
Mathematisches Forschungsinstitut Oberwolfach

Report No. 17/2008

Arbeitsgemeinschaft:
Julia Sets of Positive Measure

Organised by
Xavier Buff (Toulouse)
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Introduction by the Organisers

A polynomial P : C → C can be considered as a dynamical system. We are
interested in the sequences (zn) defined by induction:

z0 ∈ C and zn+1 = P (zn).

The filled-in Julia set KP is the set of points z0 ∈ C for which the sequence (zn)
is bounded. This set is compact. The Julia set JP is the boundary of KP . In
particular, it has empty interior.

There is a small collection of polynomials, for instance

P (z) = zd , P (z) = z2 − 2,

for which the Julia set can be fairly easily understood, but most exhibit “fractal”
geometry and “chaotic” behavior, the analysis of which requires serious tools from
complex analysis, dynamical systems, topology, combinatorics, . . .

This subject has a fairly long history, with contributions by Koenigs, Schröder,
Böttcher in the late 19th century, and the great memoirs of Fatou and Julia around
1920.

There followed a dormant period, with notable contributions by Cremer (1936)
and Siegel (1942), and a rebirth in the 1960’s (Brolin, Guckenheimer, Jakobson).
Since the early 1980’s, partly under the impetus of computer graphics, the subject
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has grown vigorously, with major contributions by Douady, Hubbard, Sullivan,
Thurston, and more recently Lyubich, McMullen, Milnor, Shishikura, Yoccoz . . .

Fatou found sufficient conditions for the boundary of the basin of an attracting
fixed point to be a Cantor set with Lebesgue measure equal to 0. He could not
tell whether or not the measure could be positive.

For some time and until the 1990’s, the conjecture, reinforced by the analogy
with Ahlfors’s conjecture on the area of limit sets of Kleinian groups, was that no
Julia set of a polynomial could have positive area.

Results in this direction were obtained by Douady and Hubbard in the case
of hyperbolic or subhyperbolic maps, by Branner, Hubbard and McMullen in the
case of non-renormalizable cubic polynomials with an escaping critical point, by
Lyubich and Shishikura in the case of finitely renormalizable quadratic polynomials
without indifferent cycles, by Petersen in the case of quadratic polynomials having
a Siegel disk with bounded type rotation number.

In the 1990’s, Douady began to catch a glimpse of a method for Julia sets of
positive area: in the family of degree 2 polynomials with an indifferent Cremer
fixed point. Recently, we brought Douady’s method to completion.

The Arbeitsgemeinschaft Julia sets of positive measure focused on the proof of
existence of quadratic polynomials having a Julia set of positive area. It was held
March 30th–April 5th, 2008. It was attended by 36 participants.
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Michèle Audin
Talk 1—Fatou and Julia sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 873

Norbert Schappacher
Talk 2—Periodic Fatou components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 874

Federico Coglitore
Talk 3—Does the Julia set depend continuously on the polynomial? . . . . 875

Jörn Peter
Talk 4—The dynamics is controlled by the behaviour of critical points . . 876

Norbert Steinmetz
Talk 5—Existence of Cremer Points and Siegel Discs . . . . . . . . . . . . . . . . 878

Dzmitry Dudko
Talk 6—Douady-Ghys’s renormalization and Yoccoz’s theorem on the
Brjuno function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 880

Peter J. Grabner
Talk 7—The Yoccoz inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 881

Ma lgorzata Stawiska
Talk 8—Parabolic explosions in the quadratic family (via Puiseux’s
theorem) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884

Nikita Selinger
Talk 9—Digitated Siegel Disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 885

Thilo Kuessner
Talk 10—The Measurable Riemann Mapping Theorem . . . . . . . . . . . . . . . 886

Clément Hongler
Talk 11—Sullivan’s non-wandering Theorem . . . . . . . . . . . . . . . . . . . . . . . . 888

Dierk Schleicher
Talk 12—Siegel disks with Jordan Boundary and the Herman-Swiatek
Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 889

Philipp Meerkamp
Talk 13—Bounded type Siegel disks and Lebesgue measure . . . . . . . . . . . . 891

Walter Bergweiler
Talk 14—Parabolic implosion (after Douady) . . . . . . . . . . . . . . . . . . . . . . . 893

Arnaud Chéritat
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Abstracts

Talk 1—Fatou and Julia sets

Michèle Audin

Motivation: in order to find the roots of a polynomial P ∈ C[z], one may study
the iterates of the rational map:

NP (z) = z −
P (z)

P ′(z)
.

Main tool: Montel’s theorem on normal families (1903) gives a criteria for a subset
of the space of holomorphic functions to be compact.
Definition: if R ∈ C(z), the Fatou set F (R) is the set of points in a neighborhood of
which the sequence of iterates R◦n is normal; the Julia set J(R) is the complement
of the Fatou set. See [1] and [2].

I presented the first properties of these subspaces, examples and pictures (I
showed the first Julia set ever hand-drawn, from a draft of Gaston Julia). Then,
I showed that the Julia set contains the repelling and parabolic periodic points
while the Fatou set contains the attracting ones. In the case of polynomials, I
showed that

• either the critical orbits are bounded and J(R) is connected,
• or at least one critical orbit goes to infinity and J(R) has uncountably

many connected components.

In the second case, if the polynomial has degree 2, then J(R) is a Cantor set.
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I then described the moduli space of polynomials of degree 2. Such a polynomial
is conjugate to a polynomial z2 +c with c ∈ C, and this c is unique. It is conjugate
to a polynomial λz+ z2 with λ ∈ C, but this λ is not unique. The correspondence
between λ and c is given by the relation c = λ/2 − λ2/4. The Mandelbrot sets of
c (or λ) is the set of parameters for which the Julia set is connected.

I then showed a few examples to illustrate some properties of the Julia sets
according to the position of c in or out of the Mandelbrot set.

References

[1] N. Steinmetz, Rational iteration, de Gruyter Studies in Mathematics, Vol. 16, Walter de
Gruyter & Co, Berlin, 1993, Complex analytic dynamical systems.

[2] J. Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999,
Introductory lectures.

Talk 2—Periodic Fatou components

Norbert Schappacher

Let f ∈ C[z]. According to Sullivan’s non-wandering domain theorem, every
connected component of the Fatou set of f is eventually periodic under iteration
of the map f . Studying periodic components easily reduces to studying fixed ones:
U is a connected component of the Fatou set of f and f(U) = U .

It turns out that there are precisely 3 types of such U :

• immediate attracting basin of an attracting fixed point p̂ of f ,
• immediate basin of an attracting petal of a parabolic fixed point and
• Siegel disks.

These three types of components were first presented via their normal forms (after
suitable change of coordinates). Then, the proof of this classification was indicated,
passing through the classification of all possible holomorphic maps f : S → S, for
a hyperbolic Riemann surface S. This latter classification theorem is proved as
Theorem 5.2 in [1]; its application to the Fatou components (whose types are
presented in the chapters preceding this application) is given in Chapter 16 of [1].

References

[1] J. Milnor, Dynamics in One Complex Variable: Third Edition, Annals of Mathematical
Studies 160, Princeton University Press (2006).
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Talk 3—Does the Julia set depend continuously on the polynomial?

Federico Coglitore

In this talk we report on Douady’s results about continuity of the Julia set and
the filled-in Julia set with respect to the coefficients of the polynomial [1].

1. Preliminaries

For a complex polynomial f of degree d ≥ 2, viewed as a map f : C → C, we
denote by K(f) the filled-in Julia set and by J(f) the Julia set of f .

Considering a sequence {fn}n∈N of complex polynomials of degree d, fn −→ f ,
a natural question is whether (and in which sense)

K(fn)
?

−→ K(f) or J(fn)
?

−→ J(f).

First, to give a precise formulation to the problem, we define the Hausdorff metric
on the set Comp ∗(C) of non-empty compact subsets of C. For X,Y ∈ Comp ∗(C)
we say that X is contained in Y up to r if dist (x, Y ) ≤ r for any x ∈ X , and we
denote by ∂(X,Y ) the smallest r such that X ⊂ Y up to r. Then, we define the
Hausdorff distance on Comp ∗(C) as follows.

Definition (Hausdorff distance).

dH(X,Y ) := max
{

∂(X,Y ), ∂(Y,X)
}

.

Since the Hausdorff distance is defined as the maximum of two semi-distances,
continuity for map into Comp ∗(C) can be decomposed into upper and lower semi-
continuity.

If Λ is a topological space and ϕ is a map ϕ : Λ −→ Comp ∗(C), ϕ : λ 7−→ X(λ),
we consider the following notions:
Definition (Upper semi-continuity).
ϕ is said to be upper semi-continuous at λ ∈ Λ if

∀ {λn} ⊂ Λ s.t. λn → λ, ∂
(

X(λn), X(λ)
)

→ 0.
Definition (Lower semi-continuity).
ϕ is said to be lower semi-continuous at λ ∈ Λ if

∀ {λn} ⊂ Λ s.t. λn → λ, ∂
(

X(λ), X(λn)
)

→ 0.

As in the usual case of real function, a function is continuous at λ if and only if it
is both upper and lower semi-continuous there.

2. Results

Let Pd denote the set of complex polynomials of degree d, identified with the
metric space C⋆ × Cd. The following two results hold:
Theorem (Douady).

(A) The map f 7→ K(f) from Pd to Comp ∗(C) is upper semi-continuous.
(B) The map f 7→ J(f) from Pd to Comp ∗(C) is lower semi-continuous.
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As a corollary, joining (A) and (B), one obtains that if f0 is a polynomial such

that
◦

K(f0) = ∅ (that is J(f0) = K(f0)), then the two maps f 7→ K(f) and
f 7→ J(f) are continuous at f0.

By Sullivan’s non-wandering theorem (see Talk n. 11) and former results by

Fatou, we know that
◦

K(f0) 6= ∅ if and only if f0 has attracting cycles, parabolic
cycles, or Siegel disks.

Douady has also examined the effect on continuity of this three types of cycles,
proving that attracting cycles cause no discontinuity, Siegel disks cause disconti-
nuity for f 7→ J(f) but not for f 7→ K(f).

The discontinuity at polynomials having parabolic cycles is not treated in this
talk and will be proved later (Talk n. 14).

References

[1] A. Douady, Does a Julia set depend continuously on the Polynomial?, Complex dynamical
systems, Proc. Sympos. Appl. Math., vol. 49, Amer. Math. Soc., Providence, RI, (1994),
91–138.

Talk 4—The dynamics is controlled by the behaviour of critical points

Jörn Peter

Let f ∈ C[z] be a polynomial of degree d ≥ 2. A critical point of f is a point

z ∈ Ĉ := C∪{∞} with f ′(z) = 0 (where f ′(∞) = d
dz |z=0

1
f(1/z) ). By sing(f−1), we

denote the set of critical values of f , which are the images of the critical points.
sing(f−1) is exactly the set of points w where at least one branch of f−1 cannot
be defined near w.
We show that critical values (and therefore critical points) play an important role
in the dynamics of f :

(1) Every attracting basin contains a critical point and
(2) The boundary of a Siegel disc is contained in the postcritical set P (f),

which is defined as

P (f) :=

∞
⋃

n=1

sing(fn)−1.

Both results can be found in [1]. For the proof of (1), we will need Kœnigs’
Theorem:

Theorem 1 (Kœnigs). Let z0 ∈ C be a fixed point of f such that λ := f ′(z0)
satisfies 0 6= |λ| < 1. Then there exist open neighborhoods U of 0 and V of z0 and
a function S : U(0) → V (z0) such that

f(S(z)) = S(λz) for all z s.t. z, λz ∈ U.

S is uniquely determined by the condition S(0) = z0, S
′(0) = 1.
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We now show that every attracting basin contains a critical point (the attracting
basin A(z0) of an attracting fixed point z0 is the set of all points z s.t. fn(z) → z0
as n→ ∞).

Theorem 2. Let z0 be an attracting fixed point of f , i.e. λ := f ′(z0) satisfies
|λ| < 1. Then A(z0) contains a critical point of f .

Proof. Without loss of generality, we may assume that z0 = 0 and 0 < |λ| < 1
(the case where λ = 0 is trivial). Let S be as in Kœnigs’ Theorem and

R := sup{r > 0|S has an analytic continuitation to D(0, r)}.

Because
fn(S(z)) = S(λnz) → 0 as n→ ∞,

we have S(D(0, R)) ⊆ A(0). It follows by Liouville’s Theorem that R < ∞,
because S is non-constant. So there exists v such that |v| = R and S can not
be continued analytically along [0, v]. Let ϕ be the branch of f−1, defined on a
neighborhood of 0, such that ϕ(0) = 0. It follows that

ϕ(S(λz)) = S(z)

on a neighborhood of 0, which implies that z 7→ ϕ(S(λz)) cannot be continued
analytically along [0, v]. But the function z 7→ S(λz) can be continued analytically
along [0, v] (because |λ| < 1), which means that w := S(λv) ∈ sing(f−1). Hence
A(z0) contains a critical value of f , and since A(z0) is completely invariant, it also
contains a critical point of f . �

It can also be shown that every parabolic basin contains a critical point, which
implies that f has at most d − 1 attracting or parabolic cycles. This result was
improved by Douady: He showed that f has at most d− 1 non-repelling cycles.
Now we show that the postcritical set always contains the boundary of a Siegel
disc:

Theorem 3. If f has a Siegel disc D, then ∂D ⊆ P (f).

Proof. Suppose that this is not the case. Then we can find z0 ∈ ∂D and a small disc
U := D(z0, R) such that all branches of the inverses of all iterates can be defined
on U . We consider the branches ϕn of (fn)−1 that map D∩U into D. Because ϕn

is conjugate to an irrational rotation on D ∩ U , we can find a subsequence (ϕnk
)

that converges to the identity on D ∩ U . But by Montel’s Theorem, {ϕn} is a
normal family on U , which implies that (ϕnk

) actually converges to the identity
on all of U . If we choose r < R, then ϕnk

(D(z0, r)) contains D(z0, r − ε) if k is
large enough. It follows that

fnk(D(z0, r − ε)) ⊆ D(z0, r)

if k is large enough, which implies that {fnk} is normal in a neighborhood of
z0. Hence {fnk} is equicontinuous, from which it follows easily that fnk also
converges to the identity on a neighborhood V of z0. But this is impossible, since
z0 ∈ J(f) = ∂K(f), which implies that there are points in V that converge to ∞
under iteration. �
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Talk 5—Existence of Cremer Points and Siegel Discs

Norbert Steinmetz

Given any irrational α ∈ (0, 1), any rational map f of degree d with f(0) = 0 and
f ′(0) = e2πiα either has a Cremer point or else a Siegel fixed point at the origin;
which case actually occurs may and will depend on α, and a priori also on f . This
talk will discuss several results due to Cremer, Siegel, Rüssmann, Bryuno, and
Yoccoz on existence in either direction; we distinguish between results with and
without number theory. Let [a1, a2, a3, . . .] denote the continued fraction expansion
of α, and set [a1, a2, . . . , an] = pn/qn. Then the following number theoretical results
hold:

• sup
log qn+1

dqn
= ∞ implies that z = 0 is a Cremer point (Cremer [6]).

• |α−pn/qn| ≥ cq−µ
n for some c > 0, µ > 2, and all n implies that the origin

is a Siegel point (Siegel [10]).

• (∗)
∞
∑

n=1

log qn+1

qn
<∞ also implies that the origin is a Siegel point (Rüss-

mann [9] and Bryuno [3] independently).

It is remarkable that Bryuno utilised a refined version of Siegel’s method (based on
Cauchy’s calcul des limites, method of majorants), while Rüssmann used KAM the-
ory (named after Kolmogorov, Arnold, and Moser). Condition (∗) is coined after
Bryuno, although Bryuno-Rüssmann or even Bryuno-Cherry-Rüssmann condition
would be much more appropriate.

It was Yoccoz who observed that existence of Siegel discs can be proved without
number theory, and it is an irony of history that his existence proof combines two
well-known results of Fatou in function theory and integration theory. Actually
the question whether or not Siegel discs do exist could have been decided already
by Fatou (or his contemporaries), at least in the special case of Pα.

Suppose 0 < |λ| < 1; then Pλ(z) = λz + z2 (we slightly change notation) has
an attracting fixed point at z = 0, Schröder’s functional equation

Φλ ◦ Pλ = λΦλ

has a solution in the basin of attraction Aλ, normalised by Φλ(0) = 0 and Φ′
λ(0) =

1. The local inverse Ψλ = Φ−1
λ fixing the origin extends analytically to the disc

|ζ| < Rλ, but not to any larger disc, and Rλ is called the conformal radius of
the domain Uλ = Ψλ({ζ : |ζ| < Rλ}), which is occasionally called domain of
univalence (of Φλ). Since Aλ ⊂ {z : |z| < 2}, the Lemma of Schwarz applied to
ζ 7→ Ψλ(Rλζ)/2 yields Rλ ≤ 2.
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Observing that Φλ depends holomorphically on λ, Yoccoz defined the map

η(λ) = Φλ(−λ/2)

which is holomorphic and bounded on D \ {0}, hence λ = 0 is a removable singu-
larity, and η belongs to the Hardy space H∞. By a theorem of Fatou, η has radial
and nonzero boundary values a.e.–the latter follows from Fatou’s Lemma in inte-
gration theory; one may also apply the theorem of Herglotz on positive harmonic
functions like u(λ) = log 2 + log |λ| − log |η(λ)|. A simple normal family argument
shows that Pλ∗ has a Siegel disc whenever ρ(λ∗) = lim supλ→λ∗ |η(λ)| > 0, hence

• a.e. polynomial Pλ∗ has a Siegel disc about z = 0 with conformal radius
≥ ρ(λ∗) (Yoccoz [11]).

The Bryuno-Rüssmann condition is supposed to be also necessary for a rational
function (with f(0) = 0 and f ′(0) = λ∗) to have a Siegel disc; this was confirmed
by Yoccoz [11] for Pλ∗ , but remains open in the general case. Yoccoz also proved
that the radial limit Rλ∗ = limt↑1Rtλ∗ exists everywhere, and coincides with the
conformal radius of the corresponding Siegel disc (hence also with ρ(λ∗)), if there
is any, and vanishes else. This deep result was the key for Avila, Buff, Chéritat,
and Geyer (in various subsequently written papers starting with [4]) to prove the
striking result that there exists a dense subset of ∂D such that Pλ∗ has a Siegel
disc with C∞-smooth boundary1. This set has to be small, since by a result of
Carleson and Jones [5], for almost all λ∗ the Siegel disc contains the critical point
on its boundary, which is not consistent with a smooth boundary curve.
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Talk 6—Douady-Ghys’s renormalization and Yoccoz’s theorem on the
Brjuno function

Dzmitry Dudko

Let D be the unit disk in the complex plane, D∗ = D\{0} and {x} be a fractional
part of x. Assume α ∈]0, 1[ and let f0 : D → C be a univalent holomorphic map
fixing 0 with derivative e

2πiα. We would like to make the following construction:
take a sector U0 between the segment [0, 1] and its image by f0 (the one with angle
α at the vertex 0). The Riemann surface V0 obtained as the quotient of U0 with
]0, 1] identified with its image by f0 is a punctured disk. The first-return map
to U0 associated to f0 induces a holomorphic map g : V ′

0 → V0 with V ′
0 ⊆ V0.

We can identify V0 with B(0, S0)\{0} where S0 is chosen so that D∗ ⊆ V ′
0. Then

g is univalent and extends at the origin by g(0) = 0 and g′(0) = e
−2πiα1 with

α1 = {1/α}. The Douady-Ghys’s renormalized map f1 is defined as the restriction

to D of g(z), which has derivative e2πiα1 at the origin.
By restricting f0 to a disk with sufficiently small radius we can always guarantee

existence of the Douady-Ghys’s renormalization. The main technical problem is
to control the size of the renormalization domain U0.

The second renormalization f2 of f0 is just the renormalization of f1. This
process can be continued. It is by construction that fn has derivative e2πiαn at
the origin, where αn = {1/αn−1}.

Let α 6∈ Q, then 0 is called irrational indifferent fixed point which is either a
Siegel disk or a Cremer point. Let α = [a0; a1, a2, . . .] be a continued fraction for
α, α0 = {α}, αi+1 = {1/αi} = [0; ai+1, ai+2, . . .]. Then Brjuno function is by
definition

Φ(α) =

∞
∑

i=0

α0α1 . . . αi−1 log
1

αi
.

The theorem of Brjuno and Rüssmann says that if Φ(α) <∞, then any indifferent
fixed point with multiplier e2πiα is linearizable. Yoccoz refined this statement [2]
by showing that

Φ(α) + log(r) > −C,

where r is the conformal radius of the Siegel disk of f0 (if f0 has a Cremer point
then by assumption r = 0). The last inequality gives the estimate for the size of
the Siegel disk.

The purpose of the proof of Yoccoz’s inequality is to show that exist a neigh-
borhood of 0 with radius cα0α

α0

1 αα0α1

2 . . . which will not escape too far away from
0. It would mean that this neighborhood belongs to the Fatou set and so it is a
part of the Siegel disc. See [2, 1].

The idea of the proof is to construct the infinite sequence f0, f1, f2, . . . of renor-
malizations for f0, such that the desired neighborhood translates to the appropriate
neighborhood of 0 for the map f1, which translates further to the neighborhood
of 0 for the map f2 and so on. To do this it is important to control the size of the
renormalization’s domain and the closeness of fn to the rotation Rαn

= e
2πiαn . It

is easy to see that if fn is close enough to Rαn
then it is possible to take Un close
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to the sector with radius ρn close to 1, the canonical map from U0 to V0 close to

z → ( z
ρn

)
1

αn and the renormalized map fn+1 close to Rαn+1
. The crucial technical

point is to show that we can take ρn = cαn for a universal constant c. After this
it is possible to show that f0 can be iterated infinitely many times on the disk
B(0, σ), where σ = ρ0ρ

α0

1 ρα0α1

2 . . .. The rest is trivial:

log σ = −
∞
∑

i=0

α0α1 . . . αi−1 log
1

αi
+ log c(1 + α0 + α0α1 + . . .) ≥ −Φα0

+ 4 log c,

where αiαi+1 < 0.5 is a property of continued fractions.
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Talk 7—The Yoccoz inequality

Peter J. Grabner

Throughout this exposition we assume that P is a monic polynomial of degree
d > 1 with connected Julia set J(P ). Then also the filled-in Julia set K(P ) is
connected. This talk was based on material covered in [2, 3, 7].

Proposition 1 (Böttcher [1]). There exists a neighbourhood U ⊂ P1 of ∞ with
P (U) ⊆ U and analytic map ΦP : U → P1, such that ΦP (z) = z+O(1) for z → ∞
and

(1) ΦP (P (z)) = ΦP (z)d.

This function can be obtained by considering a convergent subsequence of
the sequence of functions (P ◦n(z))1/dn

(choosing the branch of the root so that
(P ◦n(z))1/dn

= z + O(1)). If K(P ) is connected, there are no critical points of
P in C \K(P ). Thus the functional equation (1) can be used to find an analytic
continuation of ΦP to C \K(P ).

This gives

Proposition 2. If K(P ) is connected, the Böttcher function ΦP extends to an
isomorphism

ΦP : C \K(P ) → C \ D,

where D = {z ∈ C | |z| < 1}.

Furthermore, gP (z) = log |ΦP (z)| is the Green function with pole at infinity for
the set K(P ) (see for instance [10]).
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Definition 1. The external ray at angle θ ∈ R/Z is defined as

RP (θ) = Φ−1
P

({

re2πiθ | r > 1
})

.

The ray RP (θ) is said to land at z0, if

lim
r↓1

Φ−1
P (re2πiθ) = z0.

A ray RP (θ) is said to be (eventually) periodic, if the sequence of rays

(P ◦n(RP (θ)))n∈N

is (eventually) periodic.

As a consequence of the simple fact that P (RP (θ)) = RP (dθ), the periodic rays
are exactly the rays RP (θ) with θ = p

q , (p, q) = 1 and (d, q) = 1. The eventually

periodic rays are those with θ = p
q , (p, q) = 1 and (d, q) > 1.

Theorem 1 (Douady’s landing theorem (cf .[2, 3])). Let P be a monic polynomial
and α ∈ J(P ) a repelling fixed point. There are finitely many external rays that
land at α. They are all periodic with the same period.

The proof uses the linearisation map ψP given as the entire solution of the
functional equation (cf. [4, 5, 11])

(2) P (ψP (z)) = ψP (λz) ψP (0) = α, ψ′
P (0) = 1, λ = P ′(α).

The crucial fact used is that C \ ψ−1
P (K(P )) has only finitely many components

U0, . . . , Uq′−1 (ordered counter-clockwise). This is proved by a length-area ar-
gument. By (2) these components are permuted cyclically by multiplication by
λ and Uj = λqUj for some q dividing q′ (we set q′ = mq). Then we have
λUj = Uj+mp (mod q′). Furthermore, each of these components contains exactly
one preimage of an external ray which is closed in the torus C∗/λq.

Proposition 3. The annulus Uj/λ
q has modulus π/(q log d).

Let R0, . . . , Rq′−1 be the external rays landing at the repelling fixed point α
ordered counter-clockwise. These rays are permuted cyclically by an application
of P by conformity (in the same way as the components Uj). Thus setting p′ = mp
we have P (Rj) = Rj+p′ (mod q′).

Definition 2. The rational number p′/q′ is called the combinatorial rotation
number of the fixed point α. The greatest common divisor m = (p′, q′) is called
the cycle number of α. We set p = p′/m and q = q′/m.

The Yoccoz inequality now bounds the multiplier λ in terms of the rotation
number of the fixed point for connected Julia sets.

Theorem 2 (The Pommerenke-Levin-Yoccoz inequality (cf. [6, 8, 9])). Let P be
a polynomial of degree d with connected Julia set J(P ) and let α ∈ J(P ) be a
repelling fixed point of P with multiplier λ, combinatorial rotation number p/q,
and cycle number m. Then there is a branch τ of logλ such that

(3)
Re(τ)

|τ − 2πip/q|2
≥

mq

2 log d
.
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The proof is based on the fact that a curve connecting z and λqz in Uj has
Poincaré length ≥ |qτ − 2πip| on the torus T = C∗/λ of area 2πRe(τ). The m
cylinders Uj/λ

q (j = 0, . . . ,m − 1) are disjoint and all have modulus π/(q log d).
Thus by an application of Grötzsch’s and Bers’ inequalities (cf. [7, Appendix B])
we get

mπ

q log d
=

m−1
∑

j=0

mod(Uj/λ
q) ≤

area(T)

|qτ − 2πip|2
=

2πRe(τ)

|qτ − 2πip|2
.

2 log 2

−2

0/1

c=eτ /2−e2τ /4

1/6

1/5

1/4

1/3

1/2

3/5

−1/6

−1/5

−1/4

0/1

−1/3

−2/5

1/2

2/5

1/3

1/4

1/5

1/6

−1/6
−1/5

−1/4

Figure 1. Geometric interpretation of the Pommerenke-Levin-
Yoccoz inequality.
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Talk 8—Parabolic explosions in the quadratic family (via Puiseux’s
theorem)

Ma lgorzata Stawiska

Consider the family of quadratic polynomials in one complex variable z: Pα(z) =
e2πiαz+ z2, α ∈ C. For each rational number p/q, Pp/q has a parabolic periodic
point at z = 0. When α is sufficiently close to p/q, this fixed point ”splits” into a
fixed point at 0 and a periodic cycle of order q, close to 0 (this motivates the name
”explosion”). A theorem of Buff and Chéritat (cf. [1], [2]) says that this cycle
depends holomorphically on the parameter α if it does not collide with another
periodic cycle. More precisely, the following holds:
For p/q rational, let R(p/q) denote the largest real number such that the iterate
P ◦q

α has no multiple fixed point for α ∈ B(p/q;R(p/q)) \ {p/q} and r(p/q) :=
(R(p/q))1/q.

Theorem 1. Let p/q be rational and let ζ = e2πip/q. Then there exists an
analytic function χ = χp/q : B(0, r(p/q)) \ {p/q} 7→ C such that χ(0) = 0,

∀δ ∈ B(0, r(p/q)) \ {0} χ(δ) 6= 0 and {χ(δ), χ(ζδ), ..., χ(ζq−1δ)} forms a cycle
of period q for Pp/q+δq .

The original proof considers geometry of the germ of the analytic surface

{P ◦q
α (z) − z = 0, α ∈ B(p/q;R(p/q))}.

It is also possible to consider P ◦q
α as a monic polynomial in the variable z (of

degree 2q) with coefficients that are functions of α holomorphic in a neighborhood
of p/q ∈ C, to argue as follows:

Proof. According to Douady and Hubbard ([3], Chapter IX), P ◦q
p/q(z) = z+Azq+1+

O(zq+2) and P ◦q
p/q+δ(z) = z+z(2πiqδ+Azq+O(δz)+O(zq+1)). We have P ◦q

p/q(z)−

z = zq+1(z−c1)...(z−cn), with all roots c1, ..., cn 6= 0 simple (since the z-derivative
of P ◦q

p/q+δ at (cj , 0) is nonzero). By Hensel’s Lemma ([4], 23.10), there exist monic

polynomials F0, F1, ..., Fn with coefficients holomorphic in δ in a neighborhood
of 0 of degrees respectively q + 1, 1, ..., 1 such that P ◦q

p/q+δ − z = F0F1 . . . Fn,

F0(z, 0) = zq+1, Fj(z, 0) = (z − cj), j = 1, ..., n. Comparing with the above form
for P ◦q

p/q+δ we see that F0(z, δ) = zF (z, δ), where F is of degree q in z, irreducible

in the ring of polynomials with coefficients holomorphic in a neighborhood of 0 in
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the δ-plane. (If F factored into a product of two nonconstant polynomials of lower
degrees, both would have a value at z = 0 of order at least 1 in δ, so the expansion
for (P ◦q

p/q+δ(z) − z)/z near δ = 0 would have have a value at z = 0 of order at

least 2 in δ, contrary to the form above where it is 2iπqδ.) The Puiseux theorem
(cf. [5], II.6.1) says that there exists a function χ defined in a neighborhood of 0,

holomorphic, with χ(0) = 0 such that F (z, δq) =
∏q−1

j=0(z − χ(e2πij/qδ)). When

δ ∈ B∗ := B(0, r(p/q)) \ {0} each root of P ◦q
p/q+δq (z) − z is simple. Thus by

the implicit function theorem, locally, they depend holomorphically on δ. Hence
since B is simply connected, χ extends to a holomorphic function on B such
that χ(e2πij/qδ) is a root of P ◦q

p/q+δq (z) − z for all δ ∈ B and all j. Note that

Pα(χ(δ)) = χ(ζδ) for α = p/q+ δq: both are solutions to P ◦q
α (z)− z = 0 and have

the same derivative at δ = 0. Hence {χ(δ), ..., χ(ζq−1δ)} form a periodic cycle of
order q for P ◦q

α as claimed. �

Using Yoccoz’s inequality and properties of external rays one can estimate
R(p/q) to be at least 1/q3 for any rational p/q in a reduced form. When α is a
Bryuno number and pk/qk is the k-th approximant of α in the continued fraction
expansion, the functions ψ(δ) = χ(δ/χ′(0)) play an important role (cf. propo-
sition 6 in [1]): If ρp/q := (2πR(p/q)/A(p/q))1/q, then the sequence {ψpk/qk

} :
B(0, ρpk/qk

) 7→ C converges uniformly on compact subsets to the linearization
map ϕα : B(0, rα) 7→ ∆α which fixes 0 with derivative 1, where ∆α is the Siegel
disk for Pα. The proof uses a normal family argument and certain convergence
results by H. Jellouli.
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Talk 9—Digitated Siegel Disks

Nikita Selinger

Let Pα(z) = e2πiαz + z2. If U and X are two measurable subsets of C and
0 < area(U) < +∞ then denote

densU (X) =
area(U ∩X)

area(U)
.

In this talk we give a sketch of the proof of the following theorem by Buff and
Cheritat (see [1]):
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Theorem 1. Assume α := [a0, a1, . . .] and θ := [0, t1, . . .] are Brjuno numbers
and let pn/qn be the approximants to α. Assume

α := [a0, a1, . . . , an, An, t1, t2, . . .]

with (An) a sequence of positive integers such that

lim sup
n→∞

qn
√

1 + logAn = 1.

Let ∆ be the Siegel disk of Pα and ∆′
n the Siegel disk of the restriction of Pαn

to
∆. For all non-empty open set U ⊂ ∆,

lim inf
n→∞

densU (∆′
n) ≥

1

2
.

This theorem is a key to proving the existence of the Julia sets with positive
measure.

The idea of the proof is to compare the dynamics with a vector field and intro-
duce sets Xn(ρ) ⊂ ∆, invariant by the flow of the vector field and prove that:

(1) for any open U compactly contained in ∆ there exist ρ with

lim inf
n→∞

densU (Xn(ρ)) ≥
1

2

and
(2) Xn(ρ) ⊂ ∆′

n for n large enough.

To prove the second statement authors show by using sector renormalization
that the Pαn

orbit of any point in Xn(ρ) remains bounded for large values of n,
therefore Xn(ρ) lies in the corresponding Siegel disk. We refer the reader to [1]
for a detailed proof of the theorem.
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Talk 10—The Measurable Riemann Mapping Theorem

Thilo Kuessner

An orientation-preserving diffeomorphism f : R2 → R2 is K-quasiconformal if the
dilatation

Df :=
| ∂f

∂z | + | ∂f
∂z |

| ∂f
∂z | − | ∂f

∂z |

satisfies

Df ≤ K,
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or equivalently, if the inequality Jac (f) ≥ 1
K ‖ Df ‖2 is satisfied with

Jac (f) =| ∂f
∂z |2 − | ∂f

∂z |2 and ‖ Df ‖=| ∂f
∂z | + | ∂f

∂z |. Yet another formulation is
to consider the Beltrami coefficient

µ :=
∂f
∂z
∂f
∂z

and to require | µ |≤ k with k := K−1
K+1 .

In dynamical systems one uses quasiconformal mappings to conjugate conformal
mappings one to another. However the quasiconformal mappings arising in this
context are usually not smooth. This makes it necessary to consider a wider class
of quasiconformal homeomorphisms.

Definition 1. An orientation-preserving homeomorphism f : R2 → R2 is K-
quasiconformal if f ∈ W 1,2

loc and its distributional derivatives satisfy

|
∂f

∂z
|≤ k |

∂f

∂z
|

almost everywhere, for k := K−1
K+1 .

A geometric characterization of K-quasiconformal homeomorphisms is given by
the Theorem of Grötzsch: An orientation-preserving homeomorphism f : R2 → R2

is K-quasiconformal if and only if the inequality

1

K
Mod (A) ≤Mod (fA) ≤ KMod (A)

holds for each annulus A.
Here, the modulus Mod (A) is defined as follows:

- if A is the annulus between two concentric circles of radius r1 and r2, then

Mod (A) :=
1

2π
log

(

r2
r1

)

,

- the modulus of annuli is invariant under conformal mappings.
The Theorem of Grötzsch can be used to show that K-quasiconformal homeo-

morphisms of the disk (for fixed K) are equicontinuous and (hence) form a compact
set.

Theorem 1. (Measurable Mapping Theorem) :
Let U ⊂ R2 open, µ ∈ L∞ (U) , ‖ µ ‖∞< 1.

Then there exists a quasiconformal homeomorphism f : U → f (U) with ∂f
∂z = µ∂f

∂z
almost everywhere,
unique up to composition with some conformal map.

The proof consists of two steps. First, if µ were R-analytic, then the problem can
be reduced to solving a certain partial differential equation. In the second step,
µ is approximated in L1-norm by R-analytic functions µε, for which a solution
fε exists by the first step. By compactness, (a subsequence of) fε converges to
some quasiconformal map f , and it is easily checked that f satisfies the Beltrami
equation for µ. See [1].
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Talk 11—Sullivan’s non-wandering Theorem

Clément Hongler

In this talk, we prove, by means of quasiconformal mappings theory, the non-
wandering theorem from Sullivan which can be stated as follows:

Theorem 1. Let P : P1 → P1 be a rational map. Then every connected component
of the Fatou set U is eventually periodic, that is, we have Pn+k(U) = Pn(U) for
some n ≥ 0, k > 0. In other words it is impossible that U is wandering, i.e. that
the iterates P (U), P 2(U), P 3(U), . . . of U are all disjoint.

In our talk we restrict ourselves to the polynomial case which is a little bit
simpler. We proceed by contradiction, assuming that there exists a wandering
component U . The fact that P is assumed polynomial allows us to suppose that
U is a simply connected domain (in the rational case we may use Baker’s lemma to
make such an assumption and this is in fact the only difference with the polynomial
case). By iterating U if necessary we can also suppose that none of the forward
images of U contains a critical point.

The technique used by Sullivan goes as follows: let G be the group of the
diffeomorphisms of the unit circle S1 that fix the points 1,−1 and i (such a diffeo-
morphism is orientation-preserving). For any element g ∈ G, we can extend g to a
diffeomorphism ĝ : D(0, 1) → D(0, 1) in such a way that the application g 7→ ĝ is
smooth. Thus we get a quasiconformal map ĝ that defines a conformal structure
(i.e. an ellipse field) on the unit disc for each g.

Fixing φ a conformal mapping from our domain U to D(0, 1) we can pull this
conformal structure back to the domain U . Call this structure µg. Notice that µg

depends smoothly on g. Now we can extend µg to the grand orbits of U , i.e. the
set

⋃

k≥1

⋃

j≥0

P−k
(

P j(U)
)

(negative exponents of P denote preimages). This can be done on the forward
iterates for U since P is a local diffeomorphism there, and on the backwards iterates
almost everywhere (except at the precritical points, but they form a subset of P1

of zero measure). Finally we extend µg on the rest of the sphere by letting µ = 0

on P1 \
⋃

k≥1

⋃

j≥0

P−k
(

P j(U)
)

.

It is easy to see that our conformal structure depends smoothly on g. Integrating
the ellipse field (using the measurable uniformization theorem) we obtain a unique
quasiconformal homeomorphism hg : P1 → P1 that has distortion µg, fixes 0, 1
and ∞ and depends smoothly on g. It is easy to show that since our polynomial
P preserves µg, the conjugated map Pg := h−1

g ◦P ◦ hg is also a polynomial of the
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same degree as P . By a dimension argument (our group G is infinite-dimensional
as a manifold and the space of polynomials of fixed degree is finite-dimensional)
and since Pg depends smoothly on g, we can find a non-constant curve [0, 1] → G,

t 7→ g(t) such that Pg(t) is constant. Let ft := hg(t) ◦ h−1
g(0). We have that

f−1
t ◦ P ◦ ft = P for all t ∈ [0, 1]. Since ft commutes with P , it has to preserve

its periodic points of given period. But since f0 is the identity and the points of
a given period form a discrete set, it must actually fix all the periodic points (act
like the identity on them), by a continuity argument. The Julia set of P must
hence be fixed since the periodic points are dense in it. We have therefore that
the boundary of our wandering domain U (which is contained in the Julia set of
P ) is fixed by ft for every t ∈ [0, 1].

Using a topological lemma, one can conclude that ft acts like the identity on the
prime ends of U . So the maps hg(t) act the same way on the prime ends of U for
all t and this contradicts the fact that g(t) is non-constant (if it were non-constant,
this would appear on the boundary of the unit disc which is by Carathéodory’s
theorem homeomorphic to the set of prime ends of U). So our construction is
impossible and we get a contradiction with the fact that U is wandering.

Eventually we give an application to the study of the Julia set of Cremer qua-
dratic polynomials. If a quadratic polynomial has a Cremer fixed (or periodic)
point, then its filled-in Julia set is equal to its Julia set. Suppose by contradiction
that there exists a bounded Fatou component V . Then it is eventually periodic
and we have that P ℓ(V ) = V for some ℓ > 0. In the second talk of this Arbeits-
gemeinschaft (by Norbert Schappacher), it has been shown that this implies the
existence of a non-Cremer non-repelling periodic point. But by Fatou-Shishikura
theorem there cannot be more than deg(P ) − 1 = 1 non-repelling periodic points
of our polynomial in C (and there is already the Cremer point by assumption). So
the filled-in Julia set has empty interior and is hence equal to the Julia set.
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Talk 12—Siegel disks with Jordan Boundary and the Herman-Swiatek
Theorem

Dierk Schleicher

A Siegel disk of a holomorphic function f is an open and simply connected
domain U so that f : U → U is conformally conjugate to an irrational rotation of
the complex unit disk D (and so that U is maximal with respect to inclusion). For
polynomials, Siegel disks are one of three possible types of Fatou components. We
consider quadratic polynomials P : z 7→ λz + z2, λ = e2πiθ, θ ∈ R/Z, so that P
has a Siegel disk U around the origin. We prove that if θ is of bounded type, (all
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Figure 2. The quadratic Julia set with the Golden mean Siegel
disk. The Julia set of the Blaschke fraction, before the surgery.
The Julia set of the modified Blaschke fraction: it is quasiconfor-
mally equivalent to the first one.

entries in the continued fraction expansion are bounded) then ∂U is a quasi-circle,
that is, the image of a Euclidean circle by a quasiconformal homeomorphism of the
complex plane. We prove this by using a Blaschke fraction B : z 7→ e2πiαz2 z−3

1−3z :

this has a Julia set containing S1, so that B : S1 → S1 is an analytic circle
homeomorphism. By the Herman-Swiatek theorem [2], when α ∈ R chosen so that
the rotation number of B on S1 equals the bounded type number θ, then this circle
homeomorphism is quasisymmetrically conjugated to the rotation z 7→ e2iπθz on
S1. We then specify a quasiconformal surgery [1, 2, 3], due to Douady and Ghys,
which sends S1 to ∂U , thus proving the claim.
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Talk 13—Bounded type Siegel disks and Lebesgue measure

Philipp Meerkamp

Suppose that θ is an irrational number of bounded type, and let

f : C → C, z 7→ e2πiθz + z2.

We call f a quadratic polynomial of bounded type. The map f has a unique critical

point c0, a Siegel disk ∆, and the postcritical set P (f) := {f◦n(c0) | n ≥ 0} is a
dense subset of ∂∆. For ε > 0, define Kε(f) = {z ∈ C | ∀ n > 0, d(z,∆) < ε}.
Denote the set of points z ∈ C with bounded orbits under iteration by f by K(f),
and note that Kε(f) = K(f) for ε large enough. McMullen proved the following
theorem in [2]:

Theorem 1. Every point p ∈ P (f) is a point of Lebesgue density of Kε(f). In
particular, every p ∈ P (f) is a point of Lebesgue density of the filled-in Julia set
K(f).

We sketched McMullen’s proof of those statements, which Arnaud Chéritat and
Xavier Buff used as a tool to show the existence of Julia sets of positive measure.1

Definition 2. A compact set Λ ⊂ C is shallow if there exists c > 0 such that
for every z ∈ Λ, 0 < r < 1, there exists a ball B disjoint from Λ that satisfies
r/c < diam B, and d(z,B) < c r.

Definition 3. Let Λ ⊂ C be closed and x ∈ Λ. Then x is a deep point of Λ
if there exist c, δ > 0 such that for all z ∈ C and r, s > 0 satisfying B(z, s) ⊂
B(x, r) − Λ, we have that s ≤ cr1+δ.

McMullen first proves three other statements:

Theorem 4. J(f) is shallow.

Theorem 5. Every point p ∈ P (f) is a deep point of Kε(f).

Lemma 6. Let A be compact. If x ∈ A is deep and ∂A is shallow, then x is a
point of Lebesgue density of A.

While lemma 6 is not difficult, the proofs of theorems 4 and 5 require a consid-
erable amount of work. For subsets A of the Riemann sphere, shallowness implies
that the box-dimension of A is smaller than 2. It is thus an easy consequence
of lemma 4 that the Hausdorff dimension of J(f) is strictly smaller than 2, an
interesting result in its own right.

The proof of lemma 5 requires two high-caliber statements: the first is a the-
orem by Herman, Świa̧tek, Douady and Ghys [4], which will provide a change of

1Note however that the Julia sets of the bounded-type quadratics f(z) = e2πiθz + z2 consid-
ered in this paper do not have have positive measure. This was shown by Petersen in 1996, see
[3].
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coordinates ϕ, conjugating f restricted to the Siegel disk to a rotation around the
origin. The second statement is proved in McMullen’s paper, and it says that the
behaviour of f close to the Siegel disk is – up to a change of coordinates by ϕ
– almost that of an irrational rotation around the origin. In particular, points
cannot drift away too quickly from the Siegel disk.

By theorem 4.9.14 from [1], the statement by Herman, Świa̧tek, Douady and
Ghys may be presented as follows:

Theorem 7. Suppose that θ is of bounded type and f(z) = e2πiθz + z2. Then
there exists a map ϕ : C → C that is k-quasiconformal and satisfies that ϕ(∆) = D

and that ϕ ◦ f ◦ ϕ−1|D is a rotation around the origin.

Let R > 0 be a large constant. In particular, DR contains K(f). Let Ω =
C − ∆, let dΩ denote the distance with respect to the Poincaré metric on Ω and
let ∆′ := f−1(∆) − ∆ be the pre-Siegel disk.

Lemma 8 (Approximate Rotations). There exists c > 0 such that the
following holds: let z ∈ Ω∩DR. Then there exist y ∈ K(f), i0 ≥ 0 and quasidisks
U, V ⊂ C open such that z ∈ U, co ∈ V ,

f i0 : (U, y) → (V, c0)

is univalent, and that for all z ∈ U ∩ Ω

log(|ϕ(f i0 (z))| − 1) ≤ log(|ϕ(z)| − 1) + c

and such that
dΩ(f i0(z),∆′) ≤ c.

In the proof of theorem 5, McMullen shows that there exist c, δ > 0 such that
given any z ∈ DR, we have that d(z,Kε(f)) ≤ c(d(z, P (f)))1+δ. Deepness of every
p ∈ P (f) in Kε(f) follows immediately. For the case K(f), choose ε large enough.

To prove the inequality, we use the approximate rotation lemma to construct a
sequence of iterates f i1(z), . . . , f iN (z) ∈ Kε(f) that lie within a bounded distance
(with respect to the Poincaré metric dΩ) of ∆′. Thus f iN (z) can be joined to a
point y′ ∈ ∂∆′ by an arc of bounded length. Taking preimages and a hyperbolic
contraction argument show that there exists a point y ∈ Kε(f) such that dΩ(z, y) ≤

c′(d(z,∆))δ′

for some c′, δ′ not depending on z. Using the fact that the Poincaré
metric dΩ and the 1/d metric on Ω are comparable (see [1], chapters 2.2 and 3.3),
the desired inequality is obtained in a standard calculation.
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Talk 14—Parabolic implosion (after Douady)

Walter Bergweiler

We discuss results of Douady [1] concerning the behavior of the Julia set J(fε) of
the function fε(z) := z + z2 + ε as ε→ 0.

We first note that a compactness argument shows that for suitable sequences
(εn) tending to 0 the limit L := limn→∞ J(fεn

) exists. It was shown in the third
talk of this Arbeitsgemeinschaft that the Julia set J(f) is a lower semicontin-
uous function of the polynomial f while the filled Julia set K(f) is an upper
semicontinuous function of f . Since J(fε) = K(fε) for ε > 0, this implies that
J(f0) ⊂ L ⊂ K(f0). One purpose of this talk is to show that these inclusions are
strict. Moreover, it is explained how the sequence (εn) has to be chosen in order
that the limit exists.

The main tool used are the (extended) Fatou coordinates

φatt : int(K(f0)) → C and ψrep : C → C,

where int(K(f0)) denotes the interior of K(f0). These Fatou coordinates are
(suitably normalized) functions satisfying

φatt(f0(z)) = φatt(z) + 1 and f0(ψrep(z)) = ψrep(z + 1).

One way to obtain the attracting Fatou coordinate φatt is as follows: First one
considers with w = M(z) := −1/z the function

F0(w) := M(f0(M−1(w))) = w + 1 +
1

w − 1
.

It can then be shown that for fixed w0 the limit

α(w) := lim
n→∞

(Fn
0 (w) − Fn

0 (w0))

exists in the halfplane {z : Re z > R} if R is sufficiently large. It follows that
α(F0(w)) = α(w) + 1 and this implies that φatt := α ◦ M satisfies the above
functional equation in the disk of radius 1/(2R) around −1/(2R). The functional
equation can then be used to extend φatt to the interior of K(f0). Similarly one
obtains a map β defined in a left halfplane satisfying β(F−1(w)) = β(w) − 1 and
then ψrep := M−1 ◦ β−1 satisfies the above functional equation. Again one can
use the functional equation to obtain an analytic continuation. What is actually
needed are “perturbed” Fatou coordinates φatt,ε and ψrep,ε satisfying the above
functional equations in suitable domains with f0 replaced by fε.

Let now a := −1/8 and b := 1/8. For each ε > 0 we have fk
ε (a) → ∞ as

k → ∞. Thus there exists a unique t(ε) with f
t(ε)−1
ε (a) < b ≤ f

t(ε)
ε (a). It is shown

that if (εn) is chosen such that the sequence
(

f
t(εn)
εn (a)

)

converges, then
(

f
t(εn)
εn

)

converges locally uniformly in int(K(f)). Moreover, the limit g : int(K(f)) → C

satisfies g ◦ f0 = f0 ◦ g and has the form g = ψrep ◦ Tσ ◦ φatt for some σ ∈ [0, 1],
where Tσ(z) = z + σ is the translation.

The behavior of J(fεn
) as n → ∞ can now be studied by iterating g. More

precisely, one has to consider the dynamics of the semigroup generated by f and g.
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If gk(z) /∈ K(f) for some z ∈ C and some k ≥ 0, then there exists a disk around
z which does not intersect J(fεn

) if n is large. If gk(z) ∈ J(f), then there exists
points zn ∈ J(fεn

) satisfying zn → z. Finally it can be shown that the set of all
z for which gk(z) ∈ int(K(f)) for all k ≥ 0 has empty interior. Combining these
results one can deduce that the limit L := limn→∞ J(fεn

) exists and is equal to
the closure of the set of all z for which there exists k ≥ 0 such that gk(z) ∈ J(f).
The limit L can be interpreted as the Julia set of the semigroup generated by f
and g.
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Talk 15—The near parabolic renormalization of Inou and Shishikura

Arnaud Chéritat

After giving a short survey on renormalization in dynamics, illustrated by the
Douady-Hubbard renormalization of quadratic-like maps, the circle maps renor-
malization, and the renormalization of logistic maps associated to the Feigenbaum
bifurcation cascade, the talk focused on the work of Inou and Shishikura concerning
the parabolic renormalization and its perturbation, the near parabolic renormal-
ization [1].

1. The parabolic renormalization

Start from an analytic map fixing 0 with multiplier 1:

f(z) = z + a2z
2 + . . .

Assume a2 6= 0, i.e. there is only one repelling and one attracting petal in a Leau
flower for the parabolic point at the origin. Let h be its horn map1 and hσ = Tσ◦h,
to be considered as a map from the repelling cylinder to itself. Conjugate hσ by
the isomorphism z 7→ e2iπz from C/Z to C∗. This yields an analytic map gσ,
defined in a neighborhood of 0 and ∞, fixing both, with multipliers 6= 0. Since
gσ = e2iπσg0, there is a unique value of σ such that g′σ(0) = 1. For this σ we get
the parabolic renormalization2 of f :

R(f)
def
= gσ.

1 The quotient of a petal by the equivalence relation z ∼ f(z) is isomorphic, via the Fatou

coordinates, to the cylinder C/Z. This quotient is referred to as the attracting/repelling cylinder.
Now take a fundamental domain Drep in the repelling petal. Take a point in the repelling cylinder.
Consider the corresponding point w in Drep. Iterate w until it falls in the attracting petal. To
such an iterate corresponds a uniquely defined point in the attracting cylinder. Identifying the
repelling and attracting cylinders to C/Z via the Fatou coordinates, this gives the horn map h.

2Note that this puts the emphasis on the upper end of the cylinder. If one prefers the lower
end, replace the conjugacy z 7→ e2iπz by z 7→ e−2iπz .



Arbeitsgemeinschaft: Julia Sets of Positive Measure 895

Since the domain of definition of gσ depends on choices, the map R is only defined
at the level of germs3 of functions, taken up to linear conjugacy.

An invariant class has been known since around 1990 (Shishikura). It consists
in all holomorphic functions f : U → C with:

• U is a connected open set,
• 0 ∈ U and f(z) = z + a2z

2 + . . . with a2 6= 0,
• f is a ramified covering from U \ {0} to C∗,
• all critical points have local degree 2,
• there is exactly one critical value.

For instance, the polynomial z+z2 belongs to this family (take U = C\{−1}. Let
us call C0 the set of maps satisfying these conditions and normalized as follows:
the critical value is equal to −1/4 (same as for z + z2). We have a well-defined
parabolic renormalization operator

R : C0 → C0

that acts on functions and not only on germs (but still agrees with the previous
operator). This R : C0 → C0 is neither injective, nor surjective.

2. Covering properties

The image C1 = R(C0) has the following property: any two maps f1, f2 ∈ C1 are
equivalent covers over C, i.e. ∃φ an isomorphism between their sets of definition
such that f2 = f1 ◦ φ. Why? Because for all map in C0, the immediate parabolic
basin U contains exactly one critical point and moreover, f is conjugated on U to

a universal map: the degree 2 Blachke product 3z2+1
3+z2 on D. Figure 3 illustrates the

covering properties of R(z + z2) ∈ C1. On the rightmost picture, the sequence of
dots materializes the image by Φ− of the grand orbit of the critical point z = −1/2
of z 7→ z + z2. We colored the plane with two colors, darker on the lower half
plane below the dots, lighter above. There is also a texture effect allowing to
visualize the verticals through the dots. On the middle picture, we pulled-back
this color scheme by the map Φ−. On the leftmost picture, we pulled once again
by Ψ+. Figure 4 is a closeup on the upper part of the left frame of the previous
one. These pictures are useful for understanding the structure of the horn maps
as infinite degree ramified covers over C.

3. Near parabolic renormalization: introducing some flexibility

The class C1 is of the form

C1 =

{

f0 ◦ φ
−1

∣

∣

∣

∣

φ : Def(f0) → C is a univalent analytic
map with φ(0) = 1, φ′(0) = 1

}

.

We view this as a ramified covering over C, with a given “Covering structure”,
which is a mix of topological data (homotopy) and analytic data (moduli). Since R
maps C1 to a strict subset of C1, it is tempting to deduce from this a non-expansion

3equivalence class for the relation f ∼ g ⇐⇒ ∃V , a neighborhood of 0, on which f and g
coincide
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Ψ+ Φ−

Φ− :
◦

K → C attracting Fatou coordinates, extended

Ψ+ : C → C repelling Fatou parameterization, extended

h = Φ− ◦ Ψ+ is the horn map

Figure 3.

Figure 4.

statement, like in Schwarz’s lemma; or even better, a strict contraction and the
existence of a unique fixed point of R in C1. However, it is not obvious how to
put a complex structure on the space of univalent maps. One way to solve this
problem is to try to loosen the invariant class. Fix f0 in C1, fix an open subset
V ⊂ Def(f0) and let

C1(V ) =







f0 ◦ φ
−1

∣

∣

∣

∣

∣

∣

φ : V → C is a univalent analytic
map with φ(0) = 1, φ′(0) = 1
and φ(V ) is a quasidisk







,

This consists in retaining only part of the covering structure. Note that “V ′ ⊂
V =⇒ C1(V ) ⊂ C1(V ′)” at the level of germs. The requirement that φ(V ) be a
quasidisk allows to put on C(V ) the complex structure inherited from Teichmüller
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Figure 5.

theory. It would not work for C1 because for f ∈ C1 even if Def(f) is a quasidisk,
Def(R(f)) is not anymore.

Theorem (Inou, Shishikura). For the domain V corresponding to what is illus-
trated in figure 5 and for some domain V ′ ⊂⊂ V , one can still define a para-
bolic renormalization R (which agrees with the previously defined R at the level of
germs) such that R(C1(V ′)) ⊂ C1(V ).

In particular R(C1(V ′)) ⊂ C1(V ′) at the level of germs. The benefits of leaving
some flexibility are manifold:

• Contraction can be proved (c.f. Inou and Shishikura, using the Teichmüller
distance between quasidisks).

• Perturbations can be done, easily: the compactness of the set of univalent
maps yields uniform lower bounds on how big the perturbations can be.

Theorem (Inou, Shishikura). Let C2
def
= C1(V ′). There exists some4 ε > 0 such

that: If f = e2iπαg with g ∈ C2 then one can define a (cylinder/near-parabolic)
renormalization of f , R(f) which belongs to e−2iπ/αC2 provided α ∈]0, ε[, and
corresponds to a return map5.

Note that if f = e2iπαg with α ∈]0, ε[ and g ∈ C2 then R(f) = e2iπβh with h ∈
C2 and β = −1

α mod Z. Moreover, the class C2 is invariant under conjugation by
z 7→ z, which transforms α into −α. Hence, a map whose continued fraction entries
are all > 1/ε is infinitely cylinder renormalizable6. Since cylinder renormalization
corresponds to return maps, the dynamics of g = R(f) is related to that of f . In
particular iterating g once corresponds to iterating f many times (roughly 1/α).

4ε = 1/23 seems to work, c.f. numerical experiments by Inou.
5one can still define a perturbed fundamental domain, Drep whose quotient is still isomorphic

to C/Z, and R(f) is still the conjugated by z 7→ e2iπz of a return map, defined on some subset
of Drep

6for the modified renormalization R′ : f 7→ s ◦ R(f) ◦ s where s(z) = z
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In the talk of X. Buff, one will see how this can be used to control the post-critical
set of polynomials Pα for some values of α.
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Talk 16—The control of the postcritical set

Xavier Buff

Our goal is to find a set S of irrational numbers such that

• for all α ∈ S, the polynomial Pα : z 7→ e2iπαz + z2 has a Siegel disk ∆α

and
• for any ε > 0 and any α ∈ S, there is an α′ ∈ S with

Area(Kα′) > (1 − ε)Area(Kα).

We saw in Talk n. 9 that if α is any Bruno number, then for suitably chosen
perturbations α′ of α, we have

Area(∆α′ ∩ ∆α) >

(

1

2
− ε

)

Area(∆α).

We easily deduce that if α is any Bruno number, then for all ε > 0 and for
suitably chosen perturbations α′ of α, we have

Area(Kα′) >

(

1

2
− ε

)

Area(Kα).

Our goal is now to promote the coefficient 1/2 − ε to 1 − ε. This will be done
in Talk n. 17.

The tools will be

• McMullen’s result on the Lebesgue density of Kα at the boundary points
of ∆α when α is of bounded type (see Talk n. 13) and

• a control of the postcritical set of Pα′ .
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Definition 1. ∂ is the Hausdorff semi-distance:

∂(X,Y ) = sup
x∈X

d(x, Y ).

Definition 2. PC(Pα) is the post-critical set of Pα : z 7→ e2iπαz + z2:

PC(Pα):=
⋃

k≥1

P ◦k
α (ωα) with ωα:= −

e2iπα

2
.

Definition 3. SN is the set of irrational numbers of bounded type whose continued
fractions have entries ≥ N .

According to Herman-Swiatek-Douady-Ghys, when α is of bounded type, the
closure of PC(Pα) is equal to the boundary of the Siegel disk ∆α. The aim of the
talk was to present the following result.

Theorem 1. There exists N such that as α′ ∈ SN tends to α ∈ SN we have

∂
(

PC(Pα′),∆α

)

→ 0,

with ∆α the Siegel disk of Pα.

In other words, there is an N such that for all ε > 0 and all α ∈ SN , if α′ ∈ SN

is close enough to α, then the Siegel disk ∆α′ is contained in the ε-neighborhood
of ∆α.

Figure 6. Illustration of Theorem 1 for α = [0, 1, 1, 1, . . .] and
α′ = [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1010, 1, 1, 1, . . .]. Light gray: ∆α.
Dark gray: ∆′

α.

In order to sktech the proof of Theorem 1, we first recalled a few things regarding
renormalization.

In order to prove that Area(∆α′) > (1/2 − ε)Area(∆α), we used Douady-Ghys
renormalization; this was the aim of Talks n. 6 and n. 9.
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• An advantage of Douady-Ghys renormalization is that it works for all
rotation numbers α.

• An inconvenient is that we have to restrict to a neighborhood of the fixed
point where the map is univalent. In the process, we lose the control of
the postcritical set.

• An alternative is to use the parabolic renormalization. Douady used it
for proving that the Julia set does not always depend continuously on the
polynomial, as explained in Talk n. 14. Shishikura used it for proving that
the boundary of the Mandelbrot set has Hausdorff dimension 2.

• An inconvenient of the parabolic renormalization is that α′ has to be close
to a parabolic parameter, not to bounded type irrational number.

In order to control the postcritical set, we use the techniques of near-parabolic
renormalization of Inou and Shishikura presented in Talk n. 15.

Definition 4. We denote by Irrat≥N the set of irrational numbers in (0, 1) whose
continued fraction has all its entries ≥ N .

• If α ∈ Irrat≥N , then f0:=Pα is renormalizable in the sense of Inou and
Shishikura and the renormalization f1:=R(f0) has rotation number −1/α
which, modulo 1 is in Irrat≥N .

• We can thus define an infinite sequence of renormalizations fj+1:=R(fj).

If α ∈ IrratN , this allows us to construct a nested sequence of open set
{

Uj(α)
}

j≥1

such that PC(Pα) ∈ Uj(α) for all j ≥ 1.

Figure 7. The open set U1(α) for α = [10, 10, 10, . . .].
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We then show that

• for all j ≥ 1, the set Uj(α) depends continuously on α,
• if α is of bounded type, then ∆(α) ⊂ Uj(α) and

∂
(

Uj(α),∆α

)

−→
j→∞

0.

The result follows easily.

Talk 17—The proof

Mat́ıas Carrasco

The main theorem of the talk is the following,

Theorem 1. There exist quadratic polynomials which have a Cremer fixed point
and a Julia set with positive Lebesgue measure.

For α ∈ C we denote by Pα the quadratic polynomial z 7→ e2πiαz + z2. Kα

denotes the filled-in Julia set (which is the complement of the basin of infinity) of
Pα and Jα denotes the Julia set.

The proof of the theorem is based on the following idea: construct inductively
a sequence of real parameters θn such that the sequence area(Kθn

) is bounded
bellow by some positive constat c. Then provided that the sequence θn converges
to some limit parameter θ whose corresponding polynomial Pθ is not linearizable,
the Julia set of this limit polynomial will have positive measure. To carry out this
construction we need an induction step that enables us to control the existence of
some cycle arbitrarily close to the origin and to control the loss of measure when
we pass from one parameter to the next. More precisely

Proposition 1 (Induction Step). There exists a non-empty set S of bounded type
irrationals such that: for all α ∈ S and all ε > 0 there exists α′ ∈ S:

• |α− α′| < ε
• Pα′ has a cycle contained in D∗(0, ε) and
• area(Kα′) ≥ (1 − ε)area(Kα)

The set S consists of bounded type irrationals, so the corresponding polyno-
mial Pα associated to a parameter α ∈ S has a Siegel disk at the origin ∆. In
particular Kα has positive area. The proposition states that we can take a special
perturbation α′ of α (also in the set S) with the mentioned properties.

Indeed we can specify a possible set S and possible perturbtions α′ as follows:
Let N be the Inou-Shishikura constant. Then we can take

SN = {α = [a0, a1, . . .] ∈ R − Q : sup ai < +∞, inf ai ≥ N}

and α′ = αn = [a0, a1, . . . , an, A,N,N, . . .], for A and n sufficiently large.
The control of the existence of some cycle near the origin is proved using the

techniques of explosion functions. We denote by pn/qn the rational approximations
of α given by the continued fraction algorithm. Then the cycle is obtained taking
the image under the explosion function at pn/qn of the qn-th roots of αn − pn/qn.
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Figure 8.

So the distance of the cycle to the origin is small if A and n are large enough. But
the control of the loss of measure is more difficult.

One central result is the following: the Siegel disk ∆n of Pαn
(restricted to ∆)

fills allmost 1/2 of the Siegel disk ∆. So the work concentrates on the promotion
of this coefficient 1/2 to a coefficient 1. We cannot do this promotion working only
with ∆n. We have to look at points that escape ∆ under iteration of Pαn

but still
remain close or eventually belong to the Siegel disk. More precisely we look at the
sets

K(δ) = {z ∈ C : ∀k ≥ 0, P k
α(z) ∈ V (δ)} and

Kn(δ) = {z ∈ C : ∀k ≥ 0, P k
αn

(z) ∈ V (δ)}

where V (δ) = δ-neighbourhood of ∆, and δ > 0. See figure 8.
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The main tools used are the following.

Theorem 2 (McMullen). Let α be a bounded type irrational and δ > 0. Then
(using the same notation as above) every point of ∂∆ is a Lebesgue density point
of K(δ).

The promotion is carried out using a bounded distortion pull-back argument,
made possible thanks to the control on the postcritical set. Here it is important
the fact that the entries of the continued fraction expansion of both α and αn are
greater than N . Finally Vitali’s covering lemma enables us to prove the following
lemma:

Lemma 1. Define ρn : (0,+∞) → [0, 1] by

ρn(δ) = dens∆(C −Kn(δ)) = area
(

(C −Kn(δ)) ∩ ∆
)

/area(∆).

Then for all δ > 0, there exist 0 < δ′ < δ and a sequence cn > 0 converging to 0
such that:

ρn(δ) ≤
3

4
ρn(δ′) + cn

If we set ρ(δ) = lim supn→+∞ ρn(δ), the lemma implies that the function ρ is
constant equal 0. Since Kn(δ) ⊂ Kαn

this implies

dens∆Kαn
→ 1

Pulling back this situation to the preimages of ∆ one obtains the desired result.
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Universitätsstraße 1
40225 Düsseldorf

Philipp Meerkamp

Department of Mathematics
Cornell University
Malott Hall
Ithaca, NY 14853-4201
USA

Erik Müller

Mathematisches Institut
Universität Münster
Einsteinstr. 62
48149 Münster

Dipl.Math. Joern Peter

Mathematisches Seminar
Christian-Albrechts-Universität Kiel
Ludewig-Meyn-Str. 4
24098 Kiel

Dr. Gereon Quick

Fachbereich Mathematik
Universität Münster
Einsteinstr. 62
48149 Münster



906 Oberwolfach Report 17/2008

Prof. Dr. Norbert Schappacher

I.R.M.A.
Universite Louis Pasteur
7, rue Rene Descartes
F-67084 Strasbourg -Cedex

Prof. Dr. Dierk Schleicher

School of Engineering and Science
Jacobs University Bremen
Postfach 750561
28725 Bremen

Dipl.Math. Nikita Selinger

School of Engineering and Science
Jacobs University Bremen
Postfach 750561
28725 Bremen

Petra Sindelarova

Department of Control Theory
Institute of Information Theory & Au-
tom.
Academy of Sciences of the Czech Republ.
P.O. Box 18
182 08 Praha 8
Czech Republic

Dr. Richard L. Stankewitz

Dept. of Mathematical Sciences
Ball State University
Muncie, IN 47306-0490
USA

Dr. Malgorzata Stawiska

Fachbereich Mathematik
Technische Universität Berlin
Sekr. MA 4-5
Straße des 17. Juni 136
10623 Berlin

Prof. Dr. Norbert Steinmetz

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44221 Dortmund

Mark Ullmann

Mathematisches Institut
Heinrich-Heine-Universität
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