
Mathematisches Forschungsinstitut Oberwolfach

Report No. 10/2008

Mini-Workshop:
The Mathematics of Electro-Active Smart Materials

Organised by

Luis Dorfmann, Medford

Ray Ogden, Glasgow

Giuseppe Saccomandi, Lecce & Perugia

February 24th – March 1st, 2008

Abstract. Science and technology have produced amazing developments in
the design of electronics and machinery using smart materials. Some ev-
eryday items are already incorporating smart materials as electro-rheological
and magneto-rheological fluids. Such materials are capable of a rapid and sig-
nificant change in their material properties on the application of a magnetic
or electric field. The workshop brings together leading experts from various
fields to address the mathematical and computational problems that pervade
research, development, testing in the field of smart materials.

Mathematics Subject Classification (2000): 74F15.

Introduction by the Organisers

The mini-workshop The Mathematics of Electro-Active Smart Materials, was at-
tended by 15 participants (7 from Europe, 4 from USA and 1 from Israel). This
workshop contained a nice blend of researchers with various backgrounds: math-
ematics, physics, engineering science and chemistry. The interdisciplinarity of
the invited participants was essential because smart materials, such as piezoce-
ramics, magnetostrictives and electroactive polymers, are characterized by strong
couplings between their mechanical properties and applied electric, magnetic or
thermal fields. Therefore skills in several areas of science are needed to understand
the complicated and highly nonlinear behavior of such materials.

Science and technology have produced amazing developments in the design of
electronics and machinery using smart materials. Some everyday items are already
incorporating smart materials (cars, the International Space Station, eyeglasses,
coffee pots, speakers, for example) and the number of applications is growing
steadily. For example, electro-rheological (ER) and magneto-rheological (MR)
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materials are fluids that can experience a dramatic change in their viscosity. They
can change from a thick fluid (similar to motor oil) to nearly solid substances
within the span of a millisecond when exposed to a magnetic or electric field; the
effect can be completely reversed just as quickly when the field is removed. MR
fluids are being developed for use in car shock absorbers, damping of machine
vibration, prosthetic limbs, exercise equipment, and surface polishing of machine
parts, in particular. ER fluids have been developed mainly for use in clutches and
valves, as well as in engine mounts where they are designed to reduce noise and vi-
bration in vehicles. More recently, magneto- and electro-sensitive elastomers have
been developed and commercialized. Such materials are capable of large elastic
deformations and a rapid and significant change in their material properties on the
application of a magnetic or electric field. The coupling in the material response is
achieved and optimized by distributing within an elastomeric matrix micron size
ferrous particles. Cross-linking may occur, for example, in the presence of an ap-
plied field, whereby particles form chain-like structures aligned along the applied
field direction. The material is then characterized by two families of preferred
direction and may result in highly controllable smart materials.

Mathematical and computational methods pervade research, development, test-
ing, and evaluation problems encountered by researchers in the field of smart
materials. Furthermore, increasing demands are being placed on research in the
mathematical sciences because of their fundamental roles in the analysis and mod-
elling issues that arise in such complex materials.

In this Mini-Workshop we have discussed recent mathematical and computa-
tional questions related to the modelling of smart materials used in structures,
actuators and sensors from the point of view of material properties and control of
mechanical properties.

The first talk by G. A. Maugin was on overview of existing theories capable of
describing the strong coupling between mechanical properties and applied fields
in electro- and magneto-active smart materials. This overview was extremely
interesting also because it was punctuated with historical notes and remarks.

On the other hand M. Zrinyi gave an exhaustive review of the phenomenology of
such materials and of experimental data. This was extremely useful for facilitating
a clear identification of further key experiments that should be conducted in order
to provide more comprehensive data for improving the modelling process.

The other talks have been devoted to

• Recently developed specific and realistic constitutive laws for describing
the response of smart materials, with particular reference to the highly
nonlinear deformation, polarization and magnetization.

• Analytical formulations and numerical solution methods for a range of
specific boundary-value problems for both idealized geometries and ge-
ometries that are of practical interest in the design of smart sensors and
actuators.
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• Illustrative numerical solutions of the coupled field equations for bound-
ary value problems with complex geometries with particular emphasis on
electric and magnetic boundary conditions at the material interfaces.

• Mathematical and numerical theories that include incremental deforma-
tions superimposed on a finite deformation as a basis for studying the
effect of electro-magnetic fields on the stability of finitely deformed elastic
solids, both in general terms and with a view to analysis of stability in
specific boundary-value problems.

• Mathematical theories that include time dependence in the formulation of
the equations in order to examine vibration and wave propagation charac-
teristics of magneto- and electro-sensitive materials. Numerical methods
for the corresponding equations of motion.
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Abstracts

On the role of the microstructure in electroactive polymer composites

Gal deBotton

Introduction. The class of electroactive polymers provide attractive advantages:
they are soft, light-weight, undergo large deformations, possess fast response time
and are resilient. However, wide-spread application has been hindered by their
limitations: the need for large electric field, relatively small forces and energy
density. It is now recognized that the limitations arise from poor ratio of dielectric
to elastic moduli in typical polymers. Recent experimental findings [2] suggest that
these difficulties can be resolved with the aid of composites made out of flexible
matrices with inclusions of high dielectric materials.

The objective of this work is to address the first of the two main difficulties
associated with the characterization of the behavior of electroactive polymer com-
posites (EAPCs). The first is associated with the nonlinear coupling between the
applied electric fields and the induced mechanical fields. This nonlinearity can re-
sult in amplification of the mechanical fields by local concentrations in the electric
field. The second difficulty results from the main advantage of these actuators
namely the large actuation strains. Here, however, we limit the investigation to
the response of heterogeneous media undergoing infinitesimal deformations due to
nonlinear electrostatic excitations. This will provide the required tool for analyzing
the electromechanical coupling in EAPCs.

Theory. The general variational principle characterizing the behavior of hetero-

geneous hyperelastic dielectrics under combined mechanical and electrical loads
was considered in [1]. In this section this, more general result, is specialized to the
limit of small deformations elasticity [3, 4].

Consider a heterogeneous n-phase elastic dielectric material in an external elec-

tric field generated by thin electrodes with fixed potential, φ̂ (Fig. 1). The elec-
trodes are attached on a portion Sv of the composite’s boundary and move with
the composite. In addition, external mechanical forces, t are acting on the bound-
aries of the sample. The composite occupies a volume region Ω, with boundary
∂Ω. Each homogeneous phase occupies a volume Ω(r), and the space surrounding
the sample is Ω(0) ≡ R3 \ ⋃n

r=1 Ω(r). The charge on the surface of the electrodes
induces an electric field in all space. Within each phase the electric field is con-
tinuous and can be express in terms of a scalar potential field φ such that

(1) E(r) = −∇φ (r = 1, 2, . . . , n).

The electrostatic potential φ is continuous throughout. p(r) are the electric polar-
izations generated in the phases in response to the electric field. The corresponding
electric displacement fields are

(2) D(r) = ǫ0E
(r) + p(r),
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Figure 1. A heterogeneous elastic dielectric in an external field generated
by thin electrodes with fixed potential

where ǫ0 is the dielectric constant of the vacuum. In the absence of charge distri-
bution in the phases, everywhere within the phases the electric displacement fields
are governed by the equation

(3) ∇ ·D(r) = 0,

subjected to the boundary condition φ = φ̂ on Sv.
The deformation within the homogeneous phases is characterized in terms of

the strain tensors

(4) ε(r) =
1

2

[
∇u + (∇u)

T
]
,

where the displacement vector u is continuous in Ω. In the absence of body forces
the equilibrium equations are

(5) ∇ ·
(
T(r) + T

(r)
M

)
= 0 in Ω(r),

subjected to the boundary condition (T(r) + T
(r)
M − T

(0)
M )n̂ = t on ∂Ω ∩ ∂Ω(r).

Here T is the mechanical Cauchy stress tensor, and the electromechanical coupling
forces are characterized in terms of Maxwell stress [5]

(6) TM = E ⊗ D− ǫ0
2

E · EI,

where I is the identity matrix.
The jump across the interface between phases r and s is [[ξ]] ≡ ξ(s) − ξ(r), with

ξ being some variable defined in both phases. We denote by n̂ an unit normal of
the interface pointing from phase s to r. m̂ is an arbitrary unit vector tangent
to the interface. Consider a point x on an interface charged with surface charge
density, q. For the electrostatic fields the jump conditions at this point are

(7) [[E]] = ([[E]] · n̂) n̂, [[D]] · n̂ = −q,
and for the mechanical fields

(8) [[∇u]] m̂ = 0, [[T + TM ]] n̂ = 0.

Application. We consider a linear composite dielectric in which, within the ho-
mogeneous phases, the stress-strain relations are T(r) = L(r) : ε(r), and the re-
lations between the electric displacement tensor and the electric field tensor are
D(r) = ǫ0k

(r)E(r). Here, L(r) and k(r) are the elastic and the dielectric tensors of
the r-phase, respectively.
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Figure 2. The actuation strains of a rank-6 sequentially laminated com-
posite and a composite with hexagonal unit cell shown together with corre-
sponding HS, third-order and naive estimates as functions of the inclusions’
volume fraction.

Representative results for the actuation strains developing in heterogeneous
dielectrics are depict in Fig. 2. Shown in the figure are exact predictions for
the actuation strains of a rank-6 composite and finite element simulations of a
composite with hexagonal unit cell. Also shown are the Hashin-Shtrikman and the
third-order estimates for the same class of composites. We note that by adding
stiff inclusions with high dielectric modulus to a more compliant matrix material
the actuation strain can be improved.

Acknowledgment. This work was supported by the United States-Israel Bina-
tional Science Foundation (Grant No. 2004146).
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Three numerical experiments on models of nematic elastomers

Antonio DeSimone

Nematic elastomers consist of networks of cross–linked polymeric chains, each of
which contains nematic rigid rod-like molecules (nematic mesogens). The inter-
action between nematic order and the underlying rubbery solid results in unusual
elastic properties, similar to those exhibited by shape-memory alloys.

It is rather well accepted that the free-energy density of nematic elastomers
has a multi-well character, due to the existence of spontaneous states of distortion
depending on the orientation of the nematic director [6]. This energy can be used
to model both the static and the dynamic response of the material. The analysis
of the static response has been pursued in joint work with Sergio Conti and Georg
Dolzmann [2, 3]. The dynamic response has been studied in collaboration with
Antonio DiCarlo and Luciano Teresi [5].

Accepting to model the static response through the study of global energy
minimizers, we are naturally led to the study of the convexity properties of the
free-energy of the system. The following expression for the free-energy density has
been proposed in [1]

(1) W (F) =

{
λ2

1(F) + λ2
2(F) + aλ2

3(F) − 3a1/3 if detF = 1

+∞ else

where λ1(F) ≤ λ2(F) ≤ λ3(F) are the ordered principal stretches associated with
the deformation gradient F = ∇y, y being the deformation. The scalar a < 1 is a
material parameter related to the distortion that the polymeric chains suffer with
the establishment of nematic order. The quasiconvex envelope of (1) has been
obtained in [5] and it is given by

(2) Wqc(F) =






0 if λ1 ≥ a1/6 (phase L)

W (F) if a1/2λ2
3λ1 > 1 (phase S)

λ2
1 + 2a1/2λ−1

1 − 3a1/3 else (phase Sm)

while it is infinite if detF 6= 1. This expression has been used to simulate numer-
ically the stretching of clamped sheets of nematic elastomers in [2] and [2] using
the Finite Element Method (FEM).

Moving to dynamics, a mechanism to describe viscous dissipation associated
with rotations of the nematic director has been proposed in [4]. The resulting
model has been used to examine the dependence on the loading rate of the stress-
strain response in a purely mechanical experiment, and to model the dynamic
response of nematic gels to applied electric fields.

References

[1] Bladon, P., Terentjev, E. M., Warner, M., 1993. Transitions and instabilities in liquid-crystal
elastomers. Phys. Rev. E 47, R3838–R3840.

[2] S. Conti, A. DeSimone, and G. Dolzmann, Soft elastic response of stretched sheets of nematic
elastomers: a numerical study. J. Mech. Phys. Solids, 50 (2002), 1431-1451.



Mini-Workshop: The Mathematics of Electro-Active Smart Materials 483

[3] S. Conti, A. DeSimone, and G. Dolzmann, Semi-soft elasticity and director reorientation in
stretched sheets of nematic elastomers. Phys. Rev. E, 66 (2002), 061710-1-8.

[4] A. DeSimone, A. DiCarlo, and L. Teresi, Critical voltages and blocking stresses in nematic
gels. Eur. Phys. J. E, 24 (2007), 303-310.

[5] A. DeSimone and G. Dolzmann, Macroscopic Response of Nematic Elastomers via Relax-
ation of a Class of SO(3)-Invariant Energies. Arch. Rat. Mech. Anal., 161 (2002), 181-204.

[6] M. Warner and E. Terentjev, Liquid Crystal Elastomers, Clarendon Press, Oxford 2003.

Nonlinear electroelasticity: finite deformations, incremental equations

and stability

Luis Dorfmann

(joint work with Roger Bustamante, Ray W. Ogden)

In this talk we first provide an overview on a recently developed theory on the inter-
actions between electric fields and mechanical deformations of electro-sensitive ma-
terials that are capable of large deformations [1]. Attention is focused on isotropic
electroelastic materials and on time-independent electric fields. We summarize the
basic equations for the mechanical and electric field variables and their interactions
in Eulerian and Lagrangian forms. The general constitutive law for an isotropic
electroelastic material is based on the existence of a free energy function expressed
in terms of the deformation and one of the electric field vectors. Following Kovetz
[2] we begin by considering the deformation gradient F and the electric field E as
the independent variables, and we write ψ = ψ(F,E). For a material with no in-
ternal mechanical constraints, the Cauchy-like stress tensor σ and the polarization
density P, are given by

(1) σ = ρF
∂ψ

∂F
, P = −ρ ∂ψ

∂E
.

The electric displacement D, defined in terms of E and P, is then obtained by the
standard relation

(2) D = ε0E + P,

where the constant ε0 is the electric permittivity. These are Eulerian vector fields
defined on the current configuration and are regarded as a function of the de-
formed position vector x. For time-independent phenomena and in the absence of
magnetic fields, free currents and free electric charges, the vector fields D and E

satisfy Maxwell’s equations

(3) divD = 0, curlE = 0.

We denote by Dl and El the Lagrangian counterparts of D and E, respectively.
These are given by

(4) Dl = JF−1D, El = FTE,

and its follows that equations (3) can be written in the Lagrangian forms

(5) DivDl = 0, CurlEl = 0,
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where Div and Curl are the div and curl operators in the reference configuration.
The equilibrium equation for electro-sensitive materials, in the absence of me-

chanical body forces, has the form

(6) divσ + fe = 0,

where the electric body force (per unit volume) is given by fe = (gradE)TD. The
influence of the electric field on a deformable body may be incorporated either
through a stress tensor or through a body force term. Alternative stress tensors
and electric body forces can be defined that allow for many different ways to
formulate the equilibrium equation, see [3] for a detailed discussion. Following
Dorfmann and Ogden [1], it is convenient to introduce the total stress tensor τ ,
which is symmetric and includes the contribution of the electric body forces. The
stress τ is related to σ by

(7) τ = σ + D ⊗ E− 1

2
ε0(E ·E)I,

where I is the identity tensor. Let the material be surrounded by vacuum where
P = 0. In the surrounding space we denote the electric displacement and electric
field vectors by D⋆ and E⋆ respectively, which are related by D⋆ = ε0E

⋆. In the
surrounding space, the total stress tensor τ reduces to

(8) τ
⋆ = ε0

[
E⋆ ⊗ E⋆ − 1

2
(E⋆ ·E⋆)I

]
,

which is known as the Maxwell stress. The electric displacement and electric
field vectors as well as Maxwell’s stress tensor satisfy the equations divD⋆ = 0,
curlE⋆ = 0 and divτ

⋆ = 0.
The total nominal stress tensor, here denoted T, is defined by T = JF−1

τ . It
follows that equilibrium, in the current and reference configurations, requires that

(9) divτ = 0, DivT = 0,

where (9)1 replaces equation (6). Next, appropriate continuity conditions need
to be prescribed on the boundary of the body for the electric displacement and
electric field vectors and stress tensors. In the current configuration the continuity
condition of the total stress tensor τ is given by

(10) τn = ta + te,

where n is the unit outward normal vector, ta the applied mechanical traction per
unit deformed area and te includes the contribution of the electric field exterior
to the body, i.e. te = τ

⋆n. In the reference configuration the traction boundary
has the form

(11) TTN = tA + tE ,

where N is the unit outward normal, tA and tE are defined by tAdA = tada and
tEdA = teda, respectively. The area elements da and dA are related by Nanson’s
formula via nda = JF−T NdA.
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Boundary conditions for the electric field E and displacement vector D take the
Eulerian forms

(12) (D − D⋆) · n = 0, (E − E⋆) × n = 0,

with D⋆ and E⋆ being evaluated on the boundary.
Following Dorfmann and Ogden [4], it is convenient to introduce a total energy

function, denoted Ω (as distinct from the notation Ω∗ used in [1, 3]). The total
energy is defined as a function of F and Dl per unit volume in the undeformed
configuration.

For unconstrained materials, the total nominal stress T and the Lagrangian
electric field El are then given by

(13) T =
∂Ω

∂F
, El =

∂Ω

∂Dl
,

and the Eulerian counterparts are

(14) τ = J−1F
∂Ω

∂F
, E = F−T ∂Ω

∂Dl
.

Let increments be signified by superposed dots. From the current configuration
consider an incremental deformation Ḟ combined with an increment in the electric
displacement Ḋ. We denote by Ṫ, Ėl increments in total nominal stress T and
electric field El, respectively. For an unconstrained material these are given by

(15) Ṫ = AḞ + ΓḊl, Ėl = ΓḞ + KḊl,

where A, Γ and K are, respectively, fourth-, third- and second-order tensors,
which we refer to as electroelastic moduli tensors. The incremental forms of the
field equations (5) and the equilibrium equation (9)2 are

(16) DivḊl = 0, CurlĖl = 0, DivṪ = 0.

For the derivation and component representation of the electroelastic moduli ten-
sors we refer to [4].

Increments in the deformation and electric displacement need to be accounted
for when evaluating the fields exterior to the material body. The associated incre-
ments Ḋ⋆ and Ė⋆ satisfy Maxwell’s equations

(17) divḊ⋆ = 0, curlĖ⋆ = 0.

The increment of τ
⋆ is obtained by writing equation (8) in incremental form

(18) τ̇
⋆ = ε0[Ė

⋆ ⊗ E⋆ + E⋆ ⊗ Ė⋆ − (E⋆ · Ė⋆)I],

which satisfies the equilibrium equation div τ̇
⋆ = 0.

Finally, on taking the increment of the traction boundary (11), we obtain

(19) ṪT N = ṫA + J τ̇
⋆
F−TN− Jτ

⋆F−T ḞTF−T N + J̇τ
⋆F−T N,

where we used Nanson’s formula to write TE = Jτ
⋆F−TN. Similarly, incremental

equations can be derived for the electric boundary conditions (12). We refer to [4]
for a detailed discussion of this topic.
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Electromagnetic effects in deformable solids: historical perspectives

and current challenges

Gerard Maugin

A detailed and historical survey of the development of the various theories of
electromagnetic effects in deformable solids is provided.
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The Principle of virtual work for combined electrostatic and

mechanical loading

Robert M. McMeeking

(joint work with Chad M. Landis, Salomon M.A. Jimenez)

The equations governing mechanics and electrostatics are formulated for a system
in which the material deformations and electrostatic polarizations are arbitrary.
A mechanical/electrostatic energy balance is formulated in terms of the electric
enthalpy, in which the electric potential and the electric field are the indepen-
dent variables. This energy statement is presented in the form of a principle of
virtual work (PVW), in which external virtual work is equated to internal vir-
tual work. The resulting expression involves an internal material virtual work in
which (1) material polarization is work-conjugate to increments of electric field
and (2) a combination of Cauchy stress, Maxwell stress and a product of polar-
ization and electric field is work-conjugate to increments of strain. This principle
of virtual work is valid for all material types, including those that are conser-
vative and those that are dissipative. The internal virtual work expression can
be used to develop the structure of conservative constitutive laws governing, e.g.
electroactive elastomers and piezoelectrics, thereby determining the form of the
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Maxwell or electrostatic stress. The Maxwell or electrostatic stress has a form
fully constrained by the constitutive law and cannot be chosen independently of
it. The structure of constitutive laws for dissipative materials, such as viscoelas-
tic electroactive polymers and switchable ferroelectrics, is similarly determined,
and it can be shown that the Maxwell or electrostatic stress for these materials is
identical to that for a material having the same conservative response when the
dissipative processes in the material are shut off. The form of the internal virtual
work can be used further to develop the structure of dissipative constitutive laws
controlled by rearrangement of material internal variables.

Consider a system consisting of dielectric materials, perfect conductors and free
space, without any implication that the dielectricity is conservative or linear. In
the current configuration, the system occupies the volume V . The perimeter of
the system plus interfaces within it are designated S in the current configuration.
The internal interfaces separate the dielectric materials, the conductors and free
space from each other. In addition, sectors of dielectric with homogeneous or
heterogeneous properties may be separated by surfaces included within S, as may
sectors of free space.

Let the free charge per unit volume within V be q(xi, t) where xi is the position
of material points in the current configuration and t is time. Furthermore, let
ω(xi, t) be the free charge per unit area on the surfaces S and define φ(xi, t) to
be the electrical potential everywhere within the system such that it is continuous
everywhere in space. Further variables to be considered in the PVW are the
velocity vj(xi, t) of material points, the surface traction Tj(xi, t) defined as the
force per unit area acting on S and bj(xi, t), which is the body force per unit
volume acting at points in V . Note that the surface traction Tj and the body force
bj arise from sources other than electrical effects and therefore, do not represent
the influence of charges interacting at a distance or electrical fields exerting forces
on charges. The surface traction Tj and the body force bj and any equivalent
quantity defined in the current state will be designated mechanical.

Consider the physical laws governing the electromechanical fields in the mate-
rial. In the quasi-static limit, Maxwell’s laws state that the electric field must be
curl-free and Gauss’s law states that the divergence of the electric displacement
must be equal to the volume density of free charge. Therefore, for the electric
field, Ei, and the electric displacement, Di,

ǫijk
∂Ej

∂xi
= 0 ⇒ Ei = − ∂φ

∂xi
,(1)

∂Di

∂xi
= q inV,(2)

ni ‖Di‖ = ω onS.(3)

Here, ni are the Cartesian components of the unit normal to the surface S pointing
from the ” − ” side of the surface out toward the ” + ” side, and ǫijk are the
components of the permutation symbol. The notation ‖ ‖ represents the difference
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or jump in the included quantity across the surface S such that

(4) ‖Di‖ = D+
i −D−

i .

The electric displacement can be decomposed into two parts such that

(5) Di = κ0Ei + Pi,

where κ0 is the dielectric permittivity of free space and Pi are the Cartesian
components of the material polarization. Conservation of mass implies that for a
given material volume

(6)
d

dt

∫

V

ρdV = 0 ⇒ ∂ρ

∂t
+ ρ

∂vi

∂xi
= 0,

where ρ(xi, t) is the mass density of the material. The principles of conservation
of linear momentum is stated as

(7)

∫

V

(bi + bEi )dV +

∫

S

(Ti + TE
i )dS =

d

dt

∫

V

ρvidV.

Here the components of the electrical body force bEi and surface traction TE
i have

been introduced. These forces arise directly from electric fields acting in the ma-
terial and are in addition to the mechanical body force and surface traction. Fur-
thermore, it is assumed that the electrical body force can be derived from the
Maxwell stress tensor σM

ij such that

(8) bEi =
∂σM

ij

∂xj
inV

where the electrical body force is the effect of charges interacting at a distance
or equivalently, the force per unit volume arising from electric fields acting on
charges. The traction relationship for Maxwell stress is then

(9) TE
i = nj

∥∥σM
ij

∥∥ onS.

Then, in order to satisfy the principle of conservation of linear momentum for a
small surface element, the Cauchy stress in the material, σij , must balance the
total surface traction such that along with Eq. (9)

(10) Ti + TE
i = −nj ‖σij‖ ⇒ Ti = −nj

∥∥σij + σM
ij

∥∥ ,

The sum of the Cauchy and Maxwell stresses will be termed the total true stress.
Next, application of Eqs. (7), (8) and (10) within the principles of conservation

of linear and angular momentum and recognition that the resultant integrals must
be valid for any arbitrary volume yields

(11)
∂σij

∂xj
+
∂σM

ij

∂xj
+ bi = ρ

dvi

dt
inV,

and

(12) σij + σM
ij = σji + σM

ji inV.
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Thus, for the balance of angular momentum to be satisfied, the total true stress
must be symmetric, but there is no requirement that the Maxwell and Cauchy
stress tensors are individually symmetric.

An asterisk indicates, respectively, a virtual differentiation with respect to time,
and a virtual velocity. Introduction of the material virtual rate of change of the
electric field then provides a desirable form of the PVW, namely

∫

V

(
biv

∗

i − q
dφ

dt

)
dV +

∫

S

(
Tiv

∗

i − ω
dφ

dt

)
dS(13)

=

∫

V

[(
σij + σM

ij −DjEi

) ∂v∗i
∂xj

−Di
E∗

i

dt
+ ρ

dvi

dt
v∗i

]
dV.

Since no constitutive information has been assumed or applied in this derivation,
the forms here derived, are valid for both conservative and dissipative materials.

Magnetostriction in a hard ferromagnetic thin-film beam-plate theory

Andrea Nobili

The theory of magnetoelastic interaction is concerned with the deformation of a
continuum endowed with some magnetic property, generally expressed in terms of
the magnetization vector per unit volume, in the presence of a magnetic field, ei-
ther it be external, self generated or both. The treatment comprises the equations
of continuum mechanics together with Maxwell equations, which take care of the
magnetic part, coupled with suitable constitutive equations both in terms of the
elastic and the magnetic response. In the simplest case, the magnetic constitutive
equations define the so-called soft ferromagnetic materials, which are such that the
magnetization is completely defined in terms of the local magnetic field. Accord-
ingly, the magnetic field evaluated at a point, which depends in a potential-theory
fashion from the whole magnetization distribution, acquires a direct kinship with
the magnetization vector at that same point. Thereby, the generally non local
dependence of the magnetic field on the magnetization is overridden by a special
local dependence. Special cases are the so-called paramagnetic and diamagnetic
materials, wherein the dependence is furthermore linear. In soft ferromagnets,
the magnetic problem is almost decoupled from the mechanical problem, the only
interaction being represented by the current configuration over which the Maxwell
equations are to be solved. An interesting and distinctive feature of such an ap-
proach lies in that the magnetic aspect, both in terms of magnetic distribution
and in terms of the action on the continuum, is completely expressible through
a suitably chosen strain energy function, which depends only on local terms, be
they mechanical or magnetic. The total energy of the body may then be expressed
as the sum of the strain energy function and of the so-called self energy, which
is the energy associated with the magnetic field over the entire domain. Yet the
latter, in the case of soft ferromagnets, may be recast as a integral over the body
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of the magnetization field (squared) and, as such, as an integral of a local prop-
erty of the body. As a consequence, the complete phenomenon is reduced to the
interplay of local quantities and the non local character is lost. Indeed, the same
strain energy function, differentiated, yields the magnetic field as a function of the
mechanical and magnetic quantities, locally evaluated. Furthermore, a local mag-
netic constitutive equation gives rise to multiple (and mutually inequivalent) force
expressions, according to the mechanical aspect which is being emphasized (for
instance, the couple distribution in the body). Such force expressions are funda-
mentally dependent on the local form of the strain energy function and it turns out
that the deformation is ultimately driven by the strain energy expression. Hard
ferromagnetic bodies, on the contrary, possess a constitutive response wherein the
magnetization is at equilibrium with the local magnetic field, which, in turn, is
given by an external field, a self field and a constitutive field. In other words, the
magnetic constitutive response is given in terms of the latter contribution, which
sums up with the potential theory self contribution (whence the non local effect)
and the external field (which acts as an external load) to yield the total magnetic
field at a point. In such approach, the strain energy function is responsible for the
constitutive field alone and the energy of the system cannot be expressed in terms
of purely local quantities. Such aspect is brought into light by the self energy,
which is no longer the integral of a local energy density. Such an approach war-
rants that different magnetic force expressions yield different local actions which,
however, are all equal inasmuch as observable quantities are concerned. Indeed,
the discrepancy among the force expressions is shown to be accounted for by local
terms only, which means that such expressions all imply a different choice of the
strain energy function with respect to the magnetic contribution. The overall bal-
ance is thereby consistent. In this paper, a simple beam-plate thin-film cantilever
structure is studied within the theory of hard ferromagnetic and elastic interac-
tion. The key step lies in assuming a preferred direction for the magnetization
distribution which, following Maxwell equations, allows to recast the usual force
expressions in terms of the magnetic field rather than its derivative. This provides
a substantial advantage in evaluating the otherwise singular integrals which give
the magnetic action. Notwithstanding the simplifying hypothesis, all the relevant
features of a hard ferromagnetic and elastic interaction problem are encountered
and it is possible to show the nature of the magnetic force (which is non local and
singular at the corner points in the domain) and to assess the deformation and
the interaction between the layers through an asymptotic analysis. A numerical
pseudo-spectral approach lends the full solution.
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Body forces and Maxwell stresses in nonlinear electroelasticity

Ray W. Ogden

(joint work with Roger Bustamante, Luis Dorfmann)

There are several different theories concerned with describing the interaction of
electromagnetic fields with the deformation of solid continuous materials. In par-
ticular, there are different definitions for the ‘Cauchy stress’, the Maxwell stress
and the electromagnetic body forces, some which are summarized in [1] for the
electro-elastostatic specialization. These arise because of the fundamentally dif-
ferent theoretical frameworks on which the theories of continuum mechanics and
electromagnetism are based, and from the point of view of the mathematical for-
mulation of the governing equations there is considerable flexibility in the way in
which these two theories can be combined.

In a recent paper [2], Dorfmann and Ogden have developed, in the quasi-static
context, a formulation of the equations of nonlinear electroelasticity that is ap-
plicable to electro-sensitive materials that are capable of large deformations, in
particular to the electroelastic response of elastomers. Therein, use is made of a
‘total’ (Cauchy) stress tensor and an associated ‘total’ energy density function.
The latter is the key to providing a very simple, but general, mathematical struc-
ture of the governing equilibrium and constitutive equations, simpler than in pre-
viously available formulations. This formulation has the advantage that within the
material it does not involve the notion of Maxwell stress, a quantity that is in any
case not uniquely defined and not accessible to direct experimental measurement.

The purpose of this talk is an attempt to clarify these issues, based partly on
the formulation in [2] and the discussion in a forthcoming paper [3]. We consider
the influence of an applied electric field on an electro-sensitive material and the
resultant ‘self’ field, which combine to give the total electric field E. In free space
the electric displacement vector is given by D = ǫ0E, where the constant ǫ0 is the
permittivity therein, but in an electro-sensitive material this is replaced by the
connection D = ǫ0E + P, where P is the polarization density of the material. In
free space the Maxwell stress tensor τm is defined uniquely by

(1) τm = D ⊗ E− 1
2ǫ0(E ·E)I,

where I is the identity tensor. The effect of the ‘traction’ on the body boundary
produced by this stress is equivalent to a body force (per unit volume) given by
(P · ∇)Ea, where Ea is the applied contribution to E. Note that this is not a
traction in the conventional mechanical contact sense.

The equation of equilibrium for the body can be written in the pointwise form

(2) divσ + ρf + fea = 0,

where σ is the Cauchy stress tensor that matches the applied mechanical traction
per unit area of the body boundary, ta say, via the connection σ

Tn = ta, ρ is
the mass density of the material, f is the mechanical body force per unit mass,
fea = (P · ∇)Ea, n is the unit outward normal to the boundary of the body and
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T signifies the transpose of a second-order tensor. Note that, in general, σ is not
symmetric.

An alternative and equivalent formulation of the equilibrium equation is

(3) div σ̄ + ρf + fe = 0,

where fe ≡ (P · ∇)E is the electric body force based on the total field E and σ̄

is another stress tensor, which is related to σ by σ̄ = σ − τms, τms being the
Maxwell stress corresponding to the self field, i.e.

(4) τms = Ds ⊗ Es − 1
2ǫ0(Es ·Es)I,

with Es = E − Ea, Ds = D − Da. The ‘traction’ boundary condition associated
with this stress tensor, however, involves a term related to the polarization in
addition to ta and does not have a clean interpretation.

A third option is the equilibrium equation

(5) divτ + ρf = 0,

where τ is a symmetric ‘total’ stress tensor related to σ̄ by τ = σ̄ + τm, with τm

given by the formula (1) inside the material (where it is not in general symmetric).
In this case τ matches the traction boundary condition that incorporates the
Maxwell traction, say tm, where tm = τmn is calculated from the exterior of the
material, so that τn = ta + tm on the body boundary. Note that this formulation
involves neither a Maxwell stress nor an electric body force within the material.
The symmetry of τ ensures that the rotational balance equation is satisfied and,
consequently, no intrinsic body couple is associated with this formulation. On the
other hand, with ε denoting the alternating tensor, εσ̄ = −ετm = −D × E =
−P× E, which corresponds to an intrinsic body couple.

Energy balance equations associated with the above formulations may be given
in the form of virtual work identities for the current configuration of the body,
which we denote by B with boundary ∂B. Energy balance has its simplest expres-
sion in terms of the stress tensor τ . If we denote by v a virtual displacement from
the configuration B and its gradient by L = ∇v then we have

(6)

∫

B

ρf · v dv +

∫

∂B

(ta + te) · v da =

∫

B

tr(τL) dv.

This enables contact to be made with the constitutive formulation in [2] and with
the variational formulation in [1]. In terms of the density function Ω per unit
reference volume introduced in [2], which is a function of the deformation gradient
tensor F and the Lagrangian electric field vector El = FTE we have simply

(7) tr(τL)dv = (Ω̇ + Dl · Ėl)dV,

where dV is the volume element in the reference configuration and the superposed
dot signifies a variation, which allows for independent variations in F and ϕ, where
El = −Gradϕ, ϕ being the scalar electric potential arising from the equation
curlE = 0, or, equivalently, its Lagrangian counterpart CurlEl = 0, in the static
specialization of Maxwell’s equations.
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By identifying the virtual displacement v with a variation in the displacement
we write equation (6) as

(8) Ė −
∫

B

ρf · v dv −
∫

∂B

ta · vda = 0,

where

(9) Ė =

∫

B

tr(τL) dv −
∫

∂B

tm · v da,

and the terms following Ė in (8) are purely mechanical. Then, after some manip-
ulations using the divergence theorem and transformations between the reference
and current configurations we find that Ė is the variation of the functional

(10) E =

∫

Br

Ω dV − 1

2
ε0

∫

B′

E ·E dv − ǫ0

∫

∂B∞

ϕEa · n da,

with respect to independent variations in the deformation function and the electric
potential, which recovers a functional derived in [1]. In (10), Br is the reference
configuration of the body, B′ is the region of free space exterior to the body in its
deformed configuration B, ∂B∞ is the boundary of free space at infinity and Ea is
the applied electric field at infinity.

At this point the energy density Ω remains general but must be subject to both
mathematical restrictions and physical considerations. These include requirements
that ensure boundary-value problems are well posed and lead to existence of so-
lutions, and that particular forms of Ω are consistent with the results of experi-
ments. At the present time there are not sufficient data available from systematic
experiments in which different electric fields are controlled for a wide range of de-
formations. There is a pressing need for such data as the basis for characterizing
the form of Ω for particular materials, which can then be used in the solution of
boundary-value problems. Very few such problems have been solved and prospects
for obtaining closed-form solutions are slim, even for very simple prototype forms
of Ω. Moreover, solution of boundary-value problems with realistic geometries that
underpin practical applications requires the application of computational methods,
and variational or virtual work formulations such as that discussed above provide
a basis for their development.
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Damage localization and stability in electro-active polymers

Giuseppe Puglisi

The technological evolution on the manufacturing of polymers indicates electro-
active polymers as very promising materials for several applications, ranging from
robotic, to medical, and biological technologies. These materials are characterized
by important qualities such as lightweight, small size, low-cost, flexibility, fast
response. The drawbacks are related to low actuation force, low mechanical energy
density, low robustness and, principally, the requirement of high electric fields.

From a theoretical point of view the description of the electro-mechanical be-
havior of these materials leads to several complication due to the observed strain
and damage localization and complex history dependence. In this work we pro-
pose, based on a recent damage theory for amorphous materials [2, 3], a model for
the analysis of these effects. By considering a first simple example of application
we show that the model is suitable to describe known experimental effects observed
under electromechanical cyclic loading such as a damage induced softening, strain
and damage localization, and the phenomenon of pull-in instability (see [1, 2, 6, 7]
and reference therein).

1. Constitutive assumption

Let F be the strain gradient, D and E the electric displacement and the electric
field in the current configurations, respectively, and Dl = JF−1D and El = FTE

their lagrangian counterpart (see [4, 5]), where J = detF. Moreover we indicate
with ρ0 and ρ the mass density in the reference and current configurations, respec-
tively, Jρ = ρ0, and with ε the electric permittivity. In a variational formulation
[4], we may introduce an electromechanical energy density Ψ = ρΦ(F)+ D·D

2ε , addi-
tively decomposed in a strain dependent part Φ and in an electrostatic component.
This energy per unit reference volume can be rewritten as

(1) Ψ̄ = ρ0Φ(F) +
1

2 εJ
FDl · FDl.

Based on experimental observations (see e.g. [7] and references therein) we neglect
the dependence of ε on the deformation. Moreover we consider an incompressibility
assumption J = 1.

To take care of damage effects, we consider for the polymeric material a strain
energy density Φ of the type proposed in [2]. Specifically, we suppose that at each
material point there exists a fraction α of elastic material and a fraction 1 − α
of damageable material, with Φ = αΦe + (1 − α)Φd. The α fraction, assumed
neo-Hookean with modulus µe, represents an elastic foundation delivering finite
strength even in the state of damage saturation. The remaining fraction takes
care of the complex scission effects at the scale of the polymeric network. This
energy depends on an activation and breaking criterion. In the simplest case, we
may assume that the damageable material is activated when F = Fa, such that
the first invariant I = trB, B = FFT , reaches the activation threshold I = Ia.
Similarly the material is broken when I reaches a fracture value Ib = Ia + ∆
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where ∆ represents a material parameter measuring the elastic range. Moreover,
we assume that the stress elastically depends on the deformation measured from
the activation state: F̂ := FF−1

a , B̂ = F̂F̂T , Î = trB̂. Thus, based again on a
neo-Hookean assumption, we take an energy Φd and a Cauchy stress Td

(2) Φd =






0 if I < Ia
µd(Î − 3) if Ia < I < Ib
µd(Îb − 3) if I > Ib

, Td =






0 if I < Ia
µdB̂ if Ia < I < Ib
0 if I > Ib

,

where µd is an elastic modulus. To describe the properties of the polymeric net-
work, constituted by chains with different reference and fracture strains, we assume
that the damageable fraction is assigned by a distribution p of materials with dif-
ferent activation thresholds: p = p(Ia). Moreover, we assume that rupture events
are irreversible, so that Td = 0 for any strain history after I = Ib.

With all this standing (see [2] for details), the stress T = dΨ/dF is given by

T = −πI + αµeB + (1 − α)

∫ I

Imax−∆

µb B̂ p(Ia) dIa +
1

ε
D ⊗ D

where π is a pressure taking care of the incompressibility hypothesis and Imax is
the maximum past value of I attained in the strain history.

To describe the behavior of the obtained model, we consider a simple example
of application, represented in Fig.1a, of a capacitor under an applied electric field
El. Under the hypothesis of uniaxial deformation x = λX, y = Y/

√
λ, z = Z/

√
λ,

with λ ≤ 1, we obtain I = λ2 + 2/λ, Ia = λ2
a + 2/λa, Î = λ2/λ2

a + 2λa/λ. By
imposing a zero traction condition T11 = T22 = T33 = 0 we obtain

D2
l

ε
= αµe(

1

λ3
− 1) + 2(1 − α)µb

∫ λ

λ(Imax−∆)

(
λa

λ3
− 1

λ2
a

)(λa − 1

λ2
a

)p(I(λa))dλa.

Correspondingly, the total potential energy can be evaluated as

G

LA
= α

µe

2
(Î(Dl) − 3) + (1 − α)

µb

2

∫ Î(Dl)

Î(Dl)−∆

(Î(Dl) − 3)p(Ia)dIa

+ (1 − α)
µb

2

∫ Î(Dl)−∆

0

(Îb − 3)p(Ia)dIa) − ElDl.

This energy is represented in Fig.1b for different assigned El. Interestingly for
some choice of α and p(Ia), G can be a two-wells energy with the possibility,
experimentally observed, of deformation and damage localization (see [3, 1, 7]).

Moreover, by minimizing Ψ̄ with respect to Dl, we obtain Dl = ε El

λ2(Dl)
. In

Fig.1c we show the resulting electric field-electric displacement curves under a
cyclic experiment of assigned El with increasing cycles size. The different curves
1, 2, 3, 4 correspond to increasing size and show a damage induced variation of the
capacity of the conductor reproducing an electromechanical Mullins effect [3].

The influence of the material distribution properties on the electromechanical
properties is described in Fig.1d,e where we show the behaviors for different frac-
tions of damageable material. In the case of α = 1 the polymer behaves as an
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Figure 1. a) scheme of a capacitor under an applied electric field El,

b) non convex total energy for different assigned El, c) Mullins effect for

electromechanical cycles, d), e) different electromechanical response corre-

sponding to different fractions 1 − α of damageable material.

elastic neo-Hookean material and the capacitor shows a single stable equilibrium
solution for any given value of El until a limit threshold is reached leading to a
pull-in instability rupture (see [7]). For smaller α two metastable solutions may
be available at given El, corresponding to possible coexistent states with different
strain and damage as experimentally observed ([1, 6, 7] and reference therein).
The description of the effective geometries of damage and deformation requires
the solution of appropriate boundary value problems that will be the subject of
our future work. Observe that after the transition to the higher deformation con-
figuration the system reaches again the rupture through a pull-in instability.
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Mathematical modeling and analysis of electrorheological fluids

Michael Ruzicka

We have discussed two models for the flow of ERFs. Both lead to interesting
questions in non-standard function spaces. Thus we will also discuss the underlying
mathematical theory of these spaces and the consequences for the flow of ERfs.
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Non smooth solutions in fiber reinforced and electroactive materials

Giuseppe Saccomandi

It has been known for some time that certain radial anisotropies in some linear
elasticity problems can give rise to stress singularities which are absent in the
corresponding isotropic problems. Recently Roger Fosdick [1] has pointed out
that those classical solution supports a subregion of material interpenetration and
they must be rejected because in clash with the fundamental axioms of continuum
mechanics. Similar singular solutions are possible in linear piezolectric materials
[2].

Here we show that in the case of incompressible fiber reinforced elastic ma-
terials, depending on the reinforcement strength and the fiber orientation in the
undeformed configuration, weak solutions, i.e. solutions for which the smoothness
required by the differential equations is relaxed, are to be expected. The fact
that we are considering only isochoric deformation ensures that material interpen-
etration cannot occurs and therefore our solutions fulfill all the necessary axioms.
These deformations are are true weak solutions because although the deformation
field is continuous the strain jumps. These non smooth solutions are interesting
because they are related to instability phenomena (like micro-buckling of fibers)
and they are non-unique. The mathematics and mechanics of these solutions have
been extensively studied in [3] and [4] where the rectilinear shear and the azimuthal
shear deformations are investigated.
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Similar weak solution are possible in electro-active materials (both solids and
fluids). It is interesting that in this case the possibility of of non smooth solutions
is driven not only by the intensity of the load, but also by the intensity of the
electric field. As illustrative example we consider the Poisseuile flow of an electro-
active fluid. We use the same model proposed in [5] and the same arrangement of
the electric field. Although this problem have been considered previously in details
(see for example [6]) it seems that the possibility of the existence of weak solutions
as the ones here presented has been skipped. By pointing out the similarities
between the governing equations of the various problems we show that the same
mathematical techniques may be used both to study the existence of singular
solution in the case of fiber reinforced materials and electro-active materials.
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Dynamic equations for smectic A liquid crystals

Iain W. Stewart

Smectic liquid crystals are anisotropic fluids that consist of rod-like molecules
which are arranged in equidistant layers. In smectic A (SmA) liquid crystals
these molecules have a common preferred local average direction that is usually
assumed to be parallel to the local layer normal. The average orientation of the
long molecular axes is described by the unit vector n, called the director. Further
details on the physical and mathematical descriptions of SmA liquid crystals can
be found in de Gennes and Prost [1] and Stewart [2]. It is common to denote the
unit smectic layer normal by a and to make no distinction between n and a in static
configurations. Nevertheless, the dynamics of SmA materials are quite complex
and recent work by Auernhammer et al. [3] and Soddemann et al. [4] indicates
that samples of SmA under simple shear may exhibit a decoupling between n and
a. This indicates a need for a mathematical model that will allow for this type of
effect and its consequences. A theory that does not necessarily require n and a

to coincide has recently been developed by Stewart [5]. It is based in part upon
many of the ideas used in the classical formulation of dynamics for nematic liquid
crystals by Ericksen and Leslie and dynamics for SmA by Ahmadi [6] and E [7],
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but with some differences in approach. The Oseen constraint for smectic liquid
crystals, which has been used extensively in earlier static theories [1, 2], states
that ∇× a = 0 in the absence of defects. This constraint cannot be expected to
hold for general disturbances to the smectic layers and, unlike previous theories,
the dynamic theory summarised below from [5] does not impose this requirement.
The smectic layers can be described via a scalar function Φ so that a = ∇Φ/|∇Φ|.
The motion of fluid across the smectic layers in the direction of the layer normal is
called permeation. This effect is also incorporated and is intricately linked to Φ.

The dynamic equations of SmA can be summarised as follows [5]. The smectic
layers are described by Φ, a scalar function that depends on the spatial coordinates
and time. The layer normal a is as defined above and therefore satisfies a · a = 1.
The director n must fulfil the constraint

(1) nini = 1 ,

while the usual incompressibility condition is given by

(2) vi,i = 0 ,

where v is the velocity. The suffix i equals 1, 2 or 3 and repeated suffixes are
summed from one to three. The equations that arise from the balance law for
linear momentum are

(3) ρv̇i = ρFi − p̃,i + g̃jnj,i +Gjnj,i + |∇Φ|aiJj,j + t̃ij,j ,

where ρ is the density, a superposed dot represents the material time derivative,
Fi is the external body force per unit mass, Gi is the generalised external body
force that is related to the external body moment per unit mass (e.g. that which
may arise from the application of an external field), p̃ = p + wA where p is the
pressure and wA is the energy density, and J is defined by

(4) Ji = − ∂wA

∂Φ,i
+

1

|∇Φ|

[(
∂wA

∂ap,k

)

,k

− ∂wA

∂ap

]
(δpi − apai) .

Despite the full viscous stress t̃ij having thirteen viscosity coefficients, many simple
models require only a few viscosities (see (11) below). The balance of angular
momentum leads to the equations

(5)

(
∂wA

∂ni,j

)

,j

− ∂wA

∂ni
+ g̃i +Gi = λni ,

where the scalar function λ is a Lagrange multiplier that arises from the constraint
(1) and can usually be eliminated from these equations or evaluated by taking the
scalar product of (5) with n. The dynamic term g̃i is given by

(6) g̃i = −(α3 − α2)Ni − (α2 + α3)Aipnp − 2κ1Aipap ,

where the rate of strain tensor A and vorticity tensor W are defined in the usual
way by

(7) Aij = 1
2 (vi,j + vj,i) , Wij = 1

2 (vi,j − vj,i) .
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Following the standard procedure for nematics, the co-rotational time flux N of
the director n is introduced as N = ṅ − Wn. The coefficients α2, α3 and κ1 are
dynamic viscosity coefficients. The permeation equation is

(8) Φ̇ = −λpJi,i ,

where λp ≥ 0 is the permeation coefficient. The stress tensor is given by

tij = −p δij + |∇Φ|aiJj −
∂wA

∂np,j
np,i −

∂wA

∂ap,j
ap,i + t̃ij .(9)

An expression for the couple stress tensor is also available [5]. Equations (1), (2),
(3), (5) and (8) provide nine equations in the nine unknowns Φ, ni, vi, p and λ ;
the smectic layer normal a is, of course, determined from the solution for Φ.

An elementary energy density that has been suggested is [5]

(10) wA = 1
2K

n
1 (∇·n)2+ 1

2K
a
1 (∇·a)2+ 1

2B0( |∇Φ| + n·a− 2 )
2
+ 1

2B1

{
1 − (n·a)2

}
.

Here Kn
1 and Ka

1 are elastic constants related to the distortions of n and a, respec-
tively, B0 is a layer compression constant and B1 is a constant that reflects the
strength of the coupling between n and a. The viscous stress t̃ij in the simplest
model for SmA is

(11) t̃ij = α4Aij + τ1(akAkpap)aiaj + τ2(aiAjpap + ajAipap) ,

where α4, τ1 and τ2 are dynamic viscosity coefficients. It has been shown in this
elementary model that planar layered SmA samples are linearly stable to small
periodic disturbances [5]. This is accomplished by setting

(12) n = (θ(x, z, t), 0, 1) , Φ = z − u(x, z, t) , v = (v1(x, z, t), 0, v3(x, z, t)) ,

where |θ|≪1 represents a small perturbation to the director n, |u|≪1 represents
a displacement of the smectic layers from their initial planar arrangement and v is
the velocity with |v1|≪1 and |v3|≪1. This represents a perturbation to a static
configuration having a = n = ẑ when flow is initially absent. When the linearised
versions of equations (1) to (8) are employed and the above small perturbations θ,
u, v1 and v3 are assumed proportional to exp {ωt+ i(qxx+ qzz)} it follows that
ℜ(ω) is always negative for all material parameters and wave numbers qx and qz
under the assumption that τ1 ≥ −(α4 + τ2), which indicates linear stability.

An instability arises in the above example when an electric field is applied
across a finite sample of SmA material. This occurs once the magnitude of the
field increases through a critical threshold value Ec. The onset of an instability
can be detected with the aforementioned theory and this leads to a novel anal-
ysis of the classical Helfrich–Hurault effect in SmA in which the smectic layers
begin to undulate. It can be shown that the critical value Ec of the electric field
(at which the onset of the smectic layer undulations occurs) predicted by this
theory is lower than that obtained from previous theories [8]: it is known from
experiments that previous models for such effects in cholesteric and lamellar liquid
crystals have overestimated the experimentally observed Ec. The theory presented
here determines a value for Ec that is substantially reduced from that obtained
in previous theories and this lower threshold is more consistent with experimental
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results. Smectic A liquid crystals are very sensitive to electrically induced distur-
bances and it is this sensitivity that is of interest to those modeling bio-sensors
and related devices.
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Modeling active contractions in soft living tissues

Luciano Teresi

(joint work with Paola Nardinocchi)

Key points to be found in the biomechanical literature about muscles modeling
are the following: at the macroscopic level, the presence of muscle fiber enters
the model through the tension generated by the fiber itself (the active stress); in
addition, this tension has a preferred direction, which is defined by the orientation
of the fiber. When activable soft tissues are considered as a whole, the overall
tension state is described by adding up the passive and active stress [1].

Here, we introduce a novel point of view to modeling the mechanics of muscle
contraction borrowed from [2], in which the notion of active deformation is pre-
sented and discussed. We assume that the contraction experienced by a muscle
fiber under stimulus is described at the macroscopic scale by a change in the rest
length of the fiber, a change that we call active deformation. As is standard for
elasticity, the stress state in a body is due to the difference between its actual
configuration and the rest state. In our model, the rest state is active, in other
words, can vary in time, driven by electrophysiological variables.

We regard a muscular tissue as a smooth region B of the three-dimensional
Euclidean space E ; a placement is a map p : B × T → E , and we denote with
F = ∇ p the (visible) deformation gradient. At the macroscopic level, we describe
the activation of the muscle fibers of the tissue as a variation in the rest length
of the body elements measured by a distortion Fo, a tensor field on B × T to be
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known as active deformation. Moreover, the distribution of muscle fibers enters
the model by assigning specific active deformation fields.

Let us present a simple example. We consider isotropic distribution of the
muscle fibers represented by Fo = γoI, with I the identity tensor; thus, it is the
scalar field γo : B × T → R that must be related through suitable kinetic laws to
the changes in intracellular calcium concentration.

The elastic deformation Fe of the body elements turns out to be the difference
between the active and the visible deformation, defined through the multiplicative
decomposition:

(1) Fe = FF−1
o ;

the corresponding elastic strain measure Ee = 1
2 (FT

e Fe − I) is introduced. The
material response of the body is described through an isotropic elasticity tensor
C, relating linearly the strain Ee to the corresponding stress measure S in such
a way to realize an isotropic material response: S = C[Ee]. Granted for the
multiplicative decomposition (1), the active deformation Fo and the active strain
Eo = 1

2 (FT
o Fo − I) enter the material response as

(2) S = C[F−T
o (E− Eo)F

−1
o ] .

with E = 1
2 (FT F−I). The balance equations of mechanics are naturally written in

integral form on the body B in terms of the reference stress measure SR = Fe SF∗
o;

denoted with ũ the test velocity, we write

(3) 0 =

∫

B

−SR · ∇ũ +

∫

∂oB

t · ũ ,

with t a traction field acting on the part ∂oB of the boundary. Standard localiza-
tion arguments turns out the balance equations of forces:

(4) divSR = 0 , in B ; SRn = t , on ∂oB ,

with n the unit normal field to ∂oB.
The approach of active contraction has been recently applied to model the

activation-contraction mechanism in cardiac muscles [3].
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Fully coupled modeling and numerical implementation of

electromagnetic forming processes in solids

Jesse D. Thomas

(joint work with Nicolas Triantafyllidis)

Electromagnetic forming (EMF) is a cost-effective and flexible manufacturing
technique for sheet metal forming. It consists of connecting an actuator (typi-
cally a copper wire solenoid) to a high energy capacitor equipped with fast action
switches. When the capacitor is discharged, the large transient current that goes
through the actuator generates by induction strong eddy currents in the nearby
metallic workpiece. The presence of these induced currents, inside the magnetic
field generated by the currents of the actuator, results in Lorentz body forces in
the workpiece which are responsible for its plastic deformation. The EMF tech-
niques are popular in the aerospace and automotive industries because of several
advantages they hold over conventional forming techniques. These advantages are:
process repeatability and flexibility (due to its electric nature, energy input can
be easily and accurately adjusted), low cost single side tooling (thus reducing need
for lubrication and tool marks) and high speed (typical process duration is on the
order of 50 µsec). The most important advantage – and the main reason for the
recent interest in EMF – is the resulting significant increase in ductility observed
in certain metals, with aluminum featuring preeminently among them.

There are two methods for deriving the fully coupled governing equations and
interface conditions of an electromagnetic-thermal-mechanical process such as elec-
tromagnetic forming. First is the direct method, which uses conservation principles
in the current configuration to derive the governing equations and boundary con-
ditions. This approach essentially follows Kovetz [1], where the interested reader is
addressed for additional details. Subsequently, kinematic relations from continuum
mechanics are applied to transform these conservation principles from the current
to the reference configuration, which is similar to the work of Lax and Nelson
[2]. This provides the relations between current and reference configuration fields,
and with these relations one may employ the second, variational method, namely
the classical least-action principle [3] in the reference configuration. This method
gives the reference configuration governing equations and interface conditions, and
the two methods agree. The second method has been discussed by others, for the
electromagnetic equations by Lax and Nelson [2] and for the electromagnetic and
mechanical equations by Trimarco and Maugin [4, 5].

For the EMF processes of interest, the problem formulation may be simplified
considerably by applying the eddy current approximation. Detailed discussion of
this approximate formulation may be found in the literature, e.g. in Hiptmair and
Ostrowski [6] and references cited therein. The aspects typical of EMF processes
that make this simplification appropriate are: the material velocities are much
less than the speed of light, the effective electric current frequencies are on the
order of 10 kHz, the geometry is on the order of 1 cm, and the material electrical
conductivities are large. The eddy current approximation is a result of neglecting
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electric energy, and imposing the eddy current approximation implies displacement
currents are neglected, which means volumetric charges are not accounted for and
charge conservation must be imposed separately from the variational principle.
In addition, for simplicity one may restrict the numerical implementation of the
general theory to axisymmetric processes. Implementing the aforementioned theo-
retical formulation for axisymmetric problems significantly simplifies the resulting
formulation by reducing the independent variables.

Our numerical implementation of the general theory employs a variational in-
tegration approach [7, 8]. According to this method space and time interpolation
schemes are concurrently applied to the Lagrangian, followed by the variational
principle applied on the discrete nodal variables for each time step. This provides
the time stepping routine to solve for the degrees of freedom at each time step.

With the numerical implementation of the general theory as discussed above,
it remains only to provide the constitutive behavior to complete the simulation.
The electromagnetic constitutive response for both the coil and workpiece is an
isotropic Ohm’s law with constant conductivity. The mechanical constitutive re-
sponse for the deforming workpiece is taken as one of two materials. One is a
compressible Mooney-Rivlin hyperelastic material, where the material parameters
are chosen to resemble, but not match, the response of the actual workpiece ma-
terial. The second is a hyperelastic formulation based on J2 deformation theory
of plasticity (see Abeyaratne and Triantafyllidis [9] and references cited therein),
where the material parameters match the actual strain hardening behavior of the
workpiece material under loading.

The complete electromagnetic forming simulation can then be verified with two
types of simulations. First is a comparison with a one dimensional semi-analytical
ring expansion simulation, similar to that in Triantafyllidis and Waldenmyer [10],
using the Mooney-Rivlin material. Convergence of the two dimensional (axisym-
metric) solution is shown, along with agreement between the one and and two
dimensional simulations. Second, two representative tube expansion experiments
are modeled, again using the Mooney-Rivlin material. The two experiments are:
a tube much taller than the forming coil and a tube with height equal to that of
the forming coil. These simulations show qualitatively the deformed tube shapes
observed in corresponding experiments from Thomas et al. [11].

The final result is a comparison with an experiment from Thomas et al. [11]
whereby a tube of equal height with a coil is expanded. The mechanical con-
stitutive response is the hyperelastic formulation that matches the actual strain
hardening behavior of the tube material. In the experiments tubes were deformed
up to the onset of necking or failure, and strains were measured after deformation
far from necking or failure. Comparing these strains to those at max deformation
in the simulation shows good agreement.
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On magnetorheological elastomers: general theory and application to

the stability of a rectangular block under a transverse magnetic field

Nicolas Triantafyllidis

(joint work with Sundeep Kankanala)

Magnetorheological elastomers (MREs) are ferromagnetic particle impregnated
rubbers whose mechanical properties are altered by the application of external
magnetic fields. Due to their strong magnetoelastic coupling response MREs are
finding an increasing number of engineering applications in aerospace, automotive,
civil and electrical engineering fields as vibration damping devices, variable stiff-
ness mounts and so on.In the general theory part of the presentation we give the
continuum mechanics formulation for these solids using two different approaches:
a) a direct approach formulated in the current configuration and based on the
thermodynamics approach of [1] and b) a variational approach formulated in the
reference configuration and based on energy. The main advantage of the direct
approach presented is that no a priori assumptions are made for the expressions
of electromagnetic body forces and electromagnetic part of the stress. Unlike in
earlier works, an energy minimizer is used in the latter energetic approach to de-
rive Ampère’s law, equilibrium equation and traction condition. It is also shown
that both approaches result in the same governing equations and boundary con-
ditions. In discussing the properties of the solid’s free energy we pay particular
attention to the quasiconvexity of the potential energy and derive sufficient, for
the quasiconvexity, pointwise conditions on the free energy.

The proposed theory can be easily fine tuned to account for anisotropic MREs,
as is the case of MREs that are cured in the presence of strong magnetic fields.
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Moreover, the proposed new variational formulation intended to be used in nu-
merical calculations of application devices made of MREs, where its Lagrangian
formulation and energy minimization features plus the absence of constraints in
the variables used, make for an efficient numerical algorithm. In addition,the pro-
posed theory, because of its energy minimization feature, is ideally suited for the
study of stability problems in MREs, as in the application presented here. A de-
tailed account of the theoretical part of the presentation can be found in [2]. In
the application part of the talk we address the stability of a rectangular block sub-
jected to a uniform magnetic field in the direction of its minor (x) axis. The two
y=const. faces of the block are frictionless and kept parallel to each other. This
boundary value problem is motivated by the classical problem of magnetoelastic
buckling of a thin beam. The benefits of the continuum approach over tradition-
ally employed structural models are in (a) the ability to assess effect of different
nonlinear material responses and (b) the validity of the formulation for a wide
range of block aspect ratios.

Critical magnetic fields, i.e. those corresponding to the onset of a bifurcation
buckling, in the form of symmetric and anti-symmetric modes, are obtained for
three different constitutive laws. In general, the critical magnetic field is shown to
increase monotonically with the block’s aspect ratio for each material and mode
type. For most aspect ratios, antisymmetric modes are always the critical buck-
ling modes for stress saturated and neo-hookean materials. In the narrow range
of moderate aspect ratios (about 0.25) symmetric modes become critical. For
strain saturated solids no buckling is possible above a maximum aspect ratio.
As expected, the results for stubby blocks are found to be very sensitive to the
nonlinearity of the governing constitutive laws.

Furthermore, an asymptotic solution is obtained for slender beams that shows
a linear relationship between the critical buckling field and the block’s slenderness
ratio. This result is found to agree with the formula obtained from structural
models. A detailed account of the application part of the presentation can be
found in [3].

The general methodology described here covers only the onset of magnetoelas-
tic instability (analogous to the works of, for example, [4] for hyperelastic mate-
rials). Of particular interest would be the study of the post-buckling behavior in
magnetoelastic solids corresponding to the recent article [5], also for hyperelastic
materials.

References

[1] B. D. Coleman and W. Noll The Thermodynamics of Elastic Materials with Heat conduction
and Viscosity,Archive for Rational Mechanics and Analysis, 13, (1963) 167–178.

[2] S. Kankanala and N. Triantafyllidis On Finitely Strained Magneto-Rheological Elastomers,
Journal of the Mechanics and Physics of Solids, 52 (2004), 2869–2908.

[3] S. Kankanala and N. Triantafyllidis Magnetoelastic Buckling of a Rectangular Block in Plane
Strain, Journal of the Mechanics and Physics of Solids, 56 (2008), 1147–1169.

[4] R. Ogden Non-linear Elastic DeformationsChichester: Ellis Horwood; 1984



Mini-Workshop: The Mathematics of Electro-Active Smart Materials 507

[5] N. Triantafyllidis, W. H. Scherzinger and H. J. Huang Post-Bifurcation Equilibria in the
Plane Strain Test for a Hyperelastic Rectangular Block, International Journal of Solids and
Structures, 44 (2007), 3700–3719.

Magnetic and electric field responsive soft and smart materials

Miklós Zŕınyi

Many useful engineering materials, as well as living organisms have a heterogeneous
composition. The components of composite materials often have contradictory, but
complementary properties. Fillers are usually solid additives that are incorporated
into the polymer to modify the physical properties. Fillers can be divided into three
categories: those that reinforce the polymer system and improve its mechanical
performance, those that are used to take-up space, and thus reduce material cost.
The third, less common category is when filler particles are incorporated into
the material to improve its responsive properties. Composite materials consisting
of rather rigid polymeric matrices filled with magnetic particles are long time
known and called magnetic elastomers or magnetoelasts. These materials are
successfully used as permanent magnets, magnetic cores, connecting and fixing
elements in many areas. These traditional magnetic elastomers have low flexibility
and practically do not change their size, shape and elastic properties in the presence
of external magnetic field.

The new generation of magnetic gels and elastomers represent a new type of
composites, consisting of small (mainly nano-sized) magnetic particles dispersed
in a high elastic polymeric matrix. The particles couple the shape of the elastomer
to the external magnetic fields. Since the particles cannot leave the polymer ma-
trix, so that all of the forces acting on the particles are transmitted directly to the
polymer chains resulting in either locomotion or deformation. Shape distortion
occurs instantaneously and disappears abruptly when external fields are applied
or removed, respectively. Combination of magnetic and elastic properties leads to
a number of striking phenomena that are exhibited in response to impressed mag-
netic fields. Giant deformational effect, tunable elastic modulus, non-homogeneous
deformation and quick response to magnetic field (1) open new opportunities for
using such materials for various applications.

Figure 1. Snapshots of shape change of a magnetite load PDMS elastomer

due to modulated magnetic field. The frequency of the fiedl is 40Hz.

Synthesis of elastomers in uniform magnetic field can be used to prepare aniso-
tropic samples. In uniform field there are no attractive or repulsive field-particle
interactions therefore particle-particle interactions become dominant. In monomer
solutions, containing dispersed magnetic particles, the imposed field orients the
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magnetic dipoles. If the particles are spaced closely enough, so that their field
can reach their neighbors, mutual particle interactions present. These interactions
can be very strong leading to significant change in the structure of the particle
ensemble. The particles attract each other when aligned end to end, and repel each
other when placed side by side. Due to the attractive forces pearl chain structure
develops. The ordered structure can be fixed by cross-linking polymerisation. The
anisotropy manifest itself in both direction dependent elastic modulus as well as
direction dependent swelling (Fig. 2).

Figure 2. Anisotropic swelling behaviour as seen by the naked eye. The

arrow indicates the direction of the magnetic field during the preparation.

The magnetic field responsive elastomers have shown a change in compressive
modulus under uniform magnetic field. Depending on the orientation of parti-
cle chains in the network and that of the magnetic field, the induced temporary
reinforcement may exceed one order of magnitude. These results suggest that
magnetic field responsive gels and elastomers have several potential applications
as tuned vibration absorbers, stiffness tunable mounts and suspensions. Since the
magnetic fields are convenient stimuli from the point of signal control, therefore
it is of great importance to develop and study such soft and flexible magnetic
systems. Quincke rotation is the rotation of non-conducting objects immersed in
liquid dielectrics and subjected to a strong homogeneous DC electric field. The
rotation is spontaneous when the field exceeds a threshold value. Wide range of
applications (e.g. microscopic motor) motivates researchers to find materials with
micro-fabrication possibilities. Polymer composites that fulfill these requirements
have been developed for the first time. Electro-rotation of disk shaped polymer
composites is studied as a function of electric field intensity. Magnetic and electric
field induced deformation, locomotion and rotation, as well as on/off switching
control of magnetic polymeric membranes will be the subject of the oral presen-
tation.
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