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Introduction by the Organisers

Time series with nonstationarities can be found in a variety of applications from
economics to engineering to biological and medical sciences to geosciences. During
the past 20 years, much effort in investigating nonstationary time series has been
focused on models with slowly changing structure. Such examples include autore-
gressive processes with slowly changing parameters and, more generally, locally
stationary processes with a time-dependent spectrum. Research on these models
has led to considerable insight into the structure of stochastic processes as well
as parametric and nonparametric statistical methods. In particular, the fact that
time series data are no longer assumed to be identically distributed has resulted
in some challenging and interesting statistical problems.

Typically locally stationary models are not well suited to cover the situation
in which a time series may experience a sudden change in its dynamics. That is,
there may be changes in the mean, variance, dependence structure, or some other
feature that occur at random times. Often it is reasonable to assume that the time
series is stationary between these changepoints. This assumption is tacitly made in
the applications of classical changepoint analysis techniques to stochastic processes



558 Oberwolfach Report 12/2008

of dependent data which have been proposed recently. It also forms the basis for
segmentation techniques which partition the time axis such that the data in each
subinterval may be modeled by a stationary process. Another approach explicitly
takes the piecewise stationarity into account in the modeling step. There, the sud-
den changes in the dynamic structure of the data-generating process are controlled
by a hidden Markov chain with finitely many states resulting in hidden Markov
models, or, more generally, in Markov switching models. Such models are becom-
ing increasingly popular in the analysis of economic, environmental and other data.

Some progress has been recently made in the theory regarding the stochastic
structure of such piecewise stationary time series models as well as regarding the
properties of parametric and nonparametric statistical procedures for estimating
the system characteristics, of estimating locations of changepoints and of recon-
structing the unobservable state process, i.e. of finding an appropriate segmenta-
tion of the data. Much of this work also requires the development of algorithms
that are numerical feasible for carrying out these procedures. Nevertheless, there
are still many open questions, and one of the main goals of the workshop beyond
the exchange of current results between different statistical communitites working
on those problems, was to join forces to discuss ideas on how to attack various
open problems and to investigate the relations between different approaches.

A combination of review talks as well as presentations of recent progress in
theory and of challenging applications formed the basis for the exchange of ideas.
Altogether, there were 16 talks which invariably were accompanied by a very lively
discussion. The presented results and the raised questions served as inspiration
for future research and as stimulation for joint projects. An open problem ses-
sion also contributed to the fruitful communication between the different research
communities. At the end of the conference, the participants decided to continue
the efforts started at the workshop and to further communication by creating a
website which serves as a platform for researchers working on time series with
change points.
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Abstracts

Detecting changes in the mean of functional observations

Horváth, Lajos

(joint work with István Berkes, Robertas Gabrys and Piotr Kokoszka)

A main tool of FDA is the Principal component analysis (PCA). It represents
the functional observations Xi(t), t ∈ T, i = 1, 2, . . . , n, in the form Xi(t) = µ(t) +
∑

1≤ℓ<∞ ηi,ℓφℓ(t), where µ is the mean, φℓ are the eigenfunctions of the covariance
operator, and the ηi,ℓ are the scores. The set T can be interpreted as a time or a
spatial domain, the methodology we develop requires merely that it be a compact
subset of a Euclidean space. To perform the functional PCA, the functional mean
µ(t), approximated by sample mean of the Xi(t), is first be subtracted from the
data. The first principal component φ1(t) is then interpreted as the main pattern of
deviation of the observations from the mean µ(t), or equivalently, as the direction
in a function space of the largest variability away From the mean function. The
subsequent eigenfunction define analogous directions orthogonal to the previous
eigenfunctions. This interpretation and inferential procedures based on it assume
that that the mean function µ(t) is the same for all values of i. If, in fact, the mean
changes at some index(es) i, the results of PCA are confounded by the change(s).
Issues of this type are most likely to emerge if the data are collected sequentially
over time. Application we have in mind abound in climatology, environmental
science and economics; detecting and locating changes in mean can be interpreted,
for example, as climate shifts, a baseline change in a pollution level, or a shift in
a long–term rate of growth.

It is thus useful to develop a methodology for the detection of changes in the
mean of functional observations that is both easy to apply and justified by an
clear large sample argument. We propose a significance test for testing the null
hypothesis of a constant functional mean against the alternative of a changing
mean. We also show how to locate the change points if the null hypothesis is
rejected. Our methodology is readily implemented in the R package fda. The
null distribution of the test statistic is asymptotically pivotal with a well-known
asymptotic distribution going back to the work of Kiefer [5].
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Clinical Monitoring

Roland Fried

(joint work with Ursula Gather, Karen Schettlinger, Michael Imhoff)

Modern technical devices allow to collect and store many variables describing
the state of a patient with high sampling frequencies. In intensive care, hemo-
dynamic variables like several blood pressures, heart rate, temperature and puls-
oximetry are measured at least once a minute. These data provide essential infor-
mation on the current state of the patient. The goal is to extract and analyze this
information in real time to provide adequate bedside decision support. For this
we need automatic procedures which reliably detect sudden level shifts and onsets
of trends in the time series with only short delays, resisting the many and often
large measurement artifacts.

Our approach uses local parametric modeling and robust filtering techniques.
Based on comparisons of robust regression techniques, Davies, Fried, and Gather [2]
and Gather, Schettlinger, and Fried [9] propose application of Siegel’s [14] repeated
median to a moving time window for robust approximation of a local linear trend,
both in delayed and in full online analysis. Double window (Bernholt et al. [1])
and repeated median hybrid filters (Fried, Bernholt, and Gather [4]) improve the
preservation of local extremes, trend changes and sudden shifts in delayed analysis.
Gather and Fried [8] suggest a simple and robust rule for the data-adaptive choice
of the window width, which is modified by Schettlinger, Fried, and Gather [13]
for full online use without any time delay. Weighted repeated medians (Fried,
Einbeck, and Gather [5]) achieve further improvements by weighting the observa-
tions according to their temporal distance to the target point at which we want
to estimate the signal value.

Based on a reliable estimate of the signal trend, tests can be performed to detect
sudden changes like level shifts with only short delays. Several classes of tests are
investigated by Fried [3] under different assumptions on the error distribution. It
turns out that comparison of local medians, obtained from different time windows
and standardized by a highly robust and quite efficient scale estimator like Qn

(Rousseeuw and Croux [12]) result in good power for detection of level shifts
within locally constant signals even in the presence of outliers. As opposed to
this, modified rank tests (Fried and Gather [7]), which also use a local estimate of
the variability, are to be preferred for shift detection within local linear trends if
we can use data from an estimation period which is not very short. Both types of
tests are applicable to data with time-varying volatility when using local estimates
of the variability as discussed in Nunkesser et al. [11].

A further challenge is to adjust the methods for possible autocorrelations in
the data. The basic filtering procedures perform well in the presence of auto-
correlations (Fried and Gather [6]), but large positive autocorrelations result in
monotone sequences which can easily be confused with trends or shifts within
short time windows. A large data study provides evidence that it is sufficient to
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use low order autoregressive models for incorporating autocorrelations into test
procedures (Imhoff et al. [10]).
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CHARME Models for Nonparametric Nonlinear Regression and Time
Series Analysis

Joseph Tadjuidje Kamgaing

(joint work with J. Franke, W.K. Li and J.-P. Stockis)

We consider conditional heteroskedastic mixture of experts (CHARME) models
and present the asymptotic behavior of kernel type estimates of the regression
functions. First, we consider a regression setting which may be represented as a
mixture of K different nonparametric regression models.

We assume that X1, . . . , XN ∈ R are i.i.d. random variables and set

(1) Yt =

K
∑

k=1

St,k{mk(Xt) + σkǫt} with Stk =

{

1 for Qt = k,

0 otherwise,
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where ǫ1, . . . , ǫN ∈ R are i.i.d. real-valued random variables with mean 0 and
variance 1, m1(x), . . . ,mK(x), σ1, . . . , σK are unknown regression functions and
residual variances for the K regression models. Moreover, Qt is assumed to be a
stationary α-mixing hidden Markov chain with finite state space {1, . . . ,K} and
stationary distribution π = (π1, . . . , πK). Qt is is duplicated via theK-dimensional
vector process St = (St1, . . . , StK), for which at each time instant one and only
entry is different from 0.

Given this assumption, this formulation implies a classification problem where
one has K different subsets of data and for each of them the regression functions
and the variance of the residuals need to be estimated, i.e.,

(2) Yt = mk(xt) + σkǫt t ∈ Tk = {n ≤ N ; Snk = 1}, k = 1, . . . ,K.

In the homogeneous situation, where there is only one state (K = 1), kernel
estimates and, more generally, local polynomial estimates, have been successfully
applied for estimating the regression functions, see e.g. Fan and Gijbels [1].

Here, we extend the idea introduced by Wong and Li [2] for parametric mix-
ture models to the following Nadaraya-Watson type estimates for the regression
functions mk, k = 1, . . . ,K, allowing for different bandwidth hk, k = 1, . . . ,K,

m̂0
k(x, hk) =

∑N
t=1Khk

(x− xt) YtStk
∑N

t=1Khk
(x− xt)Stk

.(3)

As the Stk are either 1 or 0, the vector of function estimates

(m̂0
1(x, h1), . . . , m̂

0
K(x, hK))T

solves the weighted least-squares problem

N
∑

t=1

K
∑

k=1

(Yt − µk)2StkKhk
(x − xt) = min

µ1,...,µK∈R

!

Allowing for different bandwidth is motivated by the fact the amount of the data

available for a given subset Tk, Nk =
∑N

t=1 Stk is a random variable. However,
Nk can be approximated asymptotically as a function of the overall sample data
size N and the stationary distribution of the hidden process π, using a Bernstein
inequality for α-mixing processes.

Given the above considerations we derive under mild conditions the consistency
of kernel type estimates of the regression functions for all k = 1, . . . ,K

m̂0
1(x, hk)

i.p.→ mk(x).

For practical applications, we follow the idea in Wong and Li [2] and use a non-
parametric version of their EM algorithm to numerically calculate kernel estimates
of the regressions functions mk, the residual variances σ2

k and the stationary dis-
tribution πk, k = 1, . . . ,K.

The i.i.d. assumption fits well some applications, like exploring EEG data of
patient suffering from particular heart diseases.
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In the more general time series setting, we consider

Xt =

K
∑

k=1

St,k(mk(Xt−1) + σk(Xt−1)ǫt) with St,k =

{

1 for Qt = k,

0 otherwise,
(4)

where {ǫt} are i.i.d. real random variables with mean 0 and variance 1, indepen-
dent of Xt−1 = (Xt−1, · · · , Xt−p).We discuss the probabilistic behavior as well as
statistical properties of such models where details can be found in Stockis , Tad-
juidje and Franke [3], [4]. In particular, we investigate the geometric ergodicity of
the model in (4) and the identifiability in the case that the nonparametric trend
functions mk, k = 1, . . . ,K are approximated by outputs of suitable single layer
feedforward neural networks, i.e. by functions of the form

(5) fk(x,H) = ν0k +

H
∑

h=1

νhkψ(< αhk, x > +bhk), k = 1, · · · ,K,

where, H is a given positive integer and ψ is the logistic function. We propose to
estimate mk, σ

2
k by fitting functions of the form fk(x,H) to them, and we describe

a corresponding estimation algorithm as well as an Viterbi-type algorithm for
estimating the change points, i.e. the time instants where the hidden Markov
chain switches from one value to another.

Consistency of the parameter estimates is shown in Tadjuidje [5]. We illustrate
the usefulness of this approach for asset management and risk analysis by an
application to some financial data.
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Some Theory Behind AutoPARM (Automatic Piecwise AR Modeling)

Richard A. Davis

(joint work with Stacey Hancock and Yi-Ching Yao)

Much of the recent interest in time series modeling has focused on data from
financial markets, from communications channels, from speech recognition and
from engineering applications, where the need for non-Gaussian, non-linear, and
nonstationary models is clear. With faster computation and new estimation algo-
rithms, it is now possible to make significant in-roads on modeling more complex-
phenomena. In this talk, we describe some theory associated with a structural
break detection procedure called Automatic Piecewise AutoRegressive Modeling
(AutoPARM) developed by Davis, Lee, and Rodriguez-Yam [1]. The novelty of
AutoPARM is to combine the use of genetic algorithms with the principle of min-
imum description length (MDL), an idea developed by Rissanen in the 1980s, to
find ”optimal” models over a potentially large class of models. If the true model
consists of piecewise autoregressions, then we show that AutoPARM produces con-
sistent estimation of the breakpoints and in some cases, consistent estimation of
the number of breakpoints.

In order to describe the structural break modeling setup, let τj denote the break
point between the j-th and (j + 1)-th segments, where j = 1, . . . ,m and m is the
number of breakpoints. Setting τ0 = 1 and τm+1 = n + 1, the j-th piece of the
series is modeled as an AR process

Yt = Xt,j , τj−1 ≤ t < τj ,(1)

where {Xt,j} is the AR(pj) process

Xt,j = γj + φj1Xt−1,j + . . .+ φj,pj
Xt−pj ,j + σjεt,

ψj := (γj , φj1, . . . , φj,pj
, σ2

j ) is the parameter vector corresponding to this AR(pj)

process, and the noise sequence {εt} is iid with mean 0 and variance 1. Given
an observed series {yi}n

i=1, the objective is to obtain a “best” fitting model from
this class of piecewise AR processes. This is equivalent to finding the “best”
combination of the number of pieces m+ 1, the break point locations τ1, . . . , τm,
and the orders p1, . . . , pm+1 of the segmented autoregressions.

The above problem of finding a “best” combination of m, τj ’s and pj ’s can be
treated as a statistical model selection problem, in which candidate models may
have different numbers of parameters. To solve this selection problem we apply
the minimum description length (MDL) principle of Rissanen [5] to define a best
fitting model (see Hansen and Yu [2] for a comprehensive review of MDL). The
basic idea behind the MDL principle is that the best fitting model is defined as the
one that produces maximum compression of the data. Successes in applying MDL
to a variety of practical problems have been widely reported in the literature; see,
for example, Lee [4] and Hansen and Yu [3].
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For the piecewise AR model, the MDL objective function reduces to

MDL(m, τ1, . . . , τm, p1, . . . , pm+1) = logm+ (m+ 1) logn+

m+1
∑

j=1

log pj

+
m+1
∑

j=1

pj + 2

2
lognj +

m+1
∑

j=1

nj log σ̂2
j ,

where nj is the length of the j-th segment and σ̂2
j is the estimated one-step pre-

diction error over the j-th segment. To establish consistency, we assume that
the true values τ0

j of the change point locations take the form τ0
j = [λ0

jn], where

ǫ < λ0
1 < · · · < λ0

m < 1− ǫ for numbers λ0
j ∈ (0, 1), which have minimal separation

that exceeds ǫ > 0. It was shown in Davis, et al. [1], that if the number of change
points m is known, then with probability one,

λ̂j → λ0
j ,

where λ = (λ̂1, . . . , λ̂m)′ = argmin
λ

minp1,...,pm+1
MDL(m,nλ, p1, . . . , pm+1)

The assumption that the true number of changepoints is known is certainly a
limitation of this result. It remains to show that the estimate m̂ of m found by
also minimizing MDL with respect to m is consistent. It is easy to show that
with probability one, m̂ ≥ m for all n large. That is, asymptotically, one cannot
underestimate m. Partial results on this consistency problem can be established.
For example, if there are no change points under the true model, i.e., m = 0, then
m̂→ 0 a.s. In this case, the main idea of the proof , which draws on an application
of the law of the iterated logarithm, is to show that

K+1
∑

k=1

(λ̂k − λ̂k−1) log σ̂2
k − log σ̂2 = O((ln lnn)/n) ,

where σ̂2 is the estimate of σ2 based on fitting one autoregression to the full data
set. In some cases, the extension to the general case when m > 0 can be reduced
to this instance since if we over estimate m, then there must be a homogeneous
segment of the data which is subdivided into at least two pieces.
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Local change point analysis with applications to volatility modeling

Vladimir Spokoiny

Since the seminal papers of Engle [6] and Bollerslev [1], modeling the dynamic
features of the variance of financial time series has become one of the most active
fields of research in econometrics. The aim of the present paper is to develop
a new estimation approach based on the local parametric modeling and applies
the idea of pointwise adaptive choice of the interval of homogeneity. Similarly
to Grama and Spokoiny [11] the choice of such an interval is done by a local
multiscale change point analysis. This means that for every historical time point
we test on a structural change at this point for the corresponding scale. The largest
interval does not containing any change is used for estimation of the parameters of
the return distribution. This approach has a number of important advantages of
being easy to implement and very sensitive to the structural changes in the return
process. We carefully address the question of selecting the tuning parameters of the
procedure which is extremely important for practical applications. The proposed
“propagation” approach suggests to tune the parameters under the simple time
homogeneous situation to provide the prescribed performance of the procedure.

The change point detection problem for financial time series was considered in
Mikosch and Starica [16] but they focused on asymptotical properties of the test
if only one change point is present. Kitagawa [13] applied non-Gaussian random
walk modeling with heavy tails as the prior for the piecewise constant mean for
one-step-ahead prediction of nonstationary time series. However, the mentioned
modeling approaches require some essential amount of prior information about
the frequency of change points and their size. The new local change point (LCP)
approach proposed in this article does not assume smooth or piecewise constant
structure of the underlying process and does not require any prior information.
That allows to proceed in a unified way with smoothly varying coefficient models
and change point models. The approach is quite general and can be applied to
many different problems. Grama and Spokoiny [11] studied the problem of Pareto
tail estimation, Giacomini et al. [10] considered time varying copulae estimation,
Čı́žek et al. [20] applied it to compare the performance of global and time varying
ARCH and GARCH specifications. A comprehensive study of the general LCP
procedure is to be given in the forthcoming monograph Spokoiny [19].

The theoretical study focuses on two important features of the proposed pro-
cedure: stability in the homogeneous situation and sensitivity to spontaneous
changes of the model parameter(s). We particularly show that the procedure pro-
vides the optimal sensitivity to changes for the prescribed “false alarm” probability.
Note that the classical asymptotic methods for stationary time series do not apply
in the considered nonstationary situation with possibly small samples requiring to
develop new approaches and tools. Our way of analysis is based on the so called
“small modeling bias” condition which generalizes the famous bias-variance trade-
off. The main result claims that the procedure delivers the estimation accuracy
corresponding to the largest historical interval of homogeneity as if this interval
were known.
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Statistical inference for locally stationary processes

Rainer Dahlhaus

We consider inference for locally stationary processes (cf. Dahlhaus [1, 2]), that
is for processes Xt,n (t = 1, . . . , n) which have a slowly-varying moving average
representation

(1) Xt,n =
∞
∑

j=−∞

at,n(j) εt−j

where the at,n(j) can be approximated by a( t
n , j) with a function a(u, j) of bounded

variation in u. The εt are assumed to be independent and identically distributed
with Eεt ≡ 0, Eε2t ≡ 1 and κ4 := cum4(εt). Details on the assumptions can be
found in Dahlhaus [3]. The function

f(u, λ) =
1

2π
|A(u, λ)|2

with A(u, λ) =
∑∞

j=−∞ a(u, j) exp(−iλj) is the time varying spectral density.
The goal now is to make statistical inference about the process - for example

to estimate the coefficient functions of a time varying AR-process

Xt,n + a(
t

n
)Xt−1,n = σ(

t

n
) ǫt

which can be represented in the form (1).
For such problems the so-called empirical spectral measure plays a major role.

It is an estimate of

F (φ) =

∫ 1

0

∫ π

−π

φ(u, λ) f(u, λ) dλ du

defined by

Fn(φ) =
1

n

n
∑

t=1

∫ π

−π

φ(
t

n
, λ)Jn(

t

n
, λ) dλ

with the pre-periodogram

Jn

( t

n
, λ
)

=
1

2π

∑

k:1≤[t+1/2±k/2]≤n

X[t+1/2+k/2],nX[t+1/2−k/2],n exp(−iλk).

Many statistics occurring in the analysis of locally stationary time series are of
the form Fn(φ):

1. φ(u, λ) = Kn(u0−u) cos(λk) local covariance estimator

2. φ(u, λ) = Kn(u0−u)Kn(λ0−λ) spectral density estimator

3. φ(u, λ) = Kn(u0−u)∇fθ(u, λ)
−1 local Whittle estimator

4. φ(u, λ) ≈ Kn(u0−u)∇fθ(u, λ)
−1 local least squares

5. φ(u, λ) = ∇fθ(u, λ)
−1 parametric Whittle estimator
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6. φ(u, λ) =
(

I[0,u0](u)−u0

)

I[0,λ0](λ) testing stationarity

7. φ(u, λ) = cos(λk) stationary covariance

8. φ(u, λ) = ∇fθ(λ)
−1 stationary Whittle estimator

Examples 5,6,7,8 can be treated with the results in Dahlhaus and Polonik [5]
where a central limit theorem and an exponential inequality have been proved.
A more complex example is nonparametric maximum likelihood estimation under
shape restrictions (Dahlhaus and Polonik [4]). The asymptotic properties of the
estimates in examples 1,2,3,4 follow from the following central limit theorem.
Suppose φn1, . . . , φnd are index functions. Let

ρ2(φ) :=
(

∫ 1

0

∫ π

−π

φ(u, λ)2 dλ du
)1/2

and

cE(φj , φk) := 2π

∫ 1

0

∫ π

−π

φj(u, λ)
[

φk(u, λ) + φk(u,−λ)
]

f2(u, λ) dλ du

+ κ4

∫ 1

0

h4
n(u)

(

∫ π

−π

φj(u, λ1)f(u, λ1)dλ1

)(

∫ π

−π

φk(u, λ2)f(u, λ2)dλ2

)

du.

Theorem If the limit

lim
n→∞

cE(φnj , φnk)

ρ2(φnj) ρ2(φnk)
= Σj,k

exists then
( √

n

ρ2(φnj)

(

Fn(φnj) − F (φnj)
)

)

j=1,...,d

→ N (0,Σ).

The proof and details about the assumptions can be found in Dahlhaus [3].
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Sequential procedures for detection of changes

Marie Hušková

(joint work with A. Aue, I. Berkes, L. Horváth, P. Kokoszka, A. Koubková, J.
Steinebach)

The talk concerns procedures for detection of a change in linear models and times
series models when data arrives sequentially. Moreover, it is assumed that training
(historical) data with no change are available. Such problems occur in a number
of applications, e.g., in economics and finance, geophysical sciences, statistical
quality control, medical care.

Several classes of sequential test procedures for detection of a change are developed
and their asymptotic properties are studied. Particularly, the test procedure is
determined by a sequence of statistics say {Q(m + k)}k, boundary function and
tuning parameter. Here Q(m+k) is based on the first m+k observations and m is
the number of historical data with no change. The boundary function is chosen in
a way that the change is detected early. The tuning constant is chosen in such that
the probability of false alarm is approximately is smaller than prechosen number
(in terms of hypothesis testing it means level of the test procedure) and that if
the change occurs it should be detected with probability one. To get a suitable
approximation for the tuning constant one has to study asymptotic distribution of
related stopping rule. It leads to a study of extremes of certain Gaussian processes.

Theoretical (asymptotic) properties of the test procedures are studied. Various
modifications are discussed Also theoretical results are checked on a simulation
study.
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Resampling methods in change-point analysis

Claudia Kirch

In change-point analysis critical values for testing procedures are usually obtained
by distributional asymptotics. However, convergence is often rather slow. Using
resampling methods one can often obtain better approximations for small sample
sizes or non-normal data.
Recently permutation methods have been applied to a variety of change-point
models. These models include location models (diverse sum- and maximum-type
statistics as well as certain moving sum procedures which are specifically suitable
for the detection of multiple changes), general U-statistics as well linear regression
and auto-regression models. The relevant results and further references can be
found in the recent survey paper by Hušková [1].

All of these results deal with independent errors. Some first results for de-
pendent data have been derived by Kirch and Steinebach [5] for error sequences
fulfilling strong invariance principles. The statistic they are using is based on in-
crements of growing intervals which makes blocking arguments unnecessary since
they are in a sense already included by the model.

Kirch [3] proves the validity of block resampling methods in a classical loca-
tion model where the errors are no longer independent but rather form a linear
process. In this situation resampling methods have some additional advantages in
comparison with the asymptotic methods. First of all the small sample behavior
of the statistics does depend rather strongly on the underlying dependency struc-
ture, whereas the asymptotic distribution is independent of it. Secondly a good
nonparametric estimator for the asymptotic variance correction term is difficult to
get but not needed for the proposed resampling methods.
In a similar fashion Hušková and Kirch [2] use block resampling techniques to ob-
tain asymptotic confidence intervals for the change-point, in a forthcoming work
the results will be improved using studentizing.

Recently sequential change-point analysis has become more and more popular.
In this setup, one gets the observations ’online’, i.e. sequentially one-by-one, after
having observed a historic data set without change. For each new observation one
checks whether one can still assume the null hypothesis. This is becoming more
and more important in such diverse fields as medicine, material science or finance.
In such a setting it is not clear how one should best do the bootstrap. The simplest
method certainly is to just use the historic sample for the bootstrap. This is easy
and computationally fast but since one draws a much larger (possibly in theory
infinite) sample from a relatively small set of observations, this is not optimal.
So the second choice essentially is to use in each step a different critical values
obtained from a bootstrap based on all observations available up to this point. In
fact such a procedure yields much better results as some simulations show, but
it is computationally very expensive. This is why we develop a third procedure
which exploits the idea that we already have generated bootstrap samples and
that only the old ones are not good enough anymore whereas the newer ones are
still reasonably good. In a simulation study we see that this procedure is in fact
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much faster than the second one and yields almost identical results. The theoretic
details as well as a simulation study can be found in Kirch [4].
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Multiple change point detection by binary segmentation for time series

Rainer von Sachs

(joint work with Piotr Fryzlewicz)

The method of binary segmentation has been introduced by Sen and Srivas-
tava [6], with theory provided by Vostrikova [8], for testing on the change of the
mean of a series of, say N , i.i.d. normal random variables Yt . In a nutshell,

let Sk =
∑k

t=1 Yt, and define a (CUSUM-like) statistic Zt = (t (1 − t/N))−1/2 ·
(t SN/N − St) as well as an appropriate threshold bN (critical value under the
null of no change). For any k in a given segment [k1 + 1, k2] of [0, N ] calculate
Zk = Zk

k1,k2
. If maxk1<k<k2

|Zk| > bN decide for a change point at any position k

such that |Zk| = maxk1<t<k2
|Zt|.

While Venkatraman [7] shows that, with bN = N3/8, under a model of an
asymptoticaly growing number of change points, both the number and the loca-
tion of the change points can be estimated consistently, we are concerned with
generalisations of his set-up, using a tree-structured variant of proceeding down
on shorter and shorter segments of [0, N ] as long as a change point is found.

The aforementioned method for detection of a ”signal change” embedded in (addi-
tive and independent) noise is akin to estimating a piecewise constant signal (with
an asymptotically growing number of constant pieces). In this project we want
to apply this methodology to multiplicative models, where we face the problem of
heteroscedasticity, and in particular to time series models of correlated data, such
as: autoregression with a time-change in the autoregressive parameters (see be-
low), time-varying ARCH-processes (Fryzlewicz and Subba Rao [4]) and models in
the frequency domain (time-varying spectral representations). Hereby the change
is assumed to occur in the variance-covariance structure of the data, and not in
its mean. Hence we will need to adapt the method to detection of changes in the
mean of squared data.
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The ”new” key ingredients of this project are the use of a fast and non-dyadic
tree algorithm based on the ”Unbalanced Haar” (UH) transform (see, e.g., De-
louille, Franke and von Sachs [1]), with control of the distributional properties
in the coefficient domain of the transform. Hereby we borrow strength from ex-
isting results on denoising by non-linear wavelet thresholding in the context of
nonparametric function estimation: Fryzlewicz [2] shows that by the use of UH, a
generalised Haar transform allowing to perfectly encode the position of jumps in
a piecewise constant function at arbitrary non-dyadic grid points of the unit in-
terval of the regression design, one can denoise the underlying signal as efficiently
as with classical wavelet thresholding. Moreover, interpreting as a hypothesis test
the comparison of each wavelet (UH) coefficient with a threshold (proportional to
√

2 log(N)) based on asymptotic normality, one can also extract from the method
a sequence of multiple hypothesis tests on the significance of the coefficient for
the presence of a jump (change point). It is in this sense that UH can be directly
interpreted as hierarchical (multiscale) binary segmentation.

In preliminary experiments we found out that the thresholds used in the UH
approach work better than the aforementioned thresholds bN as the latter ones turn
out to be too conservative in practice (in particular if smaller though significant
jumps are ”masked” by some bigger ones).

A concrete idea for an algorithm taylored to the problem of detecting changes
in a piecewise stationary (zero mean) autoregressive (AR) process is as follows.
(1) ”Estimate” its parameters as if the AR process were stationary (select them
by a grid search such that they ”best expose” change points in the residuals):
we get a sequence of residuals which are stationary if and only if the AR process
is stationary. (2) Square the residuals, take their mean: AR-parameter changes
correspond to change points in their mean. (3) Apply binary segmentation and
use (less conservative) thresholds taylored to approximately Gaussian data after
studentizing and ”gaussianizing” the data by the UH followed by the ”Unbalanced
Haar Fisz” (UHF) transform (successfully applied also in Fryzlewicz, Nason and
von Sachs [3]): take the UH transform of the data, divide each coefficients by an
estimate of its own standard deviation (the ”Fisz” transform, in our case just the
local mean of the data incorporated in the UH ”detail” coefficient) and take the
inverse UH transform. (Note that in our multiplicative model set-up, the local
standard deviation is proportional to the local mean.) This ”local studentizing”
(as it operates on genuinely local transforms) renders the data more homoscedastic
and pulls their distribution close to Gaussian.

We believe that our new approach has the following advantages over classical
binary segmentation (or CUSUM-based approaches such as MOSUM): the method
is truly multiscale as we grow down the whole UH tree before thresholding, hence
the risk to ignore small jumps in the presence of dominating ones is reduced; the
method is fast (as based on existing fast code coming from signal estimation and

denoising); an overall ”Gaussian” threshold proportional to
√

2 log(N) applied to
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(automatically correctly scaled) coefficients replaces the critical values under the
null hypothesis of no change point on each scale.

Finally our methodology should give an interesting alternative to existing dyadic
time series segmentation procedures (such as the SLEX approach of Ombao, Raz
and von Sachs [5]).
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Exploiting the duality between runs and change points

John A. D. Aston

(joint work with Donald E. K. Martin and Michael Jyh-Ying Peng)

A method for calculating exact change point and feature distributions for changing
regimes in Markov switching models is proposed. Markov switching models are a
rich class of models which generalise Hidden Markov Models (HMMs) by incorpo-
rating greater dependence structure both within the data and between the data
and the underlying hidden switching states (Cappe [4], Frühwirth-Schnatter [7]).
The change point and other related distributions given here are generated from
an algorithm to calculate the exact marginal distributions of change point loca-
tions in finite sample data, in contrast to Markov Chain Monte Carlo methods
of sampling the underlying states to characterise the distributions as in Chib [5].
The proposed algorithm is derived from the fact that change points and runs in
the underlying state sequence, such as runs of the type defined in Balakrishnan
and Koutras [2], are intrinsically linked. Through the ideas of finite Markov chain
imbedding (Fu and Koutras [8]) applied to HMMs (Aston and Martin [1]) and
Markov switching models, it is possible to efficiently determine waiting time dis-
tributions of runs in the underlying state sequence. Parameter estimation effects
can also be incorporated using suitable priors on the parameters in ways such as
those of Fearnhead and Liu [6]. Distributions for many regime features can then be
calculated from these waiting times, including the start and end of a regime period
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(the change points), the number of change points, and the length of the longest
regime period between change points. These distributions help quantify many of
the features and implied change points routinely mentioned by practitioners when
discussing Markov switching models. For example, Markov switching models have
been used to assess recessions (Hamilton [9]) and changes in financial volatility
(Cai [3], Hamilton and Susmel [10]), and the proposed distributions allow for the
quantification of uncertainty in the estimates of the regimes given by the models.
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Autocovariance Structure of Markov-Switching ARMA and GARCH
Processes

Christian Francq

(joint work with Jean-Michel Zakoian)

The Markov-Switching Models (MSM) introduced by Hamilton [16] have become
increasingly popular in econometrics and time series (see Cai [2], Dueker [4], Gray
[14], Hamilton and Lin [17], Hamilton and Susmel [18], Kim [20], Klaassen [21] for
relevant applications of MSM in finance and econometrics and Lange and Rahbek
[23] for a recent review). A MSM is a model in which the coefficient varies accord-
ing to the state of a non observed Markov chain. In the econometric literature,
each state of the Markov chain, usually referred to as the regime, may correspond
to a state of the economy. The dynamics of each regime can be specified by, for in-
stance, standard ARMA or GARCH models. The changes in regime can be smooth
or abrupt, and they can occur frequently or occasionally depending on the transi-
tion probabilities of the chain, which makes the model very flexible. An interesting
feature of MSM’s is that, at the same time, they can be stationary and also exhibit
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sudden changes in the dynamics. Moreover, the process can be globally stationar-
ity even when some regimes are explosive (see e.g. Yang [26], Francq and Zakoian
[10]), but the stationarity within each regime is neither sufficient nor necessary
to obtain global stationarity (see Francq and Zakoian [9]). For the MS-GARCH
recently introduced in Haas, Mittnik and Paolella [15], the stationarity conditions
are studied by Liu [24]. It has been shown that the L2-structures of powers of
several classes of MSM are those of ARMA models, with non-independent linear
innovations (see Francq and Zakoian [11, 12]). Concerning the estimation of the
parameters, the direct application of maximum-likelihood method is only possible
when the regimes are markovian, due to a problem of path dependence (see e.g.
Klaassen [21]). Condition ensuring the consistency of the maximum-likelihood es-
timator can be found in Francq and Zakoian [6, 7, 8], and conditions for asymptotic
normality are given in Douc, Moulines, and Ryden [3]. When the regimes are not
markovian, simulated methods, such as MCMC, must be employed to approximate
the likelihood (see Bauwens, Preminger, Rombouts [1] and the references therein).
In Francq and Zakoian [13], an alternative method is proposed for estimating MS-
GARCH, using the above-mentioned ARMA representations of different powers
within the GMM approach of Hansen [19]. Interesting subclasses of MS-GARCH
models, namely the standard GARCH, the independent-switching GARCH stud-
ied in Fong, Li, and An [5] and Wong and Li [25], the Hidden-Markov Models and
the Markov-switching ARCH, can also be discriminated by considering the ARMA
autocovariance structures of several powers.
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On a dynamic mixture GARCH model

W.K. Li

(joint work with Xixin Cheng, Philip L.H. Yu)

After its inception in Engle [1], the GARCH model has been commonly used to
model the conditional variance of many financial data. One problem is raised, how-
ever that, the GARCH model seemed incapable to capture a sudden and dramatic
increase in the volatility of data in a very short period. Gray [2] in his paper, tried
to use GARCH to model some interest rate data, but found that a regime-switching
process fitted interest rate data much better than a single GARCH process. Chen,
So and Gerlach [3] also found that regime-switching GARCH is more suitable than
a single GARCH or ARCH process in modeling the huge volatility change driven
by news arrival in financial markets.

Further, Mikosch and Starica [4] pointed out that fitting a normal GARCH
model to data with structural change would exhibit the integrated GARCH
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(IGARCH) effect, where the sum of the ARCH coefficient and the GARCH coef-
ficient is close to 1. This IGARCH effect is widely showed in stock market data
and other financial market data. In order to explain this IGARCH effect and
capture the characteristic of dramatic volatility change in a short time, two major
approaches have been proposed, the threshold model and the mixture model.

In the direction of mixture model, Schwert [5] proposes a model in which obser-
vations have either a higher volatility or a lower volatility, and this depends on a
hidden variable Zt which follows a two stage Markov process. Wong and Li [6] pro-
pose a similar model but the hidden volatility state variable Zt is linked to other
variables (may be past observations) with a logistic linking function. These ap-
proaches, however, can be regarded as an extension of Tong and Lim [7]’s threshold
autoregressive model. Indeed, threshold time series with the threshold indicator
variable satisfying a Markovian process was first pointed out by Tong and Lim [7]
in their rejoinder to the discussion.

As an attempt to extend the mixture model to cater for conditional heterosce-
dasticity case, Wong and Li [8] proposes a mixture ARCH model with a constant
mixture probability. An early attempt to model changing structure in a time
series is the Markov-switching model. Goldfeld and Quandt [9] began the Markov-
switching model. Hamilton and Susmel [10], and Cai [11] are the first few authors
who propose the Markov-switching ARCH model.

The mixture GARCH model with a classical GARCH specification is a path-
dependent model. Gray [2] proposes a traceable mixture GARCH model, in which
the σ2

t = ω+αe2t−1 +βσ2
t−1 in the GARCH model is replaced by σ2

t = ω+αe2t−1 +

βE(σ2
t−1 | Ft−1), where Ft−1 is the information set up to time t − 1. However,

this modification made the mixture model incapable of capturing the dramatic
changes in volatility in a short period. This is because the expectation of volatility
in the two regimes mingles the volatilities, so that the ‘mingled volatility’ can not
describe the two distinct volatility levels in the mixture data. Haas, Mittnik and
Paolella [12] propose another Markov-switching mixture GARCH model, where
a hidden state variable Zt determines which volatility regime is exhibited in the
observation.

In this paper, we propose a dynamic mixture GARCH model (DMGARCH),
in which the mixture proportion is linked with other variables by means of a
logistic link function. Generally, the link function can be any inverse cumulative
distribution function. Because of its simplicity, we choose the logistic function as
the link function in our model. Section 2 gives a detailed model specification.

Section 3 gives the procedure of parameter estimation with the EM algorithm,
and section 4 discusses the BIC approach in the DMGARCH case.

In section 5, we apply this model to the S&P500 index and the Hang Seng
Index on their daily log-return data. An interesting result from S&P500 and Hang
Seng Index estimation is that the IGARCH effect in the normal GARCH model
seems to be the result of a mixture of a stationary volatility component and a
non-stationary volatility component. We also find that the Value-at-Risk(VaR)
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based on the DMGARCH model performs better than the traditional GARCH
based VaR.
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Unit Roots and Level Shifts

Alexander Aue

(joint work with Lajos Horváth, Marie Hušková and Shiqing Ling)

We study test procedures that detect structural breaks in underlying data se-
quences. In particular, we wish to discriminate between different reasons for these
changes, such as (1) shifting means, (2) random walk behavior, and (3) constant
means but innovations switching from stationary to difference stationary behavior.
Almost all procedures presently available in the literature are simultaneously sen-
sitive to all three types of alternatives (see, for example, Andreau and Spanos [1];
Busetti and Taylor [3]; and Nyblom and Mäkeläinen [4]).

The test statistics under investigation are based on functionals of the partial
sums of observations. These CUSUM–type statistics have limit distributions if the
mean remains constant and the errors satisfy the central limit theorem, but tend
to infinity in the caseany of the alternatives (1), (2) or (3) holds. On removing
the effect of the shifting mean, however, divergence of the test statistics will only
occur under the random walk behavior, which in turn enables statisticians to not
only detect structural breaks but also to specify their causes.
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The results are underlined by a simulation study and an application to returns
of the German stock index DAX.
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Toward Automatic Local Spectral Envelope

David Stoffer

(joint work with Ori Rosen, Sally Wood)

The concept of spectral envelope for the scaling and analysis of categorical time
series in the frequency domain was first introduced in Stoffer et al. [2]. There,
we addressed the basic question of how to efficiently discover periodic components
in categorical time series. Our present focus is on developing a better method
for estimating a local spectral envelope. The initial method we are proposing is
based on fitting local splines. The first step was to develop a method to estimate
a spectral matrix function of a stationary vector process via smoothing splines.
This step was accomplished in Rosen and Stoffer [1].

In many practical problems, time series are realizations of nonstationary random
processes. Consequently, the next is to develop a method for fitting local spectra
for univariate series. These processes can often be modeled as processes with slowly
changing dynamics or as piecewise stationary processes. In these cases, various
approaches to estimating the time varying spectral density have been proposed.
Our approach in this paper is to estimate the log of the Dahlhaus-local spectrum
using a Bayesian mixture of splines. The basic idea of our approach is to first
partition the data into small sections. We then assume that the log spectral density
of the evolutionary process in any given partition is a mixture of individual log
spectra. We use a mixture of smoothing splines model to estimate the evolutionary
log spectrum. The mixture model is fit using Markov chain Monte Carlo techniques
that yield estimates of the log spectra of the individual subsections, as well as
pointwise credible intervals for the unknown log spectrum. We use a reversible
jump step to automatically determine the number of different spectral components.

Our final goal will be to combine all the method to obtain a local spectral
envelope.
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