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Introduction by the Organisers

The workshop Combinatorics organised by Jeff Kahn (Piscataway), László Lovász
(Budapest), and Hans Jürgen Prömel (Berlin) was held January 6st–January 12th,
2008. This meeting was very well attended with 46 participants from many differ-
ent countries. The programme consisted of 15 plenary lectures, accompanied by
18 shorter contributions and a vivid problem session led by Vera T. Sós.

The conference is a workshop on Combinatorics in a very broad sense, and is in
part intended to serve as a framework for all other Oberwolfach meetings that focus
on particular areas within combinatorics. This meeting over the years has been
extremely successful in achieving the sometimes elusive goal of bringing together
and fostering interactions among people with a wide range of interests, and we feel
that the program this time was close to ideal in its coverage of a large fraction of
the most exciting recent developments across the combinatorial spectrum. Quite
a few of the talks — for instance those of Chudnovsky, Kühn, Osthus, Ruciński,
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Sudakov, Taraz and Vu — reported major progress on well-known problems. Some
of the plenary speakers were asked to give overviews of areas somewhat distant
from the central interests of many of the participants.

The breadth of the conference makes its contents nearly impossible to sum-
marize. One might say that the central foci of the meeting were extremal and
probabilistic aspects of combinatorics, and graph theory; but “extremal combina-
torics” is an extremely broad term, and a glance at the titles below shows that
the list of topics is not much shorter than the list of talks. Thus, even among the
talks that could be considered to fall in the above categories, one finds geometry,
Fourier analysis, algebra, physics, connections with social sciences, and multiple
connections with computer science and related technology.

Again, we consider this breadth to be not a drawback, but a central feature
of the meeting. It has promoted an inspiring, interactive atmosphere, and led to
fruitful discussions and collaborations, to new awareness of what’s happening in
different parts of combinatorics, and to the discovery of some unexpected connec-
tions.

More than in past meetings, an emphasis was placed on talks (both plenary
and shorter) by younger researchers. This too worked very well, and we hope to
make it the pattern for future meetings.

On behalf of all participants, the organisers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for providing
a stimulating and inspiring atmosphere.
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Abstracts

The broadcast rate of a hypergraph

Noga Alon

(joint work with Amit Weinstein)

Suppose that a sender S wishes to broadcast a word x = x1x2 . . . xn, where xi ∈
{0, 1}t for all i, to m receivers Ri. Each Rj knows some of the blocks xi and is
interested solely in the block xf(j). Let βt denote the minimum possible length of
a code that enables S to transmit the information so that each receiver Rj will
be able to reconstruct xf(j). Thus βt/t is the average amount of information that
has to be transmitted per bit of each xi when the length of each block is t. Our
objective is to study the possible behavior of the numbers βt/t as t increases. In
particular, we show that there are settings in which β1/1 is at least Ω(log log n),

whereas for sufficiently large t, βt

t < 2.1.
The problem above generalizes the setting initiated in [4] and studied in [2], [5]

and [1], where the special case considered is m = n and f(j) = j for all j. The
motivation is in applications such as Video on Demand, where a network, or a
satellite, has to broadcast information to a set of clients, each client is interested
in a different part of the data, and each client has a side information, that is,
he already knows part of the required data. Note that the assumption that each
receiver is interested only in a single block is not a real restriction, as one can
simulate a receiver interested in r blocks by r receivers, each interested in one of
these blocks, and all having the same side information.

We represent the above setting by a marked hypergraph H = (V, E) with a set
V = {1, 2, . . . , n} of n vertices, corresponding to the input blocks xi, and a set E
of m edges, corresponding to the receivers Rj . For each such receiver Rj , there is
an edge ej ⊂ V containing a distinguished marked vertex f(j) as well as all other
vertices i so that Rj knows xi. Let βt(H) denote the minimum possible length of
a binary code for the scenario represented by H , when each block of x is of size t.

The confusion graph Gt = Gt(H) corresponding to H and block-length t is
the graph whose vertices are all 2tn binary vectors of length tn corresponding to
all possible inputs of S (when the blocks of x are of size t each). Two vertices
x = x1 . . . xn and y = y1 . . . yn are adjacent iff there is at least one edge e of H
with a distinguished vertex f so that xf 6= yf whereas xi = yi for all i ∈ e \ {f}
(i.e. the receiver which corresponds to the edge e, who must distinguish between
these two inputs since xf 6= yf , can not do so since all the blocks he knows in x
and in y are identical). It is not difficult to see that βt(H) is precisely ⌈log2 χ(Gt)⌉,
where χ(Gt) is the chromatic number of Gt. Note that Gt is a Cayley graph of
the group Znt

2 since the existence of an edge between two vertices depends only
on the Z2-difference between them that determines which of the blocks are equal
and which are not.

Let t · H denote the hypergraph consisting of t pairwise disjoint copies of H .
A moment’s reflection shows that Gt(H) is a subgraph of G1(t · H), and hence



10 Oberwolfach Report 1/2008

χ(Gt(H)) ≤ χ(G1(t ·H)). It is not difficult to check that each of the two functions
g1(t) = χ(Gt(H)) and g2(t) = χ(G1(t ·H)) is sub-additive, and hence, by Fekete’s
Lemma, the limits of g1(t)/t and of g2(t)/t, as t tends to infinity, exist, and are

equal to inf g1(t)
t and inf g2(t)

t , respectively.
The graph G1(t · H) is precisely the OR-product of t copies of G1(H), and it

thus follows, by the main result of [3] and [6], that the limit limt7→∞
χ(G1(t·H))

t is
the fractional chromatic number χ∗(G1(H)) of G1(H).

The main result here is an explicit construction of a hypergraph H for which
χ∗(G1(H)) = O(1) whereas χ(G1(H)) ≥ Ω(

√
log n).
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Higher connectivity: graph-theoretical and topological

Anders Björner

1. Introduction

Several kinds of connectivity are considered: k-connectivity of graphs, k-Cohen-
Macaulay connectivity of simplicial complexes, and topological k-connectivity of
spaces.

We define a notion of a complex being (k, t)-connected, meaning that deletion
of any set of at most k − 1 cells (and all cells containing them) from the complex
leaves a topologically t-connected subcomplex of the same dimension. So, for k = 1
this reduces to the ordinary notion of topological t-connectivity, whereas for t = 0
we obtain the ususal notion of graph-theoretic k-connectivity of the 1-skeleton.
Also, we introduce yet another version of higher connectivity, which, in order to
avoid unnecessary confusion, we call by another name: (k, t)-rigidity. It applies to
finite posets and lattices, and (via the face poset) to regular cell complexes.

One of the cornerstones of the combinatorial theory of convex polytopes is the
theorem of Balinski [1], saying that the 1-skeleton of a d-dimensional polytope is
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graph-theoretically d-connected, meaning that if any subset of d − 1 vertices is
deleted the remaining subgraph is still connected.

Balinski’s theorem was extended to 1-skeleta of manifolds by Barnette [2].
In this paper we generalize the Balinski-Barnette theorem in another direction,
namely to higher-dimensional skeleta of polytopes and manifolds. This was al-
ready done in a homology version by Fløystad [4] using ring theory. Here we work
with topological connectivity (vanishing of homotopy groups) leading to stronger
results. The techniques rely on methods from poset topological combinatorics,
whose generality gives results more widely applicable than to polytopes. For in-
stance, new results on geometric lattices and matroid basis graphs are obtained.

2. results

The notation is the standard one in topological combinatorics, see e.g. [3] for
definitions and explanations. In particular, topology is associated to a poset P via

its order complex ∆(P ). Let P̂
def
= P ∪ {0̂, 1̂}.

A cell complex (regular CW-complex) is (k, t)-connected if removal of any set
of ≤ k − 1 cells (and all cells containing them) leaves a topologically t-connected
subcomplex of the same dimension. Note that, as distinct from the graph-theoretic
concept, we quantify over cells of all dimensions. This is because just removing
vertices gives a weaker concept in dimensions ≥ 2.

A theorem implying that (k, t)-connected complexes are produced by truncation
of certain face posets will be stated later (Theorem 4). First we present some
applications to

• Convex polytopes
• Matroid basis graphs

Theorem 1. The boundary complex of a convex d-polytope is (d− j, j)-connected,
for j = 0, 1, . . . , d− 2.

Here the j = 0 case is equivalent to Balinski’s theorem, and the method of proof
applies also to Barnette’s extension.

Let M be a matroid of rank r on the ground set E. It is said to have the disjoint
basis property if rank(E \ B) = min{r, |E \ B|} for every basis B (i.e., if either
there exists a basis C such that B ∩ C = ∅, or else E \B is independent).

The basis graph Γ1(M) of M has as vertices the bases of M and as edges the
pairs of bases (B1, B2) such that |B1∩B2| = rank(M)−1. For a basis B, an edge
(B1, B2) is B-related if B1 ∩B2 ⊂ B.

Theorem 2. Let M be a matroid of rank r with the disjoint basis property. Then
any collection of at most r − 1 vertices and all related edges can be removed from
its basis graph Γ1(M) without losing connectivity.

In particular, Γ1(M) is (graph-theoretically) r-connected. A paper by Liu [5]
contains the result that Γ1(M) is δ-connected (where δ is minimal degree). Since
in our theorem more edges are removed (all related edges, not just the incident
ones), and in Liu’s result more vertices, neither result implies the other.
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The basis complex Γ2(M) of a matroid M is the polyhedral complex obtained
from the basis graph by gluing 2-cells (or “membranes”) into all 3- and 4-cycles of
the basis graph. Maurer showed [6] that Γ2(M) is 1-connected.

Given a basis B, an 1-cell (edge) or a 2-cell is B-related if the intersection of its
vertices is a subset of B.

Theorem 3. Let M be a matroid of rank r with the disjoint basis property. Then,
if any collection of at most r− 2 vertices and all related cells are removed from its
basis complex Γ2(M), the remaining cell complex is 1-connected.

3. poset rigidity

The results are obtained by a common technique which is best formulated for
a general class of posets. Here follows one version of the general statement.

A pure poset P is (k, t)-rigid if P \ F is topologically t-connected, pure and of
the same length as P , for every filter F ⊂ P generated by at most k−1 elements. A
poset P is locally rigid if for all x < y ≤ z in P the order complex of (x, z)P \[y, z)P

is of length (ℓP (x, z)−2) and is (ℓP (x, z)−3)-connected. The truncated poset P≤i

is obtained by deleting from P all elements of rank > i.

Theorem 4. Let P be a pure poset of length r, and let 0 ≤ s ≤ t < r. Assume
that

(i) P̂ is a lattice,

(ii) P ∪ {0̂} is locally rigid,
(iii) P is t-connected,

(iv) every open interval (x, 1̂) in P̂ is min{t, r − 2− rank(x)}-connected.

Then, the truncated poset P≤(s+1) is (r − s, s)-rigid.

Remark 5. A concept of k-HCM-rigidity is similarly defined in terms of ”homo-
topy Cohen-Macaulay”-ness. The poset P≤(s+1) in Theorem 4 is actually (r − s)-
HCM-rigid.

For the applicability of Theorem 4 it is of interest to know that the following
families of posets are locally rigid:

• posets for which the order complex of each open interval is homotopy-
equivalent to a sphere (this is used to prove Theorem 1),
• face posets of matroid complexes IN(M) turned upside-down (this is used

to prove Theorems 2 and 3),
• geometric lattices.
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Packing Cubes in a Torus

Tom Bohman

(joint work with Ron Holzman and Venkatesh Natarajan)

Consider the following natural packing problem: How many d-dimensional cubes
of side length 2 can we pack into a d-dimensional torus with a fixed, odd side
length? This problem can be formulated in terms of graph products as follows. If
G1 = (V1, E1) and G2 = (V2, E2) are graphs then let G1 ×G2 be the graph with
vertex set V1×V2 and an edge between distinct vertices (u1, u2) and (v1, v2) if and
only if ui = vi or {ui, vi} ∈ Ei for i = 1, 2. The graph power Gd is then the product
of G with itself d times. A packing of cubes of side length 2 in the d-dimensional
torus of side length 2n + 1 corresponds to an independent set in Cd

2n+1. (This
correspondence between packings of cubes in the torus and independent sets in
powers of odd cycles was first noted by Baumert, McEliece, Rodemich, Rumsey,
Stanley, and Taylor [1]).

Let α(G) denote the independence number of graph G, i.e., the maximum size
of an independent set in G. The independence numbers of the powers of odd cycles
are also related to a central open question on the Shannon capacities of graphs.
The Shannon capacity of the graph G is defined as

c(G) = sup
d

(
α

(
Gd

))1/d

and gives a measure of optimal zero-error performance of an associated communi-
cation channel [7]. The odd cycles on seven or more vertices and their complements
are, in a certain sense, the simplest graphs for which the Shannon capacity is not
known. This follows from the Strong Perfect Graph Theorem (which was recently
proved by Chudnovsky, Robertson, Seymour and Thomas [3]). The Shannon ca-
pacity of C5 = C5 was determined in a celebrated paper of Lovász [6]. For a survey
of zero-error information theory see [5].

The problem of determining the independence numbers of arbitrary powers of
odd cycles remains widely open. The best known upper bounds on these inde-
pendence numbers are given (in most cases) by the Lovász-theta function ϑ(G)
(which, for the sake of brevity, we do not define here) or the fractional vertex
packing number α∗(G) and the simple fact

(1) α(G×H) ≤ α(G)α∗(H).

The fractional vertex packing number of the graph G is the minimum, over all
assignments of non-negative real weights to the vertices of G with the property
that the sum of weights over any clique is at most 1, of the sum of weights of the
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vertices of G. The independence numbers are known in the following cases:

α
(
C2j

5

)
= 5j = ϑ(C5)2j(2)

α
(
Cd

k2d+1

)
= k(k2d + 1)d−1 = k2d−1

(
k2d + 1

2

)d−1

(3)

= α(Ck2d+1)α∗
(
Cd−1

k2d+1

)

α
(
Cd

k2d+3

)
=

k(k2d + 3)d + 1

k2d + 1
=

⌊(
2k(k2d + 3)d−1 + 1

k2d + 1

) (
k2d + 3

2

)⌋
(4)

=
⌊
α

(
Cd−1

k2d+3

)
α∗(Ck2d+3)

⌋

Equation (2) was established in the celebrated paper of Lovász [6]. Hales [4] and
Baumert et al [1] independently established (3), and Baumert et al [1] proved (4).
Given this state of affairs, the first interesting case is α(C3

8n+5). Setting

tn = (8n + 5)
(2n + 1)(8n + 5)− 1

2
,

we can summarize the current state of our understanding as follows:

tn ≤ α
(
C3

8n+5

)
≤ tn + 4n + 1.

The lower bound is given by construction [1],[2]. The upper bound is one less than
the bound given by (1) (as established in [1]). (For small values of n the Lovász
theta function gives a slightly better upper bound.) Baumert et al conjectured
that α(C3

8n+5) = tn for all n [1].
Now, we are ready to state our main results.

Theorem 1.

α
(
C3

8n+5

)
≤ tn + 2.

Our central interest is the development of new techniques for giving upper bounds
on the independence numbers of powers of odd cycles. The proof of Theorem 1
is a combination of structural considerations and a stability Lemma. The struc-
tural considerations are based on a classification of all maximum independent sets
in C2

4m+1 given by Hales [4] and Baumert et al [1]. The stability Lemma is a
classification of all independent sets S in C2

4m+1 such that |S| = α(C2
4m+1) − 1.

It turns out that all such independent sets are given by simple modifications of
maximum independent sets in C2

4m−3, C2
4m+1 or C2

4m+5. Very loosely speaking,
we use a stability result for the independent sets in C2

8n+5 to give an upper bound
on the independence number of C3

8n+5. For some values of n we determine the

independence number of C3
8n+5 exactly.

Theorem 2. If 8n + 5 is prime then α
(
C3

8n+5

)
= tn.
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K2,t minors in dense graphs

Maria Chudnovsky

(joint work with Bruce Reed and Paul Seymour)

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained
from a subgraph of G by contracting edges.

Mader [5] proved that for every graph H there is a constant CH such that
every graph G not containing H as a minor satisfies |E(G)| ≤ CH |V (G)|, but
determining the best possible constant CH for a given graph H is a question that
has been answered for very few graphs H , and not much research has gone into
questions of this type.

A particular case that has been intensively studied is when H is a complete
graph Kt (this is motivated by Hadwiger’s conjecture). One natural way to make
a large dense graph with no Kt minor is to take a complete graph of size t−2, and
add n−t+2 more vertices each adjacent to all vertices in the complete graph. This
produces an n-vertex graph with no Kt minor and with (t− 2)n− 1

2 (t− 1)(t− 2)
edges, and Mader[5] showed that for t ≤ 7 this is the maximum possible number
of edges in an n-vertex graph with no Kt minor, and it is natural to expect this
to extend to all t. But Mader also showed that for t ≥ 8 this is not the correct
expression, and Kostochka [2] and Thomason [6] showed that for large t and n the

maximum number of edges is O(t log(t)
1
2 )n.

This was something of a disappointment, but what about when H is a com-
plete bipartite graph Ks,t say? This case has also attracted a certain amount of
attention. Consider the following graph: let H1 be the union of disjoint copies
of the complete graph Kt, and H2 be a complete graph on s − 1 (new) vertices;
make every vertex of H1 be adjacent to every vertex of H2. This graph has no

Ks,t minor, and therefore CKs,t > (t+2s−3)
2 .

In [1] Myers proved that this is in fact best possible for s = 2 and large t:
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Theorem 1. Let t > 1029 be a positive integer. Then every graph with n vertices
and more than t+1

2 (n− 1) edges has a K2,t-minor.

Myers also conjectured that the average degree that guarantees a Ks,t minor,
also guarantees a K∗

s,t-minor, where K∗
s,t is the graph obtained form Ks,t by adding

all the edges between vertices on the “s-side” of the bipartition:

Conjecture 2. (Myers): For every positive integer s, there exist a number C(s),
such that for every positive integer t a graph with average degree C(s)t has a Ks,t-
minor.

In [4] Kuhn and Osthus proved a refinement of Myers’ conjecture for large t:

Theorem 3. For every ǫ > 0 and every positive integer s there exists a number
t0(s, ǫ) such that for all integers t ≥ t0 a graph with average degree at least (1 + ǫ)t
contains a K∗

s,t minor.

Kostochka and Prince [3] proved a stronger result, but under stronger assump-
tions:

Theorem 4. Let s, t be positive integers with t > (180s log2 s)1+6s log2 s. Then
every graph with n vertices and at least t+3s

2 (n − s + 1) edges contains a K∗
s,t

minor. On the other hand, for arbitrarily large N , there exist graphs with at least
N vertices and average degree at least t + 3s− 5

√
s that do not have a Ks,t minor.

The theorems above deal with the asymptotics of CKs,t when t is large compared
with s. In this paper, we concentrate on the case s = 2, but we do not impose any
restrictions on t. The following is our main theorem:

Theorem 5. Let t ≥ 2. Then every graph with n vertices and strictly more than
1
2 (t + 1)(n− 1) edges has a K2,t minor.

Thus we are able to strengthen Theorem 1 to include all values of t. Moreover,
Conjecture 2 is an easy corollary of Theorem 5.

We remark, that the graph with no K2,t minor described above is an extremal
example for the problem, and therefore the bound in Theorem 5 is best possible
when n − 1 is a multiple of t. However, for other values of n it may not be best
possible, and as far as we know, it could be way off. For instance, if n = 3

2 t,

Theorem 5 gives an upper bound of about 1
2 tn, but the best lower bound we know

is about 5
12 tn.
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π1(|G|), Earrings, and Limits of Free Groups

Reinhard Diestel

(joint work with Philipp Sprüssel)

This talk described our recent combinatorial characterization [2] of the fundamen-
tal group of the space |G| formed by a locally finite connected graph G and its
ends. We characterize π1(|G|) as a subgroup of a group F∞ of infinite words of
oriented chords of a suitable spanning tree T of G. The group F∞ in turn embeds
as a subgroup in the inverse limit of the free groups FI on the finite sets {~ei | i ∈ I}
of oriented chords. We thus have subgroup embeddings

π1(|G|)→ F∞ → lim←−FI ,

the first of which depends on the structure of G while the second does not.
Although |G|, known as the Freudenthal compactification of G, is the stan-

dard space in which a locally finite connected graph G—such as the Cayley graph
of a finitely generated group—is viewed topologically [4], its fundamental group
has never been studied explicitly. Implicitly, Higman [5], and later Cannon and
Conner [1], characterized it for the first interesting case, that G has exactly one
non-trivial end. In this case, |G| is homotopy-equivalent to the Hawaiian Earring
(Fig. 1), whose fundamental group is the entire group F∞.

T

ω

→
e0

→
e1

Figure 1. A graph theorist’s edition of the Hawaiian Earring

When G is finite, π1(|G|) = π1(G) is the free group on the set of (arbitrarily
oriented) chords of any spanning tree T of G. When there are infinitely many
chords, π1(|G|) is not a free group [5], and T must be chosen with care. Indeed, an
arbitrary spanning tree—such as the subgraph of the ladder obtained by deleting
all rungs but the first—may have circles in its closure in |G|, in which case there
are non-trivial loops in |G| that do not traverse any chords, and hence cannot
be represented by a word of chords. However, this is the only obstruction: any
spanning tree T whose closure contains no circle, indeed any topological spanning
tree [4] of G, can be used as the basis for our description of π1(|G|) as a subgroup
of F∞.

As with G finite, we represent loops in |G| by their trace of chords of T , i.e.
by a linearly ordered ‘word’ of oriented chords. These words may now be infinite,
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and of any countable order type. (However, each letter will occur only finitely
often.) For example, the loop α in the ladder of Figure 1 that runs through all the
chords along its bottom side from left to right and back, is encoded by the word
w = e0, e1, . . . | . . . e−1

1 , e−1
0 .

In order to capture homotopy of loops, we then have to define reduction of
words; for example, the word w above should reduce to the empty word, since α
is null-homotopic. When G is finite, one can generate the homotopy class of any
loop by local homotopies each retracting just one pass through a chord. Reduction
of words, correspondingly, can be achieved by cancelling pairs (e, e−1) of adjacent
inverse letters. This fails for our word w above, which contains no such pair.
But its desired reduction to the empty word can be achieved by cancelling a
‘pair of inverse subsequences’, (e0, e1, . . . ) and (. . . e−1

1 , e−1
0 ). So one might hope

that cancelling pairs of adjacent inverse subsequences, perhaps of any order type,
might capture all homotopies of paths and thereby define a suitable notion of the
reduction of words.

However, this is not the case. Indeed, let T2 be the infinite binary tree with ends,
edges arbitrarily oriented. One can construct a loop β through T2 that traverses
every edge exactly once in each direction. The trace of this loop in the edges of T2

contains no pair of inverse subsequences of length > 1, of any order type. Now turn
the edges of T2 into chords by doubling every edge, subdividing every new edge,
and letting T be the tree consisting of all the new edges. Then T is a topological
spanning tree of the resulting graph G, the original edges of T2 are its chords,
and β is a null-homotopic loop in |G| whose word of chords cannot be reduced
by cancelling any pair of adjacent inverse subsequences of letters. Moreover, the
obvious homotopy from β to a constant map obtained by sliding its image down
the tree T2 is not generated by local homotopies that retract β through one chord
at a time—at least not if discrete ‘time’ is expected to be well-ordered.

Our approach to this problem to stick to the idea that reduction of words should
happen by cancelling inverse pairs of adjacent letters in some linear order, but to
allow arbitrary order types also for this ordering. (In our earlier example, each
letter ei cancels with e−1

i , but this must be preceded by cancellations of all the

pairs (ej , e
−1
j ) with j > i: these have to be deleted first to make ei and e−1

i

adjacent.) We then have to show that from such word reductions we can indeed
recover homotopies of loops, and that those homotopies suffice to generate the
entire homotopy classes of loops. (Note that covering space theory is not available,
since |G| is not semi-locally simply connected at ends.) The first of these tasks
accounts for most of the paper. Its difficulty stems from the fact that homotopies
between loops have to satisfy continuity requirements at limits of chords that are
‘forgotten’ in the corresponding words of those chords.

Once reduction of a word w is known to yield a unique reduced word r(w), and
the combined map α 7→ wα 7→ r(wα) is known to be well-defined on homotopy
classes, we have a map 〈α〉 7→ r(wα) from π1(|G|) to F∞. This map turns out
to be an injective homomorphism. And we can determine its image precisely: a
sequence e0, e1, . . . of chords can clearly occur as a subsequence of the trace of a
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loop only if the en converge to an end of G, and we prove that the image of π1(|G|)
in F∞ consists of precisely those reduced words of chords whose subsequences all
converge in |G|. Similarly, we can precisely determine the image of F∞ under its
homomorphism to lim←−FI .

All in all, our combinatorial characterization of π1(|G|) reads as follows:

Theorem 1 ([2]). Let G be a locally finite connected graph. Let T be a topological
spanning tree of G. Let e0, e1, . . . be its chords, arbitrarily oriented.

(i) The map 〈α〉 7→ r(wα) is an injective homomorphism from π1(|G|) to the
group F∞ of reduced finite or infinite words in the letters en and their in-
verses, with image the set of words whose monotonic subwords converge
in |G|.

(ii) The homomorphisms w 7→ r(w ↾ I) from F∞ to FI , for I ⊂ N finite, embed
F∞ as a subgroup in lim←−FI . It consists of those elements of lim←−FI whose

projections r(w ↾ I) use each letter only boundedly often. (The bound may
depend on the letter.)

In [3], we apply Theorem 1 to prove that if G has at least one non-trivial end,
then the topological cycle space of G, viewed as a group, is a proper quotient of
the first singular homology group of |G|.
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Combinatorial Algebraic Topology

Dmitry N. Kozlov

This talk will be introduction to the book [1] recently published by the author.
The subject of Combinatorial Algebraic Topology is in a certain sense a classical
one, since modern algebraic topology derives its roots from dealing with various
combinatorially defined complexes and with combinatorial operations on them.
Yet the aspects of the theory that we consider here and that we distinguish under
the title of this talk are far from classical and have been brought to the attention
of the general mathematical public fairly recently.

If one asks oneself the question

What does Combinatorial Algebraic Topology do?
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then the answer will be the same of for regular algebraic topology: one computes
various algebraic invariants of topological spaces, for example homology groups,
or special cohomology elements such as characteristic classes; at times, one is even
able to determine the homotopy type. The discriminating feature is provided not
by what one is computing, but by how and for which classes of topological spaces
it is done.

More precisely, in this talk the focus will be on the algebraic topology of cellular
complexes, which are combinatorial both locally, meaning that the cell attachments
are simple, and globally. Being combinatorial locally usually means that we have
simplicial complexes, though more and more, further classes of complexes, such as
cubical and prodsimplicial ones, find their application in Combinatorial Algebraic
Topology. The word “globally” here refers to the fact that the cells themselves
are combinatorially enumerated. Of course, the meaning of being combinatorially
enumerated is open to interpretation, and probably cannot formally be pinned
down without the loss of the desired flexibility. Typically this alludes to the fact
that one has a bijection between cells and some objects that are universally per-
ceived as combinatorial, for example graphs, partitions, permutations, and various
combinations and enrichments (e.g., by labelings) of these.

Additionally, though the cell attachment maps are easy, the cell inclusions them-
selves indicate some combinatorial relationship between the objects that are in-
dexing the cells in question. Normally, to obtain the combinatorial objects that
are indexing the cells on the boundary of a given cell σ, one would need to perform
some combinatorial operation on the object that is indexing σ itself.

Such complexes arise in all sorts of contexts. Sometimes the complexes are
simply given directly, though more often they are induced implicitly. For exam-
ple, frequently one happens to consider a topological space that allows additional
structure, such as some kind of stratification. The combinatorial data that can be
extracted from such a stratification is the partially ordered set of strata. This is of
course a serious trivialization of the space, since only the bare incidence structure
is left. There are then standard ways, such as taking the nerve, to associate a sim-
plicial complex to this poset, with the idea that some of the algebro-topological
invariants of this complex will reflect something about the initial stratification.

This is an example of a procedure that constitutes the first of perhaps the three
major venues of Combinatorial Algebraic Topology: being able to derive new inter-
esting combinatorial objects by building suitable models for topological questions.
A classical example of this is the so-called Goresky–MacPherson formula: in short,
given a collection of linear subspaces, this formula provides a way to calculate the
cohomology groups of the complement of the union of these subspaces, in terms
of a certain “combinatorial model,” namely homology groups of the so-called or-
der complex of a combinatorial object associated to this family of subspaces, the
intersection lattice.

The second major venue is that the methods of computation that are estab-
lished as standard in algebraic topology lead to the unearthing of new discrete
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structures. For example, spectral sequences are such a tool, and once the filtra-
tion on the studied complex is chosen, the calculation, though possibly technically
challenging, is nonetheless uniquely determined. The subsequent steps in the com-
putation will unveil new combinatorial objects on a constant basis. As an example,
we refer to the computation of the homology groups of certain standard prodsim-
plicial complexes associated to cycle graphs. In performing the actual calculation
along the lines prescribed by the spectral sequence, one uncovers the important
Hom construction and witnesses the appearance of other classical instances of com-
binatorial complexes. This can trace its genesis to the original work of Eric Babson
and the author on the resolution of the Lovász Conjecture.

Finally, the third major venue is that the combinatorial properties of the index-
ing objects from discrete mathematics get distinguished by the topology, providing
a deeper insight both into the structure theory of these objects and into which part
of it is relevant for topology. For example, there are many operations on graphs.
However, it is specifically the operation of fold that has been singled out in the
study of the Hom complexes, based solely on the fact that it is extremely well
behaved from the topological point of view.

We will survey the subject of regular trisps and acyclic categories. If the time
will allow we shall also present discrete Morse theory in terms of the new concept
poset maps with small fibers.
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On disjoint arborescences

András Frank

(joint work with Kristóf Bérczi)

A directed tree is called an arborescence rooted at r0 if each node is reachable from
r0. A branching with root set R is a collection of |R| node-disjoint arborescences
where R is the set of roots of the arborescences. We call a set-system F ⊆ 2V

intersecting if

X, Y ∈ F , X ∩ Y 6= ∅ ⇒ X ∩ Y, X ∪ Y ∈ F
holds. We say that D

′
= (V, F ) covers F if ̺F (X) ≥ 1 holds for all X ∈ F where

̺F (X) denotes the number of arcs from F entering X .
In [5] J. Edmonds gave the following characterization of the existence of disjoint

spanning arborescences with the same root r0:

Theorem 1 (Edmonds’ theorem (weak form), 1973). In a digraph D = (V, A)
there exist k disjoint spanning arborescences rooted at r0 ⇔ ̺(Z) ≥ k for all
∅ 6= Z ⊆ V − r0.
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A simple proof of the theorem was given by L. Lovász in [1] in 1976. It was
observed in [2] that, by using Lovász’s proof technique, Edmonds’ theorem can be
extended as follows:

Theorem 2 (Frank, 1979). Let D = (V, A) be a digraph and F ⊆ 2V an inter-
secting family. Then A can be partitioned into k coverings of F ⇔ ̺(Z) ≥ k for
all Z ∈ F .

By choosing F = 2V −r0 − {∅} one obtains Edmonds’ theorem.
Edmonds actually proved a more general result by characterizing the existence

of disjoint branchings with prescribed root sets. The following theorem also can
be proved using Lovász’s approach:

Theorem 3 (Edmonds’ theorem (strong form), 1973). Let R1, ..., Rk ⊆ V be
root sets. There exist k disjoint branchings of root sets R1, ..., Rk, respectively ⇔
̺(X) ≥ p(X) for all ∅ 6= X ⊆ V where p(X) denotes the number of Ri’s disjoint
from X.

L. Szegő proved the following common generalization of Theorem 2 and 3:

Theorem 4 (Szegő, 2001). Let F1, ...,Fk be intersecting families with the follow-
ing mixed intersecting property:

X ∈ Fi, Y ∈ Fj , X ∩ Y 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj.

Then A can be partitioned into A1, ..., Ak such that Ai covers Fi ⇔ ̺(X) ≥ p(X)
for all X ⊆ V where p(X) denotes the number of Fi’s containing X.

It is easy to see that with the choice F1 = ... = Fk = F we get Theorem 2, while
choosing Fi = 2V −Ri−{∅} gives the strong form of Edmonds’ theorem. The proof
is based on the observation that the mixed intersecting property implies that p is
positively intersecting supermodular and hence Lovász’s approach works again.

Recently, N. Kamiyama, N. Katoh, and A. Takizawa in [4] proved yet another
generalization of Edmonds’ strong theorem:

Theorem 5 (Kamiyama-Katoh-Takizawa, 2008). Let D = (V, A) be a digraph
and a R = {r1, ..., rk} set of roots. Let Si denote the set of nodes reachable
from ri. There exist disjoint arborescences (S1, A1), ..., (Sk, Ak) rooted at r1, ..., rk,
respectively⇔ ̺(X) ≥ p(X) for all X ⊆ V where p(X) denotes the number of roots
ri for which ri /∈ X and Si ∩X 6= ∅.

The proof of the theorem also follows Lovász’s proof but it is more technical
because p is not supermodular in this case. Our main result is an extension of
Szegő’s theorem to bi-set families which implies the theorem of Kamiyama, Katoh
and Takizawa.

We call a pair X = (XO, XI) a bi-set if XI ⊆ XO ⊆ V . For X = (XO, XI), Y =
(YO, YI) let:

X ∩ Y = (XO ∩ YO, XI ∩ YI),

X ∪ Y = (XO ∪ YO, XI ∪ YI).

An arc e enters X if e enters both XO and XI . Our theorem -that can be consid-
ered as the extension of Szegő’s theorem to bi-set-systems- is the following:
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Theorem 6 (Covering bi-set-systems). Let F1, ...,Fk be intersecting families of
bi-sets on the ground set V , i.e.,

X, Y ∈ Fi, XI ∩ YI 6= ∅ ⇒ X ∩ Y, X ∪ Y ∈ Fi

for all i ∈ {1, ..., k}. Moreover:

X ∈ Fi, Y ∈ Fj, XI ∩ YI 6= ∅ ⇒ X ∩ Y ∈ Fi ∩ Fj .

The edge set of a digraph D = (V, A) can be partitioned into A1, ..., Ak such that
Ai covers Fi ⇔ ̺(X) ≥ p(X) for any bi-set X where p(X) denotes the number of
Fi’s containing X.

We call a subset X ⊆ V separable if there exists an i ∈ {1, ..., k} such that
X ∩ Si 6= ∅ and X \ Si 6= ∅. If there is no such i we call X non-separable. Let
F1, ...,Fk be defined as follows:

Fi = {(XO, XI) : XI ⊆ Si \ {ri}, XI is non-separable, XO ⊆ V \ Si}.
With this definition we get:

Claim 7. The bi-set-systems defined above satisfy the mixed intersecting property.

Claim 8. If ̺(Z) ≥ p
′
(Z) for all Z ⊆ V , then ̺(X) ≥ p(X) also holds for any

bi-set X, where p
′
(Z) denotes the number of roots ri for which ri /∈ Z, Si ∩X 6= ∅

and p(X) denotes the number of Fi’s containing X.

Claim 9. If Ai ⊆ A covers Fi then it includes an arborescence Fi rooted at ri

that spans Si.

Theorem 6, along with these claims, implies the theorem of Kamiyama, Katoh
and Takizawa. Since it also extends Szegő’s theorem it can be considered as a
generalization of all previous theorems.
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Intersecting families of permutations, an algebraic approach.

Ehud Friedgut

(joint work with Haran Pilpel)

A family X ⊂ Sn is called intersecting if for every σ, τ ∈ X there exists i such
that σ(i) = τ(i). Deza and Frankl [2], in 1977, observed that the maximal size of
such a family is (n − 1)!, and conjectured that the unique extremal examples are
the cosets of stabilizers of points. This was confirmed by Cameron and Ku[1], and
independently by Larose and Malvenuto [3] in 2003.

We provide a new proof of this using representation theory of Sn. Basically
what we do is this:

(1) Define the Cayley graph that describes the problem
(2) Use Hoffman’s bound on the independence number in terms of the eigen-

values of the graph.
(3) Characterize the case of equality.

For step (2) we need to calculate the eigenvalues in terms of the different irre-
ducible characters of Sn. We show that the minimal eigenvalue is associated with
the (n − 1)-dimensional representation whose sum with the trivial one gives the
permutation representation.

This, in turn, teaches us that in the case of equality the Fourier transform of the
intersecting family is concentrated on that representation, the trivial one, and no
others. We then recompose the trivial representation and the (n− 1) dimensional
one to get back the permutation representation, and use the Fourier inversion
formula to deduce that for all irreducible ρ

f̂(ρ)2 =
1

n
f̂(ρ)

where f is the characteristic function of our family. This implies that X is a
subgroup of index n, and we’re done.
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Color critical hypergraphs, a new algebraic proof for Lovász’ theorem

Zoltán Füredi

(joint work with Attila Sali)

A k-uniform hypergraph (V, E) is 3-color critical if it is not 2-colorable, but for all
E ∈ E the hypergraph (V, E \ {E}) is 2-colorable. The only 3-color critical graphs
are the odd cycles. The investigation of color critical graphs is among the oldest
problems of extremal combinatorics (see e.g., Dirac [3] from 1952). Toft [7] proved
that there exist 4-chromatic critical graphs G with more than 1

16 |V (G)|2 edges
(conjectured by P. Erdős). He also gave rather sharp upper and lower bounds on
the maximum number of edges in c-critical k-chromatic hypergraphs, except in the
case 3. For some recent results and generalizations see [4] or [6]. Many problems
remain open.

Lovász [5] proved in 1976, that

(1) |E| ≤
(

n

k − 1

)

for a 3-color critical k-uniform hypergraph. He used a sieve method in a very
clever way. The aim of this talk was to present a short proof for (1) using the
algebraic method.

The main tool of the proof is a refinement of following result which was proved
in [1] and that can be considered as generalization of Lovász’ result.

Theorem 1. Let E ⊆
(
[m]
k

)
be a k-uniform set system on an underlying set X of

m elements. Let us fix an ordering E1, E2, . . . Et of E and a prescribed partition
Ai∪Bi = Ei (Ai∩Bi = ∅) for each member of E. Assume that for all i = 1, 2, . . . , t
there exists a partition Ci ∪ Di = X (Ci ∩ Di = ∅), such that Ei ∩ Ci = Ai and
Ei ∩ Di = Bi, but Ej ∩ Ci 6= Aj and Ej ∩ Ci 6= Bj for all j < i. (That is, the
ith partition cuts the ith set as it is prescribed, but does not cut any earlier set
properly.) Then

(2) t ≤
(

m

k − 1

)
+

(
m

k − 2

)
+ . . . +

(
m

0

)
.

Theorem 1 was applied in estimates concering the size of a matrix with forbidden
subconfigurations, more on this, see, e.g. [2].
Proof of Theorem 1 (Sketch): We define a polynomial pi(x) ∈ R[x1, x2, . . . , xm]
for each Ei as follows.

(3) pi(x1, x2, . . . , xm) =
∏

a∈Ai

(1− xa)
∏

b∈Bi

xb + (−1)k+1
∏

a∈Ai

xa

∏

b∈Bi

(1 − xb)

Polynomials defined by (3) are multilinear of degree at most k − 1, since the
product

∏
e∈Ei

xe cancels by the coefficient (−1)k+1. Thus, they are from the space

generated by monomials of type
∏r

j=1 xij , for r = 0, 1, . . . k− 1. The dimension of

this space over R is
(

m
k−1

)
+

(
m

k−2

)
+ . . .+

(
m
0

)
. Finally, one prove that polynomials

p1(x), p2(x), . . . pt(x) are linearly independent over R, which implies (2). �
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Convex sets in acyclic digraphs

Stefanie Gerke

(joint work with Paul Balister and Gregory Gutin)

Let D be an acyclic digraph of order n. A non-empty set X of vertices in D is
convex if there is no directed path in D between vertices of X containing a vertex
not in X . A non-empty set X of vertices in D is connected if the underlying
undirected graph of D[X ], the subgraph of D induced by X , is connected. The
set of all convex sets of D is denoted by CO(D) and its size by co(D). The set of
all connected convex sets of D is denoted by CC(D) and its size by cc(D). Convex
sets and connected convex sets in acyclic digraphs are of interest in the field of
custom computing in which central processor architectures are parameterized for
particular applications, see, e.g., [1, 2].

Gutin, Johnstone, Reddington, Scott, Soleimanfallah, and Yeo [2] introduced
an algorithm A determining all connected convex sets of D in time O(n · cc(D)).
where n = |V (D)| is the order of D. They observed that A can be modified to
produce all convex sets in time O(n · co(D)). The authors of [2] conjectured that
the sum of the sizes of all convex sets (all connected convex sets, respectively) in D
equals Θ(n · co(D)) (Θ(n · cc(D)), respectively). If the conjecture were true, then
their algorithms would be optimal. The conjecture can be formulated differently.
Let s̄co(D) and s̄cc(D) be the average size of a convex set and the average size
of a connected convex set in D. The conjecture claims that s̄co(D) = Θ(n) and
s̄cc(D) = Θ(n).

We disprove both parts of the conjecture by showing that the following family
F = {D1, D2, . . .} of digraphs satisfies s̄co(D) = O(

√
n) and s̄cc(D) = O(

√
n). For

t = 1, 2, . . . and r = ⌈
√

t⌉, the acyclic digraph Dt consists of vertex set V (Dt) =
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xt−3 xt−2 xt−1 xt z x′
1 x′

2 x′
3 x′

4

Figure 1. Digraphs from F

X ∪ Y ∪ {z} ∪ Y ′ ∪X ′, where

X = {xi : i ∈ [t]}, X ′ = {x′
i : i ∈ [t]},

Y = {yj : i ∈ [r]}, Y ′ = {y′
j : i ∈ [r]},

and arc set

A(Dt) = {xixi+1, x
′
ix

′
i+1 : i ∈ [t− 1]} ∪ {xtyj , yjz, zy′

j, y
′
jx

′
1 : j ∈ [r]}.

For illustration, see Figure 1. We also introduce a simple algorithm that returns
all convex sets in time O(

∑
C∈CO(D) |C|) which is clearly asymptotically optimal.

The question whether O(ncc(D)) is the asymptotically best running time to com-
pute all connected convex set of a digraph of size n remains open.

We also show that each connected digraph of order n contains at least n−k + 1
connected convex sets of size k for each 1 ≤ k ≤ n. This extends a result of Gutin
and Yeo [3] who showed that each connected acyclic digraph of order n has at least
n(n + 1)/2 connected convex sets.
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Arrow’s and Gibbard-Satterthwaite theorems

Gil Kalai

(joint work with Ehud Friedgut and Noam Nisan)

A social choice function aggregates the preferences of all members of society to-
wards a common social choice. Formally, let [m] be a set of m alternatives (can-
didates), over which n voters have preferences. The preferences of the ith voter
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are specified as xi ∈ L, where L denotes the set of full orders over [m] (thus L
corresponds to Sm). Using this notation, a social choice function is a function
f : Ln → [m]. We will also write the vector x of preferences as (xi, x−i) when
wanting to single out the vote of the i’th voter, or as (x′

i, x−i) after changing the
ith coordinate to x′

i.
There is a vast literature on the design of social choice functions, also called

voting methods or election rules.
One of the basic desired properties from a social choice function is implied by

our thinking of them as “asking the voters about their preferences”: voters should
not gain from reporting false preferences rather than their true ones. Formally:

Definition 1. A (profitable) manipulation by voter i of a social choice function f
at profile (x1, . . . , xn) is a preference x′

i such that f(x′
i, x−i) is preferred by voter

i to f(xi, x−i).

Intuitively, if such a manipulation exists, then voter i would be better off by
“voting strategically”: reporting x′

i as his preference rather than the true xi.
The Gibbard-Satherwaite theorem [Gib73, Sat75] states that every “non-trivial”
social choice function is strategically vulnerable, where “nontrivial” means not a
dictatorship and whose range contains at least three alternatives. We ask how
often does this happen: for what fraction of profiles does such a manipulation
exist? 1 Can it be tiny? Perhaps exponentially small? Let us define the following
quantification of the probability of a random manipulation:

Definition: The manipulation power of voter i on a social choice function f ,
denoted Mi(f), is the probability that x′

i is a profitable manipulation of f by voter
i at profile (x1, . . . , xn), where x1, . . . , xn and x′

i are chosen uniformly at random
among all full orders on [m].

This definition assumes a uniform distribution over preferences, which while
certainly unrealistic, is the natural choice for proving a “lower bound”2. In partic-
ular, the lower bound, up to a factor δ, applies also to any distribution that gives
each preference profile at least a δ fraction of the probability given by the uniform
distribution.

To formally state our main theorem, we will require a few standard definitions:
A social choice function is neutral if the names of the candidates “do not matter”,
formally, if f commutes with permutations of [m], i.e. f(σ(x1), . . . , σ(xn)) =
σ(f(x1, . . . , xn)). A dictatorship is a social choice function that always chooses
the top choice of a fixed voter. The distance of f from a dictatorship is simply the
minimal fraction of values that need to be changed to turn f into a dictatorship.

1Functions that are very close to being a dictatorship may have a very small number of such

manipulable profiles so this paper is concerned with social choice functions that are far from
being trivial.

2Note that we cannot hope for an impossibility result for every distribution, e.g. since for
every social choice function we can take a distribution on its non-manipulable profiles.
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Main Theorem: There exists a constant C > 0 such that For every ǫ > 0, if f
is a neutral social choice function among 3 alternatives for n voters that is ǫ-far
from dictatorship, then:

∑n
i=1 Mi(f) ≥ Cǫ2.

This immediately implies that for fixed ǫ, some voter has non-negligible ma-
nipulation power maxi Mi(f) ≥ Ω(1/n). It is easy to see that one cannot bound
maxi Mi(f) below by a constant independently of n since for the plurality voting
method Mi(f) = θ(1/

√
n) Furthermore, for the plurality voting method only for

a 1/
√

n fraction of profiles can manipulated at all by any single player. While it is
easy to see that the bound on

∑
i Mi(f) cannot be improved to being more than a

constant, the first open problem we leave is whether the bound on maxi Mi(f) can
be improved further. We also do not know how to replace the neutrality condition
with the weaker “correct” condition: being far from having a range of size at most
2. We leave this as the second open problem.

Our third open problem concerns the case of more than three alternatives,
m > 3. While some parts of our proof extend to this case, (and indeed we took
the care to state them in the general form), we were not able to extend all required
parts of the proof. We do conjecture that the theorem does generalize to m > 3,
perhaps with the exact form of the bound decreasing polynomially in m. This is
our third open problem.

A word is in order regarding our techniques. Our starting point is the recent
work of [Ka02] that obtained quantitative versions of Arrow’s theorem [Arr51] us-
ing methods that involve the Fourier transform on the boolean hypercube. Our
proof then has two further components. First, a “quantitative-preserving” reduc-
tion from Arrow’s theorem to a variant of the Gibbard-Satherwaite theorem that
allows multi-voter manipulation, and then a directed isoperimetric inequality that
allows us to move to single-voter manipulation. Our proof of the isoperimetric
inequality relies on the FKG correlation inequality [FKG71] (or, more precisely,
on Harris’ inequality, [Ha60]).
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Coloring uniform hypergraphs with few edges

Alexandr Kostochka

(joint work with Mohit Kumbhat)

The girth of a hypergraph is the length of its shortest cycle. A hypergraph of girth
at least three is also called simple. Let m(r, t, g) denote the smallest number of
edges in an r-uniform hypergraph with girth at least g and chromatic number at
least t + 1. In their seminal paper [1], Erdős and Lovász gave upper bound

(1) m(r, t, g) ≤ 4 · 20g−1r3g−5t(g−1)(r+1)

for all g and lower bound

(2) m(r, t, 3) ≥ t2(r−2)

16r(r − 1)2

for simple hypergraphs. The ratio of the upper bound to the lower bound for
simple hypergraphs is only r7. The bound (2) was derived from the following
famous result.

Theorem 1. [1] If t, r ≥ 2, then every r-uniform hypergraph H with maximum
degree at most 1

4 trr−1 is t-colorable.

To derive the bound, they used an interesting trick of trimming.
Szabó [2] refined the bound of Theorem 1 for simple hypergraphs as follows.

Theorem 2. If t ≥ 2, and ǫ > 0 are fixed and r is sufficiently large, then every
r-uniform simple hypergraph H with maximum degree at most trr−ǫ is t-colorable.

Actually, he proved the theorem only for t = 2, since that was what he needed
for his applications, but the technique works for any fixed t. Again, applying
trimming and this theorem, one easily gets that for fixed t and ǫ and large r,

(3) m(r, t, 3) ≥ t2r

r1+ǫ
.

The main result of this talk says that for fixed t ≥ 2 and ǫ > 0 and sufficiently
large r, if a simple r-uniform hypergraph H cannot be colored with t colors, then
either it has a vertex of degree greater than r tr, or there are ”many” vertices
of degree greater than trr−ǫ. This will improve the bound (3) by a factor of r.
Furthermore, we extend our bound to b-simple hypergraphs.

A hypergraph H is b-simple if |e ∩ e′| ≤ b for every distinct e, e′ ∈ E(H).
A 1-simple hypergraph is a simple hypergraph. Let f(r, t, b) denote the smallest
number of edges in an r-uniform b-simple hypergraph that is not t-colorable. From
our main result we deduce that for fixed t, b and ǫ > 0 and sufficiently large r,

(4) f(r, t, b) ≥ tr(1+1/b)

rǫ
.
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It turns out that the bound cannot be improved by more than a factor poly-
nomial in r. Using the technique of the proof of (2) in [1], we show that for large
r,

(5) f(r, t, b) ≤ 40t2
(
trr2

)1+1/b
.

We also use our main result and trimming to derive the following lower bounds
on m(r, t, g) for arbitrary fixed g (in [1], the bound was only for g = 3):

(6) m(r, t, 2s + 1) ≥ tr(1+s)

rǫ
,

if r is large in comparison with t, s and 1/ǫ.

Remark. It looks that during the meeting, Vojtech Rödl jointly with the
speaker managed to somewhat improve the upper bounds (1) and (5).
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[1] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and some related
questions, Infinite and finite sets, Colloquia Math. Soc. János Bolyai, Vol. 10 (1973), 609–
627.
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On the poset of generalised non-crossing partitions associated to
reflection groups

Christian Krattenthaler

In his 2006 thesis [1], Drew Armstrong introduced a new family of posets associated
to finite reflection groups, which have many interesting and fascinating properties.
We find several of them in [1], but at the same time [1] contains many open
problems and conjectures which spurred further work. In this abstract, some
results on enumerative aspects of these posets are summarized.

We start by defining the posets. Let Φ be a finite root system of rank n, and
let W = W (Φ) be the corresponding reflection group. For all reflection group
terminology, we refer the reader to [8]. We define first the non-crossing partition
lattice NC(Φ) (cf. [3, 4]). By definition, any element w of W can be represented
as a product w = t1t2 · · · tℓ, where the ti’s are reflections. We call the minimal
number of reflections which is needed for such a product representation the absolute
length of w, and we denote it by ℓT (w). We then define the absolute order on W ,
denoted by ≤T , via

u ≤T w if and only if ℓT (w) = ℓT (u) + ℓT (u−1w).

As is well-known and easy to see, this is equivalent to the statement that every
shortest representation of u by reflections occurs as an initial segment in some
shortest product representation of w by reflections. Let c be a Coxeter element
in W . Then NC(Φ) is defined to be the restriction of the partial order ≤T to
the set of all elements which are less than or equal to c in this partial order.
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This definition makes sense since any two Coxeter elements in W are conjugate
to each other; the induced inner automorphism then restricts to an isomorphism
of the posets corresponding to the two Coxeter elements. It can be shown that
NC(Φ) is in fact a lattice (see [5] for a uniform proof), and moreover self-dual
(this is obvious from the definition). Clearly, the minimal element in NC(Φ) is
the identity element in W , which we denote by ε, and the maximal element in
NC(Φ) is the chosen Coxeter element c. The term “non-crossing partition lattice”
is used because NC(An) is isomorphic to the lattice of non-crossing partitions of
{1, 2, . . . , n + 1}, originally introduced by Kreweras [12] (see also [7]), and since
also NC(Bn) and NC(Dn) can be realised as lattices of non-crossing partitions
(see [2, 14]).

In addition to a fixed root system, the definition of Armstrong’s generalised non-
crossing partitions require a fixed positive integer m. The poset of m-divisible non-
crossing partitions associated to the root system Φ has as ground-set the following
subset of (NC(Φ))m+1:

NCm(Φ) =
{

(w0; w1, . . . , wm) : w0w1 · · ·wm = c and

ℓT (w0) + ℓT (w1) + · · ·+ ℓT (wm) = ℓT (c)
}
.

The order relation is defined by

(u0; u1, . . . , um) ≤ (w0; w1, . . . , wm) if and only if ui ≥T wi, 1 ≤ i ≤ m.

The poset NCm(Φ) is graded by the rank function

rk
(
(w0; w1, . . . , wm)

)
= ℓT (w0).

Thus, there is a unique maximal element, namely (c; ε, . . . , ε), where ε stands for
the identity element in W , but, for m > 1, there are many different minimal
elements. In particular, NCm(Φ) has no least element if m > 1; hence, NCm(Φ)
is not a lattice for m > 1. (It is, however, a graded join-semilattice, see [1,
Theorem 3.4.4].) Combinatorial realisations of NCm(Φ) for the classical types
Φ = An, Bn, Dn are known and are summarised in [11, Sec. 7].

We are interested in rank selected chain enumeration in NCm(Φ), that is, in
the enumeration of all (multi-)chains x1 ≤ x2 ≤ · · · ≤ xl−1 in NCm(Φ), where
rk(xi) = ri, i = 1, 2, . . . , l − 1, for fixed r1, r2, . . . , rl. It suffices to solve this
problem for the irreducible root systems. For the case of type An, the problem
had already been solved by Edelman [6, Theorem 4.2].

Theorem 1. The number of (multi-)chains x1 ≤ x2 ≤ · · · ≤ xl−1 in NCm(An)
with rk(xi) = s1 + s2 + · · ·+ si, i = 1, 2, . . . , l − 1, is given by

1

n

(
n

s1

)(
mn

s2

)
· · ·

(
mn

sl

)
,

where s1 + s2 + · · ·+ sl = n.

Armstrong solved the corresponding problem in type Bn in [1, Theorem 4.5.7].
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Theorem 2. The number of (multi-)chains x1 ≤ x2 ≤ · · · ≤ xl−1 in NCm(Bn)
with rk(xi) = s1 + s2 + · · ·+ si, i = 1, 2, . . . , l − 1, is given by

(
n

s1

)(
mn

s2

)
· · ·

(
mn

sl

)
,

where s1 + s2 + · · ·+ sl = n.

In joint work with T. Müller, the author proved the corresponding result in
type Dn; see [11, Cor. 19].

Theorem 3. The number of (multi-)chains x1 ≤ x2 ≤ · · · ≤ xl−1 in NCm(Dn)
with rk(xi) = s1 + s2 + · · ·+ si, i = 1, 2, . . . , l − 1, is given by

2

(
n− 1

s1

)(
m(n− 1)

s2

)
· · ·

(
m(n− 1)

sl

)

+ m

l∑

j=2

(
n− 1

s1

)(
m(n− 1)

s2

)
· · ·

(
m(n− 1)− 1

sj − 2

)
· · ·

(
m(n− 1)

sl

)

+

(
n− 2

s1 − 2

)(
m(n− 1)

s2

)
· · ·

(
m(n− 1)

sl

)
,

where s1 + s2 + · · ·+ sl = n.

While Theorems 1 and 2 are proved in bijective ways, the proof of Theorem 3 in
[11] is highly non-bijective. In fact, what is computed in [11] are finer invariants of
W (Dn) (and also of W (An−1) and W (Bn)): so-called decomposition numbers for
finite reflection groups. The result in Theorem 3 then follows upon carrying out
certain summations involving the decomposition numbers. Further enumerative
results, in which conditions are imposed on the block sizes of elements, can as well
be found in [11].

Since the decomposition numbers for the exceptional reflection groups are known
as well from [9] and [10], the rank selected chain enumeration can also be carried
out in the m-divisible non-crossing partitions associated to the exceptional reflec-
tion groups. For example, the number of all chains x1 ≤ x2 ≤ x3 in NCm(E8),
where x1 is of rank 4, x2 is of rank 6, and x3 is of rank 7, is given by

75m3 (8055m− 1141)

2
.

In closing, we point out that very recently Reading has found a very surprising
uniform recurrence relation for rank selected chain enumeration in [13].
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Cycles in directed graphs

Daniela Kühn

(joint work with Peter Keevash, Luke Kelly, Deryk Osthus, and Andrew
Treglown)

A central topic in graph theory is that of giving conditions under which a graph
is Hamiltonian. One such result is the classical theorem of Dirac [3], which states
that any graph on n ≥ 3 vertices with minimum degree at least n/2 contains a
Hamilton cycle. For an analogue in directed graphs it is natural to consider the
minimum semi-degree δ0(D) of a digraph D, which is the minimum of its minimum
outdegree δ+(D) and its minimum indegree δ−(D). The corresponding result is
a theorem of Ghouila-Houri [4], which states that any digraph on n vertices with
minimum semi-degree at least n/2 contains a Hamilton cycle. (When referring
to paths and cycles in directed graphs we always mean that these are directed,
without mentioning this explicitly.) Both of these results are best possible.

In 1979 Thomassen [13] raised the natural corresponding question of determin-
ing the minimum semi-degree that forces a Hamilton cycle in an oriented graph
(i.e. in a directed graph that can be obtained from a (simple) undirected graph by

orienting its edges). He [15] showed that a minimum semi-degree of n/2−
√

n/1000
suffices (see also [14]). Note that this degree requirement means that the oriented
graph is not far from being a regular tournament. Häggkvist [5] constructed an
example which gives a lower bound of (3n − 5)/8. He also improved the upper
bound to (1/2 − 2−15)n. Later Häggkvist and Thomason [6] improved the upper
bound further to (5/12 + o(1))n. Recently, Kelly, Kühn and Osthus [8] obtained
an approximate solution. They proved that an oriented graph on n vertices with
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minimum semi-degree at least (3/8 + o(1))n has a Hamilton cycle. The following
result of Keevash, Kühn and Osthus [7] gives the exact bound for large oriented
graphs.

Theorem 1. [7] There exists a number n0 so that any oriented graph G on n ≥ n0

vertices with minimum semi-degree δ0(G) ≥
⌈

3n−4
8

⌉
contains a Hamilton cycle.

Note that Theorem 1 implies that every sufficiently large regular tournament
on n vertices contains at least n/8 edge-disjoint Hamilton cycles. (To verify this,
note that in a regular tournament, all in- and outdegrees are equal to (n − 1)/2.
We can then greedily remove Hamilton cycles as long as the degrees satisfy the
condition in Theorem 1.) This is the best bound so far towards the classical
conjecture of Kelly (see e.g. [1]), which states that every regular tournament on n
vertices can be partitioned into (n− 1)/2 edge-disjoint Hamilton cycles.

Häggkvist [5] also made the following conjecture which is closely related to
Theorem 1. Given an oriented graph G, let δ(G) denote the minimum degree
of G (i.e. the minimum number of edges incident to a vertex) and set δ∗(G) :=
δ(G) + δ+(G) + δ−(G). Häggkvist conjectured that if δ∗(G) > (3n− 3)/2, then G
has a Hamilton cycle. (Note that this conjecture would not quite imply Theorem 1
as it results in a marginally greater minimum semi-degree condition.) In [8], this
conjecture was verified approximately:

Theorem 2. [8] For every α > 0 there exists a number n0 so that any oriented
graph G on n ≥ n0 vertices with δ∗(G) ≥ (3/2 + α)n has a Hamilton cycle.

Using Ghouila-Houri’s theorem it is easy to show that every digraph D with
minimum semi-degree > n/2 is vertex-2-pancyclic, i.e. every vertex of D lies on a
cycle of length ℓ for every ℓ = 2, . . . , n. The following result of Kelly, Kühn and
Osthus [9] provides an approximate analogue of this for oriented graphs.

Theorem 3. [9] For every α > 0 there exists a number n0 so that any oriented
graph G on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ (3/8 + α)n is
vertex-4-pancyclic, i.e. every vertex of G lies on a cycle of length ℓ for every
ℓ = 4, . . . , n.

Theorem 3 is best possible in the sense that one cannot guarantee vertex-3-
pancyclicity: there are infinitely many oriented graphs with minimum semi-degree
2n/5 − 1 which have a vertex that does not lie on a triangle (see [9]). However,
combining Theorem 3 with a result of (e.g.) Shen [12] on the triangle case of
the Caccetta-Häggkvist conjecture implies that the minimum semi-degree in The-
orem 3 forces G to be pancyclic, i.e. G contains a cycle of length ℓ for every
ℓ = 3, . . . , n.

Clearly, the bound on the minimum semi-degree in Theorem 3 is best possible
up to the term αn. However, to force cycles of fixed length containing any given
vertex a much smaller minimum semi-degree suffices:

Theorem 4. [9] For every ℓ ≥ 4 there exists a number n0 so that whenever G is
an oriented graph on n ≥ n0 vertices with minimum semi-degree δ0(G) ≥ ⌊n/3⌋+1
then every vertex of G lies on a cycle of length ℓ.
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The bound in Theorem 4 is best possible. Indeed, if ℓ is not divisible by 3 then
a ‘blow-up’ of a triangle has minimum semi-degree ⌊n/3⌋ but does not contain a
cycle of length ℓ. If ℓ is divisible by 3 there are infinitely many oriented graphs
with minimum semi-degree ⌊n/3⌋ having a vertex that does not lie on a cycle of
length ℓ. However, for such ℓ, it is an open problem to determine the minimum
semi-degree which forces a cycle of length ℓ (not necessarily containing a given
vertex), see [9] for partial results and a discussion of this.

Another way to force Hamilton cycles in graphs is by imposing conditions on
the degree sequence. For undirected graphs this question is settled by Chvátal’s
theorem [2] which characterizes the degree sequences forcing a Hamilton cycle. It
states that a graph G is Hamiltonian if its degree sequence d1 ≤ · · · ≤ dn satisfies

dk ≤ k =⇒ dn−k ≥ n− k

for all k < n/2. This condition on the degree sequence is best possible. Nash-
Williams [11] conjectured that for digraphs the following analogue holds. Let
d+
1 ≤ · · · ≤ d+

n and d−1 ≤ · · · ≤ d−n be the out- and indegree sequences of a strongly
connected digraph D. If

d+
k ≤ k =⇒ d−n−k ≥ n− k

and
d−k ≤ k =⇒ d+

n−k ≥ n− k

for all k < n/2 then D contains a Hamilton cycle. The following result of Kühn,
Osthus and Treglown [10] provides an approximate version of this conjecture:

Theorem 5. [10] For every α > 0 there exists a number n0 so that the following
holds. Let d+

1 , . . . , d+
n and d−1 , . . . , d−n be the out- and indegree sequences of a

digraph D on n ≥ n0 vertices. Suppose that

d+
k ≤ k + αn =⇒ d−n−k−αn ≥ n− k

and
d−k ≤ k + αn =⇒ d+

n−k−αn ≥ n− k

for all k < n/2. Then D contains a Hamilton cycle.

See [10] for a related result on pancyclicity.
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Euclidean Ramsey Theory

Imre Leader

(joint work with Paul Russell and Mark Walters)

We say that a finite set S, in some Euclidean space R
d, is Ramsey if for any k there

is an n such that whenever R
n is k-coloured there is a monochromatic set isometric

to S. The study of which sets are Ramsey is called Euclidean Ramsey Theory.
Initial progress was made by Erdős, Graham, Montgomery, Rothschild, Spencer
and Straus, who proved that any subset of a brick (cuboid), in any dimension, is
Ramsey, and also that every Ramsey set must be spherical, meaning that it lies on
the surface of some sphere. The conjecture made there was that every spherical
set is Ramsey, and this conjecture has dominated subsequent work in Euclidean
Ramsey Theory. Progress towards this has been slow: Frankl and Rödl showed
that every triangle is Ramsey, and then showed that every simplex is Ramsey.
Kř́ıž showed that every regular polygon is Ramsey, and in fact proved more: that
any set on which a cyclic group (or indeed a soluble group) of isometries acts
transitively must be Ramsey. We have a new conjecture. Our idea is based on a

principle that we have observed in operation in all papers on Euclidean Ramsey
Theory so far. In each case, it seems that, to prove a set is Ramsey, one first
embeds it in a transitive set (a set whose isometry group acts transitively), and
then makes some clever combinatorial arguments to show that this transitive set
has the Ramsey property required. The actual machinery for this can differ greatly
from paper to paper, and the transitive set can have a much higher dimension than
the original set, but we have noticed that this transitivity is always present. Based
on this, and some other facts, we are led to conjecture that transitivity is the key:
that a set is Ramsey if and only if it embeds in a transitive set.

This would have implications for all parts of the theory. On the one hand, all
known results that particular sets are Ramsey would be subsumed in, and unified
by, this result. On the other hand, the key result on the ‘other direction’, that
Ramsey sets must be spherical, which at the moment is a rather technical and
unenlightening argument, would become a natural and automatic deduction (it is
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a very simple exercise to show that every transitive set must be spherical – by
considering its minimal circumscribing sphere).

Until recently, we did not know if our conjecture would prove or disprove the
classical conjecture that all spherical sets are Ramsey. In other words, we did not
know if every spherical set embeds in some transitive set. However, Russell has
now proved that, for k ≥ 18, there exist cyclic k-gons that do not embed in any
transitive set.

Word maps, graph lifts and spectra

Nati Linial

(joint work with Doron Puder)

Let w 6= 1 be a formal word, i.e., an element of the free group Fk with genera-
tors g1, . . . , gk. For permutations s1, . . . , sk ∈ Sn, let w(s1, . . . , sk) ∈ Sn be the
permutation obtained by replacing for each i, every occurrence of gi in w by si.
In the word map associated with w, the permutations si are selected uniformly
at random, and one considers the resulting probability distribution on Sn. Such
distributions are of interest in various fields (see [LSh07] and the references therein
for the group-theoretic perspective). In [Nica94], A. Nica made a very interesting

discovery: Consider X
(n)
w,L, the random variable on S k

n that counts the number

of cycles of length L in w(s1, . . . , sk). Nica’s theorem determines for every fixed

w and L the limit distribution (as n → ∞) of X
(n)
w,L. Surprisingly, perhaps, the

answer depends only on the largest integer d so that w = ud for some u ∈ Fk. Our
first result is a significantly shorter and more conceptual proof of this theorem.
Our method of proof suggests several conjectures which roughly state that the ex-

pectation of X
(n)
w,L is bounded from below by its limit. We prove several (partial)

results in this vein.
In combinatorics, word maps appear in the study of graph spectra. We next

consider the second eigenvalue, λ, of random d-regular graphs. Broder and Shamir
[BS87] had shown that λ(G) = O(d3/4) holds almost surely. In a recent tour-de-
force Friedman [Fri04] showed that for every ǫ > 0, almost every d-regular graph
satisfies λ(G) ≤ 2

√
d− 1 + ǫ. Our method yields a simple proof to a result of

intermediate strength. Namely, that λ(G) = O(d2/3) holds almost surely.
Word maps appear in a natural way in the study of lifts of graphs in that

they control the cycle distribution of the lifted graph. In this context we mention
another work of Friedman [Fri03] (which is easily seen to include the Broder-Shamir
work). Let G be a finite connected graph and let T be (the infinite) universal cover
tree of G. Let D be the spectral radius of (the adjacency matrix of) G and let ρ be
the spectral radius of T . Friedman showed that asymptotically almost every n-lift
of G has spectral radius ≤ O(

√
Dρ). He also conjectured that the same holds with

spectral radius ρ+ o(1). This conjecture, if true would be a far-reaching extension
of many theorems and conjectures in this area and in particular of Friedman’s
own [Fri04]. We are at present able to improve Friedman’s result to O(D1/3ρ2/3).
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Some of our aforementioned conjectures suggest an approach which may lead to a
resolution of this problem.

We refer the reader to [HLW06] for a comprehensive coverage of this area.
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How many points can be reconstructed from k projections?

Jiř́ı Matoušek

(joint work with Aleš Př́ıvětivý and Petr Škovroň)

Let A be a finite set of points in the plane. The discrete X-ray of A in direction u
specifies the number of points of A on every line parallel to u (this terminology is
borrowed from the field of geometric tomography). We say that A is reconstructible
for directions u1, u2, . . . , uk if there is no B 6= A such that for all i = 1, 2, . . . , k,
the X-rays of A and B in direction ui are identical.

As was observed several times (the earliest reference seems to be Rényi [Rén52]),
every set A of k− 1 or fewer points is reconstructible for any k distinct directions.
(To see this, we suppose that some A 6= B have the same X-rays in directions
u1, . . . , uk, we fix a point a ∈ A \B, and we note that each line through a parallel
to some ui has to contain a point of B, forcing |B| ≥ k.) If the directions are
chosen by an adversary, then we cannot do any better in general: If u1, u2, . . . , uk

are k equally spaced directions and two k-point sets A and B are obtained by
putting the vertices of a suitably rotated regular 2k-gon alternately into A and
into B, then A and B have identical X-rays in each of the directions ui.

Intuition suggests that the equally spaced directions in this example are “ex-
ceptionally bad”, and that other sets of directions should allow for reconstruction
of much larger sets. For given directions u1, u2, . . . , uk let us define

f(u1, . . . , uk) := max{n : every n-point set is reconstructible for u1, . . . , uk}
and

F (k) := max
u1,u2,...,uk

f(u1, . . . , uk).
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We have just noted that f(u1, . . . , uk) ≥ k−1 for all k-tuples of distinct u1, . . . , uk.
A simple inductive construction (also rediscovered several times) shows that, per-
haps counterintuitively, F (k) is finite for every k. More precisely, it yields F (k) <
2k−1 for all k.

The only published lower bound on F (k) we could find is roughly k + Ω(
√

k),
due to Bianchi and Longinetti [BL90]. After we started working on the problem,
we learned from Attila Pór that Tóth [Tót03] announced an Ω(k3/2) lower bound,
which has remained unpublished.

We have the following lower bound:

Theorem 1. There are constants c > 0 and k0 such that

F (k) > 2ck/ log k

for all k ≥ k0. Moreover, for every k ≥ k0 there exists a finite set Pk of
nonzero polynomials in 2k variables and with integer coefficients such that if u1 =
(x1, y1),. . . , uk = (xk, yk) are directions with f(u1, . . . , uk) ≤ 2ck/ log k, then
(x1, x2, . . . , xk, y1, . . . , yk) is in the zero set of some polynomial in Pk. Conse-
quently, almost all (in the sense of measure) k-tuples of directions u1, . . . , uk sat-
isfy the stated lower bound.

In the proof we establish the following result in extremal graph theory, which
may be of independent interest:

Proposition 2. There exists a constant C such that the following holds. Let
G = (V, E) be a graph on 2n ≥ 4 vertices, whose edge set E is a disjoint union
E = E1 ∪ · · · ∪Ek of k perfect matchings on V . If k ≥ ⌊C log2 n log2 log2 n⌋, then
there exist disjoint index sets I1, I2 ⊂ [k] and a subset W ⊆ V , |W | ≥ 2, such that
the graphs G[I1, W ] and G[I2, W ] are both connected, where G[I, W ] denotes the
graph with vertex set W and edge set {{u, v} ∈ ⋃

i∈I Ei : u, v ∈W}.
As for upper bounds, we can improve the bound F (k) < 2k−1 mentioned above

to F (k) ≤ O(Ck) for C = 61/3 ≈ 1.81712.

Related work. Problems similar to those investigated in the present paper have
been studied in a lively area called geometric tomography; see, e.g., the book by
Gardner [Gar06]. The classical tomography problem deals with reconstructing a
set, or more generally a density function, from X-rays in all directions. Discrete
tomography investigates the reconstruction problem for a finite (discrete) set of X-
ray directions. Since reconstructing an arbitrary set is generally impossible, most
of the work deals with special sets, say convex ones.

For reconstructing finite sets A, most of the results in the literature concern
the case where A is a lattice set, A ⊆ Z

2, and the directions of the X-rays are
integer vectors. A seminal paper by Gardner and Gritzmann [GG97] thoroughly
examines the case where A is guaranteed to be a convex lattice set (that is, the
intersection of Z

2 with a convex set). In this case, they show that any 7 lattice
directions suffice for reconstruction of every convex lattice set, while 6 directions
need not suffice. Few other papers with somewhat related results are [Hep56],
[Gar92], [BDLNP01], [DGP06].
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Hypergraphs with independent neighborhoods

Dhruv Mubayi

(joint work with Tom Bohman, Alan Frieze, Zoltan Füredi, and Oleg Pikhurko)

The neighborhood N(S) of a (k − 1)-set S in a k-uniform hypergraph (henceforth
a k-graph) is the set of vertices v such that S ∪ {v} is an edge. For n ≥ k ≥ 2, let
f(n, k) be the maximum number of edges in a k-graph on n vertices such that all
its neighborhoods are independent sets (that is, span no edge). Mantel proved in
1907 that f(n, 2) = ⌊n2/4⌋, and this was the first result in extremal graph theory.
Thus the problem of computing f(n, k) is a natural generalization of Mantel’s
result.

A k-graph is odd if it has a vertex partition X ∪ Y such that all edges have an
odd number of points less than k in Y . It is easy to see that all neighborhoods
in an odd k-graph are independent sets. Let B(n, k) be an odd k-graph with n
vertices and the maximum number of edges. Let b(n, k) = |B(n, k)| be the number
of edges in B(n, k). Then the previous observation implies that f(n, k) ≥ b(n, k).
It was conjectured in [3] that there exists some function n0(k) such that n > n0(k)
implies

(1) f(n, k) = b(n, k).

There was some evidence for this, as it reduces to Mantel’s theorem for k = 2,
and it was proved for k = 3 by Füredi, Pikhurko, and Simonovits [4, 5], thereby
settling a conjecture of Mubayi and Rödl [7]. The next case k = 4 was addressed in
[3]. Note that the vertex partition of B(n, 4) is not into precisely equal parts, but
they have sizes n/2− t and n/2 + t, where, as it follows from routine calculations,

| t− 1

2

√
3n− 4 | < 1.
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Theorem 1. (Exact Result [3]) Let n be sufficiently large, and let G be an n-
vertex 4-graph with all neighborhoods being independent sets. Then |G| ≤ b(n, 4),
and if equality holds, then G = B(n, 4).

We also prove an approximate structure theorem, which states that if G has
close to b(n, 4) edges, then the structure of G is close to B(n, 4).

Theorem 2. (Global Stability [3]) For every δ > 0, there exists n0 such that
the following holds for all n > n0. Let G be an n-vertex 4-graph with independent
neighborhoods, and |G| > (1/2 − ε)

(
n
4

)
, where ε = δ2/108. Then G can be made

odd by removing at most δ
(
n
4

)
edges.

One might suspect that Theorem 2 can be taken further, by showing that if G
has minimum degree at least (1/2− γ)

(
n
3

)
for some γ > 0, then G is already odd.

Such phenomena hold for k = 2 and 3. For example, when k = 2, a special case
of the theorem of Andrásfai, Erdős, and Sós [1] states that a triangle-free graph
with minimum degree greater than 2n/5 is bipartite. For k = 3, a similar result
was proved in [4]. The analogous statement is not true for k = 4. Indeed, one can
add an edge E to B(n, 4) that intersects each part in two vertices, and then delete
all edges of B(n, 4) that intersect E in three vertices. The resulting 4-graph has
independent neighborhoods, and yet its minimum degree is (1/2)

(
n
3

)
− O(n5/2).

Nevertheless, a slightly weaker statement is true. Let us call a k-graph 2-colorable
if its vertex set can be partitioned into two independent sets.

Theorem 3. ([3]) Let G be an n-vertex 4-graph with independent neighborhoods.
There exists ε > 0 such that if n is sufficiently large and G has minimum degree
greater than (1/2− ε)

(
n
3

)
, then G is 2-colorable.

The situation for larger k is more complicated. Since exact results are rare in
extremal hypergraph theory, one often studies asymptotics. In this case, we can
define ρk = limn→∞ f(n, k)/

(
n
k

)
which is easily shown to exist. Now conjecture

(1) implies that ρk = 1/2 for all even k and ρk ↑ 1/2 as k → ∞ for odd k. Thus
a weaker statement than (1) would be that ρk = limn→∞ b(n, k)/

(
n
k

)
, and an even

weaker statement is that ρk → 1/2 as k →∞.
We prove that conjecture (1) is false for all k ≥ 7, and in fact ρk → 1. This

follows from an old construction of Kim and Roush [6] which gives lower bounds
for the Turán problem for complete k-graphs. Thus the small cases shed little light
on the behavior of ρk.

We are able to obtain rather sharp estimates on the rate at which ρk converges
to 1:

Theorem 4. (Asymptotic Result [2]) As k →∞, we have

1− 2 log k

k
+ (1 + o(1))

log log k

k
≤ ρk ≤ 1− 2 log k

k
+ (5 + o(1))

log log k

k
,

where log denotes the natural logarithm.
Furthermore, for k ≥ 7, we have ρk > 1/2, hence (1) is false for k ≥ 7.
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This leaves open the cases k = 5 and 6, where we believe that (1) still holds.

Conjecture 5. ([2]) f(n, k) = b(n, k) for k ∈ {5, 6} and n sufficiently large.
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Minors in random and expanding graphs

Deryk Osthus

(joint work with Nikolaos Fountoulakis and Daniela Kühn)

A graph H is a minor of G if for every vertex h ∈ H there is a connected subset
Bh ⊆ V (G) such that all the Bh’s are disjoint and G contains an edge between Bh

and Bh′ whenever hh′ is an edge of H . The Bh’s are called the branch sets. We
denote by ccl(G) the order of the largest complete minor in G. The study of the
largest complete minor contained in a given graph has its origins in Hadwiger’s
conjecture which states that if the chromatic number of a graph G is at least k,
then G contains a Kk minor. It has been proved for k ≤ 6.

Bollobás, Catlin and Erdős [1] proved that Hadwiger’s conjecture is true for
almost all graphs. For this, they estimated the typical order of the largest com-
plete minor in a graph on n vertices and compared it with the typical chromatic
number of such a graph. In particular, they proved that for constant p and ε > 0
asymptotically almost surely ccl(Gn,p) = (1± ε)n/

√
logb n, where b := 1/(1− p).

Here Gn,p is a random graph on n vertices where the edges are present indepen-
dently and with probability p. We say that an event occurs asymptotically almost
surely (a.a.s.) if it occurs with probability tending to 1 as n tends to infinity.

Krivelevich and Sudakov [4] considered the order of the largest complete minor
in a sparser random graph (and more generally in arbitrary pseudo-random and
expanding graphs). They determined the order of magnitude of ccl(Gn,p) as long
as p ≥ nε−1. Our first result in [2] determines ccl(Gn,p) asymptotically as long as
p ≥ C/n and p = o(1).
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Theorem 1. For every ε > 0 there exists a constant C = C(ε) such that if pn ≥ C
and p = o(1), then a.a.s.

ccl(Gn,p) = (1 ± ε)

√
n2p

ln(np)
= (1± ε)

n√
logb(np)

,

where b := 1/(1− p).

In [2], we also estimated ccl(Gn,c/n) where c > 1 is fixed. Krivelevich and

Sudakov [4] observed that there are constants c1 and c2 such that c1

√
n/ log n ≤

ccl(Gn,c/n) ≤ c2
√

n and asked what the correct order of magnitude is.

Theorem 2. For every c > 1 there exists a constant δ = δ(c) such that a.a.s.
δ
√

n ≤ ccl(Gn,c/n) ≤ 2
√

cn.

Note that the upper bound in Theorem 2 is immediate, since for any graph G,
the number of edges in any minor of G is at most e(G). The same argument shows
that the condition that p ≥ c/n for some constant c > 1 is necessary to ensure a
complete minor of order Θ(

√
n) in Gn,p. This follows from the fact that if pn→ 1

the number of edges in any component is sublinear in n.
Partial results on ccl(Gn,p) during the phase transition (i.e. when pn→ 1) were

proven by  Luczak, Pittel and Wierman [5].

1. Related results and open questions

While the influence of the chromatic number on the existence of complete minors
is far from clear, the corresponding extremal problem for the average degree has
been settled for large complete minors: Thomason [8] asymptotically determined
the smallest average degree d(k) which guarantees the existence of a Kk minor
in any graph of average degree at least d(k). (The order of magnitude k

√
log k

of d(k) was determined earlier in [3, 6].) The extremal graphs are (disjoint copies
of) dense random graphs. Recall that Theorem 2 shows that the behaviour of
sparse random graphs is quite different: in that case ccl(Gn,p) has the same order

of magnitude as
√

e(Gn,p), a trivial upper bound which holds for any graph.
There are several results on large complete minors in pseudo-random graphs

and expanding graphs. Thomason [7] introduced a notion of pseudo-randomness
called jumbledness. Krivelevich and Sudakov [4] gave bounds on ccl(G) for jumbled
graphs G. For Gn,p their results only imply the lower bound in Theorem 1 up to
a multiplicative constant if p ≥ nε−1. It would be interesting to know whether
their bound is best possible or whether (up to a multiplicative constant) the bound
in Theorem 1 can be extended to jumbled graphs with appropriate parameters.
Krivelevich and Sudakov [4] also considered minors in expanding graphs. Again,
their results only imply the lower bound in Theorem 1 up to a multiplicative
constant if p ≥ nε−1.

Finally, note that our results do not cover the case where p → 1. Usually,
the investigation of Gn,p for such p is not particularly interesting. However, any
counterexamples to Hadwiger’s conjecture are probably rather dense, so in this
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case it might be worthwile to investigate the values of the chromatic number and
the order of the largest complete minor of such a random graph (though it seems
rather unlikely that this approach will yield any counterexamples).

2. Strategy of the proofs

As in [1], the upper bound in Theorem 1 is proved by a first moment argument.
The main difference between the arguments is that in our case, we need to make
use of the fact that the branch sets of a minor have to be connected, whereas this
was not necessary in [1].

For the lower bound, let k := n/
√

logb(np) be the function appearing in Theo-
rem 1. The proof in [1] for the case when p is a constant proceeds as follows. One
first shows that a.a.s. there are k large pairwise disjoint connected sets Bi in Gn,p.
These are used as candidates for the branch sets. The number U0 of pairs of Bi

which are not connected by an edge is then shown to be o(k). So by discarding a
comparatively small number of candidate branch sets, one can obtain the desired
minor. For small p, the main problem is that U0 will be much larger than k.
However, we can show that U0 is at most a small fraction of n. We make use of
this as follows. We first find a path P whose length satisfies U0 ≪ |P | ≪ n and
which is disjoint from the Bi. We will divide this path into disjoint subpaths. Our
aim is to join most of those pairs of Bi which are not yet joined by an edge via one
of these subpaths. More precisely, we are looking for a matching of size U0 − εk
in the auxiliary bipartite random graph G∗ whose vertex classes consist of the
unjoined pairs of candidate branch sets and of the subpaths and where a subpath
is adjacent to such an unjoined pair if it sends an edge to both of the candidate
branch sets in this unjoined pair. There are two difficulties to overcome in order
to find such a matching. Firstly, some of the Bi are involved in several unjoined
pairs, so the edges G∗ are not independent. Secondly, if we make the subpaths too
short, then the density of G∗ is not large enough to guarantee a sufficiently large
matching, while if we make the subpaths too long, then there will not be enough
of them. We overcome this by using paths of very different lengths together with
a greedy matching algorithm which starts off by using short paths to try and join
the unjoined pairs. Then in the later stages the algorithm uses successively longer
paths to try and join those pairs which were not joined in the previous stages until
U0 − εk of the pairs have been joined. To ensure that the dependencies between
the existence of edges in G∗ are not too large, we also remove some of the un-
joined pairs from future consideration after each stage (namely those containing a
candidate branch set that is involved in comparatively many pairs which are still
unjoined).

References
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Dirac type results for uniform hypergraphs

Andrzej Ruciński

(joint work with Vojtěch Rödl and Endre Szemerédi)

One of the classic theorems of graph theory is the result of Dirac [2] which states
that if the minimum degree δ(G) in a graph G on n ≥ 3 vertices is at least n/2
then G has a hamiltonian cycle, while if δ(G) ≥ ⌊n/2⌋ then G has a hamiltonian
path.

For k-uniform hypergraphs (or k-graphs, for short) with k ≥ 3, a path, and
consequently a cycle, may be defined in several ways (see, e.g., [1], [5], [6] and [4]).
Here we consider (tight) paths which are k-graphs with vertices v1, . . . , vl and
edges {vi, vi+1, . . . , vi+k−1}, i = 1, . . . , l − k + 1. (For k = 3, the pairs v1, v2 and
vl, vl−1 are called the endpairs of the path.) A companion notion of a (tight) cycle
is defined similarly with the additional presence of the edges {vi, vi+1, . . . , vi+k−1}
for i = l − k + 2, . . . , k, where for h > l we set vh = vh−l. The name tight is
used only to distinguish this definition from a competitive one (cf. [6] and [4]),
where a loose cycle is defined as a k-graph with vertices v1, . . . , v(k−1)l and edges
{vi, vi+1, . . . , vi+k−1} for i ≡ 1( mod k − 1).

A natural extension of Dirac’s theorem to k-graphs, k ≥ 3, has been conjectured
in [5].

Conjecture 1. Let H be a k-graph with n ≥ k + 1 ≥ 4 vertices. If every (k − 1)-
element set of vertices is contained in at least ⌊(n− k + 3)/2⌋ edges, then H has
a hamiltonian cycle.

In [9] and [10] we proved the approximate version of the conjecture.

Theorem 2 ( [9],[10] ). Let k ≥ 3, γ > 0, and let H be a k-graph on n vertices,
where n is sufficiently large. If each (k− 1)-element set of vertices is contained in
at least (1/2 + γ)n edges, then H has a hamiltonian cycle.

A similar result holds for loose cycles with 1/2 replaced by 1
4 for k = 3 (see [6]).

Here we announce the exact result for tight hamiltonian cycles and paths when
k = 3. Let δ2(H) be the minimum pair degree in H .
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Theorem 3. Let H be a k-graph on n vertices, where n is sufficiently large.
(a) If δ2(H) ≥ ⌊n/2⌋ then H has a hamiltonian cycle.
(b) If δ2(H) ≥ ⌈n/2⌉ − 1 then H has a hamiltonian path.

Note that for n odd the two thresholds coincide, while for n even they differ
by 1. A pivotal role in the proof is played by the minimal extreme k-graph H0 =
H0(A, B) with vertex set V = A ∪ B, |A| = ⌈n/2⌉, |B| = ⌊n/2⌋, and edge set
consisting of all triples of vertices with an odd intersection with A. It is easy to
see that δ2(H) = ⌈n/2⌉ − 2 and H0 does not have a hamiltonian path. A minor
modification of H0 leads to an extreme k-graph with δ2(H) = ⌊n/2⌋ − 1 and no
hamiltonian cycle.

We sketch the proof of part (b) only which is slightly easier. Below we assume
that n is even (equivalently, we will write 2n for the number of vertices). The proof
is split into two major cases, depending on whether H contains almost entirely
a copy of H0, or not. For this to be precise, we look at the quantity |H0 \ H |
defined as min |H0(A, B) \ H | taken over all partitions of V (H) = A ∪ B with
|A| = |B| = n. Let ε0 be a carefully chosen absolute constant.

Case I: |H0 \H | > ε0n
3

In this case we actually have a stability result saying that a hamiltonian path is
present in H already when δ2(H) ≥ (1 − ε1)n. The proof is based on the idea of
an absorbing path introduced in [9] and [10]. A path Q in H is called ε-absorbing
if |Q| ≤ εn and for every set U ⊂ V (H) \V (Q), |U | ≤ ε2n, there exists a path QU

such that V (QU ) = V (Q)∪U and both paths, Q and QU , have the same endpairs.
The main proof consists of three steps:

(1) Find an ε2
0-absorbing path Q in H .

(2) Find a path P which contains Q as a subpath and such that |V (H) \
V (P )| ≤ ε4

0n.
(3) Extend P to a hamiltonian path by applying the absorbing property of Q

to the set U = V (H) \ V (P ).

We comment on steps 1 and 2 only. The absorbing device we use is much more
sophisticated that the one in [9]. In addition to the standard Connecting Lemma,
it is based also on the so called Comb-Connecting Lemma, where instead of a tight
path we seek a pseudo-path of the form 213, 134, 435, 356, . . . . Such a pseudo-path
which begins with xy and ends with zw is called an xy− zw-comb. The absorbing
device is constructed by connecting certain pairs of teeth of an xy − zw-comb by
short paths, using the Connecting Lemma. We now state both connecting lemmas.

Lemma 4 (Connecting Lemma). There exists ε1 > 0 which depends on ε0 only,
such that whenever δ2(H) ≥ (1 − ε1)n then for every two disjoint, ordered pairs
of vertices (x, y) and (v, w) there is a path in H of length at most 1/ε1, which
connects (x, y) and (v, w).
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Lemma 5 (Comb-Connecting Lemma). There exists ε1 > 0 which depends on ε0

only, such that whenever δ2(H) ≥ (1 − ε1)n then for every two disjoint, ordered
pairs of vertices (x, y) and (v, w) there is an xy− zw-comb in H of length at most
1/ε1.

The almost hamiltonian path found in step (2) has been constructed in [9] and
[10] with the help of hypergraph regularity lemmas (strong and weak, resp.). Here,
instead, we apply a recursive construction based on a classical result in extremal
graph theory due to Kővari, Sós and Turán [7] (cf. [8]). Each new segment of the
path is glued to the present one via the Connecting Lemma.

Case II: |H0 \H | ≤ ε0n
3

We fix the partition V (H) = A ∪ B which minimizes |H0(A, B) \ H |. Since H
almost contains H0, most edges of the form AAA and ABB are present in H and
so it is relatively easy to draw a long “top”path (of the form AAA · · · ), as well
as a long “cross” path (of the form ABBABB · · · ). To connect them into one
hamiltonian path we need a bridge, a short path with endpairs of the form AA
and AB (or BB). Such a path needs necessarily to contain an atypical edge of the
from AAB. Due to the degree condition δ2(H) ≥ n− 1, for every pair of vertices
a1, a2 ∈ A there does exist a vertex b ∈ B such that a1a2b ∈ H . Still some work
has to be done, as b may be atypical in the sense that its link almost entirely is
contained in

(
A
2

)
∪

(
B
2

)
and not in A×B, as it should.

If we wanted to construct a hamiltonian cycle instead (under the stronger as-
sumption that δ(H) ≥ n) we would need to build two bridges. which is just an
extra technical difficulty. However, with two bridges we have no more freedom
to arbitrarily split the vertices into the top path and the cross path which causes
some parity problem.
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Generalizations of the removal lemma

Mathias Schacht

(joint work with Vojtěch Rödl)

Answering a question of Brown, T. Sós, and Erdős [6, 20] Ruzsa and Szemerédi [19]
established the triangle removal lemma. They proved that every graph which does
not contain many triangles can be “made easily” triangle free.

Theorem 1 (Triangle removal lemma). For every η > 0 there exists c > 0 and
n0 so that every graph G on n ≥ n0 vertices, which contains at most cn3 triangles
can be made triangle free by removing at most η

(
n
2

)
edges.

More general statements of that type regarding graphs were successively proved
by several authors in [1, 2, 3, 7]. In particular, the result of Alon and Shapira in [2]
is a generalization, which extends all the previous results of this type, where the
triangle is replaced by a possibly infinite family of graphs and containment is
induced. We present an extension of the result of Alon and Shapira from graphs
to k-uniform hypergraphs (see Theorem 3).

Before we state Theorem 3 we discuss some of the known extensions of the
Ruzsa–Szemerédi theorem for graphs and hypergraphs in more detail.

A k-uniform hypergraph H(k) on the vertex set V is some family of k-element
subsets of V , i.e., H(k) ⊆

(
V
k

)
. Note that we identify hypergraphs with their edge

set and we write V (H(k)) for the vertex set.
A possible generalization of Theorem 1 to hypergraphs was suggested in [7,

Problem 6.1]. The first result in this direction was obtained by Frankl and Rödl [8]
who extended Theorem 1 to 3-uniform hypergraphs with the triangle replaced by

K
(3)
4 – the complete 3-uniform hypergraph on 4 vertices. The general result, which

settles the conjecture from [7] was recently obtained independently by Gowers [11]
and Nagle, Skokan and authors [15, 17, 18] and subsequently by Tao in [23].

Theorem 2 (Removal lemma). For all k-uniform hypergraphs F (k) on ℓ vertices
and and every η > 0 there exist c > 0 and n0 so that the following holds.

Suppose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If H(k) contains
at most cnℓ copies of F (k), then one can delete η

(
n
k

)
edges from H(k) so that the

resulting sub-hypergraph contains no copy of F (k).

Theorem 2 implies Szemerédi’s theorem [21] as well as its multidimensional
extensions due to Furstenberg and Katznelson [9, 10].

Similarly, as all known proofs of Theorem 1 are based on Szemerédi’s regularity
lemma [22] (see, e.g., [13]), all proofs of Theorem 2 rely on hypergraph general-
izations of the regularity lemma (see, e.g., [11, 15, 16, 17, 23]).

A possible generalization of Theorem 2 is to replace the single hypergraph F (k)

by a possibly infinite family F of k-uniform hypergraphs. Such a result was first
proved for graphs by Alon and Shapira [3] in the context of property testing.

The proof of this result relies on a strengthened version of Szemerédi’s regularity
lemma, which was obtained by Alon, Fischer, Krivelevich, and M. Szegedy [1] by
iterating the regularity lemma for graphs.
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Recently, the result for monotone properties was extended by Avart and au-
thors in [4] from graphs to hypergraphs. The proof in [4] follows the approach of
Alon and Shapira and is based on two successive applications of the hypergraph
regularity lemma from [16].

Another natural variant of Theorem 2 would be an induced version. For graphs
this was first considered by Alon, Fischer, Krivelevich, and M. Szegedy [1]. Note
that in this case in order to obtain an induced F -free graph, we may need not
only remove, but also add edges. The same result for 3-uniform hypergraphs was
obtained by Kohayakawa, Nagle, and Rödl in [12].

In [2] Alon and Shapira proved a common generalization of of the monotone and
the induced version of the graph removal lemma, extending the induced version
from one forbidden induced graph F to a forbidden family of induced graphs F .
Here we present a generalization of their result to k-uniform hypergraphs.

For a family of k-uniform hypergraphs F , let Forbind(F ) be the family of all
hypergraphs H(k) which contain no induced copy of any member of F . Clearly,
Forbind(F ) is a hereditary family (or hereditary property) of hypergraphs, i.e., if

H(k) ∈ Forbind(F ) and H̃(k) is an induced sub-hypergraph of H(k), then H̃(k) ∈
Forbind(F ). For a constant η ≥ 0 and a possibly infinite family of k-uniform
hypergraphs P we say a given hypergraph H(k) is η-far from P if every hy-

pergraph G(k) on the same vertex set V (H(k)) with |G(k)△H(k)| ≤ η
(|V (H(k))|

k

)

satisfies G(k) 6∈P, where G(k)△H(k) denotes the symmetric difference of the edge
sets of G(k) and H(k).

Theorem 3. For every (possibly infinite) family F of k-uniform hypergraphs and
every η > 0 there exist constants c > 0, C > 0, and n0 such that the following
holds.

Suppose H(k) is a k-uniform hypergraph on n ≥ n0 vertices. If for every ℓ =
1, . . . , C and every F (k) ∈ F on ℓ vertices, H(k) contains at most cnℓ induced
copies of F (k), then H(k) is not η-far from Forbind(F ).

In other words one can change (add/delete) up to at most η
(

n
k

)
k-tuples in

V (H(k)) (to/from H(k)) so that the resulting hypergraph G(k) contains no induced
copy of any member of F , i.e., so that G(k) ∈ Forbind(F ).

Moreover, since Forbind(F ) is a subset of the family F̄ of all hypergraphs not
contained in F , such a hypergraph H(k) is also not η-far from F̄ .

For graphs Theorem 3 was first obtained by Alon and Shapira [2]. The proof
in [2] is again based on the strong version of Szemerédi’s regularity lemma from [1].
Another proof for graphs was found by Lovász and B. Szegedy [14] (see also [5]).
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On Dissections

Angelika Steger

(joint work with Nicla Bernasconi and Konstantinos Panagiotou)

In the past decades the Gn,p model of random graphs, introduced by Erdős and
Rényi in the 60’s, has led to numerous beautiful and deep theorems. A key feature
that is used in basically all proofs is that edges in Gn,p appear independently. The
independence of the edges allows, for example, to obtain extremely tight bounds
on the number of edges of Gn,p and its degree sequence by straightforward appli-
cations of Chernoff bounds. This situation changes dramatically if one considers
graph classes with structural side constraints. For example, in a random planar
graph Rn (a graph drawn uniformly at random from the class of all labeled pla-
nar graphs on n vertices) the edges are obviously far from being independent.
Consequently, so far basically all results about properties of random graphs with
structural side constraints rely on completely different methods, mostly from an-
alytic combinatorics.

In this talk we show that recent progress in the construction of so-called Boltz-
mann samplers by Duchon, Flajolet, Louchard, and Schaeffer [3] and Fusy [4] can
be used to reduce the study of degree sequences and subgraph counts to prop-
erties of sequences of independent and identically distributed random variables
– to which we can then again apply Chernoff bounds to obtain extremely tight
results. We exemplify our approach by studying properties of random graphs that
are drawn uniformly at random from the class consisting of all dissections of large
convex polygons. We obtain very sharp concentration results for the number of
vertices of any given degree, and for the number of induced copies of a given fixed
graph.

Let Dn denote the class of dissections of labeled convex n-gons, and let Dn be a
graph drawn uniformly at random from Dn, and let deg (k; Dn) denote the number
of vertices in Dn with degree k. In our first theorem we determine the asymptotic
value of deg (k; Dn) and provide very tight bounds for the tail probabilities. For
brevity we write “(1± ε)X” to denote the interval ((1− ε)X, (1 + ε)X).

Theorem 1. Let dk := (k−1)p2(1−p)k−2, where p := 2−
√

2, and let k0 = k0(n)
be the largest integer such that dk0n > (log n)3. There is a constant C > 0 such

that for every k ≤ k0 and every (log n)2√
dkn

< ε = ε(n) < 1 the following holds for

sufficiently large n.

P [deg (k; Dn) ∈ (1± ε) · dk · n] ≥ 1− e−Cε2 dk
k n.

Furthermore, if k ∈ [k0 + 1, 10 logn], then

P
[
deg (k; Dn) < (log n)4

]
≥ 1− kn− log n.

For all remaining k we have that P [deg (k; Dn) = 0]→ 1.

From Theorem 1 it is easy to derive information about the maximum vertex
degree ∆(Dn) of a random element from Dn.
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Corollary 2. Let p := 2−
√

2, and set b := 1
1−p . Then

P [∆(Dn) 6∈ (logb n−O(log log n), 10 log n)] = o(1).

With our method it is not directly possible to improve this result, but we believe
that the maximum degree for a random element of Dn is given by the lower bound.

Next we turn to subgraph counts. For an unlabeled dissection H we denote by
copy (H ; D) the number of induced copies of H in D.

Theorem 3. Let H be an unlabeled dissection on nH vertices, such that nH =
o(log n). Denote by rH the number of different ways to root on an edge the external

face of H. Let cH := 1
2rH ·qnH−3, where q := 2−

√
2

2 . There is a constant 0 < C < 1
such that for every 0 < ε < 1 and n sufficiently large we have

P [copy (H ; Dn) ∈ (1± ε) · cH · n] ≥ 1− exp{−CnH ε2n}.
Our method gives similar results for random graphs from the class of triangula-

tions of convex polygons; the class of random triangulations was previously studied
by Gao and Wormald [6, 7, 5]; our method provides an alternative approach and
gives sharper bounds on the tail distributions.

The results of this talk appeared in [1]. In a follow up paper [2] we extended
our approach to the classes of outerplanar and of series-parallel graphs.
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Density theorems for bipartite graphs and related Ramsey-type results

Benny Sudakov

(joint work with Jacob Fox)

For a graph H , the Ramsey number r(H) is the least positive integer n such that
every two-coloring of the edges of complete graph Kn on n vertices, contains a
monochromatic copy of H . Estimating Ramsey numbers is one of the central
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(and difficult) problems in modern combinatorics. Among the most interesting
questions in this area are the linear bounds for Ramsey numbers of graphs with
certain degree constraints. In 1975, Burr and Erdős [2] conjectured that, for each
positive integer ∆, there is a constant c(∆) such that every graph H with n vertices
and maximum degree ∆ satisfies r(H) ≤ c(∆)n. This conjecture was proved by
Chvatál, Rödl, Szemerédi, and Trotter [3]. Their proof is a beautiful illustration of
the power of Szemerédi’s regularity lemma. However, the use of this lemma makes
an upper bound on c(∆) to grow as a tower of 2s with height polynomial in ∆.
Since then, the problem of determining the correct order of magnitude of c(∆) as
a function of ∆ has received considerable attention from various researchers. Still
using a variant of the regularity lemma, Eaton [4] showed that c(∆) < 22c∆

for
some fixed c. A novel approach of Graham, Rödl, and Rucinski [5] gave the first
linear upper bound on Ramsey numbers of bounded degree graphs without using

any form of the regularity lemma. Their proof implies that c(∆) < 2c∆log2 ∆.
The case of bipartite graphs with bounded degree was studied by Graham, Rödl,

and Rucinski more thoroughly in [6], where they improved their upper bound,
showing that r(H) ≤ 2∆log ∆+O(∆)n for every bipartite graph H with n vertices
and maximum degree ∆. As they point out, their proof does not give a stronger
density-type result. In the other direction, they proved that there is a positive
constant c such that, for every ∆ ≥ 2 and n ≥ ∆ + 1, there is a bipartite graph
H with n vertices and maximum degree ∆ satisfying r(H) ≥ 2c∆n. Closing the
gaps between these two bounds remained a challenging open problem. In this
paper, we solve this problem by showing that the correct order of magnitude of
the Ramsey number of bounded degree bipartite graphs is essentially given by the
lower bound. This follows from the following density-type theorem.

Theorem 1. Let H be a bipartite graph with n vertices and maximum degree
∆ ≥ 1. If ǫ > 0 and G is a graph with N ≥ 32∆ǫ−∆n vertices and at least ǫ

(
N
2

)

edges, then H is a subgraph of G.

Taking ǫ = 1/2 together with the majority color in a 2-coloring of the edges
of KN , we obtain a corollary which gives a best possible upper bound up to the
constant factor in the exponent on Ramsey numbers of bounded degree bipartite
graphs.

Corollary 2. If H is bipartite, has n vertices and maximum degree ∆ ≥ 1, then
r(H) ≤ ∆2∆+5n.

Moreover, the above theorem also easily gives an upper bound on multicolor
Ramsey numbers of bipartite graphs. The k-color Ramsey number r(H1, . . . , Hk)
is the least positive integer N such that for every k-coloring of the edges of the
complete graph KN , there is a monochromatic copy of Hi in color i for some
1 ≤ i ≤ k. Taking ǫ = 1/k in Theorem 1 and considering the majority color
in a k-coloring of the edges of a complete graph shows that for bipartite graphs
H1, . . . , Hk each with n vertices and maximum degree at most ∆, r(H1, . . . , Hk) ≤
32∆k∆n.
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One family of bipartite graphs that have received particular attention are the
d-cubes. The d-cube Qd is the d-regular graph with 2d vertices whose vertex set is
{0, 1}d and two vertices are adjacent if they differ in exactly one coordinate. Burr
and Erdős conjectured that r(Qd) is linear in the number of vertices of the d-cube.

Beck [1] proved that r(Qd) ≤ 2cd2

. The bound of Graham et al. [5] gives the
improvement r(Qd) ≤ 8(16d)d. Shi [10], using ideas of Kostochka and Rödl [7],

proved that r(Qd) ≤ 2( 3+
√

5
2 )d+o(d), which is a polynomial bound in the number

of vertices with exponent 3+
√

5
2 ≈ 2.618. A very special case of Corollary 2, when

H = Qd, gives immediately the following improved result.

Corollary 3. For every positive integer d, r(Qd) ≤ d22d+5.

A graph is d-degenerate if every subgraph of it has a vertex of degree at most
d. Notice that graphs with maximum degree d are d-degenerate. This notion
nicely captures the concept of sparse graphs as every t-vertex subgraph of a d-
degenerate graph has at most td edges. (Indeed, remove from the subgraph a
vertex of minimum degree, and repeat this process in the remaining subgraph.)
Burr and Erdős [2] conjectured that, for each positive integer d, there is a constant
c(d) such that r(H) ≤ c(d)n for every d-degenerate graph H on n vertices. This
well-known and difficult conjecture is a substantial generalization of the above
mentioned results on Ramsey numbers of bounded degree graphs and progress on
this problem was made only recently.

Kostochka and Rödl [8] were the first to prove a polynomial upper bound on
the Ramsey numbers of d-degenerate graphs. They showed that r(H) ≤ cdn

2 for
every d-degenerate graph H with n vertices. A nearly linear bound of the form
r(H) ≤ cdn

1+ǫ for any fixed ǫ > 0 was obtained in [9]. For bipartite H , Kostochka
and Rödl proved that r(H) ≤ dd+o(d)∆n, where ∆ is the maximum degree of H .

Kostochka and Sudakov [9] proved that r(H) ≤ 2O(log2/3 n)n for every d-degenerate
bipartite graph H with n vertices and constant d. Here we improve on both of
these results.

Theorem 4. If d/n ≤ δ ≤ 1, H is a d-degenerate bipartite graph with n vertices

and maximum degree ∆ ≥ 1, G is a graph with N vertices and at least ǫ
(
N
2

)
edges,

and N ≥ 212ǫ−(1/δ+3)d−2∆δn, then H is a subgraph of G.

For δ and H as in the above theorem, taking ǫ = 1/2 and considering the
majority color in a 2-coloring of the edges of KN shows that

r(H) ≤ 2δ−1d+3d+14∆δn.

This new upper bound on Ramsey numbers for bipartite graphs is quite versatile.
Taking δ = 1, we have r(H) ≤ 24d+14∆n for bipartite d-degenerate graphs with
n vertices and maximum degree ∆. This improves upon the bound of Kostochka
and Rödl. If ∆ ≥ 2d, then taking δ = ( d

log ∆ )1/2, we have

r(H) ≤ 22
√

d log ∆+3d+14n
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for bipartite d-degenerate graphs H with n vertices and maximum degree ∆. In

particular, we have r(H) ≤ 2O(log1/2 n)n for constant d. This improves on the
bound of Kostochka and Sudakov, and is another step closer to the Burr-Erdős
conjecture.

It seems plausible that r(H) ≤ 2c∆n holds in general for every graph H with n
vertices and maximum degree ∆. The following result shows that this is at least
true for graphs of bounded chromatic number.

Theorem 5. If H has n vertices, chromatic number q, and maximum degree ∆,
then r(H) ≤ 24q∆n.

The proofs of the above results combine probabilistic arguments with some
combinatorial ideas. In addition, these techniques can be used to study proper-
ties of graphs with a forbidden induced subgraph, edge intersection patterns in
topological graphs, and to obtain several other Ramsey-type statements.
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[2] S. A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, in:
Infinite and Finite Sets I, 10, Colloq. Math. Soc. Janos Bolyai, North-Holland, Amsterdam,

1975, 214–240.
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Thresholds for positional games

Tibor Szabó

(joint work with Heidi Gebauer and Michael Krivelevich)

In this abstract we report about recent progress on three open problems in the
theory of positional games.

In the Maker-Breaker connectivity game two players, Maker and Breaker alter-
nately claim the edges of the complete graph Kn, until all edges are claimed. The
game is won by Maker if he succeeds in occupying a spanning tree, otherwise the
game is won by Breaker. In the case when both players claim one edge in each
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turn, the connectivity game is related to the Shannon switching game. That game
was fully analyzed by Lehman [10]. He showed that Maker wins “easily” in the
sense that he does not even need the full edge set of Kn, it is enough if he restricts
his moves to the union of two edge-disjoint spanning trees.

Chvátal and Erdős [4] suggested to even out the advantage of Maker by allowing
Breaker to occupy b > 1 edges at each of his turns. The natural question then is
how large this bias b of Breaker can be such that Maker is still able to build a span-
ning tree. Chvátal and Erdős suggested the following “random graph intuition” to
guess the threshold bias. Consider the random game, where the players Random-
Maker and RandomBreaker act completely randomly: at each turn RandomMaker
occupies 1 free edge selected uniformly at random then RandomBreaker occupies b
free edges selected uniformly at random. At the end of this game RandomMaker’s

graph is a random graph G(n, M) with M =

⌈
(n
2)

b+1

⌉
edges, so b ≈ n2

2M . Hence by

the classic theorem of Erdős and Rényi, for every ǫ > 0,

• if b ≤ (1− ǫ) n
ln n , then RandomMaker wins the connectivity game almost

surely;
• if b ≥ (1 + ǫ) n

ln n , then RandomBreaker wins the connectivity game almost
surely.

Let bT be the threshold bias of the connectivity game, that is, the the largest
integer b such that Maker wins the connectivity game against an arbitrary Breaker
who plays with bias b. Surprisingly, Chvátal and Erdős was able to show that the
random graph intuition is valid up to a constant factor, that is, for every ǫ > 0 and
large enough n,

(
1
4 − ǫ

)
n

ln n ≤ bT ≤ (1 + ǫ) n
ln n . Later Beck [1] improved the lower

bound to (ln 2− ǫ) n
lnn ≈ 0.69 n

ln n using a general Erdős Selfridge-type potential
function argument he developed partly for this purpose.

In his recent great treatise of the subject Beck [3] lists numerous open problems
on positional games and among them he identifies the “six most humiliating open
problems”. Here we address three of these.

The first problem concerns the connectivity game.

Problem 1. Is the random graph intuition valid for the connectivity game asymp-
totically? That is, is it true that bT = (1− o(1)) n

ln n?

Our second problem discusses the hamiltonicity property, which is known to
have the same sharp threshold edge number as connectivity.

Problem 2. Can Maker build a Hamilton cycle while playing against a Breaker
of bias (1− o(1)) n

ln n?

Let H ⊆ 2E(Kn) be the family of hamiltonian graphs on n vertices. Naturally,
this game is harder for Maker to win than connectivity, still the order of the thresh-
old bias turned out to be the same as the one for the connectivity game: Beck [2]
used his potential function method coupled with a beautiful ad-hoc argument to
show that Maker can create a Hamilton cycle against a bias ( ln 2

27 − o(1)) n
ln n of

Breaker.
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The third problem of Beck we consider here is about the misère version of
the hamiltonicity game. In this game the player Avoider wins if he does not
build a Hamilton cycle, his opponent, Enforcer wins otherwise. The problem was
motivated by our inability to adapt the succesful argument of the achievement
(Maker-Breaker) version [2] to the misére game, while the random graph intuition
suggests that they should have a similar outcome.

Problem 3. Can player Enforcer, playing with bias (1− o(1)) n
ln n , play such a

way that Avoider, playing with bias 1, builds a Hamilton cycle?

Our Results. Recently the best known bound for Open Problem 2 was improved
by Krivelevich and Szabó [9], but the precise asymptotics still eludes us.

Theorem 4. [9] bH ≥ (ln 2− o(1)) n
lnn

Our proof is more streamlined than the one in [2] as it avoids the ad-hoc rea-
soning and only applies the potential function criterion of Beck [1]. The key
ingredients are a new hamiltonicity criterion of Hefetz, Krivelevich and Szabó [7],
and a thinning trick. The method is in fact so flexible that it also allows the
resolution of Open Problem 3.

Theorem 5. [9] Enforcer, playing with bias (1− o(1)) n
ln n , has a strategy such

that Avoider, playing with bias 1, does build a Hamilton cycle.

Most recently, Open Problem 1 was settled by Gebauer and Szabó.

Theorem 6. [5] bT = (1− o(1)) n
ln n

The proof is not based on the potential function technique of Beck, rather on
the analysis of a quite natural strategy of Maker, involving a simple yet subtle
inductive argument.
Further Open Problems. Several interesting questions arise.

1. Close the remaining gap in Open Problem 2. An easier question is to
determine the correct threshold bias for the Maker-Breaker game where Maker’s
goal is to build a perfect matching. The known upper and lower bounds are the
same as the ones for the Hamiltonicity game. The random graph intuition would
again suggest (1− o(1)) n

lnn to be the right answer.
2. Another notable graph property having the same random graph threshold

edge number is k-connectivity for constant k. It would be interesting to close
the existing gap for the Maker–Breaker threshold bias (c.f. [9]) Note that for the
related Maker-Breaker game where Maker’s goal is to build a graph with minimum
degree at least k, the threshold bias was proved to be (1 − o(1)) n

ln n by Gebauer
and Szabó [5].

3. We do not know much about the threshold bias for the hamiltonicity Avoider-
Enforcer game; there is no nontrivial upper bound known. At this time it is even
possible that Enforcer can win if his bias is as large as Θ(n).

4. In fact, before posing the previous problem, one should rather wonder
whether there is a threshold bias at all!? We do not know the answer. In principal
it could happen that Enforcer loses the game with some bias b1, yet he wins with
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bias b1 + 1. This might seem impossible at first (superficial) sight, but there exist
examples of games where fluctuation in the identity of the winner occurs, see [6].
We remark that with a monotone relaxation of the rules, where in each round
both players are allowed to take at least as many elements of the board as their
respective bias, the threshold bias does exist and is equal to (1−o(1)) n

lnn (see [8]).
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Testing Properties of Graphs and Functions

Balázs Szegedy

(joint work with László Lovász)

Let G be the set of finite graphs. A subset P of G is called a graph property. Our
main focus here is testability of properties. Roughly speaking, a property is called
testable if by sampling a constant size random subgraph from a graph G one can
distinguish (with a large probability) between the cases wether G has the property
or it is far from having it. In this case “far” means that one has to change at least
ǫ|V (G)|2 edges in G to get a graph in P . For a more precise definition see [5].

The oldest result in the area is the so-called triangle removal lemma by Ruzsa
and Szemerédi which, among other things, implies Roth’s theorem on 3-term arith-
metic progressions in dense subsets of the integers. A far reaching generalization of
this result by Alon and Shapira [1] says that every hereditary property is testable.
(A property P is called hereditary if every spanned subgraph of G has P whenever
G has P .) The special case when P is the set of triangle free graphs is equivalent
with the triangle removal lemma.

The converse of the Alon-Shapira theorem is not true. It is easy to create
testable properties that are not hereditary. On the other hand it can be shown
that if P is testable and G has P then its “typical” subgraphs are not far from P .
By choosing the definition of “typical” carefully we obtain a characterization of
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testable graph properties which implies the Alon-Shapira result immediately. To
state our result we need some preparation.

Let H and G be two finite graphs. Let t(H, G) denote the probability that
a random map f : V (H) 7→ V (G) is a graph homomorphism (i.e. the image of
an edge in H is an edge in G). For two graphs G1, G2 let d(G1, G2) denote the
smallest ǫ ≥ 0 such that

|t(H, G1)− t(H, G2)| ≤ ǫ

for every H ∈ G with |V (H)| ≤ 1/ǫ. If |V (G1)| = |V (G2)| we also define the so
called edit distance e(G1, G2) which is the smallest number of edge deletions or
additions which make G1 isomorphic to G2.

Our main definition is the following: A property P is called weak-hereditary if
for every ǫ there is a number δ > 0 and a natural number nǫ such that if G ∈ P
and G1 is a spanned subgraph of G with |V (G1)| > nǫ and d(G, G1) ≤ δ (i.e. G1

is “typical”) then

e(G1,P) ≤ ǫ|V (G1)|2.
We proved the next characterization of testable properties:

Theorem: A graph property is testable if and only if it is weak-hereditary

Our main tool is the recently developed graph limit method [6, 7, 4, 3] which is
based on a completion of the set G that we denote by Ḡ. The set Ḡ is a compact
topological space with two metrics δ� and δ1 corresponding to the previous d and
e metrics. For every property P we introduce a certain closure P̄ which is a δ�-
closed subset of Ḡ. The closure of a graph property is a geometric object and
we show that testability of P corresponds to a geometric property of P̄ which is
roughly speaking the continuity of δ1(x, P̄) in δ�(x, P̄) at 0.

Note that our analytic language also enables us to introduce a natural class of
testable properties which contains all the hereditary ones. We call these properties
flexible. Among other results we show that the furthest graph from a flexible
property is quasi-random which generalizes a surprising result by Alon and Stav
[2].
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Embedding spanning subgraphs into dense graphs

Anusch Taraz

(joint work with Julia Böttcher and Mathias Schacht)

One of the fundamental results in extremal graph theory is the theorem by Erdős
and Stone [9] which implies that any fixed graph H of chromatic number r is forced
to appear as a subgraph in any sufficiently large graph G if the average degree of
G is at least ( r−2

r−1 + γ)n, for an arbitrarily small but positive constant γ. In this
paper we prove an analogue of this result for spanning subgraphs H which was
conjectured by Bollobás and Komlós.

When trying to translate the Erdős–Stone theorem into a setting where the
graphs H and G have the same number of vertices, then first of all, the average
degree condition must be replaced by one involving the minimum degree δ(G) of G,
since we need (to be able to control) every single vertex of G. Also, it is clear that
in this regime the lower bound has to be raised at least to δ(G) ≥ r−1

r n: simply
consider the example where G is the complete r-partite graph with partition classes
almost, but not exactly, of the same size (thus G has minimum degree almost r−1

r n)
and let H be the spanning union of vertex disjoint r-cliques.

There are a number of results where a minimum degree of r−1
r n is indeed

sufficient to guarantee the existence of a certain spanning subgraph H . A well
known example is Dirac’s theorem [7]. It asserts that any graph G on n vertices
with minimum degree δ(G) ≥ n/2 contains a Hamiltonian cycle. Another classical
result of that type by Corrádi and Hajnal [4] states that every graph G with
n vertices and δ(G) ≥ 2n/3 contains ⌊n/3⌋ vertex disjoint triangles. This was
generalised by Hajnal and Szemerédi [10], who proved that every graph G with
δ(G) ≥ r−1

r n must contain a family of ⌊n/r⌋ vertex disjoint cliques, each of size r.
A further extension of this theorem was suggested by Pósa (see, e.g., [8]) and

Seymour [19], who conjectured that, at the same threshold δ(G) ≥ r−1
r n, such a

graph G must in fact contain a copy of the (r−1)-st power of a Hamiltonian cycle
(where the (r− 1)-st power of an arbitrary graph is obtained by inserting an edge
between every two vertices of distance at most r − 1 in the original graph). This
was proven in 1998 by Komlós, Sárközy, and Szemerédi [13] for sufficiently large
n.

Recently, several other results of a similar flavour have been obtained which deal
with a variety of spanning subgraphs H , such as, e.g., trees, F -factors, and planar
graphs [1, 2, 3, 5, 6, 12, 14, 15, 16, 17, 18, 20]. Thus, in an attempt to move away
from results that concern only graphs H with a special, rigid structure, a näıve
conjecture could be that δ(G) ≥ ( r−1

r +γ)n suffices to guarantee that G contains a
spanning copy of any r-chromatic graph H of bounded maximum degree. However,
the following simple example shows that this fails in general. Let H be a random
bipartite graph with bounded maximum degree and partition classes of size n/2
each, and let G be the graph formed by two cliques of size (1/2 + γ)n each, which
share exactly 2γn vertices. It is then easy to see that G cannot contain a copy
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of H , since in H every set X of vertices of size (1/2 − γ)n has more than 2γn
neighbours outside X .

One way to rule out such expansion properties for H is to restrict the bandwidth
of H . A graph is said to have bandwidth at most b, if there exists a labelling of
the vertices by numbers 1, . . . , n, such that for every edge {i, j} of the graph we
have |i− j| ≤ b. Bollobás and Komlós [11, Conjecture 16] conjectured that every
r-chromatic graph on n vertices of bounded degree and bandwidth limited by o(n),
can be embedded into any graph G on n vertices with δ(G) ≥ ( r−1

r +γ)n. Recently,
we managed to prove this conjecture.

Theorem 1. For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and n0 ∈ N

such that for every n ≥ n0 the following holds.
If H is an r-chromatic graph on n vertices with ∆(H) ≤ ∆, and bandwidth at

most βn and if G is a graph on n vertices with minimum degree δ(G) ≥ ( r−1
r +γ)n,

then G contains a copy of H.

Since planar graphs with bounded maximum degree have sublinear bandwidth
(see [21]) our result implies that any sufficiently large graph G with n vertices and
δ(G) ≥ (3/4 + γ)n contains any planar n-vertex graph with bounded degree.

We close by addressing the rôle of the chromatic number in Theorem 1. There
are (r + 1)-chromatic graphs that are forced already as subgraphs when δ(G) ≥
( r−1

r + γ)n (simply consider the Hamiltonian cycle on an odd number of vertices).
It seems that the crucial question here is whether all r + 1 colours are needed by
many vertices, and it was Komlós [12], who introduced the concept of the critical
chromatic number χcr(H) to capture exactly this phenomenon.

Our methods allow an extension of Theorem 1 that goes into a somewhat similar
direction. Assume that the vertices of H are labelled 1, . . . , n. For two positive
integers x, y, an (r + 1)-colouring σ : V (H)→ {0, . . . , r} of H is said to be (x, y)-
zero free with respect to such a labelling, if for each t ∈ [n] there exists a t′ with
t ≤ t′ ≤ t + x such that σ(u) 6= 0 for all u ∈ [t′, t′ + y]. We also say that the
interval [t′, t′ + y] is zero free.

Theorem 2. For all r, ∆ ∈ N and γ > 0, there exist constants β > 0 and n0 ∈ N

such that for every n ≥ n0 the following holds.
Let H be a graph with ∆(H) ≤ ∆ whose vertices are labelled 1, . . . , n such that,

with respect to this labelling, H has bandwidth at most βn, an (r + 1)-colouring
that is (8rβn, 4rβn)-zero free, and uses colour 0 for at most βn vertices in total.

If G is a graph on n vertices with minimum degree δ(G) ≥ ( r−1
r + γ)n, then G

contains a copy of H.
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[12] , Tiling Turán theorems, Combinatorica 20 (2000), no. 2, 203–218.
[13] , Proof of the Seymour conjecture for large graphs, Ann. Comb. 2 (1998), no. 1,

43–60.
[14] , Proof of the Alon-Yuster conjecture, Discrete Math. 235 (2001), no. 1-3, 255–269.
[15] , Spanning trees in dense graphs, Combin. Probab. Comput. 10 (2001), no. 5, 397–

416.
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Fingerprinting capacity

Gábor Tardos

(joint work with Ehsan Amiri)

Digital fingerprinting is a basically combinatorial question motivated by security
and cryptography, namely the need for including a unique identifier code in each
copy of a digital document so that unauthorized copies could be traced back to
their source. Fingerprint codes resistant against collusion attacks was first intro-
duced by Boneh and Shaw [2]. See definition below. The present talk surveyed
recent constructions and upper bounds on the rate. The construction combines
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features of the earlier papers [3, 1]. The upper bounds use novel combinatorial
and probability theory tools.

The model A fingerprint code of length n for a set of N users consists of a
probabilistic strategy to assign a codeword from {0, 1}n to each user (the code
generation) and the accusation algorithm, that on input of another word in {0, 1}n
(the forged code) and the codewords of the users outputs one accused user. It is
ǫ-secure against t pirates if in case a t-subset of users (the pirates) use a valid
strategy to generate the forged copy, then the probability that the accused user is
not one of the pirates is at most ǫ.

Here a valid pirate strategy is any algorithm that takes the codewords of the pi-
rates as input and outputs the forged copy and obeys the marking condition: if for
some index i the ith bit of all the pirates’ codewords agree then the corresponding
bit of the forged copy must agree with them too.

The object of digital fingerprinting is to design secure fingerprint codes of high
rate R = log N/n. In particular one wants to find the t-fingerprinting capacity,
the largest rate for which ǫ-secure codes against t pirates exist with ǫ tending to
0.

The paper [3] gives constructions achieving rates 1/(100t2). The paper [1] gives
another construction that achieves higher rates for small values of t but the rates
of that construction deteriorates exponentially with t. We combine the techniques
from the two papers. Namely our code generation is a modification of that of
[3] while our accusation algorithm resembles that of [1]. This combination lets
us achieve better rates for all values of t and we conjecture that these rates are
optimal for all t.

While we cannot prove this conjecture we prove that the rates are asymptotically

optimal, both the rates achieved and our upper bounds are 1+o(1)
2 ln 2·t2 . For the upper

bound we use two new tools. The simpler is tighter form of Pinsker inequality
that depends on the distributions. The other tool is a partial solution to following
simple question:

Let D1 and D2 be two distributions on the product set S1 × S2 × · · · × Sk.
There box-distance is defined as the maximum of the differences |D1(A)−D2(A)|
for boxes A = A1×· · ·×Ak, where Ai ⊆ Si. We call a distribution D on k-tuples of
integers monotone, if D(x1, . . . , xk) = 0 unless x1 < x2 < . . . < xk. We call such
a distribution symmetric if D(x1, . . . , xk) = D(y1, . . . , yk) whenever (y1, . . . , yk)
is a permutation of (x1, . . . , xk). What is the minimum box-distance between a
symmetric and a monotone distribution on k-tuples of integers from {1, 2, . . . , n}?
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Extremal problems for cycles in graphs

Jacques Verstraëte

(joint work with Benny Sudakov)

We survey recent progress on extremal problems for cycles in graphs, and some
new applications. The first type of problem we consider, given a set C of cycles, is
to estimate ex(n, C) – the maximum number of edges in an n-vertex graph which
does not contain any of the cycles in C. In particular, the well-known Moore Bound
deals with the case that C consists of all cycles of length at most g. In general,
the following holds [8]:

If the longest even cycle in C has length 2k, then it holds that

ex(n, C) ≤ 4(k − 1)n1+1/k

It is known that this result is tight up to constant factors when k ∈ {2, 3, 5}.
Our result improves earlier bounds by Erdős and by Bondy and Simonovits [1], and
the technique we use also shows that a graph with no cycle of length zero modulo k
has average degree at most 8(k− 1). The problem of constructing graphs without
short cycles can be directly translated into estimating the largest size of subgroups
of non-abelian groups in which no word of length 2k of a particular form is the
identity. For k = 2, the existence of dense Sidon sets – also called perfect difference
sets in projective geometry – gives rise to projective planes which lead to the Erdős-
Rényi extremal graphs with no 4-cycles. The best bounds known for the case of
6-cycles are given by Füredi, Naor and the author [4] using a mix of extremal and
probabilistic methods. No Cayley graph construction of close-to-extremal graphs
for 6-cycles is known, and in fact only one infinite family of generalized quadrangles
is known. It would be interesting to find new constructions, as it can be deduced
from a recent paper of Cohn and Umans [2] using group algebras that if a Cayley
graph construction of close-to-extremal graphs with no 6-cycles exists, then the
exponent of matrix multiplication is 2. Odlyzko and Smith [6] did construct close-
to-optimal subsets of non-abelian groups in which no product of 2k letters is zero,
but for Cayley graphs one would need closure under inverses. We leave, therefore,
the following open question:
Do there exist infinitely many groups Gn of order n containing a subset Sn such

that the equation ab−1cd−1ef−1 = 1 with a, b, c, d, e, f ∈ Sn has only trivial

solutions and such that |Sn| ≫ n1/3?

Finally, we use the methods of the proof of the statement ex(n, C) ≪ n1+1/k

when 2k ∈ C to prove some results on unavoidable sequences of cycle lengths. A
sequence σ of positive integers is unavoidable if every graph of large enough but
constant average degree contains a cycle of length in σ. Erdős [3] conjectured
the existence of an unavoidable sequence of density zero, and this was proved by
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the author. It was also conjectured by Erdős and Gyárfás [3] that the sequence
of powers of two is unavoidable. While this conjecture is open, Sudakov and the
author [7] recently proved the following positive result:

Let σ be an infinite sequence of positive even integers and suppose that there

exists a constant K > 1 such that σk ≤ Kσk−1 for all k ∈ N – we could say σ
has at most tower growth. Then every n-vertex graph of average degree at least

exp(log∗ n) contains a cycle of length in σ. Furthermore, there are infinitely many

n for which there exists an n-vertex graphs containing no cycle of length in the

sequence sequence σk = 2kσk−1 where σ1 = 4.

Erdős and Hajnal [3] (see also [5]) conjectured that a graph of infinite chromatic
number has infinite sum of reciprocals of odd cycle lengths. Many other conjectures
of Erdős [3] on unavoidable odd cycles in graphs of large chromatic number remain,
and it is hopeful that some of the techniques used to prove the above-mentioned
result can be fruitful for solving these problems.
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Perfect factors in random (hyper)graphs

Van H. Vu

(joint work with Anders Johansson and Jeff Kahn)

Let H be a fixed graph on v vertices. For an n-vertex graph G with n divisible by v,
an H-factor of G is a collection of n/v copies of H whose vertex sets partition V (G).
The definition generalizes in the straightforward manner to r-uniform hyeprgraphs.

The problem of estimating the threshold thH(n) of the property that an Erdős-
Rényi random (hyper) graph (on n points) contains an H-factor, for a general H
has been, for quite some time, a central problem in probabilistic combinatorics.
The only case when the order of magnitude of thH(n) has been determined (prior
to the main result of this abstract) is when H is the graph K2 (in other words,
H a graph edge and a perfect factor is a perfect matching). A classical result of
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Erdős and Rényi from the 1960s showed that in this case thH(n) = Θ(log n/n).
Even the analogue of Erdős-Rényi result for hypergraphs (Shamir’s problem on the
threshold of perfect matching in random hypergraphs) has been open for a long
time. The monograph [1] contains a good summary on partial results on these
problems and related questions.

In a recent paper with A. Johansson and J. Kahn [2], we obtained a considerable
progress, which provides the right order of magnitude of thH(n) for a large class
of (hyper) graphs H (which contain Shamir’s problem as a special case).

Define d(H) = m
v−1 , where m is the number of edges of H . We say that H is

strictly balanced if d(H) > d(H ′) for any H ′ proper subgraph (sub-hypergraph)
of H .

Theorem 1. Let H be an r-uniform strictly balanced hypergraph with m edges.
Then

thH(n) = Θ(n−1/d(H)(log n)1/m).

Corollary 2. The threshold for containing a perfect matching in a random r-
uniform hypergraph is Θ(log n/nr−1).

For general (hyper)graphs which may not be strictly balanced, we obtained an
asymptotic result, which is tight up an no(1) factor. This establishes a conjecture
of Alon-Yuster.
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Conjectures on f-vectors

Volkmar Welker

1. Basic Definitions

We consider specific conjectures on f -vectors of simplicial complexes and their
generating polynomials. Recall, that an abstract simplicial complex ∆ is a subset
∆ ⊆ 2Ω of the power set 2Ω of the ground set Ω which is closed under taking
subsets. Throughout this text the ground set Ω will always be a finite set. We
call B ∈ ∆ a face of ∆ and denote by dim B := |B| − 1 its dimension. The
dimension dim(∆) of ∆ is the maximum dimension of one of its faces. Now the
f -vector f∆ := (f∆

−1, . . . , f
∆
d−1) of a (d − 1)-dimensional simplicial complex ∆ is

the vector with components f∆
i counting the number of i-dimensional faces of

∆. By f∆(t) :=
∑d

i=0 f∆
i−1t

d−i we denote the f -polynomial of ∆. Then h∆(t) :=

f∆(t − 1) :=
∑d

i=0 h∆
i td−i is the h-polynomial of ∆ and h∆ = (h∆

0 , . . . , h∆
d ) the

h-vector of ∆. There is a rich history of results, conjectures and counterexamples
on f -vectors in combinatorics and discrete geometry (see for example [1]). In this
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abstract we will concentrate on some conjectures that are on the one hand side
motivated from commutative algebra and on the other side from the theory of real
rooted polynomials.

The first conjecture is concerned with the entry f∆
d−1 of f∆ for a (d − 1)-

dimensional simplicial complex ∆.

2. The Combinatorial Multiplicity Conjecture

The Multiplicity Conjecture by Huneke and Herzog & Srinivasan (see [8])
bounds the multiplicity of a standard graded k-algebra by the shifts in the graded
Betti numbers.

More precisely the conjecture states:

Conjecture 1 (Multiplicity Conjecture). Let I be a homogeneous ideal in the
polynomial ring S = k[x1, . . . , xn] and A = S/I. Let h be the codimension of I
and βij the graded Betti numbers of the minimal free resolution of A as an S-
module. Set Mi := max{j | βij 6= 0}. Then the multiplicity e(A) of A is bounded
by:

e(A) ≤ 1

h!

h∏

i=1

Mi.

This conjecture has raised great interest in the commutative algebra community.
The most far reaching result known is the proof of the conjecture for Cohen-
Macaulay rings by Eisenbud & Schreyer [5] (see [6] for an overview of known cases
before the Eisenbud & Schreyer proof). On the first sight this conjecture has little
to do with combinatorics. But indeed it has a strong combinatorial consequence
in the case I = I∆ is the Stanley-Reisner ideal of a simplicial complex ∆. Let
∆ be a simplicial complex on ground set [n] := {1, . . . , n}. A simplicial complex
is completely specified by the set of its maximal faces and by the set MN(∆)
of its minimal non-faces. Now I∆ is the ideal in k[x1, . . . , xN ] generated by the
monomials

∏
i∈B xi for all B ∈ MN(∆). If A = k[∆] := S/I∆ is the Stanley-

Reisner ring of ∆ then by Hochster’s [9] formula:

βij =
∑

W⊆[n]
|W |=j

dimk H̃|W |−i−1 (∆W ; k) .

Here ∆W denotes the induced subcomplex {B ∈ ∆ | B ⊆ W} and H̃• (•; k)
reduced simplicial homology with coefficients in k. Since it is also well known
that e(k[∆]) = fd−1 and codim(I∆) = n − d we get the following form of the
Multiplicity Conjecture for Stanley-Reisner rings.

Conjecture 2 (Semi-Combinatorial Multiplicity Conjecture). Let ∆ be a simpli-
cial complex on ground set [n] of dimension d− 1. Set

Mi := max{j |
∑

W⊆[n]
|W |=j

dimk H̃|W |−i−1 (∆W ; k) 6= 0}.
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Then

fd−1 ≤
1

(n− d)!

n−d∏

i=1

Mi.

Note that if A = k[∆] is a Stanley-Reisner ring then Conjectures 1 and 2 are
equivalent. But there is no known argument that shows that proving Conjecture 2
implies Conjecture 1 for all standard graded k-algebras. For Stanley-Reisner rings
Conjecture 2 was verified for matroid complexes, 2-CM complexes etc. by Novik
& Swartz [13], for barycentrically subdivided simplicial complexes by Kubitzke
& Welker [11] and 3-dimensional simplicial complex etc. by Goff [7]. Clearly,
the work of Eisenbud & Schreyer implies the conjecture of all Cohen-Macaulay
simplicial complexes.

Even though Conjecture 2 may appeal to geometric and topological combina-
torialists, it still fails to be formulated in a purely combinatorial setting. For that
one has to resort for a last time to commutative algebra. The well known Taylor
resolution [14] implies that for Stanley-Reisner rings of simplicial complexes ∆ the
Betti number βij vanishes for any j such that there are is no subset C ⊆MN(∆)

of cardinality i with
∣∣∣
⋃

B∈C B
∣∣∣ = j. Thus if true Conjecture 2 would imply:

Conjecture 3 (Combinatorial Multiplicity Conjecture). Let ∆ be a simplicial
complex on ground set [n] of dimension d− 1. Set

M ′
i := max{j | ∃ C ⊆MN(∆) : |C| = i and

∣∣ ⋃

B∈C

B
∣∣ = j }.

Then

fd−1 ≤
1

(n− d)!

n−d∏

i=1

M ′
i .

In this form the conjecture was proved by Kummini [12] for flag simplicial
complexes (i.e. simplicial complexes ∆ for which all elements of MN(∆) are of
size 2).

Clearly, even if at some point there is a combinatorial proof for the upper bound,
it seems desirable to have a combinatorial proof. On the other hand classical
methods from extremal set theory (e.g. shifting) do not seem to be applicable.

3. Real rooted polynomials and g-theorems

Next we are interested in cases when the f -polynomial f∆(t) has only real roots
and numerical consequences of the fact that the f -polynomial has only real roots.

The first results in this direction arise in connection with barycentric subdi-
vision. Recall, that for a simplicial complex ∆ its barycentric subdivision sd(∆)
is the simplicial complex on ground set ∆ \ {∅} whose simplices are the chains
F0 ⊂ · · · ⊂ Fi of faces of ∆ \ {∅}. For any n ≥ 1 we write sd(∆)n for the nth
barycentric subdivision of ∆.
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Theorem 4 ([2]). For any simplicial complex ∆ there is a number N > 0 such
that for any n ≥ N the h-polynomial hsdn(∆)(t) has only real roots. If h∆

i ≥ 0 for

0 ≤ i ≤ d then hsdn(∆)(t) has only real roots for all n ≥ 1.

A second example which is geometrically more involved arises from r-edgewise
subdivisions, an operation that for any r ≥ 2 appears naturally in computational
geometry and algebraic topology (see references in [3]). For a simplicial complex
∆ denote by ∆(r) its r-edgewise subdivison.

Theorem 5 ([3]). For any simplicial complex ∆ there is an R > 0 such that for
any r ≥ R the h-polynomial h∆(r)(t) has only real roots.

Thus it appears that subdivision operations increase the number of real roots
of f - or equivalently h-polynomials of simplicial complexes. Indeed there is the
following conjecture :

Conjecture 6 ([4]). If ∂P is the boundary complex of a (not necessarily simplicial)
d-polytope P then the h-polynomial of sd(∂P ) has only real roots.

Note that if P is a simplicial polytope then Conjecture 6 is implied by Theorem
4. The concept of real rooted f - or h-polynomials is absent in the classical theory
of f - or h-vectors. Here, motivated by the classification of certain combinatorial
or geometric classes of simplicial complexes, theorems often refer to the binomial
expansion of the entries in the f -vector. Recall, that for numbers n ≥ i ≥ 1 there
is a unique expansion n =

(
ai

i

)
+ · · · +

(
aj

j

)
with numbers ai > · · · > aj ≥ j ≥ 1.

In this situation we write n〈i〉 for
(
ai−1
i−1

)
+ · · ·+

(
aj−1
j−1

)
.

We say that an integer vector (h0, . . . , hd) ∈ N
d+1 satisfies a g-theorem if 1 =

h0 < · · · < hr ≥ hr+1 ≥ · · · ≥ hd and for g0 = h0 = 1, gi = hi − hi−1, 1 ≤ i ≤ r,

we have gi+1 ≤ g
〈i〉
i for 1 ≤ i ≤ r − 1.

The classical g-theorem states:

Theorem 7 (g-Theorem by Billera & Lee, Stanley). A vector (h0, . . . , , hd) ∈ N
d+1

is the h-vector of the boundary complex of a simplicial polytope if and only if
hi = hd−i, 0 ≤ i ≤ d, and (h0, . . . , , hd) satisfies a g-theorem.

The conjecture claiming that the same classification holds for simplicial spheres
is known as the g-conjecture in discrete geometry. Now the following conjecture
relates real rootedness and g-theorems.

Conjecture 8 ([4]). Let h(t) = h0 + · · ·hdt
d ∈ N[t] be a polynomial of degree d

with coefficients h0 = 1 and hi ≥ 1 for 1 ≤ i ≤ d. If h(t) has only real roots then
(h0, . . . , hd) satisfies a g-theorem.

Besides calculations for small d, supportive evidence comes from the following
results which shows that Conjecture 8 holds if h(t) = hsd(∆)(t) for a Cohen-
Macaulay simplicial complex of dimension d − 1. Note that in this situation by
Theorem 4 the polynomial hsd(∆)(t) has only real roots.

Theorem 9 ([10]). Let ∆ be a Cohen-Macaulay simplicial complex of dimension
d− 1. Then hsd(∆) satisfies a g-theorem.
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Face numbers of centrally-symmetric polytopes: Conjectures,
examples, counterexamples

Günter M. Ziegler

(joint work with Raman Sanyal and Axel Werner)

The f -vectors of centrally-symmetric convex polytopes are the subject of three
conjectures A, B, C of increasing strength by Kalai [4] from 1989. Such basic open
questions illustrate that our understanding of the f -vectors of centrally-symmetric
polytopes is dramatically incomplete. (Our understanding of f -vectors of general
convex polytopes is also quite limited outside the range of simple/simplicial poly-
topes; compare [7], [8].)

In our lecture, based on [6], we described the three conjectures, and reported
that Conjectures A and B hold for d ≤ 4, while Conjecture C fails for d ≥ 4 and
Conjecture B fails for d ≥ 5.
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1. The case d = 3

The case of d = 3 is easy, but it serves as a model for a complete answer: The
set of f -vectors of centrally-symmetric 3-polytopes is

Fcs
3 = {(f0, f1, f2) ∈ (2Z)3 : f0 − f1 + f2 = 2,

f0 ≤ 2f2 − 4,

f2 ≤ 2f0 − 4,

f0 + f2 ≥ 14 }.

2. Three conjectures

Kalai [4] proposed the following three conjectures of increasing strength about
the f -vectors of d-dimensional centrally-symmetric polytopes.

The first one, Conjecture A, claims that every such polytope has at least 3d

non-empty faces,

d∑

i=0

fi ≥ 3d.

This became known as the 3d-conjecture. In its strong form, it would claim that
equality occurs only for Hanner polytopes, which arise from centrally-symmetric
1-polytopes (intervals [−1, 1]) by repeated application of “taking products” and
dualization.

The second one, Conjecture B, claimed that the f -vector of every centrally
symmetric d-polytope P should componentwise dominate the f -vector of one of
the Hanner polytopes, f(P ) ≥ f(H).

The third one, Conjecture C, claimed that the flag-vector flag(P ) of every
centrally symmetric d-polytope P should dominate in flag-vector space some flag
vector flag(H), not only componentwise, but with respect to all linear flag-vector
functionals that are nonnegative on all flag-vectors of general d-polytopes.

Kalai noted that quite obviously Conjecture C implies Conjecture B, which in
turn implies the “3d-conjecture”, Conjecture A.

3. The cases 4A and 4B

While all three conjectures clearly hold for d ≤ 3, we report that Conjectures
A and B also hold for d = 4. The proof involves simple f -vector combinatorics,
known elementary inequalities, some case distinctions, and one crucial non-trivial
inequality, gtor

2 ≥ 2. In its more general form for centrally-symmetric d-polytopes,

gtor
2 (P ) = f1 + f02 − 3f2 − df0 +

(
d+1
2

)
≥

(
d
2

)
− d.

This inequality was derived by a’Campo-Neuen [1] via toric geometry. Following a
suggestion by Kalai, we also derive an elementary proof via rigidity theory in [6].
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4. Examples

As noted by Kalai, the Hanner polytopes (introduced by Hanner [2] in 1956,
described above) provide a first, very interesting class of examples. A second
class was described by Hansen [3] in 1977: The antiprisms over the independence
polytopes of self-dual perfect graphs yield self-dual centrally-symmetric polytopes
with interesting f -vectors. None of the two classes includes the other one: For
examples take the sum of two 3-cubes, resp. the Hansen polytope of the path on
4 vertices. Both classes are examples of weak Hanner polytopes as introduced by
Hansen, which have the property that any pair of opposite facets includes all the
vertices. The hypersimplex ∆(k, 2k) of dimension 2k − 1 is an example of a weak
Hanner polytope that is neither Hanner nor Hansen in general.

5. The case 4C fails

Consider the flag vector functional for 4-dimensional polytopes

α(P ) := (f02 − 3f2) + (f13 − 3f1),

which is non-negative, and vanishes exactly if P is 2-simplicial (first term) and
2-simple (second term).

This functional takes the values 9 and 12 on the 4-dimensional Hanner poly-
topes. Examples of centrally-symmetric 2-simplicial 2-simple 4-polytopes include
Schläfli’s 24-cell. Infinite families of 2-simple 2-simplicial 4-polytopes, with α = 0,
which may also be obtained to be centrally symmetric, are described in [5].

Thus for d = 4 Conjecture C fails strongly, in the sense that there are infinitely
many polytopes whose flag-vectors are separated from all flag-vectors of Hanner
polytopes by a common nonnegative linear functional.

6. The cases 5B and 5C fail

For d = 5, we consider the linear f -vector functional

β(P ) := f0 + f4.

This functional satisfies β ≥ 34 on all Hanner polytopes, while β = 32 both
for the Hansen polytope associated with the path on 4 vertices, with f -vector
(16, 64, 98, 64, 16), and on the central hypersimplex ∆(3, 6), whose f -vector is
(20, 90, 120, 60, 12).

Thus for d = 5 Conjecture B fails strongly, in the sense that there are are
polytopes whose f -vectors are separated from all f -vectors of Hanner polytopes
by a common nonnegative linear functional.

One can derive from this that indeed Conjecture C fails for all d ≥ 4 and that
Conjecture B fails for all d ≥ 5. Conjecture A remains open for d ≥ 5. We refer
to [6] for details.
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