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Introduction by the Organisers

The workshop ”Hyperbolic aspects of phase-transition dynamics”, organized by Ri-
naldo M. Colombo (Brescia), Dietmar Kröner (Freiburg) and Philippe G. LeFloch
(Paris) was held February 24th – March 1st, 2008. We had 15 participants from
five different countries. The atmosphere in the Oberwolfach Research Institute was
very stimulating and has initiated many fruitful discussions and exchange of ideas.
The participants of the mini-workshop thank the administration of the institute
for the possibility for organize this meeting.

The Navier-Stokes equations for van der Waals fluids with viscosity and cap-
illarity effects included form a challenging model of partial differential equations
describing important physical phenomena. The associated set of first-order con-
servation laws is of hyperbolic or hyperbolic-elliptic type, and admits propagating
discontinuities (shock waves). Understanding the singular limit when the viscos-
ity and capillarity coefficients vanish is particularly challenging and is required
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to single out physically admissible, discontinuous solutions to the first-order con-
servation laws. These solutions turn out to contain both compressive shocks and
undercompressive shocks which violate standard entropy criteria and must be char-
acterized via the so-called kinetic relations.

There were two talks (N. Bedjaoui, P.G. LeFloch) on conservation laws with
non-convex flux functions which are supplemented by nonlinear, possibly singular,
diffusive and dispersive terms. Such systems of equations arise in the dynamics
of complex materials undergoing phase transitions and in the dynamics of van
der Waals fluids, viscosity and capillarity effects included. Questions which are
related to existence, uniqueness and the properties of the viscosity or dispersion
limits were discussed. In particular the kinetic relations associated with phase
dynamics and nonclassical shocks have been considered. Closely related was a
contribution of W. Dreyer about the derivation of the kinetic relations from global
entropy inequalities.

Three other talks (D. Diehl, D. Kröner, C. Rohde) were dealing with the Navier-
Stokes-Korteweg model including non-local formulations, the numerical approxi-
mation and the special structure of the interface conditions for the pressure fields
respectively.

In two talks R.M. Colombo and P. Goatin reported on recent results about
analytical and numerical techniques for hyperbolic phase transitions/non-classical
shocks in models for vehicular or pedestrian traffic. In this model for high speeds
(low densities) the flow is free and described by scalar conservation law and for low
speeds (high densities) the flow is congested and is described by a 2 × 2 system.

A different model for the phase transition in fluids is used by S. Müller. In order
to take into account two different fluids he introduced a new function, the fraction
of gas. This is controlled by an additional transport equation. Mass transfer across
the interface is neglected.

Other models have been considered in the talk of F. Coquel. He has examined
the links between a model consisting of two distinct partial differential momentum
equations and a single momentum equation for the mixture plus an algebraic
closure for governing the relative velocity.

H. Fan considered in his contribution a nonlinear system with viscosity terms
for the specific volume, the velocity of the fluid and the weight portion of vapour in
the liquid/vapour mixture. The simplified version of this model with zero viscosity
has been considered in the talk of A. Corli. A global existence result for large data
has been obtained.

S. Benzoni-Gavage gave a report on the stability analysis for planar subsonic
phase boundaries and the existence of linear surface waves.

M. Shearer considered the surfactants of a free surface which is transported by
the local speed of the free surface but also by diffusion of surfactant molecules on
the surface.
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Abstracts

A Review on Kinetic Relations Generated by Traveling Waves

Nabil Bedjaoui

(joint work with P.G. LeFloch)

We present a review on kinetic relations generated by traveling wave solutions of
perturbed conservation laws.

We consider first the case of scalar conservation laws with concave-convex flux
which are supplemented with nonlinear, possibly singular, diffusive and dispersive
terms. The model takes the following form:

∂tu+ ∂xf(u) = βp+1
(

b(u, βux) |ux|pux

)

x
+ δ

(

c1(u) (c2(u)ux)x

)

x
.

The case p = 0, i.e, regular and linear diffusion, was treated in [1]. We prove
existence, uniqueness, and several properties of classical and nonclassical traveling

waves, the latter being characterized by the so-called kinetic function.. We gener-
alize these results in [2], for the case of singular diffusion ( p > 0). The behavior
of the kinetic function near the origin is carefully investigated. We discover that
p = 1/3 is a somewhat unexpected critical value. For p ≤ 1/3 we obtain properties
that are similar to the linear diffusion case. However, for p > 1/3, non-classical
shocks can have arbitrary small strength. The behaviour of the kinetic function
near the origin depends on whether p < 1/2, p = 1/2 or p > 1/2. In particular,
in the special case of the cubic flux-function, with p = 0, 1/2, or 1, the kinetic
function can be computed explicitly. When p = 1/2 the kinetic function is simply
a linear function.

In the second part, we present a system of two conservation laws arising in
elastodynamics and fluid dynamics in the case of concave-convex flux, with linear
viscosity and capillarity terms, i.e, of the form:

∂tv − ∂xu = 0,

∂tu+ ∂xσ(v) = β ∂x(b(v) ∂xu) − δ ∂x(a(v)∂x(a(v)∂xv)).

The kinetic relation obtained in the hyperbolic case is similar to the scalar
case, at least near the origin ( for small shocks )( see [3]). In the hyperbolic-
elliptic case, the kinetic relation for the 2 − Shock wave is uniquely defined but
fails to be monotone near the Maxwell-line. This means that the kinetic relation
for the 1 − Shock wave is multivaluated in this region ( see [4]).

Finally, we treat the previous hyperbolic-elliptic model where the fluid is gov-
erned by van der Waals pressure law. In addition, the model includes now, more
general nonlinear viscosity and capillarity terms and writes:
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∂tτ − ∂xu = 0,

∂tu+ ∂xp(τ) = α∂x(β(τ) |∂xτ |q ∂xu) − ∂xxxτ.

The global description of traveling waves seems to be a novelty for functions
admitting two inflexion points. For a fixed right-hand state and a fixed propagation
speed, we prove the existence of a nonclassical traveling wave for a sequence of
parameter values representing the ratio of viscosity and capillarity. Our analysis
exhibits a surprising lack of monotonicity of traveling waves. The behavior of these
nonclassical trajectories is also investigated numerically. In addition we prove that
the kinetic function for the 2−Shock wave, contrairely to the case of one inflexion
point, is not uniquely defined near the Maxwell line ( see [5]).
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Surface Waves at Phase Boundaries?

Sylvie Benzoni-Gavage

(joint work with M.D. Rosini)

In the sharp interface theory of compressible fluids exhibiting phase changes, the
bulk equations (in the phases) are merely the (hyperbolic) Euler equations, given
by the conservation of mass, momentum and energy, together with a (monotone)
pressure law. It is jump conditions across interfaces that may incorporate physical
phenomena such as surface tension or/and dissipation. In the absence of dissipa-
tion, the stability analysis of planar subsonic phase boundaries – undercompressive
shocks in the hyperbolic terminology – shows the existence of linear surface waves,
which are special solutions of the linearized bulk and jump equations, in the form
of ‘normal modes’ propagating along perturbed interfaces [1, 2]. Surface waves are
neutral modes of finite energy, like Rayleigh waves in Elasticity, in that they oscil-
late along the boundary and decay exponentially fast in the transverse direction.
As regards the well-posedness theory of initial-boundary value problems, neutral
modes are in general responsible for a loss of derivatives in the energy estimates
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[5] (see however [2] for a case without loss of derivatives), which makes more diffi-
cult to prove, but does not preclude the existence of nearby solutions [6]. Anyway,
this is a local-in-time theory, since even the Cauchy problem for multi-dimensional
Euler equations is still wide open. To gain insight in multi-dimensional problems,
another approach has been developed by Hunter [7], focusing on the weakly nonlin-
ear behavior of surface waves on larger time scales, for ‘standard’ scale-invariant
initial-boundary value problems. From an abstract point of view, it is possible
to extend his approach and derive an asymptotic equation for the amplitude of
weakly nonlinear surface waves associated with neutrally stable undercompressive
shocks [4]. This amplitude equation is a nonlocal generalization of Burgers’ equa-
tion – its time variable being a ‘slow’ time – which turns out to admit energy
estimates without loss of derivatives if the involved kernel satisfies a suitable (ex-
plicit) stability condition [3, 7]. Unlike what happens for Rayleigh waves, this
condition is violated by the kernel associated with to subsonic phase boundaries
[4]. This may give an interpretation of why surface waves have hardly ever been
observed at phase boundaries.
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Phase Transitions in Car Traffic & Pedestrian Flow Modeling

Rinaldo M. Colombo

This talk overviews recent results in which analytical techniques related to
hyperbolic phase transitions / non-classical shocks are used in models for vehicular
or pedestrian traffic.

1. Car Traffic

The starting point in the continuum modeling of vehicular traffic is the Lighthill–
Whitham [15] and Richards [19] (LWR) model

(1) ∂tρ+ ∂x (ρ v(ρ)) = 0

x space variable, x ∈ R

t times, t ∈ [0,+∞[
ρ vehicular density, ρ ∈ [0, R]
R maximal density
v(ρ) vehicular speed 0 R

ρv

ρ

The LWR model relies on only two assumptions: the total number of cars is
conserved and speed is a function of the density. The latter postulate is only very
approximately satisfied. More precisely, at high speeds, experimental measures
support a functional dependence of v (and, hence, of the flow ρv) on ρ. But at
lower speeds, this dependence is questionable, as the following pictures show:

Data from Germany [12]. Data from Italy [17]. Data from Italy [16].

Recently, the following model was presented in [3] and its analytical properties
were studied in [6]:

(2)

Free flow: (ρ, q) ∈ Ωf , Congested flow: (ρ, q) ∈ Ωc,

∂tρ+ ∂x(ρ v) = 0,

{

∂tρ+ ∂x(ρ v) = 0,
∂tq + ∂x [(q − q∗) v] = 0,

v =
(

1 − ρ
R

)

· V , v =
(

1 − ρ
R

)

· q
ρ
.

where Ωf and Ωc denote the free and the congested phases, respectively. In Ωf

the only variable is the car density ρ and the car speed v is assumed to be a
known function of the car density. In Ωc the variables are the car density ρ and
the car speed v or, equivalently, ρ and the weighted flow q; see [2]. Thus, at a
fixed density, different speeds are admissible, as raw data observations require.
Note that there may well be car densities at which the flow may be either free or
congested. R is the maximal possible car density and V is the maximal possible
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speed. More general expressions can be considered, but we limit ourselves to the
expressions above in order to keep the formal analytical difficulties at a minimum,
while keeping all the more interesting qualitative features.

As shown in [3], a global Riemann Solver for (2) is uniquely defined by:
(1) the conservation of the total number of cars;
(2) if the initial data attains values in Ωf , respectively Ωc, then the solution
attains values in Ωf , respectively Ωc, for all times;
(3) the Riemann Solver is consistent, see [3, I and II] or [7, Definition II.3]
Condition (2) also defines the possible free
phase Ωf and congested phase Ωc as invari-
ant sets for (2). The qualitative properties of
the solutions to (2) are compatible with real
data: density and speed are non negative and
bounded, information propagates at the speed
of vehicles and persistent wide jams are possi-
ble, see [13] for a benchmark of different 2 × 2
traffic models.

ρ
R0

ρv

Ωc

Ωf

The Cauchy problem for (2) turns out to be well posed in L1, for all initial data
having bounded, not necessarily small, total variation, see [4, 6]. A numerical
algorithm to integrate (2) is proposed in [1].

2. Pedestrian Flow

Our target is the description of the following phenomena: when a crowd has to
pass through a relatively narrow exit, the rise of panic may result in the crowd
being overcompressed and in a dramatic fall of the outflow.

We aim at capturing the essential features of this fact through a 1D macroscopic
model, see [11, 20] for other continuum models for pedestrian flow. Hence, again,
the starting point is the LWR model (1), with ρ, v being the pedestrian density
and speed. Fix ρmin, ρmax ∈ [0, R]. A well known property of scalar conservation
laws is the maximum principle, i.e. if the initial datum ρo satisfies the bounds
ρo(x) ∈ [ρmin, ρmax] for all x ∈ R, then the corresponding solution ρ to (1) keeps
satisfying to the same bounds, i.e. ρ(t, x) ∈ [ρmin, ρmax] for all x ∈ R and t ∈
[0,+∞[. Hence, a standard Cauchy problem for a scalar conservation law may not
describe the desired phenomena.

A possible attempt, then, is to consider an initial – boundary value problem
for (1), the exit being described by a suitable unilateral constraint on the outflow.
However, the analytical properties of the solution to this kind of problem may not
describe the fall in the outflow, see [5].
We are thus lead to reconsider (1) and mod-
ify it, first inserting the states [R,R∗] to ac-
count for the overcompressed states. The result
is (1) with a fundamental diagram as that on
the right. For the precise qualitative features
necessary for the construction below, see [8, 9].

ρ v

0 R R∗ ρ
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Now, we modify the evolution of (1) to avoid the maximum principle. To this aim,
we introduce nonclassical shocks in the solution to Riemann problems for (1). For
the precise definition of this nonclassical Riemann solver R, see [8, (R1), (R2)
and (R3)]. This lengthy definition requires, as usual in this context [14], the
introduction of functions related to the fundamental diagram above. Essentially,
R depends on two positive threshold parameters, s and ∆s as follows.
ρ v

0 R R∗ ρρl ρr

Let ρl, ρr be initial states in the Riemann
problem for (1). Then, R(ul, ur) is the stan-
dard Lax solution unless ρl > s and ρl−ρr >
∆s. In this case, the solution consists of a
nonclassical shock followed by classical waves,
as here on the right.

In [8] it is shown that R can be uniquely extended to all pairs of states. Moreover,
suitable interaction estimates in [9, 18] ensure the existence of solutions to the
nonclassical Cauchy problem for (1).
Recently, the above analytical construction was
experimentally confirmed in [10]. Indeed, a
fundamental diagram with 2 different points of
maxima was measured, with a set of (dramati-
cally) overcompressed densities corresponding to
panic states. The diagram on the right is taken
from [10]. Remark that the analytical assump-
tions in [8, 9, 18] do not require that the flow
vanishes at R, R being the maximal density of
non-panic states.

0 x

ρ̄

ρ

A B L

Finally, consider a crowd distributed on the seg-
ment AB with uniform density ρ̄. At time 0, all
pedestrians start moving towards an exit sited at
L whose maximal outflow is q, a value below the
maximal flow in the standard states and above
the (local) maximum in the panic states, see the
fundamental diagram above. The resulting non-
classical Cauchy problem is solved gluing solu-
tions to Riemann problems.

Indeed, a shock arises from A and a rarefaction
from B. When the latter wave first hits the door
at C, people start exiting with and the outflow
through the door increases. At E the outflow q is
reached and a classical shock S2 is reflected. In
the time interval between E and G, the outflow
is maximal, according to the door capacity. The
shock S2 interacts with the rarefaction and at F
the jump between the two sides of S2 exceeds ∆s.

A nonclassical shock N1 is formed and the crowd enters the panic states. At G,
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these overcompressed states reach the door and the outflow fall below q, remaining
below that value up to I, when the last individual exits the door.
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The Drift-Flux Time Asymptotic of Two-Phase Two-Pressure PDE
Models

Frédéric Coquel

(joint work with A. Ambroso, C. Chalons, E. Godlewski, P.A. Raviart, N. Seguin)

A full hierarchy of PDE systems for modeling two-phase flows does exist in the
literature [6] and may be formally arranged through a cascade of relaxation mech-
anisms with finite rate. Motivated by the mathematical coupling of two given
models (see [1] for instance), we wish to clarify their potential time asymptotic re-
lationships. In the present work, we specifically examine the possible links between
the two-phase models and the drift-flux ones. Roughly speaking, the formers make
use of two distinct PDE momentum equations while the latters involve a single
momentum equation for the mixture, plus an algebraic closure law for governing
the relative velocity: the so-called drift law. We point out the precise conditions
according to which a drift-flux model stands as a good candidate for governing the
long-time behavior of the solutions of a given two-phase two-pressure model. The
main tools are Chapman-Enskog expansions and long-time rescaling, an essential
intermediate step being the introduction of a drift-flux like model with a Darcy
closure law, i.e. depending not only on the unknown but also on its gradient.

Within the barotropic two-phase two-pressure setting, the PDE equations in d
space variables read for some small parameter ǫ > 0 (omitting the subscript ǫ for
simplicity) :

(1)

∂tα2 + Vi(u) · ∇xα2 =
θ(u)

ǫ2
(p2 − p1), t > 0, x ∈ IRd,

∂t(α1ρ1) + ∇x · (α1ρ1u1) = 0,

∂t(α2ρ2) + ∇x · (α2ρ2u2) = 0,

∂t(α1ρ1u1) + ∇x · (α1ρ1u1 ⊗ u1 + α1p1II) − Pi(u)∇xα1

= α1ρ1g +
λ(u)

ǫ
(u2 − u1),

∂t(α2ρ2u2) + ∇x · (α2ρ2u2 ⊗ u2 + α2p2II) − Pi(u)∇xα2

= α2ρ2g +
λ(u)

ǫ
(u1 − u2),

where u denotes the unknown (α2, α1ρ1, α2ρ2, α1ρ1u1, α2ρ2u2)
T . Here αk, ρk, uk

are the void fraction, the density and the velocity of the phase k with α1 +α2 = 1.
We asume that each pressure law pk = Pk(ρk), k = 1, 2, is given by a smooth
function Pk satisfying :

(2) P ′

k(ρ) > 0, for all ρ > 0, lim
ρ→0+

Pk(ρ) = 0, lim
ρ→+∞

Pk(ρ) = +∞.

The so-called interfacial velocity and pressure, namely Vi(u) and Pi(u), are chosen
under the general form :

(3) Vi(u) = β(u)u1 + (1 − β(u))u2, Pi(u) = (1 − β(u))p1 + β(u)p2,
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for some given smooth function β(u) (see [4] for the existence of an additional
non-trivial law). At last, θ and λ denote two positive functions of the unknown u
respectively accounting for the pressure and velocity relaxation mechanisms, the
pressure relaxation being much stiffer than the velocity one as indicated by its
ǫ2-scaling. Denoting by pr (or rather pǫ

r) the relative pressure pr = p2 − p1 and
by ur = u2 − u1 the relative velocity, the relaxation procedures formally yield the
following limits:

lim
t→+∞

pǫ
r(t, x) = 0, lim

t→+∞
uǫ

r(t, x) = 0, a.e. (t, x) ∈ IR+ × IRd.

A vanishing relative pressure pr indeed yields the expected closure equation for
α2 in the frame of a generic drift-flux model, i.e. we can define αe

2 as the unique
solution (see assumptions (2)) of:

P1(ρ(1 − Y )/(1 − αe
2)) = P2(ρY/α

e
2), being given ρ = α1ρ1 + α2ρ2, ρY = α2ρ2.

However, a vanishing relative velocity ur does not fit with the general setting. We
are thus led to study the long but finite time behavior of the relative pressure and
velocity when analyzing their first order correctors. This is the matter of the next
statement:

Proposition Let us introduce the unknown v = (ρ, ρY, ρu)T with ρu = α1ρ1u1+
α2ρ2u2. Assume that λ and θ in (1) only depend on v. Then the first order as-
ymptotic model for (1) reads:

(4)

∂tρ
ǫ + ∇x · (ρǫuǫ) = 0,

∂t(ρ
ǫY ǫ) + ∇x · (ρǫuǫY ǫ + ρǫY ǫ(1 − Y ǫ)uǫ

r) = 0,

∂t(ρ
ǫuǫ) + ∇x · (ρǫuǫ ⊗ uǫ + pǫII) = ρǫg,

where at the first order in ǫ, the relative velocity uǫ
r is given from a Darcy like

closure law :

(5) uǫ
r = ǫ

ρǫY ǫ(1 − Y ǫ)

λ(vǫ)

(

1

ρ1(vǫ)
− 1

ρ2(vǫ)

)

∇xp
ǫ,

while pǫ
r = 0, i.e. the pressure law p = P(v) follows from the solution (p, αe

2) of
the 2 × 2 nonlinear system

(6) p = P1(ρ(1 − Y )/(1 − αe
2)), P1(ρ(1 − Y )/(1 − αe

2)) = P2(ρY/α
e
2).

The proposed first order corrector (5) for the relative velocity follows from a
Chapman-Enskog expansion (see also [5]) and thus naturally involves the gradient
of the unknown v, in strong opposition with the existing literature [6]. In order to
derive the required zeroth order hydrodynamic closure law, we propose to tackle
the long-time behavior of the solutions of (4) along the characteristics of the flow,
i.e. when expressing (4) in the Lagrangian coordinates instead of the Eulerian
setting. Indeed, being given the solution of the following differential system, the
so-called characteristics of the mixture flow,

(7) dtx(t, ξ) = uǫ(x(t, ξ), t), t > 0, x(0, ξ) = ξ,
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for any given initial data ξ ∈ IRd, we introduce the associated change of Lagrangian
coordinates φ(ξ, t) = φ(x(ξ, t), t) for any arbitrary function φ(x, t) expressed in
Eulerian coordinates. Observing the easy chain rule ∂tφ = ∂tφ+ uǫ · ∇xφ, we
have the following formal result :

Lemma Consider the time-scaling s = ǫt and the rescaled relative velocity vǫ
r

defined by uǫ
r = ǫvǫ

r. Then the solutions of (4)–(6) expressed in the Lagrangian
coordinates (7), solve :

(8)

ǫ∂sρ
ǫ + ρǫ∇x · uǫ = 0,

ǫ∂sρǫY ǫ + ρǫY ǫ∇x · uǫ + ǫ∇x · (ρǫY ǫ(1 − Y ǫ)vǫ
r) = 0,

ǫ∂sρǫuǫ + (ρǫ∇x · uǫ)uǫ + ∇xpǫ = ρǫg.

Denoting by (ρ, Y, u) the formal limits of (ρǫ, Y ǫ, uǫ) as ǫ goes to zero, we have

ρ∇x · u = 0,(9)

∂sρY + ∇x · (ρY (1 − Y )vr) = 0,(10)

∇xp = ρg.(11)

Hence the rescaled relative velocity vr takes the form of a zeroth order closure law

(12) vr =
ρY (1 − Y )

λ(v)

(

1

ρ1(v)
− 1

ρ2(v)

)

ρg.

The drift law (12) actually reflects the Archimedes principle and provides a simple
example of hydrodynamic closure. A more general framework is discussed in [2]
when addressing, in place of the gravity g, general external forces fk(u), k =
1, 2, in the momentum equations of (1). The derivation of numerical schemes for
(1) capable of capturing the time asymptotic behavior described by (9)–(11) is
addressed in [3] in the simpler setting of the Euler-Darcy equations for a single
phase.
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Hyperbolic Phase-Mixing Flows: a Global Existence Result for Large
Data

Andrea Corli

(joint work with D. Amadori)

We present a recent result about a model of one-dimensional isothermal flow
for an inviscid compressible fluid where the liquid and the vapor phase coexist and
are mixed together. In Lagrangian coordinates the model writes

(1)







vt − ux = 0
ut + p(v, λ)x = 0
λt = 0 .

Here t > 0, x ∈ R, v > 0 is the specific volume, u the velocity, λ the mass density
fraction of vapor in the fluid. The pressure is defined by p(v, λ) = a2(λ)/v where
a is a smooth function satisfying a(λ) > 0 and a′(λ) > 0 for every λ ∈ [0, 1].
As a consequence, the system (1) is strictly hyperbolic with eigenvalues e1 = −c,
e2 = 0, e3 = c for c =

√−pv = a(λ)/v. The eigenvalues e1 and e3 are genuinely
nonlinear, while e2 is linearly degenerate.

This model is a simplified version of a model proposed by Fan [6], which includes
viscosity and relaxation terms, see also [5]. The focus here is on the global existence
of solutions to the Cauchy problem for (1) with initial data

(2) (v, u, λ)(0, x) =
(

vo(x), uo(x), λo(x)
)

, vo(x) ≥ v > 0, 0 ≤ λo(x) ≤ 1,

for some constant v, in the case
(

vo, uo, λo

)

have finite (not necessarily small) total
variation. We denote for short ao(x)

.
= a (λo(x)), po(x)

.
= p (vo(x), λo(x)).

On one hand this problem is a first step toward the study of more complex
models, where (1) is supplemented by source terms; on the other hand, from a
merely analytical point of view, our result can be seen as a contribution to the
still widely unknown field of global solution to conservation laws in presence of
data with large variation. We also refer to the recent paper [7] for a similar model
of fluid flow where the equation of state is a γ-pressure law with varying γ > 1.

We denote by TV(f) the total variation of a function f . In order to obtain
precise bounds on the variation of the initial data we introduce in the case f :
R → (0,+∞) the weighted total variation of f by

WTV(f) = 2 sup
n

∑

j=1

|f(xj) − f(xj−1)|
f(xj) + f(xj−1)

,

where the supremum is taken over all n ≥ 1 and (n + 1)-tuples of points xj

with xo < x1 < . . . < xn. One can prove that WTV(f) ≤ TV (log(f)), with
WTV(f) = TV (log(f)) if f is continuous.
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The Riemann problem for system (1) and the wave interactions were studied in
[1]; our main result is the following, [2].

Theorem. Consider the initial data (2). For every m > 0 and a suitable function
k(m) ∈ (0, 1/2), if

TV (log(po)) +
1

inf ao

TV(uo) < 2
(

1 − 2WTV(ao)
)

m(3)

WTV(ao) < k(m)(4)

then the Cauchy problem (1), (2) has a weak entropic solution (v, u, λ) defined for
t ≥ 0. The solution is valued in a compact set of (0,+∞)× R× [0, 1] and there is
a constant C(m) such that for every t ≥ 0

TV (v(t, ·), u(t, ·)) ≤ C(m) .

The function k(m) above, that can be explicitly computed, depends on the
damping of reflected waves in interaction of waves of the same family 1 or 3; it is
a positive function decreasing to 0 as m → +∞, with k(0) = 1/2. In particular
WTV(ao) < 1/2, which makes positive the right-hand side term in (3). The
assumptions (3), (4) are then analogous to those in [8]: the larger m, the smaller
k(m).

The proof of the theorem above makes use of a wave-front tracking scheme
inspired by [4, 3], where we exploit the special structure of the system (1). In
particular we do not introduce a simplified Riemann solver for interactions between
1 and 3 waves but only for interactions involving the 2-contact discontinuities. As
in [3] we consider a linear functional that accounts for the strengths of all 1 and
3 waves, with a weight ξ > 1 assigned to shock waves; a crucial point in the proof
is the choice of ξ as a function of m. The interaction potential considers then
uniquely interactions of 2 waves with 1 or 3 waves approaching to it.
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Higher Order Schemes for Simulation of Liquid-Vapor Flows with
Phase Change

Dennis Diehl

Liquid-Vapor flows that can undergo phase transition arise in many technical,
medical and chemical applications. For instance, it is well known that the col-
lapse of small vapor bubbles that arise due to the operation of a ship propeller
can dramatically reduce the lifetime of the blades of a ship propeller. This type
of cavitation damage was first studied by Lord Rayleigh at the end of the 19th
century. From the mathematical point of view Two-Phase-Flow models can be
separated into two classes: sharp interface models, characterized by a discontinu-
ous jump between the phases and diffuse interface models that are characterized
by a smooth (but rapid) change between the phases. The model considered in
this work, the Navier-Stokes-Korteweg model, belongs to the class of diffuse inter-
face models. It is an extension of the compressible Navier-Stokes equations and
introduces an additional contribution to the stress tensor that includes (at least
at the static equilibrium, see [4]) the effect of surface tension implicitly. For the
sake of simplicity we consider only the isothermal version of the model, i.e., the
temperature is fixed to some constant below the critical temperature and the en-
ergy balance equation is neglected. The equation that has to be satisfied in some
domain Ω ⊂ R

n then reads

(1)
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ∇p(ρ) = ∇ · (τ + K) .

Here τ denotes the usual viscous part of the stress tensor, p is given by a van der
Waals equation of state and the tensor K is the Korteweg part of the stress tensor
that is given by the relation

K = λ

[(

ρ∆ρ+
1

2
|∇ρ|2

)

I −∇ρ∇ρT

]

, λ > 0.

The unknowns are the density ρ > 0 and the velocity u ∈ R
n that have to be

initialized at t = 0 with some meaningful values. On a bounded domain we
introduce the boundary conditions

(2) u = 0 and ∇ρ · n = 0 on ∂Ω.

The first boundary condition is the usual condition on a solid wall as it arises in
the framework of the compressible Navier-Stokes equations. The introduction of
the second one becomes necessary due to the introduction of the Korteweg part
of the stress tensor. This condition enforces a ninety degree contact angle of an
interface at the wall. It can be generalized to enforce arbitrary contact angles, see
[3].

On a bounded domain the total physical energy E[ρ,u] of smooth solutions of
(1), (2) given by

E[ρ,u](t) =

∫

Ω

W (ρ(x, t)) +
λ

2
|∇ρ(x, t)|2 +

1

2
ρ(x, t)|u(x, t)|2 dx
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satisfies

(3)
d

dt
E[ρ,u](t) ≤ 0.

Furthermore, static equilibrium solutions, i.e., solutions with ρt = 0 and u = 0
satisfy the nonlinear elliptic equation

(4) −λ∆ρ+W ′(ρ) = const in Ω,

where the constant on the right hand side is in general unknown and the energy
function W is associated with the pressure p by the relation W (ρ) = ρW ′(ρ) −
p(ρ). The aim of this work is the construction of a family of reliable higher order
schemes that have corresponding properties as (3) and (4) on the discrete level. In
order to achieve this it turned out to be of advantage to discretize the equivalent
nonconservative reformulation

(5)
ρt + ∇ · (ρu) = 0,

(ρu)t + ∇ · (ρuuT ) + ρ∇ (W ′(ρ) − λ∆ρ) = ∇ · τ,
instead of equation (1) directly. Using this reformulation a first order well-balanced
scheme can be constructed in a natural and straightforward way, see [3] for details.

Figure 1. Standard scheme (left) versus nonconservative well-
balanced scheme (right).

Figure 1 shows the difference between a standard discretization (left) of equa-
tion (1) and the nonconservative well-balanced scheme (right). The upper two
pictures show a static equilibrium configuration. With the standard discretization
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a velocity field (represented by the arrows) of order of the mesh size arises imme-
diately and remains as time tends to infinity. The nonconservative well-balanced
scheme approaches a perfect static equilibrium state on the discrete level. Similar
velocity fields (parasitic currents) have been observed in [5]. The lower two pic-
tures show the total physical energy which is not monotonically decreasing for the
numerical solution given by the standard scheme.

The basic first order well-balanced scheme can be generalized to higher or-
der schemes by application of the Discontinuous Galerkin approach as proposed
by Cockburn and Shu, see for example the review paper [1] and the references
therein. The difficulty that arises is the handling of the nonconservative terms in
equation (5). The discretization of nonconservative terms within the framework of
the Discontinuous Galerkin method can be done using the definition of nonconser-
vative products [2], for details see [3]. By construction, all higher order methods
have the well-balanced property and, as long as local mesh adaption is omitted,
the numerical solutions given by the higher order methods have a monotonically
decreasing total energy on the discrete level.
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Figure 2. Left: mesh size versus L2-error (black lines indicate
the expected order of the method p+1). Right: CPU time versus
L2-error.

Figure 2 shows the result of a convergence test. The left part of the figure
shows that the expected order of the method, which is p + 1 where p denotes
the polynomial degree in the Discontinuous Galerkin method, is achieved. The
right part of this figure shows that a higher polynomial degree leads to more ef-
ficient schemes. For this convergence test we have used special solutions of the
Navier-Stokes-Korteweg system that have been constructed numerically (but very
accurately) by ODE techniques, for details see [3].

For application to real world problems a Discontinuous Galerkin code for gen-
eral evolution equations in multiple space dimensions (1,2,3) has been designed
using local mesh refinement and coarsening, MPI-based parallelization [6] and
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ParMETIS-based load-balancing [7]. The discretization of the isothermal Navier-
Stokes-Korteweg system as well as the discretization of the full temperature de-
pendent model is done using this general purpose code.
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From the Global Entropy Inequality to Kinetic Relations

Wolfgang Dreyer

Background and Objectives. The local form of the 2nd law of thermodynamics
is used to control the evolution of initial and boundary value problems for systems
for PDEs. In particular it restricts the admissible class of constitutive functions,
and it yields inequalities on which for example kinetic relations are based. How-
ever, the local form of the 2nd law is not a unique consequence of some universally
stated axioms. This study discusses the subtleties of its derivation and application.
A piece of history. A heat engine converts heat power Q̇ into mechanical power
W and runs between a lower temperature TL and an upper temperature TU. In
order to improve its efficiency, in 1824 Sadi Carnot found an upper bound for the
produced maximal mechanical work, viz. Wmax ≤ f(TL, TU)Q̇, where f indicates
a universal function, that is independent of the agency and to the path of the
process .

However, Carnots paper contains many serious errors. For example, even the
conservation law of energy, the 1st Law of Thermodynamics, is found to be violated,
i.e. Carnot assumed that the heat that is needed to produce mechanical work is
conserved during the process. Surprisingly, Carnots final result is correct and
Rudolf Clausius rederived it from the simple axiom: Heat cannot flow by it itself
from a colder body to a hotter body. This is the first version of the 2nd Law of
Thermodynamics. Based on his axiom Clausius derived in 1865 a further law that
goes far beyond the characterization of efficiencies of heat engines. Nowadays this
law is called the 2nd Law of Thermodynamics, and it reads:

(1)
dS

dt
≥ Q̇

T
or

d

dt

∫

V

ρη dV ≥ − 1

T

∮

∂V

qini dA .
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The inequality concerns an arbitrary body with volume V , whose surface ∂V may
exchange heat with the enviroment with rate Q̇ at homogeneous temperature T .
By means of this version of the 2nd Law, Clausius introduced a new additive quan-
tity, that he called the entropy of the body. The equality sign holds in equilibrium
and in non-equilibrium the variation of the entropy is larger than Q̇/T .

Various attempts were undertaken in the past to find the local form of this
inequality, in particular to determine the general form for the entropy flux. The
most obvious way is to simply “write” the temperature T under the integral. The
resulting equation is called the Clausius-Duhem inequality:

(2)
d

dt

∫

V

ρη dV ≥ −
∮

∂V

qini

T
dA ⇒ ∂ρη

∂t
+ ∇i

(

ρηvi +
qi

T

)

≥ 0 .

Consequently the entropy flux is φi = qi/T . However, this form of φi already
fails in case of fluid mixtures, radiation problems and even in ideal gases we have
φi = qj/T (δji + 2σ<ji>/5p), where σ<ji> denotes the stress deviator and p is the
pressure.

In 1968 this shortcoming was remedied by the seminal works of Ingo Müller.
Here, in contradiction to the preliminary definition of the local form of φi, the
entropy flux is considered to be a material dependent quantity and thus relies on
a constitutive law whose explicit form results from the exploitation of the 2nd law
according to the strategies of Müller. We present a revision of the entropy principle
based on five, well accepted statements. In particular, it relies on a prescribed form
of the entropy production ζ based on established thermodynamical concepts.
Example: 1D elasticity with strain gradients The following example gives
a simple illustration. A state of a 1D body at time t is assumed to be given by
the variables internal energy density e(t, x) and the displacement u(t, x). The field
equations for the variables rely on the equations of balance for momentum and
internal energy

(3) ü− ∂σ

∂x
= 0, ė+

∂q

∂x
= σu̇x .

In order to end up with a closed set of field equation we have to relate the two
quantities stress, σ, and heat flux, q, which are not among the basic variables,
via constitutive laws to the variables and their derivatives. Within the setting
of a phase field model, we assume that the entropy density s is given by the
function s = h(e, ux, uxx, uxxx). We form the time derivative of s and proceed with
elimination of ė by means of the balance equation (3)2. Hereafter the product rule
is used to rearrange terms. The resulting identity forms the basis of a local entropy
inequality, that we obtain by 2 definitions, Clausius axiom and a conclusion.
1. We define the (absolute) temperature, T , and subsequently define the entropy
flux, φ, according to

(4)
1

T
=
∂h

∂e
, and φ =

q

T
− (

∂h

∂uxx

− ∂

∂x

∂h

∂uxxx

)u̇x +
∂h

∂uxxx

u̇xx .
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2. We satisfy Clausius axiom, whereupon heat cannot flow by itself from a cold to
a hot place, by

(5) q
∂ 1

T

∂x
≥ 0,

i.e. the heat flux must be antiparallel to the temperature gradient.
3. In order that (5) is the only contribution to the entropy production ζ, we must
have

(6)
σ

T
= − ∂h

∂ux

+
∂

∂x

∂h

∂uxx

− ∂2

∂x2

∂h

∂uxxx

.

Thus the local entropy inequality, viz.

(7) ṡ+
∂φ

∂x
= q

∂ 1
T

∂x
≥ 0; ,

results here as a consequence of the field equations and some assumptions. Note
(i) that the entropy production is of the form irreversible flux × driving force,
which is in a thermoelastic body the heat flux times the derivative of 1 / T , and
(ii) that the described strategy requires in particular a prerequisite identification
of the irreversible fluxes and the corresponding driving forces in the system of field
equations. These are those that are known to be zero in equilibrium.
On the 2nd law across singular surfaces. Within sharp interface models, two
adjacent phases of a body are separated by a singular surface with normal speed
wν , where the thermodynamic quantities may suffer a discontinuity. For example,
if the adjacent phases are Euler fluids, the jump conditions for mass density ρ and
velocity υi including anisotropic surface tension read

(8) [[ρ(υν − wν)]] = 0, ρ(υν − wν)[[υi]] + [[p]]νi = (Sαβτ i
β + Sανi);α .

Here the double brackets denote the jumps, the semicolon indicates covariant
derivatives along the surface and τ i

β respectively νi are its tangential and normal

vector. The surface force is decomposed into tangential, Sαβ, and normal, Sα,
components.

Likewise to the bulk, there is a 2nd law of thermodynamics across the interface,
which can be formulated in a similar manner to the above. For example, the
temperature axiom, which corresponds to (4)1 states the continuity of temperature
across the interface, i.e. [[T ]] = 0, and the analogon to (6) allows the calculation
of the surface stresses if the interfacial free energy γ were known as a function of
the metric tensor gαβ and the normal vector νi:

(9) Sαβ = γgαβ +
1

2

∂γ

∂gαβ

, Sα = −gαβτ i
β

∂γ

∂νi
.

The inequality that corresponds to (5) involves the specific free energy ψ and the
stress σij of the bulk phases, and it has likewise the form of a product flux ×
driving force:

(10) ρ(υν − wν)[[ψ − 1

ρ
σijνiνj +

1

2
(υ − w)2]] ≥ 0 .
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Recall that the inequality (5) may be used to motivate Fourier’s law, viz. q ∼
∇(1/T ), as the simplest possibility to satisfy (5). In a similar manner we read off
from (10) ρ(υν −wν) ∼ [[ψ+ 1

ρ
σijνiνj + 1

2
(υ−w)2]] as the simplest possibility to

satisfy (10). Usually this law is called kinetic relation.
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Supersonic Rarefaction Phase Boundaries

Haitao Fan

(joint work with X. Lin)

The isothermal fluid flow involving liquid/vapor phase transitions can be mod-
elled by

(1)

vt − ux = 0,

ut + p(λ, v)x = εuxx,

λt =
a

ε
w(λ, v) + bελxx,

where v is the specific volume, u the velocity of the fluid, λ the weight portion
of vapor in the liquid/vapor mixture. The constants ε is the viscosity, ε/a the
typical reaction time, and bε the diffusion coefficient. The pressure function in
(1), p(λ, v), satisfies

(2) pv < 0, pλ > 0.

In this paper, we further assume

(3) pvv > 0.

The function w(λ, v) represents the rate of vapor initiation and growth. For study-
ing the travelling waves of (1) and the related issues, we take

(4) w(v, λ) = (p(λ, v) − pe)λ(λ − 1),

where pe is the equilibrium pressure. The system (1-3) not only exhibits all ma-
jor one-dimensional wave patterns observed in actual experiments on retrograde
fluids, [3], but also explains the puzzling ring formations observed experiments,
[4]. Retrograde fluids are fluids with high molar heat capacity and hence can
be approximated by isothermal flows. Existence and nonexistence conditions for
liquefaction and evaporation waves are given in [5]. Existence and uniqueness of
solutions of Riemann problems under a kinetic relation motivated be the behav-
ior of liquefaction and evaporation waves is proved in [2]. There are variational
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solutions of the non-isothermal multi-dimensional case of (1) under various as-
sumptions, [6]. The inviscid case of (1) with a = b = 0 has global solutions for a
class of initial data of large total variations, [1].

The travelling waves equations for (1) are

(5)

− cv′ − u′ = 0,

− cu′ + p′ = u′′,

− cλ′ = aw(λ, v) + bλ′′,

(u, v, λ)(±∞) = (u±, v±, λ±).

Collapsing waves are travelling waves of (1) with end values (v±, λ±) := (v, λ)(±∞)
satisfying

(6)
0 < λ− < 1, p(λ−, v−) = pe,

λ+ = 1, p(λ+, v+) > pe,

The end value of an explosion waves satisfy

(7)
0 < λ− < 1, p(λ−, v−) = pe,

λ+ = 0, p(λ+, v+) < pe,

A necessary and sufficient condition for the existence of collapsing wave is

(8) c2 ≥ 4ab|p(λ+, v+) − pe|, c2 ≥ −pv(λ±, v±).

For explosion waves, (8) is a sufficient condition for their existence. When c2 <
4ab|p(λ+, v+) − pe|, there is no explosion wave. These collapsing and explosion
waves shown to exist are monotone. Note that since physically meaningful solu-
tions lies in the range 0 ≤ λ ≤ 1, the non-existence of travelling waves in this
paper means that there is no travelling wave satisfying 0 ≤ λ ≤ 1 everywhere.

¿From (8), we see that collapsing waves are supersonic on both side of the wave,
and it is a rarefaction shock. In the explanation of the ring formation phenomenon,
[4], the front of the outer ring is found to be a collapsing wave. Actual experiments
show that the outer front of the ring is indeed supersonic.

Given (v+, λ+) satisfying (6) and (8), there are travelling waves connecting
infinitely many different (v−, λ−) to the given (v+, λ+). Which one of them will
actually appear in the solution of (1) for large t? The last equation in (1) is similar
to the KPP equation

(9) λt = λ(λ − 1) + λxx,

The travelling wave showing up in the solution of initial value problem of (9) for
large t is the one with the same decay rate as that of the initial value as x→ ∞.
With Riemann initial data, we expect that collapsing and explosion waves of (1)
with slowest possible speed for the given the downstream state to appear in the
solution. Our numerical computation supports this expectation.

To study the behavior of (1-3) when ε > 0 is small, we assume the strong limit
limε→0+ of the solution exist, and study the behavior of the limit. Such limit will
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satisfy

(10)

vt − ux = 0,

ut + px = 0,

(p− pe)λ(λ − 1) = 0.

In [2], existence and uniqueness of the solution of the Riemann problem is estab-
lished under kinetic relations mimicking the behavior of the slowest liquefaction
and evaporation waves. Now, we have proved the existence of collapsing and ex-
plosion waves, and hence we should include these waves into the kinetic relation.
However, admitting collapsing and explosion waves resulting in two solutions for
the same Riemann initial data. For example, one of the solution has a collapsing
wave, while the other does not. To resolve this nonuniqueness, we have to set up
the criterion on when to use which solution. Our numerical tests show that when
a pure phase is in contact with mixture or the other pure phase, then collapsing
and explosion waves of the slowest speed are preferred if they exist. Whether this
criterion will settle the nonuniqueness of the Riemann problem is left for future
research.

References

[1] D. Amadori, A. Corli, On a model of multiphase flow. To appear in SIMA J. Math. Anal.
[2] A. Corli, H. Fan. The Riemann Problem for Reversible Reactive Flows with Metastability.

SIAM J. Appl. Math., 65 (2005), 426-457.
[3] H. Fan, Travelling waves, Riemann problems and computations of a model of the dynamics

of liquid/vapour phase transitions. J. Diff. Eqs., 150 (1998), 385-437.
[4] H. Fan, Symmetry breaking, ring formation and other phase boundary structures in shock

tube experiments on retrograde fluids, J. Fluid Mech., 513 (2004), 47-75.
[5] H. Fan, On a model of the dynamics of liquid/vapour phase transitions. SIAM J. Appl.

Math., 60 (2000), 1270-1301.
[6] K. Trivisa, On the Dynamics of Liquid-Vapor Phase Transition. To appear in SIAM J.

Math. Anal.

Analysis and Numerical Approximation of a Traffic Flow Model with
Phase Transitions

Paola Goatin

(joint work with C. Chalons, R.M. Colombo, F.S. Priuli)

I consider a traffic flow model with phase transitions, that has been introduced
by R.M. Colombo in [7]. For low densities, the flow is free and is described by
a scalar conservation law usually referred to as the Lighthill-Whitham [11] and
Richards [12] model. At high densities, the flow is congested and is described by
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a 2 × 2 system. More precisely, we have

(1)

Free flow: Congested flow:
(ρ, q) ∈ Ωf , (ρ, q) ∈ Ωc,
∂tρ+ ∂x(ρv) = 0,
q = ρV,

{

∂tρ+ ∂x(ρv) = 0,
∂tq + ∂x ((q −Q)v) = 0,

v = vf (ρ) = V
(

1 − ρ
R

)

, v = vc(ρ, q) =
(

1 − ρ
R

)

q
ρ
.

The conserved quantity ρ ∈ [0, R] is the mean traffic density, and v is the mean
traffic velocity. The parameter R is the positive maximal density, V the maxi-
mal speed and Q is a parameter depending on the road under consideration. The
weighted linear momentum q is originally motivated by gas dynamics. It approxi-
mates the real flux ρv for ρ small compared to R.
The coupling is achieved by introducing a transition dynamics from free to con-
gested flow. A detailed description of the Riemann solver, and analogies between
solutions to (1) and real traffic features are given in [7]. Here I just want to recall
that the 2 × 2 system describing the congested flow turns out to be hyperbolic,
the second characteristic field being linearly degenerate, while the first has an
inflection point along the curve q = Q. Moreover, shock and rarefaction curves
coincide, hence system (1), right, belongs to Temple class [13].
The domains Ωf and Ωc are taken to be invariant sets for the corresponding con-
servation laws in (1). The resulting domain is given by Ω = Ωf ∪ Ωc, with

Ωf = {(ρ, q) ∈ [0, R] × [0,+∞[ : vf (ρ) ≥ Vf , q = ρ · V } ,
Ωc =

{

(ρ, q) ∈ [0, R]× [0,+∞[ : vc(ρ, q) ≤ Vc,
q−Q

ρ
∈

[

Q
−
−Q

R
, Q+−Q

R

]}

,

where Vf > Vc are the threshold speeds, i.e. above Vf the flow is free and below
Vc the flow is congested. The parameters Q− ∈]0, Q[ and Q+ ∈]Q,+∞[ depend
on the environmental conditions and determine the width of the congested region.
The domain Ω turns out to be a disconnected set in R

2, its two connected com-
ponents representing the free and the congested phases.
Other traffic flow models with phase transitions have been considered in the lit-
erature since the 60-ties, in order to explain empirical flow-density relations. In
particular, we refer the reader to the scalar model of Drake, Schofer and May [9].
Another model has been introduced recently by myself [10]. It consists in coupling
the LWR equation with the 2 × 2 Aw-Rascle model [1].

In collaboration with R.M. Colombo and F.S. Priuli [8], I proved the well posedness
(in the L1-norm) of the solutions to the Cauchy and initial-boundary value prob-
lems for (1), for data with bounded total variation. More precisely, we construct
a Riemann Semigroup of solutions defined on a set of functions with bounded to-
tal variation, which is Lipschitz continuous with respect to initial (and eventually
boundary) data and time. The semigroup trajectories are obtained as limit of
approximate solutions constructed by wave-front tracking (see [2] for a well posed-
ness result for classical Temple systems).
¿From the traffic point of view, the result is useful in view of applications to control
and optimization problems.
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As far as numerical approximations are regarded, we observe that, due to the
lack of convexity of the domain Ωf ∪ Ωc, the classical Godunov method does not
apply. In fact, in the presence of phase transitions, the projection step of the
algorithm can give values which are not in the domain. C. Chalons and I present
a new version of the Godunov scheme, based on a modified averaging strategy
and a sampling procedure [6]. More precisely, we modify the mesh cells following
the phase boundaries, so that the projection involves only values belonging to the
same phase. In order to come back to the original cells, we complete the projection
step with a Glimm-type sampling technique.
This scheme is essentially first order accurate, and hence introduces a consider-
able dissipation away from phase transitions. In order to improve accuracy, we
also present an extension of the method to second-order accuracy in space and
time, which is L1-stable in space.
The averaging procedure on modified cells has first been used (up to our knowl-
edge) in [14] but in a different context and a slightly different form. However, the
idea of going back to the initial cells by means of a sampling procedure is new
and allows us to avoid dealing with moving meshes (as in [14]). Similar numerical
techniques have recently been proposed by C. Chalons for approximating nonclas-
sical solutions arising in certain nonlinear hyperbolic equations (see [3], [4] and the
references therein), and very recently by Chalons and Coquel in [5] for computing
sharp discrete shock profiles.
I conclude by emphasizing that due to the sampling procedure, the proposed algo-
rithm is not conservative in the classical sense of finite volumes methods. However,
we numerically demonstrate that it is actually ”weakly” conservative in the follow-
ing sense: phase transitions propagate with the right speeds (given by Rankine-
Hugoniot conditions) and conservation errors seem to tend to zero with the mesh
size. Of course, the random choice method (Glimm’s scheme) could be applied
successfully in this case. Nevertheless, our method doesn’t need to compute all
the values in the Riemann solution, but only the values on both sides of the phase
transition, and is then cheaper. Moreover, our algorithm coincides with the clas-
sical Godunov scheme, and hence it is conservative, away from phase transitions.
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Phase Transitions and Interface Conditions for Two Phase Flows

Dietmar Kröner

(joint work with K. Hermsdörfer, C. Kraus)

In this talk we consider a mathematical model of liquid-vapour flows including
phase transition which was proposed by Korteweg already in 1901 [2] and which is
known as the Navier-Stokes-Korteweg model. It is an extension of the compressible
Navier-Stokes equation and given by the following system.

∂tρ+ ∇ · (ρv) = 0

∂t(ρv) + ∇ · (ρvvt + p(ρ)I) = µ∆v + λρ∇∆ρ.(1)

This is a one fluid model where ρ, v, p(ρ) and µ denote the density, velocity, pres-
sure and the viscosity of the fluid/vapour respectively. Compared to the original
Navier–Stokes equation the system (1) contains the term γε2ρ∇∆ρ (in which λ
is replaced by γε2) which is supposed to model capillarity effects close to phase
transitions. The pressure p(ρ) as a function of the density ρ is defined as

p(ρ) = ρ2ψ′(ρ)(2)

where ψ is a smooth function of ρ such that ρψ(ρ) is the total free energy density
and of the form of a double well potential (up to a linear function).

The values α1 and α2 are defined by the extrema of p. The conservation of
energy is neglected in (1). Different phases of the fluid are defined by the size of
ρ. If ρ ≤ α1 we are in the vapour phase and if ρ ≥ α2 we are in the liquid phase.
The equation (2) is known as the van der Waals equation of state.
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In this contribution we study the behaviour of the pressure across the interface.
Since a rigorous theory about this question is not available and difficult, we will
concentrate on the static version of (1), i.e.

∇p(ρ) = γε2ρ∇∆ρ.(3)

In particular we will study the behaviour of the pressure in the limit if ε → 0.
First we will repeat some recent results [1], [4], which show that the difference of
the pressures [p] on both sides of the interface is of order ε:

[p] = ckmε+ o(ε),(4)

where km is the mean curvature of the interface. This seems to contradict the
classical result of Landau and Lifschitz [3], which says that the difference of the
pressures on both sides of the interface is proportional to the mean curvature of
the interface:

[p] = c1km.(5)

Now let us consider the low Mach number limit of (1) and assume, that we have
an asymptotic expansion of all quantities with respect to the Mach number M , in
particular

p(x, t) = p(ρ(x, t)) = p0(x, t) +Mp1(x, t) +M2p2(x, t) +O(M3).

The non-dimensionalization form of (1) for small Mach number M is given by:

∂t(ρv) + ∇ · (ρvvt +
1

M2
p(ρ)I) =

1

Re
∆v +

λb2

M2
ρ∇∆ρ.

Then we show that the scaling/capillarity quantity λ can be related to the Mach
number under certain conditions such that we get the expected jump relation for
the difference of the pressures p2 on both sides of the interface. Similarly in a
second approach we can obtain the expected pressure relation across the interface
by a modified definition of the pressure on the basis of a special scaling of the free
energy density compared to the gradient term. Instead of the energy

Jε(ρ) :=

∫

Ω

W (ρ) +
ε2

2
|∇ρ|2dx+ M̃ → Minimum(6)

we use the modification

Iε(ρ) :=
1

ε

∫

Ω

W (ρ) +
ε2

2
|∇ρ|2dx+ M̃ → Minimum(7)

where W denotes the free energy density up to a linear function, ε2

2
|∇ρ|2 penalizes

the occurrence of a large interface and M̃ is a constant.
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It turns out that the functional in (7) satisfies the following identity.

Iε(ρ) =

∫

Ω

1

ε
W (ρ) +

ε

2
|∇ρ|2dx+ M̃ =

∫

Ω

ρψε(ρ) +
ε

2
|∇ρ|2dx

where ψε(ρ) is defined as ρψε(ρ) := 1
ε

(ρψ(ρ) − l(ρ))+ l(ρ) and l(·) is the Maxwell-
line.

Therefore instead of (6) we consider the functional

Iε(ρ) =

∫

Ω

ρψε(ρ) +
ε

2
|∇ρ|2dx.(8)

Similar as in (2) we define for this new scaling the pressure pε(ρ) := ρ2ψ′
ε(ρ) and

the relation to p(ρ) is given by

pε(ρ) =
1

ε
p(ρ) +

1 − ε

ε
d1(9)

where p(ρ) = ρ2ψ′(ρ) is defined as in (2) (see also [1]). Now putting (4) and (9)
together we obtain the expected jump condition (5) for pε .
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Kinetic Relations for Undercompressive Shocks

Philippe G. LeFloch

I presented a review of the theory of kinetic relations for systems of nonlinear
conservation laws of hyperbolic or of hyperbolic-elliptic type. One important issue
is understanding the effect of singular perturbations including diffusion, dispersion,
and/or relaxation terms, for instance

uε
t + f(uε)x =

(

R(εuε
x, ε

2uε
xx, . . .)

)

x
,

where uε : R+×R → R
N is the unknown of the problem. Such systems of equations

arise in the dynamics of complex materials undergoing phase transitions and in the
dynamics of van der Waals fluids with viscosity and capillarity effects included.
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The importance of small scales is central and a key objective is to determine
the “sharp interface” hyperbolic theory for the system

ut + f(u)x = 0

associated with the given singular perturbation problem.
One need to establish the existence of the limit u := limε→0 u

ε and then in-
vestigate its qualitative properties. Which propagating discontinuities are admis-
sible ? What is the structure of the corresponding Riemann solution ? One is
led to distinguish between (classical) compressive shock waves and (nonclassical)
undercompressive ones. For the latter, for the sake of uniqueness (at least for the
Riemann problem) one need to impose a kinetic relation, which comes in addition
to the usual entropy inequality.

The analytical properties (monotonicity, dependence upon parameters) of the
kinetic relation associated with a given continuous or discrete approximation model
have been investigated. This goal has been achieved by a detailed study of the
existence and qualitative properties of associated traveling wave solutions.

Numerical approximation of both nonclassical shocks and the kinetic relation
associated with Glimm-type, front-tracking, or finite difference schemes has been
extensively studied.

In particular, in the recent work [15] we have investigated the role of the equiv-

alent equation associated with a finite difference scheme. We stated a conjecture
and provided numerical evidences demonstrating its validity. We have shown that
the kinetic function associated with a finite difference scheme approaches the (ex-
act) kinetic function derived from a given (viscosity, capillarity) regularization.
Interestingly, the accuracy improves as its equivalent equation coincides with the
diffusive-dispersive model at a higher and higher order of approximation.

These small scale features can not be quite the same at the continuous and at
the discrete levels, since a continuous dynamical system of ordinary differential
equations can not be exactly represented by a discrete dynamical system of finite
difference equations. The effects of the regularization coefficients on the kinetic
functions were also investigated.

In [15] we have also considered fourth-order models and demonstrated that a
kinetic function can be associated with the thin liquid film model. We also inves-
tigated a generalized Camassa-Holm model, and discovered nonclassical shocks for
which we could determine a kinetic relation. In both models, the kinetic function
was found to be monotone decreasing, as required in the general theory [13].

We also investigated to what extent a kinetic function can be associated with van

der Waals fluids, whose flux-function admits two inflection points. We established
that the Riemann problem admits several solutions whose discontinuities have
viscous-capillary profiles, and we exhibited non-monotone kinetic functions.
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Numerical Simulation of Cavitation Bubbles by Compressible
Two-Phase Fluids

Siegfried Müller

(joint work with P. Helluy, M. Bachmann, J. Ballmann)

Motivation. Cavitation is induced by a pressure drop in the liquid below
vapor pressure. Such a pressure decrease may occur due to local acceleration of
the liquid flow caused by geometrical constraints, e.g., if the liquid flows through
a narrow orifice or around an obstacle. In this case, the pressure drops below
vapor pressure, the liquid bursts and creates a free surface filled with gas and
vapor – the bubble. Due to changes in the flow field, the pressure in the liquid
may increase again causing the bubble to collapse. The collapse is accompanied by
strong shock and rarefaction waves running into the bubble and the surrounding
liquid. The inwards running shock wave focuses in the center of the bubble. This
leads to extreme physical states in the interior. In addition, the shrinking of the
bubble leads to a strong compression of the vapor. Both effects evoke an increase
of pressure which bulges the bubble. Hereby, a dynamic oscillation process is
initiated which finally leads to the collapse of the bubble. If the collapse takes
place next to a boundary, flow and pressure fields become asymmetric and a liquid
jet develops which is either directed towards or away from the boundary, depending
on its compliance.

The processes taking place in the interior and exterior of the collapsing and
oscillating bubble and the prediction of onset and extent of cavitation damage are
still subject of theoretical and experimental research. However, small time and
space scales as well as the complicated dynamics make any theoretical and exper-
imental approach a challenge. Therefore, advanced numerical investigations are
needed to reveal further information about the highly unsteady flow dynamics in
the fluid. Here the main challenge is the high difference of the acoustic impedance
caused by the density jump across the phase boundary.

Mathematical Model. Compressible fluid flow is characterized in continuum
mechanics by the fields of density ρ, velocity v, internal energy e and pressure p
distributions. The balances of mass, momentum and energy for inviscid flow lead
to the Euler equations in conservation form

(1)

ρt + div(ρv) = 0,

(ρv)t + div(ρv ⊗ v + pI) = 0,

(ρE)t + div(ρv(E + p/ρ)) = 0,

where E = e + 0.5v2 is the total energy. In order to take into account the two
different fluids (a gas and a liquid) we introduce a new unknown ϕ that we call
the fraction of gas. We make the convention that ϕ = 0 and ϕ = 1 correspond
to pure liquid and gas, respectively. Because we are interested in very high speed
flows and very short observation times we suppose that the phase transition can
be neglected so that there is no mass transfer between the two fluids, i.e.,

(2) ϕt + v · ∇ϕ = 0.
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In order to close the system, we have to provide a pressure law. Here we consider
the stiffened gas pressure law:

(3) p(ρ, e, ϕ) = (γ(ϕ) − 1)ρe− γ(ϕ)π(ϕ).

For the continuous model it would be sufficient to provide the pressure law coef-
ficients γ and π for ϕ = 0 or ϕ = 1. But because of the numerical mixture, it
is necessary to interpolate γ and π for 0 < ϕ < 1. An arbitrary choice of inter-
polation would lead to numerical difficulties. In [7] it is suggested to use a linear
interpolation of the two special quantities β1 = 1/(γ − 1) and β2 = γπ/(γ − 1).

Numerical Discretization. For the discretization of the stiffened gas model
the approach of Saurel and Abgrall [7] is employed where the flow equations (1)
for the conserved quantities are approximated by a finite volume scheme and an
upwind discretization is used for the non-conservative transport equations of the
gas fraction (2) by which the different phases are indicated. The original 1st order
discretization is extended to higher order applying 2nd order ENO reconstruction
to the primitive variables. In order to derive an appropriate non-conservative
upwind discretization for the gas fraction on arbitrary unstructured grids we apply
the key idea by Saurel and Abgrall: the resulting discretization has to preserve
homogeneous pressure and velocity fields to avoid pressure oscillations. Hence we
are not free in the discretization of the evolution equation for the gas fraction but
it is closely related to the finite volume approximation of the flow equations.

Multiscale-based grid adaptation techniques [3] have been employed to improve
the efficiency of the scheme. This allows for a locally high resolution that is needed
to resolve accurately the local physical effects in the bubble collapse process. Since
this process is highly dynamical the time discretization is explicit. Therefore
the CFL condition is very restrictive because of the small cells sitting on the
high refinement levels. For the cells on the coarser discretization levels we use a
multilevel time stepping strategy that allows for larger time steps on coarser scales.
This strategy has been recently developed in combination with the multiscale-grid
adaptation, cf. [6]. It had to be modified taking into account the non-conservative
upwind discretization of the evolution equations (2), cf. [5].

Numerical Results. The scheme is applied to the planar collapse of a gas
bubble of radius r = 1 [mm] near to a rigid wall located at a distance of r/2. The
bubble is filled with air at ρ = 0.026077 [kg/m3] and p = 2118 [Pa] surrounded by
water at ρ = 1000 [kg/m3] and p = 5 × 107 [Pa]. The dynamics of the resulting
flow field can be separated into three stages. In a first stage, a low pressure regime
is developing between the wall and the vapor bubble. This is caused by expansion
and compression waves running between the wall and the bubble where they are
reflected. At the same time, a shock wave is running inside the bubble towards
the bubble center. Due to transmitted expansion and compression waves at the
interface, the pressure distribution becomes asymmetric also inside the bubble.
When the shock wave focuses in the bubble center a second stage starts where a
liquid jet is forming that penetrates the bubble at the symmetry line and is directed
towards the wall. This process is caused by the formation of two vortices inside
the vapor bubble by which the vapor is concentrating in two almost rotational
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symmetric vapor bubbles above and below the symmetry axis. The small distance
between the two vortices causes a bottleneck for the liquid which acts as a nozzle
where the liquid is significantly accelerated. In front of this bottleneck a high
pressure zone is forming in the liquid where the pressure is about 5 times higher
than in the undisturbed liquid. This high pressure liquid is then squeezing through
the bottleneck and directed towards the wall where it hits with high pressure.
The impact of the high pressure might be the cause of material damage. But
this analysis requires considering of the coupled fluid-structure problem with the
appropriate modeling of elastic-plastic stress waves in the solid wall. When the
jet hits the wall, the third stage of the flow process starts. The liquid supplied by
the jet is deflected at the wall to both sides of the symmetry axis and pushes away
the water supplied from the free stream from above and below. In the wake of the
jet the system of the splitted bubbles and the vortices start moving towards the
wall where they are deflected upward and downward the symmetry axis. Details
on the computation can be found in [5].

Validation. In order to investigate the influence of numerical phase transition
on the numerical results the scheme has been validated by means of laser-induced
cavitation bubbles, cf. [4]. For this purpose the Saurel-Abgrall approach has been
applied to investigate the spherical bubble collapse of laser-induced cavitation
bubbles. Initial data have been derived by first fitting the equilibrium radius in
the Keller-Miksis model [2] to optimize the least square error to the experimental
movement of the bubble wall. Then the gas state for an arbitrary bubble radius
is deduced applying an ideal and adiabatic gas law.

The computations verify that the SA approach results in a severe numerical
phase transition regime that is unphysical because mass transfer is excluded in
the underlying physical model. This can be reduced by grid refinement but grid
convergence is too slow and the needed resolution to reduce this effect significantly
can not be afforded. Hence, discretizations using sharp interface models such as
the real ghost fluid method might be more convenient.
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On a Non-Local Phase Field Model for Phase Transitions

Christian Rohde

(joint work with A. Dressel, J. Haink)

1. The Mathematical Model

We consider the spatially one-dimensional dynamics of a fluid or a solid that can
occur in two phases. ¿From the point of view of modelling phase boundaries can
be either viewed as sharp or as diffuse interfaces. The first ansatz typically leads
to mixed hyperbolic-elliptic systems of conservation laws where phase boundaries
can be characterized as undercompressive shock waves (see [6] for an overview).
Here we focus on a diffuse-interface or phase field model. Phase field models
contain additional terms that contribute to the surface energy and regularize the
equations. One obtains as phase transitions smooth functions with steep gradients.
In contrast to the classical local Van-der-Waals (or Cahn-Hilliard) energy term
we focus here on a non-local version. Some new well-posedness results will be
presented. By numerical experiments we show that the non-local approach offers
interesting modelling possibilities.
Using the notions of solid mechanics we search for strain w = w(x, t) : (0, 1) ×
[0,∞) → R and velocity v = v(x, t) : (0, 1) × [0,∞) → R satisfying the system

(1.1)
wt − vx = 0,

vt − [σ(w)]x = µvxx − [φ ∗ w − w]x,

subject to the initial and (self-consistent) Dirichlet boundary conditions

(1.2)

v(x, 0) = v0(x), w(x, 0) = w0(x),
∫ 1

0

w(x, t) dx =

∫ 1

0

w0(x) dx, v(0, t) = v(1, t) = 0 ∀t ∈ [0,∞).

In (1.1) the stress-strain relation σ is chosen as the non-monotone function σ(w) =
w3 − w such that the w-intervals which correspond to increasing branches of σ
define the two different phases. For the potential φ ∈ L1(R) ∩ L∞(R) we assume
∫

R
φ = 1. The functions w0, v0 ∈ L2(0, 1) are given and µ > 0 is the viscosity

parameter. The operator ∗ denotes convolution.
A straightforward computation shows that solutions of (1.1), (1.2) dissipate the
energy

(1.3) E[v, w] =

∫ 1

0

(

Σ(w(x)) +
v(x)2

2
+

1

4

∫ 1

0

φ(x− y)(w(x) − w(y))2 dy

)

dx,

where we suppressed the t-dependency. In (1.3) Σ is a primitive of σ.

2. Wellposedness and Stability

We are interested in weak solutions of (1.1), (1.2). By a weak solution we mean
functions (w, v) ∈ C0([0,∞), (L2(0, 1))2) such that (1.1) is satisfied in the distribu-

tional sense, the initial conditons are assumed weakly and v ∈ L2(0,∞;H1,2
0 (0, 1))
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holds. For the initial functions we only impose the energy bound

(2.4) E[v0, w0] <∞.

Theorem 2.1: Let (2.4) be satisfied. Then there exists a unique weak solution
(w, v) of (1.1), (1.2) such that we have

E[w(., t), v(., t)] ≤ E[w0, v0] for t ≥ 0

and

(2.5) (w, v) ∈ L∞((0, 1) × (δ,∞)) for δ > 0.

The proof of Theorem 2.1 can be found in [3]. The existence part is verified
via finite-difference approximations. It can also be obtained by other methods
and also for the multidimensional case (see e.g. [5] for another result). More
delicate and –up to our knowledge– restricted to the spatially one-dimensional
case is the regularity bound (2.5). It is derived following the work of Andrews
[1] and using the fact that the convolution operator in (1.1) is continuous. The
a-priori L∞-bound on w in (2.5) is the key step to obtain

Theorem 2.2: Let the weak solution (w, v) ∈ C0([0,∞), (L2(0, 1))2) of (1.1),
(1.2) from Theorem 2.1 be given. Then there is a P ∈ R such that we have

lim
t→∞

v(., t) = 0 in H1,2(0, 1),

lim
t→∞

w(., t) = w̄ in L2(0, 1),

where w̄ is a solution of the elasto-static equation

(K ∗ w̄ − w̄) − σ(w̄) = P.

The proof from [4] is motivated by the work in [8] where an asymptotic stability
result is derived for a local model. Furthermore we exploit that the convolution
operator in (1.1) is even compact (for appropriate spaces).

3. Numerical Modelling by Discontinuous-Galerkin Schemes

The problem (1.1) can be seen as a hyperbolic-parabolic system. A quite flexible
numerical approach that is able to take into account convective effects is given
by the class of Local-Discontinuous-Galerkin Schemes [2]. We have adopted this
approach in [7]. In particular we performed experiments for (non-positive!) kernels
as in the first row of Fig. 1 below. As the initial datum we have chosen v0(x) = 0
w0(x) = ±1.2 for x ∈ [0, 0.5]/x ∈ (0.5, 1]. The computations show that in the
time-asymptotic limit the solution converges to an oscillating equilibrium where
the frequency of the oscillations depend on the structure of the kernel. Theorem
2.2 applies in this case.
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τ = 3

(a) Tight kernel function

τ = 10

(b) Wide kernel function
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Figure 1. Numerical solution for (1.1), (1.2) at t = 5.0 (lower
row) with two different kernels (upper row).
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Stability of Traveling Waves in which an Insoluble Surfactant
Influences the Flow of a Thin Liquid Film Down an Inclined Plane.

Michael Shearer

The flow of thin liquid films is important in a variety of contexts, including
the chemical engineering of processes to manufacture industrial coatings, and the
medical use of surfactant replacement therapy [6]. In this paper, we consider a
system of PDE derived from the Stokes equations using the lubrication approxi-
mation, and including an equation for the propagation of surfactant on the free
surface. Surfactant is treated as a layer of zero thickness, transported by the local
speed of the free surface, but also subject to diffusion of surfactant molecules on
the surface.

Specifically, the system of equations is

(1)

ht −∇ ·
[

1
2
h2∇Γ

]

+ α
[

1
3
h3

]

x
= −κ∇ ·

[

1
3
h3∇∇2h

]

+ β∇ ·
[

1
3
h3∇h

]

Γt −∇ · [hΓ∇Γ] + α
[

1
2
h2Γ

]

x
= −κ∇ ·

[

1
2
h2Γ∇∇2h

]

+β∇ ·
[

1
2
h2Γ∇h

]

+ δ∇2Γ,

in which the dependent variables h = h(x, y, t),Γ = Γ(x, y, t) represent the height
of the free surface, and the surfactant concentration, respectively. The dimen-
sionless non-negative parameters α > 0, β, κ, δ are related to parallel and normal
components of gravity, capillarity (i.e., surface tension), and diffusion on the free
surface, respectively.

Somewhat surprisingly, for β = δ = κ = 0, system (1) possesses one-parameter
families of traveling waves of the form (h(x − st;m),Γ(x − st;m) in which
h(±∞,m) = h±,Γ(±∞,m) = 0, and the parameter m = maxxΓ(x;m). De-
tails of the construction of these waves are given in [9, 13]. The traveling waves
have speed s = 1

3
(h2

+ + h+h− + h2
−), they are piecewise constant in h, with three

jumps. Correspondingly, Γ is continuous, piecewise linear, zero both ahead of the
leading jump in h, and behind the trailing jump. Traveling waves with this struc-
ture with m > 0 exist if and only if the upstream and downstream heights are
well separated: h− > 1

2
(
√

3 + 1)h+. Interestingly, the waves are overcompressive
[12] in the sense that small disturbances ahead of and behind the wave propagate
towards the wave.

For κ = 0, β ≥ 0, and δ ≥ 0, the traveling waves are easily seen to have smooth
counterparts, using phase plane analysis. However, for κ > 0, phase portraits are
in R

4 and are consequently difficult to analyze. Nonetheless, for small values of
m, it seems likely that the trajectories can be proved to exist by perturbing away
from the Γ = 0 traveling wave [10].

Stability of these traveling waves in one dimension, with at least one of β and
κ positive, and δ > 0 can be studied using an Evans function, as was done for
a single fourth-order equation in [1]. Important steps in making the connection
from linear to nonlinear stability have been achieved by Zumbrun and Howard
[7, 11], including for fourth-order scalar equations. Preliminary results suggest
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that traveling waves near Γ = 0 are stable. A complete proof in the case κ = 0
may rely on energy methods, similar to the analysis of Freistuhler and Liu [5] on
overcompressive waves in a rotationally symmetric system.

In two dimensions, the traveling waves are thought to be unstable, consistent
with numerical evidence for solutions related to the traveling waves [3, 4]. The-
oretical verification comes from an asymptotic analysis, similar to the one done
in [1, 2]. (See also [8].) However, zero is a double eigenvalue for the linearized
problem, so that two eigenvalues have to be tracked as the wave number q varies
away from zero. Preliminary results indicate that one eigenvalue is −δq2, and the
other eigenvalue is aq2 to leading order, with the parameter a given by the same
integral as in [2]. The interpretation is that perturbations due to diffusion of the
surfactant on the free surface are mildly stabilizing, but do not help to stabilize
the free surface itself. Since these results are for small values of m ≥ 0, it would be
interesting to see if the waves can be stabilized if there is more surfactant present,
i.e., with larger values of m.
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Multi-Phase Mixture Balances with Phase Transitions

Gerald Warnecke

(joint work with W. Dreyer, F. Duderstadt, M. Hantke)

The aim of our work is to obtain and study multi-phase mixture conservation
laws with phase change. We want to predict the flow of bubbly liquids or liquid
droplets in a gas/vapor mixture. Without phase change this is a well studied
subject in analysis and numerics. Still there are many open problems, which
is no surprise in the field of systems of conservation laws. In order to obtain
macroscopic equations for mixtures we study a specific averaging technique. The
most important issue is to obtain the transfer terms for mass, momentum and
energy transfer due to the phase change. For this we consider a bubble of vapor
surrounded by the corresponding liquid phase. We study the behavior of the
bubble due to phase change, i.e. condensation and evaporation, at the interface in
some detail under spherical symmetry. The work reported here is joint work with
Maren Hantke in Magdeburg as well as Wofgang Dreyer and Frank Duderstadt of
the Weierstraß-Institut für angewandte Analysis and Stochastik (WIAS) in Berlin,
Germany.

Our approach is based on volume averaging techniques due to Voinov and Petrov
[4]. These were studied in detail in a diploma thesis of Rydzewski [2]. In our
approach we aim at taking the compressible Euler equations to describe the mi-
croscopic flow in the carrier phase whereas Voinov and Petrov [4, 5, 3] assumed a
potential flow field and made explicit use of the known solution of potential flow
around a sphere. Our results are aimed to be more general than those. But we do
take up the idea to use a potential flow in the farfield in order to determine the
interfacial terms on the spherical surfaces between the phases.

We average by using a type of sliding average over a ball of radius a > 0 in
space. The diameter of the ball d = 2a is the scale at which we want to derive
macroscopic equations for the mixture of a carrier phase C occupying most of the
space and a dispersed phase D consisting of small balls with radii considerably
smaller than a. For the dispersed phase we make strongly simplified homogeneity
assumptions in the balls. This averaging is a specific case of volume averaging
as described in Drew and Passman [1]. The treatment of the dispersed phase is
considerably simplified. Transport theorems for averaged quantities of each phase
are derived via the Reynolds transport theorem for the continuous phase and a
distributional calculus for the disperse phase. Also quantities conserved at the
microscopic level remain conserved at the macroscopic level. The closure of the
macroscopic system while considering phase transition is still under discussion.

For the latter purpose we are studying the case of one spherical bubble cen-
tered at the origin. For this we have derived a system of three ordinary differential
equations to describe the mass and volume change of the bubble due to the phase
transition. Without the mass transfer term this system can be reduced to a ver-
sion of the well known Rayleigh-Plesset equation. The connection to extended
Rayleigh-Plesset theories with phase change is still under investigation. Further,
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the system is being tested numerically and compared to experimental data. A next
step will be to incorporate these microscopic results into the averaged macroscopic
equations.
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