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Introduction by the Organisers

It was an exciting week at the Forschungsinstitut, with reports of important new
developments, and intense work on a variety of fronts. The atmosphere was warm
and relaxed, almost convivial, and certainly more cooperative than competitive,
although the mutual seriousness of purpose was constantly evident.

Of all the new results announced at the meeting, three stand out for special
mention:

Jerzy Kaczorowski and Alberto Perelli have shown that there is no member
of the Selberg Class with degree in the open interval (1, 2). The Selberg Class
is an attempt to describe, by means of functional equations and Euler products,
those functions for which one feels the Riemann Hypothesis should be true. It is
presumed that eventually it will turn out that the Selberg Class is synonymous
with the set of automorphic L-functions, but we are very far from proving this.
The degree, which relates to the sum of the arguments of the gamma function
factors in the functional equation, is conjectured always to be an integer. The
Riemann zeta function has degree 1, and H.-E. Richert showed that there is no
member with degree< 1. More recently it had been shown that there is no member
with degree in the interval (1, 5/3). This is a central problem, that many people
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have attacked, so the realization of (1, 2) is a remarkable step forward, albeit a
modest advance when compared with the enormous task ahead of us.

The Prouhet–Thue–Morse sequence has been independently discovered three
times, in 1851, 1906, and 1921, respectively. Prouhet related the sequence to
number theory, Thue applied it to combinatorics on words, and Morse to differ-
ential geometry. Let w(n) denote the ‘binary weight of n’, which is to say the
number of 1’s in the binary expansion of n. Thus w(0) = 0, w(2n) = w(n), and
w(2n+1) = w(2n)+1. Put tn = 0 if w(n) is even, and tn = 1 if n is odd. Thus the
word t0t1t2 . . . is 0110100110010110100 . . . . The power series generating function
of (−1)w(n) can be written in closed form:

∞∑

n=0

(−1)w(n)zn =

∞∏

k=0

(
1 − z2k)

(|z| < 1) .

Clearly,
∣∣∑

0≤n≤N (−1)w(n)
∣∣ ≤ 1 for all N ; thus the integers are very equally di-

vided between those for which w(n) is even and those for which w(n) is odd. In
1967, Gelfond (famous for work in transcendence) asked whether w(p) is (asymp-
totically) equally even and odd, as p ranges over primes p ≤ x, x → ∞. The
Prime Number Theorem concerns the leading binary digits of p, and Dirichlet’s
theorem on primes in arithmetic progression relates to the trailing digits. As con-
cerns (−1)w(p), one is dealing simultaneously with all binary digits of p. Many
researchers have worked on this problem without success, including at least one
of the conference organizers. Some years ago a solution was announced in C. R.
Paris, but this was followed neither by a proof nor a retraction. Now at last we
have a solution: Joël Rivat and Christian Mauduit have cleverly seen how to show
that

∑
p≤x(−1)w(p) = o(π(x)) as x→ ∞.

Consider the Pell equation x2 − dy2 = ±1, which relates to the units in the
real quadratic number field Q(

√
d). If d is divisible by a prime p ≡ 3 (mod 4),

then the equation x2 − dy2 = −1 has no solution. If d is a prime number ≡ 1
(mod 4), then x2−dy2 = −1 does have a solution. The number of d ≤ x for which
d is composed entirely of primes p ≡ 1 (mod 4) is ≍ x/

√
log x; thus the case of

d prime is negligible among these discriminants. In a spectacular tour de force,
Etienne Fouvry and Jürgen Klüners have shown that the ‘negative Pell equation’
x2−dy2 = −1 has a solution for a positive proportion of discriminants d composed
entirely of primes ≡ 1 (mod 4).

The advances described above could not have been anticipated, and are at once
surprising and gratifying. And just a few years before, the team of Goldston,
Pintz and Yıldırım excited the world with their proof that pn+1 − pn = o(log pn)
infinitely often. This brings us a little closer to twin primes. Since pn+1 − pn is
log pn on average, it is reasonable to consider the distribution of (pn+1−pn)/ log pn.
We conjecture that this quantity is asymptotically distributed like an exponential
random variable, with density e−x. It would follow that every number in [0,∞]
is a limit point of the numbers (pn+1 − pn)/ log pn. In the 1930’s it was shown
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that +∞ is a limit point, but it was only with the work of GPY that we could
for the first time name a finite real number (namely 0) that is a limit point of
this sequence. The GPY technology has been scrutinized, and has matured, but
the team had their heads together for long hours during the conference, with the
promise of further results.

Other highly active subareas that were represented at the meeting include ad-
ditive combinatorics and the circle method, rational points on varieties, spectral
decompositions for L-functions, sieve methods, and others.

The vast array of activity, the overload of talent, the extreme unpredictability
of advances all make it challenging to select a fruitful mix of participants. On this
occasion we feel that we could not have done better. Several participants, after
the evening problem session, said that it was the best such session that they had
ever experienced at Oberwolfach—more open, frank, and productive.

This meeting is in the tradition of Oberwolfach meeting organized by Theodor
Schneider in the 1960’s and 1970’s that some us remember. We hope to emulate
his vision as best possible in the modern times by taking a broad view and only
the most gifted invitees.
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Hybrid moments of the zeta-function on the critical line . . . . . . . . . . . . . . 705

Matti Jutila
Atkinson’s formula for Hardy’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 708

Jerzy Kaczorowski (joint with Alberto Perelli)
Nonexistence of L-functions of degree 1 < d < 2 . . . . . . . . . . . . . . . . . . . . . 710

Jianya Liu (joint with Peter Sarnak)
Prime or almost-prime solutions to quadratic equations . . . . . . . . . . . . . . 712

Helmut Maier (joint with Ulirike Vorhauer)
Intervals on the critical line, in which the Riemann zeta function assumes
only small values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713

Hugh L. Montgomery
The Combinatorics of moment calculations . . . . . . . . . . . . . . . . . . . . . . . . . 714

Yoichi Motohashi
Complete Spectral Decomposition of the Mean Value of any Automorphic
L-function — A unified approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

Scott T. Parsell
New estimates for multidimensional Weyl sums . . . . . . . . . . . . . . . . . . . . . 718

Alberto Perelli (joint with J.Kaczorowski and G.Molteni)
A converse theorem for Dirichlet L-functions . . . . . . . . . . . . . . . . . . . . . . . 719

János Pintz
Gaps between primes and Goldbach numbers . . . . . . . . . . . . . . . . . . . . . . . . 721

Olivier Ramaré
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Abstracts

Multiplicative Functions in Arithmetic Progressions

Antal Balog

(joint work with Andrew Granville and Kannan Soudararajan)

The problem we are going to discuss in this talk is to determine, for multiplica-
tive functions f with |f(n)| ≤ 1, estimates for the mean values

1

x/q

∑

n≤x
n≡a mod q

f(n). (1)

One can expect a well distribution result in the form
∑

n≤x
n≡a mod q

f(n) ∼ 1

φ(q)

∑

n≤x
(n,q)=1

f(n), (2)

however this does not always reflects the truth. For example, if the so called
Siegel–zeros do exist then the primes are unevenly distributed in certain residue
classes and this irregularity supposedly affects (2) as well. Actually, there is a
much simpler example against (2), namely f(n) being a character mod q. We
develop a theory that handles all cases rather uniformly. We will show that for
any fixed ǫ > 0 there exists a (big) A such that

∣∣∣
∑

n≤x
n≡a mod q

f(n)
∣∣∣ ≤ ǫ

x

q
(3)

for all (a, q) = 1 for all q ≤ x1/A, except possibly those q that are multiples of
some exceptional modulus r. Moreover, if such a modulus r exists then there is
also a primitive character χ1 mod r such that
∑

n≤x
n≡a mod q

f(n) = χ1(a)
∑

n≤x
n≡1 mod q

f(n)+O(ǫ
x

q
) =

χ1(a)

φ(q)

∑

n≤x
(n,q)=1

f(n)χ1(n)+O(ǫ
x

q
)

(4)
whenever (a, q) = 1, r|q, q ≤ x1/A.

The exceptional character χ1, if it exists, is determined by means of the following
distance function.

D2(f, g;x) =
∑

p≤x

1 −ℜf(p)g(p)

p
. (5)

If this distance is small then f(p) is close to g(p) most of the time, and so
f(n) pretends to be g(n) by their multiplicativity. Our main result can be read as
follows; either there is a primitive character χ1 mod r and a real number t such
that f(n) pretends to be χ1(n)nit, in which case both χ1 and t are unique and (4)
holds, or f is unpretentious and (3) holds.
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The proof is based on Halász’s Theorem on the mean value of multiplicative
functions, on the study of the above distance function (5), and on the fact that a
periodic ”almost multiplicative” function is almost a character.

On the Lehmer conjecture

William D. Banks

(joint work with Ahmet M. Güloğlu, C. Wesley Nevans)

Let ϕ(n) be the Euler function, which is defined as usual by

ϕ(n) = n
∏

p |n

(
1 − p−1

)
(n ≥ 1).

In 1932, D. H. Lehmer [3] asked whether there are any composite numbers for
which ϕ(n) | n− 1, and the answer to this question is still unknown.

In a series of papers (see [4, 5, 6]) C. Pomerance considered the problem of
bounding the cardinality of L(x) = L ∩ [1, x], where L is the (possibly empty) set
of composite numbers n such that ϕ(n) | n− 1. In his third paper [6] Pomerance
established the bound

(1) #L(x) ≪ x1/2(log x)3/4

and remarked that

There is still clearly a wide gap between the possibility that L = ∅
and (1), for the latter does not even establish that the members of
L are as scarce as squares!

Refinements of the underlying method of [6] led to subsequent improvements of
the bound (1) by Shan [7], who showed that

#L(x) ≪ x1/2(log x)1/2(log log x)−1/2,

and by Banks and Luca [1], who established the bound

#L(x) ≪ x1/2(log log x)1/2.

In a recent work [2], we have used similar techniques to show that the members
of L are indeed scarcer than squares, i.e., that #L(x) = o(x1/2) as x→ ∞. More
precisely, we have shown the following:

Theorem. For any fixed ǫ > 0 the bound

#L(x) ≪ x1/2

(log x)Θ−ǫ

holds, where Θ = 0.129398 · · · is the least positive solution to the equation

2Θ(logΘ − 1 − log log 2) = − log 2.
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Spectral Decomposition of Shifted Convolution Sums

Valentin Blomer

(joint work with Gergely Harcos)

Given an arithmetic function α : N → C and an integer h ∈ N, it is interesting
to study the shifted convolution Dirichlet series

(1)

∞∑

n=1

α(n)α(n + h)

ns
.

This is more or less equivalent to studying sums like
∑

m−n=h

α(n)α(m)W (m,n)

for sufficiently nice weight functions W . The investigation of such Dirichlet series
may be motivated by several reasons: one can be interested in the underlying
arithmetic problem (think of α = Λ and h = 2). Moreover, shifted convolution
sums arise naturally as off-diagonal terms of the second moment of L-functions.
Finally, the Dirichlet series (1) may have some underlying structue (e.g. a spectral
decomposition) which one would like to exhibit.

As an example, let us look at Hecke eigenvalues λ(n) of some holomorphic cusp
form f ∈ Sk(N,χ). Let

Ph(z, s) :=
∑

γ∈Γ∞\Γ0(N)

ℑ(γz)se(−hℜγz).

This is a weight 0 Poincaré series. Using the Rankin-Selberg unfolding technique,
one derives the integral representation ([17])

(2)
(2π)s+k−1

Γ(s+ k − 1)
〈Ph(., s), yk|f |2〉 =

∑

m−n=h

λ(n)λ(m)(nm)(k−1)/2

(n+m)s+k−1
.

This can now be decomposed with respect to the non-Euclidean Laplacian and
meromorphically continued. There are numerous applications of such a deompo-
sition, see for example [9, 13, 15] to name just a few. But this is not the end of
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the story, and Selberg [17] states: ”We cannot make much use of this function
at present.” Two problems remain: (a) because of the Γ-factor, it is not at all
clear how to derive polynomial growth estimates on vertical lines. This has been
achieved by Good [9] and in a more general context by Sarnak [15]. (b) If the
λ(n) come from an arbitrary irreducible cuspidal representation over GL2 (not
necessarily from the discrete series), this approach breaks down, not only for tech-
nical reasons, but for unavoidable conceptual reasons, see [10] for more details. It
should, however, be noted that these difficulties can often be overcome in practice
by approximate formulae with sufficiently manageable error terms, see in particu-
lar Jutila [11, 12] and Sarnak [16].

Here we proceed differently and obtain a way to obtain an exact spectral de-
composition of the right hand side of (2). Let G = GL+

2 (R) and Γ a congruence
subgroup (for simplicity Γ = SL2(Z)). Then we have a G-equivariant decomposi-
tion of the type L2(Γ\G) =

∫
Vπdπ where on the discrete spectrum the measure dπ

is just the counting measure. Our approach relies on two important ingredients:
inspired by Motohashi [14], we use the Whittaker model

Vπ ∋ φ 7→Wφ =

∫ 1

0

φ

((
. x
0 1

))
e(−x)dx ∈ L2 (R>0, dy/y) .

This is a Hilbert space isomorphism, and the scalar products are related by a pro-
portionality constant that is essentially L(1, ad2π) (for the continuous spectrum,
one may use this as a definition of a natural scalar product on Vπ). Inspired by
Bernstein/Reznikov [2] and Venkatesh [18], we use Sobolev norms on V∞

π which
are an elegant tool to ensure absolute convergence and rapid decay of various se-
ries, provided the relavant vectors and weight functions are sufficiently smooth.
The details are not obvious, but it turns out that without too much technical effort
we can obtain the following result [3]:

Theorem 1. Let k ≥ 60 be any integer, Let h ∈ N, and λ(n) Hecke eigenvalues of
any irreducible cuspidal representation over GL2 of conductor 1. Then there exist
holomorphic functions Fπ (depending on k) such that

∑

m−n=h

λ(n)λ(m)(nm)(k−1)/2

(n+m)s+k−1
= h1/2−s

∫
λπ(h)Fπ(s)dπ

and
∫

|Fπ(s)|dπ ≪ |s|22, 1

2
+ ε ≤ ℜs ≤ 3

2
.

This can be generalized to arbitrary conductor and central character without
much effort, and also to number fields (where other methods are much harder to
implement). In this way one can prove [5]:
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Theorem 2. Let K/Q be a totally real number field of class number 1, π and ir-
reducible cuspidal representation over GL2 and χ a Größencharacter of conductor
q. Then

L(s, π ⊗ χ) ≪π,s (Nq)
1
2− 1

8 (1−2θ)

for ℜs = 1/2, and θ < 1/9 an admissible exponent for the Ramaunjan-Petersson
conjecture.

The class number one restriction can be removed with more effort. Subcon-
vexity for twisted L-functions over number fields was first obtained in an unpub-
lished manuscript of Cogdell, Piatetskii-Shapiro and Sarnak, and very recently by
Venkatesh [18]. Our method is entirely different and gives a stronger exponent
than either of the above mentioned results. This should be compared with the
situation over Q, see [6, 4]. Theorem 2 has a number of further applications:

• bounds for Fourier coefficients of half-integral weight modular forms over
number fields [1];

• the representation of integers by ternary quadratic forms and Hilbert’s
eleventh problem [7];

• equidistribution of a certain family of Heegner points on the modular sur-
face PSL2(O)\Hd. [8].
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Counting rational points on a non-singular del Pezzo surface of
degree 4

Régis de la Bretèche

(joint work with Tim Browning)

A del Pezzo surface of degree 4 can be viewed as the zero locus of a suitable pair
of quadratic forms Q1, Q2 ∈ Z[x1, ..., x5]. In collaboration with Tim Browning,
I began a programme to count rational points of bounded height on these surfaces.
The tools involved come from arithmetical geometry and analytic number theory.

The Manin conjecture [1] predicts precise asymptotic formulae for the growth
rate of the counting function

NU,H(B) := #{x ∈ U(Q) : H(x) ≤ B},
as B → ∞, where H is a height function metrized by a choice of norm ‖ · ‖ on R5,
and U ⊂ X is the Zariski open subset formed by deleting the 16 lines from X .

We shall explain the resolution of this conjecture in the special case that X is
defined by the pair of quadratic forms

Q1(x) := x0x1 − x2x3, Q2(x) := x2
0 + x2

1 + x2
2 − x2

3 − 2x2
4.

It is clear that X is non-singular. It will be convenient to work with the choice of
norm

‖x‖ := max

{√
3|x0|,

√
3|x1|,

√
3|x2|,

√
3|x3|,

√
x2

3 + 2x2
4

}
,

for any x = (x0, . . . , x4) ∈ R5.
Our main result is the following.

Theorem 1. There exists a constant C > 0 such that

NU,H(B) = CB(logB)4
(
1 + o(1)

)
,

as B → ∞.

An easy calculation reveals that Pic (X) ∼= Z5, so that this asympotic formula
is in agreement with Manin’s prediction.

One of the key tools in the proof of Theorem 1 involves the geometry of numbers.
This permits us to prove also an asymptotic formula for

S(X) =
∑

x∈Z2∩XR
τ(L1(x)L2(x)Q(x))

when L1, L2, Q and R satisfy the following hypotheses:

(i) R is an open, bounded and convex region, with a piecewise continuously
differentiable boundary,
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(ii) L1, L2 are two non-proportional binary linear form and Q is binary qua-
dratic form which is irreducible avec Q[x],

(iii) Li(x) > 0 and Q(x) > 0 for all x ∈ R.

With these conditions in mind we have the following auxilliary result.

Theorem 2. Let ε > 0 and L1, L2, Q,R satisfying (i)-(iii). When X ≥ 2, we
have

S(X) =2C′meas(R)X2(logX)3 +O
(
X2(logX)2+ε

)
,(1)

where C′ is an explicit constant that can be defined as an Eulerian product.
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Cubic hypersurfaces with additional structure

T.D. Browning

Let X ⊂ Pn−1 be a cubic hypersurface, given as the zero locus of a cubic
form C ∈ Z[x1, . . . , xn]. A basic goal in number theory is to try and determine
conditions under which the set of rational points X(Q) on X is non-empty. When
C is diagonal it follows from the work of Baker [1] that X has Q-rational points
as soon as n ≥ 7. At the opposite end of the spectrum, when absolutely no
assumptions are made about the shape of C, there is the recent work of Heath-
Brown [5], ensuring that n ≥ 14 variables are enough to secure this fact. It is
natural to try and establish intermediate results in which the existence of rational
points is guaranteed for cubic hypersurfaces in fewer than 14 variables when certain
assumptions are made about the structure of the hypersurface.

Let m ≤ n be a positive integer. We will say that an integral cubic form C in
n variables “splits off an m-form” if there exist non-zero cubic forms C1, C2 with
integer coefficients such that

C(x1, . . . , xn) = C1(x1, . . . , xm) + C2(xm+1, . . . , xn),

identically in x1, . . . , xn. We will merely say that C “splits off a form” if C splits
off an m-form for some 1 ≤ m ≤ n. With this in mind we have the following
result.

Theorem 1. Let X ⊂ Pn−1 be a hypersurface defined by a cubic form that splits
off a non-singular form, with n ≥ 13. Then X(Q) 6= ∅.

Any non-zero cubic form in only 1 variable is non-singular. Hence we may
combine work of Fowler [4] with an application of Theorem 1 to cubic forms of the
shape

C(x1, . . . , xm) − ay3,

in order to deduce the following.
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Theorem 2. Let C ∈ Z[x1, . . . , xn] be a non-degenerate cubic form in n ≥ 12
variables. Then C represents every non-zero rational number.

The expected range is n ≥ 8 here, since the relevant cubic form always has
non-trivial p-adic zeros for n in this range.

The proof of Theorem 1 uses the Hardy–Littlewood circle method, and employs
many of the contributions to the theory of cubic exponential sums that have been
made during the last fifty years. In addition to this, when the cubic form splits
off a non-singular m-form with m small, the minor arc analysis takes advantage of
recent joint work of the author with Heath-Brown [2], in order to estimate rational
points of bounded height on certain auxiliary non-singular cubic hypersurfaces.

With more work it is possible to relax the condition that one of the forms be
non-singular in Theorem 1, as the following result shows.

Theorem 3. Let X ⊂ Pn−1
Q be a hypersurface defined by a cubic form that splits

off an m-form, with m 6= 5 and n ≥ 13. Then X(Q) 6= ∅.
This is still work in progress and it seems very likely that the case m = 5

will be handled satisfactorily in due course. The proof of Theorem 3 relies upon
Theorem 1 to handle the case in which one of the forms is non-singular. When
both are singular, and one of them has a relatively small number of variables, the
classification of singular cubic hypersurfaces is brought into play. In particular,
when the cubic form splits off a singular 4-form, the work of Coray and Tsfasman
[3] (although there are many other authors who have worked on this topic) can be
used to restrict attention to forms which define a cubic surface containing exactly
3 singular points, all of which are conjugate over some cubic extension of Q. This
in turn forces the cubic hypersurface to have even more structure, to the extent
that a renewed application of the circle method yields the result.
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Simultaneous Diophantine approximation by square-free numbers

Rainer Dietmann

Improving on results by Balog/Perelli ([2]) and Harman ([4]), Heath-Brown ([5])
showed that for any irrational real number α there are infinitely many square-
free integers n such that ||nα|| ≪ n−2/3+ǫ where || · || denotes distance to the
nearest integer. Baker, Brüdern and Harman ([1]) considered the more general
problem of simultaneous Diophantine approximation with square-free numbers.
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In [1] they proved that if α1, . . . , αs are real algebraic numbers which are “weakly
compatible” such that 1, α1, . . . , αs span a linear space of dimension d ≥ 2 over the
rationals, then for any A < 1

d(d−1) there are infinitely many square-free numbers

n satisfying ||αin|| < n−A (1 ≤ i ≤ s). The “weakly compatible” condition here
is necessary and is always true if α1, . . . , αs are Q-linearly independent, in which
case the bound takes the shape ||αin|| ≪ n−1/(s(s+1))+ǫ. In this generic situation
of linearly independent α1, . . . , αs we can establish a much stronger result. As in
[1], we can generalize to numbers α1, . . . , αr being “not very well approximable”,
meaning that for every ǫ > 0 there are only finitely many solutions of

r∏

i=1

||qαi|| ≤ q−1−ǫ

in positive integers q. This condition is satisfied for almost all α1, . . . , αr. Our
main result is that if α1, . . . , αr are not very well approximable real numbers, then
there are infinitely many positive square-free integers n such that

||nαi|| ≪ n− 2
3r +ǫ (1 ≤ i ≤ r),

where the implied O-constant depends only on α1, . . . , αr and ǫ. This generalizes
Heath-Brown’s result under suitable assumptions to r > 1. Moreover, even without
the restriction to square-free n no better bound than n−1/r would be possible, so
the exponent is of the right order of magnitude in r, in contrast to any other
known result on simultaneous Diophantine approximation with, say, k-th powers
or primes. Whereas Baker, Brüdern and Harman used exponential sums in their
proof, our method is essentially elementary and relies on lattice point counting
arguments in combination with a result by Bombieri, Granville and Pintz ([3])
showing that there are few squares in arithmetic progression.
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Multiplicative decompositions of shifted primes

Christian Elsholtz

The divisibility of shifted primes is a well studied subject, and there are impor-
tant applications to cryptography. It is generally expected that there are infinitely
many Sophie German primes. This means that sets A2 satisfying A1A2 + 1 ⊂ P ,
where A1 = {1, 2}, can be infinitely large. Here A1A2 denotes the product set
and P denotes the set of primes. Also, Carmichael numbers can be derived from
parametrized families, for example, if 6n+1, 12n+1, 18n+1 are prime simultane-
ously, then m = (6n+ 1)(12n+ 1)(18n+ 1) is a Carmichael number. This means,
with A1 = {6, 12, 18}, sets A2 with A1A2 + 1 ⊂ P can be infinitely large.

In this talk we study asymptotic multiplicative decompositions of the set of
shifted primes, or of shifted copies of sequences that are multiplicatively defined.
We prove that there are no two sets of integers A1, A2, with mini(|Ai|) ≥ 2, such
that

A1A2 + c = P ′

holds, where the set P ′ coincides with the set of primes for sufficiently large ele-
ments. Here c is any non-zero integer. Similarly, let Q(T ) denote the set of integers
with prime factors in a set T with counting function

T (N) = τ
N

logN
+O(

N

(logN)2
),

where 0 < τ < 1. Then A1A2 + c = Q′(T ) (in the above sense) cannot hold.
In the additive case, the author had previously proved [1] that the set of primes

P does not have an asymptotic additive decomposition into three sets, i.e. there are
no three sets of integers A1, A2, A3, with mini(|Ai|) ≥ 2 such that A1 +A2 +A3 =
P ′.

The methods of proof include Wirsing’s mean value theorem, Gallagher’s larger
sieve, and Montgomery’s large sieve, which the author used in [2] to prove upper
bounds Ek(N) on the number of long prime k-tuples in the interval [1, N ]. Here k

may depend on N . While for k coming close to logN
log logN , the upper bound Ek(N)

is an extension of the upper bound ck
N

(logN)k , known from small sieve estimates

for constant k, we use in the proof that for k ∼ (logN)r, r > 1, the upper bound
Ek(N) is about N1/2+1/(r+1), i.e. saves a power of N . For more details in the case
r = 1 see [3].

The details of the talk will appear in [4].
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Prime chains and Pratt trees

Kevin Ford

(joint work with Sergei V. Konyagin, Florian Luca)

Prime chains. Impose on the set of primes a partial ordering, with p ≺ q if q ≡ 1
(mod p). We study properties of the chains with respect to this partial ordering,
the prime chains. An example is 3 ≺ 13 ≺ 53 ≺ 107 ≺ 643.

In the special case pj+1 = 2pj + 1 for every j, the prime chain is called a
Cunningham Chain of length k. We study k(p), the length of the longest Cun-
ningham Chain starting with p. The prime k-tuples conjecture implies that k(p)
is unbounded, and assuming Artin’s conjecture for primes which have 2 as a prim-
itive root, we show that k(p) = O(log p). Unconditionally, we prove results of the
type k(p) = O((log p)1−c) for all but O(x1−d) primes p ≤ x, for suitable constants
c > 0, d > 0.

We also analyze P (x), the number of prime chains with pk ≤ x (k is variable).
We prove x(log x)−0.36 ≪ P (x) ≪ x, and prove an asymptotic for P (x) conditional
on a quantitative form of the Elliott-Halberstam conjecture. This is closely related
to problems about high iterates of Euler’s function [2].

Motivated by an application to the local injectivity of the Carmichael λ-function,
we give upper bounds on P (x; p), the number of prime chains with p1 = p and
pk ≤ x (again, k may vary). Using a novel sieve method based on matrices of
Dirichlet series, we show that P (x; p) ≪ε (x/p)1+ε for every ǫ > 0.

Pratt trees. The Pratt tree for a prime p is the structure of all odd primes which
lie “below” p with respect to the above partial ordering, i.e. the tree with root
node labelled p, and below p are links to the Pratt trees for odd primes q which
divide p− 1. It was first considered by Pratt [7] in connection with certificates of
primality.

Let D(p) be the depth (height) of the Pratt tree with root p, that is, the length
of the longest chain of odd primes with pk = p. For example, D(107) = 4. A

trivial upper bound is D(p) ≤ ⌊ log p
log 2⌋. It has been suggested that D(p) has order

log log p for almost all p [5], where the problem is connected with high iterates of
Carmichael’s λ-function. We prove that D(p) ≫ log log p for almost all p, and,
using a high-dimensional sieve and fine analysis of averages of the singular series
attached to families of prime chains, we show that D(p) = O((log p)0.9622) for
almost all p.

Assuming that the prime factors of a random shifted prime p − 1 ≈ x are
distributed in the same way as a random integer n ≈ x (the so-called Poisson-
Dirichlet distribution), we are lead to a probabilistic model of Pratt trees. The
model can be described in terms of a random fragmentation or as a branching
random walk. Results about branching random walks (e.g., [6]) suggest that
D(p) = e log log p + O(log log log p) for most primes p, and that D(p) is tight
with respect to its median; i.e., there is a function f(p) so that for every ε > 0
there is an M so that |D(p) − f(p)| > M with probability ≤ ε.
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All the aforementioned results will appear in the paper [4].

Local injectivity of the Carmichael λ-function. In 2006, Banks, Friedlander,
Luca, Pappalardi and Shparlinski [1] conjectured that for every positive m there
is an integer n 6= m with λ(n) = λ(m). The corresponding conjecture for Euler’s
function, the Carmichael conjecture, remains unproven after 100 years. In [3],
we deduce this conjecture from the Extended Riemann Hypothesis for Dirichlet
L-functions, and come “close” to proving this conjecture unconditionally. More
precisely, if for every prime power pa (a ≥ 1) there is a prime q with pa‖(q − 1)
and the Pratt tree for q has a certain property, then this conjecture about λ(n) is
true, and we prove the existence of such a q for pa ≥ K, where K is an effective
(but enormous) constant. The proof uses the upper bounds for P (x; p) from [4].
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On the negative Pell equation

Étienne Fouvry

(joint work with J. Klüners )

Consider the so–called negative Pell equation

(NPE(d)) x2 − dy2 = −1,

where d is a squarefree positive integer and where x and y are integer unknowns. It
is well known that we can restrict to d without prime divisor ≡ 3 mod 4 and that
the solvability of (NPE(d)) is equivalent to the fact that

√
d has an odd period in

its expansion in continued fraction or to the fact that Q(
√
d) has a fundamental

unit ǫd with its norm satisfying N(ǫd) = −1. We prefer this last aspect since it
has a rich algebraic structure. So we introduce the set

D :=
{
D > 0 ; D is a fundamental discriminant, p | D ⇒ p 6≡ 3 mod 4

}

and the counting functions

D(X) :=
∣∣{D ∈ D ; D ≤ X

}∣∣,
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and

D−(X) :=
∣∣{D ∈ D ; D ≤ X, N(ǫD) = −1

}∣∣.
The asymptotic behavior of D(X) can be treated by classical methods, since it is
very near from Landau’s Theorem on sums of two squares, more precisely one has
D(X) ∼ c0X/

√
logX, for some positive constant c0 (X → ∞). The corresponding

question for D−(X) appears much more delicate. Stevenhagen ([10]) has built a
convincing probabilistic model which led him to conjecture that

D−(X) ∼ (1 − α)D(X) (X → ∞),

where α :=
∏∞
j=1(1 + 2−j)−1 = .4194224 · · · . We prove

Theorem 1. ([2], [3]) As X → ∞, we have the inequalities

(5α
4

− o(1)
)
D(X) < D−(X) < (2/3 + o(1))D(X).

We now give some ideas of the proof. Let CD and ClD respectively be the
narrow and the ordinary ideal class group of the ring of integers of Q(

√
D). Let

rk2k(G) be the 2k–rank of the finite abelian group G. Recall first that

N(ǫD) = −1 ⇐⇒ CD = ClD.

To obtain the upper bound of Theorem 1, we use the implication

CD = ClD ⇒ rk4(CD) = rk4(ClD),

and for the lower bound the implications

rk4(CD) = 0 ⇒ CD = ClD,

and (
rk4(CD) = rk4(ClD) = 1 and rk8(CD) = 0

)
⇒ CD = ClD.

To detect the values of 2rk4(CD) and of 2rk4(ClD) (and of the corresponding mo-
ments 2k rk4(CD) and 2k rk4(ClD)) we interpret rather old results of Reichardt, Redei
and Scholz ([5], [6], [7], [8], [9],...) in terms of sums of Jacobi symbols, or of quartic
symbols associated to the factorizations of D. The oscillations of these characters
are controlled in a classical way. The main term gives birth to interesting combina-
torial questions which can be solved by geometric considerations in characteristic
2, inspired by [4] and already exploited in [1]. This approach is strong enough to
give the distribution law of the function D ∈ D 7→ (rk4(CD), rk4(ClD)).

Some partial results are also given for the distribution law of the function
D ∈ D 7→ rk8(CD).
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Sifting short intervals

John Friedlander

We report on some very old work of our own and on some recent developments
of it obtained in joint work with Henryk Iwaniec (see [1] and the references therein
for the former and [2] for the latter.)

The Brun sieve gives the bound

π(x) − π(x − w) ≪ w/ logw

for the number of primes in the short interval (x−w, x], and for w > xε this gives
the expected order but not for shorter intervals. We investigate the question of
how short an interval one can successfully treat if one asks only for results valid
in intervals (y − w, y] for most y in (x, 2x).

Proposition 1. Let λd, 1 ≤ d ≤ D be real with λ1 = 1, |λd| ≤ 1. Let A > 0,
1 ≤ w ≤ x/D2(log x)2A+8 and

θn =
∑

d|n
λd, γd = d2

∞∑

h=1
(h,d)=1

1

h2
sin2

(πhw
d

)
.

Then
∫ 2x

x

∣∣∣
∑

y−w<n≤y
θn−w

∑

d

λd
d

∣∣∣
2

dy =
2x

π2

∑

d

γd

( ∑

m≡0 mod d

λm
m

)2

+O(xw(log x)−A).

We apply proposition 1 to the situation where the λd are upper or lower bound
beta-sieve weights for suitable β. In this case the left-hand side is just the mean

square
∫ 2x

x |R(D, y)|2 dy for the remainder encountered in sieving the interval (y−
w, y] by the primes p < z, and the main term on the right can be shown to satisfy
the bound ≪ xw(log z)−1. As a result we obtain
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Proposition 2. Let 2 ≤ z ≤ x1/20, w = η(x) log z where η(x) → ∞ as x → ∞.
Then, denoting P (z) =

∏
p<z p, we have

∑

y−w<n≤y
(n,P (z))=1

1 ≍ w

log z

for all y with x < y ≤ 2x apart from a set of measure O(xη(x)−1).

Note that the intervals in question are the shortest ones for which one could
reasonably expect such a result to hold.

Taking z = x1/20 we find that the above intervals have some integers with no
more than 19 prime factors and satisfy

π(y) − π(y − w) ≪ w

log x
.

The question of ’suitable β’ has now been studied in greater detail and as a result
the number of prime factors can be reduced from 19 to 4. Then, using also deep
estimates for bilinear forms of Kloosterman fractions, it can be further reduced to
3.
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Gaps between primes

Dan Goldston

In early 2005, J. Pintz, C. Y. Yıldırım and I [1] proved that

(1) lim inf
n→∞

(
pn+1 − pn

log pn

)
= 0.

Thus there are infinitely often two primes closer than any fraction of the average
spacing between primes. More precisely, we later proved

(2) lim inf
n→∞

pn+1 − pn
(log pn)1/2(log log pn)2

<∞.

The method used to prove these results involves two steps: approximating prime
tuples with truncated divisor sums, and then detecting primes using a positivity
argument.

Let n be a natural number and consider the k-tuple

(3) (n+ h1, n+ h2, . . . , n+ hk),

where H = {h1, h2, . . . , hk} is a set composed of distinct non-negative integers.
If every component of the tuple is a prime we call this a prime tuple. In gen-
eral, the tuple in (3) can be a prime tuple for more than one n only if νH(p) <
p for all primes p, where νH(p) is the number of distinct residue classes modulo p
occupied by the integers in H. If this condition holds we say that H is admissible
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and we call the tuple (3) an admissible tuple. It is a long-standing conjecture of
Hardy and Littlewood that admissible tuples will infinitely often be prime tuples,
and further there is an asymptotic formula for the number of such tuples given by

(4)
∣∣{n ≤ N : (n+ h1, n+ h2, . . . , n+ hk) is a prime tuple}

∣∣ ∼ S(H)
N

(logN)k
,

where

(5) S(H) :=
∏

p

(
1 − 1

p

)−k(
1 − νH(p)

p

)

is the singular series associated with H.
In our method the information on primes we make use of is their distribution

in arithmetic progressions. Let

(6) θ(N ; q, a) =
∑

n≤N
n≡a(mod q)

θ(n), where θ(n) =

{
logn, if n is prime,
0, otherwise.

The Bombieri-Vinogradov theorem states that for any A > 0 there is a B = B(A)

such that, for Q = N
1
2 (logN)−B,

(7)
∑

q≤Q
max
a

(a,q)=1

∣∣∣∣θ(N ; q, a) − N

φ(q)

∣∣∣∣≪
N

(logN)A
.

More generally, we say that the primes have an admissible level of distribution ϑ
(or satisfy a level of distribution ϑ) if (7) holds for any A > 0 and any ǫ > 0 with

(8) Q = Nϑ−ǫ.

Elliott and Halberstam conjectured that the primes have the maximal admissi-
ble level of distribution 1, while by the Bombieri-Vinogradov theorem we have
immediately that 1/2 is an admissible level of distribution for the primes.

We can now state our first result: If the primes satisfy a level of distribution
ϑ > 1

2 then there is an absolute constant M(ϑ) for which

(9) pn+1 − pn ≤M(ϑ), for infinitely many n.

More generally, we proved the following result related to the prime tuple conjec-
ture.

Theorem 1. Suppose the primes have level of distribution ϑ > 1/2. Then there
exists an explicitly calculable constant C(ϑ) depending only on ϑ such that any
admissible k-tuple with k ≥ C(ϑ) contains at least two primes infinitely often.
Specifically, if ϑ ≥ 0.971, then this is true for k ≥ 6.

Since the 6-tuple (n, n+4, n+6, n+10, n+12, n+16) is admissible, the Elliott-
Halberstam conjecture implies that

(10) lim inf
n→∞

(pn+1 − pn) ≤ 16.
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The approximation we use for detecting primes in tuples is

(11) ΛR(n;H, ℓ) =
1

(k + ℓ)!

∑

d|PH(n)
d≤R

µ(d)

(
log

R

d

)k+ℓ
,

where |H| = k, and PH(n) = (n+h1)(n+h2) · · · (n+hk). The parameter ℓ is critical
to the success of the method. To detect primes we square our approximation (11)
to obtain a non-negative approximations (since ΛR is often negative), and then
compute

(12)
∑

n≤N
ΛR(n;H, ℓ)2 ∼ 1

(k + 2ℓ)!

(
2ℓ

ℓ

)
S(H)N(logR)k+2ℓ,

valid R≪ N
1
2 (logN)−B(M) and R,N → ∞, and

(13)
∑

n≤N
ΛR(n;H, ℓ)2θ(n+ hi) ∼

2

(k + 2ℓ+ 1)!

(
2ℓ+ 1

ℓ

)
S(H)N(logR)k+2ℓ+1.

valid for R ≪ N
ϑ
2 −ǫ, and R,N → ∞, where ϑ is an admissible level of distribution

of primes in arithmetic progressions. The singular series S(H) is the same as in
the Hardy-Littlewood conjecture (4) and is positive.

Here is how we prove there are two primes in tuples if ϑ > 1
2 . Using the two

asymptotic formulas above we compute

S : =

2N∑

n=N+1

(
k∑

i=1

θ(n+ hi) − log 3N

)
ΛR(n;H, ℓ)2

∼
(

2k

k + 2ℓ+ 1

2ℓ+ 1

ℓ+ 1
logR− log 3N

)
1

(k + 2ℓ)!

(
2ℓ

ℓ

)
S(H)N(logR)k+2ℓ.

(14)

The tuple H will contain at least two primes if S > 0, since here θ(n+hi) < log 3N
and every term in S will be negative unless the sum over i sometimes contains two
non-zero terms. But S > 0 when, letting R = Nϑ/2−ǫ,

(15)
k

k + 2ℓ+ 1

2ℓ+ 1

ℓ+ 1
ϑ > 1,

and if k, ℓ → ∞ with ℓ = o(k), then the left-hand side has the limit 2ϑ, and
thus (15) holds for any ϑ > 1/2 if we choose k and ℓ appropriately depending
on ϑ. This proves the first part of Theorem 1. If ϑ > 20/21, we see that (15)
holds with ℓ = 1 and k = 7, which proves that every 7 tuple has two primes in it
infinitely often assuming this level of distribution. Finally, these results just fail
in the unconditional case when ϑ = 1

2 , but one can pick up an extra factor of h if
we sum over all k-tuples with 1 ≤ h1, h2, . . . , hk ≤ h and use

(16)
∑

1≤h1,h2,...,hk≤h
ΛR(n;Hk, ℓ)

2

as the weight in S. If h = ǫ logN we then gain enough to prove (1).
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Indefinite Quadratic Forms and the Multivariate Central Limit
Theorem

Friedrich Götze

(joint work with Gregory Margulis, Andrei Zaitsev)

Distribution of Values of Indefinite Irrational Forms. Let Q[x] denote an
indefinite irrational form with signature (p, q), q ≥ 3, and dimension d = p+q ≥
5. Consider a finite d-dimensional box Is := [−√

s,
√
s]d. The number of lattice

vectors m ∈ Zd ∩ Is in this box such that the values of the quadratic form Q[m]
are contained in [a, a + δ], a ∈ R, δ > 0 fixed, were intensively studied for
box sizes going to infinity in connection with the so called Oppenheim problem.
The distribution of values of indefinite forms on such boxes of integer vectors are
locally uniformly distributed for all dimensions d ≥ 5. More precisely, as s tends
to infinity,

∆−
s (δ) :=

♯ {m ∈ Is ∩ Zd : a ≤ Q[m] ≤ a+ δ}
vol {x ∈ Is : a ≤ Q[x] ≤ a+ δ} − 1 = o(1)

This has been shown in [EMM98] for q ≥ 3 with an non effictive error term based
on ergodic limit theorems. Effective error bounds depending on the diophantine
properties of the coefficients of Q[x] have been shown in [BG99a] for d ≥ 9. The
analogous problem of local uniformity of the distribution of irrational positive
definite forms, i.e.

∆+
s (δ) :=

♯ {m ∈ Zd : s ≤ Q[m] ≤ s+ δ}
vol {x ∈ Rd s ≤ Q[x] ≤ s+ δ} − 1 = o(1)

(as s tends to infinity) has been proved in [Göt04] for d ≥ 5 using effective error
bounds. (See also [BG97] for d ≥ 9).

Combining the methods of the latter papers and quantitative arguments using
uniform distribution on unipotent subgroups, effective error bounds are derived
for irrational indefinite forms and ∆−

s (δ), d ≥ 5, as s tends to infinity, in a recent
paper by Götze, Margulis (2008).

The methods used rely on inequalities for theta sums and effective bounds
from the geometry of numbers for convex bodies Bs,t defined by norms of type

‖m− tQn‖s1/2 + s−1/2‖n‖ on Λ = Zd × Zd. This norm may be described as
the Euclidean norm of an element of a tranformed lattice Λs,t obtained from Λ
by the action of a representation of diagonal and unipotent subgroups of SL2(R).
The bounds are expressed as averages over a compact subgroup of SL2(R) of
the reciprocal powers of the maximal volume of d-dimensional sublattices of Λs,t.
Effective error bounds are then obtained by a recursion s → 2s of such averages
involving harmonic analysis bounds for integrals over the circle.
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The resulting bounds are based on diophantine appoximation of the coefficient
matrix Q and allow for example to derive efficient bounds for the size of nontrivial
solutions m ∈ Zd of diophantine inequalities of the type |Q[m]| < ǫ in terms of of
ǫ−κ for some κ > 2.

The multivariate Central Limit Theorem for Quadratic Forms. A further
application of these analytic methods concerns the long standing problem of de-
termining optimal rates of convergence in the multivariate central limit theorem
in Rd, d ≥ 5 for quadratic forms.

Let X,X1, . . . XN ∈ Rd denote i.i.d. random vectors in Rd, d ≤ ∞ such that
EX = 0, β4 = E|X |4 < ∞. Consider the distribution of the normalized sum
SN := N−1/2(X1+. . .+XN), assuming that SN converges weakly to a nondegerate
multivariate Gaussian random vector S on Rd. Assume that Q : Rd → Rd is a
symmetric operator with kerQ = 0 . We study the distribution the quadratic form
Q[x] := 〈Qx, x〉 applied to SN .

In a recent joint paper with A. Zaitsev it shown that the optimal rate of conver-
gence in the central limit theorems for quadratic forms is of optimal order O(n−1)
for all dimensions d ≥ 5. For these dimensions we have more precisely:

∆N := sup
r

|P {Q[SN ] ≤ r} − P {Q[S] ≤ r}| = O
(
N−1

)
, and

sup
r

P {Q[SN ] ∈ [r, r + ǫ]} = O(ǫ+N−1)

The implied bounds of ∆N are effective for 5 ≤ d <∞ and ineffective for d = ∞.
For the application to probability, that is approximations for distribution func-

tions rather then concentration bounds, the uniform avarages over the unipotent
resp. circle subgroup of SL2(R) mentioned above have to be replaced by integra-
tion over the harmonic measure on R using reparametrization and the geometry of
SL2(R), combined with addaptions of transfer results from probability to number
theory as developed in [BG96, BG97, BG99b].

References

[BG96] Bentkus, V., and Götze, F., Optimal rates of convergence in the CLT for quadratic
forms, Ann. Prob., 1, 466–490, 1996.

[BG97] Bentkus, V. and F. Götze. On the lattice point problem for ellipsoids. Acta Arith.,
80(2):101–125, 1997.

[BG97] Bentkus, V. and F. Götze. Uniform rates of convergence in the CLT for quadratic forms
in multidimensional spaces. Probab. Theory Related Fields, 109(3):367–416, 1997.

[BG99a] Bentkus, V. and F. Götze. Lattice point problems and distribution of values of quadratic
forms. Ann. of Math. (2), 150(3):977–1027, 1999.

[BG99b] Bentkus, V. and F. Götze. Optimal bounds in non-Gaussian limit theorems for U-
statistics. Ann. Probab., 27(1):454–521, 1999.

[Göt04] F. Götze. Lattice point problems and values of quadratic forms. Invent. Math.,
157(1):195–226, 2004.

[Mar97] G. A. Margulis. Oppenheim conjecture. In Fields Medallists’ lectures, volume 5 of World
Sci. Ser. 20th Century Math., pages 272–327. World Sci. Publishing, River Edge, NJ, 1997.

[EMM98] Eskin, A., G. Margulis and S. Mozes. Upper bounds and asymptotics in a quantitative
version of the Oppenheim conjecture. Ann. of Math. (2), 147(1):93–141, 1998



696 Oberwolfach Report 14/2008

The Ideal Sieve

Sidney Graham

(joint work with Hugh Montgomery)

Our goal is to construct extremal upper and lower bound sieves in certain simple
contexts. Let A be a finite set of integers, and suppose that each n ∈ A is equipped
with a non-negative weight wn. Let P be a finite set of primes and define P to be
the product of all primes in P . A sieve is a method for deriving upper or lower
bounds for

S1 =
∑

n∈A
(n,P )=1

wn,

given information about the sums

Wd =
∑

n∈A
d|n

wn.

The estimates of the Wd take the form

f(d)

d
X −R−

d ≤Wd ≤
f(d)

d
X +R+

d

for d|P , where f(d) is a non-negative multiplicative function. In practice, it is
usually the case that there is some z for which the quantities Rd are small (at
least on average) for d < z. We idealize this situation by assuming that R±

d = 0
for d < z and Rd = ∞ for d ≥ z. By homogeneity, we may normalize to X = 1.

We say λd is an upper bound sifting function if

(1)
∑

d|n
λd ≥

{
1 if n = 1,

0 otherwise.

Similarly, we say that λd is a lower bound sifting function if the inequality in (1)
is reversed. These definitions may also be expressed in terms of θn :=

∑
d|n λd.

By the fundamental duality theorem of linear programming,

max
wn

S1 = min
λd∈L+

∑

d|P

λdf(d)

d
, and min

wn

S1 = max
λd∈L−

∑

d|P

λdf(d)

d
,

where the wn run over all choices that satisfy Wd = f(d)/d, and L+ (L−) denotes
the set of all upper (lower) bound sifting functions. Among such sifting functions,
we seek those that minimize (or maximize)

∑
d|P λdf(d)/d.

For a given r|P , let

Sr =
∑

n∈A
(n,P=r)

wn.

Then for any d|P ,

Wd =
f(d)

d
=
∑

r|P/d
Srd.
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Using Möbius inversion, we may also express the Sr in terms of the Ad. We
now rephrase our problem in terms of the Sr, and we ignore the set A and the
weights wn. We say that a set {Sr : r|P} is admissible if Sr ≥ 0 for all r|P and

if
∑
r|P/d Srd = f(d)

d for all d|P, d ≤ z. Our goal is to identify extremal λd and

companion Sr.
We follow Selberg [1, Section 13] in focusing on the following special case. Let

R be a positive integer, and suppose that all p ∈ P satisfy z1/(R+1) < p ≤ z1/R.
We also stipulate that there is some constant κ such that

∑

p|P

f(p)

p
∼ κ, and

∑

p|P

f(p)2

p2
= o(1)

as z → ∞. Selberg proved that the extremal λd. depend only on ω(d). We give
another proof of this fact. Our proof has two advantages over Selberg’s. The first
is that we give a procedure for identifying extremal Sd. The second is that our
proof gives a more efficient procedure for finding the extremal λd.

Since the extremal λd depend only on ω(d), so do the extremal θd. Write
θ(ℓ) = θd when ω(d) = ℓ. When R = 1, the optimal lower bound θ is θ(ℓ) = 1− ℓ.
We prove that this is optimal by taking S1 = 1 − κ, Sp = f(p)/p, and Sd = 0
otherwise. When R = 2, the optimal upper bound θ is given by

θ(ℓ) =

(
1 − ℓ

r

)(
1 − ℓ

r + 1

)
,

where r = [κ+ 1]. We prove that this is optimal by taking the admissible set with
S1 = 1 − 2κ/r + κ2/(r(r + 1)),

Sd =

{
f(d)
d

(r−1)!(r−κ)
κr−1 if ω(d) = r,

f(d)
d

(r−1)!(κ+1−r)
κr−1 if ω(d) = r + 1,

and 0 otherwise.
A natural quantiy to consider is vR, which is defined as the least upper bound

of those κ for which there is a non-trivial lower bound sieve. Our calculations
show tht t v1 = v2 = 1, and v3 = v4 = 2, and v5 = 3.117 . . .. Selberg proved
that

[
R+1

2

]
≤ vR < R for all R, and he conjectured that vR ∼ 1

2R. We have done
computer calculations for vR for R ≤ 39, and our computations support Selberg’s
conjecture.
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Growth in SL3 and elsewhere

Harald A. Helfgott

People mean different things by growth.

1 Growth in graphs. Let Γ be a graph. How many vertices can be reached
from a given vertex in a given amount of time?

2 Growth in infinite groups. Let A be a set of generators of an infinite group
G. Let B(t) be the number of elements that can be expressed as products
of at most t elements of A. How does B(t) grow as t→ ∞?

3 Random walks in groups. Let A be a set of generators of a finite group G.
Start with x = 1, and, at each step, multiply x by a random element of
A. After how many steps is x close to being equidistributed in G?

4 More on growth in graphs. Let Γ be a graph. Consider its adjacency
matrix. What lower bounds can one give for the difference between its
two largest eigenvalues?

5 Growth in arithmetic combinatorics. Let G be an abelian group. Let
A ⊂ G. How large is A + A compared to A, and why? In general, let G
be a group. Let A ⊂ G. How large1 is A ·A ·A compared to A, and why?

Question (5) has been extensively studied in the abelian setting. Some time
ago, I started studying it for non-abelian groups, and proved [He] that every set
of generators of G = SL2(Fp) grows: |A · A · A| > |A|1+ǫ, ǫ > 0, provided that
|A| < |G|1−δ, δ > 0. (Here |S| is the number of elements of a set S.) This
answers question (1) immediately in the case of the Cayley graph of SL2(Fp); the
bounds obtained are strong enough to constitute the first proved case of Babai’s
conjecture. Questions (3) and (4) are closely related to each other, and somewhat
more indirectly to (1) and (5); my result on (5) for SL2 gives non-trivial bounds
for (3) and (4). In the interim, Bourgain and Gamburd ([BG]) have shown how to
obtain rather good bounds for (3) and (4) from what I got on (5).

I have now proved for SL3 what I proved for SL2.

Main Theorem. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a
set of generators of G(K).

Suppose |A| < |G(K)|1−δ, δ > 0. Then

|A · A ·A| ≫ |A|1+ǫ,
where ǫ > 0 and the implied constant depend only on δ.

The proof is entirely elementary. The tools - such as they are - come from arith-
metic combinatorics, and, indeed, part of the standard arithmetic-combinatorial
toolbox has had to be rethought in the process. At the same time, the structure
of groups of Lie type is now in the forefront, and some links with the techniques
used in the study of growth in infinite groups are becoming clearer.

1In the non-abelian case, there are technical reasons why it makes more sense to consider
A · A · A rather than A · A. The product A · A could be small “by accident”.
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Zeros of Cubic and Quartic Forms

D.R. Heath-Brown

Let F (x) = F (x1, . . . , xn) ∈ Z[x1, . . . , xn] be a form of degree d. We are
interested in the following two questions. Under what circumstances can we assert
that F must have a non-trivial zero in Zn? How does the counting function

N(B) := #{x ∈ Zn : F (x) = 0, max |xi| ≤ B}
behave as B → ∞?

When F is quadratic the first question is answered by the Hasse-Minkowski
Theorem:- F has a non-trivial zero in Zn if and only if there is a non-trivial zero
over R and over each p-adic field Qp. (In the latter case we say F has zeros
everywhere locally.) As to the second question, for non-singular quadratics F we
have N(B) ∼ cFB

n−2 for a suitable positive constant cF , whenever F is indefinite
and n ≥ 5. (For n = 3 or 4 a modified asymptotic formula holds.)

When F has higher degree we have fairly good understanding only for diagonal
forms. When d = 3 the form will always have non-trivial zeros in Zn for n ≥ 7
(see Baker [1]), while for d = 4 and n ≥ 12 there are non-trivial zeros in Zn if and
only if F has zeros everywhere locally. (This follows from work of Vaughan [11]).

For non-diagonal forms one has the following theorem of Birch [2].

Theorem. If F is non-singular, with n ≥ 1 + (d− 1)2d, then

N(B) = cFB
n−d + o(BN−d).

Here the constant cF is positive if and only if F has zeros everywhere locally.

For d = 3 this requires n ≥ 17. However results of Hooley [8], [9] show that
n ≥ 9 is enough. Moreover the local conditions are satisfied as soon as n ≥ 10, see
Lewis [10]. Indeed there are forms in 9 variables for which the local conditions are
not satisfied.

The situation for d = 4 is less satisfactory. Birch’s result requires n ≥ 49, and it
is only recently that there has been any progress in improving this. Browning and
Heath-Brown [3] have succeeded in showing that N(B) ≫ Bn−4 for non-singular
forms that have solutions everywhere locally, as soon as n ≥ 41. However there
remains the problem of proving the existence of p-adic points. Brauer showed
in general that for every degree d there exists an nd such that F has non-trivial
p-adic solutions whenever n ≥ nd. Unfortunately the proof uses multiply nested
inductions which lead to value for nd which is “not even astronomical”. A very
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much neater form of the argument has been given by Wooley [12], which shows
that

n > d2d

suffices, but even this is rather large. Recent work by the author [7] allows n4 =
9145, and indeed for p ≥ 11 there are p-adic solutions as soon as n ≥ 121.

One can also ask what happens if we drop the non-singularity condition. Here
there are examples of the type

F (x) = x1G1(x1, . . . , xn) + x2G2(x1, . . . , xn)

for which any vector (0, 0, a2, . . . , an) is a solution. For such forms we will have
N(B) ≫ Bn−2 so that the growth rate cannot be of the form described by Birch’s
Theorem. In the case of cubic forms Davenport [4] circumvented this difficulty, by
classifying forms as “geometrically good” or “geometrically bad”. He was able to
show that cubic forms which are geometrically bad have a nontrivial zero in Zn for
any n. For geometrically good cubic forms he showed that N(B) ∼ cBn−3 with
a positive c, as soon as n ≥ 16. Hence any cubic form in n ≥ 16 variables has a
non-trivial integer zero, whether the form is bad or good.

Recent work of the author [6] improves this by allowing any n ≥ 14. The
proof builds on Davenport’s ideas, but estimates the exponential sums via van der
Corput’s inequality in certain cases.

One might ask whether any analogous statements can be proved for quartic
forms. However not even the assumption that the form has non-singular zeros ev-
erywhere locally is enough to ensure the existence of a non-trivial integer solution,
no matter how large one takes n. This is shown by the example

F (x) = x4
1 − 17x4

2 − 2(x2
3 + x2

4 + . . .+ x2
n)2,

which has non-singular solutions over R and over every Qp, as soon as n ≥ 6.
However there is only the trivial solution in Z. Underlying this example is the
fact that the curve 2z2 = x4 − 17y4 is a counter-example to the Hasse Principle.
The above form F occurs in recent work by Dietmann and Elsholtz [5], but may
be older.
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The horizontal distribution of zeros of the derivative of the Riemann
zeta function

Christopher Hughes

(joint work with Eduardo Dueñez, David W. Farmer, Sara Froehlich,
Francesco Mezzadri, Toan Phan)

Information on the horizontal distribution of the zeros of the the derivative of
the Riemann zeta function yields information on the zeros of the zeta function
itself. For example showing that there are no non-trivial zeros to the left of the
critical line would imply the Riemann Hypothesis. Therefore it is of interest to
study their distribution.

We adopt the m+ and m− notation due to Soundararajan. Let N1(T ) denote
the number of non-trivial zeros of ζ′(s) up to height T . Soundararajan [6] defined

m+(x) =

lim sup
T→∞

1

N1(T )
#

{
ρ′ : ζ′(ρ′) = 0 , 0 < ℑ(ρ′) ≤ T , ℜ(ρ′) ≤ 1

2
+

x

logT

}

and m−(x) defined similarly, but with lim inf.
He conjectured that m+(x) = m−(x) =: m(x) for all x, and that m(x) is a

continuous function which is 0 for x ≤ 0 and tends to 1 as x→ ∞.
Some results were already known about the m, m+, and m− functions, the most

famous of which is Speiser’s Lemma [7]. This states that the Riemann Hypothesis
is equivalent to there being no non-real zeros of ζ′(s) lying to the left of the critical
line, ℜ(s) = 1/2. This clearly implies m(x) = 0 for x < 0, and if almost all the zeta
zeros are simple (it is believed they all are), then m(0) = 0 too. Unconditionally,
the work of Levinson and Montgomery [3] shows that m+(x) → 0 as x→ −∞.

For large x, the work of Conrey and Ghosh [1] shows that m+(x) < 1 for all x.
It is believed that random matrix theory can be used to model the Riemann

zeta function (see the survey articles in [5] for example). Mezzadri [4] found the
random matrix equivalent of m(x), namely the radial distribution of the zeros of
the derivative of the characteristic polynomial of a random unitary matrix. His
results suggest that

m(x) ∼ 1 − 1

x
as x→ ∞

which means that m(x) cannot come from a distribution with a mean.
We are interested in m(x) for x near 0. Soundararajan [6] showed that, under

RH, m−(x) > 0 for x > 2.6. Zhang [8] removed the need for RH at the cost
of showing the positivity of m−(x) only for sufficiently large x. He also showed,
assuming RH and assuming the proportion of consecutive zeros of ζ(s) with gaps
an arbitrary constant smaller than the mean gap is non-zero, that m−(x) > 0 for
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Figure 1. Normalized distribution of the real part of the zeros of
ζ′(s). Data is for the approximately 100000 zeros with imaginary
part in [106, 106 + 60000].

all x > 0. Feng [2] removed the need for RH in the last result, but still needs to
assume the existence of a positive proportion of small gaps.

For more on m, m+, and m− and the connection between small gaps between
zeta zeros and zeros of the derivative of zeta, see the talk of Cem Yıldırım from
the same Oberwolfach meeting.

In work very much still in progress, we show that if the Riemann Hypothesis is
true, and if the distribution for small gaps between zeros of the zeta function is as
predicted by random matrix theory, then

m−(x) ≥ 8

9π
x3/2 +O(x5/2) as x→ 0

We have also numerically computed the density function underlying m(x) for
zeros with height around one million. We find that the horizontal distribution of
the zeros of the derivative appear to have a strange Bactrian distribution, although
it is not clear whether the double-hump remains as T → ∞. This is seen in
Figure 1.

As sketch of the proof of our result goes as follows: We consider two very close
together zeros of the Riemann zeta function, with heights t ± πθ/ log t. Using

the Hadamard product for zeta, we solve ζ′

ζ (ρ′) = 0 as a series expansion in θ,

assuming ρ′ is close to the midpoint of the two zeros. That is, we assume

ρ′ =
1

2
+

1

log t

∞∑

j=1

bjπ
2jθ2j + it

where the bj can be complex.
Using the fact that the zeta zeros come in symmetric pairs, we show that

b1 =
1

4
+O

(
1

log t

)
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and inserting the assumption (from random matrix theory) that the probability
density that two zeta zeros have gap 2πθ/ log t is approximately

(
π2

3
− π2

3(log t)2

)
θ2 +O(θ4)

this leads to

m−(x) ≥
∫ x

0

(
4

3π
s1/2 +O(s3/2)

)
ds =

8

9π
x3/2 +O(x5/2)
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Configurations of Lattice Points

Martin Huxley

Let Λ be a lattice in the plane , and let S be a closed convex bounded plane re-
gion containing the origin, an ‘oval’. Let S(r, P ) be the set obtained by enlarging S

by a factor r, then translating S by the vector
−−→
OP . We call S(r, P ) an ‘S-oval’.

Let J(r, P ) be the set of points of Λ in S(r, P ), and let N(r, P ) be the magnitude
of the set J(r, P ). We call J(r, P ) a configuration, and N(r, P ) its weight. For
large r the weight N(r, P ) is approximately Ar2. The mathematical questions are:
how many configurations of S-ovals occur, and how does the lattice discrepancy
N(r, P ) − Ar2 vary? Behind this is a question in artificial intelligence: J(r, P ) is
the image taken by a digital camera. How easily can J(r, P ) be identified as a
possible S-oval?

At this level of generality, we can transform Λ into the square lattice of integer
points, changing the shape of the oval S, but not the number of configurations or
their weights.

Problem A (area by counting squares, including the Gauss circle problem). Sup-
pose that the oval S has a sufficiently smooth boundary curve C. Estimate N(r, P )
accurately.
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Theorem A (Huxley 2003). Under C3 smoothness conditions,

N(r, P ) = Ar2 + O
(
rκ+ǫ

)
; κ = 131/208 = 0, 6298 · · · .

Here as usual O(rǫ) stands for some function of r that grows slower than any power

of r; in this case a power of a logarithm.

Problem B (Žunić). For fixed size r, how many different configurations J(r, P )
occur as the point P varies (different up to translation by an integer vector)? The
configurations correspond loosely to regions in a domains diagram.

Theorem B (Huxley, Žunić 2008). Let r be fixed. Under C3 smoothness condi-
tions and the Triangle Condition, the number K(r) of configurations is

K(r) = Br2 + O
(
rκ+ǫ

)
.

The Triangle Condition (for fixed size r) says that the boundary curve C(r, P ) of

the oval S(r, P ) cannot pass through three distinct integer points for any point P .
The result of Theorem B is also true for circles without the Triangle Condition,
by a special argument.

Problem C (Žunić). How many different configurations J(r, P ) have N(r, P ) = n
(there are K(n) such configurations, say), or N(r, P ) ≤ N (there are M(N) such
configurations, say)? As in Problem B, different means different up to translation
by an integer vector. For fixed weight n, the configurations with N(r, P ) = n
correspond to connected regions in a domains diagram.

Theorem C (Huxley, Žunić, submitted). If the boundary C contains no straight
line segment with rational gradient, then

L(n) ≤ 2n− 1, M(N) ≤ N2.

If the boundary C satisfies the Quadrangle Condition, then we have equality.

The Quadrangle Condition says that the boundary curveC(r, P ) of the oval S(r, P )
cannot pass through four distinct integer points for any size r and any point P . For
the circle, which does not satisfy the Quadrangle Condition, Huxley and Konyagin
(submitted) have

M(N) = N2 − O
(
N3/2

)
.

Work in progress aims to find connections between these three problems.

Theorem D (Huxley, Kolountzakis, Žunić). Under C4 smoothness conditions, the
number T (R) of different sets of three integer points (different up to translation by
an integer vector) for which there is an S-oval S(r, P ), with r ≤ R and with these
three integer points on the boundary, satisfies

T (R) = A2R4 + O
(
R3
)
.

For circles the remainder term is

O
(
R2+κ+ǫ

)
.
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Theorem E (Huxley, Konyagin). For S the unit circle, the number Q(R) of
different sets of four integer points (different up to translation by an integer vector)
for which there is a circle S(r, P ), with r ≤ R and with these four integer points
on the boundary, satisfies

Q(R) =
32(3 +

√
2)

21ζ(3)
ζ

(
3

2

)
L

(
3

2
, χ

)
R3 + O

(
R76/29+ǫ

)
,

where ζ(s) is the Riemann zeta function, and L(s, χ) is the non-trivial Dirichet L-
function modulo 4. We note that in Theorem E we have 76/29 = 2, 6207 · · · < 2+κ.

References

[1] M.N. Huxley, Area, Lattice Points, and Exponential Sums, London Math. Soc. Monographs
13, Oxford University Press, Oxford, 1996.

[2] M.N. Huxley, The integer points close to a curve III, in Number Theory in Progress, de
Gruyter, Berlin 1999, 911-940.

[3] M.N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc., (3) 87

(2003), 591-609.
[4] M.N. Huxley, The integer points in a plane curve, Functiones et Approximatio, 37 (2007),

7-25.
[5] M.N. Huxley, S.V. Konyagin, Cyclic polygons of integer points, submitted to Acta Arith-

metica
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Hybrid moments of the zeta-function on the critical line

Aleksandar Ivić

Power moments on the “critical line” σ = ℜe s = 1
2 represent one of the most

important parts of the theory of the Riemann zeta-function ζ(s) (see [2], [3]). The

aim here is to discuss the so-called “hybrid” moments and some related topics.

These are integrals of the type

(1)

∫ 2T

T

|ζ(1
2 + it)|k

(∫ t+G

t−G
|ζ(1

2 + ix)|ℓ dx

)m
dt (k, ℓ,m ∈ N),

where k, ℓ,m are assumed to be fixed, and 1 ≪ G ≪ T . The expected bound

for the expression in (1) (this is consistent with the hitherto unproved Lindelöf
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hypothesis that ζ(1
2 + it) ≪ε |t|ε) is clearly

(2) Oε(T
1+εGm),

where here and later ε (> 0) denotes arbitrarily small constants, not necessarily

the same ones at each occurrence. The problem is to find, for given k, ℓ,m, the

range of

G = G(T ; k, ℓ,m)

for which (1) is bounded by (2). From general results (see [12]) it is known that

the expression in (1) is, for log logT ≪ G≪ T ,

≫ Gm(logT )ℓ
2m/4

∫ 2T

T

|ζ(1
2 + it)|k dt ≫ TGm(logT )(ℓ

2m+k2)/4.

This shows that, up to ‘ε’, the bound in (2) is indeed best possible. The (less

difficult) case k = 0 in (1) was investigated in [5] and [6]. In view of the bound

(see [3])

|ζ(1
2 + it)|k ≪ log t

∫ t+1

t−1

|ζ(1
2 + ix)|k dx+ 1, (k ∈ N fixed)

it is clear that hybrid moments can be used to bound Ik(T ) :=
∫ T
0
|ζ(1

2 + it)|2k dt,

although this approach is somewhat wasteful, but on the other hand one gains

flexibility by choosing G appropriately. For example, one of our bounds is

(3)

2T∫

T

|ζ(1
2 + it)|4

t+G∫

t−G

|ζ(1
2 + ix)|4 dx dt≪ logC T

(
TG+ min(T 5/3, T 2G−1)

)

for 1 ≪ G = G(T ) ≪ T , and from (3) one easily deduces (C > 0 is a generic

constant) the hitherto sharpest bound I4(T ) ≪ T 3/2 logC T . We have obtained

results on (1) for several values of m when k, ℓ equal 2 or 4, which is logical, since

it is in these cases that we have good information on Ik(T ). Namely we have F.V.

Atkinson’s formula [1] (for k = 1) and Y. Motohashi’s formula [11] (for k = 2),

although it is more convenient to use formulas for the smoothed integrals

Jk(T,G) :=
1√
πG

∫ ∞

−∞
|ζ(1

2 + iT + iy)|2ke−(y/G)2 dy (k ∈ N, 1 ≪ G≪ T ).

To avoid excessive length, we mention here only one more explicit result, namely

(4)

∫ 2T

T

|ζ(1
2 + it)|2

(∫ t+G

t−G
|ζ(1

2 + ix)|2 dx

)3

dt≪ε T
1+εG3

for T
1
5 ≪ G = G(T ) ≪ T . In bounds like (4), it is the lower bound for G which

is of importance, while for G ≥ T 1/3 the bound is trivial, since (see [2], [3]) one

shows without difficulty that
∫ t+G

t−G
|ζ(1

2 + ix)|2 dx≪ G log t (t1/3 ≪ G ≤ t).
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In the course of the proofs, besides the explicit formulas for Jk(T,G) we use the

bound ∫ T

0

E2
2(t) dt ≪ T 2 logC T,

due to Y. Motohashi and the author (see [8], [9]), where E2(T ) is the error term in

the asymptotic formula for I2(T ). The chief arithmetical tool is the recent result

of [13] that, for any given ε > 0, k ≥ 2 a fixed integer and given δ > 0, the number

of integers n1, n2, n3, n4 such that N < n1, n2, n3, n4 ≤ 2N and

|n1/k
1 + n

1/k
2 − n

1/k
3 − n

1/k
4 | < δN1/k

is ≪ε N
ε(N4δ+N2). To deal with bounds like the one in (4), we also need results

on the moments of the function

E∗(t) := E(t) − 2π∆∗( t
2π

)
,

where

∆∗(x) := −∆(x) + 2∆(2x) − 1
2∆(4x) = 1

2

∑

n≤4x

(−1)nd(n) − x(log x+ 2γ − 1).

Here as usual d(n) is the number of divisors of n, γ is Euler’s constant and

∆(x) =
∑

n≤x
d(n) − x(log x+ 2γ − 1)

is the error term in the classical Dirichlet divisor problem. The function E∗(t)
gives an insight into the analogy between the Dirichlet divisor problem and the

mean square of |ζ(1
2 + it)|. It was investigated by several authors, including M.

Jutila [10], who introduced the function E∗(t), and the author [4]–[6]. Among

other things, the author (op. cit.) proved that
∫ T

0

(E∗(t))2 dt = T 4/3P3(logT ) +Oε(T
7/6+ε),

where P3 is a polynomial of degree three in logT with positive leading coefficient,
∫ T

0

|E∗(t)|5 dt ≪ε T 2+ε,

∫ T

0

|E∗(t)|3 dt ≪ε T 3/2+ε,

and none of these three results implies any one of the other two. The connection

of E∗(t) to the mean square of |ζ(1
2 + it)| in short intervals is given by the formula

J1(t, G) =
2√
πG3

∫ G log T

−G log T

xE∗(t+ x)e−(x/G)2 dx+O(log2 T )

for T ε ≤ G = G(T ) ≤ T 1/3, T/2 ≤ t ≤ 5T/2. Thus the moments of E∗(t) can be

used for hybrid moments (1) when ℓ = 2. Complete results with detailed proofs

will appear in due time.
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One can also use moments of E(t+G)−E(t−G) to bound moments of |ζ(1
2 +it)|.

Results of this type are given in [7]. In particular it was proved there that, for

1 ≪ U = U(T ) ≤ 1
2

√
T , we have (c3 = 8π−2)

∫ 2T

T

(E(x + U) − E(x))
2

dx = TU

3∑

j=0

cj logj
(√T
U

)

+Oε(T
1/2+εU2) +Oε(T

1+εU1/2),

and an analogous result holds true ifE(x+U)−E(x) is replaced by ∆(x+U)−∆(x).
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Atkinson’s formula for Hardy’s function

Matti Jutila

By definition, Hardy’s function is

Z(t) = χ−1/2(1
2 + it)ζ(1

2 + it),

where

χ(s) = 2sπs−1 sin(1
2πs)Γ(1 − s)
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as in the functional equation ζ(s) = χ(s)ζ(1− s) for Riemann’s zeta-function. For

real t, Z(t) is real and |Z(t)| = |ζ(1
2 + it)|, whence the real zeros of Z(t) are related

to the zeros of the zeta-function on the critical line.

The famous formula of Atkinson [1] (see also [2], Chapter 15) gives an expression

for the mean square of Z2(t). As an analogue, we have a formula of similar

structure for the integral

F (T ) =

∫ T

0

Z(t) dt.

We state it using the notation of [2]. Let T be a large positive number, N ≍ T ,

and

N ′ = T/2π +N/2 −
√
N2/4 +NT/2π.

Then

F (T ) = Σ1(T ) + Σ2(T ) +O
(
log2 T

)
,

where

Σ1(T ) = 2
√

2(T/2π)1/4
∑

0≤n≤
√
N

(−1)n(n+1)/2e
(
T,
(
n+ 1

2

)2) (
n+ 1

2

)−1

× cos
(

1
2f
(
T,
(
n+ 1

2

)2)− 3π/8
)

and

Σ2(T ) = −4
∑

1≤n≤
√
N ′

n−1/2
(
log(T/2πn2)

)−1
cos
(

1
2g
(
T, n2

)
+ π/4

)

with

e(T, n) = (1 + πn/2T )−1/4
{√

2T/πn ar sinh
(√

πn/2T
)}−1

= 1 +O(nT−1),

f(T, n) = 2T ar sinh
(√

πn/2T
)

+
(
2πnT + π2n2

)1/2 − π/4

= −π/4 + 2
√

2πnT +
1

6

√
2π3n3/2T−1/2 + . . . ,

and

g(T, n) = T log(T/2πn) − T + π/4.

The proof is based on a formula for the Laplace transformation of Z(t) and the

argument follows [4], where we derived the original Atkinson formula together with

its analogue for cusp form L-functions by a unified method.

It was shown by A. Ivić [3] that F (T ) ≪ T 1/4+ε for any fixed ε > 0, and

he conjectured that this estimate is close to being best possible. Indeed, it was

recently proved by M. A. Korolev [6] that F (T ) = Ω±(T 1/4). Also, he proved

that F (T ) = O(T 1/4), and hence the amplitude of the oscillations of F (T ) is fully

understood. These conclusions can be drawn also from the above formula; Ivić

and Korolev used variants of the approximate functional equation for Z(t) which

we dispense with.
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As another application, we may estimate gaps between consecutive zeros of

Z(t), that is gaps between consecutive zeros of the zeta-function on the critical

line, in terms of exponential sums related to the sum Σ1(T ). These exponential

sums turn out to be of similar structure as in the work of A. A. Karatsuba [5].
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Nonexistence of L-functions of degree 1 < d < 2

Jerzy Kaczorowski

(joint work with Alberto Perelli)

The extended Selberg class S♯ consists of Dirichlet series F (s) =
∑∞

n=1 a(n)n−s

(s = σ+ it) which converge absolutely for σ > 1, admit meromorphic continuation

to C such that (s − 1)mF (s) is entire of finite order (m = m(F ) ∈ N ∪ {0}), and

satisfies a general functional equation of the Riemann type

Φ(s) = ωΦ(1 − s),

where

Φ(s) = Qs
r∏

j=21

Γ(λjs+ µj)F (s)

with Q, λj > 0, ℜ(µj) ≥ 0 and |ω| = 1. The Selberg class S (see [12]) is the

set of F ∈ S♯ satisfying in addition the Ramanujan condition (a(n) ≪ nε for

every ε > 0) and having an Euler product expansion. The Selberg class may be

regarded as an axiomatic model for L-functions in number theory, and the main

problem, apart from classical open problems such as the Riemann Hypothesis, is

classifying its elements. We expect that the degree of every F ∈ S♯ is a non-

negative integer (the Degree Conjecture), and that the functions in S with integer

degree d coincide with the automorphic L-functions of degree d (a kind of analytic

version of the Langlands program). We refer to survey papers [3] [5], [9], [10] for

more information about S and S♯.

The focus of the research reported here is on the degree conjecture for functions

of small degrees, and the main result reads as follows.

Theorem. Degree Conjecture holds true for d ≤ 2.
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Due to classical work by Bochner [1], Richert [11] (see also [2] and [8]), and a

more recent results by Kaczorowski-Perelli [4], [6], it is enough to show that there

are no entire L-functions in S♯ of degree 5/3 ≤ d < 2. The main idea is to work

not directly with an L-function F but with a closely related family of Dirichlet

series F̃ , called the shadows of F , and to prove that one of them has a pole in the

region of holomorphy getting in this way a contradiction. A general new method

is developed to this purpose which gives a uniform solution in the whole range

0 < d < 2, d 6= 1. In the range 0 < d < 1 a construction of the proper shadow was

given in [7]. The case of 1 < d < 2 is much more involved and leads to the study

of the multidimensional twists of the form

∞∑

n=1

a(n)

ns
exp

(
−2πi

N∑

ν=1

ανn
κν

)
,

where κ1 > κ2 > . . . > κN > 0, dκ1 > 1, are fixed.
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Prime or almost-prime solutions to quadratic equations

Jianya Liu

(joint work with Peter Sarnak)

In the introductory part of the talk, various results for the Waring-Goldbach prob-

lem [3] are revisited in the spirit of recent general conjectures of Sarnak [7], and

of Bourgain, Gamburd, and Sarnak [1]. Special attention is paid to the qua-

dratic Waring-Goldbach problem, i.e. prime solutions to quadratic equations.

In the main part of the talk, a new result of Sarnak and the speaker [6], on

the almost-prime solutions to quadratic equations in three variables, is reported.

Roughly speaking, this new result states that, if g(x1, x2, x3) is an indefinite

anisotropic quadratic form with determinant d(g), and t a non-zero integer such

that d(g)t is square-free, then there are infinitely many solutions to the equation

g(x1, x2, x3) = t such that the product x1x2x3 has at most 26 prime divisors. The

above 26 can be reduced to 22 under Selberg’s eigenvalue conjecture. This result

is obtained via a three dimensional combinatorial sieve [2] and a key level equi-

distribution theorem; the latter is established by the theory of quadratic forms

[10], the Jacquet-Langlands theory [4] on automorphic representations, the Kim-

Sarnak bound [5] toward Selberg’s eigenvalue conjecture, and ideas in harmonic

analysis [9] [8].
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Intervals on the critical line, in which the Riemann zeta function
assumes only small values

Helmut Maier

(joint work with Ulirike Vorhauer)

Assuming the Riemann Hypothesis we establish the existence of long intervals

on the critial line, whose endpoints have arbitrarily large imaginary parts, in which

the Riemann zeta function assumes only small values.

Theorem. Assume RH. Then there is a constant c > 0 and arbitrarily large values

T , such that

|ζ(1

2
+ it)| ≤ 1

2
for t ∈ [T, T + c(log4 T )−1]

(for k ≥ 2 we denote as usual by logk(x) = log(logk−1(x)) the k-fold iterated

logarithm).

We shortly describe the basic ideas of the proof: From a well-known approxi-

mate formula of Selberg we deduce the inequality

(1) log |ζ(1

2
+ it)| ≤ Re

∑

n<x2

Λx(n)

(logn)σ1+it

+ O

(
logT

log x

)
+ O

(
1

log x

∣∣∣∣∣
∑

n<x2

Λx(n)

nσ1+it

∣∣∣∣∣

)

where T ≤ t ≤ 2T , Λx(n) = Λ(n)wx(n) with

wx(n) =






1 if 1 ≤ n < x
log( x2

n )

log(x) if x ≤ n ≤ x2

0 o.w.

, log(x) =
logT

log logT
, σ1 =

1

2
+

1

log x
.

For a suitably chosen function ̺ and a partition u0 < u1 < · · · < um of the

support of ̺ we impose the conditions

(2)
∑

uj<log p≤uj+1

p−( 1
2 +it) = ̺(uj)∆uj + err(j) , ∆uj = uj+1 − uj ,

err(j) a suitable error-term. Then we obtain the approximation

∑

u0<log p≤um

p−( 1
2 +i(t+τ)) =

∫ ∞

−∞
̺(u)e−iτudu + error ,

which together with (1) implies the Theorem, if the values p−it satisfy some addi-

tional - less restrictive - conditions.

The existence of values t, such that p−it satisfy the conditions (2) and these addi-

tional conditions are established by harmonic analysis.
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The Combinatorics of moment calculations

Hugh L. Montgomery

In work that was first announced at Oberwolfach in 1998, the author and

Soundararajan constructed a heuristic argument that suggests that
∫ X

0

(ψ(x + h) − ψ(x) − h)K dx = (µK + o(1))X(h logX/h)K/2

where µ2k = 1 · 3 · · · (2k − 1) and µ2k+1 = 0 are the moments of a normal ran-

dom variable. It was initially envisaged that the argument would begin by an

application of the binomial theorem, so that

N∑

n=1

( h∑

m=1

Λ(m+ n) − h
)K

=
K∑

k=0

(K
k

)
(−h)K−k

N∑

n=1

( h∑

m=1

Λ(m+ n)
)k
.

After some simplifications, it is found that the sum over n on the right hand side

is approximately

k∑

r=1

S(k, r)r!
∑

D⊆{1,...,h}cardD=r

N∑

n=1

(log n)k−r
r∏

i=1

Λ(n+ di)

where the S(k, r) are the Stirling numbers of the second kind. Hardy and Little-

wood conjectured that

N∑

n=1

r∏

i=1

Λ(n+ di) = (S(D) + o(1))N

where S(D) is a singular series. We take the main term and ignore any effect that

the error terms might have, and are led to the conclusion that the original moment

should be approximately

K∑

s=0

Rs(h)
K−s∑

j=0

Ij(N)PK,s,j(h)

where Rs(h) is an average of singular series whose asymptotics can be determined,

Ij(N) is a simple singular integral, and the PK,s,j(h) are the polynomials

PK,s,j(h) =

K−j∑

i=s

( K

i+ j

)
S(i+ j, i)

i!

s!
(−h)K−i−j

(h− s

i− s

)
.

In order to complete the argument along these lines, it is necessary to know more

about these polynomials—specifically that degPK,s,j ≤ K−s−j, that degPK,s,j ≤
[(K − s)/2], that for 0 ≤ j ≤ k − s the leading term of P2k,2s,j(h) is

(−1)k−s−j
(k − s

j

)(k
s

)1 · 3 · · · (2k − 1)

1 · 3 · · · (2s− 1)
hk−s,
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and that the leading term of P2k+1,2s+1,j(h) is

(−1)k−s+j
(k − s

j

)(k
s

)1 · 3 · · · (2k + 1)

1 · 3 · · · (2s+ 1)
hk−s .

The Montgomery–Soundararajan argument was completed in a way that avoided

these polynomials, but the above properties can be established by showing that

each PK+1,s,j(h) is a linear combination of five earlier polynomials of the same

sort. Precisely,

PK+1,s,j(h) = (j − s−K)PK,s,j(h) + PK,s−1,j(h) + (K − j + 1)PK,s,j−1(h)

−hKPK−1,s,j(h) + hKPK−1,s,j−1(h) .

Complete Spectral Decomposition of the Mean Value of any
Automorphic L-function — A unified approach

Yoichi Motohashi

We report on our recent resolution of the longstanding problem of constructing

a unified theory for the complete spectral expansion of the mean value

M(Lψ, g) =

∫ ∞

−∞

∣∣Lψ(1
2 + it)

∣∣2 g(t)dt,

where Lψ is the L-function associated with an arbitrary automorphic form ψ of one

complex variable, under the normalization given below; the weight g is assumed,

for the sake of simplicity, to be even, entire, real-valued on R, and of rapid decay

in any horizontal strip.

We consider the pairG = PSL(2,R), Γ = PSL(2,Z), which is not too restrictive;

in fact our argument extends considerably. Then, there are three types of auto-

morphic forms ψ: (1) holomorphic cusp forms of even integral weights 2k ≥ 12,

(2) real analytic cusp forms, and (3) Eisenstein series. The Fourier expansions for

(1) and (2) are, respectively,
∑∞

n=0 aψ(n)nk−
1
2 exp(2πinz) and

√
y
∑∞

n=−∞ aψ(n)Kν(2π|n|y) exp(2πinx),

with aψ(0) = 0, and that of (3) is analogous to the latter save for a term constant

with respect to x. Here z = x+ iy, x ∈ R, y > 0; y2
(
∂2
x + ∂2

y

)
ψ =

(
ν2 − 1

4

)
ψ with

a certain constant ν, and Kν is the K-Bessel function of order ν. With the Fourier

coefficients {aψ(n)} we form the L-function: Lψ(s) =
∑∞

n=1 aψ(n)n−s, Re s > 1.

A. Good treated, in early 1980’s, the case (1), and we dealt in [3] with M(ζ2, g)

the fourth moment of the Riemann zeta-function which corresponds to the case

(3). Complete spectral expansions for the respective mean values were obtained.

However, the case (2) has had a slow development. To make explicit the reason

for this, we begin with the expression

M(Lψ, g) = lim
(u,v)→( 1

2 ,
1
2 )

∫ ∞

−∞
Lψ(u + it)Lψ(v̄ + it)g(t)dt,
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for the cases (1), (2); and in (3) the same holds with a residual contribution added.

In the region of absolute convergence, the off-diagonal part of the last integral is

an (extended) additive divisor sum:

Df (ψ,W ) =

∞∑

n=1

aψ(n)aψ(n+ f)W (n/f), f > 0,

where W , entire in (u, v), is derived from g in a natural way; note that the Mellin

transform of W decays rapidly but much slower than exponentially. We then

encounter a very basic problem: how to capture Df (ψ,W ) in the context of the

Γ-automorphy structure. To this end, Good and we exploited, respectively, the

facts: in the case (1) exp is an ‘additive’ character and in (3) aψ = σc, sum of

powers of divisors, has an ‘inner’ structure. However, any analogous argument

does not work in the case (2), for Kν is not an additive character and aψ does not

have anything like the inner structure of σc.

To this difficulty one may approach with the following näıve idea: Try to modify

ψ so that the result is almost like a holomorphic function on the upper half plane,

while retaining the automorphy. In [4, Part XIV] we showed that this is indeed

possible, if ψ is regarded as a function not on the upper half plane but on G or

more precisely on G/K, K =
{(

cos θ
− sin θ

sin θ
cos θ

)}
. The key is the L2-structure of the

irreducible subspace V ⊂ L2(Γ\G) that contains ψ as its vector of weight zero; that

is, representations ofG in L2(Γ\G) comes into our view. Then we have the Jacquet

normalization and the Kirillov model: namely, the universal rôle of {aψ(n)} as to

be the Fourier coefficients of all vectors in V as well as the existence of the isometry

V ≃ L2(R×, d×) with d×x = dx/π|x|. That is, for any ξ ∈ L2(R×, d×), there exists

a Ψ(·, ξ) ∈ V such that Ψ (n[x]a[y], ξ) =
∑∞

n=1 aψ(n)ξ(2πny) exp(2πinx), where

n[x] =
(

1 x
1

)
, a[y] =

(√
y

1/
√
y

)
, x ∈ R, y > 0. Then, the function Ψ (n[x]a[y], ξσ)

with ξδ(y) = yδ exp(−y), δ > 0, should look like a holomorphic function on the

upper half plane.

With this, we have, for Re s > 1,

22δ(2π)s

Γ(s+ 2δ)

∫ ∞

0

{∫ 1

0

|Ψ(n[x]a[y], ξδ)|2 exp(2πifx)dx

}
ys−1dy

=

∞∑

n=1

aψ(n)aψ(n+ f)

(2n+ f)s

(
1 −

(
f

2n+ f

)2
)δ

.

The right side is essentially the (extended) additive-divisor zeta-function associ-

ated with ψ. Spectrally decompose |Ψ(·, ξδ)|2 in L2(Γ\G) and insert the result into

the left side. A full spectral decomposition of our additive divisor zeta-function

follows. Then, multiply both sides of the decomposition by a modification of the

Mellin transform of W and integrate. This procedure should give rise to a full

spectral decomposition of Df (ψ,W ) and consequently that of M(Lψ, g),... but
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only formally. To make the matter rigorous, we have to prove that the spectral

decomposition of our additive divisor zeta-function is absolutely and uniformly

convergent at least in the half-plane Re s > 1
2 and that each spectral contribution

of the result of the continuation is of polynomial growth; the former is neces-

sary because of the above limiting procedure with (u, v) → (1
2 ,

1
2 ) and the latter

because of the nature of the Mellin transform of W mentioned above. (Here Ju-

tila’s unified but approximative treatment [2] should be referred to, with which he

proved the analytic continuation and the polynomial growth of the additive-divisor

zeta-function, though leaving the full spectral decomposition open. See also [5].)

This issue was recently settled in [1] and [4, Part XV] independently. Our argu-

ment in the latter is simpler than that in the former, and similar to Ju.V. Linnik’s

on his derivation of the uniform approximate functional equation for Dirichlet L-

functions: We only replace ξδ(y) by ξδ(y, s) = yδ exp(−sy) with Re s > 0, and

|Ψ(·, ξσ)|2 by Ψ(·, ξδ(·, s))Ψ(·, ξδ(·, s̄)). This kills the exponential growth of the

annoying factor 1/Γ(s + 2δ). The absolute and uniform convergence for Re > 1
2

of the spectral decomposition of Ψ(·, ξδ(·, s))Ψ(·, ξδ(·, s̄)) can be derived from a

uniform bound for Whittaker functions with variable orders and weights, such as

given in Section 2 of [4, Part XV].

In this way we obtain, after a careful handling of the limiting procedure,

Theorem ([4, Part XV]). With the above specifications, we have, for any auto-

morphic form ψ, the spectral decomposition

M(Lψ, g) = Main term +
∑

V

+

∫
.

Here V runs over all irreducible cuspidal representations and the integral stands for

the contribution of the continuous spectrum, which occur in L2(Γ\G). All terms

are explicit with respect to the weight g and the spectral data.

Concluding remark. The first paragraph of Section 4 of [4, Part XV] should be

augmented: Harcos kindly sent us a copy of [1] in March 2007. Our exploitation of

the Kirillov model was adopted there, and the authors devised their own argument

for the analytic continuation and the polynomial growth in question. Shortly

afterward we realized that our investigations subsequent to [4, Part XIV] as well

had in fact yielded the same already, even in a simpler and more direct way as

rendered above.

References

[1] V. Blomer and G. Harcos. The spectral decomposition of shifted convolution sums. arXiv:
math/0703246.

[2] M. Jutila. The additive divisor problem and its analogs for Fourier coefficients of cusp forms.
I. Math. Z. 223 (1996), 435–461; II. ibid, 225 (1997), 625–637.

[3] Y. Motohashi. Spectral Theory of the Riemann Zeta-Function. Cambridge Univ. Press, Cam-
bridge 1997.



718 Oberwolfach Report 14/2008

[4] Y. Motohashi. A note on the mean value of the zeta and L-functions. XIV. Proc. Japan
Acad., 80A (2004), 28–33; XV. ibid, 83A (2007), 73–78.

[5] P. Sarnak. Integrals of products of eigenfunctions. Int. Math. Res. Notes, 6 (1994), 251–260.

New estimates for multidimensional Weyl sums

Scott T. Parsell

Let k and d be positive integers, and write ℓ =
(
k+d−1
k

)
. Further let P be a positive

real number, and consider the exponential sum

f(α) =
∑

x∈[1,P ]d

e




∑

|i|=k
αix

i



 ,

where xi = xi11 · · ·xidd and |i| = i1 + · · · + id. We observe that the mean value

Is,k,d(P ) =

∫

[0,1]ℓ
|f(α)|2sdα

counts solutions of the system of diophantine equations

xi

1 + · · · + xi

s = yi

1 + · · · + yi

s (|i| = k)

with xj ,yj ∈ [1, P ]d ∩ Zd for 1 ≤ j ≤ s. By applying estimates of the author [3]

for the number of solutions of the corresponding complete system, which includes

each i with 1 ≤ |i| ≤ k, and adapting the method of Ford [2], we obtain estimates

of the shape

It,k,d(P ) ≪ P 2td−kℓ+∆(t,k,d),

where ∆(t, k, d) becomes small when t≫ kd+1 log k. Next we use the large sieve to

generalize a result of Bombieri [1], which provides an upper bound for |f(α)| when

some αi is well-approximated by a rational number with moderately large denom-

inator. Combining this with the argument of Wooley [4] yields new estimates of

the shape

sup
α∈m

|f(α)| ≪ P d−σ(k,d)+ε,

where m is a suitably defined set of minor arcs. It follows that the contribution

to It+u,k,d(P ) arising from m is negligible whenever ∆(t, k, d) < 2uσ(k, d). After

making optimal choices for t and u, we obtain the asymptotic formula

Is,k,d(P ) = c(s, k, d)P 2sd−kℓ(1 +O(P−δ)),

where c(s, k, d) > 0 is the usual product of local densities, provided that

s ≥ 4d−1
6d! k

d+1(log k +O(log log k)).
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A converse theorem for Dirichlet L-functions

Alberto Perelli

(joint work with J.Kaczorowski and G.Molteni)

A well known theorem by Hamburger states that the Riemann zeta function

ζ(s) is determined by its functional equation in the following sense. Let f(s) be a

Dirichlet series, absolutely convergent for σ > 1 and such that (s−1)f(s) is entire

of finite order, and let f(s) satisfy the functional equation

π−s/2Γ
(s
2

)
f(s) = π−(1−s)/2Γ

(1 − s

2

)
f(1 − s).

Then f(s) = cζ(s) for some c ∈ C. In fact, the same conclusion holds under

somewhat weaker conditions; we refer to Piatetski-Shapiro and Raghunathan [2],

and to the literature quoted there, for an interesting discussion of the above theo-

rem, especially in connection with uniqueness properties of the Poisson summation

formula.

In general, the analogue of Hamburger’s theorem does not hold for Dirichlet

L-functions, and it is natural to address the following question: under what condi-

tions a functional equation has only one solution in the set of Dirichlet L-functions

? As we shall see in Theorem 1 below, the question essentially asks for an analog of

Hamburger’s theorem where the Euler product is added to the standard analytic

properties. We characterize the moduli q such that all the functional equations

(mod q) have only one solution in the set of Dirichlet L-functions.

We recall that [1] contains a general converse theorem for degree 1 L-functions

in the Selberg class S, namely that ζ(s) and L(s + iθ, χ) with χ primitive and

θ ∈ R are the only L-functions of degree 1 in S. Using this result and Theorem

2 below we can prove the following general version of Hamburger’s theorem for

Dirichlet L-functions. For a primitive character χ (mod q), let W (χ) be the set of

Dirichlet series F (s) satisfying the following three conditions:

(i) the coefficients a(n) of F (s) satisfy a(n) ≪ nε for every ε > 0 and (s −
1)mF (s) is an entire function of finite order for some integer m;
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(ii) logF (s) is a Dirichlet series with coefficients b(n) satisfying b(n) = 0 unless

n is a prime-power, and b(n) ≪ nϑ for some ϑ < 1/2;

(iii) F (s) satisfies the functional equation

(1)
( q
π

)s/2
Γ
(s+ a(χ)

2

)
F (s) = ωχ

( q
π

)(1−s)/2
Γ
(1 − s+ a(χ)

2

)
F (1 − s).

Note that clearly L(s, χ) belongs to W (χ), and that condition (ii) means that F (s)

is a rather general Euler product. We also denote by Q the set of non-negative

integers q 6≡ 2 (mod 4) of the form q = 2a3bm, with m square-free and (m, 6) = 1,

and satisfying at least one of the following two conditions:

(a) a ∈ {0, 2, 3, 4, 5} and b ∈ {0, 1};
(b) a ∈ {0, 2, 3} and b = 2.

Theorem 1. If q ∈ Q then W (χ) = {L(s, χ)} for every primitive character χ

(mod q), while if q /∈ Q, q 6≡ 2 (mod 4), there exists a primitive character χ (mod

q) such that W (χ) contains L(s, χ) and at least another L(s, ψ) with primitive ψ

(mod q).

As remarked in [1], the above conditions defining W (χ) can be weakened, and

still the same result follows. For example, the Ramanujan conjecture a(n) ≪ nε

in (i) is not necessary, the weaker assumption that F (s) is absolutely convergent

for σ > 1 being sufficient. Hence Theorem 1 may be expressed by saying that

for q ∈ Q, every primitive Dirichlet L-function (mod q) is characterized by the

functional equation and the multiplicativity of the coefficients.

The following result is crucial for Theorem 1 and also of independent interest.

Given q 6≡ 2 (mod 4), let sq be the map sending each primitive character χ (mod

q) into its signature s(χ) = (a(χ), τ(χ)) (parity and Gauss sum). We have

Theorem 2. The map sq is injective if and only if q ∈ Q.

Corollary. The functional equations of the L(s, χ)’s with χ primitive (mod q)

are all distinct if and only if q ∈ Q.

Theorem 1 follows at once from the Corollary and the results in [1]. Theorem

2 is based on elementary Galois theory and a certain decomposition of primitive

characters modulo prime-powers.
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Gaps between primes and Goldbach numbers

János Pintz

There are many famous conjectures about gaps between primes and Goldbach

numbers. We list some of them below (pn denotes the nth prime; g1 = 4, g2 = 6,

. . . gn denotes the nth Goldbach number, that is, the nth even natural number

which can be expressed as a sum of two primes).

Twin Prime Conjecture. pn+1 − pn = 2 infinitely often.

Bounded Gap Conjecture. There exists an absolute constant C, such that

pn+1 − pn ≤ C infinitely often.

Large Gap Conjecture for Primes. We have for every ε > 0

pn+1 − pn ≪ε p
ε
n for every n.

Statistical Large Gap Conjecture for Primes. For every ε > 0 and for all

x > x0(ε) we have at least one prime number in the interval [y, y+ yε] for almost

all y ∈ [x, 2x].

Large Gap Conjecture for Goldbach numbers.

gn+1 − gn ≪ε g
ε
n for every ε > 0.

It is well known that the Statistical Large Gap Conjecture for Primes implies

the Large Gap Conjecture for Goldbach numbers. This can be interpreted in

the way that if large gaps between primes are rare then there are no large gaps

between Goldbach numbers. In the lecture a proof of the following surprising fact

is sketched: if bounded gaps between primes are rare then there are no large gaps

between Goldbach numbers. We have to remark, however, that ‘rare’ means in

this context a much lower density than the expected one, which is C(log x)−2. To

formulate the phenomenon more simply, we state the following result.

Theorem. At least one of the following two conjectures is true:

(i) The Bounded Gap Conjecture.

(ii) The Large Gap Conjecture for Goldbach numbers.
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Eigenvalues in the large sieve inequality

Olivier Ramaré

The large sieve inequality applied to the Farey sequence [2], [4] reads
∑

q≤Q

∑

a mod ∗q

∣∣∣
∑

n≤N
ϕne(na/q)

∣∣∣
2

≤
∑

n≤N
|ϕn|2(N +Q2)

where e(α) = exp(2iπα). Notice that there are Φ(Q) =
∑

q≤Q φ(q) ∼ 3Q2/π2

fractions a/q. We are mainly concerned with the behaviour of the left-hand side

hermitian form when Q is of order
√
N . Let us denote by λ1, λ2, · · · , λN its

eigenvalues. The simplest guess would be to claim that they are all close to N ,

as happens when Q = o(
√
N), see [1]. In case N = Φ(Q), Q = 20 or Q = 25, we

plotted the distribution function D(N,Q, λ) = #{i/λi ≤ λN}/N and obtained

1 2

1

Q = 20, N = 128

1 2

1

Q = 25, N = 200

A strong asymptotic behaviour appears which is not the simplest one we men-

tioned. We further numerically show that this behaviour is not the one arising

when replacing the a/q’s by randomly chosen points, even if we force them to be at

least 1/Q2 apart. In order to confirm the existence of an asymptotic distribution,

we evaluate the moment of order 2. When Φ(Q) = N , our result states that

N−1
∑

i

(N−1λi − 1)2 = 0.4477 . . .

In general, the corresponding dispersion equals f(N/Q2) for a fairly mysterious

function f. Most of the material presented comes from [3].
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The sum of digits of primes and squares

Joël Rivat

(joint work with Christian Mauduit)

1. The sum of digits function

Let q be an integer with q > 2. Every integer n > 0 can be written uniquely in

basis q:

n =
∑

k>0

nkq
k where nk ∈ {0, . . . , q − 1}

and the sum of digits function is defined by:

σ(n) =
∑

k>0

nk.

This function has many aspects that have been studied, for instance ergodicity,

finite automata, dynamical systems, number theory.

The origin of our work is the following result of Gelfond:

Theorem A (Gelfond [6], 1968). Let m > 2, (m, q − 1) = 1. Then there exists

λ < 1 such that for all d > 1, a, r ∈ Z, we have

∑

n<N
n≡r mod d

σ(n)≡a mod m

1 =
N

md
+O(Nλ).

In the same paper Gelfond pose the following two problems:

1 Evaluate the number of prime numbers p 6 x such that σ(p) ≡ a mod m.

2 Evaluate the number of integers n 6 x such that σ(P (n)) ≡ a mod m,

where P is a suitable polynomial [for example P (n) = n2].

2. Digits and primes – Historical background

Until recently, very little was known concerning the digits of prime numbers.

We can mention a result of Sierpiński [11] (1959), recently generalized by Wolke

[12] (2005) and then by Harman [7] (2006), on prime numbers with some prescribed

digits.

Concerning Gelfond’s question, no progress was made in its original form. Let

us mention the two following variants:
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Theorem B (Fouvry–Mauduit [4, 5], 1996). For m > 2 such that (m, q− 1) = 1,

there exists C(q,m) > 0 such that for all a ∈ Z and x > 0, we have

∑

n6x
n=p or n=p1p2
σ(n)≡a mod m

1 >
C(q,m)

log log x

∑

n6x
n=p or n=p1p2

1.

Theorem C (Dartyge–Tenenbaum [1], 2005). For m > 2 with (m, q− 1) = 1 and

r > 2, there exists C(q,m, r) > 0 such that for all a ∈ Z and x > 0, we have

∑

n6x
n=p1...pr

σ(n)≡a mod m

1 >
C(q,m, r)

log log x log log log x

∑

n6x
n=p1...pr

1.

3. Digits and primes – Results

Theorem 1 (Mauduit-Rivat [8]). For α ∈ ℜe such that (q − 1)α ∈ ℜe \ Z, there

exists C(q, α) > 0 and σq(α) > 0, with
∣∣∣∣∣∣

∑

p6x

exp(2iπασ(p))

∣∣∣∣∣∣
6 C(q, α) x1−σq(α).

Corollary 1. The sequence (ασ(pn))n>1 is equidistributed modulo 1 if and only

if α ∈ ℜe \ Q (here (pn)n>1 denotes the sequence of prime numbers).

Corollary 2. For m > 2 such that (m, q − 1) = 1 and a ∈ Z, we have

∑

p6x
σ(p)≡a mod m

1 ∼ 1

m

∑

p6x

1 (x→ +∞).

4. Digits and squares – Historical background

Until recently, very little was known concerning the digits of squares. We can

mention a result of Davenport and Erdös (1952), later improved by Peter (2002)

[10].

Theorem D (Consequence of Davenport-Erdös [3], , 1952).

∑

n6x

σ(n2) ∼ (q − 1) x
log x

log q
(x→ +∞).

Erdös considered that passing from such a mean result to a local result like

the question of Gelfond “hopelessly difficult”. However, Dartyge and Tenenbaum

succeeded to obtain a positive density:
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Theorem E (Dartyge-Tenenbaum [2], 2005). For m > 2 such that (m, q−1) = 1,

there exists C(q,m) > 0 and x0(q,m) > 1 such that for all a ∈ Z and x > x0(q,m),

we have
∑

n6x
σ(n2)≡a mod m

1 > C(q,m) x.

5. Digits and squares – Results

Theorem 2 (Mauduit-Rivat [9]). For α ∈ ℜe such that (q − 1)α ∈ ℜe \ Z, there

exist C(q, α) > 0 and σq(α) > 0, with
∣∣∣∣∣∣

∑

n6x

exp(2iπασ(n2))

∣∣∣∣∣∣
6 C(q, α) x1−σq(α).

Corollary 3. The sequence (ασ(n2))n>1 is equidistributed modulo 1 if and only

if α ∈ ℜe \ Q.

Corollary 4. For m > 2 such that (m, q − 1) = 1 and a ∈ Z, we have
∑

n6x
σ(n2)≡a mod m

1 ∼ x

m
(x→ +∞).

6. Methods

For s(p), the key argument is the control of carry propagation using the van

der Corput inequality, which permits to remove almost the half of the digits.

Concerning s(n2), this idea is applied twice with a variant of the van der Corput

inequality, making possible to keep only a few digits. The rest of the proof involve

elementary but complicated analytic number theory, together with very precise

estimates of the quantities maxh∈Z |Fλ(h, α)| and
∑

06h<qλ |Fλ(h, α)| where

Fλ(h, α) = q−λ
∑

06u<qλ

exp

(
2iπ

(
ασ(u) − hu

qλ

))
.
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Statistics of zeros for families of zeta functions of curves over a finite
field

Zeév Rudnick

(joint work with Dmitry Faifman)

Let C be a smooth, projective curve of genus g > 1 defined over a finite field

Fq of cardinality q. The zeta function of the curve is defined as

ZC(u) := exp

∞∑

n=1

Nn
un

n
, |u| < 1/q

where Nn is the number of points on C with coefficients in an extension Fqn of Fq
of degree n. The zeta function is a rational function of the form

ZC(u) =
PC(u)

(1 − u)(1 − qu)

where PC(u) ∈ Z[u] is a polynomial of degree 2g, with P (0) = 1, satisfies the

functional equation

PC(u) = (qu2)gPC(
1

qu
)

and has all its zeros on the circle |u| = 1/
√
q (this is the Riemann Hypothesis for

curves - Weil’s theorem [5]). Moreover there is some unitary symplectic matrix

ΘC ∈ USp(2g), defined up to conjugacy, so that

PC(u) = det(I − u
√
qΘC)

The eigenvalues of ΘC are of the form e2πiθC,j , j = 1, . . . , 2g.

Our goal is to study the statistics of the set of angles {θj,C} as we draw C at

random from a family of hyperelliptic curves of genus g defined over Fq where q

is assumed to be odd. The family, denoted by H2g+2,q, is that of curves having

an affine equation of the form y2 = Q(x), with Q ∈ Fq[x] a monic, square-free

polynomial of degree 2g + 2. The measure on H2g+2,q is simply the uniform

probability measure on the set of such polynomials Q.

Katz and Sarnak [1] showed that for fixed genus, as C varies in H2g+2,q, the

conjugacy classes ΘC become uniformly distributed in USp(2g) in the limit of

large constant field size and fixed genus. Thus in that limit, various statistics of
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the conjugacy classes ΘC coincide with the corresponding ones in USp(2g). Our

results aim for the opposite case, of constant field size and large genus.

A fundamental statistic is the counting function of the angles. Thus for an

interval I let

NI(C) = #{j : θj,C ∈ I}
Asymptotically as g → ∞, the angles are uniformly distributed: For fixed I,

NI(C) ∼ 2g|I| .
In joint work with D. Faifman, we study the fluctuations of NI as we vary C

in H2g+2,q. This is in analogy to the work of Selberg [2, 3, 4], who studied the

fluctuations in the number N(t) of zeros of the Riemann zeta function up to height

t.

We find that for a fixed constant field, in the limit of large genus, for both the

global regime (|I| fixed) and the mesoscopic regime (|I| → 0 while 2g|I| → ∞),

the variance of NI is asymptotically 2
π2 log(2g|I|) and that the fluctuations are

Gaussian, that is for fixed a < b,

lim
g→∞

ProbH2g+2,q



a < NI − 2g|I|√
2
π2 log(2g|I|)

< b



 =
1√
2π

∫ b

a

e−x
2/2dx

An important and open challenge is the local regime, when the length of the

interval is of order 1/2g as g → ∞.

References

[1] N.M. Katz and P. Sarnak, Random matrices, Frobenius eigenvalues, and monodromy. Amer-
ican Mathematical Society Colloquium Publications, 45. American Mathematical Society,
Providence, RI, 1999.

[2] A. Selberg On the remainder in the formula for N(T ), the number of zeros of ζ(s) in the
strip 0 < t < T . Avh. Norske Vid. Akad. Oslo. I. 1944, (1944). no. 1, 1–27.

[3] A. Selberg Contributions to the theory of the Riemann zeta-function. Arch. Math. Naturvid.
48, (1946). no. 5, 89–155.

[4] A. Selberg Contributions to the theory of Dirichlet’s L-functions. Skr. Norske Vid. Akad.
Oslo. I. 1946, (1946). no. 3, 1–62.
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An improved version of the inductive method for zero-sum problems

Jan-Christoph Schlage-Puchta

(joint work with Gautami Bhowmik, Immanuel Halupczok)

Let G be a finite abelian group. Define D(G), the Davenport constant of G, to be

the least integer k such that every sequence g1, . . . , gk of elements in G contains a

non-empty subsequence gi1 , . . . , giℓ , 1 6 i1 < · · · < iℓ 6 k adding up to 0. Writing

G ∼= Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znk
with n1|n2| . . . |nk, we have the obvious lower bound
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D(G) > M(G) :=
∑k
i=1(ni − 1) + 1. While D(G) = M(G) for groups of rank 6 2

and for p-groups, in general this equality fails to hold, and at present there is no

conjecture concerning the exact value of D(G) for groups of rank > 4.

One way of proving upper bounds forD(G) is the inductive method: Decompose

G = H ⊕K. Suppose that every sequence of N elements in H contains a disjoint

system consisting of D(K) non-empty zero-sums. Then D(G) 6 N . In fact,

if g1, . . . , gN is a sequence of elements in G, write gi = (hi, ki) with hi ∈ H ,

ki ∈ K. If hi1 + · · · + hiℓ = 0 in H , then gi1 + · · · + giℓ defines an element in K,

and among sufficiently many such elements we can choose a non-empty zero-sum.

Unfortunatelly, in general this method does not give optimal bounds, which is

caused by the fact that the system of disjoint zero-sums in H can be chosen in a

variety of ways, and only one choice is actually used.

If we understand large zero-sum free subsets of K sufficiently well, this problem

can be solved. For example, let H be a fixed group, n an integer coprime to |H |,
and set G = H ⊕ Zn. Suppose that among N elements in H we can always find a

system of n−1 disjoint zero-sums, and that there are no sequences h1, . . . , hN ∈ H ,

x1, . . . , xN ∈ Zn, such that for any system of n−1 disjoint zero-sums Z1, . . . , Zn−1

among the hi we have for every i 6 n − 1 the equation
∑
j:hj∈Zi

xj = 1, then

D(G) 6 N .

To consider all pairs of sequences of length N in H and Zn is no easier then

considering all sequences of length N in G, however, we can choose zero-sums

of length 6 exp(H) whithout considering the corresponding elements in Zn, in

this way turning the problem for arbitrary n into a finite problem of size only

depending on the structure of H . We applied this to H = Z3
3 and showed that

D(G) = M(G) holds true for G = Z2
3 ⊕ Z3n. More generally, if H is a fixed finite

group, and G = H⊕Zn, we showed that D(G)−M(G) is a computable ultimately

periodic function of n.

If K is not cyclic, the structure of zero-sum free sets of maximal size is hardly

understood at all. Gao and Geroldinger conjectured, that every zero-sum free

subsequece A of Z2
n of length 2n−2 contains one element with multiplicity at least

n − 2. We proved this conjecture for n 6 19, and showed that if this conjecture

holds true for n, then D(G) = M(G) holds true for G = Z3 ⊕ Z3n.
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Fermat Quotients

Igor E. Shparlinski

(joint work with Jean Bourgain, Kevin Ford and Sergei V. Konyagin)

For a prime p and an integer a the Fermat quotient is defined as

qp(a) =
ap−1 − 1

p
.

It is well known that divisibility of Fermat quotients qp(a) by p has numerous

applications which include the Fermat Last Theorem and squarefreeness testing,

see [4, 5, 6, 11].

In particular, the smallest value ℓp of a for which qp(a) 6≡ 0 (mod p) plays a

prominent role in these applications. In this direction, H. W. Lenstra [11, Theo-

rem 3] has shown that

(1) ℓp 6

{
4(log p)2, if p > 3,
(4e−2 + o(1))(log p)2, if p→ ∞,

see also [5]. A. Granville [7, Theorem 5] has shown that in fact

(2) ℓp 6 (log p)2

for p > 5.

A very different proof of a slightly weaker bound ℓp 6 (4 + o(1))(log p)2 has

recently been obtained by Y. Ihara [9] as a by-product of the estimate

(3)
∑

ℓk<p
ℓ∈W(p)

log ℓ

ℓk
6 2 log log p+ 2 + o(1),

as p→ ∞, where the summation is take over all prime powers up to p of primes ℓ

from the set

W(p) = {ℓ prime : ℓ < p, qp(ℓ) ≡ 0 (mod p)}.
However, the proof of (3), given in [9], is conditional under the Extended Riemann

Hypothesis.

It has been conjectured by A. Granville [6, Conjecture 10] that

(4) ℓp = o((log p)1/4).

It is quite reasonable to expect a much stronger bound on ℓp. For example,

H. W. Lenstra [11] conjectures that in fact ℓp 6 3; this has been supported by ex-

tensive computation, see [3, 10]. The motivation to the conjecture (4) comes from

the fact, as it is shown in [6], that this is the weakest assumption which has some

interesting applications to the Fermat Last Theorem. Although this motivation

relating ℓp to the Fermat Last Theorem does not exist anymore, improving the

bounds (1) and (2) is still of interest and may have some other applications.
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Theorem. We have

ℓp 6 (log p)463/252+o(1)

as p→ ∞.

We note that
463

252
= 1.8373 . . . .

Following the arguments of [11], we derive the following improvement of [11,

Theorem 2].

Corollary. For every ε > 0 and a sufficiently large integer n, if an−1 ≡ 1 (mod n)

for every positive integer a 6 (log p)463/252+ε then n is squarefree.

The proof of Theorem is based on the original idea of H. W. Lenstra [11],

which relates ℓp to the distribution of smooth numbers, which we also supplement

by some recent results on the distribution of elements of multiplicative subgroups of

residue rings of J. Bourgain, S. V. Konyagin and I. E. Shparlinski [2] combined with

a bound of D. R. Heath-Brown and S. V. Konyagin [8] for Heilbronn exponential

sums.

Theorem. For every ε > 0, there is δ > 0 such that for all but O(Q1−δ) primes

p 6 Q, we have ℓp 6 (log p)5/3+ε.

The proof of this result is based on a large sieve inequality with square moduli

which is due to S. Baier and L. Zhao [1].
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Diophantine inequalities in function fields

Craig V. Spencer

Over 60 years ago, the Davenport-Heilbronn method (see [2]) was introduced to

study non-trivial integral solutions of Diophantine inequalities. Let k and s be

positive integers with k > 1, and let τ be some fixed positive real number. Suppose

that λ1, . . . , λs are non-zero real numbers, not all in rational ratio. Let N0(P,λ)

denote the number of solutions x ∈ [−P, P ]s ∩ Zs that satisfy

|λ1x
k
1 + · · · + λsx

k
s | < τ.

Plainly, in the case that k is an even number, we must impose the restriction that

the numbers λi do not all share the same sign in order to guarantee the existence

of a non-trivial solution of λ1z
k
1 + · · · + λsz

k
s = 0 in Rs. In [2], Davenport and

Heilbronn proved that if s > 2k, then N0(Pn,λ) ≫ P s−kn for a sequence (Pn)∞n=1

which increases to infinity. This sequence is determined from the convergents of

the continued fraction expansion for an irrational number of the form λi/λj , and

as a result, the sequence (Pn)∞n=1 may be arbitrarily sparse. In the last decade,

the Bentkus-Götze-Freeman version of the Davenport-Heilbronn method (see [1],

[3], [4], and [6]) has been used to establish an asymptotic formula for N0(P,λ),

valid for all large enough values of P , provided that

s > k2(log k + log log k +O(1)),

and an asymptotic lower bound for N0(P,λ), valid for all large enough values of

P , provided that

s > k(log k + log log k + 2 + o(1)).

In this talk, we use the Bentkus-Götze-Freeman version of the Davenport-Heil-

bronn method to study the analogous problem in function fields.

In order to state our main result, it is first necessary to record some notation.

Let Fq[t] denote the ring of polynomials over Fq, the finite field of q elements.

Let K∞ = Fq((1/t)) be the completion of K = Fq(t) at the infinite place. Each

non-zero element α in K∞ can be written as α =
∑

i6n ait
i, where each ai is an

element in Fq and an 6= 0. We define ordα to be n in this situation, and we

adopt the convention that ord 0 = −∞. There exists a natural non-Archimedean

valuation 〈x〉 = qord x on K∞. For any real number u, we will let û denote qu. For

a positive number x, we let Log x = max(1, logx). When k has a base-p expansion

k = a0 + a1p+ · · ·+ anp
n with 0 6 ai 6 p− 1 (0 6 i 6 n), we define γ(k) = γq(k)

by

γ(k) = a0 + a1 + · · · + an.
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Define the constant B = Bq(k) by

Bq(k) =

{
1, when k 6 2γ−2,

(1 − 2−γ(k))−1, when k > 2γ−2.

Let

sq,k = Bk(Log k + Log Log k + 2 +B Log Log k/Log k).

We are now in a position to state the main result of [5].

Theorem 1. There exists a positive absolute constant C with the following prop-

erty. Suppose that k and s are natural numbers with k > 1,

s > sq,k + Ck
√

Log Log k/Log k,

and char(Fq) ∤ k. Let τ be some fixed integer, and let λ1, . . . , λs be fixed non-zero

elements of K∞, not all in Fq(t)-rational ratio. Suppose also that the equation

λ1z
k
1 + · · ·+λsz

k
s = 0 has a non-trivial solution z in Ks

∞. Then, for all sufficiently

large positive real numbers P , the number of Fq[t]-solutions N(P ; λ) of

〈λ1x
k
1 + · · · + λsx

k
s 〉 < τ̂,

with 〈xi〉 < P̂ (1 6 i 6 s), satisfies N(P,λ) ≫ P̂ s−k.
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Higher order terms in Waring’s problem

R. C. Vaughan

(joint work with T. D. Wooley)

As usual in Waring’s problem, when k > 1, we let

R(n) = R(n; s, k)

denote the number of solutions to the equation

mk
1 + · · · +mk

s = n

in positive integers mj . Then, as first discovered by Hardy and Littlewood [1922],

provided that s is sufficiently large in terms of k there is an asymptotic formula

for R(n),

R(n) ∼ Γ(1+1/k)s

Γ(s/k) ns/k−1Ss(n) as n→ ∞

where Ss(n) denotes the singular series, defined by

Ss(n) =

∞∑

q=1

q∑

a=1
(a,q)=1

q−sS(q, a)se(−an/q)

with

S(q, a) =

q∑

r=1

e(ark/q).

In particular various values of s0 have been given for which this holds whenever

s > s0, namely

s0 = 2k (k = 3, 4, 5),

s0 = 7.2k−3 (k = 6, 7, 8),

s0 = k2(log k + log log k +O(1)) (k > 9),

by Vaughan [1986a,b], Boklan [1994], Ford [1995], repsectively.

It is known that there is some limitation on the quality of the error term which

can be obtained in the above asymptotic formula. See Loh [1996].

In this memoir we show that there are second order terms which have a similar

appearance to the main term, and which explain rather precisely the phenomenon

discovered by Loh. In principle the method described here could also be adapted to

obtain third, and higher, order terms, but the conclusions are not so illuminating

and and do not merit inclusion, especially in view of the extra complexity of the

arguments.
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Theorem 1. Suppose that s > s1 and s > 2k + 3. Then

R(n) = Γ(1+1/k)s

Γ(s/k) ns/k−1Ss(n)+ Γ(1+1/k)s−1

Γ((s−1)/k) n
(s−1−k)/kSs(n; 1)+O

(
n(s−1−k)/k−δ)

where

Ss(n; 1) =

∞∑

q=1

q∑

a=1
(a,q)=1

q−sS(q, a)s−1T (q, a)e(−an/q)

and

T (q, a) =

q∑

r=1

(
r

q
− 1

2

)
e(ark/q).

When k is even, T (q, a) = 1
2 and so Ss(n; 1) takes on a simpler form. For

convenience we define

Ts(n;w) =

∞∑

q=1

q∑

a=1
(a,q)=1

qw−sS(q, a)s−1e(−an/q).

When k is odd there is apparently no such simple relationship with an Euler

product. Indeed it is not clear that the series is always non-zero, although this

seems rather likely when s is sufficiently large. However it is quite possible that

for large s it is close to the value of its first term, 1
2 , and so is always positive. We

are able to show that it is bounded away from zero a substantial proportion of the

time. We are also able to demonstrate a close connection with Ts(n;w).

Theorem 2. (i) Suppose that k is even and s > 5. Then Ss(n : 1) converges

Ss(n; 1) = 1
2Ts(n; 0)

and Ts(n; 0) ≫ 1 uniformly in n. (ii) Suppose that s > 2k + 3. Then Ss(n : 1)

converges and there is a positive constant c such that for all sufficiently large x the

number N(x) of n 6 x with |Ss(n; 1)| > c satisfies N(x) > cx.

Theorem 3. There is an s2 = s2(k) such that whenever s > s2 there is a u0(s) > 1

such that the function G(w) defined by

G(w) =

∞∑

m=1

1

mw
Ts(n−mk;w)

is analytic for w in the strip 1 < ℜw < u0(s). Moreover G(w) has an analytic

continuation to the half–plane ℜw < u0(s), and is analytic at every point of that

half–plane except w = 1 where it has a simple pole with residue Ss(n). Finally

G(0) = −Ss(n; 1).
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Uniform distribution of (cx)3/2 (mod 1) for c ∈ Q

Mark Watkins

We describe a decade-old result of Elkies involving the equidistribution of x3/2

modulo 1, and in particular its relation to small nonzero values of x3 − y2 and

Hall’s conjecture. This is part of a more general idea of Elkies involving finding

points near varieties using lattice reduction.

Elkies shows that the inequality |x3 − y2| 6 X has no more than ≪
√
X logX

solutions with X/2 6 x 6 X . Following Hall, we first transform the problem by

writing x = 3a2 + b with a, b integral, and b ∈ (3a, 3a]. Then we expand
(

4x3

3

)1/2

= 6a3 + 3ab+
1

4

b2

a
− 1

72

b3

a3
+O

(
1√
X

)
.

Writing

y = 6a2 + 3ab+
1

4

b2

a
+ c,

we have that |4x3 − 3y2| ≪ x if and only if

(1) c =
b2

4a
− 1

72

(
b

a

)3

+O

(
1√
X

)
.

Elkies now approximates b/a within 1/
√
X by one of O(

√
X) points β on the

interval (−3, 3], and for each β will attempt to bound the number of (a, b, c) that

satisfy (1). We start by linearising b2/4a via

b2

4a
− a

4

(
β − b/a

)2
= −β

2

4
a+

β

2
b,

where the second term on the left is O
(
1/

√
X
)

by the β-approximation.
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We are then left with the three conditions:

a≪
√
X, b− aα≪ 1, c+

β2

4
a− β

2
b+

β3

72
≪ 1/

√
X,

which form an off-center box of volume O(1). If such lattices were uniformly

distributed in the 5-dimensional moduli space, we would obtain an upper bound

of O(
√
X) such (a, b, c) triples as we varied β. However, the lattices lie in the 2-

dimensional symmetric square subspace that preserves 4ac−b2 (over the algebraic

closure), as might be inferred already from the principal contribution in (1).

So instead of getting a 3-dimensional lattice problem, we can reduce to one in

only 2 dimensions, which allows the use of continued fractions. This allows Elkies

to prove theorems, whereas in most of his other contexts, only heuristic estimates

could be made. Indeed, writing

Mβ =




0 0 1/

√
X

0 1 −β√
X −β

2

√
X β2

4

√
X



 , ~δβ =
(
0, 0,−β3/72

)
,

we want ~v = (c, b, a) to satisfy ‖Mβ~v− ~δβ‖ ≪ 1, and we have that Mβ = Sym2Nβ
for

Nβ =

(
0 1/X1/4

X1/4 −X1/4 β
2

)
.

We can use continued fractions to find Tβ such that NβTβ is as small as possible,

and then M ′
β = MβSym2Tβ will similarly be small. We can then find a box

containing all ~w with ‖M ′
β ~w − ~δβ‖ ≪ 1, and the number of such ~w (summed over

all β) gives an upper bound for the number of x, y that satisfy |4x3 − 3y2| 6 X .

A computation shows that we get a box of approximate size

X1/4

q
× 1 × q

X1/4

when
∣∣β
2 − p

q

∣∣ 6
1

qX1/4 , and so a denominator of q leads to a contribution of no

more than O
(
X1/4/q

)
integral triples. Furthermore, the equi-spacing of the β

implies that each p/q appears no more than X1/4/q times, so by summing q up to

X1/4 and p coprime to q with p/q ∈ (−3, 3], we get a total bound of

≪
∑

q≪X1/4

X1/4

q
·

q∑

p=1
(p,q)=1

X1/4

q
≪

∑

q≪X1/4

X1/4

q
· X

1/4

q
· φ(q) ≪

√
X logX.

A fuller exposition appears in §4.2 of [1], and a function field analogue in §3.3.2

of the preprint [2].
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The circle method in function fields

Trevor D. Wooley

(joint work with Yu-Ru Liu)

We report on recent work joint with Yu-Ru Liu centred on the circle method in

function fields, illustrating our ideas with a consideration of Waring’s problem in

polynomial rings with coefficients from a finite field. Let Fq[t] denote the ring of

polynomials over the finite field Fq of characteristic p, and write Jkq [t] for the addi-

tive closure of the set of kth powers of polynomials in Fq[t]. Define Gq(k) to be the

least integer s satisfying the property that every polynomial in Jkq [t] of sufficiently

large degree admits a strict representation as a sum of s kth powers. We employ a

version of the Hardy-Littlewood method involving the use of smooth polynomials

in order to establish a bound of the shape Gq(k) 6 Ck log k+O(k log log k). Here,

the coefficient C is equal to 1 when k < p, and C is given explicitly in terms of

k and p when k > p, but in any case satisfies C 6 4/3. There are associated

conclusions for the solubility of diagonal equations over Fq[t].

In order to be more precise, we require some notation. First, to each exponent k

and finite field Fq we associate an integer γ = γq(k) defined in terms of p = ch(Fq)

as follows. We write k in base p, say k = a0+a1p+ · · ·+anpn, where 0 6 ai 6 p−1

(0 6 i 6 n), and then put γq(k) = a0 +a1 + · · ·+an. It is apparent that for each q

and k one has γq(k) 6 k, and also that when k > 2 and ch(Fq) ∤ k, then γq(k) > 2.

In addition, we define A = Aq(k) by putting

Aq(k) =

{
1, when ch(Fq) > k,

(1 − 2−γq(k))−1, when ch(Fq) < k.

Finally, when x is a positive real number, we write Logx for max{1, logx}, and

put

Ĝq(k) = Ak(Log k + LogLog k + 2 +ALogLog k/Logk).
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Theorem 1. There is a positive absolute constant C1 with the property that when-

ever k and q are natural numbers with ch(Fq) ∤ k, then

Gq(k) 6 Ĝq(k) + C1k
√

LogLog k/Logk.

Meanwhile, when ch(Fq)|k, one has Gq(k) = Gq(k/ch(Fq)).

Almost all work concerning Gq(k) hitherto has been restricted to those situa-

tions wherein ch(Fq) > k. Under this condition, Kubota [3, 4] established that

Gq(k) 6 2k+1, and Car [1, 2] obtained the upper bound Gq(k) 6 2k(k−1) log 2+

2k + 3.

We also discuss the density of solutions of diagonal equations in Fq[t]. Given

s, k ∈ N, and fixed coefficients ai ∈ Fq[t] (1 6 i 6 s), denote by Ns(B;a) the

number of solutions of the equation

a1x
k
1 + · · · + asx

k
s = 0, (1)

with x ∈ Fq[t]
s and ord xi 6 B (1 6 i 6 s).

Theorem 2. Let k and q be natural numbers with ch(Fq) ∤ k. There is a positive

absolute constant C2 with the property that whenever s is a natural number with

s > Ĝq(k) + C2k
√

LogLog k/Logk,

then the equation (1) satisfies the following quantitative local-to-global principle.

Let a ∈ (Fq[t] \ {0})s, and suppose that the equation (1) has non-trivial solutions

in all completions Fq(t)̟ of Fq(t). Then one has Ns(B;a) ≫ (qB)s−k.

The Lang-Tsen theory of Ci-fields shows that the equation (1) possesses a solu-

tion x ∈ Fq[t]
s \ {0} whenever s > k2. The local solubility hypothesis of Theorem

2 is consequently satisfied automatically under the same condition. Rather than

merely establishing the existence of non-trivial solutions of equation (1), we instead

supply a Hasse principle with good control of the associated density of solutions.

Our methods are based on an Fq[t]−analogue of the repeated efficient differenc-

ing process introduced in [5], and as such make use of the set of smooth polynomials

A(P,R) = {x ∈ Fq[t] : deg x 6 P and ̟ irreducible, ̟|x⇒ deg̟ 6 R}.
We also discuss analogues of Vinogradov’s mean value theorem, again obtaining

conclusions essentially free of hypotheses concerning the characteristic of the am-

bient function field.
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des Nombres, Centre Nat. Recherche Sci., Talence 1973.



Analytic Number Theory 739

[3] R. M. Kubota, Waring’s problem for Fq[x]. Ph. D. Thesis, University of Michigan, Ann Arbor
1971.

[4] R. M. Kubota, Waring’s problem for Fq[x]. Dissertationes Math. (Rozprawy Mat.) 117 (1974),
60pp.

[5] T. D. Wooley, Large improvements in Waring’s problem. Ann. of Math. (2) 135 (1992) 131–
164.

Some observations on the zeros of the Riemann zeta-function

Cem Yalçın Yıldırım

(joint work with Moubariz Z. Garaev)

1. Relations between zeros of ζ(s) and of ζ′(s)

We studied the relationships between the zeros of ζ(s) whose imaginary parts
in the upper half-plane will be denoted by γn (ordered according to the increasing
size of the ordinates), and the zeros β′ + iγ′ of ζ′(s).

Soundararajan [4] conjectured that under the Riemann Hypothesis (RH) the

statements (i) lim inf
γ′→∞

(β′ − 1

2
)(log γ′) = 0 and (ii) lim inf

γ→∞
(γ+ − γ) log γ = 0 are

equivalent. (Here γ+ is the least ordinate of a zero of ζ(s) with γ+ > γ). Zhang
[5] proved that (ii) implies (i).

We obtained the following results pertaining to this conjecture: For any β′+iγ′,
let of all ordinates of zeros of ζ(s), γc be the one for which |γc − γ′| is smallest.
For large γ′, there exists γn such that γ′ − 1 6 γn 6 γn+2 6 γ′ + 1 and

min{|γc − γ′| log γ′, |γn+2 − γn| log γn} ≪ (|β′ − 1

2
| log γ′)

1
2 .

For any β′ + iγ′ we have

|γc − γ′| ≪ |β′ − 1

2
| 12 .

Assuming RH and lim inf
γ′→∞

(β′ − 1

2
) log γ′ = 0, we have lim inf

γ′→∞
|γc − γ′| log γ′ = 0.

Assuming RH and

lim inf
γ′→∞

(β′ − 1

2
)(log γ′)(log log γ′)2 = 0,

we have lim inf
n→∞

(γn+1 − γn)(log γn) = 0.

These results and their proofs recently appeared in [1], but they have not been
announced in an international meeting prior to the March 2008 Oberwolfach work-
shop on Analytic Number Theory.

2. A modified approach to the pair correlation of zeta zeros

In deriving his original estimates for the pair correlation function for the zeros
of the Riemann zeta-function, Montgomery [3] went through the following steps.
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First, assuming RH, he obtained the explicit formula

(2σ − 1)
∑

γ

xiγ

(σ − 1
2 )2 + (t− γ)2

=

− x−
1
2

(∑

n6x

Λ(n)(
x

n
)1−σ+it

∑

n>x

Λ(n)(
x

n
)σ+it

)

− ζ′

ζ
(1 − σ + it)x

1
2−σ+it +

x
1
2 (2σ − 1)

(σ − 1 + it)(σ − it)

− x−
1
2

∞∑

n=1

(2σ − 1)x−2n

(σ − 1 − it− 2n)(σ + it+ 2n)
,

valid for σ > 1, and all x > 1. In this formula ζ′

ζ (1 − σ + it) is replaced by

− ζ′

ζ (σ − it) − log(|t| + 2) +O(1) (for s in a fixed strip to the right of σ > 1), and

the last two terms are easily replaced by upper-bound estimates. Montgomery
took σ = 3

2 , squared the modulus of both sides, and then integrated both sides
over t from 0 to T . To carry out the integration of the square of the series involving
Λ(n), Montgomery had recourse to the Parseval identity for Dirichlet series, which
he had proved together with Vaughan. The end result of this calculation was

(
T logT

2π
)−1

∑

0<γ,γ̃6T

T iα(γ−γ̃) 4

4 + (γ − γ̃)2
= (1 + o(1))T−2α logT + α+ o(1),

as T → ∞, uniformly for 0 6 α 6 1− ε. (Here γ and γ̃ run through the ordinates
of the nontrivial zeros of ζ(s)). Montgomery then went on to deduce results on the
gaps between zeta zeros and the proportion of simple zeros, and also formulated
his pair correlation conjecture along with connections to random matrix theory.

In our approach we take Montgomery’s explicit formula with σ = 5
2 , and sum

both sides over t = γ̃ ∈ [0, T ]. Evaluating the sums involving Λ(n) using the
Landau-Gonek formula [2]

∑

0<γ6T

xρ = − T

2π
Λ(x) +O(x log 2xT log log 3x)

+O(log xmin(T,
x

〈x〉 )) +O(log 2T min(T,
1

log x
))

which holds uniformly for x, T > 1, we obtain the same estimate as Montgomery
for x = o(T/ log logT ). One possible advantage in this approach is that it allows
us to let t run through any sequence of numbers, so that we may hope to obtain
the correlation of zeta zeros with the sequence elements. For example, we can

take t to run through fractional powers of integers. Taking t = m
3
2 , and using the
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simplest van der Corput estimates for exponential sums, we found that

∑

0<γ6T

∑

m6T
2
3

4xi(γ−m
3
2 )

4 + (γ −m
3
2 )2

= x−2T
2
3 (logT +O(1)) +O((x log x)

1
2 logT )

+O(log3 T ),

which gives an asymptotic when x≪ T
1
15 /(logT )4. This research is still in a very

preliminary stage, and we are currently working on results involving t running
through various sequences. We hope to complete these calculations soon, and
provide explanations or interpretations for the results.
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