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Introduction by the Organisers

The notion of universality covers a wide range of phenomena in complex anal-
ysis. Generally speaking, a universal object is one which, when subjected to some
limiting process, approximates every object in some universe. For example, uni-
versality occurs when the translates of an entire function can approximate any
other entire function, or when the partial sums of a formal power series or a for-
mal trigonometric series approximate all functions in some natural class. For a
long time, existing approximation theorems were used in constructions of univer-
sal functions and universal series. In recent years, however, constructions have
required the development of new approximation theorems, thereby also enriching
the area of complex approximation.
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Universal functions. There is no single definition of a universal function.
What they have in common is the following. One considers a suitable sequence
T = (Tn) of operators acting on a space X , for example, of holomorphic functions
with values in another space Y of holomorphic functions. Then a function f ∈ X
is called universal with respect to T if the sequence (Tnf) is dense in Y . One
of the earliest examples of a universal function is due to Birkhoff (1929) who
showed that there exists an entire function f whose translates f(z+n), n ≥ 1, can
approximate any other entire function, uniformly on compact sets. In that case
we have (Tnf)(z) = f(z+ n), and X = Y is the space of entire functions with the
usual compact-open topology.

Seidel and Walsh showed that an analogue of Birkhoff’s universality theorem
holds for functions holomorphic in the unit disc, if we replace translates by ”non-
euclidian translates”, that is Tnf = f ◦φn is the composition of f with an automor-
phism φn of the unit disc D. At the heart of the study of holomorphic functions
in the disc D is the class H∞(D) of bounded holomorphic functions on the disc.
Chee showed the existence of universal functions for the class H∞(B) of bounded
holomorphic functions on the unit ball of CN . Richard Aron’s talk was concerned
with the size and the structure of the set of such universal functions. In the study
of the space H∞(B) a fundamental role is played by inner functions. These are
also of importance in engineering control theory. Recently, Gauthier and Xiao
have shown the existence of universal inner functions in the unit ball of CN . Geir
Arne Hjelle and Raymond Mortini gave talks concerned with approximating inner
functions in the unit disc D by simpler inner functions, namely Blaschke products.

Extending the study of functions in the unit disc, which are universal with re-
spect to composition with automorphisms of the disc, Mortini talked about the
universality of functions f holomorphic on a domain Ω with respect to a sequence
(f ◦ φn) of compositions, where (φn) are self-maps of Ω (not necessarily automor-
phisms).

Universal series. In 1918 Jentzsch gave an example of a power series Σ for
which a subsequence of the partial sums of Σ converges outside of its disc D of
convergence. Such a power series is said to be overconvergent. Luh, Chui and
Parnes showed the existence of such an overconvergent series Σ which is universal
in the sense that, for each compact set K in the complement of D, and for each
f holomorphic on K, there are partial sums of Σ which converge uniformly to f .
Nestoridis showed that one can even allow K to meet the boundary of D.

The main focus of the mini-workshop was in fact on universal series of one sort or
another. The talks by Wolfgang Luh and Tatevik Gharibyan dealt with the strong
relation between universality and lacunarity for power series and also the relation
between various forms of summability and holomorphic continuation. Lacunary
power series are ones for which many of the coefficients are zero. Another restric-
tion which one can impose on the coefficients is that the sequence of coefficients lie
in some sequence space. Vassili Nestoridis, in his first lecture, showed that there
are universal series, whose sequence of coefficients are in every ℓp-space, for each
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p > 1. In his second talk, he spoke on the recent work of Mouze concerning univer-
sality of the geometric series. Vagia Vlachou gave a talk on universal Faber series.
Jürgen Müller, in his talk ”From polynomial approximation to universal Taylor
series and back again” gave specific examples of the interplay between theorems
on approximation by polynomials of a given class and the existence of universal
Taylor series whose coefficients satisfy a given restriction.

Potential theory. The extension of some universality results to harmonic
functions is due to Armitage (2002, 2003, 2005). Innocent Tamptse’s talk was
concerned with universal series of harmonic functions. Universality for harmonic
functions is based on approximation theory just as universality for holomorphic
functions. One reason that harmonic universality was developed much more re-
cently than holomorphic universality is that harmonic approximation theory at-
tained its full development only recently, largely due to Stephen Gardiner. In his
talk, Gardiner discussed the relation between approximation theorems and maxi-
mum principles in potential theory. The classical approximation theorem of Runge
was extended not only to harmonic functions but also to solutions of elliptic partial
differential equations (Lax-Malgrange). This leads to universality results for solu-
tions of such equations. Paul Gauthier spoke on universality for solutions of the
heat equation (which of course is not elliptic) and also for solutions to Burgers’
equation, which is one of the simplest non-linear parabolic equations. Burgers’
equation has applications in aerodynamics.

General theory of universality. Several of the talks were not so much
concerned with one particular type of universality as with phenomena related to
universality in general. For example, the first talk of Nestoridis as well as the talks
by Tamptse and Gauthier made use of the recently developed ”abstract theory of
universality”.

A bounded operator T defined on some separable Banach space X is called hy-
percyclic if there exists some vector x ∈ X such that the orbit of x under T , namely
{T nx; n ≥ 0} is dense in X . A theorem of Kitai, Gethner and Shapiro asserts
that an operator satisfying a certain criterion called the Hypercyclicity Criterion
is always hypercyclic. The Hypercyclicity Criterion is a very powerful tool to
prove that an operator is hypercyclic. And even, until recently, every hypercyclic
operator was hypercyclic... because it satisfies the assumptions of the Hypercy-
clity Criterion. Thus, a natural question was to know whether every hypercyclic
operator satisfies the assumptions of the Hypercyclicity Criterion. Recently, De
La Rosa and Read proved that there exist a Banach space X and a hypercyclic
operator T on X that does not satisfy the hypercyclicity criterion, but this space
cannot be identified with some “classical” Banach space. Fréderic Bayart, in his
talk proved that in fact such an operator exists on the separable Hilbert space.

A bounded linear operator T defined on a separable Banach spaceX is said to be
supercyclic if there exists a vector x ∈ X such that the set {λT nx : λ ∈ C, n ∈ N}
is dense in X . It is called weakly supercyclic if the set {λT nx : λ ∈ C, n ∈ N} is
weakly dense in X .
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Fernando León-Saavedra, in his talk proposed a method to prove non-super-
cyclicity and non-weak supercyclicity which is less computational than previous
methods and for which the proofs turn out to be simpler.

George Costakis, spoke on the question as to whether there exist maps between
spaces of holomorphic functions which preserve certain notions of universality.

Karl-G. Grosse-Erdmann named his talk ”Construction versus Baire category
in universality”. He could also have named it ”Bare hands versus Baire category in
universality”. The existence of universal functions is usually proved by one of two
methods: by an explicit construction or by the use of the Baire category theorem.
In his talk, Grosse-Erdmann argued that the two methods are largely equivalent
and ended his talk by recalling a pronouncement of T. W. Körner

The Baire Category Theorem is a profound triviality.

The Riemann zeta function. Although universality is a generic phenome-
non, the only explicit function which is known to have universality properties is
the Riemann zeta function and its close cousins (Voronin, 1975). Markus Nieß
extended recent results showing that it is possible to approximate the Riemann
zeta function by functions which fail to satisfy the conclusion of the Riemann
hypothesis. That is, they do have zeros which are not on the critical axis.

An additional lecture was given by Sophie Grivaux from Lille, who was at
Oberwolfach as a participant in the RIP program. She talked about the relation
between hypercyclicity and the invariant subset problem.

Problem session. A problem session was held in which problems were pre-
sented by Grosse-Erdmann, Aron, Nestoridis, Vlachou, Gauthier, Luh, Gardiner,
and Mortini. Gardiner presented some problems in the name of David H. Ar-
mitage, who unfortunately could not attend.

Participants found the mini-workshop extremely stimulating. Mathematical
and social bonds were reinforced which will surely prolong existing collaborations
and develop new ones.

The organizers were Paul M. Gauthier (Montréal), Karl-Goswin Grosse-Erd-
mann (Mons), and Raymond Mortini (Metz). The participants greatly appre-
ciated the hospitality and the stimulating atmosphere of the Forschungsinstitut
Oberwolfach.
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Hypercyclic operators failing the Hypercyclicity Criterion . . . . . . . . . . . . . 324

Fernando León-Saavedra
A new method for non-supercyclicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

George Costakis
Which maps preserve universal functions? . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Richard M. Aron (joint with Pamela Gorkin)
Universal functions on H∞(Bn) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Raymond Mortini (joint with Karl-Goswin Grosse-Erdmann)
Universal functions for composition operators . . . . . . . . . . . . . . . . . . . . . . . 332

Markus Nieß
Close universal approximants of the Riemann zeta-function . . . . . . . . . . . 333

Karl-G. Grosse-Erdmann
Construction versus Baire category in universality . . . . . . . . . . . . . . . . . . . 334

Vassili Nestoridis
An improvement of the universality of the geometric series . . . . . . . . . . . 336

Innocent Tamptsé
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Abstracts

Universal series in
⋂

p>1

ℓ
p

V. Nestoridis

(joint work with S. Koumandos, G.-S. Smyrlis and V. Stefanopoulos)

The present is mainly based on [3], which in turn makes use of the recently devel-
oped “Abstract theory of universal series” ([2]).

Let X , ρ denote a topological vector space (on the field K = R or K = C)
endowed with a translation invariant metric ρ. Let x0, x1, . . . be a fixed sequence
of vectors in X .

Definition. A scalar sequence a = (aj)
∞
j=0 in KN0 belongs in the class U , if the

sequence
n∑

j=0

ajxj , n = 0, 1, 2, . . . in dense in X .

Proposition. U 6= ∅, if and only if, for every p ∈ N the linear span
〈xp, xp+1, xp+2, . . . 〉 is dense in X.

If this holds, then U is Gδ and dense in KN0 endowed with its cartesian topology
and contains a dense vector subspace except 0.

Let A, d be a vector subspace of KN0 endowed with a translation invariant
metric d. We assume that the following postulates hold.

i) (A, d) is a complete vector space.
ii) The projections A ∋ a = (aj)

∞
j=0 → am ∈ K are continuous for all m ∈ N .

iii) The set c00 = {(aj)
∞
j=0 ∈ K

N : ∃ j0 so that aj = 0 for all j ≥ j0} is
contained in A.

iv) c00 = A.
A stronger postulate than iv) is the following

iv)′: For every a = (aj)
∞
j=0 in A we have

n∑
j=0

ajej
d
−→ a, as n → +∞, where

ej = (δiγ )∞i=0 is the usual base.

Definition. A sequence a = (aj)
∞
j=0 in A belongs to the class UA, if, for every x ∈

X , there exists a sequence (λn)∞n=1 in N so that
λn∑
j=0

ajxj
ρ
−→ x and

λn∑
j=0

ajej
d
−→ a

as n→ +∞.

Obviously UA ⊂ U ∩ A. If iv)′ holds then UA = U ∩ A. An example where
UA 6= U ∩A can be found in [2] part C.

Theorem. UA 6= ∅, if and only if, for every x ∈ X and ε > 0, there exist M ∈ N

and β0, β1, . . . , βM ∈ K so that ρ

(
x,

M∑
j=0

βjxj

)
< ε and d

(
M∑

j=0

βjej , 0

)
< ε.

If this holds then UA is Gδ and dense in A and contains a dense vector subspace
of A except 0.
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In [2] one can find variants of the previous theorem where the spaceX is replaced
by a denumerable family of spaces.

In the sequel we assume that the sequence xj , j = 0, 1, 2, . . . satisfies the fol-
lowing.

Condition D. For every finite set I ⊂ N, there exist distinct indices jn(i), n ∈ N ,
i ∈ I such that xjn(i) → xi, as n→ +∞.

Clearly it is equivalent that condition D holds for all singletons I.

Proposition. If U 6= ∅ and condition D holds then U ⋂
p>1

ℓp 6= ∅.

Remark. The space
⋂

p>1
ℓp is endowed with a metric compatible with the norms

‖ ‖1+ 1
k
, k = 1, 2, . . . and it is easily seen that it satisfies the postulates for A.

Theorem. Suppose that (E, ρ) is a vector space endowed with a translation in-
variant metric ρ and x0, x1, x2, . . . is a fixed sequence of vectors in E. We assume
that condition D is satisfied. We set X to be the linear span 〈x0, x1, . . . 〉. Then
U ⋂

p>1

ℓp 6= ∅.

Remark. The approximation results guaranteed by the previous theorem remain
valid if the space X , ρ is replaced by it closure or completion. In the applications
we need to use an approximation result in order to identify the completion of X .
In most of our applications ϕ is a continuous function (in some set) and xj are the
translations ϕ(· − bj), where bj , j = 0, 1, . . . is a sequence without isolated points.
Condition D is then guaranteed by the continuity of the translation b→ ϕ(· − b).

Applications yield approximation results by translates of the Riemann zeta
function [6], or by translates of a fundamental solution of suitable elliptic operators
with constant coefficients in Rn [4], or by translates of approximate identities
in Rd, as for example by normal distributions [5]. Another application yields
universal trigonometric series in Rd (non-periodic case) with frequencies with finite
accumulation points. Improvements of these results are obtained by using universal
Dirichlet series in the sense of Bayart ([1]) in one or several variables, where the
only accumulation point of the frequencies is ∞.
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From polynomial approximation to universal Taylor series and back
again

Jürgen Müller

For a compact set E ⊂ C let (A(E), ‖ · ‖E) denote the Banach space of all
f : E → C continuous on E and holomorphic in E0 with the uniform norm.
Moreover, let P (E) be the closure of the polynomials in A(E) and let H(E) be
the set of functions on E extending holomorphically to some neighborhood of
E. For Ec connected, Runge’s theorem says that H(E) ⊂ P (E) and Mergelian’s
theorem shows that, more precisely, A(E) = P (E).

For a domain Ω ⊂ C, which is always supposed to contain the unit disk D but
not its closure, and for a function f ∈ H(Ω) we consider the Taylor sections

(Snf)(z) =

n∑

ν=0

f (ν)(0)

ν!
zν (n ∈ N, z ∈ C)

and ask for results on

ω(f,E) := {g ∈ A(E) : ∃ (nm) : Snmf → g in A(E)}.

For K ⊂ Dc compact with Kc connected it may happen that ω(f,K) is maximal.
We set

UK(Ω) := {f ∈ H(Ω) : ω(f,K) = A(K)}.

Applying the universality criterion (see [GE]), we give a short proof of (cf. [Ne])

Proposition 1. Let Ω be simply connected. Then UK(Ω) is residual in H(Ω) for
all compact sets K ⊂ Ωc with Kc connected.

Proof. We consider Sn : H(Ω) → A(K) with the compact-open topology on
H(Ω). Then the Sn are continuous. From Mergelian’s theorem it follows that,
for a suitable sequence of polynomials (hj), the sequence Vj := {ψ ∈ A(K) :
‖ψ − hj‖ < 1/j} forms a countable base of the topology of A(K). According to
the universality criterion we have to guarantee that for all j ∈ N, all compact sets
L ⊂ Ω with Lc connected and all g ∈ H(Ω) there are arbitrary large n ∈ N with
Sn({ϕ ∈ H(Ω) : ‖ϕ− g‖L < 1/j}) ∩ Vj 6= ∅.

Let E := L ∪K. Since f : E → C with f|L := g and f|K := hj is in H(E), and
since E has connected complement, Runge’s theorem offers a polynomial p with
‖p− g‖L < 1/j and p ∈ Vj . Noting that Sn(p) = p for all n ≥ deg(p) we are done.
2

We remark that the proof equally works for arbitrary sequences Tn : H(Ω) →
A(K) of continuous projections to the set of polynomials of degree ≤ n, as e. g.
Faber sections or sequences of suitable interpolating polynomials.
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By using variants of Runge’s theorem it is possible to impose further conditions
on universal Taylor series. We consider lacunary series: For Λ ⊂ N0 let

HΛ(Ω) := {f ∈ H(Ω) : f (ν)(0) = 0 (ν /∈ Λ)}, UK,Λ(Ω) := HΛ(Ω) ∩ UK(Ω)

and let PΛ(E) be the closed linear span of the monomials z 7→ zν (ν ∈ Λ) in A(E).
If 0 ∈ E0, then f ∈ PΛ(E) implies f (ν)(0) = 0 for all ν /∈ Λ. Conversely, we have
the following Runge type result (see [LMM]):

Suppose that E is compact with Ec connected, 0 ∈ E0 and such that the com-
ponent of E containing 0 is starlike with respect to 0. If Λ has upper density
d̄(Λ) = 1, then every f ∈ H(E) with f (ν)(0) = 0 for all ν /∈ Λ is in PΛ(E).

Since no extra conditions are imposed on components of E not containing 0,
the same proof as for Proposition 1 gives (cf. [Sch])

Proposition 2. Let Ω be starlike with respect to 0 and suppose that d̄(Λ) = 1.
Then UK,Λ(Ω) is residual inHΛ(Ω) for all compact setsK ⊂ Ωc withKc connected.

Remarks 3. By topological arguments and a further application of Mergelian’s
theorem (only on the “K-side”) it can be shown (see [Ne]) that for Ω simply
connected there is a sequence (Kj) in Ωc with Kc

j connected and

U(Ω) :=
⋂

{UK(Ω) : K ⊂ Ωc, Kc connected} =
⋂

j∈N

UKj(Ω)

Therefore, U(Ω) is still residual in H(Ω). The same arguments lead to the resid-
uality of UΛ(Ω) :=

⋂
{UK,Λ(Ω) : K ⊂ Ωc, Kc connected} in HΛ(Ω) for Ω starlike

and d̄(Λ) = 1.
From a result in [MM], it follows that the condition d̄(Λ) = 1 turns out to be

sharp. More precisely, given d < 1, there is a compact sector Sd ⊂ D
c such that for

all K with K0 ⊃ Sd and all f ∈ HΛ(D) with d̄(Λ) ≤ d the condition 0 ∈ ω(f,K)
implies f ≡ 0. Therefore, in particular, for Λ with d̄(Λ) < 1 always UΛ(D) = ∅.

That polynomial approximation has impact on the existence of universal Taylor
series is well known. On the other hand, universality properties of (Sn) lead to
certain overconvergence and thus to extra approximation of f in Ω \ D. In [MY],
the following result on reduced growth of sequences of polynomials is found:

Lemma 4. Let B ⊂ C be closed and non-thin at ∞. If (pm) is a sequence of
polynomials with

lim sup
m→∞

|pm(z)|1/dm ≤ 1 (z ∈ B),

where deg(pm) ≤ dm, then for all compact E ⊂ C

lim sup
m→∞

‖Pm‖
1/dm

E ≤ 1.

If f ∈ H(D) is so that for some B as in the Lemma

lim sup
m→∞

|Snm(z)|1/nm ≤ 1 (z ∈ B),

an application of the two-constants-theorem (as in the proof of the classical Os-
trowski overconvergence theorem, see e. g. [Hi], Theorem 16.7.2) shows that f
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has a maximal domain of existence Ωf , that Ωf is simply connected, and that
Snmf → f in H(Ωf ) (thus f ∈ ω(f, L) for all L ⊂ Ωf compact). In particular,
this is satisfied if Ω is simply connected and f ∈ U(Ω) (the complement of a sim-
ply connected domain is non-thin at ∞). In this case, also Ω = Ωf , that is, all
f ∈ U(Ω) have Ω as natural boundary (cf. [MVY]).

From results in [Ge] it follows that some overconvergence of (Sn) already occurs
under weaker conditions: If f ∈ H(Ω) for Ω 6= D and if ω(f,E) 6= ∅ for some
compact set E ⊂ C with cap(E) > 1, then there is a domain ΩE 6⊇ D with
Snmf → f in H(ΩE) for some (nm).

On the other hand, Taylor sections of functions in H(C \ {1}) cannot exhibit
overconvergence (or, equivalently, cannot have Hadamard-Ostrowski gaps). This
follows from the classical Wigert theorem in connection with [Po], Theorem V.
However, in [Me], it is shown that UK(C \ {1}) is residual in H(C \ {1}), for all
K ⊂ Dc finite.

In view of the above results a reasonable guess is that K finite might be replaced
by cap(K) = 0.
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Densities connected with overconvergence

Wolfgang Luh

(joint work with Tatevik Gharibyan)

Suppose that f(z) =
∞∑

ν=0
aνz

ν is a power series with radius of convergence 1 and

denote by sn(z) =
n∑

ν=0
aνz

ν its partial sums. The sequence
{
sn(z)

}
converges

compactly in the unit disk D := {z : |z| < 1} and diverges in every point z ∈ D
c
.

However, exactly a century ago Porter [15] constructed such a power series with
the property that a certain subsequence {snk

(z)} of its partial sums converges

compactly in a domain which contains points of D
c
. This phenomenon is called

overconvergence.

Definition 1. A power series

f(z) =

∞∑

ν=0

aνz
ν with lim

ν→∞
|aν |

1/ν = 1

is called overconvergent along the sequence {nk} ⊂ N if there exists a domain
G 6⊂ D such that the subsequence {snk

(z)} of its partial sums converges com-
pactly on G.

Other examples of overconvergent power series were given by Jentzsch [5], and
in the early twentieth century Ostrowski [10] - [14] made a thorough investigation
of overconvergence phenomena. One of his main results consists in the correlation
between overconvergence and the existence of certain gaps in the sequence of co-
efficients; nowadays they are designated as Hadamard-Ostrowski-gaps (H.O.-gaps
for short) and defined in the following way.

Definition 2. Let be given a power series

(1.1) f(z) =

∞∑

ν=0

aνz
ν with lim

ν→∞
|aν |

1/ν = 1.

(1) We say that (1.1) has a sequence {pk, qk} of H.O.-gaps if the following
holds:

a) pk, qk are natural numbers with p1 < p2 < . . .,

b) lim
k→∞

qk
pk

> 1,

c) for I :=
∞⋃

k=1

{pk + 1, pk + 2, . . . , qk − 1} we have lim
ν→∞

ν∈I

|aν |1/ν < 1.
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(2) In the case that qk

pk
→ ∞ and lim

ν→∞

ν∈I

|aν |
1/ν = 0 we say that the power series

has Ostrowski-gaps.
(3) By O(f) we denote the set of all H.O.-gaps which the series (1.1) has and

we set O(f) = ∅ if there are no H.O.-gaps.

The most essential results of Ostrowski’s theory on overconvergence are the fol-
lowing.

Theorem O1. Suppose that the power series f(z) =
∞∑

ν=0
aνz

ν with radius of con-

vergence 1 possesses H.O.-gaps {pk, qk}. Let the function f be holomorphic at
z0, |z0| = 1. Then there exists a neighborhood U(z0) of z0 such that {snk

(z)}
where

snk
(z) =

nk∑

ν=0

aνz
ν with pk ≤ nk < qk

converges compactly on U(z0).
If the power series has Ostrowski-gaps {pk, qk} then the domain G of holomor-

phy of f is simply connected and {snk
(z)} converges compactly on G.

Theorem O2. Suppose that f(z) =
∞∑

ν=0
aνz

ν has radius of convergence 1 and that

it has an overconvergent subsequence {snk
(z)} of its partial sums. Then there ex-

ist constants ϑ, θ with 0 < ϑ < 1 < θ such that {[ϑnk], [θnk]} is a sequence of
H.O.-gaps.

Sharp estimates for the constant ϑ and θ were given by Müller [7] and Gehlen [2].

In recent years the investigation of overconvergence has had a revival since its
connection with universal properties of Taylor series has been detected. For details
we refer to the excellent survey of Große-Erdmann [4], where also a synopsis of
the relevant literature is given.

In this note we consider overconvergent power series and investigate questions
related to densities. Among others we deal with the following problems:

• What are the “weakest” conditions on {nk} to generate overconvergence.
• Which information – in terms of density-properties – is available for the

intervals of gaps {pk, qk} and the intervals of “non-gaps”.

2. Sequences {nk} generating overconvergence

In this talk we discuss characteristics of sequences {nk} with the property that
{snk

(z)} is an overconvergent sequence of partial sums of a power series. Our first
result is the following.
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Theorem 1. Let be prescribed a sequence {nk} ⊂ N with

lim
k→∞

nk+1

nk
> 1.

Then there exists a power series f(z) =
∞∑

ν=0
aνz

ν with radius of convergence 1 such

that the sequence {snk
(z)} with

snk
(z) =

nk∑

ν=0

aνz
ν

is compactly convergent in a domain G ⊃ D, G 6= D.

Remark. The construction of this overconvergent power series follows along lines
similar to the classical examples of Porter and Jentzsch. However, here the se-
quence {nk} can be prescribed with lim

k→∞

nk+1

nk
> 1 but arbitrarily close to 1.

By Ostrowski’s Theorem O2 this density property on {nk} is sharp in the sense
that it cannot be replaced by the condition lim

k→∞

nk+1

nk
= 1, in order that overcon-

vergence of a power series along the sequence {nk} be possible.
For an R > 0 we now consider the disk DR := {z : |z| < R}. Let γ be an

arc of ∂DR and suppose that Γ is the complementary arc of ∂DR. Then there
exists a uniquely defined bounded harmonic function on DR with boundary values
0 on γ and 1 on Γ (both without their common end points). This function will be
denoted by ω(z,Γ, R) and is called the harmonic measure of Γ with respect to a
point z ∈ DR.

Theorem 2. Suppose that f(z) =
∞∑

ν=0
aνz

ν is a power series with radius of con-

vergence 1. Let {snk
(z)} be a sequence of partial sums which converges uniformly

on a closed subarc γ of ∂DR, where R > 1. Then we have

lim
k→∞

nk+1

nk
≥

1

max
|z|=1

ω(z,Γ, R)
=: M(γ).

Obviously M(γ) is a “geometric” constant, depending only on γ, it increases,
when the length of γ increases.

As an application of the preceding theorem one easily obtains

Theorem 3. Let f(z) =
∞∑

ν=0
aνz

ν be a power series with radius of convergence 1

and suppose that the sequence {snk
(z)} of partial sums is compactly convergent in

a domain containing for an α ∈ (0, π) the sector

Sα := {z ∈ C : −α ≤ arg z ≤ +α}.
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Then we have

lim
k→∞

nk+1

nk
≥

π

π − α
.

3. The structure of H.O.-gaps

Suppose that f(z) =
∞∑

ν=0
aνz

ν has radius of convergence 1 and that O(f) 6= ∅,

so that there is a sequence {pk, qk} of H.O.-gaps. In addition let us assume
that f has an analytic extension to a domain G ⊃ D, G 6= D, which implies
that the power series under consideration is overconvergent. Then, by combin-
ing Theorem O1 and Theorem O2 we find constants 0 < ϑ < 1 < θ so that
{[ϑpk], [θqk]} is also a sequence of H.O.-gaps. It may happen that [ϑpk+1] < [θqk]
so that the index-range {pk + 1, . . . , qk − 1} of “small-coefficients” may be ex-
tended to {[ϑpk] + 1, . . . , [θqk+1] − 1}. Of course, for infinitely many k we must
have [ϑqk] ≤ [θpk+1], otherwise the power series would not have radius of conver-
gence 1.

These observations motivate our introducing the following notion.

Definition 3. Suppose that f(z) =
∞∑

ν=0
aνz

ν has radius of convergence 1.

(1) If O(f) 6= ∅ then

Ω(f) := sup
{pk,qk}∈O(f)

{
lim

k→∞

qk
pk

}

is called the order of O(f).
(2) If O(f) = ∅ then we define Ω(f) := 1.

It is clear that 1 ≤ Ω(f) ≤ ∞ and that Ω(f) = 1 if and only if the power series
under consideration does not have H.O.-gaps.

Example. The power series f(z) =
∞∑

k=0

z2k

has H.O.-gaps pk = 2k and qk = 2k+1;

we have

lim
k→∞

qk
pk

= 2 = Ω(f)

and for g(z) =
∞∑

k=1

zk! we get p′k = k! and q′k = (k + 1)! and therefore

lim
k→∞

q′k
p′k

= ∞ = Ω(g).

For the geometric series h(z) =
∞∑

ν=0
zν we obtain Ω(h) = 1.
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Theorem 4. Suppose that the power series f(z) =
∞∑

ν=0
aνz

ν has radius of conver-

gence 1 and that 1 < Ω(f) <∞. If f is analytically extendable, then any sequence
{pk, qk} ∈ O(f) satisfies

lim
k→∞

qk
pk

< Ω(f).

Example. The function f in the above example shows that

lim
k→∞

qk
pk

= lim
k→∞

qk
pk

= Ω(f)

is possible under the assumption that f has no analytic extension. It is also clear
that the finiteness of the order is a necessary condition in Theorem 4.

4. Density properties of H.O.-gaps and non-gaps

We first prove the following result which is an easy consequence of Theorem 5.

Theorem 5. Suppose that f(z) =
∞∑

ν=0
aνz

ν has radius of convergence 1 and that

{pk, qk} ∈ O(f). Define

I :=

∞⋃

k=1

{pk + 1, pk + 2, . . . , qk − 1}.

If f is analytically extendable, then

∞∑

ν=1

ν /∈I

1

ν
= ∞.

Remark. If under the same conditions as in Theorem 6
∞∑

ν=1

ν /∈I

1

ν
<∞,

then the function f cannot have an analytic extension.

In order to get information about density properties of H.O.-gaps we introduce
the following notions.

Suppose that S is a subset of the natural numbers and let NS(n) be the number
of elements of S in the interval [1, n]. Then the upper and lower density of S are
defined by

d(S) := lim
n→∞

NS(n)

n
, d(S) := lim

n→∞

NS(n)

n
.
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Theorem 6 Suppose that f(z) =
∞∑

ν=0
aνz

ν has radius of convergence 1 and

{pk, qk} ∈ O(f). Define

I :=

∞⋃

k=1

{pk + 1, pk + 1, . . . , qk − 1}.

If f is analytically extendable then we obtain

(1) d(I) < 1 in the case that 1 < Ω(f) ≤ ∞;

(2) d(I) < 1 in the case that 1 < Ω(f) <∞.

Remark. The second statement of this Theorem does not hold for any power series
with Ω(f) = ∞. In this case we find a sequence {pq, qk} ∈ O(f) with qk

pk
→ ∞ for

k → ∞ and it follows from (4.1)

N(qk)

qk
=

1

qk

{ k∑

ν=1

(qν − pν) − k
}
≥

≥
qk − pk − k

qk
= 1 −

pk + k

qk
→ 1 ,

so that d(I) = 1.
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Lacunary summability and analytic continuation of power series

Tatevik L. Gharibyan

(joint work with Wolfgang Luh and Jürgen Müller)

1. Introduction

1.1. Preliminaries. Let p = {pν} be a fixed sequence of complex numbers and
suppose that there exists a subsequence M = {mn} of the natural numbers such
that

Pn :=

mn∑

ν=0

pν 6= 0 for all n.

The matrix A = [αnν ] with the entries

αnν =
pν

Pn
if 0 ≤ ν ≤ mn ,

αnν = 0 if ν > mn ,

generates a summability method (R, p,M) of so-called weighted mean type. The
(R, p,M) methods were introduced by Faulstich [9] and may be considered as
refinements of the well known Riesz methods. The (R, p,M) transforms of a
sequence {zn} are given by

(1.1) σn :=
1

Pn

mn∑

ν=0

pνzν .

Such a method is called regular (in terms of summability theory) if for all con-
vergent sequences {zn} also {σn} converges and lim

n→∞
σn = lim

n→∞
zn holds. The

Toeplitz-Silverman theorem (see for instance [22]) shows that a method (R, p,M)
is regular if and only if the following conditions hold

lim
n→∞

Pn = ∞ ,(1.2)

sup
n

mn∑

ν=0

∣∣∣
pν

Pn

∣∣∣ < ∞ .(1.3)

A method (R, p,M) is called ps-regular (”regular for power series”) if for all power

series f(z) =
∞∑

ν=0
fνz

ν with radius of convergence r, 0 < r ≤ ∞ the sequence of its

(R, p,M) transforms

σf
n(z) :=

1

Pn

mn∑

ν=0

pν s
f
ν (z) , where sf

ν (z) =
ν∑

µ=0

fµz
µ
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converges compactly to f(z) in the circle of convergence. (For the general concept
and characteristic properties of the ps-regularity of a summability method we refer
to [16].) The (R, p,M) method is ps-regular if and only if (1.2) and instead of (1.3)

(1.3’) sup
n

mn∑

ν=0

∣∣∣
pν

Pn

∣∣∣ ρν < ∞ for all ρ ∈ (0, 1)

are satisfied.

In the present talk we deal with (R, p,M) methods which are generated by ”la-
cunary” sequences p = {pν}. This means that there exists a subsequence S ⊂ N0

such that pν = 0 for all ν 6∈ S, where we will suppose that S satisfies certain
density properties. In a reasonable manner we call such a method an S-lacunary
(R, p,M) method. The corresponding matrix A = [αnν ] has the significant prop-
erty that any column [αnν ]∞n=0 is the null-vector for each ν 6∈ S and therefore the
transforms (1.1) are independent of the subsequence {zν}ν 6∈S of {zn}.

1.2. Some notation. We here consider subsequences S of N0, with upper density
d(S) = 1, where d(S) is defined by

d(S) := lim
t→∞

NS(t)

t
,

and NS(t) denotes the number of elements of S in the interval [0, t].

The symbol M is used for the family of all compact sets K ⊂ C which have
connected complement Kc. For K ∈ M the notation A(K) stands for the set of
all functions which are continuous on K and holomorphic in its interior K0.
We denote, as usual, by D := {z : |z| < 1} the unit disk in the complex plane.
If a sequence {fn} of functions converges uniformly to a limit function f on a set
B ⊂ C we write

fn(z) =⇒
B

f(z) .

If O ⊂ C is an open set then {fn} is said to be compactly convergent to f if

fn(z) =⇒
B

f(z) for all compact sets B ⊂ O; we abbreviate this by

fn(z) ≡>
O

f(z) .

For a fixed parameter α ∈ R we consider the logarithmic α-spiral

Lα := {z : z = e(1+iα)t, t ∈ R} ∪ {0} .

A set M ⊂ C with 0 ∈M is called an α-starlike set (with respect to the origin) if

M · (Lα ∩ D) = M .

If α = 0 then M is starlike in the traditional sense.
If in particular M = G is a domain which is α-starlike with respect to the origin
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then G is automatically simply connected. It has been shown by Arakelian [1],
[2] that α-starlike domains play an essential role in the theory of the analytic
continuation of functions which are given by power series (see also [4]).

1.3. Statement of the main result. Our main result is the following Theorem 1,
which is actually a result on universal summability and approximation properties
by (R, p,M) transforms of the geometric sequence {zν}. Admittedly it seems to
be of a special character at first sight. But, it is well known that the behavior of
the geometric sequence has an important effect on the summation and analytic
continuation of general power series. For instance we refer to the theorem of Okada
[21] and its improvements by Gawronski-Trautner [12] and Große-Erdmann [14];
see also Lemma 2.3 in Arakelian’s article [1] and sections 2.2 and 3 of [4]. Relations
with the Hadamard multiplication theorem have been investigated in [20].
In addition we shall show in section 2 of the talk that Theorem 1 has several
interesting consequences, for instance: with respect to overconvergence; to the
analytic continuation of function elements; as well as to universal properties of
trigonometric series in the sense of Menšov.
Theorem 1. Suppose that there are given:

• a subsequence S of N0 with d(S) = 1,
• a domain G which is α-starlike with respect to the origin and satisfies

D ⊂ G, 1 6∈ G,
• a sequence {Pn} in C with 0 6= Pn → ∞.

Then there exists a sequence {pν} in C with pν = 0 for all ν 6∈ S and a subsequence
{mn} of N0 with

Pn =

mn∑

ν=0

pν for all n ∈ N0 ,

such that the following properties hold.

(1) There exists a function P which is holomorphic exactly on G with the
power series expansion

P (z) =

∞∑

ν=0

pνz
ν

(of radius of convergence R = 1) and the properties

smn(z) :=

mn∑

ν=0

pνz
ν ≡>
G

P (z) ,

τn(z) :=
1

Pn

mn∑

ν=0

pνz
ν ≡>
G

0 .

(2) For every K ∈ M with K ⊂ Gc\{1} and every function f ∈ A(K) there
exists a subsequence {ns} of N with

τns(z) =⇒
K

f(z) .
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The proof of Theorem 1 depends on a lacunary version of Runge’s approxima-
tion theorem and exhausting properties for G and Gc\{1} respectively.

2. Consequences

2.1. Overconvergence. Let G and {pν} be the same as in Theorem 1. Then it
was shown that there exists a function P which is holomorphic exactly on G (i.e.
∂G is the natural boundary for P ) with a power series representation

P (z) =

∞∑

ν=0

pνz
ν with pν = 0 for all ν 6∈ S, lim

ν→∞
|pν |1/ν = 1

and the property that the sequence {smn(z)} of its partial sums converges to P (z)
compactly on G. It follows that in addition this sequence diverges for all z0 ∈ Gc.

Indeed if z0 = 1 then smn(1) =
mn∑
ν=0

pν = Pn → ∞, and if z0 ∈ Gc\{1} then (by

the universal properties of {τn(z)}) there exists a sequence {nj} ⊂ N with

τnj (z0) =
1

Pnj

mnj∑

ν=0

pνz
ν =

1

Pnj

smnj
(z0) → 2 (s→ ∞) ,

and we can choose j0 with

|smnj
(z0)| > |Pnj | for all j > j0 ,

which proves the assertion.

2.2. Lacunary summability of power series. 1. Suppose that G and {pν} are
again the same as in Theorem 1. Then we have in particular

τn(z) =
1

Pn

mn∑

ν=0

pνz
ν ≡>

D
0 .

Let be given any ̺ ∈ (0, 1); we choose ̺0 = 1+̺
2 and obtain with a constant C1(̺)

for 0 ≤ ν ≤ mn

∣∣∣
pν

Pn

∣∣∣ =
∣∣∣

1

2πi

∫

|z|=̺0

τn(z)

zν+1
dz

∣∣∣ ≤
1

̺ν
0

· max
|z|=̺0

|τn(z)| =
C1(̺)

̺ν
0

,

which implies with some constant C2(̺)

mn∑

ν=0

∣∣∣
pν

Pn

∣∣∣̺ν ≤
mn∑

ν=0

∣∣∣
pν

Pn

∣∣∣̺ν
0

( ̺

̺0

)ν

≤ C1(̺)

mn∑

ν=0

( ̺

̺0

)ν

≤ C2(̺)

for all n ∈ N0. Since on the other hand Pn → ∞ the (R, p,M) method under
consideration satisfies (1.2) and (1.3’) and is therefore ps-regular. This means (cf.

section 1.1) that for all power series f(z) =
∞∑

ν=0
fνz

ν with radius of convergence



318 Oberwolfach Report 6/2008

r, 0 < r ≤ ∞ the sequence of its (R, p,M) transforms

σf
n(z) :=

1

Pn

mn∑

ν=0

pνs
f
ν(z), where sf

ν (z) =

ν∑

µ=0

fµz
µ

converges to f(z) compactly in the circle of convergence {z : |z| < r}.

However, the (R, p,M) method under consideration cannot be regular in the
case that there exists a z0 ∈ Gc\{1} with |z0| = 1. Otherwise, by (1.3) there would
be a constant M with

(2.1)
1

|Pn|

mn∑

ν=0

|pν | ≤ M for all n ∈ N0.

On the other hand there exists (by the universal properties according to Theorem
1) a sequence {ns} with

1

Pns

mns∑

ν=0

pνz
ν
0 →M + 1 ,

which contradicts (2.1).

2. We consider the geometric series f0(z) =
∞∑

ν=0
zν with partial sums sn(z) =

1−zn+1

1−z for z 6= 1. The application of the (R, p,M) method from Theorem 1 gives

σf0

n (z) =
1

Pn

mn∑

ν=0

pν
1 − zν+1

1 − z
=

1

1 − z
−

z

1 − z
τn(z)

and hence σf0
n (z) ≡>

G
f0(z) = 1

1−z .

3. Let now be given any power series f(z) =
∞∑

ν=0
fνz

ν with radius of conver-

gence R, 0 < R ≤ ∞.
The α-Mittag-Leffler star Aα[f ] of f is the union of all α-starlike domains to which
f is analytically continuable. Then Aα[f ] is also α-starlike and f is holomorphic
on Aα[f ].

If the domain G is α-starlike and if as in 2

σf0

n (z) ≡>
G

f0(z) =
1

1 − z
,

then, according to generalized versions of Okada’s theorem (see [21], [14] or [20]),
the sequence of (R, p,M) transforms

σf
n(z) :=

1

Pn

mn∑

ν=0

pνsν(z), where sν(z) =
ν∑

µ=0

fµz
µ
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converges to f(z) compactly in the domain

G ∗Aα[f ] := (Gc · (Aα[f ])c)c ,

which turns out to be also α-starlike.

From the point of view of the theory of analytic continuation the most effective
methods of summation are those which sum a given power series compactly in its
Mittag-Leffler star. A number of such methods is available in the literature of
which the methods of Lindelöf, Mittag-Leffler, and Le Roy are best known.

If we choose in Theorem 1 in particular the α-starlike domain G = C\(Lα ∩ Dc),
then we obtain by the considerations above the existence of a ”universal” lacu-
nary (R, p,M) method (which is ps-regular) and which is effective for the analytic
continuation of all power series in their α-Mittag-Leffler-star. In comparison with
the classical methods mentioned above, this method has an elementary structure.
We have

Theorem 2. Suppose that there are given:

• a subsequence S of N0 with d(S) = 1,
• a sequence {Pn} in C with 0 6= Pn → ∞.

Then there exists a sequence {pν} in C with pν = 0 for all ν 6= S and a subsequence

{mn} of N0 with Pn =
mn∑
ν=0

pν satisfying the following property.

For all power series f(z) =
∞∑

ν=0
fνz

ν with radius of convergence r, where 0 < r ≤ ∞

the sequence of (R, p,M)-transforms

σf
n(z) =

1

Pn

mn∑

ν=0

pνs
f
ν (z) , where sf

ν (z) =
ν∑

µ=0

fµz
µ

converges to f(z) compactly in the α-Mittag-Leffler star Aα[f ].

This follows immediately from the considerations above and the identity

G ∗Aα[f ] = Aα[f ] .

2.3. Universal lacunary summability of trigonometric series. In 1945 Men-
šov [17], [18] proved the existence of a universal (real) trigonometric series

∞∑

ν=0

{aν cos νt+ bν sin νt}

with the property that for every (Lebesgue-) measurable real valued function ϕ on
[0, 2π] there exists a sequence {nk} of natural numbers such that the corresponding
sequence of partial sums

snk
(t) =

nk∑

ν=0

{aν cos νt+ bν sin νt}
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converges to ϕ(t) almost everywhere on [0, 2π]. For a proof we refer to [5].

The trigonometric series
∞∑

ν=0
{cos νt + i sin νt} =

∞∑
ν=0

eiνt is obviously not uni-

versal in the sense of Menšov. However, by applying Theorem 1, we can show that
its (R, p,M) transforms satisfy universal properties with respect to measurable
functions. In addition the generating sequence p = {pν} may be chosen lacunary.

We shall prove (as a simple application of Theorem 1) the following result; by
µ(A) we denote the (Lebesgue-) measure of a measurable set A ⊂ R.

Theorem 3. Suppose that there are given

• a subsequence S of N0 with d(S) = 1,
• a sequence {Pn} in C with 0 6= Pn → ∞.

Then there exists a sequence {pν} in C with pν = 0 for all ν 6∈ S and a subsequence

{mn} of N0 with Pn =
mn∑
ν=0

pν satisfying the following property.

Let be given two real valued measurable functions ϕ and ψ on [0, 2π].

(1) There exists a subsequence {rk} of N0 such that

Re
{ 1

Prk

mrk∑

ν=0

pνe
iνt

}
−→ ϕ(t)

Im
{ 1

Prk

mrk∑

ν=0

pνe
iνt

}
−→ ψ(t)





almost everywhere on [0, 2π].

(2) There exists a subsequence {tk} of N0 such that

Re
{ 1

Ptk

mtk∑

ν=0

pν

ν∑

µ=0

eiµt
}
−→ ϕ(t)

Im
{ 1

Ptk

mtk∑

ν=0

pν

ν∑

µ=0

eiµt
}
−→ ψ(t)





almost everywhere on [0, 2π].
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[18] D. E. Menšov, On the partial sums of trigonometric series [Russian], Mat. Sb. (N.S.) 20

(1947), 197-238.
[19] S. N. Mergelian, Uniform approximations to functions of a complex variable, Uspekhi

Matem. Nauk 7 (1952), 31-122 [Russian]; English transl. in: Amer. Math. Soc. Transl.
3 (1962), 294-391.

[20] J. Müller, The Hadamard multiplication theorem and applications in summability theory,
Complex Variables 18 (1992), 155-66.
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Universal Faber series

Vagia Vlachou

Let Γ ⊂ C be a compact and connected set with connected complement, contain-
ing more than one point (for simplicity, we shall use the term Faber-expansion set
for a set Γ ⊂ C, having this property) and let φΓ be the Riemann-mapping which

maps the unit disk D onto ĈrΓ, with φΓ(0) = ∞ and ρΓ = limz→0 zφΓ(z) > 0.
We consider, in addition, the conformal mapping ψΓ : {w ∈ C : |w| > ρΓ} → Γc,
defined by ψΓ(w) = φΓ(ρΓ

w ), which is of the form ψΓ(w) = w+a0 + a1

w + a2

w2 + . . ..

Finally, we denote the inverse mapping of ψΓ with ϕΓ. For n ∈ N, the nth

Faber polynomial Fn(Γ, ·) is the part of the Laurent series of (ϕΓ(z))n, containing
the non-negative powers of z. Each Fn(Γ, ·) is a polynomial of degree n, and the
coefficient of zn is one. Hence, every polynomial can be expressed in a unique way
as a linear combination of the Fn(Γ, ·)’s.
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Now, let Ω be a domain such that Γ ⊂ Ω and let f be a function holomorhic
in Ω. Then f admits a unique representation as a Faber series

f(z) =

∞∑

n=0

cn(f,Γ)Fn(Γ, z)

which converges uniformly to f on those compact sets of Ω, which are contained
in the interior of some level curve of ϕΓ inside Ω (see [8],[7]).

We are interested in functions, which have universal Faber series. To be more
specific, let H(Ω) be the space of holomorphic functions in Ω endowed with the
topology of uniform convergence on compacta and let

SN (f,Γ)(z) =

N∑

n=0

cn(f,Γ)Fn(Γ, z), N = 1, 2 . . . .

Let, in addition,

MΩ = {K ⊂ Ωc : K compact set and Kc connected set}

and
A(K) = {g ∈ H(Ko) : g is continuous in K}.

The following definition was introduced in [8]. The same definition was first given
in [6], for more restricted domains Ω.

Definition 1. A function f ∈ H(Ω) belongs to the class U(Ω,Γ) (i.e it has a
universal Faber expansion with respect to Γ), if for every set K ∈ MΩ and for
every function g ∈ A(K), there exists a sequence {λn}n∈N of natural numbers
such that

sup
z∈K

|Sλn(f,Γ)(z) − g(z)| → 0 , as n→ ∞.

In [6], it was proved that if Ω is a Jordan domain with analytic boundary, then
the class of functions with universal Faber expansion is a Gδ and dense subset of
H(Ω) (in this case only the most natural Faber expansion was considered namely
the one that is valid in the interior of Ω). Five years later, D. Mayenberger and J.
Müller (see [8]) presented an impressive result that holds for all simply connected
domains. Namely, they proved that if Ω is a simply connected domain1 and Γ ⊂ Ω
is a Faber-expansion set, then U(Ω,Γ) = U(Ω, ζ) for every point ζ ∈ Ω, where
U(Ω, ζ) is the class of universal Taylor series with center ζ, which was known to
be a Gδ and dense subset of H(Ω) (see [13], see also [12] and [10]). Thus, in
this case the class is independent of the choice of the compact set of expansion.
The next step was made by F. Bayart and V. Nestoridis in [2], who introduced a
topology on the set of Γ′s and proved that the class U(Ω,Γ) (for simply connected
domains Ω), not only is independent of Γ, but coincides with the class UFab(Ω),

1In fact, their proof holds for all domains Ω, whose complement is non-thin at ∞, although
this is not mentioned by the authors.
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where the convergence is uniform in respect to Γ, when this varies on a compact
set2.

Recently (see [15]), non-simply connected domains Ω have been considered. In
particular, if K ⊂ C is a compact and connected set having connected comple-
ment and if Ω = C rK, then the class U(Ω,Γ) is a Gδ and dense subset of H(Ω),
for every choice of Faber-expansion set Γ ⊂ Ω.

We work on the same type of non-simply connected domains as above; we set

Y = {Γ ⊂ Ω : Γ is a Faber-expansion set}

and our main result is:

Theorem 2. The class
⋂

Γ∈Y

U(Ω,Γ) is residual in H(Ω).

Thus, we prove that for this choice of domain Ω, there exist functions with
universal Faber series with respect to any choice of Faber-expansion set Γ.

Remark 1: If Ω is a non-simply connected domain, such that Ωc has an un-
bounded component (or more generally Ωc is non-thin at ∞), then all the classes
of functions we mentioned are empty (see [11] and [8], see also [10]).
Remark 2: If Ω is a non-simply connected domain with complement thin at
∞, then known results from the theory of universal Taylor series yield that the
class probably depends on the choice of Γ (though this has been proved only for a
specific type of Ω [9] and not for the type of domains we work with). Moreover, it
is impossible to achieve the result of F. Bayart and V. Nestoridis in this case, i.e.
to find a function f , with universal Faber expansion with respect to any compact
set, such that the approximation is uniform when Γ varies on a compact set. This
happens because the class they worked with UFab(Ω) is contained in U(Ω), which
in this case is empty (see [10]).
Remark 3: Similar results as ours have been proved for universal Taylor series
in [4], [1] and [5]. In the articles [1] and [5], where the problem studied is closer
to the present work, the authors had another approach. In particular, they con-
sidered a partition of the set of centers and then they tried to solve the problem
by choosing appropriate poles. As a consequence, they were obliged to include a
finite induction in their proof (see proposition 1 in [1] and lemma 2.2 in [5]), which
was complicated. In our proof, on the other hand, we begin with the choice of
appropriate poles and then form the partition of Y .
Open Problem: It is known that if Γ is a closed disk, then the Faber-expansion
of a function holomorphic in a neighborhood of Γ, coincides with the Taylor ex-

pansion of the function around the center of the disk. Thus,
⋂

Γ∈Y

U(Ω,Γ) ⊂

2This result also holds for all domains whose complement is non-thin at ∞ even though it is
not mentioned in the article.



324 Oberwolfach Report 6/2008

⋂

ζ∈Ω

U(Ω, ζ). The class
⋂

ζ∈Ω U(Ω, ζ) was known to be residual in H(Ω), for

this type of doubly connected domains Ω (see [1]). We do not know whether⋂

Γ∈Y

U(Ω,Γ) 6=
⋂

ζ∈Ω

U(Ω, ζ), but we believe that it is true.
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Hypercyclic operators failing the Hypercyclicity Criterion

Fréderic Bayart

(joint work with É. Matheron)

A bounded operator T defined on some separable Banach space X is called hy-
percyclic if there exists some vector x ∈ X such that the orbit of x under T ,
namely {T nx; n ≥ 0} is dense in X . It was a long-standing open problem to
know whether, for every hypercyclic operator T , its direct sum with itself T ⊕ T
is hypercyclic.
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This problem can be rewritten in an other way. We say that T satisfies the
Hypercyclicity Criterion if there exist an increasing sequence of integers (nk), two
dense sets D1,D2 ⊂ X and a sequence of maps Snk

: D2 → X such that:

(1) T nk(x) → 0 for any x ∈ D1;
(2) Snk

(y) → 0 for any y ∈ D2;
(3) T nkSnk

(y) → y for any y ∈ D2.

A theorem of Kitai, Gethner and Shapiro asserts that an operator satisfying this
criterion is always hypercyclic.

The Hypercyclicity Criterion is a very powerful tool to prove that an operator is
hypercyclic. And even, until recently, every hypercyclic operator was hypercyclic...
because it satisfies the assumptions of the Hypercyclity Criterion. Thus, a natural
question was to know whether every hypercyclic operator satisfies the assumptions
of the Hypercyclicity Criterion.

It turns out that the two questions are in fact equivalent (this is a result of Bès
and Peris). A negative answer has been given recently by De La Rosa and Read to
both questions. They prove that there exist a Banach space X and a hypercyclic
operator T on X such that T ⊕ T is not hypercyclic.

Although the space constructed by De La Rosa and Read is not extremely
complicated, it cannot be identified with some “classical” Banach space. We prove
that in fact such an operator does exist on a large class of Banach spaces, including
the separable Hilbert space. Our strategy to prove the theorem is the following.
We first construct some operator on ℓ2(N) which is hypercyclic by definition. This
is easy by a purely algebraic construction, the difficulty being to prove that the
operator is indeed hypercyclic. We then use a lemma on multiplicative linear forms
to show that T ⊕ T is not hypercyclic.

We then give several variants of the construction. In particular, we emphasize
the role of some arithmetical sequences in the construction, in order to obtain
hypercyclic operators failing the Hypercyclicity Criterion with an orbit which is as
frequently dense as possible. We also show that we may construct such an operator
which is also invertible.
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A new method for non-supercyclicity

Fernando León-Saavedra

A bounded linear operator T defined on a separable Banach space X is said to be
supercyclic if there exists a vector x ∈ X such that the set {λT nx : λ ∈ C, n ∈ N}
is dense in X . It is called weakly supercyclic if the set {λT nx : λ ∈ C, n ∈ N} is
weakly dense in X .

In general, to prove that an operator is supercyclic (or weakly supercyclic) is
actually easier than proving non-supercyclicity or non weakly supercyclicity. The
reason is that the methods have not been sufficiently developed. For instance, the
only effective method to prove non-supercyclicity was discovered by Montes and
Salas in [11]. It is known as the “Angle Criterion” :

Let T ∈ B(H) be a bounded Hilbert space operator and let us
suppose that there exists x0 ∈ H such that for any x ∈ H

sup
n

|〈T nx, x0〉|

‖T nx‖‖x0‖
< 1.

Then T is not supercyclic.

This statement doesn’t need proof. Roughly speaking, it says that if there exists
a cone C such that x0 ∈ C and T nx /∈ C for all n then T is not supercyclic. This
method was used by Montes-Rodŕıguez and co-workers to prove non-supercyclicity
(see [1], [9]). A similar method can be extended to prove non-weakly supercyclicity
(see [14]).

The method that we propose is less computational and the proofs turn out to
be more simple. Let us denote by [T ] the commutant of T . Suppose that we
know that T has many non weakly supercyclic vectors. Our method relies on the
size of the commutant of T . If the commutant of T is very big then T has less
opportunity to be weakly supercyclic. Suppose that for any supercyclic vector x
there exists R ∈ [T ] such that Rx is not weakly supercyclic, then, in such a case
T should not be a weakly supercyclic operator.

Let us illustrate the method with some examples. Let T = V be the Volterra
operator acting on Lp[0, 1] defined by

∫ x

0

f(s) ds,

and let us denote by [V ]p its commutant. In most of the cases the commutant of
an operator is exactly the weak closure of the algebra AT generated by T and the
identity (for instance this is the case for the Volterra operator [4]). The biggest
commutant of an operator occurs when T is strictly cyclic. Let us recall that an
operator T ∈ B(X) is said to be strictly cyclic if there exists x ∈ X such that

{Ax : A ∈ AT } = X.

In this sense, the following related question emerges:

Question: Is V strictly cyclic on Lp[0, 1]?
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The answer is no; V is even not strictly cyclic on the Sobolev spaces W k,p[0, 1]
(see [8]). This result complements the results which appeared in [10]. Let us
mention that the problem of characterizing the commutant of V was only solved
by Dixmier for p = 1,∞ (see [3]) and by D. Sarason for p = 2 (see [12]), and this
problem remains open for p 6= 1, 2,∞.

Let us continue with our example. Let us observe that if g ∈ Lp[0, 1] is real
valued then g cannot be weakly supercyclic for V , because each element in the
orbit {V ng} is a real valued function. Moreover, the same is true for operators
which map real valued functions into real valued functions. Now, pick f ∈ Lp[0, 1],
and let us denote by f its complex conjugate. The convolution operator Vf with

kernel f defined by

Vfg(x) =

∫ x

0

f(x− t)g(t) dt

belongs to the commutant of V . On the other hand, since the convolution com-
mutes Vff(x) ∈ R for all x ∈ [0, 1] as a consequence we obtain the following result

(see [8]):

Theorem. Let T ∈ [V ]p and let us suppose that T preserves real valued functions.
Then T is not weakly supercyclic on Lp[0, 1], 1 ≤ p <∞.

Curiously the same trick appears in other situations, for instance, for Cesàro
type operators. Boundedness for Cesàro type operators was provided by Hardy,
Littlewood and Pólya (see [6] Chapter IX). We refer to the paper [2] by Brown,
Halmos and Shields, where the authors, among other results provide a less com-
putational proof of the boundedness and determine their norms and various parts
of the spectrum. The interest in the cyclic phenomena of Cesàro type operators
was initiated in [7] and it was continued later in [5].

For instance, the infinite Cesàro operator is defined on Lp[0, 1] by

C∞f(x) =
1

x

∫ x

0

f(s) ds,

for p = 2, C∞ is similar to the identity plus the unweighted bilateral shift B,
defined on L2(Z). The commutant of a bilateral shift was characterized by A.
Shields (see [13]). Using the same method we can prove the following result (see
[5])

Theorem. Let B be the unweighted bilateral shift defined on Lp(Z). If p is a
polynomial with real coefficients then p(B) is not weakly supercyclic for 1 ≤ p ≤ 2.

Let us mention that the above result is very sharp because the unweighted
shift B is weakly supercyclic on Lp(Z) for p > 2 (see [15]). As far we know to
prove non-weakly supercyclicity of p(B) using the Angle Criterion is quite com-
plicated because it is very difficult to compute the norms ‖(p(B))nx‖. Finally, as
a consequence we obtain that C∞ is not weakly supercyclic on L2(0,∞).
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Which maps preserve universal functions?

George Costakis

In the present paper we give some partial answers to the following question: Do
there exist maps, between spaces of holomorphic functions, which preserve certain
notions of universality?

Let us first introduce some standard notation and the relevant definitions. By D

we denote the open unit disk with center 0 in the complex plane. For a holomorphic
function f in D, f ∈ H(D) and ζ ∈ D the symbol Sn(f, ζ)(z) =

∑n
k=0 ak(ζ)(z−ζ)k,

n = 0, 1, 2, . . . stands for the partial sums of the Taylor development of f with
center ζ.

Definition 1. (Luh [8] and Chui and Parnes [2]) A holomorphic function f ∈
H(D) is called a universal Taylor series in D with respect to ζ ∈ D if the following
holds. For every compact set K ⊂ C \ D with connected complement, i.e. Kc

connected, and every function h : K → C continuous on K and holomorphic in
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the interior, Ko, of K there exists a subsequence {λn} of positive integers such
that

sup
z∈K

|Sλn(f, ζ)(z) − h(z)| → 0, as n→ ∞.

The class of universal Taylor series (with respect to the center ζ) in the sense of
Luh and Chui and Parnes will be denoted by U1(D, ζ).

Definition 2. (Nestoridis [11]) If in the previous definition the compact set K is
allowed to contain pieces of the boundary, that is K ⊂ C \ D then the function f
is said to belong to the class U(D, ζ).

In [10] it is proved that the classes U1(D, ζ), U(D, ζ) do not coincide, therefore
the obvious inclusion U(D, ζ) ⊂ U1(D, ζ) is strict. On the other hand it is well
known that both classes are Gδ and dense subsets of H(D), where H(D) is en-
dowed with the topology of uniform convergence on compact subsets of D. It is a
hard problem to find maps which preserve universal Taylor series. For example,
although the derivative f ′ of a universal Taylor series f in the class U1(D, ζ) still
belongs to this class, see [3], it is still unknown if the same holds within the class
U(D, ζ). I will next discuss what happens if we multiply a universal Taylor series
by a polynomial.

Theorem 3. i) If f ∈ U1(D, 0) and a ∈ D then (z − a)f(z) ∈ U1(D, ζ).
ii) If f ∈ U(D, 0) and a ∈ D then (z − a)f(z) ∈ U(D, 0).
iii) For any a ∈ C there exists a residual subsetG ofH(D) such thatG ⊂ U(D, 0)

and for every f ∈ G we have (z − a)f(z) ∈ U(D, 0).

Let me briefly discuss the main ingredients of the proof of the above theorem.
The proofs of items i) and ii) are based on the use of H-O gaps (Hadamard-
Ostrowski gaps), see for example [5], on the property U1(D, 0) = U1(D, ζ) for
every ζ ∈ D and on a simple formula which relates the Taylor development of the
function (z − 1)f(z) with center 0 with the Taylor development of the function f
with center 0. On the other hand the proof of item iii) relies on a Baire category
argument and on the fact that the map Ta : H(D) → H(D), Taf(z) = (z − a)f(z)
for f ∈ H(D) is a homeomorphism. The following questions seem to be completely
open.

Question 1. Take a ∈ C with |a| ≥ 1 and f ∈ U(D, 0). Is it true that
(z − a)f(z) ∈ U(D, 0)?

A more general question than the previous one is the following.
Question 2. Take a non-constant polynomial p and f ∈ U(D, 0). Is it true

that pf ∈ U(D, 0)?
Question 3. Let f ∈ U(D, 0). Is it true that f ′ ∈ U(D, 0)?
It is well known that universal Taylor series in the sense of Nestoridis cannot

be bounded. On the other hand there are universal Taylor series in the sense of
Luh and Chui and Parnes which belong to the disk algebra. Therefore the next
question arises naturally.

Question 4. Does there exist an inner function f such that f ∈ U1(D, 0)?
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I would like to stress that there are outer functions which belong to the class
U1(D, 0).

Let us turn our attention to universal functions with respect to derivatives. We
recall the definition which is due to G. R. MacLane.

Definition 4. (MacLane [9]) An entire function f ∈ H(C) is called universal with
respect to derivatives if the sequence

{f (n) : n = 0, 1, 2, . . .}

of its derivatives is dense in H(C).

The set of universal functions with respect to derivatives is denoted by HC(D).
In modern terminology this means that the differentiation operator D acting on
the space of entire functions H(C) is hypercyclic. For a general discussion and
an account on results related to the notions of universality and hypercyclicity we
refer to [6]

Theorem 5. i) If f(z) ∈ HC(D) then f(z) + eaz ∈ HC(D) for every a ∈ C with
|a| ≤ 1.

ii) There exists g(z) ∈ HC(D) such that g(z) + eaz /∈ HC(D) for every a ∈ C

with |a| > 1.

In order to prove item i) we consider two cases. If |a| < 1 the result is trivial
since the n-th derivative of eaz is equal to aneaz and the latter goes to 0 as n
tends to infinity uniformly on compact subsets of C. If a = e2πiθ then again we
consider two cases. If θ is rational we use Ansari’s theorem, which tells us that
HC(D) = HC(Dm) for every m = 2, 3, . . ., where

HC(Dm) = {f ∈ H(C) : {f (mn) : n = 1, 2, . . .} = H(C)}.

If θ is irrational we make use of Ansari’s theorem together with the minimality of
the irrational rotation. The proof of item ii) depends on a result due to Grosse-
Erdmann and Shkarin (proved independently) concerning the optimal growth of
universal functions with respect to derivatives. To be precise fix g ∈ HC(D) such
that |g(z)| = O(er) for |z| ≤ r as r → ∞, see [7], [12]. Then it is not difficult to
show that g(z) + eaz /∈ HC(D) for every a ∈ C with |a| > 1.

Let us finally deal with the problem of whether the multiplication of a function
f ∈ HC(D) with a non-zero polynomial p still belongs to HC(D). We do not
have a complete answer. What we can prove is the following.

Theorem 6. There exists a residual subset G of H(C) such that G ⊂ HC(D)
and for every non-zero polynomial p we have pf ∈ HC(D) for every f ∈ G.

The proof uses in an essential way a result from [4] related to the existence of
common universal-hypercyclic vectors.

Question 5. Take f ∈ HC(D) and let p be a non-constant polynomial. Is it
true that pf ∈ HC(D)?
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Universal functions on H
∞(Bn)

Richard M. Aron

(joint work with Pamela Gorkin)

We report on a paper with Pamela Gorkin [1], whose principal result is a the-
orem about universal functions on H∞(Bn), where Bn is the ℓ2−ball in C

n. P.
S. Chee showed that there is a sequence (Lk) of automorphisms of Bn to which
one can associate a universal function f ∈ H∞(Bn), ‖f‖ = 1. That is, the set
{f ◦Lk | k ∈ N} is dense in H∞(Bn) when this space is endowed with the compact-
open topology. Here, each Lk corresponds to a point zk ∈ Bn.

Our interest is the size and structure of the set of such universal functions.
Theorem: There is a sequence (zk) ⊂ Bn for which one can find an infinite
dimensional closed subspace V ⊂ H∞(Bn) with the following property: Every
f ∈ V, ‖f‖ = 1, is universal with respect to the sequence (Lk).

This work has been extended by F. Bayart, P. Gorkin, S. Grivaux, and R.
Mortini to holomorphic self-maps of the disk [2] and to more general domains in
Cn by F. Bayart and P. Gorkin [3] .
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Universal functions for composition operators

Raymond Mortini

(joint work with Karl-Goswin Grosse-Erdmann)

Let Ω be a planar domain and let H(Ω) be the Fréchet space of all holomorphic
functions on Ω. Let X denote either H(Ω) or the unit ball B = {f ∈ H(Ω) :
supz∈Ω |f(z)| ≤ 1} of H∞(Ω). A function f ∈ X is said to be X-universal for a
sequence, (φn), of selfmaps of Ω if {f ◦ φn : n ∈ N} is (locally uniformly) dense
in X . Whereas the case of φn being an automorphism has been successfully dealt
with by many authors (see e.g. [2, 7, 4, 3]), we will study here the general case.
It will be shown that for every domain Ω ⊆ C for which H∞(Ω) is dense in H(Ω)
there exists a sequence (φn) such that the family (Cφn) of composition operators
admits H(Ω)-universal functions. Moreover, if Ω is finitely connected, but not
simply connected, then such a sequence of selfmaps cannot be eventually injective.
On the other hand, if Ω is a domain of infinite connectivity, then a sequence of
eventually injective selfmaps of Ω admits H(Ω)-universal functions if and only for
every Ω-convex compact subset K of Ω and every N ∈ N there is some n ≥ N
such that φn(K) is Ω-convex and φn(K) ∩K = ∅. Simply connected domains in
C are considered, too. The case of the unit disk appeared in [1].

The problem of characterizing B-universality for selfmappings of a non-simply
connected domain is still open. In the case of the unit disk, it was shown in [1]
that a sequence of holomorphic self-maps (φn) in D with φn(0) → 1 admits a
B-universal function if and only if

(0.1) lim sup
n→∞

|φ′n(0)|

1 − |φn(0)|2
= 1.
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Close universal approximants of the Riemann zeta-function

Markus Nieß

The Riemann zeta-function ζ(z) has the following well-known properties, cf. [4]:

(1) It is a meromorphic with a single pole at z = 1 with residue 1.

(2) The symmetry relation ζ(z) = ζ(z̄) holds for z 6= 1.
(3) The functional equation ζ(z)Γ(z/2)π−z/2 = ζ(1− z)Γ((1− z)/2)π−(1−z)/2

holds.
(V) It has a universality property due to Voronin (1975): For every compact

set K ⊂ {z : 1
2 < ℜz < 1} with connected complement, every function f ∈

A(K) := {f : f is continuous on K and holomorphic in the interior of K}
zero-free on K and every ε > 0:

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

z∈K
|ζ(z + iτ) − f(z)| < ε

}
> 0,

where meas stands for the Lebesgue measure.

We use the following notations: Let b = {bn} ⊂ C be a sequence without finite
accumulation point and a = {an} with an → 0. A function ϕ is said to satisfy the
property (Bb) or (La,b) respectively, if

(Bb) For every compact set K with connected complement, every function f ∈
A(K), there exists a subsequence {nk} ⊂ N with ϕ(z + bnk

) → f(z)
uniformly on K.

(La,b) For every compact set K with connected complement, every function f ∈
A(K), there exists a subsequence {nk} ⊂ N with ϕ(ank

z + bnk
) → f(z)

uniformly on K.

We say that b satisfies

(A) if b = {bn} ⊂ {z : ℜz /∈ [0, 1],ℑz 6= 0},
(B) if dist(bn; {z : ℜz ∈ [0, 1] or ℑz = 0}) → ∞, as n→ ∞.

Our aim is to construct functions satisfying several of these properties and being
”close” to ζ. This led to the following results:

Theorem 1. If b has (A) and (B), then there exists a meromorphic function ζ1
with (1)-(3),(V) and (Bb). The functions ζ1 and ζ have the same zeros in the
critical strip.

Theorem 2. Let Λ > 0 and b with (A). There exists a closed set S (of tangential
approximation) such that the area of the complement of S is less than Λ. Moreover,
for every continuous, positive function ε on S, there exists a meromorphic function
ζ2 with (1)-(3), (La,b) for some sequence a and |ζ(z) − ζ2(z)| < ε(z) on S.
The function ζ2 has the same zeros as ζ plus additional ones that are located by
construction, and ζ2 does not satisfy the Riemann hypothesis.

If we consider the sets M of all meromorphic functions with (1)-(3) and
C(C,C∞) of all continuous functions from C to the extended complex plane, each
one endowed with the topology of uniform convergence on compact subsets of C,
we obtain
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Theorem 3. Let b with (A) and (B). We consider the operators Tn : M →
C(C,C∞), f(z) 7→ f(z + bn). Then the set of universal functions

U :=
{
ϕ ∈M : (H(C) ∪ {f : f ≡ ∞}) ⊂ {Tnϕ : n ∈ N}

}

is a dense Gδ-set in M .

For details and proofs we refer the interested reader to [2]. Previous results in
this context can be found in [3] and [1].
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Construction versus Baire category in universality

Karl-G. Grosse-Erdmann

The existence of universal functions is usually proved by one of two methods: by
an explicit construction or by the use of the Baire category theorem. In the talk
we argued that the two methods are largely equivalent. The talk was therefore
divided into two parts.

A. From Baire category to construction. The Baire category theorem was
used as early as 1937 in existence proofs of universal functions: S. Mazurkiewicz
[9] showed that there is a universal Taylor series on [0, 1]. Since then this method
has been used in a myriad of related situations.

However, the first existence proofs of universal functions were based on explicit
constructions. For example, G. D. Birkhoff [1] showed that there is an entire
function whose translates are dense in the space of all entire functions. Such
constructions have the advantage that modifications of the proof may provide the
existence of universal functions with additional properties. This has led some
researchers to wonder if, in cases where the Baire category theorem was applied to
obtain existence, a constructive proof may also be possible. In a recent paper, C.
Kariofillis [4, Section 4] was the first to pose a corresponding problem explicitly in
the literature. A related, and stronger, problem was posed to the speaker by V.
Nestoridis [10].

The following observation leads to the solution of these problems: The Baire
category theorem itself has a constructive proof.

As an illustration, we sketched the usual Baire category proof of Birkhoff’s
universality theorem. We then gave a (constructive) proof of the Baire category
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theorem in the special case of a complete metric linear space. When combining
these two proofs one is led in a natural way to a constructive proof of Birkhoff’s
theorem, which, as it turns out, is very close to Birkhoff’s original proof.

B. From construction to Baire category. On the other hand, there are
constructive existence proofs of universalities that so far have not been turned into
Baire category proofs. The latter, however, is of interest because it automatically
gives a much better result: not only will the set of universal functions in that case
be non-empty, it will be residual in the underlying space. This will then provide,
for example, easy proofs for the existence of common universalities.

As mentioned above, constructions of universal functions are of particular in-
terest in cases where one tries to impose additional properties on these functions.
Put abstractly, this means that if a universality is described by a family (Tj)j∈I of
continuous mappings Tj : X → Y, where X is a complete metric space, then one
searches for universal functions in a certain subset A of X .

A study of the relevant literature has shown that such restricted universalities
commonly occur in one of three situations.

First, if A is a closed subset of X then A is a complete metric space under
the induced metric, so that the Baire category theorem can be applied to the
restrictions Tj |A : A → Y. As an illustration we noted that recent theorems of
Luh, Martirosian and Müller [6], [7] and of Martirosian and Martirosyan [8] on
universal entire functions with lacunary power series can be given Baire category
proofs. These proofs even lead to stronger results with no additional effort.

Secondly, if A is not necessarily closed but a Gδ-subset of X then, in fact, A
can be given an equivalent complete metric, so that the Baire category theorem
can again be applied to the mappings Tj |A. Moreover, in many situations, a very
useful theorem of Herzog [3] can be employed.

Thirdly, if A is completely metrizable in its own right, with a metric that is usu-
ally strictly stronger than the original metric, then one applies the Baire category
theorem to the mappings Tj|A with the new topology on A. As an illustration we
gave a new proof of a recent result of Gharibyan, Luh and Nieß [2] on the existence
of Birkhoff universal functions that are bounded on a prescribed sector.

C. Concluding remarks. We stress that we did not give and did not intend
to give a logically precise definition of what is meant by a constructive proof. We
adopted the naive, and in universality generally accepted, position that a construc-
tive proof is one that is formulated within the framework of classical analysis.

We ended the talk by recalling a pronouncement of T. W. Körner [5] that reflects
perfectly the speaker’s opinion:

The Baire Category Theorem is a profound triviality.
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An improvement of the universality of the geometric series

Vassili Nestoridis

Recently A. Mouze obtained an improvement of a result of Bernal–Gonzalez,
Calderon-Moreno and W. Luh concerning the universality of the geometric se-

ries. Mouze proved the following: Let S =
∞∑

n=0
cnz

n be a formal power series with

cn 6= 0 for all n ∈ N. Then there exists a matrix A = [an,v]n,v≥0, satisfying some
properties, such that the sequence of the A-transforms of S has universal proper-
ties in {z : |z| ≥ 1} − {1}. The set of universal series with respect to this matrix
A is Gδ and dense in natural spaces of series.

Similar results are obtained replacing power series by Dirichlet series.

Universal series from fundamental solution of the Laplace operator

Innocent Tamptsé

Let φ be the standard fundamental solution of the Laplace operator on RN ,
(N ≥ 2). We prove the existence of universal series of the form

(0.1)

∞∑

k=0

ckφ(x − ak)

(0.2)

∞∑

k=0

∑

|α|=k

cαD
αφ(x − a)

in the space of functions that are harmonic in the neighborhood of a fixed
compact set K ⊂ RN with connected complement, or the space of functions that
are harmonic on an open set Ω ⊂ RN that have an exhaustion by compact sets
with connected complements. Here, a, ak, k ∈ N are fixed points lying outside the
domain of definition of the harmonic functions.
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We also prove the existence of a series of the form (0.2) which is convergent in
RN \B(0, r) and is universally overconvergent in B(a, r) \ {a}. Moreover, we give
some conditions for series in the form

(0.3)
∞∑

k=0

∑

|α|=k

cαuα

to be universal in a metrizable topological linear space X .
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A universal solution for a quasi-linear parabolic equation occuring in
aerodynamics

Paul M. Gauthier

(joint work with Nikolai Tarkhanov)

We present results on universal functions as well as universal (formal) series for
solutions to a quasi-linear parabolic equation arising in aerodynamics, Burgers’
equation. Burgers’ equation is one of the simplest examples of a non-linear partial
differential equation and also perhaps the simplest equation describing waves under
the influence of diffusion. The crucial role in our investigation is due to the so-
called Cole-Hopf transformation.

Asymptotic maximum principles for subharmonic functions

Stephen J. Gardiner

Let Ω be a domain in the complex plane C, or Euclidean space Rn (n ≥ 2). By a
boundary path in Ω we mean a continuous function γ : [0,∞) → Ω such that γ(t)
lies outside any given compact set K ⊂ Ω for all sufficiently large t. A complex
(or real) function f on Ω is said to have asymptotic value ∞ if there is a boundary
path γ such that f(γ(t)) → ∞ as t→ ∞.
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A classical result of Valiron says that a function which is holomorphic and
unbounded on the unit disc D, but bounded on a spiral that accumulates at all
boundary points, must have asymptotic value ∞. Barth and Rippon [1] have
recently obtained several generalizations of this result. For example, they show
that a function which is holomorphic and unbounded on D, but bounded on a
set that accumulates nontangentially at almost all boundary points, must have
asymptotic value ∞. This abstract presents asymptotic maximum principles for
subharmonic functions which were inspired by, and generalize, their work. Full
details may be found in [3].

From now on Ω ⊂ Rn. If n = 2, we assume that Ω has nonpolar complement.
Thus we can define harmonic measure ν0 for Ω and a fixed point x0 ∈ Ω. The
boundary of Ω in compactified space Rn ∪ {∞} will be denoted by ∂∞Ω. A
prototype asymptotic maximum principle for subharmonic functions is as follows.

Theorem 1 Let s be a subharmonic function on Ω. If s does not have asymptotic
value ∞ and

(1) lim sup
x→z

s(x) ≤ 0 for ν0-almost every z ∈ ∂∞Ω,

then s ≤ 0.

This is only a slight extension of a result of Fuglede [2], and can be proved
by known arguments based on the fine topology, namely the coarsest topology
which makes all subharmonic functions continuous. However, the work of Barth
and Rippon suggests that the boundary condition (1) might be weakened. For
simplicity we will state our results for the case where Ω is the unit ball B, and
add some concluding remarks about the form they take in general domains.

Let s be a subharmonic function on B. An (asymptotic) tract of s for ∞ is a
decreasing sequence (Wk) of sets where, for each k, the set Wk is a finely connected
component of the finely open set {x ∈ B : s(x) > k}. We call the (Euclidean)
closed set E = ∩kW k the end of the tract. Let σ denote surface area measure on
∂B.

Theorem 2 Let s be a subharmonic function on B. Suppose that s has only
finitely many tracts for ∞, with ends E1, ..., Em, say, and that

(2) lim inf
r→1−

s(rz) ≤ 0 for σ-almost every z ∈ ∂B.

Then

lim sup
x→z

s(x) ≤ 0 for all z ∈ ∂B\ (∪jEj) .

Corollary. Let s be a subharmonic function on B. If s does not have asymptotic
value ∞ and (2) holds, then s ≤ 0.

Approximation arguments can be used to construct a harmonic function s on
B such that the inequality in (2) holds at every point of ∂B, and all tracts of s
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for ∞ end at the point (1, 0, ..., 0), say, yet lim supx→z s(x) > 0 for every z ∈ ∂B.
Thus the finiteness hypothesis on the number of tracts in Theorem 2 is crucial.

Finally, analogues of Theorem 2 and the Corollary hold for general domains.
These are expressed in terms of the behaviour of s/h, where h is an arbitrary
positive harmonic function on Ω. The Martin boundary is used in place of the
Euclidean boundary, and the representing measure for h is used in place of σ.
Further, the role of radial convergence is taken by convergence with respect to a
natural extension of the fine topology to the Martin compactification, namely the
minimal fine topology.
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Uniform approximation by interpolating Blaschke products

Raymond Mortini

Let I be the class of all inner functions that can be uniformly approximated on D

by interpolating Blaschke products. It is well known (see [3]) that finite products
of interpolating Blaschke products are contained in I. Moreover, any infinite
Blaschke product whose zeros lie in a cone belongs to I (see [4]). In the early
eighties P.W. Jones and J. B. Garnett asked whether I coincides with the class of
all inner functions. In my talk I sketch the proof that any inner function u for which
there exists a level set {|u| < η} that can be controlled in a certain way by the zero
set of u belongs to I. To be more precise, letDρ(a, ε) = {z ∈ D : ρ(z, a) < ε} be the
pseudohyperbolic disk of center a and radius ε and let ZD(u) = {z ∈ D : u(z) = 0}
be the zero set of u in D. Then the condition

(M) ∃ε ∈ ]0, 1[ ∃η ∈ ]0, 1[ such that {|u| < η} ⊆
⋃

λ∈ZD(u)Dρ(λ, ε)

implies that u ∈ I. The proof is done with maximal ideal space techniques; the
main feature will be to show that an inner function u satisfying M will have the
property that the zeros of u belonging to the set of trivial points in the maximal
ideal space M(H∞) are in the closure of the zeros of u in D. This in turn will
imply that (u− a)/(1 − au) is a finite product of interpolating Blaschke products
whenever |a| is small, a 6= 0.

In particular, we will notice that I contains the set of inner functions satisfying
the weak embedding property; a set that appeared in recent work of Gorkin,
Nikolski and the speaker on H∞-quotient algebras.

Let us also note that, whenever in condition (M) above, the disks Dρ(λ, ε) are
pairwise disjoint then u is an interpolating Blaschke product, as was shown a long
time ago by Kerr-Lawson [2].
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Approximating inner functions

Geir Arne Hjelle

(joint work with Artur Nicolau)

LetH∞ be the algebra of bounded analytic functions in the unit disk D. A function
in H∞ is called inner if it has radial limit of modulus one at almost every point
of the unit circle. A Blaschke product is an inner function of the form

B(z) = zm
∞∏

n=1

z̄n

|zn|

zn − z

1 − z̄nz
,

where m is a non-negative integer and {zn} is a sequence of points in D \ {0}
satisfying the Blaschke condition

∑
n(1 − |zn|) < ∞. A classical result of O.

Frostman says that for any inner function f , there exists an exceptional set E =
E(f) ⊂ D of logarithmic capacity zero such that the Möbius shift

f − α

1 − ᾱf

is a Blaschke product for any α ∈ D \ E. See [3] or [4, II.6.4]. It follows that any
inner function can be uniformly approximated by a Blaschke product.

A Blaschke product B is called an interpolating Blaschke product if its zero
set {zn} forms an interpolating sequence, that is, for any bounded sequence of
complex numbers {wn}, there exists a function f ∈ H∞ such that f(zn) = wn,
n = 1, 2, . . .. A celebrated result by L. Carleson tells us that this holds precisely
when the following two conditions are satisfied:

(1) inf
n6=m

∣∣ zn − zm

1 − z̄mzn

∣∣ > 0,

(2) there exists a constant C such that
∑

zn∈Q(1 − |zn|) < Cℓ(Q) for any
Carleson square Q of the form

Q =
{
reiθ : 0 < 1 − r < ℓ(Q), |θ − θ0| < πℓ(Q)

}

where θ0 ∈ [0, 2π) and 0 < ℓ(Q) < 1.

See [1] or [4, VII.1.1]. Although the interpolating Blaschke products comprise a
small subset of all Blaschke products, they play a central role in the theory of the
algebra H∞. See the last three chapters of [4].
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In [9] D. Marshall proved that any function f ∈ H∞ can be uniformly approx-
imated by finite linear combinations of Blaschke products. That is, for any ε > 0
there are constants c1, . . . , cN and Blaschke products B1, . . . , BN such that

∥∥f −
N∑

i=1

ciBi

∥∥
∞
< ε.

This result was improved in [5] by showing that one can take each of B1, . . . , BN

to be an interpolating Blaschke product. However the following problem remains
open.

(1) For any inner function B and ε > 0, is there an interpolating Blaschke
product I such that ‖B − I‖∞ < ε?

This question was posed in [4, X.5.4], [6, pp. 268–269], [8] and [12, p. 202]. If
one restricts attention to the modulus, the question has a positive answer.

Theorem 1. Let B be an inner function and ε > 0. Then there exists an inter-
polating Blaschke product I such that

∣∣|B(z)| − |I(z)|
∣∣ < ε

for all z ∈ D.

The following is a quick sketch of the proof. Details may be found in [7]. The
first step consists of constructing a system Γ =

⋃
i Γi of disjoint closed curves

Γi ⊂ D such that arclength of Γ is a Carleson measure, and verifying that

(a) |B(z)| is uniformly small on hyperbolic disks of fixed radius centered at
points of Γ,

(b) in any hyperbolic disk of fixed radius centered at a point outside the union
of the interiors of Γi,

⋃
i int Γi, there is a point z where |B(z)| is not small.

Decompose B = B1 · B2 where B1 is the Blaschke product formed with the zeros
of B which are in

⋃
i int Γi. Statement (b) gives that B2 is a finite product of

interpolating Blaschke products. D. Marshall and A. Stray proved in [10] that any
finite product of interpolating Blaschke products may be approximated by a single
interpolating Blaschke product. Therefore only the zeros of B1 concern us. The
construction of Γ is a variation due to Nicolau and D. Suarez [11] of the original
Corona construction introduced by L. Carleson. See [2] or [4, VIII.5].

Next, for each i = 1, 2, . . ., let µi be the sum of harmonic measures in int Γi

from the zeros of B1 contained in int Γi. Then the mass µi(Γi) is the total number
of zeros of B1 contained in int Γi. The next step consists of splitting Γi =

⋃
k Γi,k,

into pieces Γi,k with µi(Γi,k) = 1, k = 1, 2, . . . and choosing points ξi,k ∈ Γi,k

which match a certain moment of the measure µi on Γi,k. Let I1 be the Blaschke
product with zeros ξi,k, i, k = 1, 2, . . .. The last step of the proof is to use (b)
above to show that I1 is an interpolating Blaschke product and to use the location
of {ξi,k}, as well as (a) above, to show that |I1(z) · B2(z)| approximates |B(z)|.

Besides the individual problem mentioned above, some questions concerning
approximation by arguments of interpolating Blaschke products remain open. Let
B be an inner function.
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(2) Given ε > 0, is there an interpolating Blaschke product I such that

‖ArgB − Arg I‖BMO(∂D) < ε?

(3) Is there an interpolating Blaschke product I such that ArgB −Arg I = ṽ
where v ∈ L∞(∂D)?

(4) Is there an interpolating Blaschke product I such that ArgB − Arg I =
u+ ṽ where u, v ∈ L∞(∂D) and ‖u‖∞ < π

2 ?

A positive answer to Problem 2 would imply Theorem 1. Problem 4 was posed
by N. K. Nikol′skĭı in [6] and [12] in connection with Toeplitz operators and com-
plete interpolating sequences in model spaces. Problem 3 and Problem 4 are also
discussed in the nice monograph by K. Seip [13, p. 92].

The author gratefully acknowledges support from NSF and MFO Oberwolfach
making his participation in the workshop possible.
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List of open problems

Problem session

1. Richard M. Aron: Compositions of universal or hypercyclic

operators

Example. Consider the collection O(Cn) = {T : H(Cn) → H(Cn) | T is linear,
continuous, and T commutes with partial derivatives }. For all T ∈ O such that
T is not a multiple of the identity, T is hypercyclic (Godefroy and Shapiro). Note
that O is an algebra under composition, and we have precise information about
when the composition of two operators in O is hypercyclic.

The general question is whether this occurs in other contexts? Specifically, con-
sider the following situations:

1. Let λ, b ∈ C. It is known that for |λ| ≥ 1, the operator Tλ,b : H(C) → H(C)
given by Tλ,b(f)(z) = f ′(λz + b) is hypercyclic. Question: Given two such opera-
tors, Tλ,b and Tµ,c, is their composition hypercyclic?

2. There are by now a number of situations where one has a sequence (ϕn) of
holomorphic self-maps of the unit disk (or, more generally, some domain in C

or Cn) for which one can find a universal function f relative to H∞. Are there
‘natural,’ ‘interesting’ situations where one can take the composition of two such
sequences of holomorphic self-maps, (ϕn) and (ϑn), obtaining (ϕn ◦ ϑn) for which
there is again a universal function?

2. Vagia Vlachou

Let D(ζ1, r), r > 0, be a closed disk of the complex plane and let Ω = CrD(ζ1, r).
If we fix any point ζ0 ∈ Ω, than it is known that there exist functions, holomorphic
in Ω, which are universal Taylor series centered at ζ0.
Question: Is it possible for a universal Taylor series in this domain to be analyt-
ically continuable across a point z1 ∈ ∂Ω? We believe the answer is negative.

3. Wolfgang Luh: Three problems

Suppose that f is a holomorphic function in the unit disk D := {z : |z| < 1} with
the power series expansion

(∗) f(z) =

∞∑

ν=0

fνz
ν where lim

ν→∞
|fν |

1/ν = 1.

A point z0 ∈ C is called a limit point of zeros of the partial sums sn(z) =
n∑

ν=0
fνz

ν ,

if for each δ > 0 there are infinitely many sn having a zero in Uδ(z0) = {z :
|z − z0| < δ}. The set of all those limit points is denoted by Z(f, {sn}). The
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analogous definition is used for each subsequence {snk
}. It is clear that Z(f, {sn})

and Z(f, {snk
}) are closed sets.

It has been shown by Jentzsch [3,4] that always ∂D = {z : |z| = 1} is a subset
of Z(f, {sn}).

The following results were proved by W. Gehlen and W. Luh [2]; for a refinement
see also W. Gehlen [3].

Theorem 1. Suppose that S is a prescribed closed set satisfying ∂D ⊂ S ⊂ Dc.
Then there exists a power series (∗) such that Z(f, {sn}) ∩ Dc = S.

Theorem 2. There exists a power series (∗) with the following property. Given
any closed set S ⊂ Dc then there exists a subsequence {nk} of N0 (depending on
S) such that Z(f, {snk

}) = S.

Problems:

• Are there generic proofs for Theorem 1 or Theorem 2.
• How “many” of those functions f exist.
• Are there (connected with Theorem 2) other universalities simultaneously.
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4. Raymond Mortini: The Image of disk-algebra functions

Give a geometric/topological characterization of the images f(D) of functions in
the disk-algebraA(D) and the associated real algebraAR(D) = {f ∈ A(D) : f(z) =

f(z)} .

For example, as was observed by V. Müller, for a > 0, the compact set

{|z − a| ≤ a} ∪ {|z + a| ≤ a}

is not the image of any f ∈ A(D).

Reporter: Paul M. Gauthier



Mini-Workshop: Complex Approximation and Universality 345

Participants

Prof. Dr. Richard M. Aron

Dept. of Mathematics & Comp.Science
Kent State University
Kent , OH 44242-0001
USA

Prof. Dr. Frederic Bayart

Mathematiques et Informatique
Universite Bordeaux I
351, cours de la Liberation
F-33405 Talence Cedex

Prof. Dr. George Costakis

Department of Mathematics
University of Crete
Knossou Ave., POBox 2208
71409 Heraklion , Crete
Hellas (Greece)

Prof. Dr. Stephen J. Gardiner

School of Mathematical Sciences
University College Dublin
Belfield
Dublin 4
IRELAND

Prof. Dr. Paul M. Gauthier

Dept. of Mathematics and Statistics
University of Montreal
CP 6128, succ. Centre Ville
Montreal , QC H3C 3J7
CANADA

Prof. Dr. Tatevik Gharibyan

Institute of Mathematics
National Academy of Sciences of Armenia
Bagramian 24b
375019 Yerevan
ARMENIA

Dr. Karl-Goswin Grosse-Erdmann

Institut de Mathématique
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Kollegiengebäude I Bau B
Ostenstrasse 26
85072 Eichstätt

Prof. Dr. Innocent Tamptse

Dept. of Mathematics and Statistics
University of Montreal
CP 6128, succ. Centre Ville
Montreal , QC H3C 3J7
CANADA

Dr. Vagia Vlachou

University of Patras
Department of Mathematics
26500 Rio
GREECE


