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Introduction by the Organisers

The theory of automorphic forms has its roots in the early ninteenth century in
classical work of Euler, Gauss, Jacobi, Eisenstein, and others. The subject expe-
rienced a vast expansion and reformulation following the work of Selberg, Harish-
Chandra, and Langlands, in the 1970’s, and remains the focus of intense current
activity. The goal of this meeting was two-fold, first to provide an overview of the
most recent developments in the theory of automorphic forms and automorphic
representations, and, second, to provide a glimpse of the many closely related top-
ics involving geometry and arithmetic where automorphic forms play an important
role. Thus, one subset of the lectures (Soudry, Waldspurger, Gan, Muic, Moeglin,
and Henniart) focused on automorphic forms and automorphic representations,
while a second subset ranged quite widely and included geometry (Burger), arith-
metic geometry (Pink, Howard, Nekovar, Yang), moduli spaces (Rapoport, van
der Geer, Görtz, Ngô), Galois theory (Savin) and L-functions (Harder, Shahidi).

Among the many fundamental insights of Langlands are the following:

(a) Automorphic representations of a given reductive group G over a number
field should occur in packets (L-packets or Arthur packets), parametrized
by representations of the Weil-Deligne group into the Langlands dual group
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LG. A local version of this should describe the (irreducible, admissible)
representations of the group G(F ) for any local field F .

(b) It is necessary to consider the automorphic representations of all reductive
groups together and, in particular, their relations, the most important of
which are predicted by the principle of functoriality.

These insights lie very deep and their complete realization is still a very distant
dream. Nonetheless, they have provided a guide for much of the subsequent re-
search in this area and a number of the most important techniques that have been
brought to bear were discussed at the meeting. These included the Arthur-Selberg
trace formula, fundamental lemma, local and global descent, converse theorems,
local theta correspondence, and Eisenstein series.

The connections of automorphic forms with geometry and arithmetic are many
and important. One such set of connections occurs in the theory of Shimura va-
rieties. Here important topics include interpretation as moduli spaces and period
domains, the arithmetic of Heegner points and their higher dimensional general-
izations, including their arithmetic intersections and heights, and the structure of
Shimura varieties in characteristic p > 0. Automorphic forms have a deep con-
nection with the geometry of locally symmetric spaces, where, for example, the
boundary behavior of cohomology classes and Eisenstein series can be applied to
the study of special values of L-functions. Again, all of these aspects were discussed
during the program.

The meeting revealed, once again, that the theory of automorphic forms contin-
ues to be a vibrant subject in which many exciting developments can be expected
in the future.

Special event
On Friday afternoon, the Oberwolfach Prize was awarded to Ngô Bao-Chao for

his work on the fundamental lemma. The award presentation, by Professor Rein-
hold Remmert, was followed by a Laudatio given by Michael Rapoport explaining
the significance of Ngô’s work and describing a basic case of the fundamental
lemma. Rapoport’s Laudatio is included at the end of this report. Ngô then
gave a lecture in which he explained some of the fundamental ideas of his proof,
for example, the use of the Hitchin fibration. In the evening, there was a festive
dinner.
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Abstracts

Local Descent from GL(n) to Classical Groups

David Soudry

The descent method of Ginzburg, Rallis and Soudry enabled us to construct, for
an irreducible, self-dual, automorphic, cuspidal representation τ of GLm(〉A) ,
an irreducible, automorphic, cuspidal and globally generic representation σ on
the Adele points of the appropriate symplectic or orthogonal (split or quasi-split)
group G, such that σ lifts to τ at almost all places. In case L(τ,Λ2, s) has a pole
at s = 1, and hence m = 2n is even, Jiang and the author showed that σ lifts to τ
at all places. This was done by local descent, which is the local counterpart of the
global descent method, with almost complete analogy. It allows us to construct,
for an irreducible, self-dual, supercuspidal, generic representation τ of GLm(F ),
where F is a p-adic field, an irreducible, supercuspidal, generic representation σ
of G(F ), such that γ(σ × τ, s, ψ) has a pole at s = 1, or equivalently, L(σ × τ, s)
has a pole at s = 0.

1. Local gamma factors

Let σ, τ be irreducible, generic representations of G = G(F ), GLm(F ), re-
spectively. The local gamma factor γ(σ × τ, s, ψ) (ψ is a nontrivial character of
F ) is obtained via a local functional equation, which arises from the theory of
global integrals (given by Ginzburg, Rallis and Soudry) of Rankin-Selberg type,
or Shimura type, and represent the standard L-functions for G×GLm. We restrict
ourselves to rank(G) < m. The local functional equation has the form

γ(σ × τ, s, ψ)

c(τ, s, ψ)
L(Wσ, D

ψ(fτ,s)) = L(Wσ , D
ψ(M(fτ,s))).

Here, Wσ is in the Whittaker model of σ (with respect to a given character), fτ,s
is a holomorphic section in ρτ,s = IndHP τ | det ·|s− 1

2 , where H is ”essentially” a
split classical group and P ⊂ H is a Siegel type parabolic subgroup, with Levi
part isomorphic to GLm, according to the following table, where we also specify
c(τ, s, ψ).

G H c(τ, s, ψ) ρ

1. SO2n+1(F ) SO2m(F ) γ(τ,Λ2, 2s− 1, ψ) Λ2

2. S̃p2n(F ) Sp2m(F ) γ(τ,Λ2, 2s− 1, ψ)γ(τ, s− 1
2 , ψ) Λ2 ⊕ st

3. SO2n(F ) SO2m+1(F ) γ(τ, sym2, 2s− 1, ψ) sym2

4. Sp2n(F ) S̃p2m(F ) γ(τ, sym2, 2s− 1, ψ) sym2

Thus, we allow G and H to be metaplectic groups as well. In case (4) we have

to consider ρτ,s = IndHP γψτ | det ·|s− 1
2 instead (γψ is the Weil factor); M is the
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intertwining operator corresponding to the long Weyl element;

L(Wσ , D
ψ(fτ,s)) =

∫

N\G

Wσ(g)D
ψ(fτ,s)(g)dg,

where N is the (standard) maximal unipotent subgroup of G; Dψ(fτ,s) is given
as an integral along the unipotent radical of the standard parabolic subgroup,
which preserves a maximal flag in a totally isotropic subspace of dimension ℓ ,
and factors through the Jacquet module of ρτ,s, which furnishes a Gelfand-Graev
(resp. Fourier-Jacobi) model of ρτ,s, stabilized by G, when H is orthogonal (resp.
symplectic or metaplectic). In fact Dψ defines an isomorphism with this Jacquet
module when τ is supercuspidal. Denote this Jacquet module by σψ,ℓ(ρτ,s). The
gamma factor thus defined is the same as the Shahidi gamma factor, at least up
to a multiple by an exponential function, and hence it has the same set of poles
and zeroes.

2. Descent

What is nice about this definition of the local factor is

Theorem 1. Let σ, τ be irreducible, supercuspidal representations of G,
GLm(F ) respectively. Then γ(σ × τ, s, ψ) has a pole at s = 1, if and only if
L(τ, ρ, s) has a pole at s = 0 and σ pairs with the Jacquet module above, where we
replace ρτ,1 with the image πτ by the intertwining operator M at s = 1.

Since L(τ, ρ, s) has a pole at s = 0, πτ is the Langlands quotient of ρτ,1. We call
σψ,ℓ(τ) = σψ,ℓ(πτ ) the descent of τ to G. Consider the cases of functoriality.

GLm(F ) pole at s = 0 H G descent

1. GL2n(F ) L(τ,Λ2, s) SO4n(F ) SO2n+1(F ) σψ,n−1(τ)

2. GL2n(F ) L(τ,Λ2, s) Sp4n(F ) S̃p2n(F ) σψ,n−1(τ)
3. GL2n(F ) L(τ, sym2, s) SO4n+1(F ) SO2n,α(F ) σψ,n,α(τ), ωτ = χα
4. GL2n+1(F ) L(τ, sym2, s) S̃p4n+2(F ) Sp2n(F ) σψ,n(τ), ωτ = 1

Here, ωτ is the central quadratic character of τ . If it corresponds to α ∈ F ∗,
we denote it also by χα, and then we denote by SO2n,α(F ) the corresponding
quasi-split (or split when α is a square) orthogonal group in 2n variables.

Theorem 2. In all these cases the descent of τ is a nontrivial, supercuspidal,
multiplicity free representation of G, all of whose irreducible summands σ are
ψ-generic and are such that γ(σ × τ, s, ψ) has a pole at s = 1. Moreover, any
irreducible, supercuspidal and ψ-generic representation σ of G, such that γ(σ ×
τ, s, ψ) has a pole at s = 1 is isomorphic to a summand of the descent of τ .

Consider a self-dual, supercuspidal τ as above and an irreducible summand σ
of its descent to G. By globalizing σ to an irreducible, automorphic, cuspidal,
generic representation, and lifting it to GLm(〉A) (by the theorem of Cogdell,
Kim, Piatetski-Shapiro, Shahidi) we get
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Theorem 3. Let τ be an irreducible, self-dual, supercuspidal representation of
GLm(F ). Assume that L(τ, ρ, s) has a pole at s = 0, where ρ = Λ2, sym2. Then
we can globalize τ to an irreducible, self-dual, automorphic, cuspidal representation
T , such that L(T, ρ, s) has a pole at s = 1.

In case (2) of the last table, Ginzburg, Rallis and the author proved that the
descent is irreducible. Using this and the local theta correspondence, Jiang and
the author proved that the descent is irreducible in case (1), as well. This means
that σ in the last theorem is unique. For a long time we tried to address the
irreducibility question of the descent in cases (3), (4), without success. Here is our
new idea. Let us add two more cases to the last table

GLm(F ) pole at s = 0 H G descent

5. GL2n(F ) L(τ, sym2, s) S̃p4n(F ) Sp2n(F ) σ′
ψ,n−1(τ)

6. GL2n+1(F ) L(τ, sym2, s) SO4n+3(F ) SO2n+2(F ) σ′
ψ,n(τ), ωτ = 1

Here we denote the descent by σ′
ψ,ℓ in order to distinguish it from the one in cases

(4), (5).

Theorem 4. (Jiang and Soudry) Let τ be an irreducible, supercuspidal represen-
tation of GLm(F ), such that L(τ, sym2, s) has a pole at s = 0. In case m is odd,
assume that ωτ = 1. Then the descent in cases (5), (6) above is a nonzero irre-
ducible, supercuspidal, ψ-generic representation σ of G, such that γ(σ × τ, s, ψ)
has a pole at s = 1; these properties determine σ uniquely.

Consider case (5) and denote σ = σ′
ψ,n−1(τ). The local lift of σ to GL2n+1(F )

must be τ × ωτ . We conclude that L(σ × ωτ , s) has a pole at s = 0. We then
prove that σ is the local ψ-theta lift from an irreducible, supercuspidal, ψ-generic
representation π of O2n,α(F ), where ωτ = χα. We know that the restriction of π to
SO2n,α(F ) is either irreducible or a direct sum of two irreducible representations
of the form π1 ⊕ πε1, where ε ∈ O2n,α(F ), with det(ε) = −1. Thus,

Theorem 5. (Jiang and Soudry) Let τ be an irreducible, supercuspidal representa-
tion of GL2n(F ), such that L(τ, sym2, s) has a pole at s = 0. Let ωτ = χα. Then
there is an irreducible, supercuspidal, ψ-generic representation σ of SO2n,α(F ),
such that γ(σ × τ, s, ψ) has a pole at s = 1, and it is unique up to outer conjuga-
tion by ε.

Similarly, in case (6) we get

Theorem 6. (Jiang and Soudry) Let τ be an irreducible, supercuspidal, self-dual
representation of GL2n+1(F ), with ωτ = 1. Then there is a unique irreducible,
supercuspidal, ψ-generic representation σ of Sp2n(F ), such that γ(σ × τ, s, ψ) has
a pole at s = 1.

With more work, quite similar to the work of Jiang and the author on the local
converse theorem for SO2n+1(F ), this should give the local converse theorem for
SO2n,α(F ), Sp2n(F ).
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Theorem 7. Let G be one of the groups SO2n,α(F ), Sp2n(F ). Let σ1, σ2 be two
irreducible ψ-generic representations of G, such that

γ(σ1 × τ, s, ψ) = γ(σ2 × τ, s, ψ),

for all irreducible generic representations τ of GLr(F ), and r < 2n, or r < 2n+1,
respectively. Then, in the first case σ1 is isomorphic to either σ2 or σε2, and in the
second case, σ1

∼= σ2.

Finally, the local converse theorem should enable us to prove rigidity (strong mul-
tiplicity one, up to isomorphism) of irreducible, automorphic, cuspidal and ψ-
generic representations of Sp2n(〉A), while for SO2n,α(〉A), two nearly equivalent
such representations may be non-isomorphic in a finite number of places, where
one representation is an outer conjugate of the other.

A propos du lemme fondamental pondéré tordu

Jean-Loup Waldspurger

Soient F un corps local non archimédien de caractéristique nulle, G un groupe

réductif défini sur F et (H, s, ξ̂) un triplet endoscopique de G. Cela signifie que
H est un groupe réductif connexe défini et quasi-déployé sur F , s est un élément

semi-simple du groupe dual Ĝ et ξ̂ : LH → LG est un L-plongement tel que ξ̂(Ĥ)

soit la composante neutre du centralisateur de s dans Ĝ. Pour f ∈ C∞
c (G(F ))

et γ ∈ H(F ) suffisamment régulier, Langlands et Shelstad ont défini l’intégrale
orbitale endoscopique JH,G(γ, f). Pour fH ∈ C∞

c (H(F )), on définit JH,st(γ, fH):
c’est le cas particulier où G = H .

Conjecture de transfert. Pour toute f ∈ C∞
c (G(F )), il existe fH ∈ C∞

c (H(F ))
telle que JH,st(γ, fH) = JH,G(γ, f) pour tout γ ∈ H(F ) suffisamment régulier (on
dit que fH est un transfert de f).

Supposons G etH non ramifiés. On fixe des sous-groupes compacts hyperspéciaux
K ⊂ G(F ) et KH ⊂ H(F ). On définit l’algèbre de Hecke H ⊂ C∞

c (G(F )) formée

des fonctions biinvariantes par K et l’algèbre similaire HH . De ξ̂ se déduit un
homomorphisme b : H → HH . Notons 1K et 1KH les fonctions caractéristiques
de K et KH . On a b(1K) = 1KH .

Conjecture (lemme fondamental). Pour toute f ∈ H, b(f) est un transfert
de f .

Une conjecture similaire concerne les algèbres de Lie. On note ci-dessous ”trans-
fert” l’assertion: ”la conjecture de transfert est vraie pour toutes données F , G,

(H, s, ξ̂)”. On note ”LF” l’assertion: ”le lemme fondamental est vrai pour toutes

les données F , G, (H, s, ξ̂) telles que G et H sont non ramifiés, sous certaines hy-
pothèses restrictives concernant la caractéristique résiduelle p de F”. Les autres
assertions s’interprètent de façon similaire.
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La situation au moment présent:

LF pour les algèbres de Lie
et pour car(F ) > 0 (Ngô Bao Chau)

⇓
LF pour les algèbres de Lie ⇒ transfert

⇓
LF pour f = 1K

⇓
LF

La dernière implication est due à Clozel et Hales, l’avant-dernière à Langlands,
Shelstad et Hales.

Soit M un groupe de Lévi de G, c’est-à-dire que M est une composante de Lévi

définie sur F d’un sous-groupe parabolique de G défini sur F . Soit (M ′, s, ξ̂) un
triplet endoscopique de M . Pour f ∈ C∞

c (G(F )) et γ′ ∈ M ′(F ) suffisamment
régulier, Arthur a défini l’intégrale orbitale pondérée endoscopique JGM ′(γ′, f).
Supposons G et M ′ non ramifiés. Arthur a posé une conjecture appelée lemme
fondamental pondéré, qui calcule la fonction JGM ′(.,1K) en termes de fonctions
analogues pour les groupes endoscopiques elliptiques de G.

La situation au moment présent:

LFP pour les algèbres de Lie
et pour car(F ) > 0 (inconnu)

⇓
LFP pour les algèbres de Lie

⇓
LFP

Pour obtenir les meilleurs résultats de la théorie de l’endoscopie, on doit utiliser
la formule des traces tordue. Il intervient un automorphisme θ deG, défini sur F , et
les intégrales orbitales sont remplacées par des intégrales orbitales tordues par cet
automorphisme. D’où une conjecture de transfert tordue, un lemme fondamental
tordu, un lemme fondamental pondéré tordu. La théorie fait aussi apparâıtre un
lemme fondamental non standard et un lemme fondamental pondéré non standard:
ce sont des assertions similaires aux précédentes mais qui concernent des couples
de groupes (G′, G′′) tels que l’un n’est pas un groupe endoscopique de l’autre. Par
exemple G′ = Sp(2n) et G′′ = SO(2n+ 1).
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La situation au moment présent:

LF pour les algèbres de Lie
+ LF non standard

pour car(F ) > 0 (Ngô Bao Chau)
⇓

LF pour les algèbres de Lie
+ LF non standard ⇒ transfert tordu

⇓
LFT pour f = 1K

⇓ (inconnu)
LFT

(la dernière implication est connue dans certains cas particuliers, d’après Clozel,
Labesse et Morel);

LFP pour les algèbres de Lie
+ LFP non standard

pour car(F ) > 0 (inconnu)
⇓

LFP pour les algèbres de Lie
+ LFP non standard

⇓
LFPT

Bounded cohomology and applications: a panorama

Marc Burger

Bounded cohomology for groups and spaces is related to usual cohomology and in
fact enriches it by providing stronger invariants. The aim of this talk is to illustrate
certain aspects of this philosophy. General references for bounded cohomology are
[12, 21, 22, 3].

1. Definition, low degrees. The continuous cohomology H•
c(G,E) of a topological

group G acting continuously by linear isometries on a Banach space E is defined
using the resolution of E by the complex of continuous E-valued cochains on G.
Using the subcomplex of continuous cochains which are bounded in the supremum
norm leads to the bounded continuous cohomology; it is equipped with a quotient
seminorm and comes with a comparison map H•

cb(G,E) → H•
c(G,E). In degree

zero both cohomology groups equal EG. In degree one the comparison map is
always injective; while H1

c(G,E) describes affine isometric G-actions on E with
given linear part, H1

cb(G,E) classifies those with bounded orbits. Starting with

degree two this theory really exhibits new phenomena. The kernel EH2
cb(G,E) of

the comparison map admits a description in terms of quasiactions. In the case
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of trivial coefficients, where we denote the corresponding objects by H•
cb(G) and

H•
c(G), this kernel EH2

cb(G) is the quotient of the space

QH(G) :=
{
f : G→ R : f is continuous and sup

x,y

∣∣f(xy) − f(x) − f(y)
∣∣ <∞

}

of continuous quasimorphisms by the subspace Cb(G)⊕Homc(G,R), where Cb(G)
is the space of continuous bounded functions on G.

2. Examples. This interpretation, together with the exploitation of certain hyper-

bolicity phenomena, leads to nonvanishing results on H2
b(Γ); for instance, H2

b(Γ)
is infinite dimensional when Γ is:

(a) a lattice in a real rank one Lie group [14]
(b) Gromov hyperbolic and nonelementary [13],
(c) a subgroup of the mapping class group Mg for g ≥ 2 which is not virtually

Abelian [2].

Many of these examples are fundamental groups of finite aspherical complexes;
this illustrates the fact that there are no simple minded finiteness conditions on Γ
ensuring that H2

b(Γ) is finite dimensional; indeed for the free group Fr on r ≥ 2
generators, which is inherently a one-dimensional object, H2

b(Fr) and H3
b(Fr) are

infinite dimensional. This seems to be the price to pay for the advantage that
bounded cohomology is the receptacle of rather refined invariants as the next
section illustrates. Let’s however mention that if Γ is amenable Hn

b(Γ) = 0 for
n ≥ 1.

3. Two important examples.
(1) Bounded Euler class: The Euler class classifies the universal covering of

the group Homeo+(S1) of orientation preserving homeomorphisms of the circle
S1; it admits a natural bounded representative eb ∈ H2

b

(
Homeo+(S1),Z

)
. For a

minimal action ρ : Γ → Homeo+(S1), its bounded Euler class ρ∗(eb) ∈ H2
b(Γ,Z) is

then a complete invariant of conjugacy [16]. Let ebR be the bounded class obtained
by changing coefficients from Z to R. Recently the author showed [4] that if Γ < G
is a lattice in a locally compact (second countable) group G, then for a minimal
action which is not conjugate into the group of rotations, ρ∗(ebR) is in the image
of the restriction map H2

cb(G) → H2
b(Γ) if and only if ρ finitely covers an action

which extends continuously to G.
(2) Bounded Kähler class: The integral of the Kähler form on triangles with

geodesic sides in a hermitian symmetric space (of noncompact type) gives the
bounded Kähler class κb

X ∈ H2
bc(G), where G = (Aut(X ))◦. The bounded Kähler

class of a representation ρ : Γ → G is then ρ∗(κb
X ) ∈ H2

b(Γ). When X is irreducible
and not of tube type, it is a complete conjugacy invariant for representations with
Zariski dense image [5, 10]. This invariant has served to define new types of
embeddings between Hermitian symmetric spaces [8] and enters as well in the
higher Teichmüller theory developed in [9, 7].

4. The comparison map. It encodes subtle information of algebraic and geometric
nature.
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(1) Commutator length [1]: The stable length ℓst on the commutator subgroup
Γ′ of Γ is ℓst(γ) := limn→∞ ‖γn‖/n, where ‖ · ‖ denotes the commutator length.
Then ℓst vanishes identically if and only if EH2

b(Γ) = 0, that is the comparison
map in degree two is injective.

(2) Hyperbolicity [19]: A finitely generated group is (nonelementary) Gromov
hyperbolic if and only if the comparison map Hnb(Γ, E) → Hn(Γ, E) is surjective
for every Banach Γ-module E and n = 2 (or equivalently n ≥ 2).

(3) Measure equivalence [24, 20]: It preserves the property that H2
b

(
Γ, ℓ2(Γ)

)
6=

0. The latter holds for all (nonelementary) Gromov hyperbolic groups.
(4) Higher rank [11, 23]: The comparison map is injective with image the G-

invariant classes if Γ < G is an irreducible lattice in a connected semisimple Lie
group G with finite center and rank rkG ≥ 2. This is also implied by the recent
result [23] that H2

cb(G) → H2
b(Γ) is an isomorphism for n < 2 rkG. Together with

2(3), 3(1) and 4(1) we obtain that:

– any homomorphism Γ → Mg has finite image [18];
– any Γ-action by homeomorphisms of S1 has a finite orbit [17];
– the stable length on commutators vanishes.

(5) Geometry of central extensions [15]: If a class α is in the image of the
comparison map H2

b(Γ,Z) → H2(Γ,Z) then the associated central extension

0 //Z //Γα //Γ //e

is quasiisometric to Γ × Z; here Γ is a finitely generated group.
(6) Differential forms [6]: For a symmetric space of noncompact type X and a

discrete subgroup Γ < Iso(X ). there is a factorization

H•
b(Γ) //

%%
L

L
L

L
L

L
L

L
L

L

H•(Γ) = H•
dR(Γ\X )

H(∞)(Γ\X )

66lllllllllllll

of the comparison map by a geometrically defined map to the cohomology
H(∞)(Γ\X ) of the complex of smooth Γ-invariant differential forms on X which
are bounded and d-bounded. In case Γ is a lattice, H(∞)(Γ\X ) can be replaced by

L2-cohomology.
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Period domains over finite fields and Deligne-Lusztig varieties

Michael Rapoport

Let G0 be a reductive group over Fq. There are two classes of algebraic varieties
over an algebraic closure F of Fq attached to G0. Let us recall their definition. We
set G = G0 ×Fq F.

The first class is the class of Deligne-Lusztig varieties. Let X be the algebraic
variety of all Borel subgroups of G. Let w ∈ W . The DL-variety associated to
(G0, w) is

X(w) = {x ∈ X | inv(x, Fx) = w} .
Here F : X → X denotes the Frobenius map over Fq and inv(x, y) ∈ W denotes
the G-orbit of (x, y) ∈ X ×X . Then X(w) is a smooth quasi-projective variety of
dimension l(w), equipped with an action of G0(Fq).
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The second class is the class of period domains. Let N be a conjugacy class
of cocharacters ν : Gm → G. Any ν ∈ N defines a parabolic subgroup Pν of G,
and any two such are conjugate. Let X(N ) = G/Pν be the variety of parabolic
subgroups obtained in this way. The period domain associated to (G0,N ) is the
open subset X(N )ss of semi-stable points. Here ν ∈ N is semi-stable if

deg(Fν | U ⊗Fq F) ≤ 0 , ∀ U ⊂ Lie(G0) Fq-subspace .

Here Fν denotes the Z-filtration on Lie(G) induced by the cocharacter ν. The
degree of a Z-filtration F on a F-vector space V is defined as

deg(F) =
∑

i

idim(griF (V )).

The finite group G0(Fq) acts on X(N )ss.

Examples 1. a) Drinfeld space: G0 = GLn.
• DL: w = s1s2 . . . sn−1 = (12 . . . n) special Coxeter element.

Then

X(w) ∼= ΩnFq
= Pn−1\

⋃
H/Fq

H .

Here H ranges through the Fq-rational hyperplanes.

• PD: N = (x, y(n−1)) ∈ (Zn)+ a dominant coweight with x > y. Then
X(N )ss = ΩnFq

. Similarly for N = (x(n−1), y).

b) G0 = GL3: generic data.
• DL: w = w0 (longest element).

Then

X(w) = {V1 ⊂ V2 ⊂ V = F3 | FV1 + V2 = V, FV2 + V1 = V } .
• PD: N = (x1 > x2 > x3).

Then

X(N )ss = { V1 ⊂ V2 ⊂ V |
x1 − x2 > x2 − x3 : V1 + FV1 + F 2V1 = V

x1 − x2 < x2 − x3 : V2 ∩ FV2 ∩ F 2V2 = 0

x1 − x2 = x2 − x3 : V1 ∩ FV1 = 0,V2 + FV2 = V





The motivation for looking at these varieties is as follows.
• DL: Deligne and Lusztig [DL] construct a G0(Fq)-equivariant Galois covering

X̃(w) → X(w) with Galois group Tw(Fq). Here Tw denotes the maximal torus of

G0 associated to w. Hence any character θ : Tw(Fq) → Q
×
ℓ defines an ℓ-adic lisse

sheaf Fθ on X(w) to which the action of G0(Fq) is lifted. The ℓ-adic cohomology
groups (with compact supports) H∗

c (X(w),Fθ) carry interesting representations
of G0(Fq).

• PD: The semi-stability concept is due to Faltings [F], in the context of
Fontaine’s p-adic Hodge theory. Period domains over finite fields are the little
cousins of their p-adic counterparts ([DOR, R]), and are interesting testing grounds
for questions on p-adic period domains.
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In the talk I sketched some recent developments on the structure of these two
classes of varieties and their interrelation. For this purpose we may and will assume
in the sequel that G0 is simple adjoint.

1. Deligne-Lusztig-varieties

The first result concerns the connectedness of these varieties.

Proposition 2. (Lusztig [L], Bonnafé/Rouquier [BR]). X(w) is connected iff w
is elliptic.

Of course, at the opposite extreme, if w = 1, then X(w) = X(Fq) is a finite set of
points.

We next address the question of affineness of these varieties. So far, no example
of a non-affine DL-variety is known.

Theorem 3. (Deligne/Lusztig [DL], Haastert [H]).

a) If q ≥ h− 1, then X(w) is affine. [Here h denotes the Coxeter number.]
b) In general, X(w) is a quasi-affine variety.

Here the first statement for q ≥ h is proved in [DL], by verifying a combinatorial
criterion. The strengthening to q ≥ h − 1 is in [H’]. The second statement is in
[H].

Theorem 4. (Orlik/Rapoport [OR], He [He], Bonnafé/Rouquier [BR]). If w is
of minimal length in its F -conjugacy class, then X(w) is affine.

The theorem is proved in [OR] for split classical groups by checking case by case the
Deligne-Lusztig combinatorial criterion mentioned above on a set of representatives
of the cyclic shift classes of elements of minimal length in their conjugacy class
(affineness is a property that only depends on the equivalence class of cyclic shifts).
This method is extended in [He] to the general case. In [BR’] , affineness is proved
for an a priori larger class of elements in W (however, it seems that all elements
in this larger class are F -cyclic shifts of elements of minimal length in their F -
conjugacy class). Both methods ultimately rely on case-by-case considerations,
and even on computer calculations.
Any Coxeter element satisfies the hypothesis made on w; in this case, the result is
due to Lusztig [L’].

Example 5. Let G0 be split of type G2. Then X(w) is always affine, except
possibly if q = 2 and w = s1s2s1 or s2s1s2 [H’]. I expect these last two DL-
varieties to be non-affine.

We next come to the cohomology of these varieties.

Theorem 6. Let θ : Tw(Fq) → Q
×
ℓ with associated lisse sheaf Fθ on X(w). Then

Hi
c(X(w),Fθ) = 0 for 0 ≤ i < l(w) .

Furthermore, if θ is non-singular, then Hi
c(X(w),Fθ) = 0 for i 6= l(w).
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Here the last statement follows from the first by Poincaré duality, since for non-
singular θ the natural map

H∗
c (X(w),Fθ) → H∗(X(w),Fθ)

is an isomorphism [DL]. If q ≥ h − 1, then X(w) is affine and the statement
is due to Deligne and Lusztig [DL] and follows from a general fact on the co-
homological dimension of affine varieties. The last statement is proved in [H],
using the quasi-affineness of X(w). For θ = trivial, the first statement is due to
Digne/Michel/Rouquier [DMR]. The general statement is in [OR].

It should be pointed out that the cohomology of Deligne-Lusztig varieties is still
very mysterious. Also, nothing seems to be known about the fundamental groups
of DL-varieties.

2. Period domains

The cohomology of period domains has been completely determined by Orlik
[O]. It turns out that all irreducible representations occurring in the cohomology

are constituents of Ind
G0(Fq)

B0(Fq)1. As an upshot of his formula, Orlik obtains the

following statement.

Theorem 7. (Orlik [O]). Let r0 = rkFq(G0). If N is non-trivial, then

Hi
c(X(N )ss,Qℓ) =

{
0 0 ≤ i < r0

StG0(Fq) i = r0 .

Here StG0(Fq) denotes the Steinberg representation.

We now use the following elementary observation:

Let G be a simple adjoint group over an algebraically closed field k. Then for any
non-trivial parabolic subgroup P

rk(G) < dim(G/P ) ,

unless G = PGLn and P is of type either (1, n − 1) or (n − 1, 1) (in which case
equality holds).

Applying this inequality and comparing with the vanishing theorem for affine
varieties we obtain the following consequence, which answers the question of affine-
ness for this class of varieties.

Corollary 8. (Orlik/Rapoport [OR]). Assume for simplicity G0 absolutely simple
and N non-trivial. Then X(N )ss is never affine, unless G0 = PGLn and N =
(x, y(n−1)) or (x(n−1), y), in which case X(N )ss ∼= ΩnFq

is affine.

The next result addresses the question of simple connectedness for these vari-
eties.

Theorem 9. (Orlik [O’]). Assume for simplicity G0 absolutely simple, and N
non-trivial. Then X(N )ss is simply connected unless G0 = PGLn and N =
(x1, . . . , xn) ∈ (Zn)+ with either x2 <

1
n

∑
xi or xn−1 >

1
n

∑
xi. In these last two

cases, π1(X(N )ss) = π1(Ω
n
Fq

).
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In these last two cases, X(N )ss is a fibering over ΩnFq
with fibers in partial flag

varieties which are simply connected.

3. DL versus PD

The next result shows that the Drinfeld space is essentially the only intersection
of these two classes of varieties attached to G0.

Proposition 10. (Orlik/Rapoport [OR]). Assume for simplicity G0 absolutely
simple. A DL-variety XG0

(w) is never homeomorphic to a PD of the form
XG0

(N )ss, unless G0 = PGLn, w is a Coxeter element and N = (x, y(n−1))
or (x(n−1), y), in which case both are homeomorphic to ΩnFq

.
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Basel, 1995.

[H] B. Haastert, Die Quasiaffinität der Deligne-Lusztig-Varietäten, J. Algebra 102 (1986),
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Arithmetic properties of the constant term of Eisenstein classes

Günter Harder

In my talk I explained certain principles which establish some connection be-
tween arithmetic properties of Eisenstein cohomology classes and arithmetic prop-
erties of special values of L-functions.

We consider the group Sl3 and a local coefficient system Mλ with highest weight
λ = nαγα+nβγβ . This is a specific example but I believe that the same ideas work
in many more cases.

We are interested in the Eisenstein cohomology of H•(Sl3(Z)\X,M̃λ), espe-
cially in that part which is obtained from the cuspidal cohomology in degree 2 of
the two maximal strata ∂P (S), ∂Q(S).

The cuspidal cohomology of these boundary strata is a direct sum of the cuspidal
cohomology

H1(Sl2(Z)\Gl2(R)/O(2), H1(uP ,Mλ)) ⊕H1(Sl2(Z)\Gl2(R)/O(2), H1(uQ,Mλ)).

These cohomology groups decompose into eigenspaces under the Hecke algebra,
the eigenspaces are labelled by modular eigenforms f of weight k = nα + nβ + 3.
(Different choices of λ lead to the same weight!) We denote these eigenspaces by
HP (f), HQ(f), we can find two canonical isomorphisms

T arith : HP (f)
∼−→ HQ(f), T analytic : HP (f) ⊗ C

∼−→ HQ(f) ⊗ C,

the ratio of these two isomorphisms is a (almost well defined) period Ωf .
The Eisenstein classes attached to such an eigenspace lie as a subspace

Eis(f) ⊂ HP (f) ⊕HQ(f)

and the slope with respect to the arithmetic identification is given by the ratio of
two critical values of the L-function attached to f. For ω ∈ HP (f) we get from
the expression for the constant term

Eis(f)(ω) = ω +
1

Ω(f)

L(f, nα − nβ + 1)

L(f, nα − nβ + 2)
T arith(ω).

From this we get rationality results for these ratios of special values, and we think
that we also can get some insight into the arithmetic properties of these ratios, for
instance, we get p-adic interpolation.

References:

For more details I refer to my home-page
www.math.uni-bonn.de/people/harder/Manuscripts/Eisenstein

and there to the two articles
Eiscoh-rank-one-3.pdf and Luminy-int.pdf
The subject is also closely related to the questions which are discussed in my
Oberwolfach-report OWR−2006−25.pdf.
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Applications of the Harder-Narasimhan filtration

Richard Pink

The Harder-Narasimhan filtration was first constructed for vector bundles on a
smooth projective curve by in the article [4]. Since then, analogues have been
defined and used in many other contexts, such as:

• torsion free coherent sheaves on a polarized projective variety,
• hermitian vector bundles on SpecOK for a number field K,
• vector bundles on a rigid analytic punctured disc with a Frobenius action,
• finite dimensional vector spaces over a field k endowed with one or more

filtrations defined over k or over some extension(s) of k,
• filtered (ϕ,N)-modules, . . .
It is also an indispensible tool in establishing the following new result:

Theorem 1. LetK be a field which is finitely generated of transcendence degree
≤ 1 over a finite field Fq with q elements. Let M be a semisimple A-motive of
characteristic θ over K. Then there exist only finitely many isomorphism classes of
A-motives M ′ of characteristic θ over K for which there exists a separable isogeny
M ′ →M .

Remarks. (a) The same result is expected whenK has arbitrary transcendence
degree.

(b) The theorem is in precise analogy to known results for abelian varieties and
for Drinfeld modules and will have strong consequences for the p-adic and adelic
Galois representations associated to M .

(c) The concept of A-motives was invented by Anderson [1] in the case A = Fq[t]
under the name of t-motives (see also Goss [3]). For simplicity we stick to this
case here. The upcoming manuscript [5] will treat the general case.

Definitions. (a) A t-motive over K of characteristic θ ∈ K is a finitely gener-
ated projectiveK[t]-module M together with a K[t]-linear map τ lin : M⊗K,σK →
M , where σ : x 7→ xq denotes the Frobenius map, such that t − θ is nilpotent on
coker(τ lin) .

(b) A homomorphism f : M → N is a K[t]-linear map that commutes with τ lin.
(c) An injective homomorphism with torsion cokernel is called an isogeny.

(d) An isogeny f that induces an isomorphism coker(τ lin
M )

∼→ coker(τ lin
N ) is called

separable.
(e) M is called simple if it is non-zero and every non-zero injective homomor-

phism M ′ →֒M is an isogeny.
(f) M is called semisimple if it is isogenous to a direct sum of simple t-motives.

The proof of Theorem 1 follows roughly the same strategy as in Faltings’s
corresponding result for abelian varieties. The idea is to define a height for t-
motives, to show that height(M ′) ≤ c(M) for every separable isogeny M ′ →֒ M ,
and to show that for any bound c there are only finitely many isomorphism classes
of t-motives M ′ with height(M ′) ≤ c. But the definition of a height requires an
extra structure analogous to the polarization of an abelian variety.
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To describe this extra structure, let G be the locally free coherent sheaf on
A1
K := A1×K with H0(A1

K ,G∨) = M . Then τ lin translates into a homomorphism
κ : G →֒ (id×σ)∗G. The role of a polarization is played by an extension of G
to a locally free coherent sheaf G on P1

K . Then κ extends to a homomorphism

κ : G →֒ (id×σ)∗G(d) for some positive integer d that can be viewed as the degree
of the polarization.

Next, isogenies M ′ →֒ M correspond to κ-equivariant inclusions of equal rank
G →֒ G′. The chosen extension G then yields a unique extension G′ of G′ such that
G →֒ G′ is an isomorphism at ∞.

A crucial step is to prove that if M is simple of rank r, then the difference
between the largest and the smallest slopes in the Harder-Narasimhan filtration of
G′ is ≤ (r − 1)d. As a consequence, one can find an integer n such that all slopes
in the Harder-Narasimhan filtration of the twist G′(n) lie within a bounded range.
If M is only semisimple, a decomposition into simple almost direct summands can
be used to obtain a decomposition G′∞ =

⊕G′
i∞, and then independent twists in

all summands yield the same result.

With this result, one can already deduce Theorem 1 when K is finite. When K
has transcendence degree 1, let X be the irreducible smooth projective curve with
function field K. To solve the remaining arithmetic problem one then extends G
and G′ further to locally free coherent sheaves on the surface P1 × X . There is
a canonical minimal extension (analogous to the maximal extension described by
Gardeyn [2]), which must, however, be modified further to avoid a certain technical
problem.

Let F be the resulting sheaf on P1 × X obtained by extending G′. Then the
role of the height of G′ is played by the numerical invariants of F in the direction
of X . We can show that these remain bounded whenever F is obtained from a
separable isogeny. Theorem 1 then becomes a consequence of the following result.

Let C and X be irreducible smooth projective curves over the finite field Fq,
endowed with ample line bundles O(1). Abbreviate F(m,n) := F ⊗ pr∗1 O(m) ⊗
pr∗2 O(n). Let ηC and ηX denote the generic points of C and X . Fix constants d,
r, dX , µX , dC , and µC .

Theorem 2. Up to isomorphism, there exist at most finitely many locally free
coherent sheaves F on C×X together with an injective homomorphism κ : F →֒
(id×σ)∗F(d, 0), such that

(a) F has constant rank r,
(b) the restriction Fc := F|c×X has degree dX for all c ∈ C,
(c) all slopes in the Harder-Narasimhan filtration of Fc are ≥ µX for all c ∈ C,
(d) the restriction FηX := F|C×ηX has degree dC ,
(e) all slopes in the Harder-Narasimhan filtration of FηX are ≤ µC , and
(f) every κ-invariant coherent subsheaf of F of rank r coincides with F along

ηC×X .

The proof of Theorem 2 involves an intricate study of the locally free coher-
ent sheaves sheaves Gn := pr1∗ F(0, n) on C for all integers n. An embedding
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O(n) →֒ O(n + 1) induces an embedding Gn →֒ Gn+1, and from κ one can con-
struct embeddings Gqn →֒ Gn+a(d)

⊕q where a depends only on C. Using these
embeddings one can compare the Harder-Narasimhan filtrations of different Gn,
and a complicated induction argument proves that the slopes of any single Gn are
in fact bounded above and below. This leaves only finitely many possibilities for
the isomorphism class of Gn, which allows one to conclude the same for F and κ.

References

[1] Anderson, G.: t-motives. Duke Math. J. 53 (1986), 457–502.
[2] Gardeyn, F.: The structure of analytic τ -sheaves. J. Number Theory 100

no. 2 (2003), 332–362.
[3] Goss, D.: Basic structures of function field arithmetic. Springer-Verlag,

1996.
[4] Harder, G., Narasimhan, M. S.: On the cohomology groups of moduli spaces

of vector bundles on curves. Math. Ann. 212 (1974/75), 215–248.
[5] Pink, R.: The isogeny conjecture for A-motives. Preprint February 2008

Siegel Modular Forms of Genus 2

Gerard van der Geer

1. Eisenstein Cohomology

This is a report on joint work with Jonas Bergström and Carel Faber that
has as its goal to obtain information about Siegel modular forms by calculating
cohomology of local systems on moduli spaces using curves over finite fields.

Let Ag be the moduli space of principally polarized abelian varieties of dimen-
sion g. Over the complex numbers it can be written as Sp(2g,Z)\Hg with Hg

the Siegel upper half space of degree g. An irreducible representation of highest
weight λ of GSp(2g,Q) defines a local system Vλ on Ag. The cohomology of such
local systems is closely linked to Siegel modular forms. Therefore one considers
the (motivic) Euler characteristic

e(Ag,Vλ) =
∑

i

(−1)i[Hi(Ag,Vλ)],

where this is taken in an appropriate category of mixed Hodge modules or Galois
representations. We have an analogue ec(Ag ,Vλ) for compactly supported coho-
mology. Cusp forms are related to the inner cohomology and the difference between
the cohomology and inner cohomology is in some way encoded in the Eisenstein
cohomology eEis(Ag,Vλ) := e(Ag,Vλ) − ec(Ag,Vλ). The study of the Eisenstein
cohomology was initiated by Harder [6] and continued by his students Schwermer
and Pink, see [8, 9]. The Eisenstein cohomology can be broken up in parts coming

from the boundary strata of the Satake compactification: if j : Ag → Ãg is the

embedding in a Faltings-Chai compactification and q : Ãg → A∗
g is the map to the
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Satake compactification then eEis(Ag ,Vλ) =
∑g−1
i=0 ec(q

−1(Ai), Rj∗Vλ − Rj!Vλ),
where j! is the extension by zero.

Theorem 1. The contribution of the stratum Ag−1 to the Eisenstein cohomology
of Vλ with λ = (λ1, λ2, . . . , λk) is

g∑

k=1

(−1)kec(Ag−1,Vλ1+1,...,λk−1+1,λk+1,...,λg )(1 − Lλk+g+1−k),

where L = h2(P1) is the Lefschetz motive of weight 2.

The proof uses Faltings’ BGG complex and is given in [4]. For g = 2 we can give
a closed formula for the full Eisenstein cohomology of a local system, see [3, 4, 1]

We now restrict to g = 2. Our goal is to calculate the traces of the Hecke
operators T (p) on spaces of (vector-valued) Siegel modular cusp forms. If λ =
(l,m) is regular then Hi(A2,Vλ) vanishes if i 6= 3 and H3

! (A2,Vλ) has a pure
Hodge structure with Hodge filtration

0 ⊂ F l+m+3 ⊂ F l+2 ⊂ Fm+1 ⊂ F 0 = H3
! (A2,Vλ)

and we know that F l+m+3 ∼= Sl−m,m+3(Sp(4,Z)), where Sj,k(Sp(4,Z)) is the space
of Siegel modular forms of weight (j, k), i.e., with automorphy factor

Symj(cτ + d) det(cτ + d)k

for a matrix (a, b; c, d) ∈ Sp(4,Z). We use the description of A2 as the moduli of
stable curves of genus 2 of ‘compact type.’

We fix a finite field Fq and try to calculate the trace of Frobenius on the
compactly supported étale cohomology eet,c(A2,Vl,m) by listing all isomorphism
classes of curves of genus 2 defined over Fq, calculating for each such curve the
characteristic polynomial of Frobenius on H1

et(C) and #AutFq(C). Then from
such a list we can calculate the trace of Frobenius for q on the cohomology of Vl,m
for all local systems Vl,m. We did this for example for level 1 for primes p ≤ 37.
But in view of F l+m+3 ∼= Sl−m,m+3(Sp(4,Z)) we need to identify the ‘strict endo-
scopic part’, i.e. the part in the étale cohomology that has zero intersection with
F l+m+3. For this we formulated in [3] a conjecture.

Conjecture 2. For λ = (l,m) regular we have

eEnd(A2,Vλ) = −sl+m+4S[SL(2,Z),m+ 2] Lm+1,

where sn = dimSn(SL(2,Z)) and S[SL(2,Z), k] is the motive of cusp forms of
weight k on SL(2,Z).

We hope that the experts will be able to prove this. Now for example, for
level 1 we subtract the Eisenstein part and the conjectured strict endoscopic
part and what remains should give the trace of the Hecke operator T (p) on
Sl−m,m+3((Sp(4,Z)) for all p ≤ 37. Does it work? There is a good test case:



Automorphic Forms, Geometry and Arithmetic 265

Conjecture 3. (Harder) If f =
∑
n≥1 a(n)qn ∈ Sl+m+4(SL(2,Z)) is a normalized

eigenform of weight l+m+ 4 and ℓ a ‘large’ prime in Qf dividing a critical value
Λ(f, l+3) of the L-series of f then there exists a Siegel modular form F ∈ Sl−m,m+3

with eigenvalues λ(p) ∈ QF such that

λ(p) ≡ pm+1 + a(p) + pl+2 mod ℓ′

for some prime ℓ′ dividing ℓ in the compositum of the fields of eigenvalues Qf and
QF .

For example, for the eigenform f22 =
∑

n≥1 a(n)qn ∈ S22 we have that 41 |
Λ(f22, 14), hence there should exist a Siegel modular eigenform F ∈ S4,10 with
eigenvalues λ(p) satisfying λ(p) ≡ p8 + a(p) + p13 mod 41 and in cooperation with
Harder we were able to confirm this congruence for all p ≤ 37. We were able to
check many other cases and this was great fun, see [7, 5].

Recently, we did similar things for level 2, incorporating also the action of
Sp(4,Z/2) ∼= S6, see [1]. Let Γ2[2] = ker(Sp(4,Z) → Sp(4,Z/2)). We calculated
the Eisenstein cohomology and made conjectures about the strict endoscopic part.
We also formulated a precise conjecture about Yoshida type liftings. We refer to
[1] for the details.

Conjecture 4. Let f ∈ Sl+m+4(Γ0(2))new and g ∈ Sl−m+2(Γ0(2))new be new-
forms. Then there exists a Siegel modular form F ∈ Sl−m,m+3(Γ2[2]) that is an
eigenform for the Hecke algebra with spinor L-function L(F, s) = L(f, s)L(g, s−
m−1). It appears with multiplicity 5 if f and g have the same eigenvalue ± under
w2 and multiplicity 1 otherwise. Similarly, given newforms f ∈ Sl+m+4(Γ0(4))new,
g ∈ Sl−m+2(Γ0(4))new there exists a Siegel modular form F ∈ Sl−m,m+3(Γ2[2])
with spinor L-function L(F, s) = L(f, s)L(g, s −m − 1). It appears with multi-
plicity 5 in Sl−m,m+3(Γ2[2]).
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On Harder–Mahnkopf Periods

Freydoon Shahidi

This semi-expository talk given during ”Harder’s day” aimed at defining certain
periods for principal L–functions of cusp forms on GLn(Ak) introduced by Harder
[4] when n = 2, but k is any number field, and generalized by Mahnkopf [6] for
arbitrary n, but only k = Q.

These periods are obtained by comparing two rational structures, one on the
cuspidal cohomology, through its embedding into Betti cohomology (cf. [3]), and
the other on the (g,K)–cohomology [2] of its generic Whittaker model, generalizing
ideas of Eichler and Shimura. More precisely, in [4] Harder introduced an adelic
way of defining an action of Aut(C) on the Fourier coefficients of a regular algebraic
representation of GL2(Ak), which can be extended to GLn(Ak) by means of their
Whittaker models and using cyclotomic characters (cf. [4, 6]).

Our interest here is a joint project with A. Raghuram in which one exploits
Mahnkopf’s periods [6] to prove certain special cases of twisting conjectures of
Blasius [1] and Panchishkin [7]. More precisely, one expects to prove the twisting
conjecture for m-th symmetric power L–functions of holomorphic cusp forms on
GL2(Ak) upon realizing them as principal L–functions on GLm+1(Ak) through
Langlands functoriality conjecture (cf. [8, 10]). The twists are by means of alge-
braic Hecke characters. We note that each twist introduces a new L–function.

The results won’t, of course, be as precise as those predicted by Deligne and
Zagier for these L–functions, but are still new and interesting, and must be near
in hand in the case of fourth symmetric power L–functions for GL2(Ak), using the
automorphy of Sym4(π) as an automorphic form on GL5(Ak) established recently
by H. H. Kim [5].

We concluded the talk by stating a result (cf. [9]) which shows that up to a
Gauss sum defined by the finite part of the twisting character, the ratio of the
period for the twisted representation on GLn(Ak) to the original one belongs to
the field of definition of the form and the character (cf. [3, 12]), as long as the
character is any algebraic Hecke character for any number field. Moreover, the
ratio of the period to the Gauss sum changes equivariently under the action of
Aut (C).
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The local Langlands correspondence for GSp(4)

Wee Teck Gan

1. Introduction

In this talk, I discuss joint work with Shuichiro Takeda on the local Langlands
correspondence for G = GSp(4) = GSpin(5) over a p-adic field F , which gives a
classification of the set Π(G) of equivalence classes of irreducible smooth (complex)
representations of G(F ) in terms of Galois theoretic data. Let WF be the Weil
group of F and let WDF = WF × SL2(C) be the Weil-Deligne group. Let Φ(G)
denote the set of equivalence classes of L-parameters for G, i.e.

φ : WDF −→ G∨ = GSp4(C),

where G∨ is the Langlands dual group of G. The theorem is:

Theorem 1. There is a surjective map

L : Π(G) −→ Φ(G)

π 7→ φπ

satisfying a number of expected conditions:

(i) (Fibers) For φ ∈ Φ(G), the fiber Πφ is in natural bijection with the set of
irreducible characters of the component group Aφ = ZG∨(Im(φ)).

(ii) (Discrete Series) π ∈ Π(G) is discrete series representation iff φπ does not
factor through any proper parabolic subgroup.
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(iii) (Central Character) The central character ωπ of π corresponds to the simili-
tude character sim(φπ) of φπ .

(iv) (Twisting) The map is compatible with twisting by 1-dimensional characters.

(v) (Local Factors) For generic or non-supercuspidal representations, the map
preserves L-factors and ǫ-factors of pairs of representations in Π(G) × Π(GLr).

(vi) (Plancherel Measures) For non-generic supercuspidal representations π ∈
Π(G) and supercuspidal representations σ of GLr(F ), the map gives the expected
formula for a certain Plancherel measure associated to π Θ σ.

(vii) (Genericity) A packet Πφ contains a generic representation iff the adjoint
L-function L(s,Ad ◦ φ) is holomorphic at s = 1.

(viii) (Characterization) The map L is uniquely characterized by (ii), (iii), (v) and
(vi), with r ≤ 2 in (v) and (vi).

The proof exploits the local theta correspondence for the groups

GSp(4) ×GSO(2, 2), GSp(4) ×GSO(4), GSp(4) ×GSO(3, 3),

and the local Langlands correspondence for GL(2) and GL(4). There is also an
analogous theorem for the inner form GSp(1, 1) = GSpin(4, 1) of GSp(4). Finally,
for supercuspidal π ∈ Π(G), the formal degree of π can be shown to be equal to
an explicit multiple of the adjoint γ-factor |γ(0, Ad ◦ φπ , ψ)|, thus confirming a
conjecture of Hiraga-Ichino-Ikeda.

Intersection theory on Shimura surfaces

Ben Howard

Let B0 be an indefinite rational quaternion algebra, OB0
⊂ B0 a maximal order,

F a real quadratic field, and set B = B0 ⊗Q F . Assume that OF = Z[
√

∆] for
some integer ∆ > 1 and that all primes dividing the discriminant of B0 are split
in F . This second hypothesis implies that OB = OB0

⊗Z OF is a maximal order
in B. Let M0 be the moduli stack of triples (A0, i0, λ0) in which A0 is an abelian
surface over a scheme, i0 : OB0

−→ End(A0) is a ring homomorphism, and λ0 is a
polarization of A0 which is compatible with the action of OB0

in a sense which we
will not make precise. Let M be the moduli stack of triples (A, i, λ) in which A
is an abelian fourfold over a scheme, i : OB −→ End(A) is a ring homomorphism,
and λ is a polarization of A suitably compatible with the action of OB . Thus M
is the integral model of a classical Shimura surface (i.e. a twisted analogue of
a Hilbert modular surface) and M0 is the integral model of a classical Shimura
curve (i.e. a twisted analogue of a modular curve). There is a closed immersion
M0 −→ M which is given on moduli, ignoring the polarizations, by A0 7→ A0⊗OF .
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On the other hand, for any totally positive α ∈ OF one may also consider the
moduli stack Y(α) of quadruples (A, i, λ, tα) in which (A, i, λ) is as above, and
tα ∈ EndOB (A) satisfies t2α = −i(α). Thus Y(α) may be thought of as the locus of
points in M for which the action of OF can be extended to an action of the CM
order OF [

√−α]. The generic fiber Y(α) ⊗Z Q is a finite étale stack over Spec(Q),
and so may be viewed as a codimension two cycle on M ⊗Z Q, but the integral
model Y(α) is generally less pleasant: at a prime p dividing the discriminant of
B0 the stack Y(α) ⊗Z Zp typically has vertical components of codimension one in
M⊗Z Zp. Using the Cerednik-Drinfeld uniformization of M at such a prime, one
can modify the vertical components of Y(α) in order to produce a codimension
two cycle on M. Using constructions of Kudla-Millson [2] one may then augment
this cycle with a Green current for the complex fiber, resulting in a class

Ŷ(α, v) ∈ Ĉh
2
(M)

in the codimension two Gillet-Soulé arithmetic Chow group [4] of M. Here v ∈
F ⊗Q R is an auxiliary totally positive parameter.

For any (A0, i0, λ0) ∈ M0 the Z-module of trace zero elements of EndOB0
(A0)

is equipped with a natural positive definite quadratic form Q0. Let [−,−] be the
bilinear form determined by [x, x] = 2Q0(x), and for any symmetric matrix T with
rational coefficients let Z(T ) be the moduli stack of quintuples (A0, i0, λ0, s1, s2)
in which (A0, i0, λ0) ∈ M0 and s1 and s2 are trace zero elements of EndOB0

(A0)
which satisfy

T =
1

2

(
[s1, s1] [s1, s2]
[s2, s1] [s2, s2]

)
.

For sufficiently nice T the stack Z(T ) is zero-dimensional, and so defines a codi-
mension two cycle on the arithmetic surface M0. For general T Kudla-Rapoport-
Yang [3] have defined an arithmetic cycle class

Ẑ(T,v) ∈ Ĉh
2
(M0)

where v, a symmetric positive definite 2×2 matrix with real entries, is an auxiliary
parameter. For nice T this arithmetic zero cycle is simply the cycle Z(T ) equipped
with the trivial Green current. Kudla-Rapoport-Yang have proved that the classes

Ẑ(T,v) are closely related to the Fourier coefficients of the derivative at s = 0
(the center point of the functional equation) of a genus two Siegel Eisenstein series
E(τ, s). More precisely, there is an isomorphism, the arithmetic degree,

d̂eg : Ĉh
2
(M0)

∼−→ R

and Kudla-Rapoport-Yang [3] prove that E ′(τ, 0) has Fourier expansion

E ′(τ, 0) =
∑

T

d̂eg Ẑ(T,v) · qT

where v is the imaginary part of τ and qT = e2πiTrace(Tτ).

The main result relates the classes Ŷ(α, v) to the cycle classes Ẑ(T,v) of Kudla-
Rapoport-Yang, and hence to the Fourier coefficients of automorphic forms. To
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state the result, fix an isomorphism F ⊗Q R
∼−→ R × R and a totally positive

v = (v1, v2) ∈ F ⊗Q R. Set

v =

(
∆(v1 + v2) δ(v1 − v2)
δ(v1 − v2) (v1 + v2)

)
.

For each α ∈ OF write α = x+ y
√

∆ with x, y ∈ Z and define

Σ(α) =

{(
z y

2
y
2 x− ∆z

) ∣∣∣ z ∈ Z

}
.

Theorem A. Suppose that α ∈ OF is totally positive and that at least one of the
following holds: either

(a) F (
√−α)/Q is not biquadratic, or

(b) for every prime p nonsplit in F (and writing p for the prime above p)

ordp(α) ≤
{

0 if pOF = p2

1 if pOF = p.

Then the arithmetic pullback Ĉh
2
(M) −→ Ĉh

2
(M0) determined by the closed im-

mersion M0 −→ M satisfies

Ŷ(α, v) 7→
∑

T∈Σ(α)

Ẑ(T,v).

To briefly indicate why the hypotheses (a) and (b) appear, hypothesis (a) en-
sures that Y(α)(C) ∩M0(C) = ∅, while hypothesis (b) ensures that Y(α) has no
vertical components except possibly at primes dividing the discriminant of B0.
Theorem A should be true without assuming either hypothesis. The proof of the
theorem under hypothesis (a) may be found in [1]; the (more difficult) proof under
hypothesis (b) will appear in a forthcoming work.

One can construct a twisted embedding h1 × h1 −→ h2 of the product of two
upper half planes into the Siegel space of genus two in such a way that Siegel
modular forms pull back to Hilbert modular forms for the real quadratic field F ,
and such that the Fourier expansion of the pull back of E ′(τ, 0) has the form

E ′(τ1, τ2, 0) =
∑

α∈OF


 ∑

T∈Σ(α)

d̂eg Ẑ(T,v)


 · qα

where v = (v1, v2) is the imaginary part of (τ1, τ2) and v is related to (v1, v2) as
in Theorem A. Combining this with Theorem A allows us to relate the classes

Ŷ(α, v) to the Fourier coefficients of a Hilbert modular form as follows.

Corollary B. The pullback of E ′(τ, 0) via the twisted embedding h1 × h1 −→ h2

has a Fourier expansion of the form

E ′(τ1, τ2, 0) =
∑

α∈OF

c(α, v) · qα
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where v = (v1, v2) is the imaginary part of (τ1, τ2). If α satisfies the hypotheses

of Theorem A then the Fourier coefficient c(α, v) is equal to the image of Ŷ(α, v)
under the arithmetic pullback

Ĉh
2
(M) −→ Ĉh

2
(M0)

∼−→ R.
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Functoriality and the Inverse Galois problem

Gordan Savin

This is a report on a joint work with C. Khare and M. Larsen.

Let ℓ be a prime. In our previous work [KLS] Langlands functoriality principle
was used to show that for infinitely many positive integers k the finite simple
group Cn(ℓ

k) = PSp2n(Fℓk) is a Galois group over Q unramified outside {∞, ℓ, q}
where q is a prime that depends on k. The construction is based on the following
three steps. First, starting with a cuspidal automorphic representation on the
split group SO2n+1 constructed using the Poincaré series, we use the global lift of
Cogdell, Kim, Piatetski-Shapiro and Shahidi [CKPS] to obtain a self-dual cuspidal
automorphic representation Π of GL2n such that the following three conditions
hold:

• Π∞ is cohomological.
• Πq is a supercuspidal representation of depth 0.
• Πv is unramified for all primes v 6= ℓ, q.

Second, following Kottwitz, Clozel and Harris-Taylor [Ty], one can attach to Π an
ℓ-adic representation rΠ : GQ → GL2n(Q̄ℓ) of the Galois group GQ of Q such that
for all primes v 6= ℓ the restriction of rΠ to the decomposition group GQv is the
Langlands parameter of Πv. The last step consists of reducing rΠ modulo ℓ. The
key ingredient here is that the parameter of Πq can be picked so that rΠ(GQq ) is
a meta cyclic group deeply embedded in rΠ(GQ) [KW]. That is, for some large
positive integer d, rΠ(GQq ) is contained in every normal subgroup of rΠ(GQ) of
index less than or equal to d. This property is crucial to ensure that the reduction
modulo ℓ is a simple group of type PSp2n(Fℓk).
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The purpose of this work is to extend these results and to construct finite simple
groups of type Bn and G2 as Galois groups over Q. If ℓ is an odd prime then we can
show that for infinitely many k the finite simple group Bn(ℓ

k) = SO2n+1(Fℓk)der

or the classical group SO2n+1(Fℓk) is a Galois group over Q, unramified outside
{∞, 2, ℓ, q}. In general we do not know which of the two is our Galois group,
however, if ℓ ≡ 3, 5 (mod 8) then it is the finite simple group SO2n+1(Fℓk)der.
Finally and subject to a condition that will be explained in a moment, for infinitely
many positive integers k the finite simple group G2(ℓ

k) appears as a Galois group
over Q, unramified outside {∞, ℓ, q}.

The construction of Galois groups is based on the functorial lift from Sp2n to
GL2n+1 [CKPS] plus the lift from G2 to Sp6 using the theta correspondence aris-
ing from the minimal representation of the exceptional group E7 [Sa]. The main
technical difficulty (when compared to the work [KLS]) is that GL2n+1(Qp) has
self-dual supercuspidal representations only if p = 2. Thus, while we can still con-
struct a self-dual cuspidal automorphic representation Π of GL2n+1 which should
give rise to our desired Galois groups, the local component Πq cannot be supercus-
pidal. In particular, the existence of the corresponding ℓ-adic representation rΠ
has not been established yet since no local component of Π is square integrable.
This restriction, in the moment, prevents us from completing the construction
of Galois groups of type G2 over Q. For groups of type Bn we can remedy the
situation by requiring that the local component Π2 be supercuspidal (which we
pick to be of depth one). Existence of a global Π with such local component Π2

is again obtained using the global lift from Sp2n plus recently announced (at this
conference!) backward lift from GL2n+1 to Sp2n by Jiang and Soudry.

The local component Π2 not only assures us of the existence of the ℓ-adic
representation rΠ but it also gives us a certain control over the Galois group
obtained by reducing rΠ modulo ℓ. More precisely, Π2 can be picked so that the
image of the local Langlands parameter is a finite group Γ(2) in GL2n+1(C) with
the following properties:

• Γ(2)/[Γ(2),Γ(2)] ∼= Z/(2n+ 1)Z.
• [Γ(2),Γ(2)] ∼= (Z/2Z)2n.

If ℓ ≡ 3, 5 (mod 8) then the first property of Γ(2) implies that the Galois group is
SO2n+1(Fℓk)der and not SO2n+1(Fℓk). If n = 3 then the second property of Γ(2)
implies that Π2 is not a lift from G2(Q2) and the Galois group is not G2(ℓ

k).

The following is a very partial bibliography:
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Growth of Selmer groups of Hilbert modular forms over ring class
fields

Jan Nekovář

Fix an algebraic closure Q of Q, a prime number p and embeddings i∞ : Q →֒
C and ip : Q →֒ Qp. Let F be a totally real number field and g a cuspidal
Hilbert modular eigenform over F of parallel weight k and trivial character. Let
K be a totally imaginary quadratic extension of F and χ : A∗

K/K
∗A∗

F −→ C∗ a

(continuous) character of finite order. Fix a number field L ⊂ Q such that i∞(L)
contains all Hecke eigenvalues of g and all values of χ; denote by p the prime of L
above p induced by ip. Let V (g) = Vp(g) be the two-dimensional representation

of GF = Gal(Q/F ) with coefficients in Lp attached to g. The Tate twist V =
V (g)(k/2) is self-dual in the sense that there exists a skew-symmetric isomorphism

V
∼−→ V ∗(1). Identify χ with the corresponding Galois character χ : GK =

Gal(Q/K) −→ L∗
p via the reciprocity map recK : A∗

K/K
∗ −→ Gal(Kab/K); put

Kχ = Q
Ker(χ)

. There are canonical isomorphisms

H1
f (K,V ⊗ χ±1)

∼−→ (H1
f (Kχ, V ) ⊗ χ±1)Gal(Kχ/K) = H1

f (Kχ, V )(χ
∓1).

The conjectures of Bloch and Kato predict that

ran(K, g, χ)
?
= h1

f (K,V ⊗ χ),

where h1
f(K,V ⊗ χ) := dimLp

H1
f (K,V ⊗ χ) and ran(K, g, χ) := ords=k/2 L(g ⊗

K,χ, s).

Theorem 1. Assume that g is potentially p-ordinary, i.e., that the base change of g
to a suitable finite solvable totally real extension of F is p-ordinary (equivalently,

that there exists a character of finite order ϕ : A∗
F /F

∗ −→ Q
∗

such that the
newform associated to g ⊗ ϕ is p-ordinary). If g has complex multiplication by a
totally imaginary quadratic extension K ′ of F , assume, in addition, that p 6= 2
and that K ′ 6⊂ Kχ. Then: if 2 6 | ran(K, g, χ), then 2 6 | h1

f (K,V ⊗ χ).
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Corollary 1. Let K[∞] ⊂ Kab be the union of all ring class fields ofK (the Galois
group Gal(K[∞]/K) is the quotient of Gal(Kab/K) by recK(A∗

F )). Let K0/K be
a finite subextension of K[∞]/K. Assume that g is potentially p-ordinary; if g
has complex multiplication by a totally imaginary quadratic extension K ′ of F ,
assume, in addition, that p 6= 2 and that K ′ 6⊂ K0. Then

h1
f (K0, V ) := dimLp

H1
f (K0, V ) ≥ |X−(g,K0)|,

where
X±(g,K0) = {χ : Gal(K0/K) −→ C∗ | ε(K, g, χ) = ±1}

(above, ε(K, g, χ) = ±1 denotes the sign in the functional equation of L(g ⊗
K,χ, s)).

The proof [N 3] combines a deformation result [N 2] with an Euler system argument
[N 1] and a non-triviality result for CM points [A-N] (a generalisation of the work
of Cornut and Vatsal [C-V]).
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[A-N] E. Aflalo, J. Nekovář, Non-triviality of CM points in ring class field
towers, preprint.

[C-V] C. Cornut, V. Vatsal, Nontriviality of Rankin-Selberg L-functions and CM
points, L-functions and Galois representations (Durham, July 2004), LMS Lecture
Note Series 320, Cambridge Univ. Press, 2007, pp. 121–186.
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Degenerate Eisenstein Series on symplectic groups

Goran Muić

In this talk we describe the generalization of usual notion of Siegel Eisenstein
series to give a simple and natural construction of some classes of square–integrable
automorphic representations. The construction of automorphic representations ob-
tained in this paper is an automorphic version of the local construction of strongly
negative unramified representations [4] 1 or of discrete series obtained by Tadić in
early 90’s. This is taken from our paper [5].
Let G = Sp2n be a split symplectic group of rank n over a number field k. Let A be

the ring of adèles of k. Let Wk be the Weil group of k. Let Ĝ(C) = SO(2n+1,C)

1. An unramified representation is strongly negative (resp. negative) if its exponents relative
to a Borel lie in (resp. in the closure of) the obtuse Weyl chamber.
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be the complex dual group of G. We write Bn = TnUn for the Borel subgroup of
G, W for its Weyl group and ∆ for the set of simple roots with respect to Bn.

1. Construction of Degenerate Eisenstein series

Let P = MN be a maximal k–parabolic subgroup of Sp2n. Assume M ≃
GL(m) × Sp2n′ . Let

V ⊂ A(Sp2n′(k) \ Sp2n′(A))

be an irreducible subspace of the space of automorphic forms. Let us call the
corresponding representation Π. Assume that V is concentrated on Bn′ . (That is,
there is a constant term along Bn′ that does not vanish.) Let V0 be the space of
constant terms along Bn′ of V . The map V → V0 defined by

ϕ  (g′ 7→
∫

Un′(k)\Un′ (A)

ϕ(u′g′)du′)

is an intertwining operator. In particular, since V is irreducible and concentrated
on Bn′ , the map is an isomorphism. For t ∈ Tn′(A), we let

V t0 = l(t)V0,

where

l(t)F (g′) = F (t−1g′).

The representation of
∏
v<∞ Sp2n′(kv) × (g′∞,K

′
∞) on V t0 is irreducible and iso-

morphic to V0 (and to V ). The main point of that construction is that we can
find 0 6= F ∈ ∑

t∈Tn′(A) V
t
0 and a character λ′ : Tn′(A) → C×, necessarily trivial

on Tn′(k), such that

F (t′g′) = δ
1/2
Bn′

(t′)λ′(t′)F (g′), t′ ∈ Tn′(A), g′ ∈ Sp2n′(A).

Hence, we have the following:

(1) F (t′u′g′) = δ
1/2
Bn′

(t′)λ′(t′)F (g′), t′ ∈ Tn′(A), u′ ∈ Un′(A), g′ ∈ Sp2n′(A).

The same identity holds for all functions in the
∏
v<∞ Sp2n′(kv) × (g′∞,K

′
∞)-

subrepresentation V ′ ⊂ ∑
t∈Tn′(A) V

t
0 generated by F . Clearly, V ′ is direct sum of

irreducible representations all isomorphic to V . Therefore, we may assume that
V ′ is itself irreducible. Then (1) implies the embedding

(2) Π →֒ Ind
Sp2n′(A)
Bn′(A) (λ′).

Let µ : k× \ A× → C× be a (unitary) grössencharacter. The representation
µ1GL(m,A) is an automorphic representation of GL(m,A) on the one dimensional
space W ⊂ A(GL(m, k) \GL(m,A)). The computation of the constant term W0

of W along Borel subgroup BGLm gives an embedding:

µ1GL(m,A) →֒ Ind
GLm(A)

BGL
m (A)

(
| |s−(m−1)/2µ⊗ · · · ⊗ | |s+(m−1)/2µ

)
.
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Fixing above data, we can realize the induction in stages:

Ind
Sp2n(A)
M(A)N(A)| det |sµ1GL(m,A) ⊗ Π) →֒

Ind
Sp2n(A)
Bn(A)

(
| |s−(m−1)/2µ⊗ · · · ⊗ | |s+(m−1)/2µ⊗ λ1 ⊗ · · · ⊗ λn′

)

which enables us to fix nice realization for Ind
Sp2n(A)
M(A)N(A)(| det |sµ1GL(m,A)⊗Π) with

analytic sections fs. Then we define a degenerate Eisenstein series as follows:

(3) E(fs, g) =
∑

γ∈P (k)\Sp2n(k)

fs(γg).

This series converges for Re(s) sufficiently large and continues to a meromorphic
function in s. Obviously it as an automorphic form in A(Sp2n(k) \ Sp2n(A)).
Finally, its analytic behaviour is controlled by its constant term along Borel Bn.
More precisely: The Eisenstein series given by (3) is concentrated on the Borel
subgroup, and its constant term along Bn is given by

(4) E0(fs, g) =

∫

Un(k)\Un(A)

E(fs, ug)du =
∑

w∈W, w(∆\{α})>0

M(λ(s), w)fs(g).

Here α is the unique simple root in N and we write

λ(s) = | |s−(m−1)/2µ⊗ · · · ⊗ | |s+(m−1)/2µ⊗ λ1 ⊗ · · · ⊗ λn′ .

We remind the reader that M(λ(s), w) is the standard intertwining operator

Ind
Sp2n(A)

Bn(A) (λ(s)) → Ind
Sp2n(A)

Bn(A) (w(λ(s))) .

The expression (4) is studied using local methods of [4] by normalizing inter-
twining operators as in [3] or [6].

2. Construction of Automorphic representations

We say that an Arthur parameter ϕ : Wk × SL(2,C) → Ĝ(C) is spherical

unipotent if it is trivial on Wk. Thus, it is of the form ϕ : SL(2,C) → Ĝ(C). We
can find a unique increasing sequence of positive integers (m1, . . . ,mk),

k∑

i=1

2mi + 1 = 2n+ 1,

such that

(5) ϕ = ⊕ki=1V2mi+1.

We remark that k must be odd.

Let λ(ϕ) : Tmin(k) \ Tmin(A) → C× be defined by:
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(| |−mk ⊗ | |−mk+1 ⊗ · · · ⊗ | |mk−1) ⊗ · · · ⊗ (| |−m3 ⊗ | |−m3+1 ⊗ · · · ⊗ | |m2)⊗
⊗ (| |−m1 ⊗ | |−m1+1 ⊗ · · · ⊗ | |−1).

We remark that for k = 1, the trivial representation 1Sp2m1
(A) has a unique

automorphic realization

j(V2m1+1) : 1Sp2m1
(A) → A2(Sp2m1

(k) \ Sp2m1
(A)).

The usual embedding

1Sp2m1
(A) →֒ Ind

Sp2m1
(A)

Bm1
(A) (| |−m1 ⊗ · · · ⊗ | |−1)

is obtained computing the constant term along Bm1
on the space of constant

functions Image(j(V2m1+1)).

First, we describe the construction of the spherical component.

Theorem 6. Let k > 0 be an odd integer. Let K be the usual maximal compact
subgroup of Sp2n(A). Under the above assumptions, the unique irreducible K–

spherical subquotient σ(ϕ) of the globally induced representation Ind
Sp2n(A)
Bn(A) (λ(ϕ))

is its subrepresentation, and there is a non–zero embedding

j(ϕ) : σ(ϕ) → A2(Sp2n(k) \ Sp2n(A))

constructed recursively as follows. Let k ≥ 3. Put ϕ′ = ⊕k−2
i=1 V2mi+1 and 2n′+1 =∑k−2

i=1 2mi + 1. Consider the global induced representation

(7) Ind
Sp2n′+4mk−1+2(A)

P (A)

(
| det |s1GL(2mk−1+1,A) ⊗ Image(j(ϕ′))

)
,

where P is a standard parabolic subgroup of Sp2n′+4mk−1+2 with Levi factor

GL(2mk−1 + 1) × Sp2n′ . (At s = 0 this representation is unitary and there-
fore semisimple (of infinite length).) Then the map obtained from a degenerate
Eisenstein series

(8) fs  E(fs, ·)|s=0

is an intertwining operator

Ind
Sp2n′+4mk−1+2(A)

P (A)

(
1GL(2mk−1+1,A) ⊗ Image(j(ϕ′))

)
→

A(Sp2n′+4mk−1+2(k) \ Sp2n′+4mk−1+2(A)),

which is non–trivial on the unique irreducible K–spherical subrepresentation of
(7) for s = 0; let us write X for the image of the K–spherical subrepresentation.
Taking the constant term of X along Borel Bn′+2mk−1+1 we obtain the following
embedding:
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(9) X →֒ Ind
Sp2n′+4mk−1+2(A)

Bn′+2mk−1+1(A)

(
| |−mk−1 ⊗ | |−mk−1+1 ⊗ · · · ⊗ | |mk−1 ⊗ λ(ϕ′)

)

which we use to construct degenerate Eisenstein series fs  E(fs, g) =∑
γ∈P (k)\Sp2n(k) fs(γg) attached to the global induced representation

(10) Ind
Sp2n(A)
P (A)

(
| det |s1GL(mk−mk−1,A) ⊗X

)
,

where P is a standard parabolic subgroup of Sp2n with Levi factor GL(mk −
mk−1) × Sp2n′+4mk−1+2. Then the map

Ind
Sp2n(A)

P (A)

(
| det |

mk−1+mk+1

2 1GL(mk−mk−1,A) ⊗X
)K

→ A(Sp2n(k) \ Sp2n(A))

given by

(11) fmk−1+mk+1

2

 

(
s− mk−1 +mk + 1

2

)2

E(fs, ·)|s= mk−1+mk+1

2

is well–defined and non–trivial. Let E be a
∏
v<∞ Sp2n(kv) × (g∞,K∞) – sub-

representation of A(Sp2n(k) \ Sp2n(A)) generated by the image of the space of
K–invariants. Then E is irreducible, contained in the space of square–integrable
automorphic forms A2(Sp2n(k) \ Sp2n(A)), and it induces the required embed-
ding j(ϕ) : σ(ϕ) ≃ E ⊂ A2(Sp2n(k) \ Sp2n(A)). Finally, the embedding σ(ϕ) →֒
Ind

Sp2n(A)
Bn(A) (λ(ϕ)) is obtained computing the constant term of E along Bn.

Second, we can describe the generalization of this theorem for non–spherical
representations. This requires the construction of a particular local normalized
intertwining operator. (See [5], Theorem 6-21 for details.)

We end by the following remark which follows from Theorem 6. Let k = Q and
∞ be the unique Archimedean place of Q. Then σ(ϕ)∞ is automorphic and in
fact

σ(ϕ)∞ →֒ L2(Sp2n(Q) \ Sp2n(A))

with the image contained in the space of residual representations.
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Arithmetic Intersection and a conjecture of Colmez

Tonghai Yang

Let F = Q(
√
D) with D ≡ 1 mod 4 being prime. Let M be the moduli stack

over Z of abelian varieties with real multiplications (A, ι, λ) with Deligne-Pappas
∂−1
F -polarization. Then M(C) = SL2(OF )\H2. Let Tm be the Hirzebruch-Zagier

divisor in M = M(C) [HZ], and let Tm be the Zariski closure of Tm in M. When
m = q is a prime split in F , it is basically isomorphic to the open modular curve
Y0(q).

Let K = F (
√

∆) be a quartic CM number field with real quadratic subfield
F , and let CM(K) be the moduli stack over Z of CM abelian varieties (A, ι, λ)
such that (A, ι|OF , λ) ∈ M and the Rosati involution associated to λ gives the
complex conjugation in K. Notice that CM(K) and Tm intersect properly when

K is non-biquadratic. In this case, let K̃ be the reflex field of K with respect to
a CM type of K with real quadratic field F̃ . We proved in [Ya1] the following
theorem.

Theorem 1. Assume that K is non-biquadratic and that OK = OF + OF
w+

√
∆

2

is a free OF -module such that D̃ = ∆∆′ ≡ 1 mod 4 is a prime. Then

Tm.CM(K) =
1

2
bm

where

bm =
∑

p

bm(p)

is defined as follows:

(1) bm(p) =
∑

p|p

∑

t= n+m
√

D̃
2D ∈d−1

K̃/F̃
,|n|<m

√
D̃

Bt(p)

where

(2) Bt(p) =

{
0 if p is split in K̃,

(ordptn + 1)ρ(tdK̃/F̃ p−1) log |p| if p is not split in K̃,

and

ρ(a) = #{A ⊂ OK̃ : NK̃/F̃A = a}.
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WhenK = F (
√
d) be biquadratic, let K̃ = Q(

√
d)⊕Q(

√
Dd) with real quadratic

‘subfield’ F̃ = Q⊕Q. Then the same formula holds when CM(K) and Tm intersect
properly. This happens, for example, when m = q is a prime split in F but inert
in k = Q(

√
d).

The basic idea is to prove a weaker version of the formula when m = q is a prime
split in F , and derive general cases from the weaker version using Faltings’s height
machine and results in [BY] and [BBK].

Now we briefly describe an application of Theorem 1 to a conjecture of Colmez,
which is a beautiful generalization of the celebrated Chowla-Selberg formula [CS].
In proving the famous Mordell conjecture, Faltings introduces the so-called Falt-
ings height hFal(A) of an Abelian variety A, measuring the complexity of A as
a point in a Siegel modular variety. When A has complex multiplication, it only
depends on the CM type of A and has a simple description as follows. Assume
that A is defined over a number field L with good reduction everywhere, and let
ωA ∈ ΛgΩA be a Neron differential of A over OL, non-vanishing everywhere. Then
the Faltings’ height of A is defined as (our normalization is slightly different from
that of [Co])

(3) hFal(A) = − 1

2[L : Q]

∑

σ:L→֒C

log

∣∣∣∣∣(
1

2πi
)g

∫

σ(A)(C)

σ(ωA) ∧ σ(ωA)

∣∣∣∣∣
+ log #ΛgΩA/OLωA.

Here g = dimA. Colmez gives a beautiful conjectural formula to compute the
Faltings height of a CM abelian variety in terms of the log derivative of certain
Artin L-series associated to the CM type [Co]. When A is a CM elliptic curve, the
height conjecture is a reformulation of the well-known Chowla-Selberg formula.
Colmez proved his conjecture up to a multiple of log 2 when the CM field (which
acts on A) is abelian, refining Gross’s [Gr] and Anderson’s [An] work. A key point
is that such CM abelian varieties are quotients of the Jacobians of the Fermat
curves, so one has a model to work with. The following theorem confirms the first
non-abelian case of the conjecture.

Theorem 2. Let the notation and the assumptions be as in 1. Let A be a CM
abelian variety of CM type (OK ,Φ). Then

(4) hFal(A) =
1

2
β(K/F ).

Next let A be the moduli stack of principally polarized abelian surfaces, so that
A(C) = Sp4(Z)\H2. There is a natural map

(5) j : M → A, (A, ι, λ) 7→ (A, λ(
ǫ√
D

))

which is proper and generically 2 to 1. Here ǫ is a fundamental unit so that λ( ǫ√
D

)

is a principal polarization of A. Similar to Hirzebruch-Zagier curves, there are also
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so-called Humbert surfaces Gm in A(Q) (see for example [Ge]). Let Gm be the
Zariski closure of Gm in A. Then one has

j∗M = 2GD,
and

j∗Gm =
∑

Dm−x2

4
∈Z>0,x>0

TDm−x2

4

if Dm is not a square. Notice also that j∗CM(K) is the moduli stack of principally
polarized abelian surfaces. Theorem 1 has the following consequence:

Theorem 3. Let the notation and assumption be as in Theorem 1, and assume
Dm is not a square. Then

Gm.j∗CM(K) =
1

2

∑

Dm−x2

4
∈Z>0,x>0

bDm−x2

4

.

Since divχ10 = 2G1, and H1 characterizes exactly the abelian surfaces which
are not Jacobians of genus two curves. So we have

Theorem 4. Let K be the number field as in Theorem 1. Let C be a genus two
curve over a number field L such that its Jacobian J(C) has CM by OK and has
good reduction everywhere. Let l be a prime. If C has bad reduction at a prime l|l
of L, then

(6)
∑

0<n<
√
D,odd

bD−n2

4

(l) 6= 0

In particular, l ≤ DD̃
64 . Conversely, if (6) holds for a prime l 6= 2, then there is

a genus two curve C over a number field L such that
(1) J(C) has CM by OK and has good reduction everywhere, and
(2) C has bad reduction at a prime l above l.

The theorem can be used to solve Lauter’s conjecture on CM values of Igusa
invariants and also has application to the bad reduction of CM genus two curves.
We refer to [Ya1] for more details.
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Formes automorphes de carré intégrable non cuspidales

Colette Mœglin

On fixe un groupe G, classique, et on admet que pour ce groupe on dispose
d’une description à la Arthur des formes automorphes de carré intégrable util-
isant l’endoscopie ordinaire et l’endoscopie tordue. Le but est alors de donner des
conditions nécessaires et suffisantes à partir des données fournies par cette descrip-
tion pour qu’une représentation de carré intégrable irréductible de G ne soit pas
cuspidale. Le corps de base est ici un corps de nombres, noté k.

Fixons π une représentation de carré intégrable irréductible de G. On rap-
pelle les 2 points de la description d’Arthur qui nous serviront explicitement ici.
Cette description inclut d’abord un paramètre global associé à π que l’on peut voir
comme une collection de couples (ρ, b) où ρ est une représentation cuspidale, uni-
taire, irréductible d’un groupe linéaire GL(dρ) convenable et b est un entier. On
appelle Jord(π) cette collection de couples. En toute place v de k, on considère ψv
le morphisme, défini à conjugaison près, de W ′

v×SL(2,C) dans un groupe linéaire
convenable: ici W ′

v est le groupe de Weil-Deligne associé à la complétion kv et par
définition

ψv := ⊕(ρ,b)∈Jord(π)Langlands(ρv) ⊗ [b],

où Langlands(ρv) est l’homomorphisme de W ′
v dans un groupe linéaire convenable

obtenue via la correspondance de Langlands (Harris-Taylor et Henniart) et où [b]
est la représentation de dimension b de SL(2,C). Dans la description d’Arthur
ψv est, à conjugaison près, à valeurs dans le groupe dual de G. De plus à un
tel ψv, on associe un ensemble fini, Π(ψv), de représentations irréductibles de G
avec des propriétés de transfert; ce paquet est maintenant bien connu si v est non
archimédien et moins bien connu, si v est archimédien. Le résultat annoncé par
Arthur est qu’en toute place v, la composante locale πv de π est dans Π(ψv).

Pour simplifier, on suppose que le caractère infinitésimal de π est régulier (on
renvoie aux papiers écrits pour le cas général). Le but de l’exposé est d’expliquer
la conjecture suivante; π n’est pas cuspidale si et seulement si il existe (ρ, b) ∈
Jord(π) avec b ≥ 2 tel que

pour tout (ρ′, b′) ∈ Jord(ψ) avec b′ = b− 1, L(ρ× ρ′, 1/2) 6= 0;
pour toute place v de k, la représentation ψv de W ′

v ⊗ SL(2,C) contient la
représentation (non nécessairement irréductible) Langlands(ρv) ⊗ [b] avec multi-
plicité au moins 1, ce qui permet de définir la représentation ψ−

v qui se déduit de
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ψv en remplaçant une copie de Langlands(ρv) ⊗ [b] par Langlands(ρv) ⊗ [b − 2].
Et il doit exister une représentation irréductible σv dans Π(ψ−

v ) tel que πv est un
quotient de l’induite ρv ⊗ σv.

Dans l’état actuel, on montre que ces conditions sont nécessaires si π vérifie
quelques conditions restrictives à l’infini, par exemple π∞ est dans le paquet de
Langlands à l’intérieur du paquet d’Arthur, ou G est un groupe unitaire et π∞ a de
la cohomologie. On montre aussi que ces conditions sont suffisantes par exemple
si toutes les représentations πv sont dans le paquet de Langlands à l’intérieur du
paquet d’Arthur; montrer la suffisance de telles conditions nécessite d’utiliser la
formule de multiplicité d’Arthur dont la description dépasse le cadre de ce résumé.

Le point nouveau est que l’on sait démontrer l’holomorphie en tous les points de
la demi-droite réelle positive des opérateurs d’entrelacement normalisés à la Arthur
c’est-à-dire en utilisant en toute place la normalisation qui permet de compléter
les fonctions L partielles qui sont les contributions des places non ramifiées aux
termes constants des séries d’Eisenstein. On montre comment cette normalisation
se comprend bien en termes de la normalisation de Langlands-Shahidi quand on
considère les représentations des groupes linéaires associés aux ψ−

v .

Cet exposé reprend les prépublications disponibles sur
http://www.math.jussieu.fr/̃moeglin:
Formes automorphes de carré intégrable non cuspidales
Holomorphie des opérateurs d’entrelacement normalisés

The supersingular locus in Siegel modular varieties, and
Deligne-Lusztig varieties

Ulrich Görtz

(joint work with Chia-Fu Yu)

Let p be a prime number, and g ≥ 1 an integer. We consider the moduli space
Ag of principally polarized abelian varieties, and the following variant, the Siegel
modular variety Ag,I with Iwahori level structure at p, which is much less well
understood. By definition, AI is the space of isomorphism classes of tuples

(A0 → A1 → · · · → Ag, λ0, λg, η),

where the Ai are abelian varieties of dimension g, the mapsAi → Ai+1 are isogenies
of degree p, λ0 and λg are principal polarizations of A0 and Ag, respectively, such
that the pull-back of λg is pλ0, and η is a level structure away from p. We consider
these spaces over an algebraic closure k of Fp. Both have dimension g(g + 1)/2.

Inside Ag, we have the supersingular locus, i. e. the closed subset of those abelian
varieties which are isogeneous to a product of supersingular elliptic curves. There
are a number of results describing the geometry of the supersingular locus. For
instance, it was proved by Li and Oort [3] that the dimension of the supersingular
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locus is [g2/4]. It is known to be connected if g ≥ 2, and there is a formula for the
number of irreducible components, in terms of a certain class number, also proved
in loc. cit.

On the other hand, in the Iwahori case, currently very little is known about the
supersingular locus. Even its dimension is known only for g ≤ 3 (but see below).
Note that the situation here is definitely more complicated than in the case of Ag;
as an example, in the case g = 2, the supersingular locus coincides with the p-rank
0 locus, but it is not contained in the closure of the p-rank 1 locus. In addition, it
is not equi-dimensional (see [6, Prop. 6.3]).

The supersingular locus (and especially its cohomology) are interesting objects
from the point of view of automorphic representations and the Langlands program.

On the other hand we have the Kottwitz-Rapoport stratification (KR stratifi-
cation)

AI =
∐

x∈Adm

AI,x

by locally closed subsets, which should be thought of as a stratification by singu-
larities. It corresponds to the stratification by Schubert cells of the associated local
model. In terms of abelian varieties, we can express this as follows: the strata are
the loci where the relative position of the chain of de Rham cohomology groups
H1
DR(Ai) and the chain of Hodge filtrations inside each H1

DR(Ai) is constant. This

relative position “is” an element of the extended affine Weyl group W̃ of the group

GSp2g, and the so-called admissible set Adm ⊂ W̃ is the (finite) set of relative
positions which actually occur. The KR stratification on the space Ag consists of
only one stratum, and hence does not provide any interesting information.

In general neither of these stratifications is a refinement of the other one. Never-
theless, there are some relations between them. For instance, the ordinary Newton
stratum (which is open and dense in AI) is precisely the union of the maximal KR
strata. At the other extreme, the supersingular locus is not in general a union of
KR strata. However, it is our impression that those KR strata which are entirely
contained in the supersingular locus make up a significant part of it. We call these
KR strata supersingular.

We can produce a list of supersingular KR strata which admit a very simple
geometric description in terms of Deligne-Lusztig varieties. To give a more precise

description, we identify the elements of W̃ , and in particular of Adm with alcoves
in the standard apartment (in the Bruhat-Tits building of GSp2g). Each alcove
x is determined by its vertices x0, . . . , xg. In particular we have the base alcove
τ = (τ0, . . . , τg), which corresponds to the unique 0-dimensional KR stratum. Fix
0 ≤ i ≤ [g/2]. Let

W{i,g−i} = {x ∈ Adm; xi = τi, xg−i = τg−i}.

It is not hard to show that for x ∈ W{i,g−i}, the KR stratum Ax is contained
in the supersingular locus. We conjecture that the set

⋃
iW{i,g−i} is the set of

supersingular KR strata.
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We denote by G{i,g−i} the algebraic group over Fp whose Dynkin diagram is
obtained by removing the vertices i and g − i from the extended Dynkin diagram
of GSp2g, which splits over Fp2 , and where the Frobenius (of Gal(Fp2/Fp)) acts
by j 7→ g − j. The set W{i,g−i} can be identified with the Weyl group of G{i,g−i}
in a natural way.

Theorem 2. Fix a point (Ai)i in the minimal KR stratum Aτ . Let 0 ≤ i ≤ [g/2],
and let x ∈ W{i,g−i}. Denote by π the projection from Ag,I to the analogous
moduli space of partial lattice chains (Bi → Bg−i). There is an isomorphism

π−1((Aj)j∈{i,g−i})
∼=−→ Flag(G{i,g−i}).

Theorem 3. Let 0 ≤ i ≤ [g/2], and let x ∈ W{i,g−i}. We identify W{i,g−i} with

the Weyl group of G{i,g−i}, and let x−1 be the inverse element of x in this Weyl
group. The KR stratum Ax is a disjoint union

Ax

∼=−→
∐

X(x−1),

of copies of X(x−1), which is by definition the Deligne-Lusztig variety for G{i,g−i}
associated with x−1. The union ranges over the finite set π(Aτ ), where π is as in
the previous theorem.

As a direct corollary, we obtain

Corollary 2. (a) If p ≥ 2g, and w ∈ W{i,g−i} for some 0 ≤ i ≤ [g/2], then
the KR stratum associated with w is affine.

(b) There is an explicit formula for the number of connected components of
KR strata as above (see [1], section 6).

(c) The dimension of the supersingular locus is greater than or equal to g2/2
if g is even, and g(g − 1)/2 if g is odd.

Although the union of the supersingular KR strata is not all of the supersingular
locus, we still get a significant part. The following table backs this up for small g.
The dimension of the whole moduli space AI is g(g + 1)/2. The dimension of the
union of all superspecial KR strata is g2/2 if g is even, and g(g − 1)/2 otherwise
(and this is how part (3) of the corollary is obtained). The numbers of KR strata,
and of KR strata of p-rank 0 can be obtained from Haines’ paper [2], Prop. 8.2,
together with the results of Ngô and Genestier [4]; we indicate it to show the
combinatorial complexity of these questions. The dimension of the p-rank 0 locus
was obtained by a computer program. We conjecture that it is given by [g2/2] in
general. This formula has been checked for all g ≤ 9. If the conjecture holds true,
it follows in particular that for g even, the dimension of the supersingular locus
is g2/2. Note that for g = 5 we do not know the dimension of the supersingular
locus; for g = 6 we know it only because it has to lie between the dimension of the
union of all superspecial KR strata and the dimension of the p-rank 0 locus. As
a word of warning one should say that neither of these loci is equi-dimensional in
general.
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g 1 2 3 4 5 6
number of KR strata 3 13 79 633 6331 75973
number of KR strata of p-rank 0 1 5 29 233 2329 27949
dim. of union of superspecial KR strata 0 2 3 8 10 18
dim. of supersingular locus 0 2 3 8 ? 18
dim. of p-rank 0 locus 0 2 4 8 12 18
dimAI 1 3 6 10 15 21

Furthermore, it can be shown that any irreducible component of maximal di-
mension of the union of all superspecial KR strata is actually an irreducible com-
ponent of the p-rank 0 locus, and hence in particular an irreducible component of
the supersingular locus.

For further details we refer to our recent preprint [1].
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On Kim’s exterior square functoriality for GL(4)

Guy Henniart

Let k be a number field, and let R be a unitary cuspidal automorphic represen-
tation of GL(4) over the adèle ring of k. For each place v of k, let Sv be the
4-dimensional representation of the Weil-Deligne group of kv corresponding, via
the local Langlands correspondence, to the component of R at v. Form the 6-
dimensional representation of this Weil-Deligne group, by composing Sv with the
exterior square representation of GL(4,C); it corresponds to a generic smooth
irreducible representation Pv of GL(4, kv).

Theorem. There is a unique automorphic representation T of GL(6) over the
adèle ring of k, which has component Pv at each place v. It is parabolically induced
from unitary cuspidals.

In a recent preprint, Asgari and Raghuram have determined when that repre-
sentation T is cuspidal.
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The theorem above completes work of Henry Kim (JAMS 16, 2003), who proved
the existence of such a representation T with component Pv at all places with
residue characteristic greater than 4, or places where Rv is not supercuspidal.
What we show is that at places above 2 or 3 where Rv is supercuspidal, T also
has component Pv. At such places, the component Tv is uniquely determined by
local L and epsilon factors obtained via the Langlands-Shahidi method. The idea
of proof is to insert the local situation into a global one as above, where R has an
associated system of l-adic representations, and it is known a priori, by the results
of Harris and Taylor, that Tv has to be equal to Pv.

Hitchin fibration and fundamental lemma

Bao Châu Ngô

We give an overview of the proof of Langlands-Shelstad’s fundamental lemma for
Lie algebras based on the geometry of the Hitchin fibration. The basic ingredient
is the description of the supports of simple perverse sheaves which occur in the
decomposition of the l-adic cohomology of the Hitchin fibration. Based on the
knowledge of these supports, we can realize general stable (or kappa) orbital inte-
grals as a limit of product of very simple stable (or kappa) orbital integrals. This
allows us to reduce the fundamental lemma for general groups essentially to the
case of SL(2) which is known thanks to Labesse-Langlands work.
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[1] Ngô, Bao Châu. Le lemme fondamental pour les algebres de Lie, preprint available at
http://arxiv.org/abs/0801.0446

Laudatio for Bao Châu Ngô

Michael Rapoport

Dear Ngô Bao Châu,
Dear Professor Remmert,
Ladies and Gentlemen,

It is a great pleasure to give the laudatory speech for Ngô Bao Châu who is
the recipient of the 2007 Oberwolfach prize. This prize is awarded approximately
every three years to a young European mathematician below the age of 36 by the
Oberwolfach Foundation in cooperation with the Mathematical Research Institute
Oberwolfach and its Scientific Committee. The field of mathematics within which
the recipient of this year’s prize was selected is algebra and number theory. Ngô
Bao Châu was chosen for his work on the Fundamental Lemma conjecture of
Langlands and Shelstad. With his proof of this long standing conjecture, Ngô has
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established himself as a leader in a central area of mathematics at the crossroads
between algebraic geometry and automorphic forms.

I have structured my talk as follows. First, I will give a short curriculum vitae
of Ngô in the form of a table. Then I will place the result of Ngô in its historical
context. Finally, I will state a special case of his result and give some comments
on his proof.

1. Short curriculum vitae of Ngô Bao Châu

• 1972 born in Hanoi, Vietnam
• 1990 moves to France
• 1992-1995 student at the ENS, rue d’Ulm
• 1993-1997 doctoral studies at U. de Paris Sud, with G. Laumon
• 1997 dissertation ‘Le lemme fondamental de Jacquet et Ye’
• 1998-2004 chargé de recherches au CNRS, at Univ. de Paris Nord
• 2004 Habilitation
• 2004– Professor U. de Paris-Sud
• 2006– IAS, Princeton
• distinctions: Clay Research Award 2004, Speaker at ICM 2006.

2. Background
The conjecture of Langlands and Shelstad lies in the field of automorphic forms.

In the beginning of the 20th century this theory was the theory of modular forms,
i.e., of holomorphic functions on the upper half plane transforming in a prescribed
way under the action of discrete groups of conformal motions. It was only in the
1950’s, under the influence of I. Gelfand and Harish-Chandra, that the theory
of automorphic forms on arbitrary semi-simple Lie groups, or semi-simple alge-
braic groups, was developed. In the 1960’s the theory was dramatically refocused
through the introduction by R. Langlands of his functoriality principle. This prin-
ciple is a conjecture that stipulates correspondences between automorphic forms
on semi-simple groups which are related by a homomorphism between their Lang-
lands dual groups. This principle is surely among the most ingenious ideas of
the last century and constitutes the deepest statement about automorphic forms
known to us today (as a conjecture!). Langlands himself also showed how his
functoriality principle bears upon one of the central problems of arithmetic alge-
braic geometry, that of calculating the zeta function of Shimura varieties and of
determining the ℓ-adic Galois representations defined by their cohomology.

At the same time, Langlands emphasized the importance of the Selberg trace
formula as a tool for a proof of the functoriality principle in many cases, for
instance for establishing correspondences between automorphic forms on classical
groups. He also pointed to the relevance of the Selberg trace formula for the zeta
function problem.

One of the first tests of these radically new ideas is contained in the paper
by J.-P. Labesse and Langlands on SL2. At a certain point in their paper they
prove an innocuous-looking statement that later turned out to be an instance of a
general phenomenon. This result allowed them to construct a transport of certain
functions between groups, dual to the desired transport of automorphic forms.
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Langlands soon recognized the importance of this statement in the general
context of the functoriality principle, and named this conjecture ‘fundamental
lemma’; a more appropriate name would have been the fundamental matching
conjecture. In joint work with D. Shelstad, he formulated a precise conjecture in
the general case. Already the formulation of this conjecture is very complicated,
and, in fact, the conjecture comes in several variants (e.g., endoscopic version, or
base change version, etc.), depending on which homomorphism on the Langlands
dual group one uses to transport automorphic forms.

In the ensuing 25 years the matching conjecture has turned out to be absolutely
essential in achieving progress on the functoriality principle. Furthermore, R.
Kottwitz showed that the matching conjecture is also crucial in the zeta function
problem. In spite of its importance and its proof in special cases, the fundamental
lemma resisted intense efforts and its proof seemed out of reach. Indeed, quite a
number of papers were written during this period which were conditional on the
fundamental matching conjecture.

Ngô has now finally proved this conjecture and has thereby removed this major
stumbling block to further progress. More precisely, he proved the endoscopic fun-
damental lemma for unitary groups in joint work with G. Laumon. Very recently,
he posted a 188 page manuscript with a solution in the general endoscopic case.

What is the fundamental lemma about? As indicated above, it arises in the
comparisons of trace formulas. The trace formula is an identity, where on one
side, the ‘geometric side’, there appear sums of orbital integrals. The fundamental
lemma is an identity between orbital integrals of simple functions, like character-
istic functions of open compact subgroups.

The field of automorphic forms, and in particular the fundamental lemma, has
the reputation of being impenetrable, with results only appreciable by an insider.
In the rest of my talk I want to show that this is not necessarily so. I will state
a special case of the FL theorem of Laumon/Ngô which is highly non-trivial, yet
can be understood by many. And my hope is that the beauty of the statement, if
not of its proof, can be appreciated by all.

3. The theorem
As mentioned above, the result of Laumon/Ngô concerns orbital integrals for

unitary groups. As a warm-up, let us first consider orbital integrals for GL(n):

OG
γ (1K) =

∫

Gγ\G
1K(g−1γg)

dg

dgγ
,

where we used the following notation.

• F non archimedean local field, OF the ring of integers of F
• G = GL(n, F ), K = GL(n,OF ) maximal compact open subgroup.
• 1K = the characteristic function of K
• γ ∈ G regular semi-simple, hence its centralizer Gγ is a maximal torus in
G

• dg and dgγ Haar measures on G and Gγ .
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This orbital integral has a combinatorial description as the cardinality of a set
of lattices, as follwos.

OG
γ = |Xγ/Λγ |.

Here:

• Xγ = {OF -lattices M ⊂ Fn | γ(M) = M},
• γ is regular semi-simple, i.e., the F -subalgebra F [γ] of Mn(F ) generated

by γ is commutative semi-simple of dimension n, hence F [γ] =
∏
i∈I Ei,

where (Ei)i∈I is a finite family of finite separable extensions of F ,
• after choosing uniformizers πi = πEi in the Ei we have F [γ]× ∼= Λγ ×Kγ ,

where Λγ = ZI and Kγ =
∏
i∈I O

×
Ei

is a maximal compact open subgroup

of Gγ = F [γ]×,
• Λγ ⊂ Gγ acts freely on Xγ ,
• we normalized the Haar measures by vol(K, dg) = vol(Kγ , dgγ) = 1.

Thus we see that this simple orbital integral unwinds as a cardinality, namely
the number of lattices fixed under translation by γ, taken up to the obvious ho-
motheties commuting with the action of γ.

Next, we want to describe the orbital integrals for unitary groups. We will use
the following general notation to describe the relevant unitary groups.

• F is a local field of equal characteristic p
• F ′ is an unramified quadratic field extension of F , with Galois group

Gal(F ′/F ) = {1, τ}.
• E is a totally ramified separable extension of F .
• Φ(α) is a non degenerate hermitian form on the F ′-vector space E′ =
E ⊗F F ′

Φ(α)(x, y) = trE′/F ′(αxτ y),

(α ∈ E×).
• The discriminant of Φ(α) only depends on the valuation of α. Fix α+, resp.

α− such that Φ+
E′ = Φ(α+) has even parity of the order of the discriminant,

and Φ−
E′ = Φ(α−) has odd parity of the order of the discriminant.

Now we can exhibit a typical endoscopic subgroup of a unitary group. Fix totally
ramified separable finite extensions E1 and E2 of F of degrees n1 and n2. Let E′

1

and E′
2 denote the unramified quadratic field extensions E1F

′ and E2F
′ of E1 and

E2.
Let E′ = E′

1 ⊕ E′
2 (a F ′-vector space of dimension n1 + n2). Endow E′ with

the non degenerate hermitian forms

Φ+ = Φ+
E′

1

⊕ Φ+
E′

2

and

Φ− = Φ−
E′

1

⊕ Φ−
E′

2

.

These two forms are equivalent. Therefore we can find g ∈ GLF ′(E′) such that

Φ−(x, y) = Φ+(gx, gy) (∀x, y ∈ E′).
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Let us now fix γ1 ∈ E′×
1 and γ2 ∈ E′×

2 such that γ1γ
σ
1 = γ2γ

σ
2 = 1. We assume

that E′
i = F ′[γi], i.e. the minimal polynomial Pi(T ) ∈ F ′[T ] of γi has degree ni.

We assume moreover that the polynomials P1(T ) and P2(T ) are separable and
prime to each other.

The diagonal element (γ1, γ2) ∈ GLF ′(E′) may be simultaneously viewed as

• an elliptic regular semi-simple element γ+ in the unitary group

G
dfn
== U(E′,Φ+) = gU(E′,Φ−)g−1 ⊂ GLF ′(E′),

• as an elliptic regular semi-simple element γ− in the unitary group

U(E′,Φ−) ⊂ GLF ′(E′)

• and as an elliptic (G,H)-regular semi-simple element δ in the endoscopic
group

H = U(E′
1,Φ

+
1 ) × U(E′

2,Φ
+
2 ) ⊂ GLF ′(E′).

The elements γ+ and gγ−g−1 of G are conjugate in GLF ′(E′) but are not
conjugate in G. The conjugacy class of δ in H is equal to its stable conjugacy class.
To see this, note that an element of U(E′

i,Φ
+
i ) ⊂ GLF ′(E′

i) is stably conjugate to
γi if and only if it has the same minimal polynomial as γi.

Define subgroups

K = FixG(OE′
1
⊕OE′

2
), KH = FixH(OE′

1
⊕OE′

2
) .

These are hyperspecial maximal open compact subgroups of G and H respectively.
Now we define stable and unstable orbital integrals. Let

• The κ-orbital integral,

Oκγ (1K) = |{L′ ⊂ E′ | L′⊥+

= L′ and (γ1, γ2)L
′ = L′}|

−|{L′ ⊂ E′ | L′⊥−

= L′ and (γ1, γ2)L
′ = L′}|

( L′’s are OF ′-lattices, (·)⊥±

denotes the duality for such lattices with
respect to the hermitian form Φ±).

• The stable orbital integral,

SOHδ (1KH ) = |{M ′
1 ⊂ E′

1 |M ′⊥+

1

1 = M ′
1 and γ1M

′
1 = M ′

1}|
×|{M ′

2 ⊂ E′
2 |M ′⊥+

2

2 = M ′
2 and γ2M

′
2 = M ′

2}|.
(M ′

i ’s are OF ′ -lattices and (·)⊥+

i denotes the duality for such lattices with
respect to the hermitian form Φ+

i ).

Before we can state the main theorem, we need to define an additional numerical
invariant of the situation. Let

r = r(γ1, γ2) = val
(
Res(P1, P2)

)
,

where

Res(P1, P2) =

n1−1∏

k1=0

n2−1∏

k2=0

(γ
(k1)
1 − γ

(k2)
2 ) ∈ OF ′
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is the resultant of the minimal polynomials P1(T ), P2(T ) ∈ F ′[T ] of γ1, γ2. Here

γi = γ
(0)
i , . . . , γ

(ni−1)
i are the roots of Pi(T ) in some algebraic closure of F ′ con-

taining E′
1 and E′

2.
A special case of the theorem of Laumon and Ngô (which confirms the match-

ing conjecture of Langlands-Shelstad in this particular case) is now the following
statement.

Theorem. Under the above hypotheses, assume that the characteristic p of F is
bigger than n. Then

Oκγ (1K) = (−q)rSOHδ (1KH ),

where q is the number of elements in the residue field k.

As is obvious, the theorem is a purely combinatorial statement. However, the
combinatorics are quite difficult. In earlier attempts, methods of combinatorial
geometry based on Bruhat-Tits buildings were used; and these methods are suc-
cessful in low-dimensional cases. In the proof of Laumon/Ngô, the whole arsenal
of modern algebraic geometry is brought to bear on the problem. The starting
point is the observation that G/K = (LG/L+G)(k) is the set of k-points of the
affine Grassmannian of G, an ind-algebraic variety of infinite dimension. I cannot
go here into this proof.

In the end, I stress that I have not given the history of the problem. Any such
history would have to mention at least the following names, which are ordered here
alphabetically : Chaudouard, Clozel, Goresky, Haines, Hales, Kazhdan, Kottwitz,
Labesse, Langlands, MacPherson, Rogawski, Saito, Schröder, Shelstad, Shintani,
Waldspurger, Weissauer, Whitehouse, . . .

And now I ask you all to join me in congratulating Ngô Bao Châu for his
brilliant achievement.

Reporters: Gerald Gotsbacher, Harald Grobner
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Department of Mathematics
Univ. Paris-Sud
Bat. 425
F-91405 Orsay Cedex



Automorphic Forms, Geometry and Arithmetic 295

Prof. Dr. Richard Pink

Departement Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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