size distribution. We give examples for this behavior and then
discuss a variety of computational models capable of reproducing the phenomenon.
Common ingredients of these models are (i) the existence of long-range interactions
with a tendency of ”smoothing” the deformation field, (ii) spatially random flow
thresholds that are either inherited from randomized initial conditions or put in ”by
hand” in form of given quenched disorder, and (iii) external driving that is either
done with a stiff/mixed device or fine tuned to a critical driving force. Under
these circumstances, all models discussed show burst sequences with power-law
statistics, their exponents bring those of the critical branching process.

An introduction to the Sandpile model

Frank Redig

We introduce the BTW model and discuss its basic mathematical structure
such as abelian group, burning algorithm, spanning trees. We also discuss the
connection with so called activated walker problem as proposed by Dickman and
others.
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A plasticity theory of solids in the presence of phase transitions

Thomas Blesgen

(joint work with Isaac V. Chenchiah)

This work deals with binary phase transitions and the formation of microstructure
in solids that undergo plastic deformations, possibly accompanied by diffusion, for
a constant temperature θ.

One application of the developed theory is the class of metallic-intermetallic
laminates, see [5], [6]. The model is formulated within the framework of rate-
independent finite-strain elasto-plasticity, going back to [1], [4]. In contrast to
existing work, like e.g., [2], the stored mechanical energy W is also considered
a function of an external phase parameter χ ∈ BV (Ω; {0, 1}). Here, Ω ⊂ R

3

denotes the reference domain which is assumed to be a bounded set with Lipschitz
boundary.

The deformations are represented by a mapping

ϕ : Ω × [0, T ] → Ωt,

with Ωt := {ϕ(x, t) |x ∈ Ω} the deformed domain at time t.
The transformation F := Dϕ is decomposed as F = FeFp into an elastic part Fe

and a plastic part Fp with Fe, Fp ∈ GL(R3) and we set P := F−1
p . Additionally,

a latent hardening variable κ ∈ L2(Ω; R) is introduced.
The stored mechanical energy is supposed to depend only on the elastic part of

F and be frame indifferent. One example is the class of Neo-Hookean materials

W (χ, κ, Fe) =
ν(χ)

2
‖Fe‖2 +

η

2
κ2 + U(detFe),

where ν(χ) > 0 is the Lamé parameter, η > 0 the hardening coefficient, and U is
a convex functional with U(d) → ∞ for d→ 0 and d→ ∞.

Next we introduce the set of dual variables

ξ = −∂W
∂χ

, π = −∂W
∂κ

, T =
∂W

∂F
, X = −∂W

∂P

and introduce a yield function Y = Yx,Dχ(ξ, π,X) ≤ 0. The condition Y = 0 is a
prerequisite for plasticity. The von Mises condition reads for instance

Yx,Dχ(ξ, π,X) := ‖dev symX‖ − σY − π + |ξ|XS(Dχ).

Here, S(Dχ) is a measurable, material-dependent set that designates the possible
regions of plasticity in Ω.

The principle of maximal plastic dissipation leads to the flow rule

(1) (∂tχ, ∂tκ, P
−1∂tP ) ∈ ∂subQx,Dχ(ξ, π,X)

where ∂sub denotes the subdifferential and the plastic potential is

Qx,Dχ(ξ, π,X) :=

{
0 for Yx,Dχ(ξ, π,X) ≤ 0,
∞ else.
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Notice that according to (1), the phase variable χ changes rapidly due to mechan-
ical forces.

We introduce densities ̺i : Ω × [0, T ] → R
+ that determine the density of the

i-th species, whereas ̺0 determines the density of vacancies. Let ψk denote the
specific free energy of phase k which is a convex function of ̺ and let

µ :=
∑

k

χk
∂ψk

∂̺
(̺)

be the chemical potential. For fixed h > 0 we pass to a time-discrete formulation,
[3], where for instance ∂h

t χ := (χ(t)−χ(t−h))h−1. If ψ∗
k, Q∗ denote the Legendre-

Fenchel transforms of ψk, Q, we find the total free energy of the system to be

Ψ(µ, χ, κ, ϕ, P )(t) :=

∫

Ω

|Dχ| +W (χ, κ,DϕP ) + ψ⋆(µ, χ)

+ hQ⋆
x,Dχ(t−h)(∂

h
t χ, ∂

h
t κ, d

h
t (P )) dx.

We minimize Ψ in suitable spaces subject to the constraint

(2) ∂t̺i(x, t) + ̺i(x, t)div(∂tϕ(x, t)) = div(L∇µ(x, t))i in Ω

rewritten as a condition on µ.
To study the properties of the model, we consider the example of one active

slip system. Let m, n ∈ R
3 be given unit vectors with m · n = 0 such that

P = Id + γm⊗ n. Let C := F tF and Cmm := m · Cm, Cmn := m · Cn. We find
that the free energy minimization becomes for the first time step

Ψ(µ, χ, κ, ϕ, γ)(t) =

∫

Ω

ψ⋆(µ, χ) + |Dχ| + U(
√

detC)

+
ν(χ)

2

(
trC+2Cmnγ+Cmmγ

2
)
+
η

2
κ2+σY |γ−γ0| dx

→ min

subject to the constraints: (2) on µ and

|γ − γ0| + κ− κ0 ≤ 0,

|χ− χ0| ≤ |γ − γ0| in S(Dχ0),

χ = χ0 in Ω \ S(Dχ0).

More specifically, we consider the case of a shear of 45 degrees w.r.t. the chosen

slip system and let F (x) = Id + α(x)
2 (n+m) ⊗ (n−m). The dependence of α on

x ∈ Ω allows for microstructure.
We explicitly compute the minimizer. Let

K(χ) := {x ∈ S(Dχ0) | |χ(x) − χ0(x)| = 1}
be the subset of Ω where the constraint on χ is active.
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It can be shown that in Ω\K, the integrand of Ψ is non-convex in α for η small
enough and convex in α for η large. Thus hardening opposes to the generation of
micro-structure.

In K(χ) we find that the integrand of Ψ is convex in α. Consequently, no
microstructure exists in the set K(χ), i.e. in the set that has been passed in the
last time step by the transition layer.

The behavior sketched in the above examples can also be observed in other
cases like the von Mises condition. Finally, the effect of diffusion can be studied
numerically for these examples and it can be made explicit how the minimizers
depend on the choice of L.
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Dynamics and nucleation of dislocations in crystals

Ana Carpio

(joint work with Luis L. Bonilla, Ignacio Plans)

Periodized discrete elasticity models [1, 2, 3] are the simplest correction to linear
elasticity equations allowing for nucleation and motion of dislocations in crystals.
Two ingredients are needed to build a periodized discrete elasticity model for a
particular type of crystal. First a linear lattice model reproducing the crystal
structure and yielding the correct linear anisotropic elasticity equations in the
continuum limit has to be found. To this end, an adequate potential energy for
the crystal lattice is defined. This may be done by thinking of the crystal as
a set of balls joined by springs or by discretizing the continuous elastic energy
using the crystal lattice as a mesh. Next, the periodicity of the crystal has to be
restored, allowing atoms to change neighbors. This could be done by a nonlinear
relabelling protocol. From an analytical point of view, it is more convenient to
introduce periodic functions of discrete differences along the primitive directions
of the crystal with a period equal to the lattice constant.
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These models are useful to understand nucleation and motion of dislocations
(defects supported by lines) in nanocrystals at low temperatures. In heteroepitax-
ial growth, for instance, layers of atoms of a new crystal are grown on a substrate.
After a few layers, a barrier of misfit dislocations is formed. In a different con-
text, nanoindentation tests use the tip of an electronic microscope to apply a load
on the surface of a nanocrystal. Past a critical stress, dislocations are generated
around the tip. These crystals are perfect except for a few dislocations moving
along primitive directions of the crystal. Secondary slip systems are only acti-
vated at large temperatures and high strain rates. Nanoindentation tests provide
information on the nanocrystal mechanical properties and on incipient plasticity.

Compared to standard molecular dynamics models, the mathematical structure
of periodized discrete elasticity models allows for cheaper simulations and an el-
ementary analysis. By construction, the perfect crystal is a stable equilibrium.
Pinned edge and screw dislocations are stationary solutions behaving at infinity
like singular solutions of the Navier equations [1, 4]. Moving dislocations are trav-
elling wave solutions [5]. Dislocations interact as expected. For example, if we
have a set of planar edge dislocations with parallel Burgers vectors along the x
axis, dislocations having the same sign of the Burgers vector repel each other.
Dislocations whose Burgers vectors have opposite signs attract and they either
cancel each other or form dipoles and loops. In simple geometries, a more precise
analysis can be done.

Let us consider a 2D cubic lattice for which only displacements in the x direction
are relevant. The lattice evolution is governed by the nondimensional equations:

m
d2ui,j

dt2
+ α

dui,j

dt
= ui+1,j − 2ui,j + ui−1,j

+
A

2π
[sin(2π(ui,j+1 − ui,j)) + sin(2π(ui,j−1 − ui,j))] ,(1)

where ui,j represents the dimensionless displacement of the atom (i, j) in the di-
rection x. Periodicity is only needed in the direction in which changes of neighbors
can take place. We have selected a sine function. In practice, this periodic func-
tion would have to be fitted to the material. The lattice spacing is normalized to
1. Here A = C44/C11 for a cubic crystal with elastic constants C11, C12, C44.

This simple model allows for nucleation and motion of edge dislocations along
the x direction when a shear stress of strength F is applied in the x direction.
Dislocation depinning can be characterized as a global bifurcation [6], explaining
the role of stationary and dynamic Peierls stresses [5, 7, 8]. Dislocation nucle-
ation appears as a subcritical pitchfork bifurcation, yielding the critical stress for
nucleation, the nucleation site and the nature of nucleated defects [9].

Dislocation depinning. Let us consider a lattice containing an edge dislocation.
We apply a shear stress of strength F in the x direction. Stationary dislocation
solutions are constructed by looking for stationary solutions that behave at infinity
like θ(i, j√

A
)+Fj, θ being the angle function. For small F , the resulting solutions

take values in the region where the sine function is increasing. Existence of sta-
tionary dislocations can be proven using a maximum principle for the overdamped
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version of (1) and constructing adequate sub and supersolutions [4]. Above a
threshold, the spatial operator changes type and dislocations start to move.

Two critical values of the stress are found. Below Fs, stable stationary disloca-
tion solutions exist. Above Fd, stable travelling dislocations are found. In general,
Fd < Fs. Both thresholds only agree in the overdamped limit m = 0. In this
case, a prediction of the dislocation speed is found by assembling the information
available above and below threshold. The linear stability analysis of the station-
ary dislocation solutions shows that the largest negative eigenvalue vanishes at Fs.
The corresponding bifurcation is a global saddle-node bifurcation, and the solution
can be approximated by matched asymptotic expansions in the limit as F → Fs+
(for F > Fs the dislocation moves as a traveling wave). The amplitude equation
corresponding to a saddle-node bifurcation has solutions that blow up in finite
time as F → Fs−. At the blow-up times, the solution described by the amplitude
equation has to be matched to an inner solution that solves (1) with F = Fs and
appropriate matching conditions. The profiles of the travelling dislocations are
step-like; see [1, 6] for details. A numerical calculation of the traveling wave shows
that as F approaches Fs from above, its profile develops steps, which become
steeper and steeper near Fs where the previously described approximation based
on the global bifurcation applies. The speed of the wave is related to the time
one atom spends in a step, which can be estimated using the normal form of the
bifurcation. This yields a (F − Fs)

1/2 scaling for the speed. The scaling changes
to 3/2 in the presence of spatial disorder. It would also be affected by temporal
fluctuations, if present; see [5] and references therein. When m 6= 0, predicting a
speed law requires the analysis of a bifurcation in the branch of travelling waves.

Homogeneous nucleation. Let us now analyze homogeneous nucleation of dis-
locations by shearing a dislocation-free state. When F = 0, ui,j = 0 is a stable
solution corresponding to a perfect crystal. As F is increased, we find a branch
BR0 of stationary solutions representing sheared lattices without defects. Numer-
ical continuation indicates that this branch becomes unstable at a critical shear
stress Fn. At this point, a subcritical pitchfork bifurcation takes place. Two new
branches of stationary configurations, BR1 and BR2, appear. Both are initially
unstable, but become stable for stresses larger than F 1

n and F 2
n , respectively. BR1

represents nucleation of one dipole, which splits in two edge dislocations moving
towards the boundary of the lattice. BR2 corresponds to nucleation of two dipoles,
that split in four edge dislocations. Since F 1

n and F 2
n are smaller than Fn, nucle-

ation can occur before reaching Fn. The final pattern observed in dynamical tests
depends on the way the load is applied. If we deform a lattice at a large strain
rate, one dipole is nucleated. At low strain rates, two dipoles are observed. The
eigenfunction corresponding to the zero eigenvalue of the linear stability problem
at Fn locates the nucleation site. Nucleation starts in the region where the eigen-
function takes large values. The two different patterns correspond to perturbations
of the lattice configuration at Fn by either adding or subtracting multiples of the
eigenfunction. Dipoles split because the critical stress for nucleation is much larger
than the critical stress for edge dislocation depinning.
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In an isotropic crystal, our critical stress for nucleation scales as µ
4 , comparable

to Taylor’s estimate for the theoretical strength of a crystal. The factor 1
4 depends

on our choice of periodic interaction. Though homogeneous nucleation has long
be thought to be an elastic instability at finite strength, no precise analysis of this
instability had been carried out up to now. Preliminary tests in more complex
indentation or fracture settings suggest that a similar analysis is possible.
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Variational Models for Plasticity by Homogenization of Discrete
Dislocations

Adriana Garroni

(Joint work with G. Leoni and M. Ponsiglione)

The presence of crystal defects like dislocations (and their motion) is consider
the main mechanism of plastic deformations in metals. In the linearized theory
the elastic energy of a body Ω in presence of plastic deformations is obtained by
decomposing the displacement gradient, ∇u = βe + βp, in the elastic and the
plastic strain respectively, and computing

∫

Ω

W (∇u − βp) dx ,

where W (ξ) is the anisotropic linear elastic energy density. Various phenomeno-
logical models have been proposed to account for the plastic effects due to dis-
locations, as the so called strain gradient theories (see e.g. [3] and [4]). In view
of the topological nature of the dislocations, their presence can be modeled in
the continuum by assigning the Curl of the field βp. The quantity Curlβp = µ
is then called the dislocation density. Inspired by this idea, the strain gradient
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theory for plasticity, assigns an energy to the plastic deformation depending on
the dislocation density, so that the energy looks like

(1)

∫

Ω

W (∇u − βp) dx +

∫

Ω

ϕ(Curlβp) dx .

The purpose of the term depending on Curlβp is to introduce an internal scale
penalizing oscillations of the dislocation density. The main issue is the choice of the
function ϕ. In fact the usual choice ([3],[4]) is to take ϕ quadratic. This choice of
the function ϕ makes the energy (1) regular but has the well known disadvantage
of preventing concentration of the dislocation density. In view of this observation
other models propose a positively 1-homogeneous behavior, as the L1 norm of
Curlβp (see e.g. [5] and [2]), that is less tractable in some respects, but has the
feature of allowing patterns formations of dislocation walls.

Our aim is to derive model (1) starting from a model of discrete dislocations
which accounts for the crystalline structure and considering only the elastic distor-
tion induced by a given distribution of dislocations. We consider a 2-dimensional
domain Ω (the cross section of a cylindrical 3-dimensional domain) in which
straight dislocations are identified with points xi ∈ Ω or, more precisely, with
a small region surrounding the dislocation referred to as the core region, i.e., a
ball Bε(xi), being the core radius ε proportional to the underlying lattice spac-
ing. The presence of the dislocations can be detected looking at the topological
singularities of a continuum strain field β, i.e.,

(2)

∫

∂Bε(xi)

β · t ds = bi ,

where t is the tangent to ∂Bε(xi) and bi belongs to a set S of admissible Burgers
vectors (for square crystals, up to renormalization, S = {e1, e2,−e1,−e2}). To
any such a strain field β we associate the following elastic energy

(3)

∫

Ωε

W (β) dx ,

where Ωε = Ω \ ∪iBε(xi).
It is well known that the self energy of a single dislocation is of the order | log ε|,

while the interaction energy between two dislocations is much smaller. When the
number of dislocations increases the interaction energy becomes more relevant and
in the regime where the number of dislocations is of order | log ε| the two terms (the
self and the interaction energy) balance. We then scale the energy (3) by | log ε|2
and study the Γ-limit as ε → 0, considering the distribution of dislocations as a
variable of the problem.

In our analysis we introduce a second small scale ρε >> ε (the hard core radius)
at which a cluster of dislocations will be identified with a multiple dislocation. In
mathematical terms this corresponds to introduce the span S of S on Z (i.e., the set
of finite combinations of Burgers vectors with integer coefficients) and represent a
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generic distribution of dislocations as a measure µ of the type

µ =

N∑

i=1

δxi
bi, bi ∈ S ,

where the distance between the xi’s is at least 2ρε. The admissible strain fields
β corresponding to µ are defined outside the core region, namely in Ωε(µ) =
Ω \ ∪iBε(xi), satisfy (2), and the corresponding energy functional is given by

(4) Fε(µ, β) =
1

| log ε|2
∫

Ωε(µ)

W (β) dx .

Under a suitable condition on the hard core scale we can show that in the
asymptotics this energy can be decomposed into two effects: the self energy, con-
centrated in the hard core region (i.e. ∪iBρε

(xi)) and the interaction energy,
diffused in the remaining part of Ω. The Γ-limit of Fε is then given by

(5)

∫

Ω

W (β) dx+

∫

Ω

ϕ

(
dµ

d|µ|

)

d|µ| ,

where the function ϕ is positively homogeneous of degree 1 and it is defined by a
suitable asymptotic cell problem formula. The first term is the elastic energy of the
limiting rescaled strain and represents the interaction energy. The second term
represents the self energy and depends only on the rescaled dislocation density
µ = Curlβ. This constraint implies that the measure µ must belong to the space
H−1(Ω; R2). In particular concentration on lines is permitted accounting for the
presence of pattern formations as dislocation walls. An additional feature of this
limit is the anisotropy of the self energy density inherited from the anisotropic
elastic tensor and the class of the admissible Burgers vectors accounting for the
crystalline structure.
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Active gels: Statistical Physics of active systems

Jean-François Joanny

(joint work with Frank Jülicher, Karsten Kruse, Jacques Prost)

Active systems are systems which are maintained in a non-equilibrium state by
injection of energy. The energy is then either used to produce work or is consumed
as heat. Active systems exist at various scales. At a macroscopic scale assemblies
of animals such as bird flocks or fish colonies show spectacular collective behaviors
where all individuals are moving in a coordinated motion. Similarly, bacterial
colonies are active systems which dissipate energy by consuming oxygen. Vibrated
granular materials can also be considered as active systems with an energy input
due to the mechanical vibration; they show various instabilities and spontaneous
organization. At a more microscopic level, biological systems such as cells consume
the energy of chemical reactions such as the hydrolysis of AdenosineTriPhosphate
(ATP) into AdenosinDiPhosphate and inorganic phosphate. This energy is used
for example by motor proteins to generate forces and produce motion.

Our work focuses on the cytoskeleton which is the gel-like structure that pro-
vides the elasticity of cells. The main components of the cytoskeleton are actin
filaments and myosin II molecular motors. From a polymer point of view the actin
filaments form a physical gel with an elastic modulus of the order of 104Pa. The
gel is polar because the individual actin filaments are polar The molecular motors
create internal stresses inside the gel and tend to contract it.

We have constructed a generalized hydrodynamic theory of polar active gels
[1, 3, 2] in order to describe the mechanical properties of the cytosekleton. Hy-
drodynamic theories consider the behavior of a system at large length scales and
over long time scales. They ignore the microscopic details and are only based on
symmetries. The dynamic behavior of the system is characterized by a set of phe-
nomenological dissipative coefficients such as viscosities or mobilities. Although
the examples of active systems that we have given have very different characteristic
length scales and time scales they all share the same polar symmetry and one can
hope to describe them by the same hydrodynamic theory. Of course the transport
coefficients will have very different values. The determination of the transport
coefficients from the properties of the individual component of the system requires
a microscopic theory which is specific to each active system.

The hydrodynamic theory is constructed by following the lines introduced for
the hydrodynamics of liquid crystals by Martin and coworkers [4]. By considering
the free energy dissipation, we identify fluxes and forces and we write the most
general linear relationship between fluxes and forces that respects the symme-
tries (including the time reversal symmetry). The choice of what are considered
as fluxes or forces is somehow arbitrary. Considering the stress as a flux, the
conjugated force is the velocity gradient. We describe the visco-elasticity of the
cytoskeleton by the simple Maxwell model which involves a single relaxation time.
The polarity of the actin gel is characterized by a polarization vector field pα. The
associated flux is the rate of change of the polarization and the conjugated force is



Material Theories 3337

the orientational field acting on the polarization. Finally, we want to describe the
activity. The associated flux is the number of ATP molecules consumed per unit
time and unit volume and the conjugated force is the energy gained per hydrolyzed
ATP molecule ∆µ. We consider here that cells regulate the concentrations of ATP
and ADP molecules and that ∆µ has a fixed value. This seems to be a reasonable
approximation.

The general Onsager relation between fluxes and forces involves several trans-
port coefficients but all coefficients are not independent in a linear theory due to
the Onsager symmetry relations. Most of these coefficients however have their
equivalents for nematic liquid crystals or elastomers and experimental techniques
have been proposed to measure them. The only new transport coefficients are the
active coefficients giving the dependence on the activity ∆µ. If the cytoskeleton is
considered as incompressible, there are only two active coefficients corresponding
to an active stress and and active orientational field. The active stress can be writ-
ten as σαβ = −ζ∆µpαpβ it describes the internal stresses created by the myosin
motors pulling on the crosslinks of the actin gel. Comparison with experiments on
motility of lamellipodia, gives an order of magnitude of 103Pa for the active gel
i.e. ten times smaller than the elastic modulus. The active orientational field is
associated to the action of molecular motors pulling two filaments to drive them
parallel.

Activity has spectacular effects on the hydrodynamics of active polar gels. The
active stress depends on the local polarization. Any gradient of polarization there-
fore creates a stress gradient which in turn induces flow. A gradient of polarization
can be created by imposing different orientations of the two surfaces of a thin film.
If the film is active even in the absence of any pressure gradient, the film flows
due to the induced polarization gradient. Even if the polarization on the two sur-
faces of a film is parallel to the surfaces, the film can flow if its thickness is large
enough. The homogeneous state where the polarization is everywhere parallel to
the surface and the film does not flow is only stable for small film thickness. If the
thickness of the film is large enough, the homogeneous steady state is unstable,
the polarization spontaneously tilts and the films flows. This instability studied
in Ref.[5] is very similar to the Frederics transition if liquid crystals.

The basic theory of active gels presented here has been generalized to gels
comprising several constituents or to take into account thermal and non-thermal
fluctuations. We are currently using this theory to study properties of cells such
as cell motility or the instabilities associated to cortical actin.
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Diffusions in one dimensional space and time periodic drifts

Pierre Collet

(joint work with Servet Mart́ınez)

We have considered four models for the diffusion of a particle in a periodic drift.
The first model is a simple diffusion with density distribution u(t, x) evolving
according to

∂tu(t, x) = D∂2
xu(t, x) + ∂x

(
b(t, x)u(t, x)

)
,

where the drift b is space and time periodic with average zero in both variables.
The constant D > 0 is the diffusion coefficient. This equation was proposed as a
simple model for molecular motors and appears also in other situations (see [2] for
a review and references).

This density evolution corresponds to the stochastic differential equation

dX = −b(t,X)dt+ σdW (t) ,

where W is the Brownian motion.
We are mostly interested in the existence and properties of an average asymp-

totic velocity defined by

(1) I(b) = lim
t→∞

1

t

∫

xu(t, x)dx ,

provided the limit exists.
A second model considers a particle evolving in a landscape which is still pe-

riodic in space but can be this landscape can be in two states. The landscape
flips from one state to the other as a continuous time Markov process (see [2] for
a review and references). In each state the landscape drift (the functions b1 and
b2 below) is assumed to be periodic in space and of average zero but independent
of time. Two functions ρ1(t, x) and ρ2(t, x) represent the density distribution of
the particle when the landscape is in state 1 and 2 respectively. The evolution
equations are given by

∂tρ1 = ∂x

(
D∂xρ1 + b1(x)ρ1

)
− ν1ρ1 + ν2ρ2

∂tρ2 = ∂x

(
D∂xρ2 + b2(x)ρ2

)
+ ν1ρ1 − ν2ρ2 .

The constant D > 0 is the diffusion coefficient, and the constants ν1 > 0 and
ν2 > 0 are the transition rates of the landscape. In this case one is interested in
the average asymptotic velocity defined by

I
(
b1, b2

)
= lim

t→∞
1

t

∫

x
(
ρ1(t, x) + ρ1(t, x)

)
dx ,

The two other models are the analogs of the previous ones when inertia is taken
into account (Kramers equation instead of Fokker-Planck-Kolmogorov equations).

Our third model for example is given by the Langevin equation

dx = v dt
dv =

(
− γ v + F (t, x)/m

)
dt+ σ dWt
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where x and v are the position and velocity of the particle, γ > 0 a friction
coefficient, m the mass of the particle and F (t, x) the exterior force assumed to
be periodic and with average zero in both variables. The number σ > 0 is the
standard deviation of the noise, and Wt the Brownian motion.

In all cases we define an average asymptotic velocity I analogous to (1), and
we consider this quantity as a function of the drift(s).

For the case of C1 drift(s), we have established analogous theorems for the four
models. The first result is that the functional I(b) is well defined (the limit in the
definition always exist and is independent of the initial condition satisfying some
natural assumption). Moreover, this functional is real analytic in the drift and non
trivial (the non triviality is established by looking at the Taylor expansion at the
origin). The proof is based on a reduction to a problem on the circle (some kind of
homogenisation), also reminiscent of the theory of Floquet multipliers. Here the
dominant multiplier is one because of conservation of probability. Analyticity is
established using analytic perturbation theory.

A direct consequence is that the functional I(b) does not vanish on a dense open
set. Although there is no explicit formula for the value of I(b) at a given b (not
even for the sign), the result implies a local stability of this velocity. We refer to
[1] for details.
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A primer in inhomogeneity and growth

Marcelo Epstein

The purpose of this presentation was to provide a unified treatment of certain
theories of material inhomogeneities, on the one hand, and of evolution and growth,
on the other hand. The common background is supplied by their placement within
the general framework of continuum mechanics and by the use of differential geo-
metric tools. The formulation of the theory of material inhomogeneity is based
on the one proposed by Noll [2] and Wang [3] as far back as 1967. When under-
stood in the context of the differential geometry of G-structures and groupoids,
the theory is amenable to rather straightforward generalizations in several direc-
tions, including structured media of various kinds and general relativity. Central
to the theory is the concept of material isomorphism, a concept that expresses the
precise meaning of the notion of equal material response of two points, regardless
of the reference state used to describe that response. The interplay between ma-
terial isomorphism and material symmetry is then revealed and shown to play a
crucial role in the theory. Within the larger framework of groupoids, both material
isomorphisms and material symmetries can be regarded as similar notions, much
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in the same way that a tiled floor may have local symmetries (at the level of each
tile) and distant symmetries (when comparing two separate tiles). A body all of
whose points are mutually materially isomorphic is said to be materially uniform.
A convenient way to express mathematically the idea of material uniformity is
by specifying a field of implants from an externally placed material archetype to
each of the body points. A uniform body is homogeneous if it can be brought to
a configuration in which the material response of all points is identical. In other
words, the material implants constitute a constant field relative to the Euclidean
structure of the surrounding space. Analytically, this idea corresponds to an in-
tegrability condition which has also a clear geometric counterpart in terms of the
vanishing of some characteristic geometric object. The time-like counterpart of the
theory of material uniformity is that of material evolution of the so-called anelastic
type, such as it occurs in the classical theory of plasticity and in certain theories
of volumetric growth. It is shown that, within this context, the Eshelby tensor
emerges naturally as the configurational force thermodynamically associated with
the evolution of a first-grade material. In a similar way, the J-integral of fracture
mechanics appears in the expression of the translation of an inhomogeneity with
compact support. When proposing evolution laws as first-order differential equa-
tions for the implant maps, it can be shown that these laws must be subject to
certain formal restrictions, such as the law of actual evolution that specifies that
a true evolution must yield a time-derivative of the implant maps that does not
belong to the Lie algebra of the symmetry group of the archetype. The somewhat
controversial issue of the possible need for extra balance laws for the configura-
tional forces driving the evolution is analyzed under the umbrella of the second
law of thermodynamics and it is suggested that the formulation of such laws is, at
least in some cases, equivalent to the introduction of ad-hoc entropy sinks as part
of the specification of the parameters of an essentially open system. A detailed
treatment can be found in [1].
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Sticky foliations and shock waves

Yann Brenier

The non self penetrating condition (NSPC in short) in Continuum Mechanics is
hard to handle because it is usually not a convex constraint. However, when the
“material” is made of a foliation of leaves of codimension one (i.e. hypersurfaces),
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each of them being supposed to be non self penetrating, the only condition to sat-
isfy is that these leaves must stay well ordered in the one-dimensional transversal
dimension.
Let us consider the simplest case, when the leaves are just graphs
y = Y (t, x, a) ∈ R, where a denotes the label of each leave (say a ∈ [0, 1] for sim-
plicity), x ∈ Rd and the surrounding space is just (x, y) ∈ R×Rd. Then, the NSPC
just reads ∂aY ≥ 0 and we can call “sticky zone” the set (t, x, y = Y (t, x, a)) where
∂aY (t, x, a) = 0. This convex constraint can be encoded by the convex potential
Φ0[Y ] with value 0 as ∂aY ≥ 0 and +∞ otherwise. Notice that this potential can
be approximated by a smoother one such as

Φǫ[Y ] = ǫ

∫

ϕ(∂aY (x, a))dxda,

as ǫ → 0, where ϕ(τ) is any convex function on the real line, with values +∞ if
τ < 0, smooth for τ > 0. Typical examples are:

ϕ(τ) = τ log τ, ϕ(τ) = − log τ + τ, ϕ(τ) = 1/τ + τ.

Now, the idea is to consider evolution laws for each leave that are not necessarily
compatible, in the large, with the NSPC. The simplest situation is when each
leave, of label a, moves at constant speed, say V (a) ∈ Rd along the x axis and
W (a) ∈ R along the y axis, which leads (ignoring the NSPC) to

Y (t, x, a) = Y (t = 0, x− tV (a), a) + tW (a),

or, in PDE words,
(1) ∂tY + V (a) · ∇xY = W (a).

Taking into account the NSPC can be done just by including the constraint po-
tential into (1), namely

(1s) W (a) ∈ ∂tY + V (a) · ∇xY + ∂Φ0[Y ],

borrowing notations from Convex Analysis. This subdifferential equation is easy
to handle, mathematically speaking, and is well posed in L2. The same is true for
the approximate equation obtained by substituting Φǫ for Φ0:

(1ǫ) ∂tY + V (a) · ∇xY = W (a) + ǫ∂a(ϕ
′(∂aY )).

Then we can prove the following Theorem [1]:

Let Y be a solution to (1s). Then

u(t, x, y) =

∫ 1

0

1{Y (t, x, a) ≤ y}da

is an entropy solution, in the sense of Kruzhkov [2], of the hyperbolic nonlinear
conservation law:

(2) ∂tu+ ∇ · (F (u)) + ∂y(G(u)) = 0,

where

F (a) =

∫ a

0

V (b)db, G(a) =

∫ a

0

W (b)db,
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and the sticky zone of Y corresponds to the shock set of u.

The class of equations (2) includes the famous inviscid Burgers equation as F = 0
(or d = 0) and G(u) = u2/2. There is an interesting additional feature when
we approximate Φ0 by Φǫ. Let us consider the simplest case when d = 0 (no x
variable). Then, we can, at least formally, rewrite equation (1ǫ) as:

∂ttY = ǫ∂a(ϕ′′(∂aY )∂a∂tY ).

Introducing the corresponding Eulerian velocity and density fields

v(t, Y (t, a)) = ∂tY (t, a), ρ(t, Y (t, a)) = 1/∂aY (t, a),

we get the Eulerian version of (1ǫ):

∂tρ+ ∂y(ρv) = 0,

ρ(∂tv + v∂yv) = ǫ∂y(µ(ρ)∂yv),

where µ(ρ) = 1/ρϕ′′(1/ρ) can be interpreted as a viscosity coefficient and comes
up for very natural mathematical reasons.
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Three observations on stationary heat conduction in moderately
rarefied gases

Ingo Müller

i. Fourier theory compared to 13-moment theory

Grad’s thirteen moment distribution function is a reliable tool for the determina-
tion of the temperature field in a moderately rarefied gases, when steep tempera-
ture gradients occur. The distribution function reads

fG = fequ(1 +
1

ρ k
µT

t〈ij〉(
1

k
µT

CiCj − δij) −
1

ρ( k
µT )2

qiCi(1 − 1

5

1
k
µT

C2)

︸ ︷︷ ︸

ϕ

)

where t〈ij〉 is the deviatoric stress and qi the heat flux. The 13-moment field
equations can be solved explicitly in the case of heat conduction between concentric
cylinders for either Maxwellian molecules, or for the BGK-ansatz. For the latter
the temperature field reads

T = c2 −
c1

5 k
µτp

ln(
28

25

τ

p
c1 + r2)
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For specific boundary values for the heat flux at the inner cylinder and the tem-
perature at the outer one, Fig. 1a shows the temperature field according to this
theory. It deviates from the one of the classical Fourier theory of heat conduction,
where the temperature gradient is steep.

Figure 1. Temperature fields of thirteen moment theory and
Fourier theory

ii. Kinetic and thermodynamic temperatures

Temperature is supposed to be a measure for the mean kinetic energy of the atoms
of a body. On the other hand, in thermodynamics, temperature is defined as the
quantity that is continuous at a heat conducting wall. The latter definition is
called the zeroth law of thermodynamic. That definition is often equivalent to the
continuity of the entropy flux at a heat conducting wall. This is indeed the case,
if the entropy flux is given by qi

T .

Figure 2. Comparison of kinetic and thermodynamic temperatures.

However, in the thirteen moment theory the entropy flux turns out to be given
by

Φi =
qi
T

+
2

5

t〈ij〉qj
pT
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or, for the problem of heat conduction between concentric cylinders by

Φ(1) =
1

T
(1 +

2

5

t〈11〉
p

)q1
︸ ︷︷ ︸

1

Θ

Therefore, if the entropy flux is continuous, so is the quantity Θ, identified by the
brace in the equation. Obviously in equilibrium, where t〈11〉 vanishes, T and Θ are
equal. But that is not the case outside equilibrium. Θ is the measurable quantity
by virtue of its continuity, and - if measured – it should differ appreciably from T
as Fig 2 shows.

iii. Heat conduction in a rotating frame.

The Boltzmann equation contains inertial terms due to the centrifugal force, the
Coriolis force, etc. acting on the atoms in a non-inertial frame during their free
path. That frame dependence is reflected in the 13-moment equations, and it
produces quantitative and qualitative differences from the classical Navier-Stokes-
Fourier theory. Thus for heat conduction between concentric cylinders the inertial
terms make it impossible for a gas to participate in a rigid rotation of the cylinders.
In other words: A gas cannot rotate rigidly, if it conducts heat. There is an
azimuthal velocity field between the cylinders.

The 13-moment theory permits the calculation of the azimuthal velocity field
and Fig 3 shows its graphs for different values of the pressure, i.e. for different
degrees of rarefaction.

Figure 3. Azimuthal velocity field between concentric cylinders
in a non-inertial frame.

References

[1] Müller, I. Ruggeri, T. Stationary heat conduction in radially symmetric situations - an
application of extended thermodynamics. Journal of Non-Newtonian Fluid Mechanics 119

(2004)
[2] Barbera, E. Müller, I. Secondary heat flow between confocal ellipses - an application of

extended thermodynamics. Journal of Non-Newtonian Fluid Mechanics (in press)
[3] Barbera, E. Müller, I. Inherent frame dependence of thermodynamic fields in a gas. Acta

Mechanica, 184 (2006)



Material Theories 3345

Boundary conditions and Knudsen layers for moment equations of
rarefied gas dynamics

Henning Struchtrup

The equations of classical hydrodynamics, the Navier-Stokes-Fourier equations,
cannot describe rarefaction effects in gases, which appear in processes with Knud-
sen numbers Kn > 0.1. A variety of extended models which aim at describing rar-
efied gas flows at least approximately was derived from the Boltzmann equation.
The best known among these are the Burnett and super-Burnett equations, de-
rived by means of the Chapman-Enskog method, and Grad’s 13 moment equations,
which follow from Grad’s moment method. However, Burnett and super-Burnett
equations suffer from instabilities in transient processes. Grad’s moment equations
exhibit unphysical sub-shocks in shock structures at large Mach numbers [1].

Techniques for the regularization of Grad’s 13 moment equations leads to the
so-called regularized 13 moment equations (R13), which are stable and guarantee
smooth shock structures [2][3]. The derivation of the R13 equations by means of
the order of magnitude method [4][5] allows to relate the equations to powers in
the Knudsen number. The method was developed up to the third order for the
special case of Maxwell molecules, and yields the Euler equations at zeroth order,
the Navier-Stokes-Fourier equations at second order, Grad’s 13 moment equations
(with omission of a non-linear term) at second order, and the regularization of
these (R13) at third order. The Burnett and super-Burnett equations can be
recovered from the R13 equations by means of a Chapman-Enskog expansion.

The order of magnitude method was also employed to study slow non-isothermal
flows [6].

Boundary conditions were the major obstacle in simulations based on advanced
continuum models of rarefied and micro-flows for a long time. A theory to com-
bine the regularized 13-moment-equations with boundary conditions based on
Maxwell’s accommodation model was only presented recently [7]. The boundary
conditions are derived from the hypothesis that the equations have to be adapted
to the boundary conditions in a way that the number of boundary conditions re-
quired does not depend on the process. This consistency requirement is necessary,
since the number of boundary conditions differs between the fully non-linear and
the linearized 13 moment equations.

The complete set of boundary conditions for the linear equations follows from
taking suitable moments of the boundary condition for the Boltzmann equation.
Additional boundary conditions for the non-linear equations are derived from the
equations in the bulk, by transforming them while keeping their asymptotic accu-
racy with respect to the Boltzmann equation.

Comparison between numerical solutions for the R13 equations with the new
boundary conditions with Discrete Simulation Monte Carlo solutions of the Boltz-
mann equation show very good agreement.

The existence of an H-theorem was proven at least for the linearized R13 equa-
tions, both for the bulk and the boundary conditions [8].
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A particular feature of models for rarefied flows is the occurrence of Knudsen
boundary layers in the solutions. A detailed study of the Knudsen layers in a
simplified kinetic model for phonon energy transfer [9] shows that the Knudsen
layer contributions do not obey the scaling of the Chapman-Enskog expansion
and the order of magnitude method, which therefore cannot be used to reduce the
number of moments in Knudsen layers. However, the study shows that Knudsen
layers can be reasonably well described by few moments as long as the Knudsen
number of the problem does not exceed unity.

Acknowledgment: This research was supported by the Natural Sciences and
Engineering Research Council (NSERC).
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Invariance equation for model reduction in dissipative systems

Alexander N. Gorban

(joint work with Iliya V. Karlin, Andrei Y. Zinovyev)

In this talk I would like to review the theory of invariance equation and application
of this theory to model reduction in dissipative systems. Invariance equation is a
condition of invariance of an immersed manifold fM with respect to a given vector
field J(f) (Fig. 1).

Perhaps, the first important result about this equation was the Lyapunov aux-
iliary theorem about analytical invariant manifolds near an equilibrium (a zero
of J(f)) [1]. Recently, this theorem is intensively used for model reduction [2].
The Chapman–Enskog method for the Botzmann equation [3] is just a formal so-
lution of the invariance equation using the asymptotic expansion in the powers
of a small parameter (the Knudsen number). Later, Fenichel [4] transformed the
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Figure 1. Invariance equation: f is vector of microscopic vari-
ables (detailed description), M = m(f) is vector of macro-
scopic variables (reduced description), M 7→ fM is immersion

(m(fM ) = M), condition of invariance is J(fM ) = ∂fM

∂M
dM
dt or in

more detail

J(fM ) =
∂fM

∂M

∂m(f)

∂f

∣
∣
∣
∣
f=fM

J(fM )

Chapman–Enskog method into “geometric singular perturbation” theory, but for
finite-dimensional vector fields. The famous Kolmogorov–Arnold–Moser theory
could be considered as the theory of invariance equations for almost integrable
Hamiltonian systems. Kolmogorov proposed to use fast Newton type methods for
solving this equation instead of power series [5]. We applied this idea to dissipative
systems (the Boltzmann equation), and this allowed us to resolve some of classical
problems which appears in the Chapman–Enskog expansion (negative viscosity
and short waves instability in higher approximations, etc.) [6].

Almost 20 years ago several groups of researchers started to develop constructive
methods for model reduction using invariant manifolds [7, 8, 9, 10, 11]. Some of
these technics are specially compared on benchmarks [12, 13]. There exist now 5
groups of methods for computation of slow invariant manifold.

(1) Power series expansion (a) in powers of a small parameter (the Chapman–
Enskog expansion for the Boltzmann equation and the Fenichel theory
of geometric singular perturbations) or (b) in powers of phase variables
(Lyapunov series);

(2) The Newton-type methods;
(3) Relaxation methods (the Euler method for the immersed manifolds auxil-

iary motion, for example);
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(4) Method of natural projector (extension of the Hilbert method for the
Boltzmann equation);

(5) Discretization of the invariance equation and invariant grids.

The method of natural projector was introduces as a generalization of the Ehren-
fests’ coarse-graining [14]. Independently, similar idea was developed into so-called
“Equation-free, coarse-grained multiscale computation” [15]. The equation of the
auxiliary motion of the immersed manifold fM is

dfM

dτ
= J(fM ) − ∂fM

∂M

∂m(f)

∂f

∣
∣
∣
∣
f=fM

J(fM ).

The right-hand side of this equation is the residual of the invariance equation
(defect of invariance). Steady states of this equation are invariant manifolds, and
stable steady states are supposed to be slow invariant manifolds. This definition
(slowness as stability) is the reason why the relaxation methods can be applied for
slow invariant manifolds construction.

There exist reviews and books [16, 17, 18, 19] about invariance equation and
numerous applications. (Here we touched applications to dissipative systems only.)
Nevertheless, this equation remains “the great unknown equation”. Why? Per-
haps, because it has huge amount of solutions and the rules for selection of the
proper solution are not obvious. Lyapunov used analyticity. Indeed, near a non-
resonant fixed point this is a good rule (as is follows from the Lyapunov auxiliary
theorem). We can use also stability in various senses, and can try to build new
criteria of slowness. Summation and resummation of power series can also help
[20]. But the theory of the invariance equation (for model reduction) is far from
being complete: we only begin now to understand the proper questions.
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Dynamics of steps along a phase boundary

Anna Vainchtein

(joint work with Yubao Zhen)

Materials undergoing martensitic phase transitions are known to exhibit dissipa-
tive behavior due to the motion of phase boundaries. Classical nonlinear elasticity
provides no information about kinetics of a phase boundary due to the inherent
inability of the theory to describe phenomena in a narrow transition front where
the energy dissipation occurs. This deficiency of the continuum theory motivated
the recent studies of the dynamics of phase transitions in one-dimensional bistable
chains where a kinetic relation between the driving force on a moving phase bound-
ary and its velocity was derived from the discrete model [3, 4].

In this work we consider a phase boundary moving in a three-dimensional cubic
lattice. In this setting it is important that a martensitic phase boundary typically
contains steps, or ledges. A long-standing hypothesis in materials science is that
a phase boundary moves forward via a propagation of steps along the interface
[2]. This hypothesis is confirmed by experimental observations: for example, Bray
and Howe [1] found the fcc/hcp martensite transformation in Co-Ni occurs by the
passage of Shockley partial dislocation ledges and that the hcp martensite thickens
by the lateral movement of ledges across the fcc/hcp interface. Thus kinetics of
a phase boundary is largely determined by the kinetics of the steps. This work
focuses on the dynamics of multiple steps along a phase boundary.

To enable analytical calculations, we assume antiplane shear deformation and
consider a phase transforming material with a stress-strain law that is piecewise
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linear with respect to one component of shear strain and linear with respect to
another. Under these assumptions we derive a semi-analytical solution describing
a steady sequential motion of the steps under an external loading. Our analysis
yields kinetic relations between the driving force, the velocity of the steps and
other characteristic parameters of the motion. These are studied in detail for
the one-step, two-step and three-step configurations. We show that the kinetic
relations are significantly affected by the material anisotropy. Our results indicate
the existence of multiple solutions exhibiting sequential step motion.

We also conduct a series of numerical simulations to investigate stability of
these solutions and study other phenomena associated with step nucleation. We
show that sequential propagation of sufficiently small number of steps can be
stable, provided that the velocity of the steps is below a certain critical value that
depends on the material parameters and the step configuration. Above this value
we observe a cascade nucleation of multiple steps which then join sequentially
moving groups. Depending on material anisotropy, the critical velocity can be
either subsonic or supersonic, resulting in subsonic step nucleation in the first case
and steady supersonic sequential motion in the second. The numerical simulations
are facilitated with an exact non-reflecting boundary condition and a fast algorithm
for its implementation, which are developed to eliminate the possible artificial wave
reflection from the computational domain boundary.

The details of this work can be found in [5, 6].
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Nonlinear electronic transport in the kinetic theory of semiconductor
nanostructures

Luis L. Bonilla

Semiconductor superlattices (SL) are artificial one-dimensional (1D) crystals for-
med by repeating a number of periods comprising two layers of different semicon-
ductors in the simplest case [1]. Applications include fast nanoscale oscillators,
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quantum cascade lasers and infrared detectors. Ignoring scattering and electron-
electron interaction, the Bloch theorem indicates that the Schrödinger equation for
one electron in the 1D crystal potential has a continuum spectrum with minibands
and minigaps and a basis whose wave functions are products of Bloch functions
and plane waves in the directions perpendicular to the SL growth direction. We use
this wave function basis to consider the effects of electron-electron interaction and
electron-phonon scattering that are ignored in the one-electron picture [2]. Elec-
tronic transport in superlattices may be described by vector kinetic equations with
as many components as minibands we want to consider. Quantum mechanics im-
plies that the kinetic equations for the Wigner function contain pseudo-differential
operators involving the electric potential and the miniband dispersion relations.
Electron-phonon collisions can be modeled by nonlocal BGK (Bhatnagar-Gross-
Krook) type terms involving collision-broadened Fermi-Dirac distributions. In the
simplest case that only one miniband, the Wigner function f(x, k, t) and the elec-
tric potential W (x, t) solve the following system of equations:
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The Wigner function f(x, k, t) is 2π/l-periodic in k. Here n, ND, E(k), dB, dW ,
l = dB +dW , ε, m∗, kB, T , Γ, νen, νimp and −e < 0 are the 2D electron density, the
2D doping density, the miniband dispersion relation (a typical one is E(k) = ∆ (1−
cos kl)/2), the barrier width, the well width, the SL period, the SL permittivity, the
effective mass of the electron, the Boltzmann constant, the lattice temperature, the
energy broadening of the equilibrium distribution due to collisions, the frequency
of the inelastic collisions responsible for energy relaxation, the frequency of the
elastic impurity collisions and the electron charge, respectively.

Despite the complex appearance of these kinetic equations, their crystal pe-
riodicity makes it possible to derive balance equations for the electric field and
the electron densities using singular perturbation methods. At high values of the
electric field, the collision terms and the electric potential term in (1) are of the
same order and dominate all others. In the resulting hyperbolic limit, the two first
terms of the left hand side of (1) can be ignored and the resulting equation solved
for the Fourier coefficients fj(x, t) of f(x, k, t) =

∑∞
j=−∞ eijklfj(x, t) in terms of



3352 Oberwolfach Report 58/2007

the electron density and the electric field −F , F = ∂W/∂x. This observation
can be used to implement a Chapman-Enskog singular perturbation method that
produces differential-difference spatially nonlocal balance equations for the electric
field in a finite SL with N periods [2]:

ε
∂F
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J(t).(5)

In this Ampère equation for the balance of electric current, J(t) is the total current

density, 〈g(x)〉j =
∫ jl/2

−jl/2
g(x+ s) ds/(jl) is a spatial average over j SL periods and

the functions N , D and A contain up to two spatial averages with j = 1, 2 [2].
Equation (5) is a nonlocal drift-diffusion equation for the unknowns F (x, t) and

J(t) and it has to be supplemented by the dc voltage bias condition
∫ L

0
F (x, t) dx =

Φ, by boundary conditions at the intervals (−2l, 0) and (Nl, (N + 2)l), with L =
Nl, and by an initial condition F (x, 0). When solved numerically, the resulting
problem has stable time-periodic solutions that represent self-sustained oscillations
of the current (for appropriate values of the voltage Φ) [2]. These high-frequency
oscillations correspond to the periodic formation of a pulse of the electric field at
the injecting contact of the superlattice, its motion towards the receiving contact
and its annihilation there.

A detailed analysis of this type of solutions can be carried out in simplified
piecewise linear spatially local drift-diffusion models [4] that mimic the current
self-sustained oscillations described in the review [1]. In the toy model of Ref. [4],
the drift velocity is a constant K > 0 and the source term has one stable and one
unstable zero for a given value of the current J . For voltage bias, the current J(t)
varies slowly with time provided the sample length L is much larger than the size
of the electric field pulse. For constant J , pulses are constructed as phase plane
trajectories that join the stable zero F = F (1)(J), ∂F/∂ξ = 0 (ξ = x − X±(t))
with the pulse maximum F = U(J), ∂F/∂ξ = 0 and having either ∂F/∂ξ > 0 for
−∞ < ξ < 0 and dX+/dt = c+ or ∂F/∂ξ < 0 for 0 < ξ < ∞ and dX−/dt = c−.
It is possible to prove that c+ + c− = 2K and that J(t) obeys a simple ordinary
differential equation dJ/dt = B(J) (c+ − c−) (with B > 0) when the pulse is far
from the contacts at x = 0, x = L. Then provided it is far from the contacts, the
pulse tends to a wave that moves rigidly with speed c+ = c− = K until it arrives
to the receiving contact. A more complicated analysis describes the annihilation
of the pulse at x = L and the nucleation of a new pulse at x = 0 when the current
surpasses a critical value defined by the boundary condition at x = 0 [4].

Superlattices having two populated minibands or describing spin transport in
the presence of spin-orbit interaction terms are described by vector kinetic equa-
tions for the Wigner matrix. It is possible to derive spatially nonlocal drift-
diffusion systems of equation in these cases [3]. Self-sustained oscillations of the
current at large dc voltages are typical solutions of the balance equations and they
may describe spin oscillators in spintronic devices [5].
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Structural phase transitions in perovskites

Paolo Cermelli

(joint work with Paolo Podio Guidugli )

We propose a simple mechanism to explain some features of the structural phase
transitions characteristic of many ABO3 perovskites. The relative stability of the
cubic, rhombohedral and tetragonal phases is studied in terms of the competi-
tion between the equilibrium length and relative compressibility of the AO and
BO bonds: adopting an empirical-potential description of interatomic forces, we
assume that the AO bonds are approximately indeformable, and the O and B
atoms interact through a “soft” Lennard-Jones potential. Since the equilibrium
bond lengths have different thermal expansion coefficients, temperature variations
generate an internal mismatch, measured by Goldschmidt’s tolerance factor t, that
is accommodated by the distortion of the perovskite structure responsible for the
phase transitions. The distortion may be described in terms of the rotation vec-
tor of one of the AO6 octahedra, and, neglecting electronic and magnetic effects,
the interaction energy per cell may be written as a function of this vector order
parameter. The stability analysis shows that, as t decreases, the cubic perovskite
structure changes first to a rhombohedral and then to a tetragonal structure, as
observed in many materials of this type. Our approach can be generalized to ac-
count for non-rigid deformations of the octahedra due to the Jahn-Teller effect in
manganites.

Mechanical stresses in plant growth: from cells to veination networks

Arezki Boudaoud

(joint work with F. Corson, M. Adda-Bedia)

This talk is devoted to the mechanical aspects of plant growth and morpho-
genesis. The introductory part concerns the cellular level. The shape of a plant
cell is sustained by its walls while it grows by plastic yielding to the inner osmotic
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pressure. Consequently, a plant cell may be considered as a special pressure vessel:
a viscoelastic or viscoplastic thin shell, pressurized from inside.

In our first contribution, we investigated the effect of mechanical stresses on
growing stems, in connection with experiments (O. Hamant, Y. Couder and J.
Traas) allowing the visualization in cells of microtubules (a stiff biopolymer). The
mechanical model is again a pressure vessel, the shell standing for the outer layer
of cells in the stem. By computing the stresses in the shell, we found that the
microtubules align with the direction of largest principal stress. Thus biological
microstructure is correlated with the state of mechanical stress.

In our second contribution, we investigated leaf venation networks which serve
for fluid transport in grown leaves. These networks, like leaf shapes, are extremely
diverse, yet their local structure satisfies a simple, universal property: the angles
veins form at junctions are related to their diameters by a vectorial equation anal-
ogous to a force balance. This structure is the signature of a reorganization of
vein networks during the development of leaves, a process we investigated numer-
ically using a cell proliferation model. Provided that vein cells are given different
mechanical properties, tensile forces develop along the veins during growth, caus-
ing the network to deform progressively. The statistics of the patterns obtained
in these simulations are in quantitative agreement with observations on leaves,
supporting the notion that the local structure of leaf venation networks reflects a
balance of mechanical forces.

Buckling made easy

Yury Grabovsky

(joint work with Lev Truskinovsky)

It is commonly understood that buckling occurs whenever a compressive loading
is applied to a slender body. But, what exactly is a “slender body” and compressive
loading? In this regard it is instructive to mention D’Alembert’s objection [5,
p. 258] to Euler’s analysis of buckling [1]. D’Alembert pointed out that if one
applies a compressive dead load to a vertical column, the column would become
unstable immediately due to flip instability1. In fact, D’Alembert’s argument is
valid even if the column is not slender at all. In buckling, the proper notion of
slenderness involves not only the geometry of the body but also the degree of
“softness of device”. Indeed, it is well-known that Euler buckling never happens
in hard device. Korn’s constant provides just such a quantity, [4].

K(V ) = inf
ϕ∈V

‖∇ϕ‖=1

∫

Ω

|e(ϕ)|2dx, e(ϕ) = (∇ϕ + (∇ϕ)t)/2,

where V is a subspace of W 1,2(Ω; R2) and ‖ ·‖ always denotes the L2-norm. In the
purely soft device the Korn constant is zero (hence flip instability), while in the

1Euler himself have been careful to say that the column has “to be so constituted that it can
not slip”, [1, pp. 102-103].
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purely hard device it is 1/2, validating linear elasticity and preventing instability
at small loads.

In order to understand properly the role of Korn’s constant and formulate the
notion of compressiveness, we formulate a model involving two small parameters
h and λ, where h > 0 will govern the slenderness of the domain, while λ < 0
describes a compressive loading program.

(1) E(y) =

∫

Ωh

W (∇y)dx −
∫

∂Ωh

(th(x;λ),u)ds(x),

y ∈ yh(x;λ) + V 0
h , V 0 ⊂W 1,∞(Ω; R2).

The first formula above gives the energy of the deformation y as a sum of the elastic
energy stored in the deformed body, whose reference configuration is Ωh, and the
work of the boundary tractions th(x;λ). The second formula gives boundary
conditions in a general form that can accommodate a wide variety of mixed device

loadings. The closer the space Vh = V 0
h to W 1,2, the closer we are to the soft

device. The closer the space Vh to W 1,2
0 , the closer we are to the hard device.

The energy density functionW (F ) is assumed to be frame-indifferent, i.e. satisfy
W (RF ) = W (F ) for every rotation R and every F . We also assume that F = I

is the stress-free state, i.e. WF (I) = 0. These two properties are responsible for
both buckling and flip instability. The frame-indifference implies that there exists
a function Ŵ (C) such that W (F ) = Ŵ (F tF ). Let L(F ) = WF F (F ). Then

(2) (L(F )ξ, ξ) = 2(ŴC(C), ξtξ) + 4(ŴCC(C)(F tξ),F tξ).

In two dimensions, if F ≈ I and ξ = S =

[

0 −1

1 0

]

, then

(L(F )S,S) = Tr (L0(F − I)) +O(|F − I|2), L0 = L(I) = WF F (I).

We see that when F ≈ I the first term on the right-hand side in (2), corresponding
to the incremental work of the prestress, dominates and the energy is non-convex
at those F ≈ I for which Tr (L0(F − I)) < 0 (compressive loading), [3].

Our analysis of buckling instability is basically the above calculation applied
to the study of non-negativity of second variation for the trivial branch, whose
existence we postulate. More precisely, we assume the existence of a family of
stationary points yh,λ(x) of (1) satisfying

Fh,λ(x) = ∇yh,λ(x) = I + λ∇u′
h(x) + o(λ),

where u′
h(x) solves

(3)

∫

Ωh

(L0e(u
′
h), e(ϕ))dx−

∫

∂Ωh

(tlinh ,ϕ)ds = 0, u′
h ∈ uh +V 0

h , uh =
∂yh

∂λ
(x; 0)

for all ϕ ∈ Vh = V 0
h , where th(x;λ) = λtlinh (x) + o(λ).

The function

m(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

δ2E(Fh,λ,ϕ), δ2E(Fh,λ,ϕ) =

∫

Ωh

(L(Fh,λ(x))∇ϕ(x),∇ϕ(x))dx
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describes the stability locus S = {(h, λ) ∈ (0,+∞) × (−∞, 0): m(h, λ) ≥ 0} of
the trivial branch in the (h, λ) parametric plane. We define a critical load as

λ(h) = sup{λ < 0: m(h, λ) < 0}.
Definition: An instability of the trivial branch is called a near-flip buckling if

• λ(h) < 0 for sufficiently small h and
• lim

h→0
λ(h) = 0

The significance of the Korn constant is then immediately seen from the relation

lim
λ→0

m(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

(L0e(ϕ), e(ϕ))dx
def
=KL0

(Vh).

We see that KL0
(Vh) > 0 is sufficient for λ(h) < 0, while KL0

(Vh) → 0, as h → 0
is necessary for λ(h) → 0.

When h and λ are small we may replace the second variation δ2E(Fh,λ,ϕ) with
a simpler expression involving only the solution u′

h of the linearized elasticity
equations (3). The key point is that the minimizer ϕh,λ (or almost minimizer,
if the minimizer does not exist) must have a small (in L2 sense) symmetrized
gradient e(ϕh,λ). Therefore, applying the formula (2) to the second variation and
using the smallness of e(ϕh,λ), we obtain

δ2E(Fh,λ,ϕh,λ) =

∫

Ωh

{(L0e(ϕh,λ), e(ϕh,λ))+λ(σ′
h(x), (∇ϕh,λ)t∇ϕh,λ)}dx+o(λ),

where σ′
h = σ′

h(x) = L0e(u
′
h). In two space dimension we may further simplify

the asymptotics for δ2E(Fh,λ,ϕh,λ)

δ2E(Fh,λ,ϕh,λ) =

∫

Ωh

{(L0e(ϕh,λ), e(ϕh,λ)) + λth(x)|∇ϕh,λ|2}dx + o(λ),

where th(x) = Trσ′
h/2. This analysis suggests that we may replace m(h, λ) with

m̂(h, λ) = inf
ϕ∈Vh

‖∇ϕ‖=1

∫

Ωh

{
(L0e(ϕ), e(ϕ)) + λth(x)|∇ϕ|2

}
dx.

We now introduce a measure of compressiveness

c = sup
‖e(ϕh)‖→0
‖∇ϕh‖=1

lim
h→0

∫

Ωh

th(x)|∇ϕh|2dx.

Theorem 1 If

• c > 0
• KL0

(Vh) > 0
• lim

h→0
KL0

(Vh) = 0

then the trivial branch undergoes a near-flip buckling instability. In that case we
have the following expression for the critical buckling load.
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Theorem 2 Assume that assumptions of Theorem 1 hold and that additionally

• λ 7→ m̂(h, λ) is differentiable near λ = 0
• ∂m̂(h, λ)/∂λ is continuous at (0, 0)
• c > 0

Then

(4) lim
h→0

λ(h)

KL0
(Vh)

= −1

c
.

For structures with multiple slender elements the partial derivative m̂λ is never
continuous at (0, 0) and (4) does not hold. Yet, the constitutive linearization

procedure is still valid. In other words the critical load λ̂(h) determined using
m̂(h, λ) has the same asymptotics as the true critical load λ(h), as h → 0. For
complete discussion see [2].
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