
Mathematisches Forschungsinstitut Oberwolfach

Report No. 19/2008

Analysis of Boundary Element Methods

Organised by

Martin Costabel, Rennes

Ernst P. Stephan, Hannover

April 13th – April 19th, 2008

Abstract. At this workshop challenging problems in boundary element re-
search were addressed. Diverse topics from high frequency acoustics/electro-
magnetic scattering to time domain problems describing wave propagation
were covered. The central themes were the numerical analysis of the bound-
ary element method and its fast and efficient implementation.

Mathematics Subject Classification (2000): 65N38, 74S15, 80M15, 78M15, 31B10, 76M15.

Introduction by the Organisers

The workshop Analysis of Boundary Element Methods, organized by Martin Costa-
bel (Rennes) and Ernst P. Stephan (Hannover). This meeting brought together
46 experts in numerical analysis.

Boundary element methods (BEM) are well established numerical methods with
a wide range of applications. There are still many challenging problems, the aim
of this workshop was to coordinate the efforts to tackle these problems.

A central theme of many talks was the error analysis. In the following we focus
on some central aspects.

1. BEM for time dependent problems: Space-time boundary integral
equations using integral representations with the fundamental solution of
hyperbolic problems have become increasingly important in elastodynam-
ics and electrodynamics. New results were presented concerning error
analysis, stability and performance of numerical algorithms. Special at-
tention was given to efficient quadrature of retarded potentials and also
to the method of convolution quadrature for the computation of transient
acoustic waves.
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2. Stability at high frequencies: The numerical modeling of scattering
problems at higher frequencies poses practical challenges due to the need
to approximate highly oscillating functions. In addition, the analysis of
many of the standard BEM loses usefulness in the high frequency range be-
cause the constants in the stability and error estimates either grow rapidly
with the frequency of have unspecified dependency on the frequency. New
boundary element methods have been presented whose stability deterio-
rates only slowly with frequency or are even unconditionally stable for all
frequencies.

3. Fast algorithms: Multilevel approaches have produced several families
of highly efficient algorithms. Several talks reported on the applications of
the fast multipole method and on iterative techniques based on multigrid
methods, H-matrices or on Schwarz preconditioners.

4. New concepts for BEM: Topics have been here: sparse p-version BEM
with random loading, meshless methods for pseudodifferential equations,
adaptive procedures, least squares FEM-BEM coupling, p-version applied
to EFIE, BEM for eigenvalue problems.

5. Specific applications: Here the following have been addressed: Source
identification and source reconstructions in acoustics with the help of in-
verse boundary elements, BEM for Maxwell’s equations (currents and
charges boundary integral equations, shape optimization of integrated lens
antennas, electromagnetic scattering by a dielectric body), BEM for option
pricing.

The list of participants included several of the founders of the discipline of math-
ematical analysis of BEM, but also some PhD students. This mix of both estab-
lished and younger researchers created a particularly stimulating research atmo-
sphere.
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Abstracts

Robust boundary integral methods in high frequency acoustic
scattering

Ivan G. Graham

In this talk we gave a survey of robust numerical methods for computing the

scattering of a high-frequency incident plane wave uI(x) = exp(ikx · d̂) by a

bounded obstacle Ω ⊂ Rm with boundary Γ (where d̂ is a unit vector and m = 2
or 3). The scattered wave uS satisfies the Helmholtz equation:

∆uS + k2uS = 0 in Ω′ = R
d\Ω ,

subject to suitable boundary and far field conditions.
In many practical applications (where the physical wavelength is small com-

pared to the diameter of the scatterer), the wave number k is very large and the
solution is highly oscillatory. Conventional (piecewise polynomial based) numer-
ical methods have complexity which grows polynomially in k and thus become
unusable for large k.

In recent years there has been considerable interest in design of numerical meth-
ods which build in information about the asymptotic behaviour of these problems
as k → ∞. Some of these methods are (almost) uniformly accurate as the wave
number k increases, and can be realised in a computational time which is robust
in k also.

This talk gave a survey of methods of this type and their analysis, including
important contributions of other authors e.g. [1–3, 7, 8], and those of the speaker
and co-authors [5, 6, 9, 10].

The methods discussed are be based on boundary integral reformulations of the
Helmholtz equation and the key components of the algorithm design and analysis
which were discussed are:

(i) Estimates for the continuity and coercivity of the boundary integral oper-
ators explicitly in terms of k.

(ii) A proper description of the asymptotic behaviour of the solution in a for-
mat suitable for numerical analysis, by further development of the classical
asymptotics results (e.g. [4, 11]) for this problem.

(iii) Design of suitable ansatz spaces for use in the Galerkin method and the
analysis of their consistency error.

(iv) Construction of quadrature methods for the highly oscillatory Galerkin
integrals.

In the talk we described recent results in this field and some remaining open
problems.
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Efficient solution of elliptic BIEs with random loading or on a random
boundary

Alexey Chernov

(joint work with Christoph Schwab)

Many problems in computational science can be written in an abstract way as
problems of finding a unique solution u ∈ X of an implicit possibly nonlinear
equation

(1) J(u, f) = 0 in Z,

for some fixed f ∈ Y , where X,Y and Z are suitable Banach spaces. The operator
J represents the system behavior and f stands for a priori known system parame-
ters. As a model problem we consider Symm’s integral equation. LetD ⋐ R2 be an
open, simply connected, bounded domain with smooth boundary Γ := ∂D ∈ C∞
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and outer normal n. Given a function g ∈ Hs+1
loc (R2), s ∈ R≥0, find u ∈ H−1/2(Γ):

(2)

∫

Γ

G(·,y)u(y) dsy =: VΓu = γΓg in H1/2(Γ), G(x,y) = − 1

2π
log ‖x− y‖

for the single layer operator VΓ, and the Dirichlet trace operator γΓg := g|Γ.
We rewrite (2) in the general form (1) by setting J(u, g,Γ) := VΓu − γΓg and
f := {g,Γ}. Assume diam(D) < 1 to ensure unique solvability of (2) [7].

Nowadays, efficient numerical methods are well developed for many kinds of lin-
ear and nonlinear problems, which together with permanently growing computer
power allows to compute a numerical approximation of u with high accuracy. How-
ever, in many practical applications the data f are not known precisely, e.g. due to
inexact measurements or parameter calibration, errors in experiments. This makes
highly accurate deterministic computations based on some mean approximation
of the data f0 less meaningful. The remedy is given by the probabilistic modeling

f(ω) = f0 + r(ω), ω ∈ Ω,

for a suitable probability space (Ω,Σ, P ) over X consisting of the space of ”events”
Ω, σ-algebra of its subsets Σ and the probability measure P on Σ. The random field
r(ω) models deviation of the system parameters from the mean field f0 = E[f ].
Then u(ω) becomes also a random field. Note that for every fixed ω ∈ Ω the
functions u(ω) and f(ω) belong to X and Y respectively, cf. [1, 5, 6, 8, 9].

Usually, a particular solution u(ω) of (1) is of less interest than its statisti-
cal moments: mean field E[u], covariance and higher order centered moments

M̄k[u] := E[
⊗k

i=1(u − Eu)]. The simplest and the most widely used approach
for solving (1) with random parameters f = f(ω) is the Monte Carlo method,
consisting of sampling particular realizations of f(ω), finding (possibly in parallel)
corresponding solutions u(ω) and post-processing computation of the statistical
moments M̄k[u]. The major drawback of the method is the low convergence rate
O(M−1/2) w.r.t. the number of samples M [9].

We develop an alternative deterministic technique, which allows the direct
computation of M̄k[u] or its approximation, if M̄k[f ] is known. We abbrevi-

ate X(k) :=
⊗k

i=1X for some Banach space X and A(k) :=
⊗k

i=1 A for some
linear operator X → Y .

Theorem 1. [3, 5] Assume J ∈ C1(X × Y, Z) and r ∈ Lk(Ω, Y ). Then the
solution u of (1) is Fréchet differentiable, M̄k[du0[r]] ∈ X(k) exists and satisfies

(3) A(k)M̄k[du0[r]] = B(k)M̄k[r],

with Fréchet derivatives A := duJ0, B := −drJ0. Furthermore, there holds

E[ur] = u0 + o(‖r‖L1(Ω,Y )),

M̄k[ur] = M̄k[du0[r]] + o(‖r‖k
Lk(Ω,Y )), k ≥ 2.

Considering the model problem (2) on a deterministic curve Γ with random
loading γΓg(ω) = g0 +r(ω) ∈ Lk(Ω, H1/2(Γ)), we note that ur depends linearly on
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r, and the centered moments of ur and du0[r] are identical. Thus, M̄k[ur] solves
(3) with A := VΓ and B = Id [4, 9]. In the case of deterministic loading g and
randomly perturbed Γ the solution of (2) depends nonlinearly on perturbations.
In detail, let r ∈ Lk(Ω, Cα(Γ)) with α large enough and

(4) ‖r(ω)‖Cα(Γ) ≪ 1 P -almost sure.

Define Γr := {x+r(x, ω)n(x) : x ∈ Γ} the family of randomly perturbed domains.
Every sufficiently small (in the sense of (4)) perturbation r defines a bijective
mapping between Γ and Γr. The coordinate transformation in (2) gives

J(ur, r) :=

∫

Γ

G(xr ,yr)ur(yr)Jr(y) dsy − g(xr) = 0,

where xr = x + r(x, ω)n(x), yr = y + r(y, ω)n(y).

Theorem 2. [3,5] (cf. [10]) There holds J ∈ C1(H−1/2(Γ)×Cα(Γ), H1/2(Γ)) with

A := duJ = VΓ, Br := −drJ [r] =

(
∂g

∂n
−K′

Γu0

)
r −KΓ(u0r) − VΓ(u0rdivΓn),

the double layer operator KΓu :=

∫

Γ

∂

∂ny
G(·,y)u(y) dsy and its adjoint K′

Γ.

The above approach generalizes with similar arguments to other equations with
strongly elliptic Fréchet derivative duJ in two and three spatial dimensions and to
the case of several random parameters [3, 5, 9].

Both, the case of random loading g and the case of randomly perturbed bound-
ary Γ lead to the following problem: given b ∈ (H1/2(Γ))(k), find µ ∈ (H−1/2(Γ))(k):

(5) V(k)
Γ µ = b on (H1/2(Γ))(k).

Mapping properties of V(k)
Γ yield unique solvability of (5). We refer to [4, 9]

for more details. Note that the dimension of the computational domain Γk grows
linearly with k and a naive full tensor product discretization would lead to a
prohibitive number of unknowns already for the second moment problem (curse of
dimensionality). Sparse Grid methods [2,9] are known to overcome this difficulty.
In [4] we develop a deterministic p-version Sparse Grid approach, which exploits the
tensor product structure of (5) and allows to leave out the most of the unknowns
preserving the same up to the logarithmic factor convergence rate. As a result we
obtain that the problem of finding the kth statistical moment has up to logarithms
the same complexity as the problem of finding the mean field.

For p ∈ N0 we define the index set γk
p := {l ∈ Nk

0 :
∏k

i=1(li + 1) ≤ p + 1},
which relates to the hyperbolic cross, cf. [11]. Define Sγ

p := span{∏k
i=1 Lli(xi) : l ∈

γk
p ,x ∈ [−1, 1]k} with Legendre polynomials {Lj} and let P γ

p : L2(Ik) → Sγ
p be

the L2-orthogonal projection. In [4] we prove that P γ
p has the same approximation

properties as the projection onto the full tensor product space, when applied to
functions from (Hs(−1, 1))(k), s ≥ 1. Let Sγ

hp(Γ
k) be the natural conforming
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sparse discretization of (H−1/2(Γ))(k), cf. [4]. Consider the Galerkin formulation

(6) Find µhp ∈ Sγ
hp(Γ

k) :

∫

Γ

V(k)µhpvhp dsy =

∫

Γ

bvhp dsy, ∀vhp ∈ Sγ
hp(Γ

k).

Theorem 3. [4] Given b ∈ (Hs(Γ))(k), s ≥ 1/2. Let µ ∈ (H−1/2(Γ))(k) and
µhp ∈ Sγ

hp(Γ
k) be the unique solutions of (5) and (6) resp. Then ∃C(s, k) > 0:

‖µ− µhp‖(H−1/2(Γ))(k) ≤ C(s, k)

(
h

p+ 1

)s−1/2

‖b‖(Hs(Γ))(k) .

Let N be number of unknowns needed for discretization of the mean field prob-
lem, i.e. (6) with k = 1. Then for fixed mesh size h and varying p there holds
|Sγ

hp(Γ
k)| = O(N(logN)k−1) ≪ O(Nk), there the last term corresponds to the

number of unknowns needed for the full tensor product discretization of (5).
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Meshless methods for pseudodifferential equations on the sphere

T. Tran

(joint work with Q.-T. Le Gia, T.-D. Pham, I.H. Sloan, E.P. Stephan)

Let S be the unit sphere in R3. We consider pseudodifferential equations on S of
the form

(1) Lu = g,

where

Lu =

∞∑

ℓ=0

ℓ∑

m=−ℓ

L̂(ℓ)ûℓ,mYℓ,m,

and g is given on a finite set of scattered data points X = {x1, . . . ,xN} ⊂ S. Here
for ℓ = 0, 1, 2, . . . and m = −ℓ, . . . , ℓ, the functions Yℓ,m are spherical harmonics
of degree ℓ, and

ûℓ,m = 〈u, Yℓ,m〉L2(S)
.

Equation (1) arises in many areas of earth sciences; see, e.g., [1, 10].
It is assumed that L is a pseudodifferential operator of order α ∈ R, i.e., there

exists positive constants C1 and C2 such that the symbol L̂(ℓ) satisfies

(2) C1(ℓ + 1)α ≤ L̂(ℓ) ≤ C2(ℓ + 1)α

for sufficiently large ℓ. Examples are the Laplace-Beltrami operator (α = 2), the
hypersingular integral operator (α = 1), and the weakly singular integral operator
(α = −1), whose symbols are successively

−ℓ(ℓ+ 1), − ℓ(ℓ+ 1)

2ℓ+ 1
, and

1

2ℓ+ 1
.

It is well-known that L̂(ℓ) is an eigenvalue of L with associated eigenfunction Yℓ,m,
i.e.,

LYℓ,m = L̂(ℓ)Yℓ,m, ℓ = 0, 1, 2, . . . and m = −ℓ, . . . , ℓ.
If L is of order α then L maps Hs+α/2 to Hs−α/2 for all s ∈ R, where the Sobolev
space Hs is defined for any s ∈ R by

Hs = {v : S → R |
∞∑

ℓ=0

ℓ∑

m=−ℓ

(ℓ+ 1)2s|v̂ℓ,m|2 <∞}.

Let K(L) = {ℓ : L̂(ℓ) = 0}. Then

Ker(L) = span{Yℓ,m : m = −ℓ, . . . , ℓ, ℓ ∈ K(L)},
and L is not one-to-one if K(L) 6= ∅. In the case that K(L) 6= ∅ and cardK(L) <∞,
side conditions will be imposed to ensure unique solvability of (1), namely,

(3) µju = aj , j = 1, . . . ,M,

where M := dim(Ker(L)), a1, . . . , aM ∈ R are given, and µ1, . . . , µM are linear
functionals.
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We assume that {µ1, . . . , µM} is unisolvent with respect to Ker(L), i.e., for any
v ∈ Ker(L), if µjv = 0 for all j = 1, . . . ,M , then v = 0. Under the unisolvency
assumption, equations (1) and (3) have a unique solution; see [5].

Solutions to equations (1) and (3) are approximated by radial spherical basis
functions defined as follows. Let φ : [−1, 1] → R be a univariate function whose
Fourier-Legendre expansion is of the form

φ(t) =
1

4π

∞∑

ℓ=0

(2ℓ+ 1)φ̂(ℓ)Pℓ(t),

where Pℓ is the Legendre polynomial of degree ℓ, and

φ̂(ℓ) = 2π

∫ +1

−1

φ(t)Pℓ(t) dt.

By noting the addition formula for spherical harmonics (see e.g., [6]), we associate
to each data point xi ∈ X a radial spherical basis function Φi defined by

Φi(x) :=
∞∑

ℓ=0

ℓ∑

m=−ℓ

φ̂(ℓ)Yℓ,m(xi)Yℓ,m(x) = φ(x · xi), x ∈ S, i = 1, . . . , N.

An essential feature of these functions is the positive definiteness of the matrix

A = (Φi(xj))i,j=1,...,N provided that φ̂(ℓ) > 0 for an infinite number of odd ℓ and
an infinite number of even ℓ; see [8,14]. In the implementation, we choose φ to be
the Wendland function [13] satisfying

(4) c1(ℓ + 1)−τ ≤ φ̂(ℓ) ≤ c2(ℓ+ 1)−τ ∀ℓ ≥ 0,

where c1 and c2 are positive constants, and τ > 1/2.
Letting VX = span{Φ1, . . . ,ΦN}, we seek an approximate solution ũ to (1) and

(3) in the form ũ = ũ0 + ũ1 where ũ1 ∈ VX satisfies

(5) 〈Lũ1, v〉∗ = 〈g, v〉∗ ∀v ∈ VX

and ũ0 ∈ Ker(L) satisfies (cf. (3))

(6) µj ũ0 = aj − µj ũ1, j = 1, . . . ,M.

Here the inner product 〈·, ·〉∗ can be the L2-inner product (which results in the
usual Galerkin method) or the inner product in the native space (see, e.g., [3, 4])

(7) 〈v, w〉∗ = 〈v, w〉φ :=

∞∑

ℓ=0

ℓ∑

m=−ℓ

v̂ℓ,mŵℓ,m

φ̂(ℓ)
.

Since

v(xj) = 〈v,Φj〉φ ∀j = 1, . . . , N,

equation (5) in this case is in fact the collocation equation

Lũ1(xj) = g(xj), j = 1, . . . , N.

We note that the unisolvency assumption implies the unique existence of ũ0 satis-
fying (6).
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Equation (5) with the inner product (7) can be rewritten as

〈L∗ũ1, v〉L2(S)
= 〈g, v〉L2(S)

∀v ∈ VX ,

where L∗ is a pseudodifferential operator with symbol L̂∗(ℓ) = L̂(ℓ)/φ̂(ℓ). In other
words, the collocation equation for Lu = g (with L being a pseudodifferential
operator of order α) is in fact the Galerkin equation for L∗u = g (with L∗ being
a pseudodifferential operator of order α+ τ); see (2) and (4). Therefore, a unified
error analysis can be performed for both the Galerkin and collocation methods;
see [12].

It is well-known [7] that the system of equations arising from (5) is very ill-
conditioned. We study [11] a preconditioner to this system in the form of an
overlapping additive Schwarz method. A bound for the condition number of the
additive Schwarz operator is obtained by using the method of alternating projec-
tions (see e.g., [9]). This method is used in [2] which studies the Galerkin method
for elliptic equations.

Numerical experiments using data points collected by MAGSAT satellite illus-
trate our theoretical results; see [11].
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Boundary Element Methods for Eigenvalue Problems

Olaf Steinbach

(joint work with Gerhard Unger)

We consider the use of boundary integral equation methods to solve eigenvalue
problems for partial differential equations. While finite element methods lead to
linear algebraic eigenvalue problems, the use of boundary element methods may
be an interesting alternative since only a surface discretization is needed instead of
a volume mesh. As a model problem we consider the Dirichlet eigenvalue problem
for the Laplace operator,

(1) −∆u(x) = λu(x) for x ∈ Ω ⊂ R
3, u(x) = 0 for x ∈ Γ = ∂Ω,

As a first boundary integral equation approach one may consider the eigenvalue
problem (1) as a Poisson equation with a given right hand side. Then, by using
the fundamental solution of the Laplace operator one obtains a coupled boundary–
domain integral equation system to be solved. However, when using integration
by parts recursively, the volume potential can be reformulated by using surface
potentials only. In the limiting case we then obtain an equivalent nonlinear eigen-
value problem for the related real valued Helmholtz single layer potential to find
κ =

√
λ and t ∈ H−1/2(Γ) such that

(2) (Vκt)(x)
1

4π

∫

Γ

cosκ|x− y|
|x− y| t(y)dsy = 0 for x ∈ Γ, ‖t‖V0 = 1.

In order to solve the nonlinear eigenvalue problem (2) one may first consider a
Galerkin discretization of (2) where the unknown eigenvalue κ enters the stiffness
matrix. Then one may use a Newton scheme to find all zeros of the associated
characeteristic polynomial. Instead, we will use a Newton scheme to solve the
nonlinear eigenvalue problem (2) by using boundary element discretizations of
the linearized problems [6]. In this case, the convergence proof follows from the
mapping properties of all boundary integral operators involved. However, this
approach is restricted to simple eigenvalues only.

By introducing the Riesz operator J : H1/2(Γ) → H−1/2(Γ) we can formulate
the eigenvalue problem in H−1/2(Γ), i.e.

(3) L(κ)t = JVκt = 0 in H−1/2(Γ).

Then we can consider the Galerkin discretization of the related variational problem
and we can derive related quasi–optimal error estimates for both the generalized
eigenspace and the corresponding eigenvalues, see also [1–3].

It is possible to characterize the eigenvalues of the boundary integral operator Vκ

in (2) as poles of the resolvent. In particular, let κ∗ be an eigenvalue of L(κ)t = 0
with

L−1(κ) =

∞∑

k=−n

Lk(κ− κ∗)k, L−n 6= 0.



966 Oberwolfach Report 19/2008

Further, let z ∈ H−1/2(Γ) be chosen such that (L−1(κ)z, z) 6= 0. Then we can
define

ψ(κ) =
1

(L−1(κ)z, z)
.

Now, for κ∗ being a zero of ψ(κ) with multiplicity n we find the representation

ψ(κ) =
(κ− κ∗)n

(L−n(κ)z, z)
− (L−n+1(κ), z, z)

(L−n(κ)z, z)
(κ− κ∗)n+1 +O((κ− κ∗)n+2) .

In order to find the zeros of the polynomial ψ(κ) we apply a Newton scheme to
obtain Kummer’s method [4, 5]

(4) κi+1 = κi −
ψ(κi)

ψ′(κi)
= κi −

(xi, z)

(L′(κi)xi, xi)
, L(κi)xi = z .

Note that the convergence of the Newton scheme (4) is quadratic if κ∗ is a simple
pole, and linear if κ∗ is a multiple pole.

When combining the convergence results of the Galerkin approximation with
the convergence results of Kummer’s method we finally obtain quasi–optimal er-
ror estimates for both the approximate eigenvalue and the related approximate
eigenfunction. Numerical results confirm the theoretical estimates.

The proposed approach can be used to determine eigenvalues of certain partial
differential equations with boundary conditions of different type. Typical applica-
tions are the Laplace equation, and the system of linear elastostatics, both with
either Dirichlet or Neumann boundary conditions. In general, such an approach
can also be generalized to the Maxwell eigenvalue problems, but there a careful
study of the related function spaces is needed.

For an efficient realization this approach can be used within the framework of
fast boundary element methods. However, efficient and robust iterative solvers are
required for the linearized problems.
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On domain derivatives of the solution to the electromagnetic
transmission problem

Frédérique Le Louër

(joint work with Martin Costabel)

1. Introduction

This work inserts itself as a part of a thesis bearing upon the shape optimiza-
tion of integrated lens antennas [12]. The recent numerical methods to solve this
problem require the survey of the dependence of the solution to the lens antennas
radiation problem with respect to the lens. The radiation problem in question here
is an interface scattering problem described by time-harmonic Maxwell’s equations
in the sense of distributions:

curl curlE1 − κ2
1E1 = 0 in Ω,(1)

curl curlE2 − κ2
2E2 = J in Ωc(2)

with transmission conditions on the surface Γ of the domain Ω (the lens):

(3) n × E1 = n × (E2)

(4) µ−1
1 (n × curlE1) = µ−1

2 (n × curlE2)

The exterior field E2 has to verify the Silver-Müller condition :

(5) lim
r→∞

(curlE2 × x− iκrE2) = 0.

The domain Ω is assumed to be bounded and simply connected with a sufficiently
smooth boundary Γ, the support of the current density J is disjoint of Ω and is
of vanishing divergence, the constants κ1 and κ2 are the wavenumbers, µ1 and µ2

are the interior and the exterior magnetic permeabilities and n is the unit outer
normal vector to the boundary Γ.
In order to study the dependence of the solution with respect to the domain Ω,
we follow [14], [15] and [16] where Potthast has already considered the question
in the case of Helmoltz equations and Maxwell’s equations in Hölder spaces, with
Dirichet or Neumann boundary conditions. Let the operator S map the boundary
Γ onto the solution to the transmission problem. Firstly, we show a new boundary
integral equation method to solve the transmission problem following [10]. Thanks
to it, we can derive an integral representation of S(Γ) consisting of the electric
and magnetic potentials, namely

ΨEκj = κψκj + κ−1∇ψκ divΓ j

and

ΨMκm = curlψκm

where

ψκu(x) =

∫

Γ

eiκ|x−y|

4π|x− y|u(y)dσ(y),
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and their tangential traces, weakly and strongly singular boundary integral oper-
ators [5]. Secondly, we prove the Fréchet differentiability of the operator S.

2. Boundary integral equation method

If Im(κ) ≥ 0, the potential operators ΨEκ and ΨMκ are linear and continuous

from H
− 1

2
× (divΓ,Γ) into Hloc(curl,R3) and their tangential traces are linear and

continuous from H
− 1

2
× (divΓ,Γ) into itself (see [4], [5], [13] and [7]). The boundary

integral operator C∗
0 defined by :

C∗
0 = n(x) × ψ0 +

−−→
curlΓ ψ0divΓ

is continuous and invertible from H
− 1

2
× (divΓ,Γ) into itself [17].

We assume that E2 admits the following integral representation :

E2(x) =

∫

R3

eκ2|x−y|

4π|x− y|J(y)ds(y) − a(ΨEκ2
j)(x) − b(ΨMκ2

C∗
0 j)(x)) in Ω̄c

where a and b are arbitrary constants and j ∈ H
− 1

2
× (divΓ,Γ). Using the trans-

mission conditions, we derive a boundary integral equation of unknown j which is

uniquely solvable in H
− 1

2
× (divΓ,Γ) for all values κ2

2 provided some restrictions on
the constants a, b, κ1, κ2, µ1 and µ2. This method yields an integral representation
of the solution to the transmission problem.

3. Fréchet differentiability

To study the depence of the solution with respect to the domain (or the inter-
face) we are proceeding step by step. In a first time, we define some variations [9] of
the domain Ω generated by the local transformations in R3 of the form x 7→ x+r(x)
where r is a vector function defined at least in the neighbourhood of the boundary
Γ. Provided some hypothesis on r, this transformation deforms the domain Ω into
the domain Ωr with smooth boundary Γr again. This leads us back to the study
of the Fréchet differentiability of the operator S which maps r onto the solution
of the scattering problem by the interface Γr. The solution S(r) is composed of

potentials and boundary integral operators defined on H
− 1

2
× (divΓ,Γ). It is natural

to ask ourselves how to differentiate a mapping r 7→ f(r) with f belonging to
a space of functions on Γ when Γ varies. In a second time, we get around this

difficulty using the Helmholtz decomposition of H
− 1

2
× (divΓr ,Γr) (see [3] and [6]).

Since Γr is smooth, the space H
− 1

2
× (divΓr ,Γr) admits the decomposition :

H
− 1

2
× (divΓ,Γ) = ∇Γr (H

3
2 (Γr)/R)

⊕−−→
curlΓr (H

1
2 (Γr)/R).

Let the operator Pr map ∇Γrpr +
−−→
curlΓr qr onto ∇Γτr(pr) +

−−→
curlΓ τr(qr) where

τr(pr)(x) = pr(xr). This operator is continuous and invertible fromH
− 1

2
× (divΓr ,Γr)

into H
− 1

2
× (divΓ,Γ). We modify the integral representation of S(r) by inserting the
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identity P−1
r Pr = I

H
− 1

2
×

(divΓr ,Γr)
. Note that if the operator A is linear and con-

tinuous from H
− 1

2
× (divΓr ,Γr) into itself then PrAP−1

r is linear and continuous

from H
− 1

2
× (divΓ,Γ) into itself. In a third time, we prove the Fréchet differentia-

bilty [1] of a class of boundary integral operators of pseudo-homogeneous kernels
(see [13]). Finally we prove the Fréchet differentiability of the operator S and give
the transmission problem associated to the first derivative.
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[13] J.-C. Nédélec, Acoustic and Electromagnetic Equations: Integral Representations for Har-

monic Problems, J. Appl. Math. Sci., 144, Springer, Berlin, (2001).
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[15] R. Potthast, Fréchet differentiability of the solution to the acoustic Neumann scaterring

problem with respect to the domain, J. Inv. Ill-Posed Problems, 4, No. 1, (1996), 67-84.
[16] R. Potthast, Domain Derivatives in Electromagnetic Scattering, Mathematical Methods in

the Applied sciences, 19, (1996), 1157-1175.
[17] O. Steinbach, M. Windisch, Modified Combined Field Integral Equations For Electromag-

netic Scattering, Bericht 2007/6, TU Graz, (2007).



970 Oberwolfach Report 19/2008

Boundary Integral Integral Equations and Pseudodifferential
Operators

Wolfgang L. Wendland

(joint work with George C. Hsiao)

It is well known that boundary integral equations for regular elliptic boundary
value problems can be understood as pseudodifferential equations acting on the
boundary manifold provided it is smooth enough. Based on volume potentials
which for systems of elliptic differential equations are given by classical pseudo-
differential operators with symbols of rational type, this can be shown with the
classical results by Boutet de Monvel and Gerd Grubb [1–4] every regular elliptic
boundary value problem allows the reduction to a coupled system of domain and
boundary equations. For the solution in the domain and the unknown parts of the
Cauchy data on the boundary, the operators are pseudodifferential operators in
the domain, their traces on the boundary, potentials with charges on the bound-
ary, and pseudodifferential operators on the boundary. If one uses asymptotic
expansions of the classical symbols into series of symbols which are homogeneous
in the Fourier variable ξ ∈ Rn,

a ∼
∑

j∈N0

am−j , am−j(x, ξ) = a0
m−j(x, ξ) for |ξ| ≥ 1 ,

a0
m−j(x, tξ) = tm−ja0

m−j(x, ξ) for 0 < t , 0 6= ξ ∈ R
n ,

where the pseudodifferential operator of order m ∈ R is given by

A(x,D)u = (2π)−n

∫

Rn

∫

Ω

ei(x−y)·ξa(x, ξ)u(y)dydξ ;

and also for the kernel functions of Hadamard finite part integral operators,

Au(x) =
∑

|α|≤m

aα(x)Dαu(x) + p.f.

∫

Ω

k(x, x− y)u(y)dy ,

i.e., with Seeley’s pseudohomogeneous asymptotic expansions [6],

k(x, x − y) ∼
∞∑

κ

kκ+j(x, x − y) where with κ = −m− n ,

kκ+j(x, z) =

{
fκ+j(x, z) for κ+ j 6∈ N0,

fκ+j(x, z) + log |z|℘κ+j(x, z) for κ+ j ∈ N0,

fκ+j(x, tz) = tκ+jfκ+j(x, z) for 0 < t ; ℘κ+j(x, z) =
∑

|α|=κ+j

cα(x)zα ,

then it turns out that there is a beautiful correlation between the pseudohomoge-
neous terms am−j(x, ξ) , j = 0, 1, . . . , of the symbol expansion and the homoge-
neous term k−n−m+j(x, z) of the integral operator essentially given by the Fourier
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transform (see [7] and [5, Section 7.1.4]). If the integral operator is given, then

a0
m−j(x, ξ) =






∑
|α|=m−j cα(x)(iξ)α + p.f.

∫
Rn

kκ+j(x, z)e
−iξ·zdz for 0 ≤ m− j,

lim
t→∞

∫
Rn

kκ+j(x, z)ψ
(

z
t

)
e−iξ·zdz for m− j < 0,

with a C∞
0 cut–off function ψ, which is identical 1 near the origin. If the symbol

is given, then the kernels can be evaluated by

kκ+j(x, z) =





(2π)−n p.f.
∫

Rn

eix·ξa0
m−j(x, ξ)dξ for m− j < 0 ,

(2π)−n
∫

Rn

eix·ξa0
m−j(x, ξ)ψ(ξ)dξ + for m− j ≥ 0 ,

+|z|−2ℓ(2π)−n
∫

Rn

eix·ξ(−∆ξ)
ℓ
{
a0

m−j(x, ξ)
(
1 − ψ(ξ)

)}
dξ .

If m ∈ N0, then the coefficients of the differential operator can be computed as

cα(x) = (2π)−n 1

α!

{∫

Rn

∫

Ω

(y − x)αψ(y)ei(x−y)·ξdya0
m−j(x, ξ)dξ

− p.f.

∫

Ω

kκ+j(x, x − y)(y − x)αψ(y)dy
}

for |α| = m− j , 0 ≤ j ≤ m ∈ N0 .

Therefore, every pseudodifferntial operator is also an Hadamard finite part op-
erator (plus possibly a differential operator) whose pseudohomogeneous kernel
expansion is explicitly given. For m ∈ N0 and −n−m+ j ≤ 0, the finitely many
terms kκ+j(x, z) satisfy the Tricomi conditions

∫

|Θ|=1

Θαkκ+jdω(Θ) = 0 , |α| = m− j , 0 ≤ j ≤ m ∈ N0 .

Conersely, every Hadamard finite part operator whose kernel admits an asymp-
totic pseudohomogeneous expansion satisfying the Tricomi conditions, defines a
pseudodifferential operator.

Since the pseudodifferential operators with symbols of rational type satisfy
Boutet de Monvel’s transmission conditions, the boundary traces of volume poten-
tials in the domain Ω, and their traces on Γ define continuous mappings between
appropriate Sobolev–Slobodecki spaces in the domain and on the boundary.

For a simple example we demonstrate the conversion of a strongly elliptic Dirich-
let problem into a coupled strongly elliptic system of pseudodifferential equations
of domain - and boundary integral equations.

The presentation is based on some chapters of our new book [5].
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Least Squares methods for FEM-BEM coupling

Matthias Maischak

We are investigating a non-linear transmission problem for which we will derive
a fem-bem coupling formulation, based on a least squares approach, extending
ideas in [2, 3].

Let Ω ⊂ Rd be a bounded Lipschitz domain with Γ = ∂Ω. Ωc := Rd\Ω̄. Given

f ∈ L2(Ω), u0 ∈ H1/2(Γ), t0 ∈ H̃−1/2(Γ), ̺ ∈ C1[0,∞), the non-linear model
problem reads:
Find u1 ∈ H1(Ω), u2 ∈ H1

loc(Ωc) with

− div(̺(|∇u1|)∇u1) = f in Ω, ∆u2 = 0 in Ωc

u1 = u2 + u0, ̺(|∇u1|)
∂u1

∂n
=
∂u2

∂n
+ t0 on Γ

u2(x) =

{
A log |x| + o(1), d = 2
O(|x|2−d), d ≥ 3

, |x| → ∞

Let u1 be replaced by u∗. Introducing the flux θ∗ = ̺(|∇u∗|)∇u∗, the co-normal

derivative σ∗ = ̺(|∇u∗|)∂u∗

∂n and using boundary integral operators we can rewrite
the pde as a non-linear first order system:

Find (θ∗, u∗, σ∗) ∈ X := L2(Ω)d ×H1(Ω) × H̃−1/2(Γ) such that

(1) LNL(θ∗, u∗, σ∗) = F ∈ X ′ = L2(Ω)d × H̃−1(Ω) ×H1/2(Γ).

LNL : X → X ′ and F ∈ X ′ are given by

LNL(ζ, v, τ) =




̺(|∇v|)∇v − ζ
div ζ − 1

2δΓ⊗(Wv + 2ζ · n− (I −K ′)τ)
(I −K)v + V τ




F =




0

−f − 1
2δΓ ⊗ (Wu0 + 2t0 − (I −K ′)t0)

(I −K)u0 + V t0





Under appropriate assumptions on ̺ the problem is uniquely solvable [6].
Then Lu : X → X ′, the Fréchet derivative of LNL, is given by

Lu(ζ, v, τ) =




˜̺(∇u)∇v − ζ
div ζ − 1

2δΓ⊗(Wv + 2ζ · n− (I −K ′)τ)
(I −K)v + V τ
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with ˜̺(x) = ̺(|x|)Id×d + ̺′(|x|)xx′

|x| . The Newton scheme for solving (1) reads:

Let (θ(0), u(0), σ(0)) ∈ X . For n = 1, 2, 3, . . . find (θ, u, σ) ∈ X such that

(2) Lu(n−1)(θ, u, σ) = F − LNL(θ(n−1), u(n−1), σ(n−1))

and
(θ(n), u(n), σ(n)) = (θ(n−1), u(n−1), σ(n−1)) + (θ, u, σ).

We introduce the least squares functional J(ϑ,w,ξ) by

J(ϑ,w,ξ)(ζ, v, τ) := ‖Lw(ζ, v, τ) −F + LNL(ϑ,w, ξ)‖2
X′ .

Now we can rewrite the linearized problem (2) using a least squares formulation:
Find (θ, u, σ) ∈ X with

(3) J(ϑ,w,ξ)(θ, u, σ) = min
(ζ,v,τ)∈X

J(ϑ,w,ξ)(ζ, v, τ) for (ϑ,w, ξ) ∈ X.

The variational formulation of (3) reads: Find (θ, u, σ) ∈ X , s.t.

Bw((θ, u, σ), (ζ, v, τ)) = G(ϑ,w,ξ)(ζ, v, τ) ∀(ζ, v, τ) ∈ X,

with Bw((θ, u, σ), (ζ, v, τ)) = [Lw(ζ, v, τ),Lw(θ, u, σ)]X′×X′

G(ϑ,w,ξ)(ζ, v, τ) = [Lw(ζ, v, τ),F − LNL(ϑ,w, ξ)]X′×X′

Let Xh be a discrete subspace of X with the canonical imbedding Ph : X → Xh

and its adjoint P ∗
h : X ′ → X∗

h. Analogously to [1] we replace now the inner
product of the dual space X ′ by a discrete inner product on X∗

h, which is given
by standard preconditioners Ih, Bh, Ch on the discrete subspaces Hh ×Vh ×Sh of
L2(Ω)d ×H1(Ω) × H̃−1/2(Γ). I.e. Eh : X∗

h → Xh is defined by Eh(θh, uh, σh) =
(Ihθh, Bhuh, Chσh).

The discretized Newton scheme reads now: Let (θ
(0)
h , u

(0)
h , σ

(0)
h ) ∈ Xh. For

n = 1, 2, 3, . . . find (θh, uh, σh) ∈ Xh such that

(4) B
(h)

u
(n−1)
h

((θh, uh, σh), (ζh, vh, τh)) = G
(h)

(θ
(n−1)
h ,u

(n−1)
h ,σ

(n−1)
h )

(ζh, vh, τh)

for all (ζh, vh, τh) ∈ Xh and

(θ
(n)
h , u

(n)
h , σ

(n)
h ) = (θ

(n−1)
h , u

(n−1)
h , σ

(n−1)
h ) + (θh, uh, σh)

with B(h)
w ((θ, u, σ), (ζ, v, τ)) = (EhP

∗
hLw(ζ, v, τ), P ∗

hLw(θ, u, σ))Xh×X∗
h

G
(h)
(ϑ,w,ξ)(ζ, v, τ) = (EhP

∗
hLw(ζ, v, τ), P ∗

h (F − LNL(ϑ,w, ξ)))Xh×X∗
h

Theorem (A priori estimate) Let Xh ⊂ X satisfying the usual approxima-
tion properties. Then the unique solution (θ∗h, u

∗
h, σ

∗
h) ∈ Xh of the discretized

formulation (4) exists and there holds the following a priori estimate

‖θ∗ − θ∗h‖[L2(Ω)]d + ‖u∗ − u∗h‖H1(Ω) + ‖σ∗ − σ∗
h‖H̃−1/2(Γ) ≤ C hr−1pr−1‖u∗‖Hr(Ω)

with C depending on Ih, Bh, Ch and the continuity and ellipticity constants of
Bw(·, ·).
Example Let Ω be a L-Shaped domain with vertices (− 1

4 ,− 1
4 ), (1

4 ,− 1
4 ), (1

4 , 0),

(0, 0), (0, 1
4 ), (− 1

4 ,
1
4 ). We set f = 0 in Ω, u0(r, φ) = r2/3 sin[23 (2π−ϕ)]− log r̄, and
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Figure 1. Solution uh (left) and flux |θh| (right) of (4).

#total δθ αθ δu αu δσ ασ ItNew

209 0.0645078 — 0.0031188 — 0.4409924 — 6
705 0.0374566 0.784 0.0009215 1.758 0.0833435 2.403 6

2561 0.0234335 0.676 0.0002988 1.624 0.0635836 0.390 6
9729 0.0148209 0.660 0.0001010 1.564 0.0544765 0.223 6

37889 0.0093813 0.659 .3450E-04 1.549 0.0480243 0.181 5
149505 0.0059336 0.660 .1171E-04 1.558 0.0426451 0.171 5

Table 1. Non-linear transmission problem. Multigrid precondi-
tioner. L2-errors of θ, u, σ. Convergence rates.

t0(r, φ) = ∂u0

∂n on Γ, with r̄ = |4(x, y) − (−0.5,−0.5)|. The non-linear coefficient

function is given by ̺(t) = 1
6 (1 + 5

1+5t ).

Consequently, the exact solution is u1 = r2/3 sin[23 (2π−ϕ)] in Ω and u2 = log r̄
in Ωc, e.g. see Figure 1.

For the h-version we choose continuous and piecewise linear functions on Ω for
uh, piecewise constant functions on Γ for σh and H(div; Ω)-conforming Raviart-
Thomas elements of lowest order for θh. For preconditioning (and discrete inner
products) we use the Multigrid V-cycle algorithm for Bh and Ch, and the identity
for Ih. The CG method is choosen as iterative solver.

In Table 1 we observe that the number of Newton steps is bounded. Also the
convergence rates for θ, u and σ show the expected values.
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Efficient quadrature of retarded potentials

Elke Ostermann

(joint work with M. Maischak, E. P. Stephan)

Using the retarded single layer potential, we give an outline of the discretization
scheme of the Galerkin formulation of a retarded integral operator. Let Ω ⊂
R3 bounded open domain with boundary Γ := ∂Ω. Study the retarded integral
equation

V p(t, x) :=
1

4π

∫

Γ

p(t− |x− y|)
|x− y| dsy = f(t, x)(1)

with the retarded single layer potential V . The Galerkin method for (1) reads:
Find p(t, x) for appropriate test functions η(t, x), x ∈ Γ, t ∈ R+

∫ ∞

0

∫

Γ

V p(t, x)η(t, x)dsx dt =

∫ ∞

0

∫

Γ

f(t, x)η(t, x)dsx dt.(2)

In [2] and the references therein the solvability and unconditional stability of the
Galerkin scheme is discussed. Here, we study the properties of the discrete retarded
potential. We triangulate Γ into triangles Ti (i = 1, . . .Ns) and subdivide the time
interval into equidistant subintervals with ti = i∆t (i = 0, . . .). Choosing constant
basis functions in space and time, γm(t) = χ(tm,tm+1](t) and ϕi(x) = χTi(x), we
obtain

ph(t, x) =

Ns∑

i=1

βi(t)ϕi(x) =

∞∑

m=0

Ns∑

i=1

bmi γ
m(t)ϕi(x) =

∞∑

m=0

γm(t)φm(x)

and thus the discrete formulation of (2) reads:
Find ph(t, x) ∈ S0(∆t) ⊗ S0(h) such that

∫ ∞

0

∫

Γ

V ph(t, x)γn(t)ϕj(x)dsx dt =

∫ ∞

0

∫

Γ

f(t, x)γn(t)ϕj(x)dsx dt(3)

for all γn ∈ S0(∆t) and ϕj ∈ S0(h) (n = 0, . . ., j = 1, . . .Ns).
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One easily sees as e. g. pointed out in [1] that the Galerkin elements of (3) only
depend on the time difference and read

V n−m
ij :=

∫ ∞

0

∫

Γ

∫

Γ

1

|x− y|γ
m(t− |x− y|)ϕi(y)γ

n(t)ϕj(x) dsy dsx dt

=

∫∫

En−m−1

ϕi(y)ϕj(x) dsy dsx − tn−m−1

∫∫

En−m−1

ϕi(y)ϕj(x)

|x− y| dsy dsx

+ tn−m+1

∫∫

En−m

ϕi(y)ϕj(x)

|x− y| dsy dsx −
∫∫

En−m

ϕi(y)ϕj(x) dsy dsx.

(4)

The light cone integration domain is defined by

Ek := {(x, y) ∈ Γ × Γ : tk ≤ |x− y| ≤ tk+1}

and is also known as domain of influence consisting of spheres with time dependent
radii intersected with the mesh. Hence, a time stepping method is obtained. We
will concentrate on the analysis of the discrete retarded potential and fix the
usually time dependent radii to rmax > rmin ≥ 0. For at most weakly singular
kernels G(x − y) = |x − y|ν , (ν ≥ −1), the Galerkin elements consist of sums of
integrals of the type (compare (4))

Gij =

∫∫

ETi,Tj

G(x− y) dsy dsx =

∫

Ti

∫

ETj
(x)

G(x − y) dsy

︸ ︷︷ ︸
:=P (x)

dsx,

with integration domains

ETi,Tj = {x ∈ Ti, y ∈ Tj : rmin ≤ |x− y| ≤ rmax}
ET (x) = {y ∈ T : rmin ≤ |x− y| ≤ rmax} = T ∩ (Brmax(x) \Brmin(x)).

As we can rewrite the potential integral P in such a way that

P (x) =

∫

T∩Brmax(x)

G(x− y) dsy −
∫

T∩Brmin
(x)

G(x − y) dsy,(5)

and thus reduce the analysis to integrals of the type

I(x) =

∫

T∩BR(x)

G(x− y) dsy

with fixed radius R.
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Figure 1. Distribution of ’geometrical light cone singularities’:
sketch (left), numerical result for |∇P (x)| with rmin = 2.1, rmax =
2.4, G(x, y) = 1/|x− y|

In addition to ’classical’ edge and corner-edge singular-
ities of boundary integral operators as discussed in [4]
and [5], one observes a new kind of geometrical sin-
gularity in the second derivative. As sketched in the
left figure for these ’geometrical light cone singulari-
ties’ also occuring for regular kernels G, we can dis-
tinguish propagated corner (dashed circles) and edge
singularities (solid lines). These geometrical singulari-
ties are singular in the sense, that one observes jumps
or onesided poles in the second derivative, respectively.

This means, that the retarded potentials do not only posses the classical so-
called near and far field due to a singular kernel function, but geometrical singu-
larities are distributed in each time step over the domain, although their strength
decreases for growing time steps. If we now return to (5), we understand, that
the whole retarded integral posses double singularities due to the minimal and
maximal radius, see Fig. 1.

The decomposition of the test triangle in the light cone of the ansatz triangle
with respect to the deduced ’geometrical light cone singularities’ using appropriate
grading strategies and a rigorous error analysis the used quadrature scheme are
currently under investigation. For details on the implementation see [3].
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Why Time-Domain BEM has not had the operational deployment we
could expect 10 years ago? And how to progress...

Isabelle Terrasse

(joint work with Toufic Abboud, Guillaume Sylvand)

Time marching schemes have been considered for a long time very delicate when
applied to time domain integral equations arising from various wave problems.
Stability issue has been and seems to remain at the centre of investigations [1], [6].
Attempts to reach stability include use of implicit schemes, spatial and temporal
averaging procedures during the time stepping, or try to extrapolate the begin-
ning of the response signals using different techniques as Prony’s or autoregressive
models. Other authors get round the difficulty by working on MFIE or CFIE
rather than EFIE. This type of approach only delays the onset of the instabil-
ity and/or seriously compromise the precision of the results. Recent studies are
dedicated to improve the precision by using high order approximation [4] and
leapfrogging [5], based on extrapolation techniques for band-limited signals. Thus
complete time-space variational approximation leads to unconditionally stable and
precise schemes. Several PhD thesis have been dedicated to study of this theory
and its application to different situations in electromagnetism, acoustics and elas-
todynamics, under supervision of J.C. Nédélec and A. Bachelot. A rigorous func-
tional framework and the first 3D electromagnetic EFIE stable computation with-
out any averaging trick have been published in the thesis of Isabelle Terrasse [2].
Since then, delayed potentials have been applied and studied in many situations,
and accelaration techniques have been transposed from previous frequency domain
studies [3]. We present a unified presentation of the full variational theory. The
resolution process for this system of equations involve at each time-step the reso-
lution of a sparse system (easily done) for computing the current time step, and
the computation of a convolution product for taking into account the influence of
this new time step on the future time steps. This convolution product is the most
time consuming part of the algorithm. It can be speeded-up through the use of a
multipole algorithm, the time-domain equivalent of the widely accepted frequency
domain fast multipole algorithm. The harmonic FMM is used to compute matrix
vector product in order to solve BEM through an iterative solver, the transient
FMM computes the convolution product at each time step : in both cases, it
replaces an O(n2) algorithm by an O(nlog(n)) method.
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The p-version for the electric field integral equation

Norbert Heuer

(joint work with Alexei Bespalov)

We analyse the p-version of the boundary element method for the electric field
integral equation on a plane open surface with polygonal boundary. We prove
convergence of the p-version with Raviart-Thomas parallelogram elements and
derive an a priori error estimate which takes into account the strong singular
behaviour of the solution at edges and corners of the surface. Key ingredient of
our analysis is the orthogonality of discrete Helmholtz decompositions in a Sobolev
space of order −1/2.

The EFIE models the scattering of time-harmonic electro-magnetic waves at a
perfect conductor, and its solution is the induced electric surface current on Γ,
see, e.g., [12]. The basis of our BEM is a variational formulation of the EFIE,
called Rumsey’s formulation. For a given wave number k > 0 and a (tangential or
scalar) vector field v we define the single layer operator Ψk by

Ψkv(x) =
1

4π

∫

Γ

v(y)
eik|x−y|

|x− y| dSy, x ∈ Γ.

Also, denoting by div and ∇ the two-dimensional divergence and gradient opera-
tors on Γ, respectively, we consider the space

X = H̃
−1/2
0 (div,Γ) := {u ∈ H̃−1/2(Γ); div u ∈ H̃−1/2(Γ) and

〈u,∇v〉 + 〈div u, v〉 = 0 for all v ∈ C∞(Γ̄)}.
The dual space of X (with L2(Γ) as pivot space) is denoted by X′ and 〈·, ·〉 denotes
the extension of the L2(Γ)-inner product by duality between X and X′. Moreover,

H̃−1/2(Γ) is the dual space of H1/2(Γ).
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Now, for a given tangential vector field f ∈ X′ (f represents the excitation by
an incident wave), Rumsey’s formulation reads as: find a complex tangential field
u ∈ X such that

a(u,v) := 〈Ψkdiv u, div v〉 − k2〈Ψku,v〉 = 〈f ,v〉 ∀v ∈ X.

For smooth surfaces, its boundary element discretisation has been studied by Ben-
dali [2, 3]. With the study of traces of spaces that govern Maxwell’s equations in
Lipschitz domains [8] there has been some recent progress in the numerical anal-
ysis of the EFIE on Lipschitz surfaces. For polyhedral surfaces, Buffa et al. and
Hiptmair and Schwab [9,11] studied BEM discretisations of the EFIE with Raviart-
Thomas elements of fixed order on refined meshes, i.e., in the framework of the
h-version. In particular, the solvability and quasi-optimal convergence of these dis-
cretisations have been proved. Moreover, considering lowest order Raviart-Thomas
elements and assuming standard Sobolev regularity, Hiptmair and Schwab [11] de-
rived an a priori error estimate in terms of the mesh parameter h. The issues of
solvability and convergence of the h-BEM for the EFIE on open Lipschitz sur-
faces were addressed by Buffa and Christiansen [7]. We note that in [7, 9, 11]
the authors focused on conforming discretisations of Rumsey’s formulation, called
natural boundary element method for the EFIE (the approach we follow in this
presentation).

In general, there are two main advantages of high order methods, namely their
less vulnerability to numerical dispersion errors and better approximation prop-
erties even in the presence of singularities. The influence of the order of basis
functions on numerical dispersion has been analysed by Ainsworth [1], and the
properties of polynomial approximations of singular functions inherent to first
kind integral equations have been studied in [4, 5].

In the p-version of the BEM the mesh is fixed and approximations are improved
by increasing polynomial degrees. To the best of our knowledge there have been no
proofs of convergence for the p-version applied to the EFIE. The analysis of high
order approximations for the EFIE on open or closed polyhedral surfaces poses
two particular challenges.

First, in order to prove convergence of the method, one usually relies on prop-
erties of the continuous and discrete Helmholtz decompositions, and on the prox-
imity in some sense of the discrete decompositions to the continuous one, see [7,9].
Known techniques are inherently designed towards low order approximations, as it
turns out when trying to generalise them to high order methods. For instance, the
equivalence of norms in finite-dimensional spaces is usually used. This argument
is not available for the p-version. Also, related with appearing singularities (which
is the second challenge described below), the proofs of proximity of low-order dis-
crete Helmholtz decompositions to the continuous decomposition utilise an error
estimate for the standard Raviart-Thomas interpolation operator in H(div,Γ) For
the p-version, stability of this operator is guaranteed when the interpolated func-
tion is in Hs(div,Γ) with s > 1/2, whereas on polyhedral surfaces less regularity
has to be accounted for.
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Second, the solution to the EFIE on polyhedral surfaces suffers from singular
behaviour at edges and corners. This can be deduced from the behaviour of
solutions to the Maxwell problem on polyhedral domains as studied by Costabel
and Dauge in [10]. Open surfaces represent the least regular case, and there have
been no high order approximation results for them whatsoever.

In this talk we deal with both issues. In particular, to prove convergence of
the p-version of the BEM for the EFIE we follow the framework presented in [9].
However, rather than considering L2-orthogonal discrete Helmholtz decomposi-
tions, we consistently employ the H̃−1/2-inner product and orthogonality. This
turns out to be crucial for the p-version. As for the approximation analysis of
singularities, we partly rely on our previous results for the Laplacian, see [4, 5],
by using continuity properties of the surface curl operator. The exception is a
particular kind of vertex singularity, which does not have a vanishing tangential
component on the boundary of Γ and which needs to be treated in a vector fashion
(i.e., component-wise approximations are not sufficient for it). For detailed results
we refere to [6].

We restrict ourselves to plane open surfaces which can be discretised by parallel-
ogram meshes. A generalisation to smooth curved surfaces is possible by mapping
techniques. The case of triangular elements, however, is not an easy generalisa-
tion as, for instance, standard p-version approximation results for Raviart-Thomas
triangular elements are unknown. The approach presented in this talk is, in prin-
ciple, applicable to polyhedral surfaces and we expect that all the results can be
extended to that case. However, this extension is not straightforward as some
technical details make use of the smoothness of Γ, except for its boundary. More
general hp-methods, which increase polynomial degrees in combination with mesh
refinements, are desirable but are not covered in this presentation. The corre-
sponding analysis is a non-trivial extension of our results.
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Theoretical challenges in the application of convolution quadrature
and BEM for transient waves

Francisco–Javier Sayas

(joint work with A. Laliena)

Convolution quadrature has been applied for the discretization of very different
evolutionary problems that can be written as convolution equations. CQ appeared
in two articles by Christian Lubich [18], [19], extending classical ideas of discrete
operator calculus and thinking in very abstract levels of problems related to the
approximation of convolutions and convolution equations. Unlike some methods
based on the inversion of the Laplace transform [26], [13], CQ uses data in the
time–domain and produces directly approximations in time steps, but the Laplace
transform of the operator is used to generate the discrete sequence of operators
that discretizes the convolution process.

The hypotheses on the operator that has to be approximated are given through
its Laplace transform. In [18], this Laplace transform had to be defined in the
complementary set of a sector of angle less than π/2 around the negative real
axis. These original hypotheses did not therefore include any operator related
to the wave equation, although new work of the same author [20] opened a way
in this direction, giving at the same time the first application of CQ to wave
scattering problems. Let it be mentioned though that most of the literature on
CQ (for instance, the most recent general convergence results [21]) has been done
with parabolic–type equations in mind and not so many general results are avail-
able when the method is applied to hyperbolic problems. Some years before the
combined use of BEM, waves and CQ, [23] marks the first application of CQ to
boundary integral equations, namely to the single–layer potential for the heat
equation in two dimensions.

The original family of multistep–based CQ schemes offers only methods up to
order two for scattering problems, because of a crucial A–stability requirement.
Fortunately, another class of methods originated in [22], based on Runge–Kutta
discretizations, and the order barrier can be thus overcome by using vector–valued
approximations of the convolution. A more general analysis of this class of methods
can be found in [5] and in [15] we have tried to clarify some practical algorithmic
issues, especially when scattering problems are at hand.
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In the realm of wave propagation with boundary integral equations, only the
most elementary exterior problems have been approached with this method and
its real power it is still to be exploited. The mathematical literature on the subject
(see [11] or [14]) has concentrated on the single–layer retarded integral equation,
that can be used for a simple model of scattering of transient waves by a sound–soft
obstacle. Engineering experience is much richer in this direction (see the compi-
lation of results and references in [25]), with the treatment of elastic, viscoelastic
and poroelastic waves, dealing again with boundary value problems.

The literature of numerical treatment of time–domain boundary integral equa-
tions is wide. Since the pioneering work of [2], [3], much has been done in the
numerical treatment of this kind of problems, undertaking elasticity problems [4],
more complicated boundary behaviors [10] or even coupled models with finite el-
ements for electromagnetism [1]. Although the engineering literature uses mainly
the collocation method, not much have been done from the mathematical point
of view (see [8]). A good review of numerical methods for time–domain integral
equations is given in [9].

In this talk we mention some interesting theoretical questions that arise in the
numerical analysis of convolution quadrature when applied to more complicated
situations. The problem can be easily set as the need for the Laplace transform
of the operator, its Galerkin space discretization and the inverses of both belong
to a class of holomorphic functions in the half complex plane. By means of an
example, arising from wave transmission in free space with a non-homogeneous
penetrable inclusion, we illustrate a novel analytical technique that can be used to
prove the required properties for a wide class of discretizations. We apply this idea
to a coupled system of finite and boundary elements using a symmetric formula-
tions and three spaces (see [6] for an example of the use of this simple matching
formulation) and show how it equally works for the symmetric formulations with
only one boundary element space [7], [12]. These results will appear in [16].
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Birkhäuser Boston, Boston, MA, 2007.

[25] M. Schanz. Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Ele-
ment Approach (Lecture Notes in Applied and Computational Mechanics). Springer, 2001.

[26] D. Sheen, I. H. Sloan, and V. Thomée. A parallel method for time discretization of par-
abolic equations based on Laplace transformation and quadrature. IMA J. Numer. Anal.,
23(2):269–299, 2003.



Analysis of Boundary Element Methods 985

From the Boundary Element DDM to new local Trefftz Finite
Element Methods on Arbitrary Polyhedral Meshes

Ulrich Langer

(joint work with Dylan Copeland, David Pusch)

1. Introduction

We introduce new finite element methods based on the symmetric boundary
element domain decomposition method presented in [3], which can be applied
with general polygonal or polyhedral meshes. Each element of the mesh may be
any polygon or polyhedron, as we treat the elements as subdomains. There are
many important practical applications where one wants to discretize PDEs on
such kinds of meshes without further decomposition of the polyhedra. Boundary
integral operators are utilized to obtain a method which solves for traces of the
solution on the element surfaces, from which the solution may be obtained via a
representation formula. Simple, low-order boundary element spaces are used to
approximate traces on the element surfaces, yielding a finite element method with
PDE-harmonic basis functions.

Since boundary integral operators are used only locally, piecewise constant co-
efficients are admissible, and the coupling of boundary element functions is local.
Consequently, sparse linear systems are obtained, which can be solved by Krylov
iterative methods. In the case of the potential equation, the resulting system is
symmetric and positive definite, and algebraic multigrid is a very effective precon-
ditioner in the conjugate gradient solver.

2. The Potential Equation

Let Ω ⊂ Rd be a bounded domain with a polygonal (d = 2) or polyhedral
(d = 3) Lipschitz boundary Γ = ∂Ω. As a model problem, we consider the
potential equation

(1) −div(a(x)∇u(x)) = f(x) for x ∈ Ω

with the Dirichlet boundary condition u = g on Γ. We assume that the coefficient
a is piecewise constant, f ∈ L2(Ω), and g ∈ H1/2(Γ). Further, we suppose that
there is a non–overlapping decomposition of our domain Ω into eh shape-regular
polygonal elements Ωi such that Ω = ∪eh

i=1Ωi, Ωi ∩ Ωj = ∅ for i 6= j, Γi = ∂Ωi,

Γij = Γi∩Γj and a(x) = ai > 0 for x ∈ Ωi, i = 1, . . . , eh. Under these assumptions,
there obviously exists a unique weak solution u ∈ H1(Ω) of the BVP (1).

Using the local Dirichlet-to-Neumann map

(2) ai∂u/∂νi = aiSiu|Γi
−Nif on Γi,

we observe that the variational formulation of (1) is equivalent to the associated
variational formulation on the skeleton ΓS = ∪eh

i=1Γi (see, e.g., [4]):
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find u ∈ H1/2(ΓS) with u = g on Γ such that

(3)

eh∑

i=1

∫

Γi

ai(Siui) vidsx =

eh∑

i=1

∫

Γi

(Nif)vidsx

for all v ∈ H
1/2
0 (ΓS), where ui and vi denote the traces of u and v on Γi, respec-

tively. The Steklov–Poincaré operator Si and the Newton potential operator Ni

have different representations (see again [4]). Here we are using the symmetric
representation

(4) Si = Di + (0.5I +K ′
i)V

−1
i (0.5I +Ki)

of the local Steklov–Poincaré operator Si via the local single layer potential integral
operator Vi, the local double layer potential operator Ki, its adjoint K ′

i, and the
local hypersingular boundary integral operator Di, see, e.g., [5] for the definition

and properties of these boundary integral operators. The operator Ni = V −1
i Ñi,0

is defined by the Newton potential operator

(5) (Ñi,0f)(x) =

∫

Ωi

U∗(x− y)f(y)dy, x ∈ Γi,

where U∗(x) = 1/(4π|x|) denotes the fundamental solution of the Laplace operator
−∆ for d = 3.

For simplicity we use continuous piecewise linear boundary element functions for
approximating the potential u on the skeleton ΓS and piecewise constant boundary
element functions for approximating the normal derivatives ti = ∂u/∂νi on the
boundary Γi of the polygonal element Ωi. This yields the element stiffness matrices

Si,h = aiDi,h +ai

(
0.5 I⊤i,h +K⊤

i,h

)(
Vi,h

)−1(
0.5 Ii,h+Ki,h

)
and the element vectors

fi,h = I⊤i,h
(
Vi,h

)−1
fN
i,h, where the matrices Vi,h, Ki,h, Di,h and Ii,h arise from the

BE Galerkin approximation to the local boundary integral operators Vi, Ki, Di,
and to the identity operator Ii living on Γi, respectively. Ii,h is nothing but the
mass matrix. The vector fN

i,h is defined by the Newton potential identity

(6) (fN
i,h, ti,h) =

∫

Γi

∫

Ωi

U∗(x− y)f(y)dy th,i(x)dsx

for all vectors ti,h corresponding to the piecewise constant functions th,i on Γi.
Now, we obtain the BE-based FE system

(7) Shuh = fh

by assembling the stiffness matrix Sh and the load vector fh from the element
stiffness matrices Si,h and the element load vectors fi,h, respectively, and by in-
corporating the Dirichlet boundary condition as usual.

The solution of (7) provides an approximation to the Dirichlet trace of the
solution to (1) on the boundary ∂Ωi of all elements Ωi. Applying the Dirichlet-to-
Neumann map locally (i.e. element-wise), we may obtain an approximate solution
ũhto u in each element Ωi via the representation formula (see, e.g., [4] or [5]).
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Following [3] we immediately obtain the discretization error estimate O(h3/2)
in the mesh-dependent norm ‖v‖2

h :=
∑eh

i=1 ‖v|Γi‖2
H1/2(Γi)

for a sufficiently (piece-

wise) smooth solution u, where uh is the continuous piecewise linear function on
the skeleton ΓS,h corresponding to the Dirichlet nodal values and to the nodal
values from the solution vector uh of (7). This yields the usual O(h) estimate of
the discretization error u− ũh in the H1(Ω)-norm.

We refer the reader to [2] for more detailed description and for the results of
our numerical experiments.

3. Generalization to the Helmholtz and Maxwell Eqautions

Consider the interior Dirichlet problem for the Helmholtz equation

(8) −∆u(x) − κ2u(x) = f for x ∈ Ω,

with u = g on Γ. We assume that the wavenumber κ > 0 is constant, or piecewise
constant and not an interior eigenvalue, and g ∈ H1/2(Γ).

The BE-based FE method for the Helmholtz equation is formally identical to the
method presented in the previous section for the potential equation (with a = 1).
One only needs to use different operatorsDi, Ki, and Vi based on the fundamental
solution U∗(x) = eiκ|x|/(4π|x|) for the Helmholtz operator, see, e.g., [5].

We also study a similar method for the time-harmonic Maxwell equation

(9) curl curl u− κ2u = 0 in Ω,

with the Dirichlet boundary condition γtu := u × n = g on Γ, where n is the
outward unit normal. The BE-based FE method for (9) involves quite technical
trace spaces and boundary integral operators. For details and results, see [1].
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Volume and surface integral equations for electromagnetic scattering
by a dielectric body

El Hadji Koné

(joint work with Martin Costabel, Eric Darrigrand)

We first analyze two integral formulations for the electromagnetic scattering by a
dielectric object. The one is a volume integral equation (VIE) having a strongly
singular kernel and the other is a coupled surface-volume system of integral equa-
tions with weakly singular kernels. There are more details in [4], on results and
their proofs. We give afterwards, in the last part, a brief outline on the compu-
tation of the strongly singular integrals elements performed on tetrahedra, for the
numerical implementation of the VIE. More details for both these parts can be
found in the PhD thesis [8].

The problem

Let Ω− be a bounded domain in R3 representing the dielectric scatterer. We
use the notation Ω+ = R3 \ Ω− and Γ = ∂Ω−, and we assume that the boundary
Γ is regular (at least C2). n is the unit outward normal vector to Ω−.

The electric permittivity ε is a function of the space variable satisfying ε(x) > 0,

x ∈ R
3; ε|Ω−

∈ C1(Ω−) ∩ C0(Ω−); ε|Ω+
= ε0; and ε is discontinuous across Γ,

in general. The vacuum permittivity ε0 is a positive constant. We will denote

the relative permittivity by εr =
ε

ε0
. We will also use the notation η = 1 − εr.

The electric conductivity σ vanishes everywhere. We assume for simplicity that
the magnetic permeability µ is constant (µ ≡ µ0 > 0). With the frequency ω, the
wave number is κ = ω

√
ε0µ0 > 0 .

Let F ∈ H(div, Ω+) be a vector field with a compact support contained in Ω+,
representing a current density that serves as source for the incident field scattered
by the dielectric body Ω−.

The scattering problem (P) we want to solve can be written as follows:

Find E, H such that Ei ∈ H(curl, div,Ω−),Ee ∈ Hloc(curl, div,Ω+),

Hi ∈ H(curl,Ω−),He ∈ Hloc(curl,Ω+), with Ei = E|Ω−
,H i = H |Ω−

,
Ee = E|Ω+

and He = H |Ω+
, satisfying the equations

(P)





∇× Ei − iκHi = 0 and ∇× H i + iκεr Ei = 0 in Ω−,
∇× Ee − iκHe = 0 and ∇× He + iκEe = F in Ω+,

n · Ee = n · εr Ei and n · He = n · Hi on Γ,

He × x

r − Ee = O
(

1
r2

)
, r = |x| → +∞.
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Integral formulations

As a first step in the derivation of the integral equations, we extend the well-
known Stratton-Chu integral representation to fields (E,H) in H(curl, div, D) ×
H(curl, D), where D is a regular (at least of class C2 ) bounded domain. Using
this extended Stratton-Chu formula for D = Ω− and for D = Ω+ ∩BR, where the
radius R of the ball BR tends to infinity, together with the Maxwell equations of
the problem (P) and the radiation condition, we establish some integral represen-
tations formulas and derive the following equations:

Denoting by τ = − 1

εr
∇εr, the logarithmic gradient of εr, the coupled surface-

volume system of integral equations is given by the problem (E1) defined as follows:

(E1)






Find (E∗, e∗) ∈ (L2(Ω−))3 ×H− 1
2 (Γ), such that

(
1 −∇Nτ + κ2Nη −∇Sη

κ2γ−n Nη − γ−1 Nτ 1 − γ−1 Sη

)(
E∗

e∗

)
=

(
D

γ−n D

)

and the VIE is given by the problem (E2) defined as follows:

(E2)

{
Find E◦ ∈ (L2(Ω−))3, such that

(
1 −∇Mη + κ2Nη

)
E◦ = D .

where we have used the following integral operators:

Nηu(x) =

∫

Ω−

η(y)u(y)Gκ(x− y) dy ,

Nτu(x) =

∫

Ω−

τ (y) · u(y)Gκ(x− y) dy ,

Mηu(x) =

∫

Ω−

η(y)∇y Gκ(x− y) · u(y) dy ,

Sηf(x) =

∫

∂Ω−

η(y)f(y)Gκ(x− y) ds(y).

for f and u respectively scalar and vector fields defined on Γ and on Ω−.
We have also used the one-sided traces

γ±0 g := g±|Γ , γ±1 g := (n · ∇g±)|Γ and γ±n v := γnv±,

for g and v respectively scalar and vector fields defined on R3, with g± := g|Ω±

and v± := v|Ω±
.

Equivalence results and mapping properties

As a first result, we justify equivalence between these integral equations and
the scattering problem and use the well known unicity for the scattering problem,
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together with a Fredholm property for the operator in (E1) to establish the well-
posedness of all the problems (P), (E1) and (E2).

A more important motivation for the analysis of the integral operators in (E1)
and (E2) is the question of their suitability for numerical computations. More gen-
eral questions of mapping properties of the strongly singular integral operator of
the VIE (E2) in L2 or in H(div), in particular its spectral theory, remain largely
open. However, we establish some results as for instance, the VIE operator is
Fredholm of index zero and strongly elliptic in L2 (satisfying a G̊arding inequal-
ity). This ensures then stability for Galerkin schemes.

Treatment of singularities

Here, in order to solve the VIE, we point out some techniques to compute the
strongly singular integrals on tetrahedra (K and L) :

IKL =

∫

K

∫

L

Gκ(x− y)ϕc(y)ϕr(x)dydx; Gκ(x) =

(
1 +

∇∇
κ2

)
Gκ(x).

These techniques depend on the relative positions of tetrahedra. When two
tetrahedra share one vertex or one edge, we introduce a method similar to the well-
know Duffy transformation [5], based on adapted changes of variables. The method
is valid for more general kernels and leads to integration over simple domains such
as the square or the cube and removes the singularity using factorization and
reduction with Jacobians of the singular transformations. Otherwise, when the
tetrahedra share one face or the integral is performed in the same tetrahedron,
this method cannot remove the singularity, and then we use the regularization
scheme introduced in [9] for the same kernel. However when they share one face,
the first method can also be used to weaken the singularity without removing it,
and therefore a quadrature formula can be applied to compute the integral.
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Adaptive boundary element method: Simple error estimators and
convergence

Dirk Praetorius

(joint work with Samuel Ferraz-Leite and Christoph Ortner)

Introduction. We consider Symm’s integral equation in 2D with weakly singular
integral operator

V u(x) = − 1

2π

∫

Γ

log |x− y|u(y) dsy.(1)

Here, Γ ⊆ ∂Ω is an open piece of the boundary ∂Ω of a Lipschitz domain Ω ⊂ R2.
Provided diam(Ω) < 1, 〈〈u , v〉〉 :=

∫
Γ V u(x)v(x) dsx defines an equivalent scalar

product on H = H̃−1/2(Γ). For a given linear and continuous functional Φ ∈ H∗,
the Lax-Milgram lemma thus proves the unique existence of (some unknown) u ∈
H with

〈〈u , v〉〉 = Φ(v) for all v ∈ H.(2)

To approximate u by the lowest-order Galerkin scheme, let Tℓ be a triangulation
of Γ and Xℓ = P0(Tℓ) :=

{
vℓ : Γ → R : ∀T ∈ Tℓ vℓ|T is constant

}
⊂ H. The

(numerically computable) Galerkin solution uℓ ∈ Xℓ is the unique solution of

〈〈uℓ , vℓ〉〉 = Φ(vℓ) for all vℓ ∈ Xℓ.(3)

In a posteriori error analysis, one aims to provide a computable quantity ηℓ which
only depends on known and computed data, for instance, on uℓ and Φ such that

C−1
eff ηℓ ≤ |||u − uℓ||| ≤ Crelηℓ.(4)

Here, ||| · ||| denotes the energy norm induced by 〈〈· , ·〉〉. The lower and upper
estimate are referred to as efficiency and reliability of ηℓ, respectively, and local
information of ηℓ will be used to improve the mesh by local mesh-refinement.
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hhh-h/2h/2h/2-based error estimators for Symm’s integral equation. The h-h/2-
based strategy is one very basic and well-known technique for the a posteriori
error estimation for Galerkin discretizations of energy minimization problems. Let

uℓ ∈ Xℓ and ûℓ ∈ X̂ℓ = P0(T̂ℓ) be Galerkin solutions, where T̂ℓ is obtained by
uniform refinement of Tℓ. One then considers

ηℓ := |||ûℓ − uℓ|||(5)

to estimate the error |||u − uℓ|||. By Galerkin orthogonality, ηℓ is always efficient
with known constant Ceff = 1. Reliability of ηℓ with Crel = (1 − σ2)−1/2 follows
from the saturation assumption

|||u− ûℓ||| ≤ σ |||u − uℓ||| with some uniform constant σ ∈ (0, 1).(6)

Unlike to FEM, where (6) is proven for a sufficiently small mesh-size [11], the
saturation assumption is open in the context of BEM but observed in practice [17].

Since the energy norm ||| · ||| is nonlocal, the error estimator ηℓ does not provide
information for a local mesh-refinement. Using a local inverse estimate from [18]
and a local approximation result from [6], one may prove estimator equivalence [17]

C−1
apxηℓ ≤ µℓ := ‖h1/2

ℓ (ûℓ − uℓ)‖L2(Γ) ≤ Cinvηℓ,(7)

where hℓ ∈ L∞(Γ) denotes the local mesh-width hℓ|T = diam(T) for T ∈ Tℓ. The
local contributions µℓ(T ) := diam(T)1/2‖ûℓ − uℓ‖L2(T) of µℓ are then used for the
marking strategy in an adaptive mesh-refining algorithm.

Convergence of adaptive Galerkin BEM. Based on the error estimators ηℓ

and µℓ from the previous section and based on a fixed parameter θ ∈ (0, 1), the
usual adaptive algorithm reads as follows: Until ηℓ is sufficiently small, do:

(i) Refine Tℓ uniformly to obtain T̂ℓ.
(ii) Compute discrete solutions uℓ and ûℓ.
(iii) Find minimal set Mℓ ⊆ Tℓ such that

θ
∑

T∈Tℓ

µℓ(T )2 ≤
∑

T∈Mℓ

µℓ(T )2.(8)

(iv) Refine at least marked elements T ∈ Mℓ to obtain Tℓ+1.
(v) Increase counter ℓ 7→ ℓ+ 1 and iterate.

Convergence of this type of algorithms has first been proven in [10], where also
the marking criterion (8) is introduced. The latter work considered the residual
error estimator for a P1-FEM discretization of the Poisson problem, and it is
assumed that data oscillations on the initial mesh are sufficiently small. In [21],
the resolution of the data oscillations is included into the adaptive algorithm. The
convergence analysis is based on reliability and the so-called discrete local efficiency
of the residual error estimator, which relies on an interior node property for the
local refinement. The main idea of the convergence proof then is to show that the
error is contractive up to the data oscillations. In [9], this has been weakened in
the sense that it is proven that a weighted sum of error and error estimator yields
a contraction property without requiring (discrete local) efficiency.
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Only recently, analogous results for adaptive BEM could be derived, and a first
convergence result reads as follows [16]: Provided that µℓ is reliable and that
marked elements are halved, there are constants κ, γ ∈ (0, 1) such that

∆2
ℓ := |||u− uℓ|||2 + |||u − ûℓ|||2 + γ µ2

ℓ satisfies ∆ℓ+1 ≤ κ∆ℓ.(9)

In particular, this implies convergence uℓ → u as ℓ → ∞. The proof of (9)
requires that the local contributions of µℓ used for marking, have an h-weighting
factor. Therefore, the analysis might carry over to adaptive algorithms steered by
h-weighted residual error estimators [2, 4, 5] or averaging error estimators [6–8],
whereas the two-level error estimators [12, 13, 19, 20, 22] and the Faermann error
estimator [3, 14, 15] seem to need further arguments.

Concluding Remarks. The convergence proof of [16] for adaptive Galerkin BEM
also applies to hypersingular integral equations and mixed formulations in 2D and
3D. For 3D, however, our proof — as well as the available a posteriori error analysis
from [4–8,13,15,17,19,22] — is restricted to the case of isotropic mesh-refinement,
whereas anisotropic mesh-refinement is needed to resolve edge singularities effi-
ciently.

Despite of convergence, even the question of optimal convergence rates of the
adaptive FEM based on residual error estimators is well-understood. Whereas
prior works [1, 23] used an additional coarsening step to prove optimality, recent
works [9, 24] prove optimality for the standard algorithm steered by the residual
error estimator. The latter analysis relies on a discrete local reliability of the error
estimator, which remains open for adaptive Galerkin BEM. This will be a major
topic for future research.
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Wave Number Dependence of Condition Numbers in Boundary
Integral Methods for Acoustic Problems

Simon Neil Chandler-Wilde

(joint work with Ivan G. Graham, Stephen Langdon, Marko Lindner, Peter
Monk)

In this talk we discussed the classical problem of scattering of a time-harmonic
acoustic wave by a bounded, sound soft obstacle occupying a compact set Ω ⊂ R

d

(d = 2 or 3) with Lipschitz boundary Γ. The wave propagates in the exterior
domain Ωe = Rd \ Ω and we suppose that the medium of propagation in Ωe

is homogeneous and that a time harmonic (e−iωt time dependence) plane wave

ui(x) = exp(ikx · d̂), travelling in the direction given by the unit vector d̂, is
incident on Ω. Here k > 0 is the wave number. Then the problem we consider
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is to find the resulting time-harmonic acoustic pressure field u which satisfies the
Helmholtz equation

(1) ∆u + k2u = 0 in Ωe

and the sound soft boundary condition

(2) u = 0 on Γ := ∂Ωe,

and is such that the scattered part of the field, us := u−ui, satisfies the standard
Sommerfeld radiation condition. It is well known that this problem has exactly
one solution under the constraint that u and ∇u be locally square integrable.

The talk was concerned with the behaviour, in the important but difficult high
frequency limit k → ∞, of standard reformulations of this problem in terms of
second kind boundary integral equations. Let Φ(x, y) denote the standard free-
space fundamental solution of the Helmholtz equation, given, in the 2D and 3D
cases, by

(3) Φ(x, y) :=





i
4H

(1)
0 (k|x − y|), d = 2,

eik|x−y|

4π|x− y| , d = 3,

for x, y ∈ Rd, x 6= y, where H
(1)
0 is the Hankel function of the first kind of order

zero. It was proposed in the 60s (see e.g. [6]), as a means to obtain an integral
equation uniquely solvable at all wave numbers, to look for a solution to the
scattering problem in the form of the combined single- and double-layer potential

(4) us(x) :=

∫

Γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y) − iη

∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ Ωe,

for some non-zero value of the coupling parameter η ∈ R. (In this equation ∂/∂ν(y)
is the derivative in the normal direction, the unit normal ν(y) directed into Ωe.) It
follows from standard boundary trace results for single- and double-layer potentials
that us, given by (4), satisfies the scattering problem if and only if ϕ satisfies a
second kind boundary integral equation on Γ; see [6] and, for the Lipschitz case, [5]
and the references therein. This integral equation, in operator form, is

(5) (I +Dk − iηSk) ϕ = g,

where I is the identity operator, Sk and Dk are single- and double-layer potential
operators, defined by

(6) Skϕ(x) := 2

∫

Γ

Φ(x, y) ϕ(y) ds(y), x ∈ Γ,

and

(7) Dkϕ(x) := 2

∫

Γ

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ,

and g := −2ui|Γ is twice the Dirichlet data for the scattered field on Γ.
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In this talk we studied (5) as an operator equation on the space L2(Γ). For every
ϕ ∈ L2(Γ), the right hand sides of (6) and (7) are well-defined almost everywhere
on Γ, with Dkϕ(x) understood as a Cauchy principal value, and both Sk and Dk

are bounded operators on L2(Γ); see e.g. [10]. Choosing η 6= 0 ensures that (5) is
uniquely solvable. Precisely, Ak,η := I+Dk− iηSk is invertible as an operator on
L2(Γ). We note further that, generalising this result, it is shown in [5] that Ak,η

is invertible as an operator on the Sobolev space Hs(Γ), for 0 ≤ s ≤ 1.
The main aim of the talk was to study the conditioning of the standard inte-

gral equation formulation (5). Specifically we were interested in upper and lower
bounds on the condition number of Ak,η, given by cond Ak,η = ‖Ak,η‖ ‖A−1

k,η‖, and

so we were interested in upper and lower bounds on the norms ‖Ak,η‖ and ‖A−1
k,η‖.

Our emphasis was on understanding the dependence on the wave number k, espe-
cially in the limit k → ∞, and on the coupling parameter η, and on exploring the
influence of the shape of Γ.

These questions have had some previous attention, starting with the work of
Kress and Spassov [8] and Kress [9] (for more historical details see the recent
review paper [4]). But we note that, with the exception of recent bounds in [1,3,7],
rigorous estimates valid in the limit as k → ∞ have not been obtained previously.
Moreover, research to date has focussed almost entirely on the case when Γ is a
circle or sphere where Fourier analysis methods are possible.

In this talk we summarised recent results in [2, 3]. The paper [3] provides
explicit bounds on ‖A−1

k,η‖, for the case when Γ is piecewise smooth and starlike,
for example a starlike polyhedron. In particular, assuming that Γ is starlike with
respect to an origin which is inside Γ, and if a usual choice of η is made, specifically
η = R−1

0 + k (cf. [9]), where R0 := supx∈Γ |x|, then

‖A−1
k,η‖ ≤ 1

2
+ θ [(1 + 4θ) (3 + θ) + 2]

1/2
,

where θ := R0/δ− and δ− := ess. infx∈Γ x · n(x), which is just the distance from
the origin to the closest side in the case when Γ is a starlike polyhedron. In
particular, the above bound holds with θ = 1 for a sphere and with θ =

√
3 for

a cube, giving ‖A−1
k,η‖ ≤ 6 and ‖A−1

k,η‖ ≤ 12, respectively. The methods used to
obtain such bounds include Rellich-type identities and new subtle properties of
radiating solutions of the Helmholtz equation.

The paper [2] obtains upper and lower bounds on ‖Ak,η‖. In particular, crude
bounds, ignoring the oscillation of the kernel of the integral operator, show that
‖Ak,η‖ . 1 + k + η in 3D and that ‖Ak,η‖ . 1 + k1/2 + ηk−1/2 in 2D, which

compares to the known growth for large k that ‖Ak,η‖ . k1/3 for both a circle
and sphere for the choice η = k [7]. It is shown in [2] that, at least in 2D, this
crude upper bound can be sharp in its dependence on k for large k, for example it
is attained when Γ is a polygon. Further lower bounds on ‖Ak,η‖ for the 2D case,
which appear to be sharp, and investigate the subtle dependence on the geometry
of Γ, are also contained in [2]. Finally [2] investigates the behaviour of ‖A−1

k,η‖ in a
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2D case when Γ is not starlike, specifically the non-starlike case when Γ contains
two parallel sides separated by a part of the exterior domain Ωe.

A main message of [2] is that the conditioning of Ak,η as k → ∞ depends
strongly on the geometry of Γ, in particular, in 2D for the choice η ≈ k, cond Ak,η

grows like k1/3 for a circle, like k1/2 for a starlike polygon, and at least as fast as
k7/5 for the type of non-starlike domain just described.

The survey paper [4] contains a more detailed review of these results, indeed a
review more generally of recent work on boundary integral equation methods for
high frequency scattering problems.
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Currents and Charges Boundary Integral Equations

Abderrahmane Bendali

(joint work with Francis Collino, M’Barek Fares)

Recently, Taskinen and Ylä-Oijala [1] proposed to work with Boundary Integral
Equations (BIEs) involving both the currents and charges for solving the scatter-
ing problems related to time-harmonic Maxwell’s equations. Their main objective
was to design BIEs that are robust for both moderate and low frequencies. Our
aim in this abstract is to present some preliminary results establishing that the
so-called Combined Currents and Charges Integral Equation (C3IE), when applied
to the scattering of an electromagnetic wave by a perfectly conducting obstacle,
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is well-posed at all frequencies, in the L2 framework, that is, with no continuity
requirement on the electric current. The C3IE is obtained along the same princi-
ple than the Combined Field Integral Equation (CFIE) but in the framework of
currents and charges BIEs.

We start with the Boundary-Value Problem (BVP) related to the above men-
tionned scattering problem,

(1)

{
∇× E− ikZH = 0 and ∇× H + ikZ−1E = 0 in D+

E+
T = 0 on Γ, RC(E − Einc,H− Hinc) = 0

where Γ is a closed surface, assumed to be C∞ for simplicity, enclosing a bounded
domain D− and being the boundary of the unbounded domain D+. The real pos-
itive numbers k and Z respectively stand for the wave number and the impedance
of vacuum. The boundary condition on Γ is set in terms of the tangential compo-
nent E+

T . An exponent + or − indicates that the trace is taken from the values of
E in respectively D+ or D−. We have denoted by Einc and Hinc the electric and
magnetic fields related to the given incident wave and by RC() one of the several
ways to set the Silver-Müller radiation condition.

The construction of the C3IE starts from the well-known Stratton-Chu formula
specialized to the present context since here the magnetic currents and charges are
both equal to 0

(2) E = Einc −∇S̺+ ikZSJ, H = Hinc + ∇× SJ in D+

with Sv(x) =
∫
Γ
(exp(ik |x− y|)/4π |x− y|)v(y)dΓy . The construction of a bound-

ary integral formulation for the determination of the currents J and the charges
̺ can be seen as an attempt to nullify the right hand sides of (2) in D− from
conditions set on Γ. As for the classical CFIE, Taskinen and Ylä-Oijala [1] use the
condition Z−1E−

T + n × H− = 0, which yields

(3) −ikSJ + ∇ΓS̺+ 1
2J + n×KJ =Z−1Einc

T + n× Hinc

with KJ =
∫
Γ
∇y (exp(ik |x− y| /4π |x− y|) × J(y)dΓy . But instead of the equa-

tion relative to the conservation of charges ∇Γ · J − ikZ−1̺ = 0 on Γ, they take
the equation on the normal componant E− · n = 0 augmented by the relation
S
(
∇Γ · J − ikZ−1̺

)
= 0, i.e., E− · n + S

(
∇Γ · J − ikZ−1̺

)
= 0. We depart from

this procedure and make use of a more straightforward approach based on the link
of the C3IE and Picard’s system recently given by Tsakinen and Vänskä [2]. In
fact, Picard’s system can be stated as a special instance of Maxwell’s system, with
no assumption on the conservation of charges, instead of introducing it a priori as
this is done in [2]. It is enough to take the curl of E and H in (2)

(4) ∇× E = ikZHinc + ikZ∇× SJ, ∇× H = −ikZ−1Einc + ∇×∇× SJ

to get the system which is actually solved when the equation of conservation of
charges is not satisfied

(5) ∇× E− ikZH = 0, ∇× H + ikZ−1E = −∇S(ikZ−1̺−∇Γ · J).
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Introducing the auxiliary unknown ϕ = S(ikZ−1̺−∇Γ ·J), we are led to the second
equation of Taskinen and Ylä-Oijala C3IE system by simply posing E− ·n+ϕ = 0

(6) 1
2ρe +

∫

Γ

∂nx

exp(ik|x−y|)
4π|x−y| ̺(y)dΓy − ikZn ·SJ+S

(
∇Γ · J − ikZ−1̺

)
= Einc ·n

In order to prove that the above system of BIEs (3) and (6) is well-posed, we
need the following two lemmas.

Lemma. If J and ̺ are in L2(Γ) and are solution to (3) and (6), then E, H

and ϕ are in C∞(D−).

The main ingredient of the proof is to show that E and ϕ are solution in
an appropriate functional setting of the following regular elliptic BVP (see, for
instance, [3])






∆E + k2E = 0, ∆ϕ+ k2ϕ = 0 in D−

(∇× E× n)
− − ikE−

T = 0, E− + ϕ− = 0,
∂nϕ

− − ikZ−1ϕ− + Z−1∇Γ · E−
T = 0 on Γ

Lemma. Any solution to (3) and (6) yields that E, H and ϕ are equal to 0 in
D−.

The main ingredients of the proof are the following. Proceeding as for the
classical CFIE, we first obtain from a Green formula

Z−1

∫

Γ

∣∣E−
T

∣∣2 dΓ + Re

∫

D−

(
E− · ∇ × H −∇× E · H

)
dx = 0

It is enough next to note that ∇ · E + ikZϕ = 0 in D− to get from another
application of Green formula that

∫

Γ

(
Z−1

∣∣E−
T

∣∣2 + |ϕ|2
)
dΓ = 0

thus leading to the result stated in the lemma.

We can then state the main result reported in this communication.

Theorem. The system of BIEs (3) and (6) is well-posed in L2(Γ).

The main argument of the proof is to write (3) and (6) in a variational form
and to note that the left-hand side can be written as follows

1
2

∫

Γ

(
J · J′ + Z−1̺̺′

)
dΓ +

∫

Γ

(̺′S∇Γ · J − ̺S∇Γ · J′) dΓ + compact.
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The term “compact” stands for some compact bilinear form. The theorem results
then from Fredholm alternative and a straightforward application of the Lax-
Milgram lemma.
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Analysis of boundary element methods for high-frequency scattering
simulations

Fatih Ecevit

In the context of acoustic or electromagnetic waves, the classical issues that arise
in connection with numerical simulations for other applications are additionally
augmented with the intrinsic complexities (i.e. oscillations) of the quantities them-
selves. Still, very efficient methodologies (based on, for instance, finite elements,
finite differences or boundary integral equations) have been devised to simulate the
propagation of acoustic and electromagnetic waves in rather complicated settings.
The very nature of these classical approaches, however, limits their applicability
at high frequencies since the numerical resolution of field oscillations translates in
a commensurately higher number of degrees of freedom and this, in turn, can eas-
ily lead to impractical computational times. For higher frequencies, accordingly,
the only practical recourse is to resort to asymptotic methods (e.g. ray tracing)
as these by-pass the need for frequency-dependent discretizations. These meth-
ods, on the other hand, are not error-controllable since they solve an approximate
model instead of the original equations (e.g. the eikonal equation instead of the
Helmholtz equation or the Maxwell system).

In this report, we survey a class of recently developed numerical schemes that
combine the advantages of rigorous solvers (error controllability) with those of
asymptotic methods (frequency-independent discretizations), and that therefore
result in efficient and accurate simulators applicable throughout the frequency
spectrum.

These algorithms pioneered by Bruno et. al. [4] in the context of single-
scattering configurations (later extended by Bruno et. al. [5] to allow for the
treatment of multiple scattering effects) are based on the solution of suitably cho-
sen integral-equation formulations of the scattering problem, and they rely on three
main elements, namely: 1) the use of an “ansatz” for the unknown surface cur-
rents which reduces the integral equation to one for a slowly varying modulation;
2) specialized quadrature rules for the new integral equation that take advantage
of the highly-oscillatory nature of the kernel, and 3) full resolution of shadowing
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transitions with discretizations that are adapted to their boundary-layer struc-
ture. The results in [4] clearly demonstrate the attainability of solutions within
a prescribed error-tolerance in times that do not depend on the wavenumber k.
An actual proof that provides a rigorous upper bound for the operation count of
O(k1/9) in the case of circular/spherical boundaries was recently established by
Dominguez et. al. [7] for a p-version boundary element implementation of a similar
approach where, using the exponential decay (with increasing wavenumber k) of
the surface current in the deep shadow region, they approximate this quantity by
zero there as in [4]. Our contribution in this direction has been the design of two
new Galerkin schemes [6] where we have shown that the error in best approxima-
tion of the surface current grows at most at O(kǫ) (for any ǫ > 0) for the first
algorithm, and at O(log k) for the second one (based on a novel change of variables
around the transition regions) over the entire boundary.

Returning to the treatment of multiple scattering effects, as we have found
out, a fundamental step in understanding the high-frequency features of multiple
scattering iterations is the derivation of accurate asymptotic expansions for the
densities that are sequentially induced on the surface of the scatterers. Indeed,
when a multiple scattering orbit is considered, the field diffracted from the surface
of the m–th obstacle acts as an incidence impinging on the (m + 1)–st surface
and, thus, it generates a current therein. As we have shown in [1, 10], this allows
one to recover the symbolic classes (in the sense of Hörmander) of the multiple
scattering iterates; and this, in turn, enables one to derive their high-frequency
asymptotic expansions that turn out to be uniform perturbations of order O(k−1)
of a discrete dynamical system determined by the open billiard flow in the region
exterior to the obstacles.

In two-dimensions [9–11], these expansions show that if an optical ray arrives at
a point on the boundary of a scatterer afterm transverse bounces, then (asymptot-
ically) the current at that point equals the current at the (m−1)–st reflection-point
times a continued fraction determined by geometric properties of the correspond-
ing ray path; consequently, the current at that point is a perturbation of order
O(k−1) of the product of m (recursively defined) continued fractions determined
by the entire ray path. In three-dimensional settings, on the other hand, and for
the scalar acoustic case [1], these continued fractions are replaced by expressions
in the form of two-dimensional continued fractions ; a distinctive property of these
expressions, when compared to their two-dimensional counterparts, is that they
depend smoothly on the relative angle of rotation between the principal axes of
the successive reflection points of the optical rays. The fully three-dimensional
vector electromagnetic expansions in [8], in turn, show that at each reflection the
asymptotic currents are, as they ought to be, tangential to the surfaces and, most
importantly, that they undergo a rotation and a projection onto the surface per-
pendicular to the reflection vector, followed by a second rotation and a projection
onto the tangent space at the point of arrival.

To analyze these asymptotic expansions for a collection of convex structures, a
fundamental observation relates to the convexity of wavefront sets corresponding
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to successive wave reflections. This has resulted in a rather technical analysis
yielding a proof that the ratios of high-frequency asymptotic expansions of multiple
scattering iterates on a periodic orbit converge to an explicitly computable complex
number (vector) Rk in the form of a wavenumber dependent phase term modulated
by a (real) amplitude. Moreover, we have shown that this latter convergence is
exponential in the number of reflections, uniform over the entire boundaries, and
that the analysis is optimal with regards to the length of the periodic orbits.

Even though, as our work has shown, the multiple-scattering series converges
spectrally, it is clearly desirable to design mechanisms to accelerate its conver-
gence. In this connection, an essential consequence of our analysis is that the ratio
of iterated currents differing by one period stabilizes after a frequency dependent
number of reflections which grows only logarithmically with increasing frequency.
Accordingly, once stabilized, the behavior of the series resembles an O(k−1) per-
turbation of a geometric series which, in turn, can be well approximated by rational
functions. This, as we have shown, completely clarifies the enhanced convergence
properties of the Padé approximation procedure when applied to the multiple-
scattering series [5].

Moreover, based on the stabilization properties of the series, we have further
devised two alternative acceleration algorithms that, as opposed to Padé approxi-
mants, do not require the solution of a linear system. The first algorithm makes
explicit use of the derived rate of convergence formulas and provides an O(k−1)
improvement once the series stabilizes. The second, in contrast, is based on the
fact that the series itself is a perturbation of a geometric series and it provides a
further significant reduction in the number of single-scattering problems necessary
to solve the overall problem within a desired accuracy. Finally, for cases wherein
the aforementioned convergence is slow, we have shown that utilization of a new
post-processing algorithm based on a novel use of Krylov-subspaces provides a
further significant reduction in the number of iterations while still retaining the
frequency-independent computational cost [2, 3].
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Fast Methods for Option Pricing

Tobias von Petersdorff

(joint work with C. Schwab, R. Nochetto, C. Zhang)

Traditionally option pricing is based on Brownian motion which leads to a
parabolic problem with the space operator A = −∆. In finance jump processes
are now popular which lead to a parabolic problem ut + Au = 0 with an integral
operator A of order p ∈ (0, 2). Using wavelet compresson and hp discretization in
time we can achieve O(N(logN)c) complexity. For multidimensional problems in
Rd with N = nd one can use sparse grids to achieve O(n(log n)c). For American
options, however, many open questions remain.

Integral equations for open surfaces

Oscar P. Bruno

This note concerns recent progress in the numerical solution of problems of diffrac-
tion by infinitely thin open surfaces. These problems, which can be treated numer-
ically by means of either, discretized boundary integral equations or volumetric
formulations, present a number of difficulties—stemming, mainly, from the sin-
gular field behavior in a vicinity of the edges. Although approaches based on
boundary integral methods require a lower dimensionality and, thus, smaller dis-
cretizations than volumetric PDE solvers, open-surfaces integral approaches do
require, at least in their classical formulations, use of first-kind integral equations.
Since, for efficiency, high-frequency three-dimensional scattering problems ought
to be treated by means of iterative linear-algebra solvers (to take advantage of ac-
celerated scattering solvers [3,4,14]), such formulations can prove computationally
expensive: the eigenvalues of the associated first kind equations accumulate at zero
and infinity and thus, Krylov subspace solutions of these equations require large
numbers of iterations. In the contributions [5,6] we show that use of compositions
of certain operators Sω and Nω (that arise as singular integration weights are used
in conjunction with the classical integral operators S and N associated with the
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Dirichlet and Neumann problems), gives rise to second-kind integral formulations
requiring small numbers of Krylov subspace iterations.

The difficulties that arise as integral equations are used to treat open surface
scattering problems are of course well known, and a significant number of efforts
have been devoted to their treatment. A first class of approaches in these regards
can be grouped around the idea of generalizing the classical closed-surface Calderon
relations [9, 12] to the open-surface context. In this class we can include the
contributions [7,13]. The work [13] gives rise to equations of the form I+TK where

the kernel K(x, y) of the operator TK has local singularity of at most O
(

1
|x−y|

)
.

This early result however does not take into account the singular edge behavior;
the resulting operator TK is not compact and I +TK is not a second-kind integral
operator. The contribution [7], in turn, shows that, for open surface problems,
use of the combination NS in conjunction with boundary elements that vanish on
the edges results in low numbers of iterations for a given residual, at least for low
frequencies, but it does not provide details on accuracy and, in fact, it suggests
that, in contrast with the equations presented discussed here [5, 6], the condition
number of the finite element approximation for NS actually tends to infinity as
the discretizations are refined. The combination NS is also considered in [1]; again
low iteration numbers are demonstrated for low frequency problems, but the edge
behavior is not taken into account and accuracy studies are not presented.

In a second class of methods we can include the algorithms presented in [2, 10,
11]. These contributions rely on use of the cosine basis to produce spectral accu-
racy (an aspect that is incorporated in our work [5, 6] as well). The approach [2]
treats the Dirichlet problem for Laplace’s equation by means of second kind equa-
tions; the basis of this approach lies in the observation that the cosine basis has the
dual positive effect of removing the singular edge behavior and diagonalizing the
logarithmic potential for a straight arc, whose inverse can thus be easily computed
and used to produce a second kind operator for a general arc. We have shown
that a direct generalization of this approach to Helmholtz’ acoustic equations gives
rise to very large numbers of Krylov-subspace iterations, even larger than those
required by the single-layer equation itself. Like [2], reference [10] considers the
Laplace equation and uses a cosine basis and the inverse of the straight-arc prob-
lem to produce a second kind integral equation. The approach [11], finally, treats
the Neumann problem for the non-zero frequency Helmholtz equation with spec-
tral accuracy by means of first kind equations and direct solvers. Once again,
our experiments have shown that this equation gives rise to very large numbers of
Krylov subspace iterations.

A third class of approaches to our problem is well exemplified by the contribu-
tions [8, 15]; here the hp version of the finite element method is used to produce
exponential convergence to the solution of first kind equations associated with open
surface problems. Further, multilevel approaches are used to produce formulations
whose condition number grows slowly as discretizations are refined. While effective
for the Laplace and low-frequency Helmholtz problems, multilevel formulations are
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limited at high-frequencies by the requirement of resolution of the wavelength by
the coarsest discretization—for which a direct solve must be produced.

The main new results presented in [5, 6], which are concerned with two-dimen-
sional configurations, may briefly be stated as follows. Defining ω ∼ d1/2 (where
d is the distance to the edge) and letting

(1) Sω[ϕ] = S(
ϕ

ω
)

and

(2) Nω[ψ] = N(ωψ),

(where S and N denote the regular single- and double-layer potential), we have

(3) NωSω = J0 +K

where, after appropriate changes of independent variables and in suitable function
spaces of even periodic functions, the operator J0 becomes a continuous operator
that admits a continuous inverse and the operator K becomes a compact operator.
Further, high-order accurate numerical implementations of these equations show
that 1) The eigenvalues for these equations are highly clustered, and that, 2) These
equations give rise to solutions for open-arc Dirichlet and Neumann problems in
significantly smaller number of iterations (improvements by factors of 30 were
obtained for some realistic geometries) than those arising from direct use of the
first kind equations.
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Rapid solution of the wave equation in unbounded domains

Stefan A. Sauter

(joint work with Lehel Banjai)

1. Integral Formulation of the Wave Equation

The efficient numerical solution of the wave equation plays a key role in the
simulation of many physical applications such as electromagnetic wave propagation
or the computation of transient acoustic waves. The homogeneous wave equation
reads

(1a) ∂2
t u− ∆u = 0 in Ω × (0, T )

with initial conditions

(1b) u(·, 0) = ∂tu(·, 0) = 0 in Ω

and boundary conditions

(1c) u = g on Γ × (0, T )

on a time interval (0, T ) for some T > 0. Here, Ω ⊂ R3 is a Lipschitz domain with
boundary Γ. For its solution, we employ an ansatz as a single layer potential

(2) u(x, t) =

∫ t

0

∫

Γ

k(x− y, t− τ)φ(y, τ)dΓydτ , (x, t) ∈ Ω × (0, T ) ,

where k(z, t) is the fundamental solution of the wave equation,

(3) k(z, t) =
δ(t− ‖z‖)

4π‖z‖ ,

δ(t) being the Dirac delta distribution. The ansatz (2) satisfies the homogeneous
equation (1a) and the initial conditions (1b). Hence, the unknown density φ in
(2) is determined via the boundary conditions (1c), u(x, t) = g(x, t). This results
in the boundary integral equation for φ,

(4)

∫ t

0

∫

Γ

k(x− y, t− τ)φ(y, τ)dΓydτ = g(x, t) ∀(x, t) ∈ Γ × (0, T ) .

Existence and uniqueness results for the solution of the continuous problem are
proved in [24] and [1, Prop. 3].
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Although this approach goes back to the early 1960s (cf. [14]), the development
of fast numerical methods for integral equations in the field of hyperbolic prob-
lems is still in its infancies compared to the multitude of fast methods for elliptic
boundary integral equations (cf. [28] and references therein). Existing numerical
discretization methods include collocation methods with some stabilization tech-
niques (cf. [5], [6], [9], [10], [11], [26], [27]) and Laplace-Fourier methods coupled
with Galerkin boundary elements in space ( [1], [8], [12], [15]). Numerical experi-
ments can be found, e.g., in [16].

In [13] a fast version of the marching-on-in-time (MOT) method is presented
which is based on a suitable plane wave expansion of the arising potential which
reduces the storage and computational costs.

We here employ the convolution quadrature method for the time discretization
and a Galerkin boundary element method in space. The convolution quadrature
method for the time discretization has been developed in [22], [23], [24], [25]. It
provides a straightforward way to obtain a stable time stepping scheme using the
Laplace transform of the kernel function.

The coefficient matrix in the arising linear system is a block-triangular Toeplitz
matrix consisting of N blocks of dimension M ×M , where N denotes the number
of time steps and M is the number of spatial degrees of freedom. Due to the non-
localness of the arising boundary integral operators, the M ×M matrix blocks are
densely populated.

In the literature, there exist (at least) two alternatives to solve the system
arising by the convolution quadrature approach efficiently. In [19], FFT-techniques
are employed which make use of the Toeplitz structure of the system matrix and
the computational complexity is reduced to O

((
N log2N

)
M2
)
, while the storage

complexity stays at O
(
NM2

)
. In [18], [17], [21], the M × M block matrices

are approximated by data sparse representations based on a cutoff and panel-
clustering strategy. This leads to a significant reduction of the storage complexity
while the computational complexity is reduced compared to the naive approach
(cost: O

(
N2M2

)
) but increased compared to the FFT approach.

Here, we propose a third approach which combines the advantages of the FFT-
technique with the sparse approximation. We transfer the block Toeplitz system
to the Fourier image by the discrete Fourier transform and then face the problem
of computing approximate solutions of Helmholtz problems at different (complex)
wave numbers. These Helmholtz problems are fully decoupled and can hence be
efficiently solved on parallel computers. Relatively standard, fast methods (e.g.
fast multipole method, hierarchical matrices) for the solution of frequency domain
scattering can effectively be applied to these problems; see [7, 30] and [2]. It may
also be possible to further reduce the computational cost of assembling the matrices
by using the techniques for multifrequency analysis described in [20, 29]. Further,
we also show that if the boundary data is sufficiently smooth and compatible and
of limited time duration, instead of N , only O(N ǫ), for any fixed ǫ > 0, Helmholtz
systems need to be solved.

This paper is based on results which have been published in [3], [4].
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We summarize briefly the main results of these papers.

(1) A perturbation theory has been developed which allows to replace time-
consuming parts of the algorithm such as quadrature, the generation of
the full matrix, etc. by efficient approximations while preserving the as-
ymptotic convergence rates.

(2) Let N denote the number of time steps and let M be the number of
space points. The cost of our algorithm for computing time-space discrete
approximations φ∆t,h is dominated (essentially) by solving N decoupled
Helmholtz problems with complex wave numbers by using multipole tech-
niques. Hence, the computational and storage costs are of order NM up
to logarithmic terms. (If the signal is sufficiently smooth and of limited
time duration the number of Helmholtz solves is even reduced to Nε for
any ε > 0.)

(3) We have performed numerical experiments in two dimensions which show
that the asymptotic estimates are already visible also for moderate prob-
lem sizes.
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[4] L. Banjai and S. Sauter. Rapid solution of the wave equation in unbounded domains:
Abridged version. In Proceedings of Waves 2007, University of Reading, pages 38–40, 2007.

[5] B. Birgisson, E. Siebrits, and A. Pierce. Elastodynamic Direct Boundary Element Methods
with Enhanced Numerical Stability Properties. Int. J. Numer. Meth. Eng., 46:871–888,
1999.

[6] M. Bluck and S. Walker. Analysis of Three-Dimensional Transient Acoustic Wave Propaga-
tion using the Boudary Integral Equation Method. Int. J. Numer. Meth. Eng., 39:1419–1431,
1996.

[7] H. Cheng, W. Crutchfield, Z.Gimbutas, L. Greengard, J. Ethridge, J. Huang, V.Rokhlin,
N.Yarvin, and J. Zhao. A wideband fast multipole method for the Helmholtz equation in
three dimensions. J. Comput. Phys., 216(1):300–325, 2006.

[8] M. Costabel. Developments in Boundary Element Methods for Time-Dependent Problems.
In L. Jentsch and F. Tröltsch, editors, Problems and Methods in Mathematical Physics,
pages 17–32, Leipzig, 1994. B.G. Teubner.

[9] P. Davies. Numerical stability and convergence of approximations of retarded potential in-

tegral equations. SIAM, J. Numer. Anal., 31:856–875, 1994.
[10] P. Davies. Averaging techniques for time marching schemes for retarded potential integral

equations. Appl. Numer. Math., 23:291–310, 1997.
[11] P. Davies and D. Duncan. Stability and Convergence of Collocation Schemes for Retarded

Potential Integral Equations. SIAM J. Numer. Anal., 42(3):1167–1188, 2004.
[12] Y. Ding, A. Forestier, and T. Ha-Duong. A Galerkin Scheme for the Time Domain Integral

Equation of Acoustic Scattering from a Hard Surface. J. Acoust. Soc. Am., 86(4):1566–1572,
1989.



Analysis of Boundary Element Methods 1009

[13] A. Ergin, B. Shanker, and E. Michielssen. Fast analysis of transient acoustic wave scattering
from rigid bodies using the multilevel plane wave time domain algorithm. J. Acoust. Soc.
Am., 117(3):1168–1178, 2000.

[14] M. Friedman and R. Shaw. Diffraction of Pulses by Cylindrical Obstacles of Arbitrary Cross
Section. J. Appl. Mech., 29:40–46, 1962.

[15] T. Ha-Duong. On Retarded Potential Boundary Integral Equations and their Discretization.
In M. Ainsworth, P. Davies, D. Duncan, P. Martin, and B. Rynne, editors, Computational
Methods in Wave Propagation, volume 31, pages 301–336, Heidelberg, 2003. Springer.

[16] T. Ha-Duong, B. Ludwig, and I. Terrasse. A Galerkin BEM for transient acoustic scattering
by an absorbing obstacle. Int. J. Numer. Meth. Engng, 57:1845–1882, 2003.

[17] W. Hackbusch, W. Kress, and S. Sauter. Sparse convolution quadrature for time domain
boundary integral formulations of the wave equation by cutoff and panel-clustering. In
M. Schanz and O. Steinbach, editors, Boundary Element Analysis: Mathematical Aspects
and Applications, volume 18, pages 113–134. Springer Lecture Notes in Applied and Com-
putational Mechanics, 2006.

[18] W. Hackbusch, W. Kress, and S. Sauter. Sparse Convolution Quadrature for Time Domain
Boundary Integral Formulations of the Wave Equation. IMA J.Numer. Anal., to appear.

[19] E. Hairer, C. Lubich, and M. Schlichte. Fast numerical solution of nonlinear Volterra con-
volution equations. SIAM J. Sci. Stat. Comput., 6(3):532–541, 1985.
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Calderón-enhanced Time Domain Integral Equation Solvers:
Preconditioning, Stability, and Nullspaces for Toroidal Objects

Eric Michielssen

(joint work with Francesco Andriulli, Hakan Bağcı, Annalisa Buffa, Snorre
Christiansen, Kristof Cools, and Femke Olyslager)

Marching on in time (MOT)-based time domain integral equation (TDIE)
solvers represent an increasingly appealing avenue for analyzing transient elec-
tromagnetic interactions with large and complex structures. MOT-TDIE solvers
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for analyzing electromagnetic scattering from perfect electrically conducting ob-
jects, obtained by enforcing electric field boundary conditions, implicitly time
advance electric surface current densities by iteratively solving sparse (MOT) sys-
tems of equations at all time steps. Here we report on three aspects relating to
the recent development of Calderón-enhanced MOT-TDIE solvers: precondition-
ing, low-frequency stability, and the occurrence of nullspaces for toroidal objects.
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Figure 1. Condition number of the MOT-TDEFIE and
Calderón preconditioned MOT-TDEFIE systems versus the av-
erage edge size for the sphere with a radius of one lightmeter.

1. Preconditioning. Classical MOT-TDIE solvers do not suffer from a CFL time
step constraint and operate on unstructured meshes [2]. In other words, their time
step sizes δt are dictated solely by excitation bandwidths, never by the spatial reso-
lution δr of the meshes on which they operate. Meshes used by MOT-TDIE solvers
only need to abide by two constraints: they must resolve (i) the shortest wavelength
in the excitation and (ii) the structure’s geometric features. When constraint (i)
drives mesh construction – this situation is the norm when analyzing electromag-
netic scattering from relatively smooth surfaces subject to high-frequency excita-
tions - the MOT-TDIE system matrix tends to be well-conditioned and the number
of iterations per time step small. In contrast, when constraint (ii) dictates surface
mesh resolution – this often happens when analyzing electromagnetic radiation
from, and guidance on, geometrically intricate and mixed-scale surfaces subject to
low- to medium-frequency excitations – the MOT-TDIE system matrix tends to be
ill-conditioned and the number of iterations per time step large. In this scenario,
the MOT-TDIE system matrix condition number grows without bound as the mesh
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resolution δr → 0. Recently, this dense mesh breakdown phenomenon was effec-
tively cured by using semi-analytical and multiplicative Calderón preconditioned
MOT-TDIE solvers [1]. The new Calderón-preconditioned MOT-TDIE solvers
give rise to well-conditioned MOT systems, irrespective of the mesh resolution.
Figure 1 shows the condition numbers of Calderón preconditioned MOT-TDIE
matrices versus 1/δr along with those obtained using of the non-preconditioned
MOT-TDIE solver. The Calderón preconditioned formulation compares favorably
to the standard MOT-TDIE approach.
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Figure 2. Currents on a sphere obtained with the dottrick TDE-
FIE and with the differentiated TDEFIE versus the time step.

2. Low-frequency stability. Classical MOT-TDIE solvers are prone to low-
frequency (quasi-DC) instabilities arising from the fact that they possess a null-
space comprising magnetostatic currents. Recently, we showed that this nullspace
can be effectively removed by leveraging Calderón identities to construct the so-
called “dot-trick” [5] time domain electric field integral equation, comprising prod-
ucts of “singular” and “hypersingular” time domain electric field operators with
judiciously placed temporal integrators/differentiators. The “dot-trick” time do-
main electric field integral equation was shown to effectively resolve solenoidal func-
tions of any time signature, including “DC”, and applies to open as well as closed
structures. In Figure 2 transient currents obtained with the standard MOT-TDIE
and with the “dot-trick” MOT-TDEFIE are plotted versus 1/δr. It is evident
that no low-frequency instabilities are present in the solution of the “dot-trick”
MOT-TDEFIE.
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(a) (b)

Figure 3. Kernel of the static outer MFIE operator due to the
two cycles (a) , evidenced by a polynomial eigenvalue plot (b).

3. Nullspaces for toroidal scatterers. Unfortunately, Calderón-enhanced TDIEs
are no panacea. These equations possess a nullspace when applied to the analysis
of scattering from toroidal objects and the dimension of the nullspace is twice
the genus of the object analyzed (Figure 3(a)). Its origins are quite different from
those discussed above and relate to the nullspaces that plague static magnetic field
equations applied to toroidal objects. We have not only elucidated the construction
of a basis for this nullspace, but also investigated the effect of its existence on
the numerical treatment of non-static problems [6]. Unfortunately, to date, no
effective method for removing the nullspaces from the equations or annihilating
its contribution from the solution vector has been found.
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New Boundary Element Convergence Results for Unilateral Boundary
Value Problems

Joachim Gwinner

In this talk we address elliptic free boundary problems where the nonlinearity lies
at the boundary and so the boundary element method is the method of choice.
We focus on the boundary element method in its p-version to treat a scalar varia-
tional inequality of the second kind that simultaneously models unilateral contact
and Coulomb friction in elasticity [10, 12]. Thus we complement recent work of
Maischak and Stephan [13, 14] on adaptive hp-versions of the bem for unilateral
Signorini problems, respectively on fem-bem coupling in its h-version for a non-
linear transmission problem modelling Coulomb friction contact.

Since the unilateral constraint can only be controlled in a finite set, polynomial
approximation of higher order leads to a nonconforming discretization scheme. In
contrast to [14] and to a related paper of Guediri [7] on a boundary variational
inequality of the second kind with the Helmholtz operator modelling friction and
on the convergence of the h-boundary element method we take also the quadrature
error of the nonsmooth friction functional into account of the error analysis.

Our convergence results consist of two parts. Firstly without any regularity
assumptions, we prove convergence of the p−bem Galerkin solution in the energy
norm. To this end we adapt the discretization theory of Glowinski [6] and apply its
extension to the more difficult semicoercive case in [8], see also [9] for h−boundary
element convergence for variational inequalities of the second kind. The key to such
a norm convergence result for the p−bem is the used Gauss-Lobatto integration
rule with its high exactness order and its positive weights together with duality
arguments in the sense of convex analysis [4].

Secondly we present a Céa-Falk lemma that extends the basic error estimate for
abstract variational inequalities in [3, Theorem 23.1], [5, Theorem 1], see also [2,
Theorem 6.1], to abstract variational inequalities of the second kind. This lemma
permits to split the total discretization error into three different parts: the ap-
proximation error due to the approximation of the Steklov-Poincaré operator by
its discrete counterpart, the distance of the continuous solution to the convex set
of approximations in the trial space, and the consistency error caused by the non-
conforming approximation. Here as in [13] we use the well-known approximation
theory of spectral methods [1], the cutting technique of Falk [5], and interpolation
arguments to obtain estimates in Sobolev norms of fractional order. Moreover,
we exploit the special structure of the friction functional. Thus for our more
general variational problem we arrive under mild regularity assumptions at an a
priori error estimate of the same convergence order as in [13] which is suboptimal
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because of the appearance of the consistency error in the nonconforming approx-
imation scheme and because of the well-known regularity threshold in unilateral
problems [11].
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New Elements for Inverse Boundary Element Methods

Roland Potthast

(joint work with Filippo Fazi, Martin Wannert, Jijun Liu, Phil Nelson, Fahmi
ben Hassen)

We present some new techniques for the solution of source identification and source
reconstruction in acoustics and magnetic tomography which are based on boundary
integral representations and which employ boundary element techniques for their
numerical realization.

Source splitting in acoustics. First, we study the recognition of the sound
field of different sources which are located in n separate domains G1, ..., Gn in
space. Define G := G1∪...∪Gn. We prove that the sum u = u1+...+un of the fields
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measured on an open subset of a plane Γ with Γ ∩ G = ∅ uniquely deterines the
fields u1, ..., un. Then, we describe two new splitting algorithms to calculate uj ,
j = 1, ..., n from u. The first algorithms is based on the potential method of Kirsch
and Kress (1886). The second algorithm employs the the point source method
of the author (1996). We provide a convergence prove for field reconstruction.
Further, we give a demonstration based on real data measurements separating
two voices from microphone array measurements carried out at the Institute of
Sound and Vibration Research ISVR at the University of Southampton, UK1.
Details can be found in [1], [2].

Uniqueness of magnetic tomography for multilayer devices. The second
part of the talk employs the splitting technique to prove uniqueness of magnetic
tomography for a multi-layer device [3]. This applies in particular to magnetic
tomography for fuel cells. A multi-layer device is defined by several layers Λk,
k = 1, ..., n in which the current can flow only in z-direction. In the planes Γℓ

between the layers Λℓ and Λℓ+1 the currents flow in the x− y plane. A uniqueness
prove for the reconstruction of a current density j from its magnetic field H is give
in five steps.

1. First, we argue that the magnetic field H of the currents in the layers Λℓ

has no H3 component. Thus, the field H3 is a sum of fields H3,ℓ arising from the
currents jℓ in Γℓ for ℓ = 0, ..., n. Analogously to the acoustic case above we prove
that this field can be uniquely split into its parts H3,ℓ, ℓ = 0, ..., n.

2. Now, we prove that Hℓ can be reconstructed from H3,ℓ measured on some
closed surface containing the device. This is carried out by first showing that
H3,ℓ, which solves the Laplace equation in the exterior domain R3 \Γℓ, is uniquely
determined on the boundary of a half-space X with boundary parallel to the x−y
plane and with Γℓ in its open exterior. Then, the full field Hℓ is determined by its
normal values e3 ·Hℓ = H3,ℓ on the boundary ∂X of X . By analyticity this holds
on R3 \ Γℓ.

3. Then, we reconstruct Hℓ supported on Γℓ in R3 \ Γℓ. This is carried out
either by the potential approach of Kirsch-Kress or by the point source method of
the author.

4. By explicit use of the jump relations of the curl of a vectorial single-layer
potential on Γℓ we can reconstruct jℓ in Γℓ from the knowledge of Hℓ in R3 \ Γℓ.

5. Finally, we use div(j) = 0 in the layers Γℓ ∪Λℓ to reconstruct the currents j
in Λℓ from the knowledge of j in Γℓ for ℓ = 0, ..., n− 1.

Duality principles for inversion methods. Part three of the talk studies
the relation of the potential approach and the point source method introduced
above. We show a duality principle for the methods [4] and use it to prove that the
methods provide identical reconstructions when used with the same geometrical
setup and Tikhonov regularization for stabilization.

1This research has been promoted by a springboard fellowship of the Engineering and Physical
Sciences Research Council (EPSRC) in the United Kingdom under grant number EP/E032419/1.
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Orthogonality Sampling for object identification. In the forth part of the
talk we present recent results for inverse acoustic scattering. We study some new
ideas for object identification from the far field pattern u∞ of scattered waves us

which have been called orthogonality sampling [5], [6]. Given the far field pattern
u∞(x̂, k) for all x̂ ∈ S and an interval k ∈ [k1, k2] of wave numbers, the method
calculated the functional

(1) µ(y) :=

∫ k2

k1

∣∣∣∣
∫

S

eikx̂·yu∞(x̂, k) ds(x̂)

∣∣∣∣ dk, y ∈ R
m

with m = 2, 3.
We need to remark that the modulus of the interior integral in (1) is crucial

and does not appear in Fourier arguments. Without the modulus we have not
been able to obtain satisfactory reconstructions! We consider the functional (1)
as an orthogonality test for the far field of a point source with the given far
field pattern. Note that the philosophy and realization of the functional (1) is
different from other schemes like the Linear Sampling Method and also different
from minimization techniques which are widely used. In particular, the functional
(1) is well-posed.

Via the Funck-Hecke formula for the case of a Dirichlet boundary condition
u|∂D = 0 for the total field u = ui + us on the boundary ∂D of a scatterer D we
prove that µ(y) is identical

(2)

∫ k2

k1

∣∣∣∣
∫

∂D

j0(k|y − z|) ∂u

∂ν(z)
(z, k) ds(z)

∣∣∣∣ dk, y ∈ R
m,

with the Bessel function j0 of order 0. Here, we call

(3) us
red(y) :=

∫

∂D

j0(k|y − z|) ∂u

∂ν(z)
(z, k) ds(z)

the reduced scattered field. By numerical examples we show that the sum of the
modulus of the reduced scattered field provides information about the location
and shape of an unknown scatterer. The numerical results show that we obtain a
resolution of λ/2 where λ = 2π/k2 is the minimal wavelength of the fields under
consideration. Examples are shown for scattering by impenetrable scatterers with
Dirichlet or Neumann boundary condition and for scattering by inhomogeneous
media in two dimensions.
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Optimal panel-clustering for anisotropic mesh refinement

Wolfgang Hackbusch

(joint work with Ivan G. Graham, Lars Grasedyck, Stefan A. Sauter)

The given lecture is based on the paper [7] by mentioned authors.

γ

γ

Fig. 1: graded mesh for the screen Fig. 2: two cases of anisotropic cluster pairs

BEM for polyhedra and graded meshes. We consider the boundary el-
ement methods for polyhedra. Their solutions contain certain edge singularities.
Correspondingly, the optimal mesh is algebraically graded towards edges. Since
the screen has the same features, we restrict to this case (cf. Fig. 1). The square
contains strips of width δ = O(1) in which the edge-normal grid points are defined
by δ ∗ (i/n)g, 0 ≤ i ≤ n (g > 1: grading exponent). In the middle of the screen the
step size h = 1/n is used. The number of grid points is N ∼ n2. The rectangles
along the edges have an aspect ration ∼ N (g−1)/2 (note that (g − 1) /2 > 1 for
g > 3). For the analysis for such graded meshes see, e.g., v. Petersdorff [20],
v. Petersdorff, Stephan [21], Elschner [5], Ervin, Stephan, Abou El-Seoud [6] and
Graham, Sauter, Hackbusch [10]. In particular (cf. [6, Theorem 1.4]) it is known
that the (piecewise constant) Galerkin solution U ∈ S to the single layer potential
problem on a Lipschitz polyhedral surface (for sufficiently smooth right-hand side)
satisfies the optimal estimate in terms of number of degrees of freedom N :

(1) ‖u− U‖H−1/2(Γ) . N−3/4 when g > 3 .

Panel clustering and hierarchical matrices for regular meshes. Tech-
niques like panel clustering (Hackbusch, Nowak [17, 18]), hierarchical matrices
(Hackbusch [14], Grasedyck, Hackbusch [12], Hackbusch, Khoromskij, Sauter [16]),
multipole methods (Greengard, Rokhlin [13]) or wavelet compression techniques
(Schneider [24]) approximate the kernel κ (here κ = 1/ ‖x− y‖) by a separable

expression of the form1
κ̃(x, y) =

∑k
ν=1 ϕν(x)ψν(y), provided that x, y belong to

1For hierarchical matrices any functions ϕν , ψν are allowed, multipole requires special func-
tions, wavelet compression needs polynomials for either ϕν or ψν .
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subsets Ω1 and Ω2 (i.e., x ∈ Ω1, y ∈ Ω2) which admit the admissibility condition

(2) min{diam(Ω1), diam(Ω2)} ≤ η dist(Ω1,Ω2)

with a fixed positive constant η. Then all entries Ãij =
∫∫

κ̃(x, y)bi(x)bj(y)dxdy
of the system matrix with basis functions bi, bj supported in the respective set Ω1

and Ω2 lead to a rank-k-matrix. Let I be the index set of the indices i, j. This set
is recursively divided into suitable subsets leading to a (binary) cluster tree. All
elements τ of the cluster tree are subsets of I. The domain Ωτ is the union of all
supports of basis functions bi, i ∈ τ. Then two clusters τ, τ ′ are called admissible,
if Ωτ and Ωτ ′ satisfy the admissibility condition (2).

The matrix A can be written as A ≈ Anear +Afar, where the far-field part Afar

consists of the contribution of suitable admissible cluster pairs. The near-field
part contained in Anear are the original matrix entries Aij for which the supports
of bi, bj are non-admissible. In the case of a regular mesh, Anear is a convenient
sparse matrix. As a consequence, the storage amount of Anear, Afar as well as the
cost of the matrix-vector operation is linear in the dimension N up to logarithmic
factors.

Standard panel clustering and graded meshes. Consider the situation of
Fig. 2. Obviously the distance of the clusters is much smaller than the diameter.
Accordingly, the cluster pairs are non-admissible and all involved entries Aij must
be represented by the near-field matrix which now has a number of non-zeros per

row which is growing with N. A precise analysis shows the storage cost O(N
3
2−

1
g ).

Hence for g = 4 (note that g > 3 is required), the cost is proportional to N5/4 and
therefore non-optimal.

Remedy by exact integration. Consider the right case of Fig. 2. Let
τ = [A,B] × [α, β] and τ ′ = [A′, B′] × [α′, β′] a pair of elements contained in the
cluster pair. Note that all elements in the first cluster have the identical interval
[A,B], only the bounds [α, β] differ. Similarly, all elements in the second cluster
have the first variable in [A′, B′]. The (τ, τ ′)-matrix entry is

(3)

∫∫

τ×τ ′

dxdy

‖x− y‖ =

β∫

α

β′∫

α′




B∫

A

B′∫

A′

dx1dy1√
(x1 − y1)

2
+ (x2 − y2)

2




︸ ︷︷ ︸
=:I(x2,y2)

dx2dy2.

The inner integral depends only on x2, y2. It can easily be computed (for an-
tiderivatives of the Newton potential compare Hackbusch [15]). We can consider
(3) as the evaluation of a one-dimensional integral equation with the new kernel
I(x, y). Since I(x, y) is asymptotically smooth, we can use the standard admissi-
bility condition for the 1D-situation which means

min{diam([α, β]), diam([α′, β′])} ≤ η dist([α, β], [α′, β′]).

Since now the long stretched direction is eliminated we get new contributions for
the far field, while the near-field is sparse again. The overall cost is the same as
for the case of a regular grid. In fact the situation is even better, since 1) 1D
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kernel lead to a smaller rank k compared with 2D for the same accuracy and 2)
for the graded case one interval (e.g., [α, β]) is much smaller than the other and
the minimum leads to a very small η.

The solution of the linear system uses the approximate LU-decomposition com-
puted by the hierarchical matrix technique. The required time is usually clearly
smaller than the time for the matrix set-up.
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Boundary Integral Equations for Multi-dielectric Electromagnetic
Scattering

Ralf Hiptmair

Introduction. We consider the problem of time-harmonic electromagnetic
scattering at a bounded object occupying the domain Ω ⊂ R3. The object is
composed of several homogeneous linear materials with different permittivities ǫ.
More precisely, ǫ(x) ≡ ǫi in Ωi ⊂ Ω, i = 1, . . . , P , where all the Ωi are curvilinear

Lipschitz polygons, mutually disjoint, and Ω =
⋃P

i=1 Ωi. This also applies to

Ω0 := R
3 \ Ω.

The resulting (scaled) electric field solves the electric wave equation curlcurlE−
κ2ǫ(x)E = 0 with wave number κ > 0. In Ω0, E represents the scattered field,
which satisfies Silver-Müller radiation conditions at ∞ [5]. Across Γ := ∂Ω jumps
[Et]Γ (tangential component) and [curl E× n]Γ (n the unit normal of Γ) are im-
posed.

Simpler, but closely related, is the problem of acoustic scattering governed by
the scalar Helmholtz equation −∆U−κ2ǫ(x)U = 0. Here we have to prescribe the
jumps [U ]Γ and [gradU · n]Γ, and Sommerfeld radiation conditions at ∞. Many
ideas will be elaborated below for both the scalar and vectorial case, in order to
emphasize parallel structure.

Skeleton trace spaces. Recall from [9, Ch. 3] the point trace space H
1
2 (∂Ω)

for H1(Ω), from [1–3] the tangential trace space H− 1
2 (curlΓ, ∂Ω) for H(curl ,Ω),

and from [7, Ch. I,§2] the normal trace space H− 1
2 (∂Ω) of H(div,Ω), Ω ⊂ R3 a

generic Lipschitz domain in each case. Next, we introduce the interfaces Γij :=
∂Ωi∩∂Ωj and their union, the skeleton Σ. Every Γij is equipped with an intrinsic
orientation, which can be described by an oriented unit normal vector field nij .

The skeleton trace spaces H
1
2 (Σ), H− 1

2 (curlΓ,Σ), and H− 1
2 (Σ) are closed sub-

spaces of
P⊗

i=0

H
1
2 (∂Ωi),

P⊗
i=0

H− 1
2 (curlΓ, ∂Ωi), and

P⊗
i=0

H− 1
2 (∂Ωi), respectively.

These Dirichlet trace spaces can be endowed with the equivalent norms

‖u‖
H

1
2 (Σ)

:= inf{‖U‖H1(R3) : U|Σ = u} ,
‖u‖

H− 1
2 (curlΓ,Σ)

:= inf{‖U‖
H(curl ,R3) : Ut|Σ = u} ,

tangential trace

‖ϕ‖
H− 1

2 (Σ)
:= inf{‖Φ‖

H(div,R3) : Φn|Σ = ϕ} .
normal trace
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Denote by Υ the “wire-basket” of Σ, that is the union of points in the boundary
of more than two subdomains. It is known [6, Sect. 2] that C∞-functions sup-
ported away from Υ are dense in the function spaces H1(R3), H(curl ,R3), and
H(div,R3). Thus, L2-functions compactly supported inside Γij will be dense in
the Dirichlet trace spaces (inherent localization).

The concept of Neumann data arises from integration by parts formulas A look
at them reveals that an induced orientation of the boundary is required. This can
be concluded from the presence of the exterior unit normal n. Thus, to obtain
Neumann trace spaces the local orientations have to be imposed. We rely on
orientation conversion functions µi : ∂Ωi 7→ {±1}, µi(x) := nij · ni for x ∈ Γij .
Thus, in the scalar case, the Neumann trace space is

YN :=
(
µiH

− 1
2 (Σ)|∂Ωi

)P

i=0
⊂
⊗

H− 1
2 (∂Ωi) .(1)

In the case of the electric wave equation, the relevant Neumann trace space reads

Y N :=
(
µi

⊗
j
H− 1

2 (curlΓ,Σ)|Γij
× nij

)P

i=0
⊂
⊗

H− 1
2 (divΓ, ∂Ωi) .(2)

We retain the notation µi for the mappings H− 1
2 (Σ) 7→ H− 1

2 (∂Ωi) and

H− 1
2 (curlΓ,Σ) 7→ H− 1

2 (divΓ, ∂Ωi) enclosed in brackets in (1) and (2).
Lemma. The respective Dirichlet and Neumann trace spaces are dual to each

other (w.r.t. to pivot space
⊗
L2(∂Ωi))

Direct boundary integral equations. We adopt an abstract treatment
encompassing both the scalar and vectorial case. Writing γD for the Dirichlet
trace operator (relies on intrinsic orientation) and γN,i for the Neumann trace
operator on Ωi (relies on induced orientation), every solution U of the dielectric
scattering problem satisfies the transmission conditions (Ui := U|Ωi

)

γDUi = γDUj , γN,iUi = −γN,jUj on Γij .(3)

The potentially non-zero jumps across ∂Ω0 are suppressed.
Next, write X0 for the space of skeleton Dirichlet traces of smooth functions

supported away from Υ. Thanks to inherent localization, the transmission condi-
tions (3) can equivalently be stated as (ρi =̂ restriction to ∂Ωi)

〈γDUi, µiϕ〉Γij
+ 〈γDUj , µjϕ〉Γij

= 0 ∀ϕ ∈ X0 ,

〈γN,iUi, ρiv〉Γij
+ 〈γN,jUj , ρjv〉Γij

= 0 ∀v ∈ X̃0 .
(4)

Note that for the scalar caseX0 ⊂ H− 1
2 (Σ), X̃0 ⊂ H

1
2 (Σ), and that for the electric

wave equation X0, X̃0 ⊂ H− 1
2 (curlΓ,Σ).

Now we follow the pioneering approach of [11] to derive direct boundary integral
equations. Similar equations have been proposed for electromagnetics [8]. We
start from the local Calderón projectors, see [3, Sect. 5] and [10, Sect. 3.6] for the
definitions of the boundary integral operators Vi,Ki,Wi,

γDUi = Vi(µiϕ) − (Ki − 1
2 I)ρiv ,

γN,iUi = (K′
i + 1

2 )µiϕ + Wi(ρiv) ,
on ∂Ωi ,(5)
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where v is the skeleton Dirichlet trace of U , and ϕ the skeleton Dirichlet trace of
the associated dual quantity. For the Helmholtz equation this is the flux gradU ∈
H(div,R3), for the electric wave equation the magnetic field curlE ∈ H(curl,R3).
Combining (5) and (4), and summing over all interfaces yields the final boundary
integral equation

(∑P
i=1 µ

∗
i Viµi −∑P

i=1 µ
∗
i Kiρi∑P

i=1 ρ
∗
i Kiµi

∑P
i=1 ρ

∗
i Wiρi

)(
ϕ
v

)
= r.h.s.(6)

It has a unique solution provided that there is no non-trivial solution for excitation
free scattering problem on the foliated union of the complements of the Ωi, see [11]
for details.

Hodge-type decomposition. In the scalar case coercivity of the variational
problem associated with (6) is immediate from its block skew-symmetric structure.
However, the electromagnetic boundary integral operators Vi and Wi fail to be
coercive; they merely satisfy a generalized G̊arding inequality with respect to a

Hodge-type decomposition of the trace spaceH− 1
2 (curlΓ,Σ), see [4] and [3, Sect. 6].

Its recursive construction hinges on the following assumption
Assumption. The subdomains {Ωi}i can be colored black and white such that

• the interface separating the unions of subdomains of the same color is
Lipschitz and orientable,

• the sets of black and white subdomains again satisfy this assumption.

Lemma. Under the above assumption, there is a bounded projection

P : H− 1
2 (curlΓ,Σ) 7→ H− 1

2 (curlΓ,Σ)

such that

curlΓ Pu = curlΓ u , Ker(P) = Ker(curlΓ) , and Im(P) ⊂ L2
t(Σ) compact .

This Lemma guarantees that the operator of (6) (in weak form) satisfies a gener-
alized G̊arding inequality also for the case of electromagnetic scattering.
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Direct and inverse problems in fluid-solid interaction

Johannes Elschner

(joint work with George C. Hsiao, Andreas Rathsfeld)

If an elastic body is surrounded by a fluid and if an acoustic plane wave is incident,
then an elastic wave is incited inside of the body, and the acoustic wave in the
fluid is scattered. This phenomenon is modelled by a transmission problem for the
displacement amplitude and the acoustic pressure. The displacement amplitude
satisfies the reduced elastodynamic equations inside the body, and the acoustic
pressure is a solution of the Helmholtz equation in the domain exterior to it.
On the boundary of the body the traction of the displacement amplitude points
into the normal direction and is equal to the acoustic pressure from the outside.
Moreover, the normal component of the displacement is proportional to the normal
derivative of the pressure over the boundary of the body. Finally, the scattered
field satisfies the Sommerfeld radiation condition at infinity.

Similarly to inverse problems for the scattering of acoustic waves, inverse prob-
lems for the fluid-solid interaction can be formulated. Suppose the shape of an
elastic obstacle is unknown, but the far field patterns of scattered waves resulting
from certain incident plane waves are known. The inverse problem is to recover
the shape of the elastic scatterer from the measured far field patterns. For the
uniqueness in the case of known far fields for all incident directions we refer to [6].
Treating the numerical solution, the number of given far field patterns is finite,
and all the methods developed for the reconstruction in the case of inverse acous-
tic obstacle scattering (cf. e.g. [1]) should have counterparts for the case of elastic
scatterers.

We consider the variational formulation of the transmission problem for the
reduced elastodynamic and the Helmholtz equations. The unbounded exterior do-
main is truncated by a boundary integral equation method. Following [3], we prove
that the sesqui-linear variational form satisfies a G̊arding inequality. If a technical
condition for the boundary integral operator is satisfied, then the variational equa-
tion has a unique acoustic field solution. This is true even in the exceptional case
where the elastic wave is not unique. Note that the homogeneous transmission
problem may have eigensolutions for special shapes of the elastic obstacle and for
special values of the frequency (cf. e.g. [4,7]). In this case, the variational equation
cannot be solved directly. Instead, the variational equation should be solved for a
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slightly modified frequency. We prove that this commonly known approximation
(cf. [5]) is correct, i.e., that the acoustic field solutions for the modified frequencies
converge to the true solution if the perturbed frequencies tend to the correct value.

To solve the inverse problem, we restrict the class of obstacles to starlike do-
mains with boundary parametrizations from a Sobolev space. Our inverse problem
is ill-posed, and its solution requires a regularization. We propose a reformulation
of the inverse problem as an optimization problem, where the cost functional is the
least squares deviation of the measured far field patterns from those corresponding
to the obstacle which is to be optimized. Of course, we add the scaled square norm
of the boundary parametrizations for regularization.

We prove that the scattered acoustic field depends continuously on the shape
of the obstacles even if the incited elastic wave is not unique. Consequently, the
cost functional of the reformulated inverse problem is continuous, and, for any
regularization parameter, there exists a regularized solution, i.e. a minimizer of
the regularized cost functional. In case the involved far field patterns determine
the obstacle uniquely, the regularized solutions converge to this unique obstacle
whenever the regularization parameter tends to zero. For this convergence, we can
even admit measurement errors in the size of the regularization parameter.

For the numerical solution of the optimization problem, we derive a formula
for the directional derivative of the scattered acoustic field with respect to the
parametrization of the obstacle boundary. The gradient computation is based on
the solution of the variational equation of the transmission problem with modified
right-hand sides. Thus this gradient formula is efficient if the discretized variational
equation, i.e. the finite element system, is solved inverting its matrix by a direct
solver which may be adapted to sparse systems (cf. [9]).

The parametrizations of the obstacle boundaries are discretized by finite sums
of trigonometric functions resp. spherical harmonics. Having formulas for the
gradients at our disposal, we suggest the Gauß-Newton method (cf. [8]) for the
numerical computation of the minimizers. Numerical computations for a simple
two-dimensional scatterer confirm our theoretical results, and we refer to [2] for
the details.
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Analysis of Boundary Element Methods 1029

Prof. Dr. Ian H. Sloan

School of Mathematics

The University of New South Wales

Sydney NSW 2052

AUSTRALIA

Prof. Dr. Olaf Steinbach

Institut für Numerische Mathematik

Technische Universität Graz

Steyrergasse 30

A-8010 Graz

Prof. Dr. Ernst Peter Stephan

Institut für Angewandte Mathematik

Leibniz Universität Hannover

Welfengarten 1

30167 Hannover

Prof. Dr. Isabelle Terrasse

Environmental Simulation and Comp.

Dept.

EADS-CRC

12, Rue Pasteur

F-92152 Suresnes

Prof. Dr. Thanh Tran

School of Mathematics

The University of New South Wales

Sydney NSW 2052

AUSTRALIA

Prof. Dr.-Ing. Wolfgang L. Wend-

land

Institut für Angewandte Analysis

und Numerische Simulation

Universität Stuttgart

Pfaffenwaldring 57

70569 Stuttgart




