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Introduction by the Organisers

The workshop Attraction to Solitary Waves and Related Aspects of Physics, or-
ganised by Vladimir Buslaev (St. Petersburg University), Andrew Comech (Texas
A&M), Alexander Komech (Universität Wien), and Boris Vainberg (UNC – Char-
lotte) was held February 10–16, 2008. This meeting was attended with 15 par-
ticipants with broad geographic representation from Europe and America. This
workshop was a blend of researchers with backgrounds in Partial Differential Equa-
tions, Harmonic Analysis, and Quantum Field Theory.
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The aim of the miniworkshop has been the discussion of current state of the
long-time asymptotics for nonlinear Hamiltonian partial differential equations and
relation to mathematical problems of Quantum Physics.

The central themes were the orbital and asymptotic stability of solitary waves,
quantum scattering, renormalization, and global attraction to solitary waves.

Bohr’s transitions as global attraction to solitary waves. According to
Bohr’s postulates [Boh13], an unperturbed electron runs forever along certain sta-
tionary orbit, which we denote |E〉 and call quantum stationary state. Once in
such a state, the electron has a fixed value of energy E, not losing the energy via
emitting radiation. The electron can jump from one quantum stationary state to
another,

|E−〉 7−→ |E+〉,(1)

emitting or absorbing a quantum of light with the energy equal to the difference
of the energies E+ and E−. Bohr’s second postulate states that the electrons can
jump from one quantum stationary state (Bohr’s stationary orbit) to another.

Bohr’s stationary orbits were interpreted by Schrödinger as quasistationary soli-
tary wave solutions of the form

ψ(x, t) = φ(x)e−iωt, with ω ∈ R, lim
|x|→∞

φ(x) = 0.(2)

We will call such solutions solitary waves. Other appropriate names are nonlinear
eigenfunctions and quantum stationary states (the solution (2) is not exactly sta-
tionary, but certain observable quantities, such as the charge and current densities,
are time-independent indeed). As a consequence, the electron in such a state does
not emit the energy and “circles” forever around the nucleus in an atom.

Bohr’s quantum jumps can be interpreted dynamically as long-time asymptotics

Ψ(t) −→ |E±〉, t→ ±∞,(3)

for any trajectory Ψ(t) of the corresponding dynamical system, where the limiting
states |E±〉 generally depend on the trajectory. Then the quantum stationary
states should be viewed as the points of the global attractor A .

The attraction (3) takes the form of the long-time asymptotics

ψ(x, t) ∼ φω±
(x)e−iω±t, t→ ±∞,(4)

that hold for each finite energy solution.

Now let us describe the existing results on solitary waves in the context of
dispersive Hamiltonian systems.

Nonlinear wave equations. Well-posedness in the energy space. The
nonlinear wave equations take their origin in Quantum Field Theory from the
articles by Schiff [Sch51a, Sch51b], who considered the nonlinear Klein–Gordon
equation in his research on the classical nonlinear meson theory of nuclear forces.
The mathematical analysis of this equation is started by Jörgens [Jör61] and Se-
gal [Seg63a, Seg63b], who studied its global well-posedness in the energy space.
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Since then, this equation (alongside with the nonlinear Schrödinger equation) has
been the main playground for developing tools to handle more general nonlinear
Hamiltonian systems.

Local attraction to zero. The asymptotics of type (4) were discovered first with
ψ± = 0 in the scattering theory. Segal [Seg66] and then Morawetz and Strauss
[Str68, MS72] studied the (nonlinear) scattering for solutions of nonlinear Klein–
Gordon equation in R3. We may interpret these results as local (referring to small
initial data) attraction to zero:

ψ(x, t) ∼ ψ± = 0, t→ ±∞.(5)

The asymptotics (5) hold on an arbitrary compact set and represent the well-
known local energy decay. These results were further extended in [GS79, Kla82,
GV85, Hör91].

Solitary waves. Apparently, there could be no global attraction to zero (global
referring to arbitrary initial data) if there are solitary wave solutions of the form
φω(x)e−iωt. The existence of solitary wave solutions

ψω(x, t) = φω(x)e−iωt, ω ∈ R, φω ∈ H1(Rn),

with H1(Rn) being the Sobolev space, to the nonlinear Klein–Gordon equation
(and nonlinear Schrödinger equation) in Rn, in a rather generic situation, was
established in [Str77] (a more general result was obtained in [BL83a, BL83b]).
Typically, such solutions exist for ω from an interval or a collection of intervals of
the real line. We denote the set of all solitary waves by S0.

While all localized stationary solutions to the nonlinear wave equations in spa-
tial dimensions n ≥ 3 turn out to be unstable (the result known as “Derrick’s
theorem” [Der64]), quasistationary solitary waves can be orbitally stable. Stabil-
ity of solitary waves takes its origin from [VK73] and has been extensively studied
by Strauss and his school in [GSS87, Sha83, Sha85, SS85].

Local attraction to solitary waves. The asymptotic stability of solitary waves
(convergence to a solitary wave for the initial data sufficiently close to it) has been
studied by Soffer and Weinstein [SW90, SW92] in the context of nonlinear U(1)-
invariant Schrödinger equation with a potential. This theory has been further
developed by Buslaev and Perelman [BP93, BP95] and then by others in [PW97,
SW99, Cuc01a, Cuc01b, Cuc03, BS03] and other papers. Up to date, there are
many open problems. While generically we expect that any orbitaly stable solitary
wave is also asymptotically stable, the proof of this statement is only available for
just a few cases and under very strong assumptions.

The existing results on orbital and asymptotic stability suggest that the set
of orbitally stable solitary waves typically forms a local attractor, that is to say,
attracts any finite energy solutions that were initially close to it. Moreover, a
natural hypothesis is that the set of all solitary waves forms a global attractor of
all finite energy solutions.
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Global attraction to solitary waves. The global attraction of type (4) with
ψ± 6= 0 and ω± = 0 was established in certain models in [Kom91, Kom95, KV96,
KSK97, Kom99, KS00] for a number of nonlinear wave problems. There the at-
tractor is the set of all static stationary states. Let us mention that this set could
be infinite and contain continuous components.

In [Kom03] and [KK07a], the attraction to the set of solitary waves (see Fig. 1)
is proved for the Klein–Gordon field coupled to a nonlinear oscillator. In [KK07b],
this result has been generalized for the Klein–Gordon field coupled to several
oscillators. The paper [KK08] gives the extension to the higher-dimensional setting
for a model with the nonlinear self-interaction of the mean field type.

S0

Ψ(t)

Ψ|t→+∞

Ψ|t→−∞

Figure 1. For t→ ±∞, a finite energy solution Ψ(t) approaches
(in local energy seminorms) the global attractor A which coin-
cides with the set of all solitary waves S0.

Let us mention one more recent advance, [Tao07], in the field of nontrivial
(nonzero) global attractors for Hamiltonian PDEs. In that paper, the global at-
traction for the nonlinear Schrödinger equation in dimensions n ≥ 5 was con-
sidered. The dispersive (outgoing) wave was explicitly specified using the rapid
decay of local energy in higher dimensions. The global attractor was proved to be
compact, but it was not identified with the set of solitary waves [Tao07, Remark
1.18].

Relation to Quantum Physics. The Quantum Mechanics is formulated in
terms of partial differential equations: coupled nonlinear Maxwell-Schrodinger,
Maxwell-Dirac, Maxwell-Yang-Mills equations, etc. The Quantum Field Theory
is formulated in terms of the correponding second quantized equations. The main
goal of our workshop was to achieve the critical concentration of experts in Quan-
tum Theory on one side and in PDEs on another side, to have a thorough discussion
of recent advances in both areas and an exchange which could stimulate further
progress.



Mini-Workshop: Attraction to Solitary Waves and Related Aspects . . . 371

References

[BL83a] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground
state, Arch. Rational Mech. Anal. 82 (1983), pp. 313–345.

[BL83b] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infin-
itely many solutions, Arch. Rational Mech. Anal. 82 (1983), pp. 347–375.

[Boh13] N. Bohr, On the constitution of atoms and molecules, Phil. Mag. 26 (1913), pp. 1–25.
[BP93] V. S. Buslaev and G. S. Perel′man, Scattering for the nonlinear Schrödinger equation:

states that are close to a soliton, St. Petersburg Math. J. 4 (1993), pp. 1111–1142.
[BP95] V. S. Buslaev and G. S. Perel′man, On the stability of solitary waves for nonlinear

Schrödinger equations, in Nonlinear evolution equations, vol. 164 of Amer. Math. Soc.
Transl. Ser. 2 , pp. 75–98, Amer. Math. Soc., Providence, RI, 1995.

[BS03] V. S. Buslaev and C. Sulem, On asymptotic stability of solitary waves for nonlinear
Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), pp. 419–
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Abstracts

Global attraction to solitary waves

Andrew Comech

Convergence to a global attractor is well-known for dissipative systems, like
Navier–Stokes equations (see [BV92, Hen81, Tem97]). For such systems, the global
attractor is formed by the static stationary states, and the attraction

ψ(t) −→ {stationary states}
only holds for t → +∞. We would like to know whether dispersive Hamiltonian
systems could, in the same spirit, possess finite dimensional global attractors, and
whether such attractors are formed by the solitary waves, so that

(1) ψ(x, t) −→
t→±∞

S0 := {φω(x)e−iωt},

or, even better,

(2) ψ(x, t) ∼ φ±(x)e−iω±t, t→ ±∞.

Although there is no dissipation per se, we expect that the attraction is caused by
certain friction mechanism via the dispersion (local energy decay). Because of the
difficulties posed by the system of interacting Maxwell and Dirac (or Schrödinger)
fields, we will work with simpler models which share certain key properties of the
coupled Maxwell–Dirac or Maxwell–Schrödinger systems. Let us try to single out
these key features:

(1) The system is U(1)-invariant.
This invariance leads to the existence of solitary wave solutions φω(x)e−iωt.

(2) The linear part of the system has a dispersive character.
This property provides certain dissipative features in a Hamiltonian sys-
tem, due to local energy decay via the dispersion mechanism.

(3) The system is nonlinear.
The nonlinearity is required to make sure that the superposition of solitary
waves is not a part of the attractor. Bohr type transitions to pure eigen-
states of the energy operator are impossible in a linear system because of
the superposition principle.

We suggest that these are the very features responsible for the global attraction,
such as (4), to “quantum stationary states”.

We consider the Klein–Gordon equation with the nonlinearity concentrated at
the origin:

(3) ψ̈(x, t) = ψ′′(x, t) −m2ψ(x, t) + δ(x)F (ψ(0, t)), x ∈ R.

Above, m > 0 and F is a function describing an oscillator at the point x = 0. We
assume that the oscillator force F admits a real-valued U(1)-invariant potential,

(4) F (ψ) = −∇ℜψ,ℑψV (|ψ|2) = −2ψV ′(|ψ|2), ψ ∈ C, V ∈ C2(R).
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Equation (3) possesses the key properties we mentioned above: U(1)-invariance,
dispersive character, and the nonlinearity.

Remark 1. If we identify a complex number ψ = u + iv ∈ C with the two-
dimensional vector (u, v) ∈ R2, then, physically, equation (3) describes small
crosswise oscillations of the infinite string in three-dimensional space (x, u, v)
stretched along the x-axis. The string is subject to the action of an “elastic force”
−m2ψ(x, t) and coupled to a nonlinear oscillator of force F (ψ) attached at the
point x = 0.

Let us introduce the phase space E of finite energy states for equation (3).

Definition 2. E = H1(R) ⊕ L2(R) is the Hilbert space of the states (ψ, π), with
the norm

‖(ψ, π)‖2
E

:= ‖π‖2
L2 + ‖∇ψ‖2

L2 +m2‖ψ‖2
L2.

Eloc is the space with the norm ‖(ψ, π)‖Eloc
=

∑∞
R=1 2−R‖(ψ, π)‖E ,R, where

‖(ψ, π)‖2
E ,R := ‖π‖2

L2

R
+ ‖∇ψ‖2

L2

R
+m2‖ψ‖2

L2

R
, R > 0.

Above, ‖ · ‖L2

R
the norm in L2(−R,R).

Equation (3) can formally be written as a Hamiltonian system

Ψ̇(t) = J DH(Ψ), J =

[
0 1
−1 0

]
, Ψ = (ψ, π),(5)

with the Hamilton functional

H(ψ, π) =
1

2

∫

R

(
|π|2 + |ψ′|2 +m2|ψ|2

)
dx+ V (|ψ(0)|2)

and with the phase space E from Definition 2.

Theorem 3 (Global well-posedness). Assume that the nonlinearity F (ψ) is given
by (4) with inf

z∈C

V (|z|2) > −∞. Then:

(i) For every (ψ0, π0) ∈ E , equation (3) with the initial data (ψ, ψ̇)|t=0 =

(ψ0, π0) has a unique global solution ψ(t) such that (ψ, ψ̇) ∈ C(R,E ).

(ii) The map W (t) : (ψ0, π0) 7→ (ψ(t), ψ̇(t)) is continuous in E for each t ∈ R.

(iii) The energy is conserved: H(ψ(t), ψ̇(t)) = const , t ∈ R.

(iv) There is the a priori bound ‖(ψ(t), ψ̇(t))‖E ≤ C(ψ0, π0), t ∈ R.
(v) For 0 ≤ ǫ < 1/4, ψ ∈ C(ǫ)(R × R).

Definition 4. The solitary waves of equation (3) are solutions of the form

ψ(x, t) = φω(x)e−iωt, where ω ∈ R, φω ∈ H1(R).(6)

The solitary manifold is the set S = {(φω,−iωφω)} ⊂ E .

Let us note that there could be no (nonzero) solitary waves for |ω| ≥ m.
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Theorem 5 (Main result). Assume that F (ψ) is given by (4) where V is a polyno-
mial of degree at least two (so that F is of polynomial type and strictly nonlinear).
Then for any (ψ0, π0) ∈ E the solution ψ(t) to equation (3) with the initial data

(ψ, ψ̇)|t=0 = (ψ0, π0) converges to S:

lim
t→±∞

dist Eloc
((ψ(t), ψ̇(t)),S) = 0.(7)

Above, dist Eloc
(Ψ,S) := inf

Φ∈S
‖Ψ − Φ‖Eloc

, with ‖ · ‖Eloc
from Definition 2.

Let us mention several important points.

(i) We prove the attraction of any finite energy solution to the solitary man-
ifold S:

(ψ(t), ψ̇(t))
Eloc−→ S, t→ ±∞,

where the convergence holds in local energy seminorms. In this sense,
S is a weak (convergence is local in space) global (convergence holds for
arbitrary initial data) attractor.

(ii) S can be at most a weak attractor because we need to keep forgetting
about the outgoing dispersive waves, so that the dispersion plays the role
of friction. A strong attractor would have to consist of the direct sum of
S and the space of outgoing waves.

(iii) We interpret the local energy decay caused by dispersion as a certain fric-
tion effect in order to clarify the cause of the convergence to the attractor
in a Hamiltonian model. This “friction” does not contradict the time re-
versibility: if the system develops backwards in time, one observes the
same local energy decay which leads to the convergence to the attractor as
t → −∞ (unlike for the dissipative equations, for which the convergence
to the attractor only holds for t→ +∞).

(iv) Although we proved the attraction (1) to S, we have not proved the at-
traction to a particular solitary wave, falling short of proving (2). Hypo-
thetically, if S/U(1) contains continuous components, a solution can be
drifting along S, keeping asymptotically close to it, but never approaching
a particular solitary wave. (This could be viewed as the adiabatic modu-
lation of solitary wave parameters.) Apparently, if S/U(1) is discrete, a
solution converges to a particular solitary wave.

(v) The requirement that the nonlinearity is polynomial allows us to apply the
Titchmarsh convolution theorem. This step is vital in our approach. We
do not know whether the polynomiality requirement could be dropped.

(vi) In the linear case, there can be no attraction to S since the global attractor
contains the linear span of points of the solitary manifold: A ⊃ 〈S〉 ) S.

(vii) For the real initial data, we obtain a real-valued solution ψ(t). Therefore,

the convergence (7) of Ψ(t) = (ψ(t), ψ̇(t)) to the set of pairs (φω ,−iωφω)
with ω ∈ R\{0} implies that ψ(t) locally converges to zero.

(viii) Our argument does not apply to the Schrödinger equation. The important
feature of the Klein–Gordon equation is that the continuous spectrum cor-
responds to |ω| ≥ m, hence the spectral density of the solution is absolutely
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continuous for |ω| ≥ m, while the spectrum of the omega-limit trajectory
is within the compact set [−m,m]. This is not so for the Schrödinger equa-
tion: since the continuous spectrum corresponds to ω ≥ 0, the resulting
restriction on the spectrum of the omega-limit trajectory is ω ≤ 0. As a
result, we do not know whether the spectrum is compact; the Titchmarsh
convolution theorem does not apply, and the proof breaks down.

Sketch of the proof. First, we introduce a concept of the omega-limit trajectory
β(x, t) which plays a crucial role in the proof.

Definition 6. The function β(x, t) is called omega-limit trajectory if there is a
global solution ψ ∈ C(R, H1) and a sequence of times {tj : j ∈ N} with lim

j→∞
tj = ∞

such that

ψ(x, t+ tj) −→
j→∞

β(x, t),

where the convergence is in Cb([−T, T ]× [−R,R]) for any T > 0 and R > 0.

We are going to prove that all omega-limit trajectories are solitary waves; that
is, that β(x, t)=φω(x)e−iωt, for some ω ∈ R and φω ∈ H1(R). It suffices to prove
that the time spectrum of any omega-limit trajectory β consists of at most one
frequency.

To complete this program, we study the time spectrum of solutions, that is,
their complex Fourier–Laplace transform in time. First, we prove that the spectral
density of a solution is absolutely continuous for |ω| > m hence the corresponding
component of the solution disperses completely. It follows that the time-spectrum
of omega-limit trajectory β is contained in a finite interval [−m,m].

Second, we notice that β also satisfies the original nonlinear equation. Since
the spectral support of β is compact and the nonlinearity is polynomial, we may
apply the Titchmarsh convolution theorem. This theorem allows to conclude that
the spectral support of the nonlinearity would be strictly larger than the spectral
support of the linear terms in the equation (which would be a contradiction!)
except in the case when the spectrum of the omega-limit trajectory consists of a
single frequency ω+ ∈ [−m,m].

Thus, any omega-limit trajectory is a solitary wave. We conclude that any
finite energy solution converges to the set of solitary waves (but not necessarily to
a particular wave).
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On asymptotic stability in energy space of ground states for Nonlinear

Schrödinger equations

Scipio Cuccagna

We consider the nonlinear Schrödinger equation

iut + ∆u+ β(|u|2)u = 0 , (t, x) ∈ R × R3,

with the initial data u(0, x) = u0(x). We assume β(0) = 0, β sufficiently regular
and with not too fast growth at ∞. We consider standing waves eitωφω and the
question of asymptotic stability of ground states, i.e. the case φω(x) > 0, and of
orbital stability of excited standing waves, i.e. when φω(x) changes signs. Our
analysis is based on the linearization

Hω = σ3

[
−∆ + ω − β(φ2

ω) − β′(φ2
ω)φ2

ω

]
+ iβ′(φ2

ω)φ2
ωσ2

where σj are Pauli matrices. We introduce a more stringent notion of linear
stability. The standard notion consists in the requirement that σ(Hω) ⊂ R. We
add two more requirements. We require that the generalized kernel Ng(Hω) be
non-degenerate and that the ”signature” of all positive eigenvalues be positive:

(1) Ng(Hω − λ) = ker(Hω − λ);
(2) For any ξ ∈ ker(Hω − λ) with ξ 6= 0 we have 〈ξ, σ3ξ〉 > 0.

This definition of linear stability is essentially the classical one in the case of ground
states, because in that case Hω has no positive eigenvalues of negative signature.
However we prove:

Excited states are never linearly stable in the above more stringent sense.

We then conjecture that the above stringent definition of linear stability is a nec-
essary condition for orbital stability. We prove the conjecture, if we assume the
Fermi Golden Rule (FGR), see later. Next, we conjecture that orbitally stable
ground states are asymptotically stable, in the sense that for a finite energy solu-
tion u(t, x) close to ground states we have for some ω0 > 0, θ(t) ∈ C1(R+,R) and
h0(x) ∈ H1

x (we restrict attention to symmetric solutions u(t,−x) = u(t, x)),

lim
t→+∞

‖u(t, x) − eiθ(t)φω0
(x) − eit∆h0‖H1

x
= 0.

Also this conjecture is proved, under some generic conditions, assuming the FGR.
The problem of asymptotic stability is classical, but the first results are of the
early 90’s by Soffer & Weinstein and by Buslaev & Perelman. It is standard to
consider an ansatz

u(t, x) = ei
∫

t

0
ω(s)ds+iγ(t)(φω(t)(x) + r(t, x))

with ω and γ determined by modulation. One then splits r in terms of the spectral
decomposition of the linearizationHω . The discrete modes which I will denote with
zj(t) satisfy a system which is a perturbation of what looks like a conservative
system in the z’s. The coupling with the continuous modes is responsible for the
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asymptotic stability or for the orbital instability. Ideally after some changes of
variables we have for the continuous modes

i∂tf ≈ Hωf + zN+1RN+1,0(ω)

and for the discrete modes (where ξ generates ker(Hω − λ) and is normalized)

iżξ − λ(ω)zξ = zNA0,N (ω)f.

(This as an illustration only, i.e. the interesting case involves more than one
discrete modes.) Ideally, if the system is Hamiltonian (which is not any more
because the changes of variables are not canonical) RN+1,0(ω) and AN,0(ω) are
derivatives of the Hamiltonian. We introduce

zN+1RHω
((N + 1)λ(ω) + i0)RN+1,0(ω) + f

and, after substitution, we get

iżξ − λ(ω)zξ = |z|2NzA0,N (ω)RHω
((N + 1)λ(ω) + i0)RN+1,0(ω).

We apply z〈 , σ3ξ〉 and get

1

2

d

dt
|z|2 = ∓π〈δ(Hω − (N + 1)λ)RN+1,0, A

∗
0,Nσ3ξ〉|z|2N+2

where we have the negative sign if λ has positive signature (linear stability), and
the positive sign if λ has negative signature (linear instability). Since the FGR
conjecture claims that

〈δ(Hω − (N + 1)λ)RN+1,0, A
∗
0,Nσ3ξ〉 ≥ 0,

when the latter is nonzero we get dissipation of z for linear stability and excitation
of z for linear instability. The FGR should follow from the Hamiltonian structure
of the NLS but is yet unproven. Basically, the FGR should be true because RN+1,0

and σ3A
∗
0,Nσ3ξ should be like derivatives of a Hamiltonian differing only by the

order of differentiation, and so should be equal (up to some factorial factor). For
the details, see [1].
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Scattering theory in nonrelativistic quantum theory

Jan Dereziński

My minicourse was devoted to scattering theory for a certain class of Hamiltoni-
ans motivated by nonrelativistic quantum field theory. The plan of my minicourse
was as follows:

(1) Basic abstract scattering theory.

(2) Scattering of 2-body Schrödinger operators.

(3) Second quantization.

(4) Nonrelativistic QED.

(5) Scattering of Hamiltonians of QFT.

(6) Scattering of van Hove Hamiltonians.

(7) Spectrum of Pauli-Fierz Hamiltonians.

(8) Scattering of Pauli-Fierz Hamiltonians I.

(9) Representations of the CCR.

(10) Scattering of Pauli-Fierz Hamiltonians II.

Section 1 described definitions of Møller and scattering operators and their basic
properties. The standard definitions usually do not work in the case of quantum
field theory. Therefore some non-standard definitions were also discussed, such as
Abelian Møller operators.

Section 2 was devoted to scattering theory for Schrödinger operators. This is
the best known example of the application of the idea of scattering.

Section 3 and 4 were devoted to the formalism of second quantization (Fock
spaces, creation/annihilation operators, etc.) and its applications.

In Section 5, I introduced two basic formalisms of scattering theory in quantum
field theory with localized interactions. The first is based on the renormalization
of Abelian wave operators. The second is the so-called LSZ formalism, which uses
the so-called asymptotic fields [Fr, H, Sch].

In Section 6, I discussed scattering theory for a simple but instructive class of
models, the so-called van Hove Hamiltonians [De]. They are Hamiltonians on a
bosonic Fock space of the form

H =

∫
h(ξ)a∗ξaξdξ +

∫
z̄(ξ)aξdξ +

∫
z(ξ)a∗ξdξ.

In the case of van Hove Hamiltonians both approaches to scattering theory men-
tioned above are possible: one can renormalize the Abelian Møller operators or
one can use the LSZ approach and construct asymptotic fields. The latter ap-
proach works also in the case of the infrared problem, when the Abelian Møller
operators are zero and hence of no use, but asymptotic fields exist. The infrared
problem is expressed by the fact that the representations of the asymptotic fields
are non-Fock.
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In Section 7 and 8, I discussed basic elements of scattering theory for the so-
called Pauli-Fierz Hamiltonians, that is Hamiltonians of the form

H = K ⊗ 1 + 1 ⊗
∫
h(ξ)a∗ξaξdξ

+

∫
v(ξ) ⊗ a∗ξdξ + hc,

H is a self-adjoint operator on the tensor product of the Hilbert space of a small
quantum system and a bosonic Fock space. An appropriately modified version of
the LSZ formalism works in this case. If the single-boson kinetic energy is massive,
that is if it has a mass gap, then under very general assumptions one can prove a
kind of the asymptotic completeness [DG1], see also [DG2, FGS]. More precisely,
one can show that the asymptotic representations of the CCR are Fock and all the
Fock vacua coincide with linear combinations of bound states.

In the massless case the asymptotic completeness may break down, which is
related to a possible appearance of the so-called non-Fock representations of the
CCR [DG3]. This possibility was discussed in the last two sections of the mini-
course.
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Stability of Solitary Waves For The Hartree Type Equations

Vladimir Georgiev

(joint work with Jimmy Mauro and George Venkov)

In this note we study the 3-D Hartree equation (with external potential V (x) =

− e2

|x| )

i∂tψ(t, x) = −1

2
∆ψ(t, x) +

(
e2

∫

R3

|ψ(t, y)|2
|x− y| dy + V (x)

)
ψ(t, x).(1)
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We impose the following initial data

(2) ψ(0, x) = χ(x) + u0(x),

where χ(x) is such that

ψs(t, x) = e−iωtχ(x)

is a solitary wave, i.e. χ(x) is a rapidly decaying smooth function, so that ψs(t, x)
is a solution of (1).

The existence of nontrivial radial solutions to this problem is constructed in [1]
for the case, when ‖ψs(t)‖L2 = ‖χ(t)‖L2 = 1. The function u0(x) is assumed to be
compactly supported in the Sobolev space Hs(R3), where s < 3/2 is sufficiently
close to 3/2 and its Hs norm is sufficiently small. We shall look for solution of the
Cauchy problem (1) of type

ψ(t, x) = e−iωtχ(x) + u(t, x).

Consider the operator

f ∈ S(R3) ⇒ q(f)(x) =

∫

R3

f(y)

|x− y|dy

and

Q(f)(x) =

∫

R3

f(y)

|x− y|dy −
1

|x|

∫

R3

f(y)dy

= q(f)(x) − 1

|x|

∫

R3

f(y)dy

and extend these operators in the Sobolev space W 1,1(R3).
The Hartree equation (1) for a function ψ(t, x) = u(t, x) + ψs(t, x) = u(t, x) +

e−iωtχ(x) is

(3) i∂tψ +
1

2
△ψ = bQ(|ψ|2)ψ,

where b = e2 > 0 will be considered as a sufficiently small constant.
Then u solves the equation

i∂tu+
1

2
△u = bQ(|u+ ψs|2)(u + ψs) − bQ(|ψs|2)ψs,

since ψs(t, x) = e−iωtχ(x) is a solitary wave and χ(x) ∈ S(R3).
We shall choose initial data for u(t) as follows

u(0) = u0 ∈ Hs(R3), 1 < s < 3/2, ‖u0‖Hs ≤ δ,

δ > 0 small enough, u0 is compactly supported and the charge conservation law

(4) ‖u0 + χ‖L2(R3) = ‖χ‖L2(R3)

is satisfied.
Our main stability result is the following.
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Theorem. Let χ(x) be a smooth rapidly decaying solution such that ψs(t, x) =
e−iωtχ(x) is a solitary solution of (1). There exist small positive numbers δ > 0
and b0 > 0, so that for any compactly supported initial data

u0 ∈ Hs(R3), 1 < s < 3/2, ‖u0‖Hs ≤ δ

satisfying (4), the Cauchy problem for (3) with 0 < b ≤ b0 has a global solution

ψ(t, x) = e−iωtχ(x) + u(t, x),

where
u(t, x) ∈ C(Rt;H

s),

and u(t, x) satisfies the dispersive estimate

(5) lim
t→+∞

‖u(t, ·)‖Lp = 0

for some p, 2 < p < 5 .
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Analytic Perturbation Theory and Renormalization Analysis of

Matter Coupled to Quantized Radiation

Marcel Griesemer

(joint work with David Hasler)

When a neutral atom or molecule made from static nuclei and non-relativistic
electrons is coupled to the (UV-cutoff) quantized radiation field, the least point
of the energy spectrum becomes embedded in the continuous spectrum due to the
absence of a photon mass, but it remains an eigenvalue [8, 10]. This ground state
energy E depends on the parameters of the system, such as the fine-structure
constant, the positions of static nuclei, or, in the center of mass frame of a trans-
lation invariant model, the total momentum. The regularity of E as a function of
these parameters is of fundamental importance. For example, the accuracy of the
Born-Oppenheimer approximation, a pillar of quantum chemistry, depends on the
regularity of E and on the regularity of the ground state projection as functions
of the nuclear coordinates. If E were an isolated eigenvalue, like it is in quantum
mechanical description of molecules without radiation, then analyticity of E with
respect to any of the aforementioned parameters would follow from regular per-
turbation theory. But in QED the energy E is not isolated and the analysis of its
regularity is a difficult mathematical problem.

In this talk we report on a recently discovered solution to the above problem
of regularity in a large class of models of matter and radiation where the Hamil-
tonian H(s) depends analytically on complex parameters s = (s1, . . . , sν) ∈ Cν

from a complex neighborhood of a compact set K ⊂ Rν . Important properties
of H(s) are, that H(s̄) = H(s)∗ and that, for s ∈ K, the lowest point, E(s),
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of the spectrum of H(s) is a non-degenerate eigenvalue. These and some further
assumptions concerning the class of admissible Hamiltonians imply that the eigen-
value E(s) and the projection operator associated with the eigenspace of E(s) are
real-analytic functions of s in a neighborhood of K [7]. In particular, they are
of class C∞ in this neighborhood. We apply this result to the Hamiltonian of a
molecule with static nuclei and non-relativistic electrons that are coupled to the
quantized radiation field in the dipole approximation. In suitably chosen atomic
units, this Hamiltonian depends on the fine-structure constant α only though a
factor of α3/2 in front of the dipole interaction operator. Hence the role of s may
be played by α3/2, or, after a well-known unitary deformation argument [9], by
the nuclear coordinates. It follows that the ground state energy, if it is a non-
degenerate eigenvalue, depends analytically on α3/2 and the nuclear coordinates.
The ground state projection is analytic in α3/2 and twice continuously differen-
tiable with respect to the nuclear coordinates [7]. We remark that the dipole
approximation seems necessary for the analyticity with respect to a power of α
[4].

A further consequence of the new theorem concerns the accuracy of the adiabatic
approximation to the time evolution Uτ generated by the Schrödinger equation

i
d

dt
ϕt = H(t/τ)ϕt, t ∈ [0, τ ],

in the limit τ → ∞. If H(s) satisfies the assumptions described above with
K = [0, 1], then the ground state projection P (s) is of class C∞([0, 1]) and
hence the adiabatic theorem without gap assumption implies that supt∈[0,τ ] ‖(1−
P (t))Uτ (t)P (0)‖ = o(1) as τ → ∞ [12, 2]. Previously, in all applications of the
adiabatic theorem without gap assumption the differentiability of P (s) was en-
forced or provided by the special form H(s) = U(s)HU(s)−1 of H(s) where U(s)
is a unitary and (strongly) differentiable operator [1, 2, 11].

The proof of the new theorem is based on the renormalization technique of
Bach et al. [3, 5], in a new version taken from [6]. Like the authors of [6] we use a
simplified renormalization map that consists of a Feshbach-Schur map and a scaling
transformation only. In the corresponding spectral analysis the Hamiltonian is
diagonalized, with respect to Hf , in a infinite sequence of renormalization steps.
In each step the off-diagonal part becomes smaller, and the spectral parameter
is adjusted to enforce convergence of the diagonal part. This method provides a
fairly explicit construction of an eigenvector of H(s), even for complex s, where
H(s) is not self-adjoint. We argue first, that the parameters of the renormalization
analysis can be chosen independent of s and g in neighborhoods of K ⊂ Rn and
g = 0, second, that all steps of the renormalization analysis preserve analyticity,
and third, that all limits taken are uniform in s, which implies analyticity of the
limiting functions.
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On asymptotic stability of solitary waves for Schödinger equation

coupled to nonlinear oscillator

Elena Kopylova

(joint work with Alexander Komech and David Stuart)

We study the large time asymptotics for a model U(1)-invariant nonlinear
Schrödinger equation

(1) iψ̇(x, t) = −ψ′′(x, t) − δ(x)F (ψ(0, t)), x ∈ R,

Here ψ(x, t) is a continuous complex-valued wave function and F is a continuous
function. Our main focus is on the role that certain solitary waves (nonlinear
bound states) play in the description of the solution for large times. In [1] the
asymptotic stability of solitary waves was proved under a condition on the non-
linearity which ensures that the linearization about the solitary wave consists
entirely of continuous spectrum, except for the two dimensional generalized null
space which is always present due to the U(1) symmetry of the equation. Now this
result is extended to the case that the spectrum of the linearization includes an
additional discrete component, which satisfies a non-degeneracy condition related
to the Fermi Golden rule.

It will be convenient to rewrite (1) in real form: we identify a complex number
ψ = ψ1 + iψ2 with the real two-dimensional vector (ψ1, ψ2) ∈ R2 and rewrite (1)
in the vectorial form

(2) jψ̇(x, t) = −ψ′′(x, t) − δ(x)F(ψ(0, t)), j =

(
0 −1
1 0

)
,
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where F(ψ) ∈ R2 is the real vector version of F (ψ) ∈ C.
We assume that the oscillator force F admits a real-valued potential

(3) F(ψ) = −∇U(ψ), ψ ∈ R2, U ∈ C2(R2).

Then (2) is formally a Hamiltonian system with Hamiltonian

H(ψ) =
1

2

∫
|ψ′|2 dx+ U(ψ(0))

which is conserved for sufficiently regular finite energy solutions. We assume that
the potential U(ψ) satisfies the inequality

(4) U(z) ≥ A−B|z|2 with some A ∈ R, B > 0.

We also assume that U(ψ) = u(|ψ|2) with u ∈ C2(R). Therefore, by (3),

(5) F (ψ) = a(|ψ|2)ψ, ψ ∈ C, a ∈ C1(R),

where a(|ψ|2) is real.Then F (eiθψ) = eiθF (ψ), θ ∈ [0, 2π], and eiθψ(x, t) is a
solution to (1) if ψ(x, t) is. Therefore, equation (1) is U(1)-invariant. Under these
conditions the existence of global solutions to the Cauchy problem for (1) was
proved in [2].

Equation (1) admits finite energy solutions of type ψω(x)eiωt, called solitary
waves or nonlinear eigenfunctions. The frequency ω and the amplitude ψω(x)
solve the following nonlinear eigenvalue problem:

−ωψω(x) = −ψ′′
ω(x) − δ(x)F (ψω(0)), x ∈ R.

The set of all nonzero solitary waves consists of functions C(ω)e−
√
ω|x|+iθ, C >

0, ω > 0, where √
ω = a(C2)/2 > 0,

and where θ ∈ [0, 2π] is arbitrary. The real form of the solitary wave is ejθΦω
where Φω = (ψω(x), 0).

Linearization at the solitary wave ejθΦω leads to the operator

B = − d2

dx2
+ ω − δ(x)[a(C2) + 2a′(C2)C2P1] =

(
D1 0
0 D2

)
,

where P1 is the projector in R2 acting as

(
χ1

χ2

)
7→

(
χ1

0

)
,

D1 = − d2

dx2
+ ω − δ(x)[a + 2a′C2], D2 = − d2

dx2
+ ω − δ(x)a.

Let C = j−1B. The continuous spectrum of C coincides with (−i∞,−iω] ∪
[iω, i∞). Previously, in [1] we considered the case when

a′(C2) ∈ (−∞, 0) ∪ (0, a(C2)/(
√

2C2)).

In this case operator C has no discrete spectrum except zero Under this condition
we proved asymptotic stability for initial data close to a solitary wave both in
the energy norm and in the weighted Banach norm, Lpβ , defined by, ‖u‖Lp

β
=

‖(1 + |x|)βu(x)‖Lp .
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Now we consider the case when

(6) a′ ∈ (
a√
2C2

,
a
√

2(1 +
√

3)

4C2
).

In this case, there are, in addition, 2 simple eigenvalues ±iµ, which satisfy the
property 2µ > ω. If assumption (6) is true for a fixed value ω0, it also true for

values of ω in a small interval centered at ω0. Let u =

(
u1

u2

)
and u∗ :=

(
u1

−u2

)

be eigenvectors of C associated to iµ and −iµ respectively, where the function
u1(x) is real, and u2(x) is purely imaginary.

We consider the initial value ψ0 to be of the form

(7) ψ0(x) = Φω0
(x) + z0u(x, ω0) + z0u

∗(x, ω0) + f0(x),

where f0 belongs to the eigenspace associated to the continuous spectrum of C(ω0).
We assume that z0 and f0 are sufficiently small. We also assume a non-degeneracy
condition. Let 〈·, ·〉 denote the Hermitian scalar product in L2 of C2-valued func-
tion, and (u, v) = u1v1 + u2v2 for u, v ∈ C2. Let E2[f, f ] be the quadratic terms
coming from the Taylor expansion of the nonlinearity:

E2[f, f ] = δ(x)[a′(C2)(f, f)Φω + 2a′′(C2)(Φω , f)2Φω + 2a′(C2)(Φω, f)f ],

where f ∈ C2. The non-degeneracy condition has the form

(8) 〈E2[u(ω0), u(ω0)], τ+(2iµ0)〉 6= 0,

where τ+(2iµ0) is the eigenfunction associated to 2iµ0 = 2iµ(ω0). This condition
will be referred to as a nonlinear version of the Fermi Golden rule.

Our main theorem is following:

Theorem 7. Let conditions (3), (4), and (5) hold, β > 2 and ψ(x, t) ∈ C(R, H1)
be the solution to the equation (2) with initial value ψ0(x) = ψ(x, 0) ∈ H1 ∩L1

β of

the form (7) which is close to a solitary wave Φω0
:

(9) |z(0)| ≤ ε1/2, ‖f0‖L1

β
≤ cε3/2.

Assume further that the spectral condition (6) and the non-degeneracy condition
(8) hold for the solitary wave with C = C0. Then for ε sufficiently small the
solution admits the following scattering asymptotics in Cb(R) ∩ L2(R):

ψ(x, t) = ejϕ±(t)[Φω±
(x) + z±(t)u(x, ω±)

+z±(t)u∗(x, ω±)] + ej
−1LtΨ± + O(t−ν), t→ ±∞,(10)

with some ν > 0, where L = − ∂2

∂x2 , Ψ± ∈ Cb(R) ∩ L2(R) are the corresponding
asymptotic scattering states, ϕ±(t) = ω±t+p± log(1+k±t)+κ±, ω±, p±, k±, κ±
are constants.
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Multipole Radiation in Classical Particle Systems

Markus Kunze

1. Models of Individual Particles. The motion ofN charged classical particles
in R3 under the influence of their self-generated electromagnetic fields can be
described by the Abraham-Lorentz system

d

dt
(mbαγαvα(t)) = eα

(
Eϕ(qα(t), t) + c−1vα(t) ∧Bϕ(qα(t), t)

)
, 1 ≤ α ≤ N,

c−1∂tB = −∇∧ E, c−1∂tE = ∇∧B − c−1j, ∇ ·E = ρ, ∇ ·B = 0,

ρ(x, t) =

N∑

α=1

eαϕ(x − qα(t)), j(x, t) =

N∑

α=1

eαϕ(x − qα(t))vα(t),

where vα(t) = q̇α(t), γα = (1 − (vα/c)
2)−1/2, and mbα and eα denote the bare

mass and charge of the α’th particle, respectively. In order to avoid infinities of
the self-energy of the particles, they are smeared out by a smooth form factor
ϕ = ϕ(x) of support radius Rϕ, so that Eϕ(x, t) =

∫
ϕ(x − x′)E(x′, t) dx′ and

Bϕ(x, t) =
∫
ϕ(x−x′)B(x′, t) dx′. Due to presence of the rigid charge distribution

introduced by ϕ, the model is no longer covariant. However, as compared to
the covariant models proposed in [9, 1], it is much easier accessible analytically.
We require that initially the particles are far apart (∼ ε−1Rϕ) and move slowly
(∼ εc). Our aim is to derive an effective ODE whose solutions, as ε→ 0, very well
approximate the full dynamics of the original PDE over long times. In order to do
so, the Maxwell equations are rewritten as wave equations, e.g. 2E = −(∂tj+∇ρ)
taking c = 1. If the retarded solution is written out explicitly and put into the
Lorentz force, then the terms showing up on the right-hand side are roughly of the

form
∑N

β=1

∫ t
0 ds . . . ρ(. . . + qα(t) − qβ(s)). The contribution of β = α accounts

for the self-force of particle α, whereas the parts stemming from indices β 6= α
are due to the interaction forces. In the following we consider the self-force only.
Passing to the system rescaled by ε as mentioned before, the Taylor expansion of

qα(t) − qα(s) = −vα(t)(t− s) +
1

2
q̈α(t)(t− s)2 − 1

6

...
q α(t)(t− s)3 + . . .

can be rigorously justified by estimating the errors [8]. Including only −vα(t)(t−s)
and integrating out the retarded integral

∫ t
0 ds . . . leads to an order zero effective

ODE where the effective motion is governed by a Coulomb potential. To the next
order (called the Darwin order), an effective velocity-dependent mass Mα shows
up, since now additionally the term 1

2 q̈α(t)(t − s)2 has to be taken into account.
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The radiation order is reached as soon as also − 1
6

...
q α(t)(t − s)3 is included into

the expansion. After the rescaling, the effective equation can be symbolically
represented in the form Mαq̈α = −∇V (q) + ε

...
q α. It turns out that this equation

admits very many undesirable solutions that run off to infinity very fast, the so-
called run-away solutions [12]. Moreover, since it is a third-order equation and
as it has to be compared to the solutions of the original second-order system, it
is not clear how the initial data q̈α(0) are to be specified. These problems have
been resolved in [8]. It has been shown by using geometric singular perturbation
theory that there is a center-like manifold Mε = {(q, v, hε(q, v)) : q, v ∈ R3N},
dimMε = 6N , in the phase space R9N with the following properties: (i) Mε is
invariant under the flow of the effective equation, (ii) solutions not on Mε tend to
infinity very fast, (iii) if q̈(0) = hε(q(0), q̇(0)) is chosen as the initial acceleration,
then the effective solution approximates the full solution to good accuracy in ε
over long times (∼ ε−1), and (iv) there is an energy-like quantity (Schott energy)
that decreases along the solutions on Mε, making manifest the radiative character
of the effective equation. See [11] for much more background on this problem that
basically goes back to Dirac and others.

2. Kinetic Models. If the number of charged particles is large, it is appropriate
to pass to a kinetic description of the matter. For instance, one can consider the
relativistic Vlasov-Maxwell system

∂tf
± + v · ∇xf

± ± (E + c−1v ∧B) · ∇pf
± = 0,

c−1∂tB = −∇∧ E, c−1∂tE = ∇ ∧B − c−1j, ∇ · E = ρ, ∇ · B = 0,

ρ =

∫
(f+ − f−) dp, j =

∫
v(f+ − f−) dp, v = (1 + c−2|p|2)−1/2p,

for two particle species ± of opposite unity charge and equal unity mass, the
species being described by the phase space densities f± = f±(t, x, p). We intend
to derive an effective equation approximating the full system in the limit of slow
motion c → ∞. We start with a formal expansion of all quantities in powers of
c−1, f± = f±

0 + c−1f±
1 + c−2f±

2 + c−3f±
3 + . . ., similarly for E, B, ρ, and j, and

also v = p − (c−2/2)p2p + . . .. Comparing the powers of c−1 yields a hierarchy
of equations for the coefficient functions f±

j etc. At the order zero, the Vlasov-
Poisson system of plasma physics

∂tf
±
0 + p · ∇xf

±
0 ± E0 · ∇pf

±
0 = 0, E0(t, x) = −

∫
|z|−2z̄ ρ0(t, x+ z) dz,

is found, where z̄ = |z|−1z and ρ0 =
∫
(f+

0 − f−
0 ) dp. This limit has been made

rigorous in [10]. Note that due to the absence of a large data existence result
for the Vlasov-Maxwell system, already some effort has to be put into the issue
of proving the existence of solutions on some time interval [0, T ] that does not
shrink as c→ ∞. Next it can be observed that one can take f±

2l+1 = 0, E2l+1 =
0, B2l = 0 consistently in the hierarchy of equations for the coefficient functions.
Then in [4] it has been shown that by passing to the ‘Darwin approximation’
f±,D = f±

0 + c−2f±
2 , ED = E0 + c−2E2, B

D = c−1B1, the order of accuracy can
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be improved to O(c−3). It comes as a certain surprise that this approach does not
work any more at the next order, where radiation effects are known to occur. This
is due to the fact that the resulting effective system would still be Hamiltonian,
not accounting for the energy loss that is present in the system. To get a clue of
how the radiation approximation f±,R, ER, BR has to be defined, the energy flux

d

dt
Er(t) =

c

4π

∫

|x|=r
x̄ · (B × E)(t, x) dσ(x) ∼ − 2

3c3
|D̈(t)|2

over the surface of balls Br(0) ⊂ R3 has rigorously been verified in [6] as r, c → ∞;
here D(t) =

∫
xρ0(t, x) dx denotes the dipole moment of the Newtonian limit.

As suggested in [7], the Vlasov equation for the Newtonian distribution is thus
modified by incorporating a small correction into the force term as

(1) ∂tf̃
±
0 + p · ∇xf̃

±
0 ±

(
Ẽ0 +

2

3c3
...
D

)
· ∇pf̃

±
0 = 0.

The additional term is the generalization of the radiation reaction force used in
particle models; see Section 1. We also note that for this system an energy-like
quantity ES (Schott energy) is decreasing such that d

dt ES(t) = − 2
3c3 |D̈(t)|2. How-

ever, analogously to the case of individual particles, the above Vlasov equation
coupled to a Poisson equation for the potential does not yield a well-defined PDE
system due to the presence of the third-order derivative in time. Therefore once
again one has to pass to some kind of center manifold of the system, with the man-
ifold now being infinite-dimensional. Although so far the existence of this manifold
has not been verified in full detail, it is possible to use it formally to guess a cer-
tain well-defined approximation D[3](t) to

...
D(t) such that if this replacement of...

D by D[3] is made in (1), then a well-defined and globally solvable PDE system

is obtained. Moreover, f±,R = f̃±
0 + c−2f±

2 , ER = Ẽ0 + c−2E2 + (2/3)c−3D[3],
BR = c−1B1 + c−3B3, can be shown to be an effective approximation of the full
solutions to order O(c−4). See [5] for a more detailed review.
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The g-factor of the electron

Herbert Spohn

This note is based on material from the book [1]: H. Spohn, Dynamics of
Charged Particles and Their Radiation Field, Cambridge University Press (2004),
where the reader will find a more complete discussion and many references.

A charged particle with internal rotation (spin) is governed by the Bargmann,
Michel, Telegdi (BMT) equation which, in nonrelativistic notation, reads

ω̇ =
e

mc
ω ∧

[
(1
2g − 1 + γ−1)B − (1

2g − 1)γ(1 + γ)−1c−2(v · B)v

−(1
2g − γ(1 + γ)−1)c−1v ∧ E

]
.(1)

Here ω is the angular velocity of the charge and γ = (1− v2/c2)−1/2. The velocity
v of the charge and the external electromagnetic fields E,B have to be evaluated
along the actual space orbit of the charge. Clearly the material parameters for the
BMT equation are the ratio e/m, i.e. charge over rest mass, and the dimensionless
gyromagnetic ratio g. In essence, the form of Eq. (1) is imposed by relativistic
invariance. (1) immediately suggests an experiment to determine g. One sets E =
0 and takes B to be a weak uniform magnetic field. Then the orbit of the charge is
a circle perpendicular to B and is transversed with frequency ωc = e|B|/mc. For
small velocities it follows from (1) that ω precesses with frequency ωs = e|B|g/2mc.
Hence

(2) g =
2ωs

ωc
.

The g-factor of the electron has been measured with great accuracy. A value
dating from 1984 is

g/2 = 1.001 159 652 193 (4) ,

where the last digit is the experimental error bar. Even more astounding is the
computation of the g-factor within the framework of relativistic quantum electro-
dynamics (QED), which yields

g/2 = 1.001 159 652 459 (135) ,

where the theoretical error in the round brackets results largely from the precision
with which the fine-structure constant α is available. I refer to the informative
review article by Brown and Gabrielse [2]. There has been an enormous effort
to define QED as a relativistic quantum field theory satisfying the Wightman
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axioms. By consensus, this program remains uncompleted. The fact that from a
mathematically undefined theory one can compute a number which is empirically
so accurate may be regarded as either a mystery or a triumph depending on the
point of view.

Our note has zero intention to compete with relativistic QED. Rather we plan
to raise a different issue. The BMT equation is a very cleverly guessed macroscopic
equation for the motion of a spinning charge. Our goal is to derive such an equation
from an underlying more microscopic theory. Thus we would like to start from
a mathematically well-defined theory of a charge coupled to the Maxwell field,
even at the expense of loosing in empirical accuracy. Within such a framework we
would like to prove that, in a suitable limit, the charge is governed by some version
of the BMT equation, thereby also obtaining the g-factor within the theory under
consideration.

Currently there are only three serious investigations.

1) The Dirac equation. It yields g = 2. The BMT equation results from a space-
adiabatic limit, so to decouple the positron subspace, combined with a semiclassical
limit, so to obtain a classical equation of motion. I refer to the lecture notes by
Teufel [3], Chapter 4, for a detailed discussion, see also [4] .

2) The Abraham model for a classical spinning charge. In [5] we discuss the spe-
cial case where the charge is standing still but rotates. Without coupling to the
Maxwell field one has g = 1 (this is why g = 2 is called anomalous in the physics
literature). The coupling renormalizes g = 1 to geff with an explicitly stated for-
mula depending on the particular mass and charge distribution. geff can take a
wide range of values including geff = 2.

3) Nonrelativistic quantum electrodynamics. In this model the number of charges
is conserved. For the g-factor it suffices to consider a single quantum particle
with spin and interacting with the photons. For fixed total momentum one has to
decouple the lowest energy states (dressed electron) from the multitude of possible
excitations. This is again a space-adiabatic problem. A central point for such an
investigation is to study of the spectral properties of the following Hamiltonian:

(3) H(p) =
1

2m
(p− Pf − eAϕ)2 − e

2m
σ ·Bϕ +Hf .

p ∈ R3 is a parameter with the meaning of the total momentum and m is the bare
mass of the electron. We will use units such that ~ = 1 and c = 1. H(p) is defined
on the Hilbert space H = C2 ⊗ F. C2 refers to the spin of the electron with σ the
3-vector of Pauli spin matrices. F refers to the photons and is the bosonic Fock
space over L2(R3) ⊗ C2, C2 coming from the helicity of the photons. Pf is the
total momentum and Hf is the field energy,

(4) Pf =
∑

λ=1,2

∫

R3

dkka(k, λ)∗a(k, λ) ,
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(5) Hf =
∑

λ=1,2

∫

R3

dkω(k)a(k, λ)∗a(k, λ) , ω(k) = |k| ,

where in the standard notation, a(k, λ), k ∈ R3, λ = 1, 2, is a two-component
Bose field over R3. Aϕ is the quantized vector potential and Bϕ the corresponding
magnetic field,

(6) Aϕ =
∑

λ=1,2

∫

R3

dk
1√
2ω
ϕ̂(k)eλ(k)

(
a(k, λ) + a(k, λ)∗

)
,

(7) Bϕ =
∑

λ=1,2

∫

R3

dk
1√
2ω
ϕ̂(k)eλ(k) ∧ ik

(
a(k, λ) − a(k, λ)∗

)
.

Here e1(k), e2(k), k/|k| form a left-handled dreibein and ϕ̂ is the Fourier transform
of a rotation invariant charge distribution ϕ with rapid decay and

∫
ϕ = 1. Under

our assumptions, H(p) is bounded from below and self-adjoint.
To employ the space-adiabatic theory in its standard version one needs a spec-

tral gap between the ground state of H(p) and the rest of the spectrum. For
ω(k) = |k| the excitations are gapless. For technical reasons we therefore intro-
duce a small photon mass by setting

(8) ω(k) =
(
k2 + (mph)

2
)1/2

.

It is an interesting mathematical problem to investigate the physical case mph = 0.
If mph > 0, then it is known that, for small e and small |p|, H(p) has an exactly
two-fold degenerate eigenvalue. However for large |p|, H(p) looses its ground state
which results in technical difficulties when applying the space-adiabatic theory.

To label the degeneracy we introduce the total angular momentum

(9) J = 1
2σ + Jf + Sf ,

(10) Jf =
∑

λ=1,2

∫

R3

dka(k, λ)∗(k ∧ i∇k)a(k, λ) ,

(11) Sf = i

∫

R3

dk
(
a(k, 2)∗a(k, 1) − a(k, 1)∗a(k, 2)

)
.

Then [H(p), p · J ] = 0 and, with E(p) = inf σ(H(p)), for e, |p| sufficiently small
there exists a unique vector ψ+(p) such that

(12) H(p)ψ+(p) = E(p)ψ+(p) , p · Jψ+(p) = 1
2 |p|ψ+(p) .

The g-factor resulting from space-adiabatic theory can be expressed through ψ+(p).
For p = 0 one defines

(13)
m

meff
= 1 − 2

3 〈ψ+, (Pf + eAϕ) · 1

H(0) − E(0)
(Pf + eAϕ)ψ+〉 ,
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where ψ+ = ψ+(0) and the scalar product 〈·, ·〉 refers to H = C2 ⊗F. The g-factor
is then obtained as

(14) 1
2g =

meff

m

(
〈ψ+, σ3ψ+〉−i〈ψ+, (Pf+eAϕ)

1

m
(
H(0) − E(0)

)∧(Pf+eAϕ)ψ+〉
)
.

The extra factor 1/m on the right hand side looks dimensionally strange. In fact,
for ω(k) = |k|, it can be absorbed into ϕ whose scale is then set by the Compton
length ~/mc = 1/m in our units.

While well defined, (13) and (14) provide no easily accessible information of the
actual value of g. One only notes that g → 2 as e→ 0, as to be expected since the
coupling to the photons is turned off. This suggests to compute g in an expansion
in e. To second order one obtains, setting already mph = 0,

(15) g = 2
(
1 + 2

3e
2

∫
dk|ϕ̂(k)|2

(
k2

(
1 + 1

2 |k|)
3
)−1

)
+ O(e4) .

Remarkably in this form one can remove the ultraviolet cutoff by letting the charge
distribution ϕ(x) → δ(x), hence ϕ̂(k) → (2π)−3/2. The limit is denoted by g∞.
Introducing the fine structure constant α = e2/4π one finally obtains

(16) g∞ = 2
(
1 +

8

3

( α
2π

))
+ O(α2)

which is to be compared with 2
(
1 + (α/2π)

)
+O(α2) from relativistic QED. Note

that in the point charge limit meff/m → ∞ while the second factor in (14) tends
to 0. The finite answer in (16) comes only from fine cancellations.

Obvious questions result:

Does (14) have a finite limit when mph → 0 and ϕ̂(k) → (2π)−3/2?

If the point charge limit of (14) exists, how does it depend on α?

What is the O(α2) in (16)?

Such information has to extracted from the Hamiltonian H(0) of (3).
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Cherns-Simons Dynamics of Vortices

David Stuart

(joint work with Sophia Demoulini)

The nonlinear Schroedinger equation

(1) i∂tΦ = −∆Φ − λ

2
(1 − |Φ|2)Φ

on the plane R2 admits soliton type solutions called vortices, which are of the form
Φ = fN (r)eiNθ in polar coordinates, with fN a function increasing from 0 to 1
as r = |x| goes from 0 to +∞. The number N is an integer called the degree.
This system is invariant under the group of Galilean relativity transformations
(t, x) 7→ (t, x − vt). We consider a gauge theoretic generalization of this equation
which is also Galilean invariant and supports stable vortex solutions. The complex
field Φ is coupled to an electromagnetic potential A0 dt+A1 dx

1 +A2 dx
2 through

the covariant derivative D = d− iA, and they evolve according to the system:

E + dB = ∗〈iΦ, DΦ〉

i(∂t − iA0)Φ = −∆AΦ − λ

2
(1 − |Φ|2)Φ

B =
1

2
(1 − |Φ|2).

(2)

Here Ej =
∂Aj

∂t − ∂A0

∂xj is the electric field, and B = ∗dA is the magnetic field on
a two dimensional spatial domain Σ. The system is invariant under the infinite
dimensional group of gauge transformations Φ 7→ Φeiχ, A 7→ A+dχ. The evolution
of A is first order in time and is derived from a Chern-Simons term in a Lagrangian,
which was introduced by Manton in 1997 ([1]). The system is also Hamiltonian,
with the functional Vλ(A,Φ) =

∫
Σ
vλ(A,Φ), where

(3) vλ(A,Φ) =
1

2

(
B2 + gjk〈DjΦ, DkΦ〉 +

λ

4
(|Φ|2 − 1)2

)

acting as Hamiltonian.
A global existence and regularity theorem for the system was proved in [2] for

the case that Σ is a compact Riemann surface.
Compared to the nonlinear Schroedinger equation the system (2) has the ad-

vantage that the space of vortices is much larger, due to the presence of self-dual
or Bogomolny structure, and some explicit solutions are available. To be pre-
cise, for λ = 1 the system admits static soliton solutions called Abelian Higgs, or
Ginzburg-Landau, vortices which form a 2N - dimensional manifold which can be
identified with the symmetric N -fold product of Σ, where N ∈ Z is the degree;
this is called the moduli space of self-dual vortices MN . This space inherits a
Kaehler structure from the ambient infinite dimensional phase space in which (2)
is a Hamiltonian flow; the associated symplectic form is called Ω.
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For the case that Σ is a constant negative curvature space it is possible to write
down the vortex solutions explicitly, by a reduction to the Liouville equation due
to Witten.

An eventual aim of the study of the system (2) would be to show (e.g. for
Σ = R2) that the large time behaviour of solutions can be described in terms of
a scattering theory involving a finite dimensional Hamiltonian evolution on the
moduli space, and a linear dispersive wave asymptotic to a solution of the free
Schroedinger equation in some suitable sense.

As a starting point, we give theorems from [3] which describe the role of these
static solutions in classes of solutions for the time dependent equations on long time
scales, proving that the system may be approximated by a Hamiltonian system on
a finite dimensional space, the moduli space of self-dual vortices:

For ǫ = |λ − 1| sufficiently small, the system (2) can be approxi-
mated, for times of order 1

ǫ , by the Hamiltonian flow on the phase

space MN = SymN (Σ) associated to the Hamiltonian function
Vλ|MN

via the symplectic form Ω.

We also discuss the prospects for proving asymptotic stability of a single vortex,
and also the very long time stability of bound states of vortices. In this regard, an
interesting case is when the finite dimensional Hamiltonian motion on the moduli
space appearing in the theorem just mentioned is in fact integrable. We would
like to know whether the solutions of the original infinite dimensional system
(2) remain close to the finite dimensional orbits indefinitely. As a first step in
understanding this we consider a type of estimate called the Nekhoroshev estimate
in classical mechanics, which gives stability on exponentially long time intervals.
We discuss how these estimates appears to generalize to the problem of strongly
constrained motion, in which a possibly infinite dimensional Hamiltonian system
is constrained to a finite dimensional (symplectic) submanifold as some parameter
µ becomes very large. This is close to the scenario in the theorem above in the
description of vortex dynamics in (2) for λ close to one, with µ = |λ− 1|−1.
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Quasi-static Limits in Nonrelativistic Quantum Electrodynamics

Lucattilio Tenuta

The talk is based on the paper [7]. In the talk I consider a system of N nonrela-
tivistic quantum particles of spin 1/2 interacting with the quantized Maxwell field
(mass zero and spin one) in the limit when the particles have a velocity v small
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with respect to the speed of light c, imposing to the interaction an ultraviolet
cutoff, but no infrared cutoff.

I first discuss the analogous classical model, where it’s easier to present the
different ways which are available to implement the concept of a slowly moving
particle. I elaborate on three possibilities:

(1) c→ ∞ with the velocity v of the particles fixed, the case for which rigorous
results for the quantum case have already been discussed in the literature
[6] using methods of the weak coupling theory [2][3];

(2) v → 0 with c fixed. This case can be rephrased as the limit of heavy
particles, mj → ε−2mj , observed over a long time, t → ε−1t, ε → 0+,
with kinetic energy Ekin = O(1).

(3) The third possibility is to consider special initial conditions for the classical
equations of motion, as in the work by Kunze and Spohn [5]. They consider
the solution to the classical equations of motion describing one particle
moving with constant velocity v together with the electromagnetic field it
generates (called charge soliton). They describe then the limit interaction
between slowly moving charge solitons.

In the quantum case there is no obvious analogue of the classical charge soliton,
because the Pauli-Fierz Hamiltonian without an infrared cutoff has no ground
state when the total momentum is different from zero [1][4]. Therefore I focus on
the second approach, the limit ε→ 0+.

I construct subspaces which are invariant for the dynamics up to terms of order
ε
√

log(ε−1) and describe effective dynamics, for the particles only, inside them.
At the lowest order the particles interact through Coulomb potentials. At the
second one, ε2, the mass gets a correction of electromagnetic origin and a velocity
dependent interaction, the Darwin term, appears.

Moreover, I calculate the radiated piece of the wave function, i. e., the piece
which leaks out of the almost invariant subspaces and calculate the corresponding
radiated energy.
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[5] M. Kunze and H. Spohn. Slow Motion of Charges Interacting through the Maxwell Field,

Comm. Math. Phys. 212 (2000), 437–467.
[6] H. Spohn, Dynamics of charged particles and their radiation field, Cambridge University

Press 2004.
[7] L. Tenuta, Quasi-static Limits in Nonrelativistic Quantum Electrodynamics, preprint

(2007), http://de.arxiv.org/abs/0707.1215

Reporter: Andrew Comech



Mini-Workshop: Attraction to Solitary Waves and Related Aspects . . . 399

Participants

Prof. Dr. Vladimir Buslaev

Dept. of Mathematical Physics
Institute of Physics
St. Petersburg State University
Petrodvoretz, Ulyanov St. 1
198904 St. Petersburg
RUSSIA

Prof. Dr. Andrew Comech

Zentrum Mathematik, Bereich M5
Technische Universität München
85747 Garching

Prof. Dr. Scipio Cuccagna

DISMI ( Dipartimento di Scienze e
Metodi dell’Ingegneria)
University Modena & Reggio Emilia
Via Fogliani 1
I-42100 Reggio Emilia

Prof. Dr. Jan Derezinski

University of Warsaw
KMMF UW
Hoza 74
00-682 Warszawa
POLAND

Dr. Anton Dzhamay

School of Mathematical Sciences
University of Northern Colorado
Greeley , CO 80639
USA

Prof. Dr. Vladimir S. Georgiev

Dip. di Matematica ”L.Tonelli”
Universita di Pisa
Largo Bruno Pontecorvo,5
I-56127 Pisa

Prof. Dr. Marcel Griesemer

Institut für Analysis, Dynamik und
Modellierung,Fak. f. Math. & Physik
Universität Stuttgart
Pfaffenwaldring 57
70569 Stuttgart

Prof. Dr. Valery Imaykin

Podlesnaja Street, 2-22
Korolev, Moscow region
141080 Russia

Prof. Dr. Alexander I. Komech

Zentrum Mathematik, Bereich M5
Technische Universität München
85747 Garching

Prof. Dr. Elena Kopylova

Institute for Information Trans-
mission Problems
Russian Academy of Sciences
19 Bol.Karetny per,
101447 Moscow GSP-4
RUSSIA

Prof. Dr. Evgeny Korotyaev

Institut für Reine Mathematik
Fachbereich Mathematik
Humboldt-Universität Berlin
Unter den Linden 6
10117 Berlin

Prof. Dr. Markus Kunze

Fachbereich Mathematik
Universität Duisburg-Essen
45117 Essen

Prof. Dr. Alexei Poltoratski

Department of Mathematics
Texas A & M University
College Station , TX 77843-3368
USA



400 Oberwolfach Report 8/2008

Prof. Dr. Herbert Spohn

Zentrum Mathematik
TU München
85747 Garching

Dr. David M.A. Stuart

Department of Applied Mathematics &
Theoretical Physics (DAMTP),Centre
for Mathematical Sciences
Wilberforce Road
GB-Cambridge CB3 OWA

Dr. Lucatillio Tenuta

Mathematisches Institut
Universität Tübingen
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