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Introduction by the Organisers

Representation theory of finite dimensional algebras has always been inspired by
interactions with other subjects, and Oberwolfach meetings traditionally serve as
a forum for such exchange of ideas. The main source of interactions are the many
problems in representation theory and in other parts of mathematics which can be
formulated in terms of representations of finite dimensional associative algebras.
The study of non-semisimple representations took off in the late 20th century with
key advances, such as the link to Lie algebras and quantum groups via quivers and
Hall algebras, and the use of tilting theory and derived categories to pass from
known algebras to new classes of algebras.

In modern work, instead of studying an algebra through its category of repre-
sentations, or derived category, one may study similar but more general categories.
Thus the classification of some classes of hereditary abelian categories or Calabi-
Yau triangulated categories fits into this setup. Another recent development, which
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had just started at the time of the last Oberwolfach meeting in February 2005,
and is still being played out, is the interaction with cluster algebras.

At the workshop, there were 46 participants. Among them, there were ex-
perts from neighbouring subjects like commutative algebra, algebraic topology,
and combinatorics. Compared to previous meetings, the number of participants
was reduced, which made it difficult to include representatives of many other fields
with close links to representation theory of finite dimensional algebras. What fol-
lows is a quick survey of the main themes of the 23 lectures given at the meeting.

Cluster combinatorics and Calabi-Yau categories arising from represen-
tations of algebras. Cluster algebras were invented by Fomin and Zelevinsky
in 2000 with motivations coming from the study of canonical bases in quantum
groups and total positivity in algebraic groups. The combinatorics of these al-
gebras were soon recognized to be closely related to those of tilting theory for
hereditary algebras. A collective effort over the last few years has led to a good
understanding of these relations for certain classes of cluster algebras. This was
made possible by the use of 2-Calabi-Yau categories constructed from representa-
tions of algebras. The introductory talks by Reiten and Iyama were devoted to
these developments as well as to the impact of recent important work by Derksen-
Weyman-Zelevinsky. In an informal evening presentation, Keller put Derksen-
Weyman-Zelevinsky’s work into a beautiful homological framework. The talk by
Geiss presented cutting-edge results towards the construction of ‘dual PBW-bases’
in large classes of cluster algebras. The proofs are based on subtle techniques from
the study of quasi-hereditary algebras, as demonstrated in Schröer’s talk. Marsh
analyzed fine points of the correspondence between cluster variables and rigid in-
decomposables and disproved a recent conjecture by Fomin-Zelevinsky. A powerful
representation-theoretic model for ‘higher cluster combinatorics’ was presented in
the talk by Bin Zhu.

Categorification via representations. The method of categorification has
been developed and studied successfully in representation theory by Chuang and
Rouquier. They constructed sl2-categorifications for blocks of symmetric groups
and used them to establish Broué’s abelian defect group conjecture for the sym-
metric groups. A similar philosophy led to the categorification of cluster algebras
via certain 2-Calabi-Yau categories, where the multiplication in the cluster algebra
is modeled by direct sums. A more recent and very promising approach due to
Leclerc was presented by Keller. In this case the multiplication is modeled by the
tensor product in certain categories of representations of quantum affine algebras.
Categorifications also play an important role in low dimensional topology, thanks
to important work of Khovanov. This connection was the motivation for Stroppel’s
talk on convolution algebras arising from Springer fibres.

Representation dimension of algebras and complexity of triangulated
categories. The representation dimension of an algebra is a homological invari-
ant which Auslander introduced in 1971 and which remained mysterious for many
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years thereafter. Some of the modern techniques in representation theory provide
now a better understanding. An introductory talk by Ringel discussed the basic
ideas and some interesting new phenomena for hereditary algebras. Dimensions of
triangulated categories were introduced by Rouquier to obtain lower bounds for
representation dimensions and Iyengar presented some new techniques to compute
them. The talk of Buchweitz provided a more general perspective for the compu-
tation of these dimensions by reviewing the work of Beligiannis and Christensen
on projective classes and ghosts in triangulated categories. A description of trian-
gulated structures on additive categories in terms of Hochschild cohomology was
presented by Pirashvili.

Hereditary categories of geometric origin. Hereditary categories are in some
sense the building blocks for many interesting structures in modern representation
theory. Typical examples are categories of coherent sheaves which come equipped
with some additional geometric structure. Using this extra structure, Lenzing pre-
sented a new description of the stable category of vector bundles on a weighted
projective line. The talk of Burban discussed an intriguing connection between
vector bundles on elleptic curves and solutions of Yang-Baxter equations. A com-
plete classification of abelian 1-Calabi-Yau categories up to derived equivalence
was presented by van Roosmalen.

Representations of quivers. Quivers and their representations have always
played a central role in the representation theory of finite dimensional algebras.
They provide the link to Lie theory, either through the theorems of Gabriel and
Kac, relating possible dimension vectors of indecomposable representations to pos-
itive roots, or more directly via Ringel’s construction of quantum groups using
Ringel-Hall algebras. Progress since the last meeting includes Hausel’s announce-
ment of a positive solution of Kac’s conjecture that the constant term of the poly-
nomial counting the number of absolutely indecomposable representations over a
finite field is the corresponding root multiplicity. Hausel was invited to the meet-
ing, but sadly in the end it was not possible for him to attend. Hausel’s result in-
volves hyper-Kähler geometry, and in his talk Reineke also used geometry, namely
the cohomology of moduli spaces of quiver representations, to prove a formula
similar to one conjectured by Kontsevich and Soibelman concerning Donaldson-
Thomas type invariants. Chapoton and Hille both gave intriguing talks involving
tilting modules for quivers, exceptional sequences and braid group actions. Hu-
bery discussed the connections between Hall algebras and cluster algebras and the
existence of Hall polynomials for non-simply laced affine diagrams, using species
rather than quivers.

Further aspects of algebras and their representations. Representation the-
ory of finite dimensional algebras has developed immensely since its origin, and
it has now, as demonstrated above, profound connections to many other fields.
However, the ‘internal’ theory of representation theory is still pushed forward:
The talk of Skowroński presented results on algebras with generalized standard
almost cyclic coherent Auslander-Reiten components. Representation theory of
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Lie algebras and algebraic groups is intimately related to finite dimensional alge-
bras which are cellular or quasi-hereditary. These are algebras given by a specific
filtration of ideals. König presented work on how to generalize such a filtration
further in order to deal with possibly infinite dimensional building blocks. Benson,
Carlson and others developed a theory of support varieties for finitely generated
modules over a finite group, and they obtained deep structural information about
modular representations of finite groups in terms of the group cohomology ring.
These results found their analogous twin results for Lie algebras and Steenrod
algebras arising in topology. Similar support varieties have since then been de-
fined for instance for complete intersections, quantum groups and arbitrary finite
dimensional algebras. A common denominator for these situations is the presence
of a ring of cohomological operations, and in the latter case this is provided by the
Hochschild cohomology ring. The talk of Avramov gave an overview over recent
results and questions on the Hochschild cohomology ring of an algebra arising in
this context. Nakano presented results on the cohomology and support varieties
for quantum groups in a quest to find relationships between representations for
quantum groups and geometric constructions in complex Lie theory.

The format of the workshop has been a combination of introductory survey lec-
tures and more specialized talks on recent progress. In addition there was plenty
of time for informal discussions. Thus the workshop provided an ideal atmosphere
for fruitful interaction and exchange of ideas. It is a pleasure to thank the admin-
istration and the staff of the Oberwolfach Institute for their efficient support and
hospitality.
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PBW and semicanonical bases for cluster algebras . . . . . . . . . . . . . . . . . . . 423

Robert Marsh (joint with Aslak Bakke Buan, Idun Reiten)
Denominators of cluster variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426

Igor Burban (joint with Bernd Kreußler)
Vector bundles on cubic curves and Yang-Baxter equations . . . . . . . . . . . 429
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Abstracts

Cluster tilting in 2-Calabi-Yau categories I

Idun Reiten

This is the first in a series of two lectures by Osamu Iyama and myself. We
give an introduction to the subject of triangulated 2-Calabi-Yau categories with
cluster tilting objects, and discuss some of the more recent developments. In this
lecture we start with definitions and basic examples. Then we concentrate on a
class of examples associated with elements in Coxeter groups of graphs, based on
[15][3][4], with some related material in [12].

The work on triangulated 2-Calabi-Yau (2-CY for short) categories was, via
cluster categories, inspired by the theory of cluster algebras by Fomin-Zelevinsky,
starting with [9]. There is a lot of interesting work by many authors on the
interplay between cluster algebras and 2-CY categories, but we will not discuss
these aspects here.

1. 2-CY categories and 2-CY tilted algebras

2-CY categories. Let C be a Hom-finite triangulated category over an alge-
braically closed field K. Then C is 2-CY if we have a functorial isomorphism
DExt1C(A,B) ≃ Ext1C(B,A) for A, B in C, where D = HomK(−,K). We have the
following important examples.

(i) Let Q be a finite connected quiver without oriented cycles, let KQ be the
path algebra of Q over K, and denote by τ the AR-translation for KQ. Then the
orbit category C = CQ = Db(KQ)/τ−1[1] is called the cluster category [6], and was
shown to be triangulated in [17]. This construction was inspired by [9], via the
connections with quiver representations from [21]. An equivalent category in the
case An was investigated in [7]. Loosely speaking there are two crucial differences
between the category modKQ of finite dimensional KQ-modules and the cluster
category CQ. The category CQ has a finite number of additional indecomposable
objects P1[1], . . . , Pn[1], where P1, . . . , Pn are the indecomposable projective KQ-
modules, and there are more maps between the indecomposableKQ-modules when
viewed as objects in CQ.

(ii) When Λ is the preprojective algebra of a Dynkin diagram, the stable module
category mod Λ is known to be Hom-finite triangulated 2-CY. This category, or
rather the associated abelian category mod Λ, has been extensively studied by
Geiss-Leclerc-Schröer.

(iii) Let R be an odd-dimensional isolated hypersurface singularity with residue
field K, and denote by CM(R) the category of maximal Cohen-Macaulay R-
modules. Then CM(R) is a triangulated category [13] which is Hom-finite 2-CY

by work of Auslander [1] and Eisenbud [8] (See [2]).
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Cluster tilting objects. An object T in C is cluster tilting if Ext1C(T, T ) = 0,
and Ext1C(T,X) = 0 for X in C implies that X is in the additive category addT
generated by T [19]. Such objects were investigated in the context of cluster
categories in [6], under the name of Ext-configuration, which was shown to be
equivalent to T being maximal rigid, that is, Ext1C(T, T ) = 0 and T is maximal
with this property. In cluster categories these objects are exactly those induced
by tilting KQ′-modules for some algebra KQ′ derived equivalent to KQ. The
concept of cluster tilting also appeared in the work of Iyama, under the name
maximal 1-orthogonal, in a completely different setting.

Tilting KQ-modules were natural candidates for modelling clusters in clus-
ter algebras. One drawback was that almost complete tilting modules have at
most two complements, but not necessarily exactly two [22] [23] [14]. However,
when considering cluster tilting objects in cluster categories, one obtains exactly
two. These complements are connected via special exchange triangles [6]. That
Ext1C(A,B) = 0 if and only if Ext1C(B,A) = 0 was an essential ingredient for these
results, and so many arguments carry over to the general 2-CY case (see also [11]).
Still some further work was needed for the generalisation in [16].

2-CY tilted algebras. The 2-CY tilted algebras are by definition the algebras
Γ = EndC(T ) where T is a cluster tilting object in a Hom-finite triangulated 2-CY
category C. When C is a cluster category we have the cluster tilted algebras [5].

Some interesting properties of 2-CY tilted algebras are the following, with the
above notation.

(i) C/ add τT ≃ mod Γ [5] [19]
(ii) id ΓΓ ≤ 1 and id ΓΓ ≤ 1 [19]
(iii) If Sub Γ denotes the full subcategory of mod Γ whose objects are the sub-

modules of projective modules, then Sub Γ is 3-CY, that isDExt2Γ(A,B) ≃
Ext1Γ(B,A) for any A,B in Sub Γ [10] [19].

2. Examples associated with Coxeter groups

Let Q be a finite connected non Dynkin quiver with no loops and vertices
1, . . . , n, let Λ be the completion of the preprojective algebra of Q over K, and W
the associated Coxeter group with generators s1, . . . , sn. For i = 1, . . . , n, let Ii
be the ideal Λ(1 − ei)Λ where ei is the trivial path at vertex i. If for w ∈ W , the
expression w = si1 · · · sit is reduced, let Iw = Ii1 · · · Iit . Then Iw is independent
of the choice of reduced expression. Further Λw = Λ/Iw is a finite dimensional
K-algebra with idΛwΛw ≤ 1 and C = Sub Λw is Hom-finite triangulated 2-CY [15]
[3]. Some of these categories are described in a different way in [12].

All these 2-CY categories have some nice cluster tilting objects. Namely, for
each reduced expression w = si1 · · · sit of w, the object T = Λ/Ii1 ⊕Λ/Ii1Ii2 ⊕· · ·⊕
Λ/Ii1Ii2 · · · Iit is cluster tilting in Sub Λw. There is a combinatorial rule depending
on the sequence of integers i1, . . . , it for describing the quiver of EndC(T ) [3].
In addition we have shown in [4] that these EndC(T ) are given by quivers with
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potentials, where we actually give an explicit description of the potentials. There
is some related work by Keller [18].

3. Special cases

It is interesting to note that the two cases of 2-CY categories which have been
most extensively investigated fit into the general setup in section 2.

(a) Let Q be a finite connected quiver with no oriented cycles and with vertices
labeled 1, . . . , n such that if there is an arrow i → j, then i > j. If Q is not
Dynkin, let w = (s1 · · · sn)2. (The Dynkin case is treated separately). Then for
the corresponding cluster tilting object T in C = Sub Λw, the quiver of EndC(T )
is Q, which has no oriented cycles. Hence C is equivalent to the cluster category
CQ [20]. (See [3], and [12] for an independent related approach).

(b) Let Λ′ be the preprojective algebra of a Dynkin quiver Q′ and Q an extended
Dynkin quiver containing Q′. Let W be the Coxeter group of Q and W ′ the
subgroup generated by the si for i ∈ Q′

0. Let w0 be the longest element in W ′.
Then mod Λ′ is equivalent to Sub Λw0

[3].
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[11] C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math.

165 (2006), no. 3, 589-632.
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Cluster tilting in 2-Calabi-Yau categories II

Osamu Iyama

This is the second part in a series of two lectures with Idun Reiten. We shall
show that cluster tilting mutation is compatible with quiver mutation and QP
mutation. Throughout let K be an algebraically closed field, and let C be a Hom-
finite 2-Calabi-Yau triangulated category over K with the suspension functor Σ.
Let T be a basic cluster tilting object in C with an indecomposable decomposition
T = T1 ⊕ · · · ⊕ Tn, and let 1 ≤ k ≤ n. The following result [BMRRT, IY] is
fundamental.

Theorem 1 (cluster tilting mutation)

(a) There exists a unique indecomposable object T ∗
k ∈ C such that T ∗

k 6≃ Tk

and µk(T ) := (T/Tk) ⊕ T ∗
k is a basic cluster tilting object in C.

(b) There exist triangles (called exchange sequences)

T ∗
k

g
−→ Uk

f
−→ Tk → ΣT ∗

k and Tk
g′

−→ U ′
k

f ′

−→ T ∗
k → ΣTk

such that f and f ′ are right add(T/Tk)-approximations and g and g′ are
left add(T/Tk)-approximations.

Clearly we have µk ◦ µk(T ) ≃ T .

Example 2 Let C be a cluster category of type A3.
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Following [FZ], we introduce mutation of quivers.
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Definition 3 (quiver mutation) Let Q be a quiver1 without loops. Assume that
k ∈ Q0 is not contained in 2-cycles. Define a quiver µ̃k(Q) by applying the
following (i)-(iii) to Q.

(i) For each pair (a, b) of arrows in Q with e(a) = k = s(b), add a new arrow
[ab] : s(a) → e(b).

(ii) Replace each arrow a ∈ Q1 with e(a) = k by a new arrow a∗ : k → s(a).
(iii) Replace each arrow b ∈ Q1 with s(b) = k by a new arrow b∗ : e(b) → k.

Define a quiver µk(Q) by applying the following (iv) to µ̃k(Q).

(iv) Remove a maximal disjoint collection of 2-cycles.

Then µk(Q) has no loops, k is not contained in 2-cycles in µk(Q), and µk◦µk(Q) ≃
Q holds.

Example 4 For the following quiver Q of type A3, we calculate µ1(Q), µ2(Q)
and µ2 ◦ µ2(Q). (For simplicity we denote a∗∗ and b∗∗ by a and b respectively.)

Q =

(
1

a // 2 b // 3

)
µ1
−→

(
1 2

a∗

oo b // 3

)

↓µ2

(
1

[ab]
AA2

a∗

oo 3
b∗oo

)
µ̃2
−→

(
1

[ab]
AA

a // 2 b // 3

[b∗a∗]

��
)

(iv)
−→

(
1

a // 2 b // 3

)

From now on, we assume that C has a cluster structure [BIRSc]. This means
that the quiver QT of the endomorphism algebra EndC(T ) of any cluster tilting
object T in Q has no loops and 2-cycles. In this case we have the following.

Observation 5 Combining the exchange sequences in Theorem 1, we have a
complex2

Tk
g′

−→ U ′
k

f ′g
−−→ Uk

f
−→ Tk

such that the following sequences are exact for the Jacobson radical JC of C.

(T, U ′
k)

f ′g
−−→ (T, Uk)

f
−→ JC(T, Tk) → 0,

(Uk, T )
f ′g
−−→ (U ′

k, T )
g′

−→ JC(Tk, T ) → 0.

Thus the quiver and relations of EndC(T ) can be controlled by exchange sequences.

Using Observation 5, we have the following result [BMR, BIRSc] which asserts
that cluster tilting mutation is compatible with quiver mutation.

Theorem 6 Qµk(T ) ≃ µk(QT ).

Using Theorem 6, we can show the following result [BIRSm].

Corollary 7 Cluster tilted algebras are determined by their quivers.

Following [DWZ], we introduce quivers with potentials.

1We use the convention a : s(a) → e(a) for each a ∈ Q1.
2Such a complex is called a 2-almost split sequence in [I] and an AR 4-angle in [IY].
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Definition 8 Let Q be a quiver. We denote by Ai the K-vector space with the
basis consisting of paths of length i, and by Ai,cyc the subspace of Ai spanned by

all cycles. We denote by K̂Q :=
∏

i≥0 Ai the complete path algebra. Its Jacobson

radical is given by J
K̂Q

=
∏

i≥1 Ai.

A quiver with a potential (or QP) is a pair (Q,W ) consisting of a quiver Q
without loops and an element W ∈

∏
i≥1Ai,cyc (called a potential). It is called

reduced if W ∈
∏

i≥3 Ai,cyc. Define ∂aW ∈ K̂Q by

∂a(a1 · · · aℓ) :=
∑

ai=a

ai+1 · · · aℓa1 · · ·ai−1

and extend linearly and continuously. The Jacobian algebra is defined by

P(Q,W ) := K̂Q/〈∂aW | a ∈ Q1〉

where I is the closure of I with respect to the (J
K̂Q

)-adic topology on K̂Q.

Two potentialsW andW ′ are called cyclically equivalent ifW−W ′ ∈ [KQ,KQ].
Two QP’s (Q,W ) and (Q′,W ′) are called right-equivalent if Q0 = Q′

0 and there

exists a continuous K-algebra isomorphism φ : K̂Q → K̂Q′ such that φ|Q0
= id

and φ(W ) and W ′ are cyclically equivalent. In this case φ induces an isomorphism

P(Q,W ) ≃ P(Q′,W ′).
It was shown in [DWZ] that for any QP (Q,W ), there exists a reduced QP

(Q′,W ′) such that P(Q,W ) ≃ P(Q′,W ′), and such (Q′,W ′) is uniquely deter-
mined up to right-equivalence. We call (Q′,W ′) a reduced part of (Q,W ).

Example 9 Let (Q,W ) be the QP below. Its reduced part is given by the QP
(Q′,W ′) below.

(Q,W ) =

(
1

c
AA

a // 2 b // 3
d��

, cd+ abd

)
(Q′,W ′) =

(
1

a // 2 b // 3 , 0

)

Definition 10 (QP mutation) Let (Q,W ) be a QP. Assume that k ∈ Q0 is
not contained in 2-cycles. Replacing W by a cyclically equivalent potential, we
assume that no cycles in W start at k. Define a QP µ̃k(Q,P ) := (µ̃k(Q), [W ]+∆)
as follows:

• µ̃k(Q) is given in Definition 3.

• [W ] is obtained by substituting [ab] for each factor ab in W with e(a) =
k = s(b).

• ∆ :=
∑

a,b∈Q1, e(a)=k=s(b) a
∗[ab]b∗.

Define a QP µk(Q,P ) as a reduced part of µ̃k(Q,P ).
Then k is not contained in 2-cycles in µk(Q,W ), and it was shown in [DWZ]

that µk ◦ µk(Q,W ) is right-equivalent to (Q,W ).
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Example 11 For a QP (Q,W ) below, we calculate µ2(Q,W ) and µ2 ◦µ2(Q,W ).
(The reduced part of µ̃2 ◦ µ2(Q,W ) was calculated in Example 9.)

(Q,W ) =

(
1

a // 2 b // 3 , 0

)
µ2
−→

(
1

[ab]
AA2

a∗

oo 3
b∗oo , a∗[ab]b∗

)

µ̃2
−→

(
1

[ab]
AA

a // 2 b // 3

[b∗a∗]

��
, [ab][b∗a∗] + b[b∗a∗]a

)
reduced
−−−−−→

(
1

a // 2 b // 3 , 0

)

Using Observation 5, we have the following result [BIRSm] which asserts that
cluster tilting mutation is compatible with QP mutation.

Theorem 12 If EndC(T ) ≃ P(Q,W ), then EndC(µk(T )) ≃ P(µk(Q,W )).

Immediately we have the following conclusion.

Corollary 13 If EndC(T ) is a Jacobian algebra of a QP, then so is EndC(T ′) for
any cluster tilting object T ′ ∈ C reachable from T by successive mutation.

We have the following applications [BIRSm] of Corollary 13 (see also [K]).

Example 14 (a) Cluster tilted algebras are Jacobian algebras of QP’s.
(b) Let Λ be a preprojective algebra and W the corresponding Coxeter group.

For any w ∈ W , we have a 2-CY triangulated category C := SubΛw [BIRSc]. For
any cluster tilting object T ∈ C reachable from a cluster tilting object given by a
reduced expression of w by successive mutation, EndC(T ) is a Jacobian algebra of
a QP.

We end this report by the following nearly Morita equivalence for Jacobian
algebras [BMR2, BIRSm], where f.l. is the category of modules with finite length.

Theorem 15 For a QP (Q,W ), we have an equivalence

f.l.P(Q,W )/ addSk ≃ f.l.P(µk(Q,W ))/ addS′
k,

where Sk and S′
k are simple modules associated with the vertex k.
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An introduction to the representation dimension of artin algebras

Claus Michael Ringel

Let Λ be an artin algebra (this means that Λ is a module-finite k-algebra, where
k is an artinian commutative ring). The modules to be considered will be left
Λ-modules of finite length. Given a module M we denote by addM the class of
modules which are direct summands of direct sums of copies of M .

The representation dimension of artin algebras was introduced by M.Auslander
in his famous Queen Mary Notes, but remained a hidden treasure for a long time.
Only very recently some basic questions concerning the representation dimension
have been solved by Iyama and Rouquier, and now there is a steadily increas-
ing interest in this dimension (in particular, see papers by Oppermann, and also
Krause-Kussin, Avramov-Iyengar, and Bergh). This introduction will recall the
basic setting and outline a general scheme in order to understand some of the
artin algebras with representation dimension at most 3. But we should stress that
the main focus at present lies on the artin algebras with representation dimension
greater than 3.

1. Some basic results.

A module M is called a generator if any projective module belongs to addM ; it
is called a cogenerator if any injective module belongs to addM. It was Auslander
who stressed the importance of the global dimension d of the endomorphism rings
End (M), where M is both a generator and a cogenerator. Note that d is either 0
(this happens precisely when Λ is semisimple) or greater or equal to 2 (of course,
it may be infinite). The representation dimension of an artin algebra Λ which is
not semisimple is the smallest possible such value d; whereas the representation
dimension of a semisimple artin algebra is defined to be 1.

The main tool for calculating the representation dimension is the following
criterion due to Auslander (implicit in the Queen Mary Notes). Given modules
M,X , denote by ΩM (X) the kernel of a minimal right (addM)-approximation
M ′ → X . By definition, the M -dimension M -dimX is the minimal value i such
that Ωi

M (X) belongs to addM .

(A) Theorem (Auslander). Let M be a Λ-module which is both a generator
and a cogenerator and let d ≥ 2. The global dimension of End (M) is less or equal
to d if and only if M -dimX ≤ d− 2 for all Λ-modules X.

An immediate consequence is:

(B) Theorem (Auslander). An artin algebra Λ is of finite representation type if
and only if rep.dim. Λ ≤ 2. This result was the starting observation and indicates
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that the representation dimension may be considered as a measure for the distance
of being representation-finite.

There is the following characterization of the endomorphisms rings of mod-
ules which are both generators and cogenerators; its proof provides an important
bicentralizer situation:

(C) Theorem (Morita-Tachikawa). If M is a Λ-module which is a generator
and cogenerator, then End (M) is an artin algebra with dominant dimension at
least 2 and any artin algebra with dominant dimension at least 2 arises in this
way.

(D) Theorem (Iyama). The representation dimension is always finite. This
asserts, in particular, that any artin algebra Λ can be written in the form Λ = eΛ′e,
where Λ′ is an artin algebra with finite global dimension; thus many homological
questions concerning Λ-modules can be handled by dealing with modules for an
algebra with finite global dimension.

(E) Theorem (Igusa-Todorov). If rep.dim. Λ ≤ 3, then Λ has finite finitistic
dimension.

Until 2001, for all artin algebras Λ where the representation dimension was
calculated, it turned out that rep.dim. Λ ≤ 3. Thus, there was a strong feeling
that all artin algebras could have this property. If this would have been true, the
finitistic dimension conjecture and therefore a lot of other homological conjectures
would have been proven by (E).

(F) Example (Rouquier). Let V be a finite-dimensional k-space, where k is
a field, and Λ(V ) the corresponding exterior algebra. Then rep.dim. Λ(V ) = 1 +
dimV.

2. Endomorphism rings of generator-cogenerators in case Λ is hered-
itary.

In case Λ is hereditary, one can determine the set of all possible values of
the global dimension of endomorphism rings of Λ-modules which are generator-
cogenerators. Let τΛ denote the Auslander-Reiten translation for the category
mod Λ.

Theorem (Dlab-Ringel). Let Λ be a hereditary artin algebra and let d ≥ 3 be in
N∪{∞}. There exists a Λ-module M which is both a generator and a cogenerator
such that the global dimension of End (M) is equal to d if and only if there is a
τΛ-orbit of cardinality at least d.

3. Torsionless-finite artin algebras.

We call an artin algebra Λ torsionless-finite provided there are only finitely
many isomorphism classes of indecomposable modules which are torsionless (i.e.
submodules of projective modules).

Theorem. If Λ is torsionless-finite, then its representation dimension is at
most 3.
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The proof follows again arguments by Auslander presented in the Queen Mary
Notes. According to Auslander-Bridger a torsionless-finite artin algebra has also
only finitely many isomorphism classes of indecomposable modules which are factor
modules of injective modules. Let L be an additive generator for the subcategory
of all torsionless modules, and F an additive generator for the subcategory of all
factor modules of injective modules. Given any Λ-module X , let X ′ be the F -
trace in X , thus the inclusion map X ′ → X is a right (addF )-approximation of
X . Let p : X ′′ → X be a right (addL)-approximation of X . Then there is an
exact sequence of the form 0 → p−1(X ′) → X ′′ ⊕X ′ → X → 0 which shows that
ΩL⊕F (X) is a direct summand of p−1(X ′). Since p−1(X ′) is a submodule of X ′′,
it follows that ΩL⊕F (X) is in addL.

Many classes of artin algebras are known to be torsionless-finite: the hereditary
algebras (Auslander), the algebras with Jn = 0 such that Λ/Jn−1 is representation-
finite, where J is the radical of Λ (Auslander), in particular: the algebras with
J2 = 0, but also the minimal representation-infinite algebras, then the artin alge-
bras stably equivalent to hereditary algebras (Auslander-Reiten), the right glued
algebras and the left glued algebras (Coelho, Platzeck; an artin algebra is right
glued provided almost all indecomposable modules have projective dimension 1),
as well as the special biserial algebras (Schröer). Also, if Λ is a local algebra of
quaternion type, then Λ/socΛ is torsionless-finite, so that again its representation
dimension is equal to 3 (Holm).

But it should be stressed that there are many classes of artin algebras with
representation dimension 3 which are not necessarily torsionless-finite: for example
the tilted algebras (Assem-Platzeck-Trepode), the trivial extensions of hereditary
algebras (Coelho-Platzeck) as well as the canonical algebras (Oppermann).
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Some aspects of Hochschild (co)homology

Luchezar Avramov

In the talk I surveyed certain results and given questions connected to the
Hochschild homology HH∗(A/K,B) and cohomology HH∗(A/K,B) of an asso-
ciative algebra A over a commutative noetherian ring K with coefficients in an
A-bimodule B. The following topics were discussed:

(1) Links of vanishing of HHn(A/K,B) with smoothness,
(2) Finite generation of the K-algebra HH∗(A/K,A), and the K-algebra

HH∗(A/K,A) (the latter when A is commutative),
(3) Generalizations and related theories, such as Schinkler (co)homology,

André-Quillen (co)homology, cyclic homology.

In general, the case when A is commutative and finitely generated as a K-
algebra are better understood, and offer guidelines about possible results in the
case of finite dimensional algebras over a field K.

Poisson automorphisms, quiver moduli, and wall-crossing for
Donaldson-Thomas invariants

Markus Reineke

1. Notation

Let Q be a finite quiver without oriented cycles, with set of vertices I =
{1, . . . , n} and arrows denoted by α : i → j. We order the vertices in such a
way that i > j provided there exists an arrow i → j in Q. Let Λ = ZI be the
free abelian group on I, and let Λ+ = NI be the set of dimension vectors. On Λ,
we have the Euler form of Q given by 〈d, e〉 =

∑
i∈I diei −

∑
α:i→j diej , and its

antisymmetrization {d, e} = 〈d, e〉 − 〈e, d〉.

Choose a linear map Θ : Λ → Z (a stability), and define the slope of d ∈ Λ+ \ 0
by µ(d) = Θ(d)/ dim d, where dim d =

∑
i∈I di. The set of all d ∈ Λ+ \ 0 of slope

µ, together with 0, forms a sublattice Λ+
µ of Λ+, for all µ ∈ Q.

We consider the category RepCQ of complex representations of Q. The Auslander-
Reiten translation on RepCQ induces a linear map τ on Λ. The slope of a rep-
resentation X is defined as the slope of its dimension vector dimX . Using the
stability Θ, we can define notions of (semi-)stable representations in RepC(Q) as
follows: a representation X is called semistable if µ(U) ≤ µ(X) for all non-zero
subrepresentations U of X , and it is called stable if µ(U) < µ(X) for all non-zero
proper subrepresentations.

By [1], there exists a smooth manifold M st
d (Q) parametrizing isomorphism classes

of stable representations of dimension vector d ∈ Λ+. We are interested in the
Euler characteristic χ(M st

d (Q)) in singular cohomology.
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2. Statement of the result

Given a quiver as above, we can define a Possion algebra structure on the formal
power series ring B = Q[[x1, . . . , xn]] by {xd, xe} = {d, e}xd+e on monomials

xd =
∏

i∈I x
di

i ∈ B for d ∈ Λ+. We consider Poisson automorphisms Ti of B for

i ∈ I given by Ti(x
d) = xd(1 + xi)

{i,d}.

Theorem 2.1. There exists a factorization

T1 ◦ . . . ◦ Tn =
∏

µ∈Q decreasing

(Tµ : xd 7→ xd · F−(id+τ)d
µ (x)),

where formal series F d
µ(x) ∈ B for µ ∈ Q and d ∈ Λ are defined by the functional

equations

F d
µ (x) =

∏

e∈Λ+
µ \0

(1 − xeF e
µ(x))〈e,d〉χ(Mst

e (Q)).

3. Relation to [3]

On the formal power series ring Q[[x, y]] with Possion bracket {x, y} = xy,
define Poisson automorphisms Ta,b for (a, b) 6= (0, 0) by

Ta,b(x) = x(1 − (−1)abxayb)b, Ta,b(y) = y(1 − (−1)abxayb)−a.

The following is conjectured in [3]:

Conjecture 3.1. There exists a factorization

T k
0,1T

k
1,0 =

∏

a/b decreasing

T
kd(a,b,k)
a,b

for d(a, b, k) ∈ Z.

This is interpreted in [3] as a formula describing the behaviour of Donaldson-
Thomas type invariants of a polarized noncommutative Calabi-Yau threefold (a
3-Calabi-Yau category endowed with a certain stability structure) under a change
of stability condition (more precisely, a wall-crossing in a space of stability struc-
tures); the exponents d(a, b, k) are viewed as universal local Donaldson-Thomas
type invariants.

Specializing Theorem 2.1 to the k-arrow Kronecker quiver Kk : 1
(k)
⇐ 2 with stabil-

ity Θ(d, e) = e, one can derive:

Corollary 3.2. There exists a factorization

T k
0,1T

k
1,0 =

∏

a/b decreasing
a,b coprime

(
x 7→ xFa,b(x

ayb)b

y 7→ yFa,b(x
ayb)−a

)k

,

where Fa,b(t) = F (t) ∈ Z[[t]] is given by the functional equation

F (t) =
∏

i≥1

(1 − (tF (t)N )i)−iχi
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for N = kab− a2 − b2 and χi = χ(M st
(ia,ib)(Kk)).

Conjecture 3.1 would follow from this provided all series F (t) defined by such a
functional equation admit a product factorization F (t) =

∏
i≥1(1 − ((−1)N t)i)idi

for integer di.

4. Ingredients of the proof

Let K = Q(q) be the field of rational functions in q, and let R = Q[q](q−1) be
the subring of functions without pole at q = 1. We consider the skew formal power
series algebra A = Kq[[x1, . . . , xn]] with multiplication xdxe = q−〈e,d〉xd+e. The
natural R-lattice AR in A (topologically) spanned by the xd quantizes the Poisson
algebra R, since AR(q − 1) ≃ R.

Let Hk((Q)) be the (completed) Hall algebra of Q for a finite field k, with topolog-
ical basis [M ] indexed by the isomorphism classes of k-representations of Q, and
multiplication

[M ][N ] =
∑

[X]

|{U ⊂ X : U ≃M, X/U ≃ N}| · [X ].

It admits a Q-algebra morphism
∫

: H((Q)) → Ak to a Q-algebra Ak defined in
the same way as A, but with q replaced by |k|; this map is given by

∫
[X ] =

1

|AutQ(X)|
xdimX .

. Define series P and Pµ for µ ∈ Q in H((Q)) by

P =
∑

[X]

[X ], Pµ =
∑

Xsemistable
µ(X)=µ

[X ].

By [4], we have an identity (the Harder-Narasimhan recursion)

P =
∏

µ decreasing

Pµ, and thus

∫
P =

∏

µ decreasing

∫
Pµ

in Ak. It is also shown in [4] that
∫
P ,

∫
Pµ admit generic versions E, Eµ in the

K-algebra A.

Using results of [2], one can prove that conjugation by E, Eµ induces Poisson
automorphisms T , Tµ of B, where T equals T1 ◦ . . . ◦ Tn, and Tµ is given by a
power series involving Euler characteristics χ(MP

d (Q)) of so-called smooth mod-
els MP

d (Q). These are manifolds parametrizing pairs consisting of a semistable
representation X of dimension vector d, together with a map P → X from a
projective representation whose image avoids all subrepresentations U of X with
µ(U) = µ(X). The analysis of a stratification of MP

d (Q) in [2] allows to char-
acterize this generating function of Euler characteristics as the solution to the
functional equation of Theorem 2.1.
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Quasi-hereditary algebras arising from preprojective algebras

Jan Schröer

(joint work with Christof Geiß, Bernard Leclerc)

Our aim is the construction of a new class of quasi-hereditary algebras: We start
with the preprojective algebra Λ associated to a quiver Q, then we pass to a
Frobenius subcategory CM of mod(Λ). Inside CM one can find a certain maximal
rigid module TM . Then B := EndΛ(TM ) is the quasi-hereditary algebra we want
to study. The algebra B has many unusual and interesting properties. As an
application, one can use B to “categorify” a certain cluster algebra associated to
B. In this way, we obtain a new categorification of all acyclic cluster algebras
using only classical tilting theory.

(Cluster algebras were introduced by Fomin and Zelevinsky [3]. They are com-
binatorially defined commutative algebras. As an introduction to this beautiful
and rapidly developing area, we recommend to look at the survey article [4] and
also at Sergey Fomin’s Cluster Algebra Portal.)

Let Q be a finite quiver without oriented cycles, and let

Λ = ΛQ = KQ/(c)

be the associated preprojective algebra. We assume that Q is connected and has
vertices {1, . . . , n} with n at least two. Here K is an algebraically closed field,
KQ is the path algebra of the double quiver Q of Q which is obtained from Q by
adding to each arrow a : i → j in Q an arrow a∗ : j → i pointing in the opposite
direction, and (c) is the ideal generated by the element

c =
∑

a∈Q1

(a∗a− aa∗)

where Q1 is the set of arrows of Q. Preprojective algebras first appeared in work
of Gelfand and Ponomarev. These algebras occur in many different contexts, for
example there are close links with the theory of canonical bases for quantum group.

Clearly, the path algebra KQ is a subalgebra of Λ. By

πQ : mod(Λ) → mod(KQ)

we denote the corresponding restriction functor.
Let τ = τQ be the Auslander-Reiten translation of KQ, and let I1, . . . , In be

the indecomposable injective KQ-modules. A KQ-module M is called preinjective
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if M is isomorphic to a direct sum of modules of the form τ j(Ii) where j ≥ 0 and
1 ≤ i ≤ n.

A KQ-module M = M1 ⊕ · · · ⊕Mr with Mi indecomposable and Mi 6∼= Mj for
all i 6= j is called a terminal KQ-module if the following hold:

(i) M is preinjective;
(ii) If X is an indecomposable KQ-module with HomKQ(M,X) 6= 0, then

X ∈ add(M);
(iii) Ii ∈ add(M) for all indecomposable injective KQ-modules Ii.

In other words, the indecomposable direct summands of M are the vertices of
a subgraph of the preinjective component of the Auslander-Reiten quiver of KQ
which is closed under successor. We define

ti := ti(M) := max
{
j ≥ 0 | τ j(Ii) ∈ add(M) \ {0}

}
.

Let M be a terminal KQ-module, and let

CM := π−1
Q (add(M))

be the subcategory of all Λ-modules X with πQ(X) ∈ add(M). Notice that if Q
is a Dynkin quiver and M is the sum of all indecomposable representations of Q
then CM = mod(Λ). This case is studied intensively in [5].

Theorem 1 ([6]). Let M = M1 ⊕ · · · ⊕Mr be a terminal KQ-module. Then the
following hold:

(i) CM is a Frobenius category with n indecomposable CM -projective-injectives;
(ii) The stable category CM is a 2-Calabi-Yau category;
(iii) If ti(M) = 1 for all i, then CM is triangle equivalent to the cluster category

(introduced in [1]) associated to Q.

A Λ-module T is rigid if Ext1Λ(T, T ) = 0. Recall that for all X,Y ∈ mod(Λ)
we have dim Ext1Λ(X,Y ) = dim Ext1Λ(Y,X). Assume that T is a rigid Λ-module
in CM . Then T is called CM -maximal rigid if Ext1Λ(T ⊕X,X) = 0 with X ∈ CM

implies X ∈ add(T ).

Let A be a finite-dimensional algebra. By P1, . . . , Pr and S1, . . . , Sr we denote
the indecomposable projective and simple A-modules, respectively, where Si =
top(Pi).

For a class U of A-modules let F(U) be the class of all A-modules X which have
a filtration

X = X0 ⊇ X1 ⊇ · · · ⊇ Xt = 0

of submodules such that all factors Xj−1/Xj belong to U for all 1 ≤ j ≤ t. Such a
filtration is called a U-filtration of X . We call these modules the U-filtered modules.

Let ∆i be the largest factor module of Pi in F(S1, . . . , Si), and set

∆ = {∆1, . . . ,∆r}.
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The modules ∆i are called standard modules. By F(∆) we denote the category of
∆-filtered A-modules.

The algebra A is called quasi-hereditary if EndA(∆i) ∼= K for all i, and if AA
belongs to F(∆). Quasi-hereditary algebras first occured in Cline, Parshall and
Scott’s [2] study of highest weight categories.

To any terminal KQ-module M = M1 ⊕ · · · ⊕ Mr, we can construct a CM -
maximal rigid module TM such that for B := EndΛ(TM ) the following hold:

Theorem 2 ([6]). (i) B is a quasi-hereditary algebra;
(ii) The restriction of the contravariant functor HomΛ(−, TM ) : mod(Λ) →

mod(B) induces an anti-equivalence F : CM → F(∆) where F(∆) is the
category of ∆-filtered B-modules and

∆ := {F (Mi) | 1 ≤ i ≤ r}

is the set of standard modules. (We interpret Mi as a Λ-module using the
obvious embedding functor.);

(iii) For a short exact sequence 0 → X → Y → Z → 0 in CM the following are
equivalent:
(a) The short exact sequence 0 → πQ(X) → πQ(Y ) → πQ(Z) → 0 splits;
(b) The sequence 0 → F (Z) → F (Y ) → F (X) → 0 is exact.

The quasi-hereditary algebras B = EndΛ(TM ) have many interesting proper-
ties. For example, the modules in F(∆) all have projective dimension at most
one. Furthermore, the indecomposable projective B-modules have a unique(!) ∆-
filtration. We can describe the characteristic tilting module in great detail, which
is also quite rare.

The category F(∆) of ∆-filtered B-modules “categorifies” the cluster algebra
A(CM ) defined by the quiver of B. This includes all acyclic cluster algebras. There
is a bijection between the set of clusters of A(CM ) and the set of isomorphism
classes of classical tilting B-modules in F(∆).
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PBW and semicanonical bases for cluster algebras

Christof Geiss

(joint work with Bernard Leclerc and Jan Schröer)

Introduction

This is the continuation of the talk given by Jan Schröer. Our aim is to show
that we have a particular good understanding of cluster algebras associated to the
“initial seed” TM coming from a preinjective CQ-module M .

1. Review of Lusztig’s geometric construction of U(n)

Let Q be a quiver without oriented cycles and vertex set Q0 = {1, 2, . . . , n}.
Associated to the underlying graph |Q| we have a Kac-Moody Lie algebra g with
symmetric generalized Cartan matrix C|Q|. We have the usual triangular decom-
position h = n− ⊕ h ⊕ n, and the decomposition

n = ⊕α∈Φ+nα

into root spaces, where Φ+ denotes the positive roots associated to the Weyl group
W ⊂ GL(h∗).

For each dimension vector β ∈ Nn
0 let Λβ be the (affine) variety of nilpotent

representations of Λ with dimension vector β. On Λβ acts the algebraic group

GLβ =
n∏

i=1

GLβ(i)(C)

by conjugation. Thus the orbits are in bijection with the isoclasses of nilpotent
representations with dimension vector β.

We consider M̃(β) the space of C-valued constructable GLβ-invariant functions
on Λβ . The direct sum

M̃ = ⊕β∈Nn
0
M̃(β)

becomes a (graded) associative algebra with multiplication for f ′ ∈ M̃(β′) and

f ′′ ∈ M̃(β′′) given by

(f ′ ∗ f ′′)(X) :=

∫

U∈Grrep(X,β′)

f ′(U)f ′′(X/U) for all X ∈ Λβ′+β′′ ,

where Grrep(X, β′) denotes the (projective) variety of all sub-representations of X
with dimension vector β′. The integral is defined with the topological Euler char-
acteristic as measure. This is quite similar to Ringel’s Hall-algebra construction,
however we work over the complex numbers rather than with finite fields.

In M̃ we consider the subalgebra M which is generated by the functions 11i ∈

M̃αi for 1 ≤ i ≤ n where αi denotes the corresponding simple root, so Λαi = {pt}.
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Theorem (Lusztig). The assignation ei 7→ 11i induces an isomorphism

U(n) → M,

where the ei denote the Chevalley generators of U(n).

See [5]. Henceforth we will identify these two algebras. In order to prove this
result the following is needed. Let Λβ = C1 ∪ · · · ∪ Cp be the decomposition into
irreducible components. Then we have:

Proposition 1.1. There exist dense open subsets Ui ⊂ Ci and a basis S(β) =
(si)1,...,p of M(β) such that

si |Uj =

{
11Ui if i = j

0 else
.

The union of the bases S(β) for all possible β is the semicanonical basis of U(n).

2. Cluster Character

Proposition 2.1. Consider the usual comultiplication ∆: U(n) → U(n) ⊗ U(n).
In terms of constructable functions we have f(x′ ⊕ x”) = ∆(f)(x′, x”)

See [2] for a proof.

Corollary 2.2. For f ∈ nα we have supp(f) ⊂ Λind
α

This follows from the classical fact that for f ∈ U(n) we have f ∈ n if and only
if f = 1 ⊗ f + f ⊗ f and the above proposition.

Now consider the graded dual U(n)∗gr = ⊕α∈Nn
0

HomC(U(n)α,C). This is is a
commutative Hopf algebra. Note that the dual S∗ of the semicanoical basis S is a
basis of U(n)∗gr, the dual semicanoical basis.

Via our identification U(n)α = M(α) we obtain an evaluation map

δ? : Λ -mod0 → U(n)∗gr, x 7→ δx

i.e. if dimX = α then δX(f) = f(x) for all f ∈ M(α). It is easy to see that in case
Ext1Λ(X,X) = 0 we have δX ∈ S∗. By the following result δ is a cluster character
in the sense of Y. Palu.

Theorem 1. We have

(a) For X,Y ∈ Λ -mod0 we have δX⊕Y = δXδY .
(b) If dimC Ext1Λ(X,Y ) = 1 and

0 → Y → E′ → X → 0 and 0 → X → E” → Y → 0

are the corresponding non-split short exact sequences, then

δXδY = δE′ + δE”.

Part (a) of the Theorem follows from 2.1 above, while part (b) follows from an
adaption [3] of the corresponding result for the Caldero-Keller map [1]. In fact,
we have a more general result (without the restriction to dimC Ext1Λ(X,Y ) ≤ 1),
however we do not need this here.



Representation Theory of Finite Dimensional Algebras 425

3. A Cluster Algebra associated to CM

We consider R(CM , TM ) the subalgebra of U(n)∗gr generated by the δR with R
(indecomposable), rigid and reachable from TM via mutation. So it is roughly
speaking the cluster algebra which via δ is categorified by (CM , TM ). We know:

C[δM1
, . . . , δMr ] ⊂ R(CM , TM ) ⊂ spanC〈δX | X ∈ CM 〉

The first inclusion holds since all Mi appear on the mutation path from TM to T∨
M ,

see Schröer’s talk. The second inclusion is trivial however, we should note that the
last space is in fact a ring. This follows since CM is additive and by Theorem 1 (a).
Note, that we can consider CQ-modules as Λ-modules with all arrows a∗ acting
trivially.

Theorem 2. We have the following:

(a) The monomials (δM ′)M ′∈Add(M) form a basis of spanC〈δX | X ∈ CM 〉 in
fact, they belong to the dual of a PBW-basis. In particular, R(CM , TM ) is
a polynomial ring.

(b) The elements (δ(M ′,gM′ ) ⊂ S∗ span also R(CM , TM ). Thus we have com-
pleted the cluster monomials to a basis of R(CM , TM ).

Proof. (Sketch) Since the summands Mi of M are indecomposable preinjective
CQ-modules we may assume Ext∗Q(Mi,Mj) = 0 if i ≥ j. It is easy to see that

n(M) := ⊕r
i=1ndimMi ⊂ n

is a Lie algebra. We can choose a basis p1, p2, . . . of n consisting of root vectors
such that pi spans ndimMi for 1 ≤ i ≤ r. Build from this the (scaled) PBW-basis
of U(n) consisting of the elements

pm = p
(m1)
1 ∗ · · · ∗ p

(ml)
l

with m ∈ N
(N)
0 and p

(m)
i := 1

m!p
m
i .

Our claim follows now essentially from the following observations:

(a) If ml 6= 0 for some l > r then pm(X) = 0 for all X ∈ CM .
(b) Let M ′ = ⊕r

i=1M
mi

i ∈ Add(M), then

pm |Rep(Q,dimM ′)= 11O(M ′).

For (i) one reduces easyly to the claim pl(X) = 0 for l > r and X ∈ CM since our
category is closed under factor modules. Now, the claim follows by a dimension
argument.

For (ii) we note that the affine space Rep(Q, dimM ′) of representations of Q
can be viewed as an irreducible component of ΛdimM ′ . Our claim follows now from
the order of the Mi. �
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Denominators of cluster variables

Robert Marsh

(joint work with Aslak Bakke Buan, Idun Reiten)

1. The Laurent Phenomenon

Cluster algebras were introduced by Fomin-Zelevinsky [10], and have links with
many topics, from Poisson geometry to Teichmüller theory. They are of particular
interest because of links to the canonical basis (introduced by Kashiwara and
Lusztig) of a quantized enveloping algebra and totally positive matrices. Here we
consider connections to the representation theory of finite dimensional algebras.

Let x be a free generating set for the field F of rational functions in n indeter-
minates over Q. Let Q be a quiver with vertices indexed by x. Such a pair (x, Q)
is known as a seed. (We consider here cluster algebras without coefficients and
restrict to the skew-symmetric case.) For each z ∈ x, (x, Q) can be mutated to a
new seed µz(x, Q). Let S(x, Q) be the set of seeds obtained by arbitrary iterated
mutation of (x, Q). The cluster algebra A(x, Q) is the subring of F generated by
the union of all free generating sets in the seeds in S(x, Q). Such free generating
sets are known as clusters and their elements are known as cluster variables.

By the definition each cluster variable is a rational function of the cluster vari-
ables in any fixed cluster. In fact, more is true. The Laurent Phenomenon of Fomin
and Zelevinsky [10, 3.1] (which was proved in wider generality) is as follows:

Theorem 1.1. Any cluster variable of A(x, Q) can be written as a Laurent poly-
nomial in the elements of a fixed cluster y.

2. The cluster category

Motivated by connections between cluster algebras and the representation the-
ory of finite dimensional algebras developed in [13], the cluster category CQ asso-
ciated to the cluster algebra above was introduced independently in [8] (for type
An) and [2]. The construction in [8] was combinatorial, given in terms of diagonals
of a regular polygon with n + 3 vertices, and the construction in [2] was given in
terms of the derived category of the path algebra kQ.

An object X of CQ is said to be exceptional if Ext1CQ
(X,X) = 0. We now collect

together some important results linking the properties of A(x, Q) and CQ:
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Theorem 2.1. Suppose that Q is an acyclic quiver, i.e. it has no oriented cycles.
(a) There is a bijection M 7→ uM between the exceptional indecomposable objects
of CQ and the cluster variables of A(x, Q).
(b) The bijection in (a) induces a bijection between the seeds of A(x, Q) and the
maximal rigid (cluster-tilting) objects of CQ, maximal direct sums of nonisomor-
phic indecomposable objects with no self-extensions.
(c) The quiver in a seed is the same as the quiver of the endomorphism algebra of
the corresponding cluster-tilting object.
(d) Let M be an exceptional indecomposable object of CQ. Then:

uM =
f(x)∏
x∈x x

dx
,

where d = (dx)x∈x is the dimension vector of M and f is a polynomial not divisible
by any x ∈ x.

Proof. Suppose first that Q is an alternating orientation of a Dynkin quiver.
Fomin-Zelevinsky proved in [11] that there is a bijection between the cluster vari-
ables of A(x, Q) and the almost positive roots of the corresponding root system
(i.e. the positive roots together with the negative simple roots), such that the
cluster variable uα corresponding to a root α can be written in the form:

uα =
f(x)∏
x∈x x

dx
,

where the dx are the coefficients of α written in terms of the simple roots and f
is not divisible by any x ∈ x. This can be regarded as a root system-theoretic
version of (a) and (d) (a version of (b) is also provided).

In [8] (a) and (b) were shown for type A and in [2] (using results from [13]),
(a) and (b) were shown for simply-laced Dynkin quivers. In [16], (a) and (b) were
shown for the non-simply-laced case (see also [15]). Part (d) then follows from [11]
if Q is an alternating orientation of a simply-laced Dynkin quiver. Part (d) was
shown for arbitrary orientations in type A in [8] and for arbitrary orientations of
a simply-laced Dynkin quiver in [9, 14].

In the general case, (a) and (b) were shown in [7] (then also in [1] using results
from [6]). That denominators of cluster variables are given by dimension vectors
was shown in [6]. Part (d) was shown in [7]. Part (c) follows from results in [3] using
(a) and (b) and the fact that in the bijection in (a) exchange of complements of an
almost complete cluster-tilting object in CQ corresponds to cluster mutation. �

A natural question is how the denominator of a cluster variable can be inter-
preted in the case where the initial seed does not contain an acyclic quiver. Let
T = ⊕y∈yTy be the the image under τ−1 of the cluster-tilting object corresponding
to a seed (y, R) of A(x, Q). We say that uM has a T -denominator if uM ∈ y or if

uM =
f(y)∏
y∈y y

dy
,
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where dy = dimHomCQ(Ty,M) for y ∈ y and f(y) is not divisible by any y ∈ y. It
follows from [5] that there is a bijection between cluster variables not in y and the
indecomposable modules over the cluster-tilted algebra ΓT := EndCQ(T )opp. The
vector d = (dy)y∈y can be interpreted as the dimension vector of the ΓT -module
corresponding to uM .

Theorem 2.2. [9, 14] Suppose that A(x, Q) has simply-laced Dynkin type. Then,
for all indecomposable exceptional objects M of CQ, uM has a T -denominator.

3. Main Results

We can now state the main results of [4], using the above notation.

Theorem 3.1. [4] (a) If no summand of T is regular then every cluster variable
of A(x, Q) has a T -denominator.
(b) If all cluster variables have T -denominators then EndCQ(Ty) ∼= k for all y ∈ y.

Theorem 3.2. [4] Suppose that kQ is tame. The following are equivalent:
(a) Every cluster variable of A(x, Q) has a T -denominator.
(b) No regular summand Ty of T with quasilength r − 1 lies in a tube of rank r.
(c) We have EndCQ(Ty) ∼= k for all y ∈ y.

Corollary 3.3. [4] Every cluster variable of A(x, Q) has a T -denominator for
every cluster-tilting object if and only if Q is Dynkin or has exactly two vertices.

An interesting open question is how to interpret the exponents in the denomi-
nator of a cluster variable representation-theoretically in the general case.
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Vector bundles on cubic curves and Yang-Baxter equations

Igor Burban

(joint work with Bernd Kreußler)

My talk is based on a joint article with Bernd Kreußler [3]. It is devoted to
applications of methods of homological algebra in the theory of the classical Yang-
Baxter equation

[
r12(x), r23(y)

]
+

[
r12(x), r13(x+ y)

]
+

[
r13(x+ y), r23(y)

]
= 0,

where r(z) is the germ of a meromorphic function of one complex variable z in a
neighborhood of 0 taking values in U

(
sln(C)

)
⊗ U

(
sln(C)

)
.

Due to a classification of Belavin and Drinfeld, there are three types of non-
degenerated solutions of this equation: elliptic, trigonometric and rational [1].
From that time an open question is to study degenerations of elliptic solutions
into trigonometric and then further into rational ones. In order to attack this
problem, we use a construction of solutions of the Yang-Baxter equation which was
introduced by Polishchuk [4, 5]. The quintessence of his method is the following.

Let E be an irreducible projective curve of arithmetic genus one over C, i.e. a
plane projective curve given by the equation zy2 = 4x3 − g2xz

2 − g3z
3. It is

singular if any only if ∆ := g3
2 − 27g2

3 = 0.

ooooooooo

ooooooooo 88
88

8

��
��

�
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•
•

•

Unless g2 = g3 = 0, the singularity is a node, whereas for g2 = g3 = 0 it is a cusp.
Let E1 and E2 be two non-isomorphic stable vector bundle on E of the same

rang n and degree d, and Cy1
and Cy2

be two different sky-scraper sheaves. Then
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the tensor describing the triple Massey product

m3 : Hom(E1,Cy1
) ⊗ Hom(Cy1

, E2[1]) ⊗ Hom(E2,Cy2
) −→ Hom(E1,Cy2

)

in the derived category of coherent sheaves Db
(
Coh(E)

)
gives rise to a solution of

the classical Yang-Baxter equation for the Lie algebra sln(C), see
[4, Theorem 4]. In the case of a smooth elliptic curve E it was shown by Pol-
ishchuk that in such a way one gets all elliptic solutions. In the case of a nodal
respectively cuspidal Weierstraß cubic curve one gets certain trigonometric or ra-
tional solutions respectively.

Let g = sl2(C) and

e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)

be a basis of g. Using an explicit description of vector bundles on Weierstraß cubic
curves (see for example [2]), we can carry out an explicit computation of triple
Massey products, which leads to the following solutions of the classical Yang-
Baxter equation.

• For a smooth elliptic curve, we get the elliptic solution obtained and used by
Baxter, Belavin and Sklyanin:

rell(y) =
cn(y)

sn(y)
h⊗ h+

1 + dn(y)

sn(y)

(
e⊗ f + f ⊗ e

)
+

1 − dn(y)

sn(y)

(
e⊗ e+ f ⊗ f

)
.

• For a nodal cubic curve, we obtain the trigonometric solution of Cherednik:

rtrg(y) =
1

2
cot(y)h⊗ h+

1

sin(y)

(
e⊗ f + f ⊗ e

)
+ sin(y)e⊗ e.

• Finally, in the case of the cuspidal cubic curve, we get the rational solution of
Stolin:

rrat(y) =
1

y

(
1

2
h⊗ h+ e⊗ f + f ⊗ e

)
+ y

(
e⊗ h+ h⊗ e

)
− y3e⊗ e.
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The stable category of vector bundles on a weighted projective line

Helmut Lenzing

(joint work with José Antonio de la Peña, Dirk Kussin, Hagen Meltzer)

We work over an algebraically closed field k. It is known that hereditary categories
catch a significant part of the representation theory of finite dimensional algebras.
By a result of Happel [5] there are — up to derived equivalence — only two types
of (connected, Hom-finite) hereditary, abelian categories with a tilting object: the
categories mod(H) of finite dimensional modules over the path algebra of a finite
quiver and the categories coh(X) of coherent sheaves on a weighted projective
line X. We extend the range of representation theoretic phenomena controlled by
hereditary categories by introducing the stable category of vector bundles on a
weighted projective line.

For a weighted projective line X of weight type (p1, . . . , pt) let coh(X) denote
its category of coherent sheaves and vect(X) its category of vector bundles (i.e.
locally free coherent sheaves). Recall from [2] that coh(X) is a Hom-finite abelian
category which is hereditary, noetherian and satisfies Serre duality DExt1(X,Y ) =
Hom(Y, τX) with a self-equivalence τ serving as the Auslander-Reiten translation
for coh(X). Moreover, coh(X) has a tilting object whose endomorphism ring is a
canonical algebra in the sense of Ringel [14].

Depending on the Euler characteristic χX = 2−
∑t

i=1(1− 1/pi) of X, we define
the distinguished class of line bundles L on X as follows: If χX 6= 0, then L is the
closure under isomorphism of the τ -orbit τZO of the structure sheaf, otherwise L
is the system of all line bundles. Note that L is always closed under Auslander-
Reiten translation. A sequence 0 → A → B → C → 0 of vector bundles on X

is called a distinguished exact sequence if for each distinguished line bundle the
sequence

0 → Hom(L,A) → Hom(L,B) → Hom(L,C) → 0

is exact. Each distinguished exact sequence in vect(X) is an exact sequence in
coh(X), the converse does not hold.

Theorem 1. (i) The distinguished exact sequences define an exact structure E (in
the sense of Quillen) on the category vect(X).

(ii) With respect to this exact structure vect(X) is a Frobenius category, that
is, E-injectives agree with E-projectives and there are sufficiently many E-injectives
(E-projectives).

(iii) The distinguished line bundles are exactly the indecomposable E-injectives
(or E-projectives) of vect(X).

By definition the stable category of vector bundles vect(X) on X is the factor
category of vect(X) by the two-sided ideal of all morphisms factoring through a
finite direct sum of distinguished line bundles. As a consequence of [4] we thus
obtain:
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Corollary 2. The stable category vect(X) of vector bundles on X is a triangulated
category. Its triangles are induced from the distinguished exact sequences from
vect(X).

Each Auslander-Reiten sequence in vect(X) whose end terms do not belong to
L is a distinguished exact sequence. This yields:

Corollary 3. The triangulated category vect(X) has Auslander-Reiten triangles.
Moreover, the Auslander-Reiten translation in vect(X) is induced from the Auslan-
der-Reiten translation of vect(X).

The proof of Theorem 1 is not obvious. It relies on an analysis of the graded
surface singularities attached to a weighted projective line as summarized in the
next proposition, which combines results of [2], [3] and [9], where more explicit
information is given.

Proposition 4. (i) For χX > 0, the orbit algebra R =
⊕

n≥0 Hom(O, τ−nO)

is a commutative affine algebra of the form k[x1, x2, x3]/(f), in particular graded
complete intersection.

(ii) For χX = 0 the category L is determined completely by the L(p)-graded
coordinate algebra S of X (see [2]) which is commutative affine and graded complete
intersection.

(iii) For χX < 0 the orbit algebra R =
⊕

n≥0 Hom(O, τnO) is a commutative
affine algebra which is graded Gorenstein. �

By way of example the weight type (2, 3, 5), where χX > 0, yields the simple
singularity R = k[x1, x2, x3]/(x

2
1 + x3

2 + x5
3) with degrees x̄1 = 15, x̄2 = 10,

x̄3 = 6. For (2, 3, 7), where χX < 0, we obtain the exceptional unimodal singularity
R = k[x1, x2, x3]/(x

2
1+x3

2+x7
3) with degrees x̄1 = 21, x̄2 = 14, x̄3 = 6. For (2, 3, 6),

where χX = 0, we obtain the elliptic singularity S = k[x1, x2, x3]/(x
2
1 + x3

2 + x6
3)

where the degrees ~x1, ~x2, ~x3 generate the rank one abelian group L(2, 3, 6) ∼= Z×Z6

with relations 2~x1 = 3~x2 = 6~x3.
If χX > 0, the weight sequence (p1, p2, p3) describes a Dynkin diagram ∆, by

k[~∆] we denote the corresponding path algebra for some quiver ~∆ with underlying
graph ∆. For a finite dimensional k-algebra A and a right A-module M we define

the one-point extension A[M ] as the matrix algebra

[
A 0
M k

]
. For a canonical

algebra Λ all its one-point extensions with an indecomposable projective module P
are derived-equivalent [11]. For P the indecomposable projective corresponding to

the sink vertex of Λ the algebra Λ̂ = Λ[P ] is called the extended canonical algebra
attached to X. We obtain the following interesting trichotomy.

Theorem 5. There are equivalences of triangulated categories

vect(X) =





Db(mod(k[~∆)]) if χX > 0,

Db(coh(X)) if χX = 0,

Db(mod(Λ̂)) if χX < 0.
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Invoking [10] we obtain:

Corollary 6. Assume χX < 0. Then each component of the Auslander-Reiten
quiver of Db(mod(Λ̂)) has type ZA∞.

This provides the first instance of a finite dimensional algebra having an Aus-
lander-Reiten quiver of this shape.

We briefly discuss the ingredients for the proof of Theorem 2. The encountered
trichotomy is related to Orlov’s theorem [13] dealing with the triangulated category

of graded singularities DZ

Sg(R) of a graded singularity R, defined as the quotient

category of the derived category Db(modZ -R) of finitely generated graded modules

modulo the subcategory Db(projZ -R) of perfect complexes. The category DZ

Sg(R)
has an interesting alternative interpretation, due to Buchweitz [1] as the stable cat-

egory CMZ(R) of maximal graded Cohen-Macaulay R-modules (where one factors
out all projective R-modules). An analogous result holds for the L(p)-graded case.

By means of [2], [3] and [9] we obtain that vect(X) is equivalent to DZ

Sg(mod(R))

for χX 6= 0 and to D
L(p)
Sg (mod(S)) for χX = 0.

For χX > 0 the assertion of the theorem now follows from work of Kashiura,
Saito and Takahashi [6]. For χX = 0 the result is due to Ueda [15]. For an
alternative treatment in case χX ≥ 0 see also [12, 8]. For case χX < 0 the result
is due to work of de la Peña and the author [11, 12]. We point to [7] for a related
investigation.
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Cohomology for Quantum Groups: A Bridge between Algebra and
Geometry

Daniel K. Nakano

(joint work with C. Bendel, Z. Lin, B. Parshall, C. Pillen)

Cohomology theories were developed throughout the 20th century by topologists
to construct algebraic invariants for the investigation of manifolds and topological
spaces. During this time, cohomology was also defined for algebraic structures like
groups and Lie algebras to determine ways in which their representations can be
glued together.

The purpose of this talk will be to demonstrate how cohomology theories for
algebraic structures can be used to reintroduce the underlying geometry. For
finite groups, these ideas started with the work of D. Quillen and J. Carlson. My
talk with focus on the situation for the (small) quantum group uq(g) where g

is a complex semisimple Lie algebra and q is a primitive lth root of unity. For
l > h, Ginzburg and Kumar proved that the cohomology ring identifies with the
coordinate algebra of the nilpotent cone N .

In this talk, I will present results which extend this result in two directions.
The first direction encompasses the computation of the cohomology for quantum
groups when l ≤ h. This computation entails many beautiful results which include
powerful vanishing results on line bundle cohomology and normality of nilpotent
orbit closures. Moreover, our results show that the cohomology ring is finitely
generated. This allows us to define support varieties and compute the support
varieties for quantum Weyl modules in the case when (l, p)=1 where p is any bad
prime for the underlying root system.

The second direction will include a discussion on how to realize rings of regular
functions on nilpotent orbits and their closures via the cohomology of the (small)
quantum group. These results answer an old question of Friedlander and Parshall
posed in the mid 1980’s. Our results have direct applications in relating classical
multiplicity formulas due to McGovern and Graham to the Kazhdan-Lusztig the-
ory for the (small) quantum groups which was established first in the 1990’s by
Kazhdan-Lusztig, and Kashiwara-Tanisaki, and in more recent work by Arkhipov,
Bezrukavnikov and Ginzburg.
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This talk represents joint work with C. Bendel, B. Parshall, C. Pillen (first
part), and Z. Lin (second part).
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Polynomial Invariants for Tilted Algebras and Cluster Mutations

Lutz Hille

We consider three related problems, all three lead to the notion of a polynomial
invariant. We always work over an algebraically closed field for simplicity.

1) Assume A is a finite dimensional hereditary algebra with upper triangular
Cartan matrix CA = (yi,j). Assume B is a tilted algebra for A and we consider
its upper triangular Cartan matrix CB = (zi,j). A polynomial invariant is an
element F ∈ R = k[xi,j | 1 ≤ i < j ≤ n] (the polynomial ring in variables
corresponding to the non–trivial entries in an upper triangular Cartan matrix)
satisfying F (yi,j) = F (zi,j) for each pair (A,B) of tilted algebras as above.

2) We consider again the Polynomial ring R as above and an action of a group
Γ generated by n− 1 elements. This group action corresponds to the exceptional
mutations on the level of the Grothendieck group. We are also interested in an ex-
tension Γ of this group by allowing certain sign changes in R (this extended action
corresponds to the shift in the derived category). The action of Γ corresponds to
the braid group action on exceptional sequences (see [7], [3], and [6]).

Theorem 1. An element F is a polynomial invariant (according to 1)), precisely
if it is a Γ–invariant polynomial in R (with respect to the action defined in 2)).

3) Assume we consider a quiver with n vertices and qi,j arrows (we assume Q
has no loops and no 2–cycles). Then we can define the cluster mutations µi for
i = 1, . . . , n. Depending on the various orientations h of a quiver Q (we forget the
number of arrows qi,j and consider only the underlying orientation) we can look for
polynomials Fh (for different orientations h we may have different polynomials) so
that Fh(qi,j) = Fµl(h)(µl(qi,j)). In a similar way as above we ask for polynomials
invariant under cluster mutations.
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The first problem concerns the existence of those polynomials. We first present
the case with 3 vertices, it leads to the well–known Markov equation x2 +y2 +z2−
xyz (in the three variables x, y, z). Moreover, we show that each other invariant
F is a polynomial in this equation. Finally, we apply this result to the cluster
mutations (see [1]). For n = 4 we can construct an invariant of degree 4 and
one of degree 2. We generalize the construction of these two invariants: we can
construct them in a purely combinatorial way for all n.

Theorem 2. For arbitrary n we obtain an invariant

F1 :=

n∑

r=2

∑

i1<i2<...<ir

(−1)rxi1,i2xi2,i3 . . . xir−1,irxi1,ir .

For n even the Pfaffian of the skew–symmetric matrix C − Ct

∑

I={{i1,i2},{i3,i4},...,{in−1,in}}

(−1)|I|xi1,i2xi3,i4 . . . xin−1,in

is Γ–invariant, where the sum runs through all sets I of n/2 sets of disjoint two–
element sets. The number |I| counts the number of crossings of two pairs of sets:
a pair i < j and k < l crosses if i < k < j < l or k < i < l < j, otherwise it does
not cross.

The first invariant is, up to sign and a constant, the Euler characteristic of the
Hochschild cohomology. This was proven by Happel in [4].

The main result of this talk concerns the generalization to arbitrary n. We can
explicitely construct further invariants Di for i = 1, . . . , ⌊n/2⌋ using the Coxeter
transformation. We can define new polynomials Fi (as a certain linear combination
of the Dj for j = 1, . . . , i) of degree n and minimal degree 2i. In particular, for
n even, the polynomial F⌊n/2⌋ is homogeneous of degree n. For the construction
of the Di we also refer to [2] and for further properties concerning the Coxeter
transformation to [5].

Theorem 3. For a given n there exist algebraically independent polynomials Fi

for i = 1, . . . , ⌊n/2⌋ of degree n and minimal degree 2i with Fi ∈ RΓ. If n is even
then

√
Fn/2 is already Γ–invariant.

We conjecture that these invariants form a generating set of all invariants.
For n = 4 we obtain the following two invariants for the Γ–action

∑

1≤i<j≤4

x2
i,j −

∑

1≤i<j<k≤4

xi,jxj,kxi,k + x1,2x2,3x3,4x1,4,

x1,2x3,4 + x2,3x1,4 − x1,3x2,4.

Finally, we use the result above to obtain polynomial invariants for cluster
mutations. For n = 4 we can show, that polynomial invariants in the sense of 3)
above can not exist. The reason is the existence of non–admissible orientations. So
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we can ask question 3) only for admissible orientations of a quiver Q. We explain
this notion and the construction of invariants as well as some applications.
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Convolution algebras, coherent sheaves and ”embedded TQFT”

Catharina Stroppel

(joint work with Ben Webster)

The aim of this talk will be to construct finite dimensional convolution alge-
bras using cohomology rings arising from Springer fibres. We then give a purely
diagrammatical description of these algebras in terms of what we call an ”embed-
ded” 2-dimensional TQFT. Finally we connect these with algebras of extensions of
certain coherent sheaves on resolutions of Springer fibres. (For details and precise
references we refer to [5]).

In this talk we restrict to the very special case of 2-block Springer fibres. Let
N : Cn → Cn be a fixed nilpotent endomorphism in Jordan Normal with two
blocks of size n− k and k. For simplicity we assume n− k ≥ k. The Springer fibre
Y = Y (N) associated with N is the variety of all full flags F in Cn fixed under
N (i.e. for any space Fi of the full flag F , we have the property NFi ⊂ Fi−1 is
satisfied). The irreducible components of Y were described by Spaltenstein and
Vargas who put them in natural bijection with the standard tableaux of shape
(n − k, k), and described the components as closures of explicitly given locally
closed subspaces.

A standard tableau S of shape (n − k, k) is by definition a Young diagram of
shape (n − k, k), filled with the numbers {1, 2, . . . n} decreasing from the left to
the right and from top to bottom. We can associate a crossingless matching m(S)
of n points with k cups and n − k orphaned points, such that the bottom row of
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the tableau contains all the numbers S∨ which are at the left end of a cup, and
the top row of the diagram contains all the numbers S∧ which are at the right
endpoint of a cup, or are orphaned. This defines a bijection between standard
tableaux of shape (n-k,k) and crossingless matchings of n points with k cups and
n−2k orphaned points. In the special case of two blocks the result of Spaltenstein
and Vargas has the following handy description due to Fung ([2]):

Proposition 1 (Fung). A complete flag {0} = F0 ⊂ · · · ⊂ Fn = V lies in YS if
and only if the following holds: If there is a cup in m(S) connecting i and j > i,

then N
j−i+1

2 (Fj) = Fi−1, and if i is orphaned then Fi = N−bi(imN ti) where bi
and ti are uniquely defined nonnegative integers associated with i by some easy
combinatorial rule. Moreover, any component is an iterated P1-bundle.

Our first result is the following

Theorem 2. Let YA, YB be irreducible components of Y and assume YA ∩ YB is
non-empty. Then YA ∩ YB is an iterated P1-bundle (in particular smooth). The
cohomology ring H•(YA ∩ YB) is isomorphic to C[x]/(x2)⊗r, where r denotes the
number of closed circles in the diagram AB obtained by putting m(B) upside down
on top of m(A). The pull back map from the cohomology of the full flag variety
surjects onto H•(YA ∩ YB) such that the x’s are the images of the first Chern
classes of the tautological line bundles associated with the leftmost points of the
circles.

1. The convolution algebra, TQFT and embedded TQFT

Consider the space
⊕
H∗(YA∩YB), where the sum is taken over all pairs (A,B)

of standard tableaux of shape (n − k, k). It has a natural convolution product
structure: the product of two classes α ∈ H•(YA ∩ YB) and β ∈ H•(YB ∩ YC), is
given by first taking their pullbacks to H•(YA ∩ YB ∩ YC), then taking their cup
product and afterwards pushing forward to obtain the product α∗β ∈ H•(YA∩YC).
Let d(A,B) = n − c(A,B), where c denotes the number of circles in AB and let
H∗(YA ∩ YB)〈d(A,B)〉 be the vector space H∗(YA ∩ YB) with its cohomological
grading shifted up by d(A,B).

Theorem 3. The convolution product turns H∗ :=
⊕
H∗(YA ∩YB)〈d(A,B)〉 into

a positively graded algebra.

For simplicity we restrict now to the case n = 2k. Recall that a 2-dimensional
TQFT is a monoidal functor FR from the category 2 − Cob to vector spaces. It
associates to a union of circles (=oriented compact 1-manifolds) a vector space R,
to a pair of pants joining two circles to one circle, the multiplication m : R⊗R→ R
and to the reverse cobordism, splitting one circle into two circles a comultiplication
map ∆ : R→ R⊗R. Functoriality means exactly that R becomes a commutative
Frobenius algebra. We are interested in the easiest case where R = C[x]/(x2) and
∆ : R → R ⊗ R, 1 7→ X ⊗ 1 + 1 ⊗X , X 7→ X ⊗X . The space H∗(YA ∩ YB) can
then be realized as FR applied to the diagram AB (which is a union of circles by
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our assumption n = 2k). Under this identification the minimal cobordism from
the union of AB and BC to AC gives rise to a multiplication map

H∗(YA ∩ YB) ⊗H∗(YB ∩ YC) → H∗(YA ∩ YC)

which can be used to turn H∗ into a positively graded associative algebra with
primitive idempotents naturally labelled by the irreducible components of the
Springer fibre Y . This algebra is exactly Khovanov’s arc algebra Hn [3] which
he introduced to categorify the Jones polynomial and to obtain bigraded link and
tangle invariants. The connections with Lie theory is given by the following

Theorem 4. ([6]) Let Ok,k
0 (gln) be the principal block of the parabolic BGG cat-

egory O for the Lie algebra gln with respect to the partition n = k + k. Then
Hn is isomorphic to the endomorphism algebra of the sum of all indecomposable

projective-injective modules in Ok,k
0 (gln). The endomorphism algebra of a minimal

projective generator is the quasi-hereditary cover of Hn in the sense of Rouquier.

The algebras Hn and H• are related as follows:

Theorem 5. (1) When considered with coefficients in Z/2Z, the algebras H∗

and Hn are isomorphic.
(2) When considered with coefficients in C (in fact, for any field of character-

istic 6= 2), for all n ≥ 3, there is no algebra isomorphism respecting the
direct sum decomposition given by the H∗(YA ∩ YB)’s.

However, our convolution algebra has a description using a refined version of
TQFT, which should keep track of the nestedness of the circles. In particular,
there will be two types of pair of pants cobordisms, namely one which connects
one circle with two disjoint, not nested circles in the usual embedding for trousers
and a second ”unusual” one which connects one circle with two disjoint, but nested
circles, with one of the trouser legs pushed down the middle of the other or rather
arranged such that the orientation of the nested circle is swapped. The ”unusual”
maps involve twist by minus signs according to the nestedness of the circles.

Theorem 6. The algebra H∗ can be described via an ”embedded TQFT”.

There is an analog of the quasi-hereditary cover of Hn for H∗ constructed from
stable manifolds with respect to a C∗-action (generalising irreducible components).

2. Coherent sheaves on varieties associated with Slodowy slices

Finally we study how all this is related to the sheaf-theoretic model of Khovanov
homology given by Cautis and Kamnitzer [1]. Their model associates a certain
coherent sheaf i∗Ω(A)1/2 on a certain compact smooth variety Sk,k related with
Slodowy slices to each crossingless matching A of 2k points. The variety naturally
contains the Springer fiber Y , and the sheaf i∗Ω(A)1/2 is supported on the compo-
nent associated with A. As our notation suggest, these sheaves arise from square
roots of canonical bundles. As a vector space, the Ext-algebra of these sheaves
can be identified with our algebra H• (and thus also with Khovanov’s algebra):
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Theorem 7. There is an isomorphism of graded vector spaces

Ext•Coh(Sk,k)(i∗Ω(A)1/2, j∗Ω(B)1/2) ∼= H•(A ∩B)〈d(a, b)〉.

Conjecture 8. There is an isomorphism of algebras
⊕

A,B

Ext•Coh(Sk,k)(i∗Ω(A)1/2, j∗Ω(B)1/2) ∼= H•.

This would be the first step to clarify the precise relationship between the
geometric models [1] (using coherent sheaves) and [4] (using symplectic geometry)
and the algebro-representation theoretic versions of Khovanov homology ([3], [7]).
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Atiyah Classes, Ghosts and Levels of Perfection

Ragnar-Olaf Buchweitz

1. If C is a class of objects in a triangulated category T , (with shift, suspension, or
translation functor Σ) andM is any object from T , one may ask whether and, if so,
how efficiently M can be built inside T from objects in C through the standard
operations of forming direct sums, taking direct summands, shifting objects, or
completing a morphism to an exact triangle.

The objects in addΣ(C), the essential closure of C under formation of (finite) di-
rect sums, direct summands, or (de-)suspensions, form the basic “building blocks”,
and the level of M with respect to C records the minimal “cost” of building an ob-
ject M out of C, where taking direct sums or summands as well as (de-)suspending
are for free, but attaching an object from addΣ(C) by completing a morphism to
a triangle raises the cost by one unit.

With the zero objects the only ones at level zero, the objects at level at most
one are precisely those in addΣ(C). The level of an object M , noted levelCM , is
then finite if, and only if, M belongs to the thick subcategory spanned by C in T .

This approach to measuring the complexity of an object M relative to C is
formalized and used in [1], and we refer to it for precise definitions and an account
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of the history of the notion. We mention here just that it is as well a crucial
ingredient in Rouquier’s [8] treatment of the dimension of a triangulated category.

Although simple enough as a concept, the fundamental question is how to deter-
mine the level of a given object, or, less ambitiously, how to decide whether that
level is finite, that is, whether the object is contained in the thick subcategory
generated by C?

2. If C generates a projective class, in the sense of [2] or [5], then the answer to
the above question is easier, as the level with respect to C can be read off from
an Adams resolution (perhaps more appropriately called an ABC resolution, as in
[7]) in form of the ghost index of that object.

Recall that C generates a projective class, with P = addΣ(C) its category of
relative projectives , and the ideal I, given by I(X,Y ) = {f : X → Y | ∀p : P →
X ;P ∈ P ; fp = 0} for X,Y ∈ T , its ghost ideal , if these data satisfy

(∗) For each X ∈ T , there exists an exact triangle

ΩX
q
−→ P

p
−→ X

a
−→ ΣΩX

with P ∈ P and a ∈ I, where ΩX denotes a representative from the
isomorphism class of objects that complete p to an exact triangle.

We call the morphism a ∈ Ext1T (X,ΩX) an Atiyah class for X relative to C. Note
the following:

(a) While ΩX is generally not given functorially, the functor to abelian groups,
or right P–module, such a choice defines through

(−,ΩX) = HomT (−,ΩX)|P : Pop → Ab

is indeed uniquely determined by p. It equals Ker(−, p) : (−, P ) → (−, X),
due to the assumption that a is a ghost morphism. Replacing X by ΩX in
(∗), it follows that each (−, X) is already a coherent P–module, an object in
Coh(P). Induction yields further that each such module admits a projective
resolution by finite projectives in Coh(P).

(b) Clearly, the Atiyah class vanishes, a = 0, if, and only if, p splits , if, and only
if, X ∈ P , if, and only if, levelCX ≤ 1.

3. If C generates a projective class (P , I), one can successively construct a diagram

X
a1

+1
// ΩX

a2

+1
//

q0

}}{{
{{

{{
{{

Ω2X
a3

+1
//

q1

||zz
zz

zz
zz

· · ·

P0

p0

``@@@@@@@@
P1

p1

aaCCCCCCCC
q0p1oo P2

p2

bbDDDDDDDD
q1p2oo · · ·oo

with the triangles containing the indicated morphisms of degree +1 being exact,
the triangles pointing upwards being commutative, and Pi ∈ P , ai ∈ I, for each
i ≥ 0. This diagram constitutes an Adams (or ABC ) resolution of X in T .
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Mapping this diagram into Coh(P) yields a projective resolution of (−, X) by
finite projectives,

0 (−, X)oo (−, P0)
(−,p0)oo (−, P1)

(−,p1)oo · · ·oo

and, conversely, any such projective resolution can be lifted to an Adams resolution
of X in T . Note, however, that passing to Coh(P), the Atiyah classes ai get lost:
(−, ai) = 0, as each ai is a ghost!

4. The key invariant now is the ghost index of X with respect to C, (or to the
projective class generated by it.) Setting a0 = idX , it is defined as

ginC X = min{i ≥ 0 | ai · · · a1a0 = 0} ∈ N ∪ {∞}

That this notion is independent of the choice of the Adams resolution, or of the
projective resolution of (−, X), is the content of a main result from [5]:

5. Theorem. Given an Adams resolution of X as above, denote

ati
C(X) = aiai−1 · · · a0 ∈ ExtiT (X,ΩiX)

the ith Atiyah class of X with respect to C. The following are then equivalent for
each i ≥ 0.

(1) ati
C(X) = 0

(2) ginC(X) ≤ i
(3) levelCX(= levelPX) ≤ i

If these equivalent conditions are satisfied for some i > 0, then already

level{P0,...,Pi−1}X ≤ i

for any sequence of objects P0, ..., Pi−1 occurring in the corresponding initial seg-
ment of some Adams resolution of X.

Note that

(a) levelPX ≤ projdimCoh(P)(−, X), but the inequality is usually strict.

(b) With (3), as well the other two assertions are independent of the choice of an
Adams resolution of X .

6. To apply these results, we need suitable projective classes. The simplest class of
examples arises from pairs of adjoint functors. If F ∗ : S → T , F∗ : T → S is a pair
of exact adjoint functors, with F ∗ left adjoint to F∗, then C = F ∗(S) generates
a projective class in T , its ghost ideal consisting of all morphisms f such that
F∗(f) = 0. Indeed, for any X ∈ T the co-unit of the adjunction p : F ∗F∗X → X
will complete to an exact triangle as required. For a typical application, let A be
a noetherian ring, X ∈ D(A) a complex in the (full) derived category of (right)
A–modules, such that its (total) homology H(X) is a finitely generated (graded)
A–module. The complex X is then perfect if levelAX < ∞, and one has the
following test for perfection.
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7. Theorem. With A and X as just described, let ρ : B → A be a ring homo-
morphism and ρ∗ =? ⊗L

B A : D(B) → D(A) the left adjoint to the restriction of
scalars ρ∗. Let ati

A/B(X) denote the relative Atiyah classes associated to the class

ρ∗(D(B)). If gldimB <∞, then

levelρ∗(D(B))(X) <∞ ⇐⇒ X is perfect ⇐⇒ atiB/A(X) = 0 for i≫ 0.

8. If we pass to DG algebras, and replace A by a DG model A over B, noting that
D(A) ≃ D(A) as triangulated categories, then we can realise Ω as an endofunctor
on D(A) to get an exact triangle of exact functors

Ω
q
−→ ρ∗ρ∗

p
−→ idD(A)

atA/B
−−−−→ ΣΩ

The group HHn
A/B = Hom(Ωn, idD(A))/(qΩ

n−1)∗ Hom(ρ∗ρ∗Ω
n−1, idD(A)) serves

as the nth Hochschild cohomology of the adjoint pair (ρ∗, ρ∗) and composition
with the corresponding powers of the functorial relative Atiyah classes defines a
canonical homomorphism of graded commutative rings to the graded centre of
D(A), the relative Hochschild-Chern character ,

ch•
A/B : HH•

A/B → Z•(D(A))

Following this ring homomorphism with evaluation in some object X ∈ D(A) ≃
D(A) shows that the components of the Hochschild-Chern character yield lower
bounds for levels (of perfection, if gldimB < ∞ and H(X) is finitely generated
over the noetherian ring A),

levelρ∗(D(B))(X) ≥ min{n ≥ 0 | chn
A/B(X) = 0}

As in the classical case, the theory of Atiyah classes here can be made explicit
through differential forms and connections in a way entirely analogous to our joint
work with Flenner [3],[4], in view of the treatment of Hochschild cohomology in
[6].
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Dimensions of triangulated categories via Koszul objects

Srikanth B. Iyengar

My aim in this talk was to describe how some simple, and not so simple, tech-
niques from commutative algebra can be used to obtain lower bounds for dimen-
sions of triangulated categories.

Consider a triangulated category T. Given an object G in T, the thick subcat-
egory, thickT(G), it generates admits a natural filtration

{0} = thick0
T(G) ⊆ thick1

T(G) ⊆ · · · ⊆
⋃

n>0

thickn
T(G) = thickT(G)

where thick1
T(G) consists of retracts of finite direct sums of suspensions of G, and

thickn
T(G) consists of retracts of n-fold extensions of thick1

T(G).
The dimension of T is then the number

dimT = inf{n | there exists a G ∈ T with thickn+1
T (G) = T}.

This number was introduced by Bondal and Van Den Bergh [6]. Rouquier [8, 9]
used this invariant to calculate the representation dimension of exterior algebras;
this was discussed by Ringel in his lecture at this meeting. Buchweitz in his lecture
discussed methods to obtain upper bounds on dimT, at least when thick1

T(G) is a
projective class, in the sense of Christensen [7].

Most lower bounds on dimT obtained thus far have concerned the case where
T is the derived category, or the stable derived category, of some ring. Moreover,
the arguments typically involve some commutative ring lurking in the background.
One way to formalize this situation is to consider a triangulated category with an
action of a commutative noetherian ring, as follows.

Let R =
⊕

i>0R
i be a graded-commutative ring where the ring R0 artinian;

the ring R need not be noetherian. As usual, set

ProjR = {p | p a homogenous prime ideal in R with p 6⊇ R+}

For any graded R-module M , we set Supp+

RM = {p ∈ ProjR |Mp 6= 0}, and let

dim Supp+

RM = sup

{
d

∣∣∣∣∣
there exists a chain of prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pd in Supp+

RM

}

We say M is eventually noetherian if the R-module M>n is noetherian for some
integer n. In this case Supp+

R M is a closed subset of ProjR, in the Zariski topology.
The category said to be T is R-linear if there are homomorphisms of rings

R → End∗
T(X) =

⊕

n∈Z

HomT(X,ΣnX)

for each X in T, such that the R-module structures on Hom∗
T(X,Y ) induced via

End∗
T(X) and End∗

T(Y ) coincide, up to the usual sign-rule.
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Henning Krause and I recently proved:

Theorem 1. Let T be an R-linear triangulated category. If thickT(G) = T and
the R-module End∗

T(G) is eventually noetherian, then one has an inequality:

dimT ≥ dimSupp+

R End∗
T(G) .

In my talk I explained how this specializes to a recent result of Bergh and
Oppermann, who proved it under rather more restrictive hypotheses on T. As
pointed out by them, it yields lower bounds on the dimension of the stable derived
category, and hence on the representation dimension, of certain classes of Artin
algebras. The four of us are preparing a joint article [5] containing these results.

I gave a fairly complete proof of Theorem 1 in the lecture. A crucial idea is
the systematic use of properties of Koszul objects in T, which are analogues of
Koszul complexes in commutative algebra. This builds on the work in [2], where
they were used to realize objects with prescribed cohomological varieties. Another
important tool is a variation, due to Bergh [4], of the ‘Ghost Lemma’, which has
appeared in the work of many authors; see [5] for references.

The rest of the talk was focussed on the derived category of a (commutative,
noetherian) local ring R, with maximal ideal m. When R is a complete intersection
which is complete in the m-adic topology, Theorem 1 implies that dimension of
the stable derived category, D(R), of R, is at least codimR− 1.

Such a bound holds for all complete intersection local rings. This follows from
the next result, proved in joint work with Avramov [3]. Here cf-rankR is the
conormal free rank of R; when R has a conormal module, for example, when it is
finitely generated over a field, then it is the rank of the largest free summand of
the conormal module of R; see [1, Appendix A] for details.

Theorem 2. An inequality dimD(R) ≥ cf-rankR− 1 holds for each local ring R.

The proof of this result uses [1, (5.1)], which is a vast generalization of the New
Intersection Theorem for rings containing fields, and [1, (7.4)], which is a Differen-
tial Graded Algebra analogue of the Bernstein-Gelfand-Gelfand correspondence.
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Hochschild Cohomology and models of triangulated categories

Teimuraz Pirashvili

Our work was inspired by the work of Fernando Muro and his coauthors [4], [5]
where they find interesting examples of triangulated categories without ”models”.
Though they did not gave a rigorous definition of what it means a triangulated
category to have a model. We give the definition of a Gabriel-Zisman model of a
triangulated category and we give a cohomological characterization of a triangu-
lated categories having such a model.
The canonical class of a triangulated category. Let T be a triangulated
category. We do not assume the octahedron axiom to hold in T. We consider the
category Triangles(T) of distinguished triangles

A
f // B

uf // Cf
vf // A[1] .

while morphisms are commutative diagrams

A
f //

a

��

B
uf //

b

��

Cf
vf //

c

��

A[1]

a[1]

��
A′

f ′

// B′
uf′

// Cf ′

vf′

// A′[1].

We consider the ideal Θ of Triangles(T) consisting with maps (a, b, c) such that
a = 0 = b. One easily sees that Θ2 = 0 and the quotient category Triangles(T)/Θ
is equivalent to the category T[1]. It follows that Θ can be considered as a bifunctor
Θ : (T[1])op × T[1] → Ab (in fact as a τ -bifunctor) and the extension

0 → Θ → Triangles(T)
π
−→ T[1] → 0

defines an element ϑ ∈ HML2
Σ(T[1], Θ) and therefore the triangulated category

structure on the category T is completely determined by a bifunctor Θ and the
corresponding class ϑ. Here HML2

Σ(T[1], Θ) is a variant of Hochschild cohomology
of additive categories equipped with auto-equivalences constructed in [2].

Toda bifunctor and natural transformations β and θ. Let T be a tri-
angulated category. Let T[1] be the category of arrows of T. For morphisms
f : A → B and f ′ : A′ → B′ we consider the homomorphism of abelian groups
φf,f ′ : HomA(A[1], A′) ⊕ HomA(B[1], B′) → HomA(A[1], B′) given by φf,f ′(g, h) =
f ′
∗(g) − (f [1])∗(h) = f ′ ◦ g − h ◦ (f [1]). Here g : A[1] → A′ and h : B[1] → B′ are

morphisms of T. The Toda bifunctor ∆ is a bifunctor ∆ : (T[1])op×T[1] → Ab given
by ∆(f, f ′) := Coker(φf,f ′ ), where f : A → B and f ′ : A′ → B′ are morphisms in
A. According to Baues [1] there is a natural homomorphism:

β : HML3
Σ(A,Hom10) → HML2

Σ(A[1], ∆),
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where Hom10 : Aop×A → Ab is a bifunctor given by Hom10(X,Y ) = Hom(ΣX,Y ).
We now define the transformation

θ : ∆T → ΘT

as follows. Let f : A→ B and f ′ : A′ → B′ be morphisms in T. For any morphism
x : A[1] → B′ we have the following morphism of distinguished triangles:

A
f //

0

��

B
uf //

0

��

Cf
vf //

cx

��

A[1]

0

��
A′

f ′

// B′
uf′

// Cf ′

vf′

// A′[1],

where cx = uf ′xvf . One easily sees that the assignment x 7→ (0, 0, cx) yields
the homomorphism θ(f, f ′) : ∆(f, f ′) → Θ(f, f ′), hence a natural transformation
θ : ∆→ Θ.

Lemma 1. The maps θ(f, f ′) is an isomorphism if f or f ′ is split.

Gabriel-Zisman category. Let F : G → H be a morphism of small groupoids.
Then F is called connective provided F is full and for any object u ∈ H there exist
an object x ∈ G and an isomorphism f : F (x) → u.

Let F : (G, x0) → (H, y0) be a morphism of pointed groupoids. We define the
homotopy fiber of F to be the groupoid Γ(F, y0) (or simply Γ(F )). The objects of
Γ(F ) are pairs (x, g), where x is an object of G and g : y0 → F (x) is a morphism
of H; a morphism from (x, g) to (x′, g′) is a morphism f : x → x′ in G such that
g′ = F (f)g.

A track category is a category enriched in the category of small groupoids. In
other words a track category C consists of a class of objects Ob(C), a collection of
small groupoids C(A,B) for A,B ∈ Ob(C) called hom-groupoids of C, identities
1A ∈ C(A,A)0 and composition functors C(B,C) × C(A,B) → C(A,C) satisfy-
ing the usual equations of associativity and identity morphisms. Objects of the
groupoid C(B,C) are called morphisms of C, while morphisms of the groupoid
C(B,C) are called tracks. Two morphisms f and g are homotopic provided there
exists a track α : f ⇒ g. In this case we write f ∼ g. We let Ho(C) be the category
whose objects are Ob(C) while morphisms are homotopy classes of morphisms of
C. For a map f we let [f ] be denote the homotopy class of f .

We will say that a track category has finite coproducts if for any objects A and
B there exists an object A ∨B and morphisms A→ A ∨B and B → A ∨B such
that the induced functor

C(A ∨B,X) → C(A,X) × C(B,X)

is an equivalence of categories.
We will say that a track category has a zero object if it posses an object 0 such

that the groupoids C(0, X) and C(X, 0) are equivalent to the category with one
object and one arrow.
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A Gabriel-Zisman category is a track category C with zero, such that for any
arrow f : A → B there is an object Cf , an arrow qf : B → C and a track
αf : 0 → fq such that the induced functor from the category C(C,X) to the
homotopy fiber of the functor C(f,X) : C(A,X) → C(B,X)):

C(C,X) → Γ(C(f,X))

is connective. Then Cf is defined uniquely up to an isomorphism in the quotient
category Ho(C). In particular if one defines ΣX to be Cf for f : X → 0, then
Σ : Ho(C) → Ho(C) is a functor.

A stable Gabriel-Zisman category is a Gabriel-Zisman category C with finite
coproduct, such that Σ : Ho(C) → Ho(C) is an equivalence of categories.

Proposition 2. Let C be a stable Gabriel-Zisman category, then the category
Ho(C) has a triangulated category structure such that the distinguished triangles
are

A→ B → Cf → ΣX.

Definition 3. We will say that a triangulated category T has a Gabriel-Zisman
model, if there exist a Gabriel-Zisman category C and a triangulate equivalence
Ho(C) → T.

The main result. We finally are in the position to announce our main result.

Theorem 4. A small triangulated category T has a Gabriel-Zisman model iff the
class ϑ ∈ HML2

Σ(T[1], Θ) lies in the image of the homomorphism

ϑ∗ ◦ β : HML3
Σ(T,Hom10) → HML2

Σ(T[1], Θ)

where θ∗ : HML2
Σ(T[1], ∆) → HML2

Σ(T[1], Θ) is the homomorphism induced by the
natural transformation θ : ∆→ Θ.

One can use this result to prove that the examples of constructed in [4], [5] does
not have a Gabriel-Zisman models. In fact for such examples the class ϑ does not
lies even in the image of the homomorphism θ∗ : HML2

Σ(T[1], ∆) → HML2
Σ(T[1], Θ)

because the image of ϑ in the group HML2
Σ(T[1],Coker(θ)) is nonzero.
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Classification of abelian 1-Calabi-Yau categories

Adam-Christiaan van Roosmalen

This talk is based on a recent classification of abelian 1-Calabi-Yau categories
([6]). This classification works up to derived equivalence, but since it is easy to
give all derived equivalent abelian categories, we will end with a short discussion
of these abelian categories.

1. Definitions and main result

We start with some definitions. Throughout, let k be an algebraically closed
field and let A be a k-linear abelian category.

• We say A is Ext-finite if dimk Exti(X,Y ) < ∞, for all X,Y ∈ ObA, and
for all i ≥ 0.

• An Ext-finite abelian category A is n-Calabi-Yau if for all X,Y ∈ Ob Db A
there are isomorphisms

HomDb A(X,Y ) ∼= HomDb A(Y,X [n])∗

natural in X and Y , where (−)∗ is the vector space dual.

Due to results in [5], the category A is 1-Calabi-Yau if and only if Db (A)
has Auslander-Reiten triangles and the translation τ is naturally isomorphic to
the identity functor. One may show that in this case, all components of the
Auslander-Reiten quiver are standard homogeneous tubes, as in Figure 1.

As a first property, we wish to state following well-known result.

Proposition 1.1. An abelian n-Calabi-Yau category A has global dimension n.

In particular, all abelian 1-Calabi-Yau categories are hereditary. We now come
to the main result.

Theorem 1.2. Let A be an abelian 1-Calabi-Yau category, then A is derived
equivalent to either

(i) the category modfd k[[t]] of finite dimensional representations of k[[t]], or
(ii) the category cohX of coherent sheaves over an elliptic curve X.

2. Derived equivalences

In order to describe the different categories derived equivalent to cohX , we will
give a short review of the stability theory of elliptic curves, and torsion theories.

��
EE

��

��

YY

EE

Figure 1. A homogeneous tube.
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Q ∞

Figure 2. Auslander-Reiten quiver of cohX

Stability theory on elliptic curves. Let X be an elliptic curve. We denote by
O the structure sheaf of X and by k(P ) the skyscraper sheaf associated to a point
P ∈ X . The rank, degree, and slope of a coherent sheaf E are defined as

deg E = χ(O, E),

rkE = χ(E , k(P )),

µ(E) =
deg E

rkE
,

respectively, where χ(E ,F) = dim Hom(E ,F) − dimHom(E ,F) is the Euler form.
One may show that µ(E) ∈ Q ∪ {∞}.

A coherent sheaf F is called stable or semi-stable if for every nontrivial subobject
E ⊂ F , we have µ(E) < µ(F) or µ(E) ≤ µ(F), respectively.

It is well-known that, for an elliptic curve, all indecomposables are semi-stable.
The stable sheafs are exactly those sheaves E with Hom(E , E) ∼= k.

Every Auslander-Reiten component is a homogeneous tube (Figure 1), and the
peripheral objects of these tubes correspond to the stable objects of cohX .

The full subcategoryAθ generated by the semi-stable objects of a given slope θ is
an abelian subcategory of cohX . Furthermore, for any two slopes, the correspond-
ing subcategories are equivalent. The category Aθ is a direct sum of homogeneous
tubes; there are no nonzero maps between two element lying in different tubes of
Aθ.

For any two indecomposable (and hence semi-stable) objects E ,F ∈ cohX
with µ(E) < µ(F), we have Hom(E ,F) 6= 0, Ext(F , E) 6= 0, and Hom(F , E) =
Ext(E ,F) = 0.

The category A∞ may be described as follows: for every point P ∈ X there is
a skyscraper sheaf k(P ) lying in a homogeneous tube in A∞, and every tube in
A∞ is obtained in this way. The tubes of A∞ are thus parametrized by the points
of X . Since for every θ ∈ Q ∪ {∞}, the categories Aθ and A∞ are equivalent, we
may sketch the Auslander-Reiten quiver as in Figure 2.

Torsion theories. We will recall some definitions and results about torsion the-
ories from [2]. Let A be any hereditary abelian category. A torsion theory (F , T )
on A is a pair of full additive subcategories of A, such that Hom(T ,F) = 0 and
that for every X ∈ ObA there is a short exact sequence

0 −→ T −→ X −→ F −→ 0
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with F ∈ F and T ∈ T . We will say the torsion theory (F , T ) is split if Ext(F , T ) =
0. In case of a split torsion theory we obtain, by tilting, a hereditary category
H derived equivalent to A with an induced split torsion theory (T ,F [1]). The
category H will only be hereditary if and only if (F , T ) is a split torsion theory.

Abelian 1-Calabi-Yau categories. The Auslander-Reiten quiver of modfd k[[t]]
consists of just one homogeneous tube. It is easily verified that all categories
derived equivalent to modfd k[[t]] are, in fact, equivalent to modfd k[[t]].

Hence, we need only to discuss all possible torsion theories when A is equivalent
to cohX . Note that, since every category H derived equivalent to A will be 1-
Calabi-Yau and hence hereditary, all torsion theories on A will be split.

Let (F , T ) be a torsion theory on A, and let E be an indecomposable of T . Then
every indecomposable F with µ(E) < µ(F) has to be in T since Hom(E ,F) 6= 0.

We may now give a characterization of all possible torsion theories.

Theorem 2.1. [1] Let X be an elliptic curve. Every category H derived equivalent
to A = cohX may be obtained by tilting with respect to a torsion theory. All torsion
theories on cohX are split and may be described as follows. Let θ ∈ R ∪ {∞}.
Denote by A>θ and A≥θ the subcategory of A generated by all indecomposables E
with µ(E) > θ and µ(E) ≥ θ, respectively. All full subcategories T of A generated
by tubes, and with A≥θ ⊆ T ⊆ A>θ ⊆ A give rise to a torsion theory (F , T ), with
indF = indA \ ind T , and all torsion theories are obtained in this way.

We give some examples of torsion theories. Let X be an elliptic curve, and
A = cohX . In here H always stands for the category obtained from A by tilting
with respect to the described torsion theory.

(i) If θ ∈ Q ∪ {∞} and T = A>θ, then the tilted category H is equivalent to
cohX . Indeed, it follows from the proof of Theorem 1.2 that H ∼= cohE
for an elliptic curve E. Results from [3] then yield E ∼= X .

(ii) If T = A≥θ, then H is dual to A. This follows from Grothendieck duality.
(iii) If θ ∈ R \ Q and T = A>θ = A≥θ then H is equivalent to the category of

holomorphic bundles on a noncommutative two-torus ([4]).
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Exceptional sequences and posets of tilting modules

Fréderic Chapoton

Let Q be a finite quiver without oriented cycles. Let k be a ground field and
mod kQ be the category of finite dimensional modules over the path algebra kQ
of the quiver Q. Let TiltQ be the set of isomorphism classes of tilting modules in
the category mod kQ.

Then there is a natural partial order on the set TiltQ (due to Riedtmann-
Schofield and Happel-Unger [RS91, HU05]). This partial order is defined as follows:
T ≤ T ′ if and only if T⊥ ⊇ T ′⊥, where T⊥ is the perpendicular subcategory
{M ∈ modkQ | Ext1(T,M) = 0}.

Let mod kTiltQ be the category of finite dimensional modules over the inci-
dence algebra of the poset TiltQ. This can also be thought of as the category of
representations of the Hasse diagram of TiltQ, seen as a quiver with all possible
commuting relations.

Figure 1. Hasse diagram of TiltQ where Q = 1 → 2 → 3.

One has the following result, due to Ladkani [Lad07].
Theorem Assume that the vertex i is a source in Q and that Q′ = µi(Q) is the

quiver obtained from Q by reversing all arrows incident to i. Then the bounded
derived categories Db mod kTiltQ and Db mod kTiltQ′ are triangle equivalent.

This theorem is very similar to the classical statement due to Bernstein, Gelfand
and Ponomarev [BGP73], which says that, in the same situation, the bounded
derived categories Db mod kQ and Db mod kQ′ are triangle equivalent, the equiv-
alence being given by a reflection functor.

Let Q0 be the set of vertices of Q. Let K be the field Q((ui)i∈Q0
) of rational

functions in the indeterminates (ui)i∈Q0
.

One can map the set TiltQ to the field K as follows. Let T be a tilting module.
It can be written uniquely (up to permutation of the summands) as a direct sum
of indecomposable modules T1 ⊕ · · · ⊕ Tn. Then one defines

(0.0.1) T 7→ ψ(T ) =
1∏n

j=1

∑
i∈Q0

dim(Tj)iui
.

Note that the value of ψ(T ) when all ui = 1 is the volume of T introduced in
[Hil06].
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One can then extend this map to a linear map ψ from K0(mod kTiltQ) to K
by sending the class [T ] of the simple module corresponding to a tilting module
T to the fraction ψ(T ). One can then define the value of ψ on any module in
mod kTiltQ, in particular for intervals.

One expects the following property to hold.
Conjecture The map ψ is injective. Equivalently, the images ψ(T ) of all

tilting modules are linearly independent.
This is known for the equioriented quiver of type An. The same proof (using

iterated residues) should also work for any quiver of type A.
Assume now that Q is a Dynkin quiver.
Exceptional sequences up to permutations (exceptional sets) should appear in

the following way.
Conjecture There is a bijection between the set EQ of exceptional sets E

in mod kQ and the set IQ of intervals I in TiltQ such that ψ(I) is the inverse
of a polynomial. The exceptional set E can be recovered from the interval I by
factorization of the denominator of the fraction ψ(I). Tilting modules correspond
to singleton intervals.

For the equioriented quiver of type An, one has proved that there is an injective
map from EQ to IQ with these properties.
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d−Cluster tiltings in d−cluster categories and their combinatorics

Bin Zhu

(joint work with Yu Zhou)

Cluster categories are introduced by Buan-Marsh-Reineke-Reiten-Todorov
[BMRRT] for a categorification understanding of cluster algebras introduced by
Fomin-Zelevinsky in [FZ], see also [CCS] for type An.

d−cluster categories D/τ−1[d] as a generalization of cluster categories, are in-
troduced by Keller [Ke] for d ∈ N. They are studied recently in [Th], [KR1], [Zh],
[BaM1, BaM2], [IY], [KR2], [HoJ1, HoJ2], [J], [ABST], [T], [Wr]. d−cluster cat-
egories are triangulated categories with Calabi-Yau dimension d + 1 [Ke]. When
d = 1, the cluster categories are recovered.
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We study the cluster combinatorics of d−cluster tilting objects in d−cluster cat-
egories. By using mutations of maximal d−rigid objects in d−cluster categories
which are defined similarly for d−cluster tilting objects, we prove the equivalences
between d−cluster tilting objects, maximal d−rigid objects and complete d−rigid
objects. Using the chain of d+ 1 triangles of d−cluster tilting objects in [IY], we
prove that any almost complete d−cluster tilting object has exactly d+1 comple-
ments, compute the extension groups between these complements, and study the
middle terms of these d+1 triangles. All results are the extensions of corresponding
results on cluster tilting objects in cluster categories established in [BMRRT] to
d−cluster categories. They are applied to the Fomin-Reading’s generalized cluster
complexes of finite root systems defined and studied in [FR] [Th] [BaM1-2], and
to that of infinite root systems [Zh].

This work is supported by the NSF of China (Grants 10771112).
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Cluster algebras and quantum affine algebras, after B. Leclerc

Bernhard Keller

This talk, based on [14], is a report on recent work by B. Leclerc on a new type
of categorification for cluster algebras.

Cluster algebras were invented by Fomin and Zelevinsky [8] at the beginning of
this decade. Since then, a major effort has gone into their categorification (cf. for
example [15] [1] [2] [3] [10]). Namely, in many cases, it was proved that for a given
cluster algebra A, there exists a triangulated (or Frobenius) category C, such that

• the cluster variables x of A correspond to certain indecomposables Tx of
C,

• two cluster variables x and y belong to the same cluster if and only if there
are no non split extensions between the corresponding objects Tx and Ty,

• the cluster monomial m = xy · · · z corresponds to the the object M =
Tx ⊕ Ty ⊕ · · ·Tz of C,

• the exchange relations xx∗ = m+m′ of A correspond to triangles

Tx → M → Tx∗ → ΣTx and Tx∗ →M ′ → Tx → ΣTx∗

of C.

It was shown that in certain cases, the objects Tx are precisely the indecomposable
rigid objects of C, i.e. those without selfextensions. For example, when A has only
a finite number of cluster variables, then all indecomposable objects of C are rigid
and the cluster variables are in bijection with the indecomposables of C. In this
case, it was also shown that the cluster algebra A can be realized as a sort of dual
Hall algebra of the triangulated category C and that its commutativity reflects the
fact that C is 2-Calabi-Yau, i.e. the space Ext1C(L,M) is in natural duality with

Ext1C(M,L) for all objects L and M of C.
This type of categorification is very useful: it has allowed to prove properties of

cluster algebras which appear to be beyond the reach of the purely combinatorial
methods, cf. for example [4]. However, it is perhaps not the most natural notion
of categorification which we could expect for a cluster algebra.

In order to categorify an algebra A defined over the integers and endowed with
a distinguished Z-basis B, one would rather look for an abelian category M which
is monoidal (i.e. endowed with a tensor product) and whose Grothendieck ring is
isomorphic to A in such a way that the elements of B correspond to the classes of
the simple objects of M, cf. for example [12]. The definition of a ‘canonical basis’
for a general cluster algebra is still an open problem (cf. for example [18]) but in
many cases, this basis is known, for example when there is only a finite number
of clusters or when the algebra already admits a canonical basis in the sense of
Kashiwara and Lusztig. One then expects [8] that the cluster monomials, and in
particular the cluster variables, belong to this canonical basis.

The natural notion of ‘tensor-indecomposability’ is primality: an object of M is
prime, if it does not admit a non trivial tensor factorization. In order to categorify
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a cluster algebra A, one would therefore look for an abelian monoidal category M
whose Grothendieck ring is A and such that

• the cluster variables x of A are the classes of certain prime simple objects
Sx of M,

• two cluster variables x and y belong to the same cluster if and only if
Sx ⊗ Sy is simple,

• the cluster monomial m = xy · · · z in A is the class of the simple object
M = Sx ⊗ Sy ⊗ . . .⊗ Sz of M,

• the exchange relations xx∗ = m+m′ come from exact sequences

0 →M → Sx ⊗ Sx∗ →M ′ → 0.

This last condition lacks in symmetry. But if we remember that the cluster algebra
is commutative, and thus the tensor product induces a commutative multiplication
in the Grothendieck group, we can save symmetry by also requiring the existence
of an exact sequence

0 →M ′ → Sx∗ ⊗ Sx →M → 0.

The natural notion which replaces rigidity in a monoidal category appears to
be ‘reality’: an object of M is real if its tensor square is simple (cf. [13]). The
objects Sx should exactly be the real prime simple objects of M. When the cluster
algebra A has only finitely many cluster variables, all the prime simple objects of
M should be real and the cluster variables of A should be in bijection with the
prime simples.

Using classical results on representations of quantum affine algebras [5] [6] [9]
[16] [17] B. Leclerc has shown [14] that the cluster algebras of types An, n ∈ N,
and D4 (with suitable coefficients) do admit monoidal categorifications given by
tensor abelian subcategories of categories of finite-dimensional representations of
quantum affine algebras. He conjectures that this holds in many more cases. More
precisely, the main conjecture of [14] is the following.

Conjecture (Leclerc). Let ∆ be a Dynkin diagram and l ≥ 1 an integer. Let
g be the complex simple Lie algebra of type ∆, q a non zero complex number
which is not a root of unity and Uq(ĝ) the corresponding quantum affine algebra.
Then the category of finite-dimensional representations of Uq(ĝ) admits a monoidal
abelian subcategory M∆,l which is a monoidal categorification of the cluster algebra
associated with a quiver Q∆,l.
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In [14], Leclerc explicitly describes the subcategory M∆,l and the quiver Q∆,l.
For example, if ∆ = D5 and l = 3, then the quiver Q∆,l is as follows

◦ // ◦
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��
��
��
�

◦oo // •

����
��
��
��
�

◦ // ◦

��1
11

1 ◦oo // •

��1
11

1

◦

XX1111

KK���������

��

◦oo // ◦

KK���������

XX1111

��

•oo

◦ // ◦

��

OO

◦oo // •

OO

��
◦

OO

◦oo // ◦

OO

•oo

The vertices marked by • correspond to ‘frozen variables’ of the initial cluster. For
∆ = A1 and l = 3, the quiver Q∆,l is

◦ ◦oo // ◦ •oo

In this last case, the subcategory M∆,l is the full subcategory on the finite-

dimensional Uq(ŝl2)-modules all of whose simple subfactors have Drinfeld poly-
nomials with roots in q4, q2, q0, q−2. The isomorphism between the cluster algebra
A(QA1,3) and the Grothendieck group K0(MA1,3) ⊗Z Q sends the variables x1,
x2, x3, x4 of the initial cluster to the classes of the Kirillov-Reshetikhin modules
W1,q0 , W2,q−2 , W3,q−2 and W4,q−4 . The complete list of the prime simples (up to
isomorphism) is

W4,q−4

&&MM
MM

α
&&MMM

MMM
M W3,q−4

88qqqq

&&MMM
M

W3,q−2

%%LL
LL

β
""D

DD
DD W2,q−4

88qqqq

&&MMM
M

W2,q−2

88qqqq

&&MM
MM

W2,q0

%%KK
KK

β
99ssssss

W1,q−4

88qqqq
W1,q−2

88qqqq
W1,q0

99rrrr
W1,q2

α
>>}}}}}

The arrows do not indicate morphisms but serve to identify the vertices other
than W4,q−4 with those of the Auslander-Reiten quiver of the cluster category of
type A3 (the arrows on the left and on the right of the diagram are identified as
indicated by their labels). Every simple module in M∆,l is a tensor product of
modules in this list. A given tensor product of modules in the list other than
W4,q−4 is simple iff the corresponding direct sum of indecomposables of the cluster
category is rigid.

Thus, at least in certain examples, one obtains two rather different categori-
fications of a given cluster algebra. Table 1 sums up the correspondences. The
category C is much ‘smaller’ than M and M is much less well understood than
C. It does not seem to be known whether it has enough projectives, for example.
The table suggests that M should be an ‘exponential’ of C or C a ‘linearisation’
of M . . .
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cluster algebra A additive categorification C monoidal categorification M
+ ? ⊕
× ⊕ ⊗

cluster monomial rigid object real simple object
cluster variable rigid indecomposable real prime simple

Table 1. Correspondences between categorifications

Finally, let us point out [11] [7] for a very different link between cluster algebras
and quantum affine algebras, which does not seem to be related to categorification.

References

[1] Aslak Bakke Buan, Robert J. Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov,
Tilting theory and cluster combinatorics, Advances in Mathematics 204 (2) (2006), 572–
618.

[2] Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, and Gordana Todorov, Clusters and
seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3049–3060
(electronic), With an appendix coauthored in addition by P. Caldero and B. Keller.

[3] Philippe Caldero and Bernhard Keller, From triangulated categories to cluster algebras,
arXiv:math.RT/0506018, to appear in Inv. Math.

[4] Philippe Caldero and Markus Reineke, On the quiver Grassmannian in the acyclic case,
arXiv:math/0611074.

[5] Vyjayanthi Chari and Andrew Pressley, Quantum affine algebras, Comm. Math. Phys. 142
(1991), no. 2, 261–283.

[6] , A guide to quantum groups, Cambridge University Press, Cambridge, 1994.
[7] Philippe Di Francesco and Rinat Kedem, Q-systems as cluster algebras II: Cartan matrix

of finite type and the polynomial property, arXiv:0803.0362.
[8] Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc.

15 (2002), no. 2, 497–529 (electronic).
[9] Edward Frenkel and Evgeny Mukhin, Combinatorics of q-characters of finite-dimensional

representations of quantum affine algebras, Comm. Math. Phys. 216 (2001), no. 1, 23–57.
[10] Christof Geiß, Bernard Leclerc, and Jan Schröer, Rigid modules over preprojective algebras,
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Cluster Multiplication, Hall Polynomials and species

Andrew Hubery

In [3] Caldero and Chapoton described a map from isomorphism classes of C-
representations of an acyclic quiver Q to the function field on n variables, where
n is the number of vertices Q0 of Q. This map involves the Euler characteristic
of quiver Grassmannians, where, for a quiver representation M and a dimension
vector d, the quiver Grassmannian

Gr
(
M
d

)
= {U ≤M | dimU = d} ⊂

∏

i∈Q0

Gr
(
dim Mi

di

)

is the closed subvariety of the product of Grassmannians consisting of those col-
lections of subspaces yielding a subrepresentation of M .

The Caldero-Chapoton map is now given as

M 7→ uM :=
∑

d

χ
(
Gr

(
M
d

))
xm(dimM,d)−dimM ∈ Q({xi | i ∈ Q0}),

where m(dimM,d) is defined as follows. Recall that the Euler form of the category
of quiver representations

〈M,N〉 := dimHom(M,N) − dimExt1(M,N)

is a bilinear form depending only on the dimension vectors of M and N . We can
represent this by the matrix I −R. Then

m(dimM,d) = Rd+Rt(dimM − d).

This map induces a bijection between the isomorphism classes of exceptional
reresentations (End(M) = C and Ext1(M,M) = 0) and the cluster variables (other
than the xi) in the cluster algebra A ⊂ Q(x) (Fomin and Zelevinsky [7]).

This was shown in [3] when Q is Dynkin by comparing uM with uτM , where
τ is the Auslander-Reiten translate of Q. This corresponds to a special form of
cluster mutation in the cluster algebra. In this way one shows that each uM for
exceptional M is a cluster variable. One knows from Gabriel’s Theorem [9] that
there are precisely |∆+| such exceptional representations up to isomorphism, where
∆ is the root system of Q, and similarly from [8] that there are n + |∆+| cluster
variables, including the xi, so we are done.

In general there are infinitely many exceptional objects, so one would like to
compute uMuN and compare this to cluster mutation. This was done by Caldero
and Keller in the two papers [4, 5], working in the cluster category (Buan, Marsh,
Reineke, Reiten and Todorov, [2]). In the first paper, they construct a general
cluster multiplication formula for a Dynkin quiver, and in the second paper they
prove a cluster multiplication formula just for the two complements of cluster-
tilting object. One drawback is that the Caldero-Chapoton map can only be
defined for the hereditary category, and not for the cluster category directly.

In the preprint [11] I showed how one could obtain a cluster multiplication
formula in the Dynkin case using the theory of Ringel-Hall algebras. The Ringel-
Hall algebra [14] has as basis the isomorphism classes of quiver representations
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over a finite field, and with structure constants given by the Hall numbers

FM
AB = |{U ≤M | U ∼= B,M/U ∼= A}|.

In particular, we see that

|Gr
(
M
d

)
| =

∑

A,B;dimB=d

FM
AB.

In the particular case of a Dynkin quiver, we know that these numbers are given
by Hall polynomials, which are universal polynomials in the size of the base field
[15]. Thus, for a finite field k, the number of k-rational points of the quiver
Grassmannian (viewed as a Z-scheme) is also given by a universal polynomial in
|k|. Evaluating this polynomial at 1 therefore gives the Euler characteristic of the
quiver Grassmannian over C [13].

In the cluster multiplication formula of Caldero and Keller there are two terms,
given by taking extensions of M by N and of N by M in the cluster category.
Using our Ringel-Hall algebra interpretation of the quiver Grassmannians, the
first of these is a natural consequence of Green’s formula for Ringel-Hall algebras.
Green’s formula is a beautiful result which proves that the Ringel-Hall algebra is
a (twisted) bialgebra [10]. In fact, the Ringel-Hall algebra is isomorphic to the
positive part of the quantised enveloping algebra of a Borcherd’s Lie algebra [16],
containing as a subalgebra the positive part of the quantised enveloping algebra
of the Kac-Moody Lie algebra of type Q [10].

This Ringel-Hall algebra approach has the advantage that one remains in the
original hereditary category of quiver representations, but we lose the symmetry in
the two terms of the cluster multiplication formula. On the other hand, these two
terms can be compared to the multiplication in Toën’s derived Hall algebra [17].
More precisely, the first term is given by extensions Ext1(M,N) in the category
of representations, whereas for the second term we take the kernel and cokernel of
a homomorphism M → τ−1N . These correspond precisely to the multiplications
of N by M and of M by τ−1N [1] in the derived Hall algebra. We note that
τ−1N [1] ∼= N in the cluster category.

Moreover, we obtain the result for all non-simply laced Dynkin diagrams, since
Hall polynomials also exist for species of finite representation type [15].

The main difficulty in generalising this approach to arbitrary acyclic quivers is
that we require the existence of universal polynomials for the Hall numbers. This
is a very strong property, recently shown to hold for all affine quivers [12].

The main idea is to use the partition of Bongartz and Dudek [1], which gener-
alises the Segre classes for k[T ]-modules to all affine quivers. What is important is
that this partition is defined combinatorially, so that we can talk about the same
partition irrespective of the base field. The result is now that, given any three
such classes α, β, µ in this partition, there exists a universal polynomial Fµ

αβ such
that, over a field with q elements,

Fµ
αβ(q) =

∑

A∈α,B∈β

FM
AB for all M ∈ µ.
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One cannot do any better, since it is easy to construct examples (even for k[T ])
where no polynomial exists if we are allowed to fix two out of three representations.

One should remark that the first part of the proof again uses Green’s formula,
this time as a basis for an induction. In particular, given an extension 0 →
B → M → A → 0 with M decomposable with respect to some torsion pair,
one can apply Green’s formula to write FM

AB as a sum involving Hall numbers for
representations having strictly smaller dimension.

The final part of my talk involved generalising this result on Hall polynomials
to all non-simply laced affine diagrams. The main case to study is that of type

Ã11, which plays the same role for tame species as the Kronecker algebra does
for tame path algebras. Explicitly, we need to study the tame bimodule KKk, or

equivalently the matrix algebra Λ :=

(
K K
0 k

)
, for a field extension K/k of degree

4. (The Kronecker algebra corresponds to the k-bimodule k2.) In this case, as for
the Kronecker algebra, all regular components of the Auslander-Reiten quiver are
homogeneous tubes [6]. We can parameterise the tubes using the orbit algebra

O(P ) :=
⊕

n≥0

Hom(P, τ−nP ), f · g := (τ−|g|f)g : P → τ−|f |−|g|P,

where P is the projective cover of the simple module k. If we do this for the
Kronecker algebra we obtain the polynomial ring k[X,Y ], and hence we can pa-
rameterise the tubes by the scheme P1

k. In our situation we obtain a Brauer-Severi
curve, since if L/K is any algebraic extension, then Λ ⊗k L is isomorphic to the

path algebra over L of a quiver of type D̃4, hence has tubes parameterised by P1
L.

In fact, using Hilbert polynomials it is easy to calculate that

O(P ) ⊗k L = L〈w, x, y, z〉/(w + x+ y + z, w2, x2, y2, z2) =: R,

which is eight dimensional over its centre

Z(R) := L[(x+ y)2, (x+ z)2].

Thus O(P ) = RF , where F is the induced action of the Frobenius automorphism
of L/k. More precisely, for λ ∈ L we have

F : λw 7→ λqx 7→ λq2

y 7→ λq3

z 7→ λq4

w.

The difficulty is that, if M is a regular simple module of dimension vector (n, 2n),
then dimk End(M) = n for all but two modules. For these modules we have
dimMi = (i, 2i) but dimk End(Mi) = 2i. Therefore, if we wish to form an analogue
of the Bongatrz-Dudek partition, then we must also be able to distinguish these
two tubes.
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Additive categories of generalized standard Auslander-Reiten
components of algebras

Andrzej Skowroński

Let A be a finite dimensional algebra over a field K. Denote by modA the
category of finite dimensional right A-modules, by ΓA the Auslander-Reiten quiver
of modA, by τA the translation DTr in ΓA, and identify the vertices of ΓA with
the corresponding indecomposable A-modules. For a module M in modA, denote
by [M ] the image of M in the Grothendieck group K0(A) = K0(modA). Thus
[M ] = [N ] if and only if the modules M and N have the same simple composition
factors including the multiplicities. For modulesM andN in modA, we abbreviate
[M,N ] = dimK HomA(M,N).

Let C be a family of (connected) components of ΓA. Following [6] C is said to
be generalized standard if rad∞(X,Y ) = 0 for all modules X and Y in C , where
rad∞(modA) is the infinite Jacobson radical of modA. It is known that if C is
generalized standard then C is almost periodic, that is all but finitely many τA-
orbits in C are periodic [6]. During the talk, homological and geometric properties
of modules from the additive categories add(C ) of generalized standard families
C of components in ΓA were discussed.
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For modules M and N in modA with [M ] = [N ], the following partial orders
are of special interest:

• M ≤ext N : ⇐⇒ there are modules Mi, Ui, Vi and short exact sequences
0 → Ui → Mi → Vi → 0 in modA such that M = M1, Mi+1 = Ui ⊕ Vi,
1 ≤ i ≤ s, and N = Ms+1 for some natural s.

• M ≤R N : ⇐⇒ there exists in modA an exact sequence of the form
0 → N →M ⊕ Z → Z → 0 (equivalently 0 → Z ′ → Z ′ ⊕M → N → 0).

• M ≤ N : ⇐⇒ [M,X ] ≤ [N,X ] (equivalently [X,M ] ≤ [X,N ]) for all
modules X in modA.

Then for modules M and N in modA, the following implications hold:

M ≤ext N =⇒ M ≤R N =⇒ M ≤ N.

Unfortunately, the reverse implications are not true in general. We also mention
that, for K algebraically closed, ≤R coincides with the degeneration order ≤deg,
where M ≤deg N means that N belongs to the Zariski closure of the orbit of M
under the action of the general linear group GLd(K) on the variety of A-modules
of dimension d = dimK M = dimK N (see [5], [9]). For modules M and N from
add(C ) with [M ] = [N ], we have also the partial order

• M ≤C N : ⇐⇒ [M,X ] ≤ [N,X ] (equivalently [X,M ] ≤ [X,N ]) for all
modules X in add(C ).

The following homological properties of modules from the additive categories of
Auslander-Reiten components have been established.

Theorem 1 (Skowroński–Zwara [8]). Let C be a generalized standard family of
components of ΓA.

(i) add(C ) is closed under extensions.
(ii) If M ∈ modA, N ∈ add(C ), with M ≤R N , then M ∈ add(C ).
(iii) If M,N ∈ add(C ), V ∈ modA, with M ≤ V ≤ N , then V ∈ add(C ).
(iv) If M,N ∈ add(C ), the following are equivalent:

(a) M ≤R N .
(b) There exists an exact sequence 0 → N →M⊕Z → Z → 0 in add(C ).
(c) There exists an exact sequence 0 → Z ′ → Z ′ ⊕ M → N → 0 in

add(C ).
(d) M ≤C N .

(v) Assume Ext1A(X,X) = 0 for all indecomposable modules X in C . Then,
for M,N ∈ add(C ), M ≤ext N if and only if M ≤C N .

We note that (5) applies to all generalized standard families of components
without oriented cycles.

A family C of components of ΓA is said to be almost cyclic if all but finitely
many modules of C lie on oriented cycles. Moreover, C is said to be coherent if
every projective module P in C is the starting module of an infinite sectional path
and every injective module I in C is the ending module of an infinite sectional
path. An important class of almost cyclic coherent components is formed by the
quasi-tubes, for which the projective modules coincide with the injective modules
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and all modules lie on oriented cycles. Clearly, all stable tubes are quasi-tubes. We
refer to [1], [2] for the structure of almost cyclic coherent components. Moreover,
a sequence X → Y → Z of nonzero morphisms between indecomposable modules
in modA is called a short external path with respect to a family C of components
in ΓA if X and Z lie in C but Y is not in C .

Theorem 2 (Skowroński–Zwara [7]). Let C be a generalized standard family of
quasi-tubes in ΓA, and M,N modules in add(C ). Then M ≤ext N if and only if
M ≤C N .

We note that all quasi-tubes in ΓA have infinitely many indecomposalbe mod-
ules X with Ext1A(X,X) 6= 0.

Theorem 3 (Malicki–Skowroński [2], [3]). Let C be a generalized standard family
of almost cyclic coherent components in ΓA without external short paths, and M
a module in add(C ). Then ExtiA(M,M) = 0 for all i ≥ 2.

Theorem 4 (Malicki–Skowroński [3]). Let K be algebraically closed and C be a
generalized standard family of almost cyclic coherent components of ΓA, and M a
module in add(C ). Then dimK Ext1A(M,M) ≤ dimK EndA(M).

We do not know if the above inequality holds an arbitrary field K. In the proof
of the above theorem some algebraic geometry arguments are essentially applied.

Let A be a basic finite dimensional algebra over an algebraically closed field K,
A = KQ/I its bound quiver presentation, Q = QA the quiver of A, with the set of
vertices Q0 and the set of arrows Q1. Assume A is triangular (Q has no oriented
cycles). Then K0(A) = ZQ0 and [M ] = dimM (the dimension vector of M). The
Tits quadratic form qA : ZQ0 → Z of A is defined by

qA(x) =
∑

i∈Q0

x2 −
∑

(i→j)∈Q1

xixj +
∑

i,j∈Q0

rijxixj

where x = (xi) ∈ ZQ0 and rij is the number of relations from i to j in a minimal
admissible set of relations generating the ideal I. We denote by χA : ZQ0 → Z the
Euler quadratic form of A such that

χA(dimM) =

∞∑

i=0

(−1)i dimK Exti
A(M,M)

for any module M in modA. It is known that qA and χA coincide if gl. dimA ≤ 2
but in general there are different. For d ∈ ZQ0 , denote by modA(d) the va-
riety of A-modules of dimension vector d. Then the algebraic group G(d) =∏

i∈Q0
GLdi(K) acts on modA(d) in such a way that the GL(d)-orbits in modA(d)

correspond to the isomorphism classes of A-modules of dimension vector d. For a
module M in modA(d), denote by dimM modA(d) the local dimension of modA(d)
at M (maximal dimension of the irreducible components containing M).
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Theorem 5 (Malicki–Skowroński [3]). Let A be a basic algebra over an alge-
braically closed field K, C a generalized standard family of almost cyclic coher-
ent components of ΓA without external short paths, M a module in add(C ), and
d = dimM . Then

(i) M is a nonsingular point of modA(d).
(ii) qA(d) ≥ χA(d) = dimK EndA(M) − dimK Ext1A(M,M) ≥ 0.
(iii) dimM modA(d) = dimG(d) − χA(d).

We note that dimG(d)−χA(d) (respectively, χA(d)) can be arbitrary large [4].
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Cells and matrices

Steffen Koenig

(joint work with Changchang Xi)

Graham and Lehrer [2] defined cellular algebras in order to capture common struc-
tural and combinatorial features of symmetric groups, Hecke algebras and various
diagram algebras such as Brauer algebras. Cellular structures provide parameter
sets of simple modules up to isomorphism, and there is also a homological theory
of cellular algebras, see for example [6]. We are proposing a definition of affine
cellular algebras that works for infinite dimensional algebras, such as the affine
Temperley-Lieb algebras and, in particular, the extended affine Hecke algebras of

type Ã.

Definition. Let A be a k-algebra with a k-involution i on A. A two–sided
ideal J in A is called an affine cell ideal if and only if i(J) = J and there exist a
free k-module V of finite rank, a commutative affine k-algebra B with identity and
with a k-involution σ such that ∆ := V ⊗k B is an A-B-bimodule (on which the
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right B-module structure is induced by BB) and an A-A- bimodule isomorphism
α : J −→ ∆⊗B ∆′, where ∆′ = B⊗kV is a B-A-bimodule with the left B-structure
induced by BB and with the right A-structure via i, that is, (b⊗v)a := τ(i(a)(v⊗b))
for a ∈ A, b ∈ B and v ∈ V ), such that the following diagram is commutative:

J
α

−→ ∆ ⊗B ∆′

i
y

yv1 ⊗ b1 ⊗B b2 ⊗ v2 7→ v2 ⊗ σ(b2) ⊗B σ(b1) ⊗ v1

J
α

−→ ∆ ⊗B ∆′

The algebra A (with the involution i) is called affine cellular if and only if there
is a k-module decomposition A = J ′

1 ⊕ J ′
2 ⊕ · · · ⊕ J ′

n (for some n) with i(J ′
j) = J ′

j

for each j and such that setting Jj = ⊕j
l=1J

′
l gives a chain of two sided ideals of

A: 0 = J0 ⊂ J1 ⊂ J2 ⊂ · · · ⊂ Jn = A (each of them fixed by i) and for each j
(j = 1, . . . , n) the quotient J ′

j = Jj/Jj−1 is an affine cell ideal of A/Jj−1 (with

respect to the involution induced by i on the quotient).
We call this chain a cell chain for the affine cellular algebra A. The module ∆

will be called a cell lattice for the affine cell ideal J .

This definition insists on the finiteness of the cell chain. The main new ingre-
dient is the algebras B associated with the cells. These algebras are not a priori
related to the algebra A or its centre. In practice it is necessary to choose differ-
ent B for different cells. The lack of a relation between A and B poses the main
problem when developing a theory of affine cellular algebras. Nevertheless, it is
possible to describe a parameter set of simple modules, as an affine variety.

The first step is to view a cell ideal J as an algebra without unit and to identify
it with a generalized matrix ring (see also [1, 5]) with entries in B (note that in
general this matrix ring is not an algebra over B). The multiplication in such a
generalized matrix ring is controlled by a ’sandwich matrix’ ψst (which corresponds
to a bilinear form on the cell lattice). Once the cells Jj/Jj−1, their algebras Bj and

their sandwich matrices (ψ
(j)
st ) have been determined, the classification of simples

is as follows:

Theorem. Let A be an affine cellular algebra with a cell chain

0 = J0 ⊂ J1 ⊂ · · · ⊂ Jn = A

such that Jj/Jj−1 has sandwich matrix (ψ
(j)
st ).

Then there is a bijection between the set of isomorphism classes of simple A-
modules and the set

{(j,m) | 1 6 j 6 n, there is a maximal ideal m of Bj

such that there is some ψ
(j)
st 6∈ m}.

In particular, the parameter set of simple A-modules is a disjoint union of affine
varieties V arj, and each variety V arj is contained in an affine space Spec(Bj).

Extended affine Hecke algebras of type Ã are affine cellular; this uses results of
Lusztig [8, 9, 10] and of Nanhua Xi [11]. Working over a field and assuming that
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the quantum parameter q is not a root of the Poincaré polynomial (as in Nanhua
Xi’s [12] extension of the Deligne-Langlands classification) it follows that cells are
idempotent and that the extended affine Hecke algebra has finite global dimension.
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