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Introduction by the Organisers

The workshop Groups and Geometries was one of a series of Oberwolfach work-
shops on this topic which has taken place every 3 years for some time. It focused
on algebraic and finite groups, their interactions with the geometry of buildings,
and applications.

A particular highlight of the meeting was a celebration of the recent award of the
Abel Prize jointly to John Thompson and Jacques Tits, two of the great pioneers
of modern group theory and geometry, and both leading participants at many
Oberwolfach meetings. The celebration took the form of two special lectures,
given on the Tuesday evening. In the first, Bernd Fischer gave some personal
recollections about Thompson, and spoke about his enormous influence on the
development of finite group theory. The second lecture was given by Richard Weiss,
who described some of the revolutionary innovations of Tits in the geometrical
aspects of group theory, and also told some stories illustrating how Tits inspired
people through his warmth and sense of humour.

There were 45 participants and 26 talks. These were on three main inter-
related themes: buildings and their relationship with algebraic groups; structure
of finite groups; and applications. Particularly pleasing was the participation of
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a substantial number (more than 10) of young researchers, several of whom – Al-
ice Devillers, Silvia Onofrei, Rebecca Waldecker, Pierre-Emmanuel Caprace, Ralf
Gramlich, Harald Helfgott and Nikolay Nikolov – gave talks. This demonstrates
the attractiveness of the field.

The conference showed that the theories of buildings, algebraic groups, and
finite simple groups and their geometries are very active areas with a great deal
of interaction between them and also with other areas. People from these dif-
ferent areas were brought together, and their interaction was indeed very lively.
The conference stands in the tradition of very successful meetings on Groups and
Geometries at Oberwolfach.
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Abstracts

The Monster Group and Majorana involutions

A.A. Ivanov

Let G be the Monster group and V be a 196 884-dimensional module which is
a sum of the trivial 1-dimensional module and the minimal non-trivial module
(over the field of real numbers). This action preserves an algebra multiplication ◦
(known as the Griess algebra) and a positive definite inner product 〈 , 〉. One can
associate with every 2A-involution in G a vector in V (called axial vector) so that
the following proposition hold (cf. [C84]).

Proposition 1. Let ϑ be a 2A-involution in G and a(ϑ) be the corresponding axial
vector. Then the action of ϑ on V is a Majorana involution with axial vector a(ϑ)
with respect to the Griess algebra and the inner product 〈 , 〉. �

The relevant definitions are the following.

Definition 2. Let V be a real vector space, let ◦ be a commutative algebra product
on V , let 〈 , 〉 be a positive definite symmetric inner product on V associative with
◦, and suppose that the Norton!inequality

〈u ◦ u, v ◦ v〉 ≥ 〈u ◦ v, u ◦ v〉

holds for all u, v ∈ V .
Let µ be an automorphism of (V, ◦, 〈 , 〉), and let a = a(µ) be a vector in V .

Then µ is said to be a Majorana involution and a is said to be an axial vector of
µ if

(i) a ◦ a = a, so that a is an idempotent;
(ii) V is the sum of s-eigenspaces of

ada : v 7→ a ◦ v

for s taken from S = {1, 0, 1
22 , 1

25 } and the 1-eigenspace is one-dimensional
spanned by a ;

(iii) µ inverts every 1
25 -eigenvector of a and centralizes the other eigenvectors;

(iv) if vs and vt are s- and t-eigenvectors of a, where s, t ∈ S, then vs ◦ vt is a
sum of eigenvectors with eigenvalues r ∈ f(s, t), where f : S × S → 2S is
the fusion function given by
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It was known since the early stages of investigating the Monster that the 2A-
involutions form a class of 6-transpositions in the sense that the product of any
two such involutions has order at most six. Furthermore, the products constitute
the union of the following nine conjugacy classes:

1A, 2A, 2B, 3A, 3C, 4A, 4B, 5A, and 6A.

The orbit of the Monster acting by conjugation on the pairs of 2A-involutions is
uniquely determined by the class containing the product, so that the permutation
rank of the Monster of the set of 2A-involutions in nine. The subalgebras in
(the 196 884-dimensional version) of the Monster algebra generated by the pairs
of transposition axes as calculated by J.H. Conway and S.P. Norton [C84], [N96].

The following remarkable theorem proved by S. Sakuma [Sak07] gives a strong
evidence that Majorana involution is a very efficient tool for studying the Monster.

Theorem 3. Let (µ0, µ1) be a pair of Majorana involutions and let (a0, a1) be the
corresponding pair of Majorana axes. Let D ∼= D2n be the dihedral group (of order
2n) generated by µ0 and µ1 and let ∆ be the subalgebra generated by a0 and a1.
Then

(i) n ≤ 6;
(ii) dim(∆) ≤ 8;
(iii) ∆ is isomorphic to one of the nine 2-generated subalgebras in the Griess

algebra. �

Conjecture. The alternating group A5 of degree five possesses exactly two Ma-
jorana representations whose dimensions are 26 and 21 and which correspond
(2A, 3A, 5A)- and (2A, 3C, 5A)-subgroups in the Monster isomorphic to A5.
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Proper Moufang sets with abelian root groups are special

Yoav Segev

Recall that a Moufang set is a doubly transitive permutation group G on a set X ,
|X | ≥ 3, such that the point stabilizer Gx contains a normal subgroup Ux (called
the root group) which is regular on the remaining points and whose conjugates
generate G. The notion of a Moufang set is due to Tits [T] and it is essentially
equivalent to the notion of a split BN-pair of rank one and to Timmesfelds’ notion
of abstract rank one group [Ti].

In this talk we presented the following result.

Theorem ([S]). Let M(U, τ) be a proper Moufang set such that U is abelian. Then
M(U, τ) is special.

One application of this result that we have in mind is the classification of Moufang
sets with abelian root groups, establishing their close similarity to Quadratic Jor-
dan division algebras (see, e.g. [DW] and [DS1]). The notation M(U, τ) as well as
the definition of “special” is explained in [DS1]. See also [DS2] for further infor-
mation about Moufang sets. Recall that M(U, τ) is proper if the little projective
group of M(U, τ) is not sharply 2-transitive.

Suppose now that M(U, τ) is a Moufang set such that U is abelian. We denote

Va := {b ∈ U∗ | µa = µb} ∪ {0}, NS := {a ∈ U∗ | Va 6⊆ {0, a,−a}},

I := {a ∈ U∗ | µ2
a = 1}.

We first observe that M(U, τ) is special iff NS = ∅ ([S, Corollary 2.2]). Thus if
M(U, τ) is not special, then NS 6= ∅ and the set NS is the set of “non-special”
elements. The proof of the Theorem then proceeds as follows. We first prove a
variety of useful lemmas, some of them quite technical, that involve in a major
way the µ-maps of M(U, τ) ([S, §§3–6]). Again we see how important the µ-maps
are in analyzing Moufang sets. Using these lemmas the proof then proceeds with
the following crucial steps.

Main steps in the proof of the Theorem.

Step 1. If a ∈ NS and µ2
a = 1, then Va is a subgroup of U ([S, §7]).

Step 2. If µa is an involution, for all a ∈ U∗, then the Theorem holds ([S, §8])

Step 3. If a ∈ NS, then µ2
a = 1 ([S, §9]).

Step 4. Suppose that M(U, τ) is not special. Then NS = I and I∪{0} is a sharply
2-transitive root subgroup of U ([S, §11]).
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Step 5. Suppose that M(U, τ) is not special. By Step 4, I ∪ {0} is a non-trivial
sharply 2-transitive root subgroup of U . It quickly follows that U = I, so
M(U, τ) is sharply 2-transitive.

Remark. Some of the interesting (and pleasant) surprises in the proof of the
Theorem are:

• That under the hypothesis that a ∈ U∗ violates “specialness” (i.e. a ∈ NS)
one can prove that Va is a subgroup of U (which eventually turns out to
be U , i.e. Va = U).

• That under the hypothesis that a ∈ NS one can prove that µa is an
involution. It is usually hard to prove that µa is involution (even when it
should be true). Indeed this is one of the main difficulties in the proof of
the converse of the Theorem i.e. the conjecture that asserts that a special
Moufang set has abelian root groups (see [DST] for some results on this
conjecture).
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A new proof of the Solvable Signalizer Functor Theorem

Paul Flavell

1. Signalizer Functors

A new proof of the following theorem of Glauberman [4] is announced:

Solvable Signalizer Functor Theorem. Let G be a finite group, A an elemen-
tary abelian r-subgroup of G with rank m(A) ≥ 3 and θ a solvable A-signalizer
functor on G. Then θ is solvably complete.
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Recall that θ is a solvable A-signalizer functor on G means that for each a ∈ A#

we are given an A-invariant r′-subgroup θ(C(a)) of C(a) and that

θ(C(a)) ∩ C(b) ≤ θ(C(b))

for all a, b ∈ A#.
Signalizer functors were invented by Gorenstein as a tool for use in the Clas-

sification of Finite Simple Groups, see [7] for a discussion. The first solvable
signalizer functor theorem was established by Gorenstein who considered the case
r = 2, m(A) ≥ 5. Goldschmidt [5], [6] improved this work, dealing with the cases
r odd, m(A) ≥ 4 and r = 2, m(A) ≥ 3. Glauberman was the first to prove
the definitive Solvable Signalizer Functor Theorem. A proof similar in outline to
Glauberman’s appears in the book by Kurzweil and Stellmacher [8].

Bender [3] gives a remarkably short proof in the case r = 2. His argument is
quite different from Glauberman’s. The ingredients are:

• An idea of Glauberman enabling effective use of induction.
• Bender’s Maximal Subgroup Theorem.
• Glauberman’s ZJ-Theorem.
• A fixed point theorem.

In attempting to generalize Bender’s proof to arbitrary r, two difficulties arise:
the ZJ-Theorem cannot be applied to all solvable groups of even order; and the
fixed point theorem is not valid when r is a Fermat prime.

Aschbacher, in the first edition of his book Finite Group Theory, gives a proof
of the Solvable Signalizer Functor Theorem along these lines. He uses the less
powerful Glauberman Failure of Factorization Theorem as a substitute for the
ZJ-Theorem and develops techniques for dealing with Fermat primes. Unfortu-
nately the difficulties are such that the resulting proof is much more complex
than Bender’s. Indeed, in the second edition of Finite Group Theory, Aschbacher
abandons the general case and presents a proof only for r = 2.

The proof presented here follows Bender’s in outline. A recent result of the
author on primitive pairs is a more suitable substitute for the ZJ-Theorem and
we use Aschbacher’s idea for dealing with Fermat primes. The resulting argument
is similar to Aschbacher’s but with several layers of complexity removed.

2. Primitive Pairs

Next we describe a new result on primitive pairs that is used in the author’s proof
of the Solvable Signalizer Functor Theorem. We begin with some definitions.

Definition. Let M be a group and p a prime. Then M has characteristic p if
CM (Op(M)) ≤ Op(M).

Definition. Let G be a group. A weak primitive pair for G is a pair (M1, M2)
of distinct nontrivial subgroups that satisfy:

• whenever {i, j} = {1, 2} and 1 6= K char Mi with K ≤ M1 ∩ M2 then
NMj

(K) = M1 ∩ M2.
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If p is a prime then the primitive pair has characteristic p if in addition:

• for each i, Mi has characteristic p and Op(Mi) ≤ M1 ∩ M2.

We remark that if M1 and M2 are distinct maximal subgroups of the simple group
G then (M1, M2) is a weak primitive pair.

In order to analyze primitive pairs we use some ideas of Meierfrankenfeld and
Stellmacher [9], [10].

Definition ([10]). Let G be a group, p a prime, V a faithful GF(p)G-module and
A ≤ G an elementary abelian p-group. Then:

• A is quadratic on V if [V, A, A] = 0.
• A is cubic on V if [V, A, A, A] = 0.
• A is nearly quadratic on V if A is cubic on V and

[V, A] ≤ [v, A] + CV (A)

for all v ∈ V −
(
[V, A] + CV (A)

)
.

• A is a 2F -offender for G on V if A 6= 1 and

|V/CV (A)| ≤ |A/A ∩ Op(G)|2.

We remark that if A is quadratic then it is nearly quadratic. Moreover, if A is a
2F -offender then A 6≤ Op(G).

The following result and its proof are a presentation of work by Meierfrankenfeld
and Stellmacher. The sources are [9], [10] and [8, 10.1.11, p.272].

Theorem A. Suppose that (M1, M2) is a weak primitive pair of characteristic
p for the group G. Assume that M1 and M2 are p-solvable. Then there exists
i ∈ {1, 2}, an elementary abelian p-subgroup V char Mi and A ≤ Op(M1)Op(M2)
such that, with M∗

i = Mi/CMi
(V ), A∗ is a nearly quadratic 2F -offender for M∗

i

on V .

This result is related to the ZJ , K∞ and Failure of Factorization Theorems of
Glauberman. Next we bring in a group of automorphisms.

Definition. Let R and G be groups. Then R acts coprimely on G if we are
given a homomorphism θ : G −→ Aut(G); the orders of R and G are coprime; and
at least one of R or G is solvable.

Recall that for a prime p, Op(G) is the intersection of all the Sylow p-subgroups
of G. By analogy:

Definition. Suppose R acts coprimely on the group G and that p is a prime.
Then

Op(G; R)

is the intersection of all the R-invariant Sylow p-subgroups of G.

We remark that there do exist R-invariant Sylow p-subgroups of G and that CG(R)
acts transitively on them by conjugation. Moreover, Op(G; R) is the unique max-
imal RCG(R)-invariant p-subgroup of G.
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Whilst Op(G; R) may not be normal in G, it does in some respects behave like
Op(G), as the following result demonstrates. It is convenient to embed R and G
in their semidirect product RG.

Theorem B. Suppose that R acts coprimely on the group G, that p is a prime
and that V is a faithful GF(p)RG-module. Assume that G is p-solvable. Then
Op(G; R) does not contain any nearly quadratic 2F -offenders for G on V .

Corollary C. Let G be a group. The following configuration is impossible:

• (M1, M2) is a weak primitive pair of characteristic p for G,
• M1 and M2 are p-solvable and
• For each i there is a group Ri that acts coprimely on Mi and

Op(M1)Op(M2) ≤ Op(Mi; Ri).

Corollary D. Suppose R acts coprimely on the group G. Then there does not
exist a weak primitive pair (M1, M2) of R-invariant subgroups with the properties:

• (M1, M2) has characteristic p for some prime p,
• M1 and M2 are p-solvable and
• CG(R) ≤ M1 ∩ M2.
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Soluble Radicals

Rebecca Waldecker

Let G be a finite group and let sol(G) denote the soluble radical of G, i.e.
the largest normal soluble subgroup of G. Paul Flavell conjectured in 2001 that
sol(G) coincides with the set of all elements x ∈ G such that for any y ∈ G the
subgroup 〈x, y〉 is soluble. This conjecture has been proved by Guralnick et al. in
2006, using the Classification of Finite Simple Groups [5]. As a first step towards
a proof for this result which does not rely on the Classification, we attempt to
show the following:
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Theorem A. Let G be a finite group, let p be a prime and P ∈ Sylp(G). Then
P ⊆ sol(G) if and only if 〈P, g〉 is soluble for all g ∈ G.

In the following let G be a minimal counterexample to Theorem A, let p be a
prime and let P ∈ Sylp(G) be such that 〈P, g〉 is soluble for all g ∈ G, but P is
not contained in the soluble radical of G. One of the main results so far is

Theorem B. Suppose that CG(P ) is soluble. Let L denote the set of maximal
P -invariant subgroups M of G such that

- CG(P ) ≤ M ,
- [O(F (M)), P ] 6= 1 and
- if possible, there exists a prime q ∈ π(F (M)) such that COq(M)(P ) = 1.
If there exists a member L ∈ L such that CF (L)(P ) is not cyclic, then L = {L}.

In [1] it is proved that a group G is p-soluble if and only if for any Sylow p-
subgroup P of G,〈P, g〉 is p-soluble for all g ∈ G. This result, together with the
minimality of G, already implies some restrictions for the structure of G. Let
K := Op′(G). Then it turns out that P is cyclic of order p , that G = PK and
that K is characteristically simple. Moreover K = [K, P ]. Whenever M ∈ IG(P )
(i.e. M is a P -invariant subgroup of G) is such that MP < G, then [M, P ] is
soluble. So our attention is lead to the maximal P -invariant subgroups of G and
we set

M := {M ≤ G |M is maximally P -invariant and MP 6= G}.
One of the main ideas is to investigate the structure of the members of M

and how they relate to each other. We first observe that, if M ∈ M, then M =
P (M ∩ K). So we have the cyclic p-group P acting on the p′-group M ∩ K, and
coprime action results apply. This yields our first starting point:

Lemma 1. Let M ∈ M be such that P 6≤ Z(M). Then there exists a prime q
such that [Oq(M), P ] 6= 1.

As P is not central in G, we know that C := CG(P ) is contained in a member
of M. If moreover C is solube, then whenever C ≤ M ∈ M, it follows that C is
properly contained in M and the above lemma is applicable.

In the following, we assume that C is soluble and we focus on the subset L of
M defined in Theorem B, i.e. L is the set of subgroups M ∈ M such that the
following hold:

CG(P ) ≤ M , [O(F (M)), P ] 6= 1 and if possible, there exists a prime q ∈
π(F (M)) such that COq(M)(P ) = 1.

As mentioned above, C being soluble implies that the members of L contain C
properly. So the second hypothesis for L is basically a statement about the prime
2, avoiding technical difficulties. The last hypothesis also is of a purely technical
nature.

When collecting information about the elements in L, then, unsurprisingly, the
Bender Method turns out to be very useful. We refer the reader to [4] (p.110
et seq.) where a detailed exposition of it can be found. Very little work has to
be done to make sure that the results can be applied in our context (where G is
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not simple!). The Bender Method can be brought into the picture because of the
following result, due to Paul Flavell (Theorem 4.2 in [3]).

Pushing Down Lemma. Let M ∈ M. If q is odd and if Q is a C-invariant
q-subgroup of G contained in M , then [Q, P ] ≤ Oq(M).

The stated version is a special case of Flavell’s result, phrased for our situation
and avoiding technical problems related to the prime 2 (and Fermat Primes).

To make sure that two members L1, L2 of L cannot have characteristic q for the
same prime q, we apply results from [2]. In fact, this is the only place so far where
the solubility of C plays a major role. Then we can successfully apply the Bender
Method in order to prove uniqueness results. We start by showing that, for any
M ∈ L, the normaliser of certain C-invariant subgroups of F (M) is contained in
a unique member of M.

The penultimate step is

Lemma 2. Let M ∈ L, suppose that |π(F (M))| ≥ 2 and that q ∈ π is such
that COq(M)(P ) possesses an elementary abelian subgroup A of order q2. Then
B := CF (M)(A) is contained in a unique member of M. In particular, CG(a) is

contained in a unique member of M (namely M) for all a ∈ A#.

Theorem B follows from this by applying the Bender Method. So suppose that
L ∈ L is such that CF (L)(P ) is not cyclic. If |π(F (L))| ≥ 2, then we can apply
the previous lemma and obtain the result with tools related to coprime action. If
|π(F (L))| = 1, then the analysis is more difficult and more complicated arguments
arise. The main idea is to find a replacement for the previous lemma for this
configuration. Theorem B can be read in a different way:

If L possesses more than one element, then for all L ∈ L the subgroup CF (L)(P )
is cyclic. The next objective is to exclude this case. Then L has at most one
member, and if L is empty, this gives strong information about the members of
M containing C.
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Trees and euclidean buildings: coarse equivalences and Galois actions

Linus Kramer

(joint work with Richard M. Weiss)

A map f : X - Y between metric spaces is called controlled if for every
r > 0 there is an s > 0 such that d(u, v) ≤ r implies that d(f(u), f(v)) ≤ s.
If in addition preimages of bounded sets are bounded, the map is called coarse.
Two coarse maps g, f : X

-

- Y are called equivalent if the set of distances
d(f(u), g(u)) is bounded. This leads to the coarse category whose objects are
metric spaces with equivalence classes of coarse maps as morphisms. A coarse
equivalence is an isomorphism in this category. If X, Y are geodesic spaces, then
a coarse equivalence is the same as a quasi-isometry. If Γ is a group with finite
generating sets A, B ⊆ Γ, then the identity map is a coarse equivalence between
the two word metrics on Γ.

We are interested in questions of the following type: Given a coarse equivalence
f : X - Y , does this imply that there is an isometry f̄ : X - Y (rigidity),
and if f̄ exists, is it equivalent to f (strong rigidity)?. In these statements, one has
to allow that the metric on Y is rescaled. Rigidity fails for trees, as the “infinite
letters” X and H show, so additional assumptions are needed.
Theorem 1 Let T1, T2 be metrically complete leafless R-trees and let f : T1

- T2

be a coarse equivalence. Assume that a group Γ acts on both trees, and that the
induced map on the ends ∂f : ∂T1

- ∂T2 is Γ-equivariant. If the Γ-action on
∂T1 is 2-transitive, then there is (possibly after rescaling) an equivariant isometry
f̄ : T1

- T2 with ∂f̄ = ∂f . If T1 has at least two branch points, then f and f̄
are equivalent.

Based on this result, we prove the following.
Theorem 2 Let X1, X2 be metrically complete euclidean buildings and assume
that the spherical buildings at infinity, ∂X1 and ∂X2, are thick. Assume that
f : X1 × Rn1 - X2 × Rn2 is a coarse equivalence. Then we have the following.

(i) n1 = n2 and ∂X1
∼= ∂X2.

(ii) If X1 has no tree factors, then there is an isometry f̄ : X1
- X2.

(iii) If in addition to (ii), no factor of X1 is an infinite cone over a spherical
building, then f̄ and f are equivalent (possibly after rescaling the metrics on the
de Rham factors).

Theorem 2 generalizes Mostow-Prasad rigidity [3], Kleiner-Leeb [1] and Leeb
[2]. In contrast to [1] and [2] we do not assume that the spherical building ∂X1 is
Moufang or compact. The proof relies on Tits’ rigidity result [4] and uses Theorem
1 applied to the wall trees of X1.
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Lattices in non-positively curved spaces

Pierre-Emmanuel Caprace

(joint work with Nicolas Monod)

Hilbert’s fifth problem consists in finding a purely algebraic/topological charac-
terisation of Lie groups within the category of locally compact groups. A solution
has been obtained by Gleason-Montgomery-Zippin (see e.g. [Kap71]): a connected
locally compact group is a Lie group if and only if it has no small subgroup, namely
if it possesses a neighbourhood of the identity containing no nontrivial subgroup.
Besides Lie groups, another important class of locally compact groups is provided
by algebraic groups over locally compact fields, and the corresponding version of
Hilbert fifth problem makes sense for these. An algebraic characterisation of p-
adic analytic groups is known since the fundamental work of M. Lazard (see e.g.
[DdSMS99]). On the other hand, for algebraic groups over local fields of positive
characteristic the problem is still open.

Restricting to the simple algebraic groups, we propose to approach the problem
by taking advantage of two facts which enrich the data:

• Simple algebraic groups over locally compact fields act cocompactly on
non-positively curved metric spaces in the sense of Alexandrov, also called
CAT(0) spaces (see [BH99] for the definition and basic theory). Indeed,
semisimple groups over Archimedean local fields are nothing but semisim-
ple Lie groups, which act on symmetric spaces in a canonical way; over non-
Archimedean fields, the corresponding objects are the Euclidean buildings
constructed by Bruhat and Tits.

• Semisimple groups over locally compact fields tend to contain lattices,
namely discrete subgroups of finite invariant covolume.

We henceforth consider triples (G, Γ, X) consisting of a locally compact group
G, a lattice Γ in G and a locally compact geodesically complete CAT(0) space
on which G acts continuously, properly, effectively and cocompactly. The latter
condition is equivalent to the requirement that G is a closed subgroup of Is(X)
such that the quotient space G\X is compact, where Is(X) is endowed with its
canonical structure of locally compact topological group given by the topology of
uniform convergence on compacta.

Among the groups G appearing in such triples are all the non compact simple
Lie groups with trivial centre, but also semisimple groups including products of
the form G = PSLn(R) × PSLn(Qp). Indeed, the diagonal embedding of Γ =
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PSLn(Z[ 1p ]) in G makes it a lattice, and G acts cocompactly on the CAT(0) space

X = M ×B, where M is the symmetric space of PSLn(R) and B the Bruhat-Tits
building associated with PSLn(Qp). A product of metric spaces is here endowed
with the ℓ2-metric, namely the metric defined by Pythagoras formula; with this
metric any finite product of CAT(0) spaces is itself CAT(0). In fact, one should
emphasize that triples as above include many examples with G non-algebraic (and
Γ non-arithmetic), and even G non-linear. Indeed, there are examples of triples
(G, Γ, X) where G = Γ is a Gromov hyperbolic group, or with G non-discrete and
Γ a finitely generated (or even finitely presented) simple group.

Theorem A. Let (G, Γ, X) be a triple as above such that G/Γ is compact, Γ
is irreducible and G is reducible. If Γ admits a faithful finite-dimensional linear
representation (in characteristic 6= 2, 3), then X is a product of symmetric spaces
and Bruhat-Tits buildings. In particular the socle of G is a direct product of simple
algebraic groups over local fields and automorphism groups of (bi)regular trees.

By definition, a (topological) group is called irreducible if no finite index closed
subgroup splits nontrivially as a direct product. The socle of a group is the
subgroup generated by all nontrivial minimal closed normal subgroups; notice
that there is a priori no reason why this subgroup should be nontrivial. In fact,
some information on the socle of G may be obtained with weaker assumptions
than in the previous statement:

Theorem B. Let (G, Γ, X) be a triple as above such that G/Γ is compact, Γ is
irreducible and G is reducible. If Γ is residually finite, then the socle of G is a finite
direct product of (topologically) characteristically simple groups, each of which is
non discrete. Moreover, any nontrivial closed normal subgroup of G contains a
minimal one.

It follows in particular that G has no nontrivial discrete normal subgroup.
Among the ingredients involved in the proof of Theorem A is a detailed analysis

of the full isometry group of the space X , which is completely independent of the
existence of lattices. Combining this analysis with the solution to Hilbert fifth
problem for Lie groups, we deduce that the connected component of the identity
G◦ is a direct product of noncompact simple Lie groups. Applying this to the
group G appearing in Theorem B, we deduce that the identity component G◦ is
contained in the socle of G. In particular, if G◦ is nontrivial, then Γ possesses a
linear representation over R, which in view of Theorem A, sheds some light on
the following:

Theorem C. Let (G, Γ, X) be a triple as above such that G/Γ is compact, Γ
is irreducible and G is reducible. If Γ is residually finite and G is not totally
disconnected, then X is a product of symmetric spaces and Bruhat-Tits buildings.
In particular the socle of G is a direct product of simple algebraic groups over local
fields and automorphism groups of (bi)regular trees.

We finish by mentioning that characterisations of the same vein have been ob-
tained in [Mon05] in a purely algebraic context, namely without assuming that the
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group G act on a geometric space, but making instead stronger initial restrictions
on the algebraic structure of G, e.g. that G is semisimple. Besides the interest
that the present considerations might have from a purely geometrical viewpoint,
we emphasize that in the results presented here the semi-simplicity of G appears
as a conclusion rather than as a premise.

References
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On the lattice of subgroups of the special linear groups

Michael Aschbacher

First some motivation. The following question has been around for almost 30
years:

Question. Is every nonempty finite lattice isomorphic to a lattice OG(H) of
overgroups of H in G, for some finite group G and subgroup H of G?

One motivation for the Question comes from the following theorem:

Theorem. (Palfy-Pudlak) The following are equivalent:
(1) The Question has a positive answer.
(2) Every finite lattice is isomorphic to a congruence lattice of a finite algebra.

The answer to the Question is presumably no. Indeed let Λ be a finite lattice,
0 and ∞ the least and greatest elements of Λ, and Λ′ = Λ−{0,∞}, regarded as a
graph under the compatibility relation. Define Λ to be disconnected if the graph
Λ′ is disconnected. Write ∆(m) for the lattice of subsets of an m-set, and define
Λ to be a D∆-lattice if there exists integers r > 1 and mi > 2, 1 ≤ i ≤ r, such
that Λ′ has r connected components Λ′

i, and Λ′
i
∼= ∆(mi)

′.

Conjecture. If Λ is a D∆-lattice then there exists no finite group G and subgroup
H of G such that Λ ∼= OG(H).

Aschbacher and John Shareshian have a program to prove this conjecture. They
have a “reduction” to the case G almost simple, and have established the conjecture
when G is an alternating or symmetric group. The next test case they consider
is the case F ∗(G) ∼= Ln(q) for some n and prime power q. In order to treat this
case, one needs various fundamental results about overgroups of certain subgroups
of such groups G. Here is one example due to a Caltech undergraduate, Po-Ling
Loh:
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Theorem. (Loh) Let G be an isotropic classical group over an arbitrary field, let
G◦ be the subgroup generated by the unipotent elements of G, and let R be the
unipotent radical of a proper parabolic of G. Then for each X ∈ OG(R), either
G◦ ≤ X , or X is contained in some proper parabolic subgroup of G.

We are interested in groups G such that for some n-dimensional vector space
V over a finite field F = Fq, Z(GL(V ))SL(V ) ≤ G ≤ ΓL(V ), and Z(GL(V )) ≤
H ≤ G such that OG(H) is a D∆-lattice. To show no such group exists, we must
control the overgroups of suitable normal subgroups D of maximal overgroups M
of H in G.

Loh’s theorem can be used to treat the case where H is reducible on V . In that
case we can choose M to be a maximal parabolic, and take D to be the unipotent
radical of M .

The next case of interest is when H is irreducible but imprimitive on V . Here
we can take M to be the stabilizer of a direct sum decomposition D = {V1, . . . , Vr}
of V ; that is V = V1 ⊕ · · · ⊕ Vr . For example if r = n, so that dim(Vi) = 1 for
each i, we can take D to be the kernel of the action of M ∩ GL(V ) on D; that is
D is a Cartan subgroup of G. In this case the following extension of a theorem of
Seitz is useful. For Y ≤ G let D(Y ) be the set of direct sum decompositions of V
preserved by Y . There is an obvious partial order on such decompositions which
appears in the next result.

Theorem. Assume X is an irreducible subgroup of G, D ∈ D(X) with |D| = n
and let D be the corresponding Cartan subgroup of G. Assume Y ∈ OG(DX)
with SL(V ) 6≤ Y . Assume q > 5 and n > 2 if q ≤ 11. Then there exists E ∈ D(Y )
such that E ≤ D.
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Complete Reducibility and Separability

Ben Martin

(joint work with Michael Bate, Gerhard Röhrle and Rudolf Tange)

1. Introduction

Let G be a reductive algebraic group over an algebraically closed field k of
characteristic p > 0. A subgroup H of G is said to be G-completely reducible
if whenever H is contained in a parabolic subgroup P of G, there exists a Levi
subgroup L of P such that H ⊆ L. The concept of G-complete reducibility was
introduced by Serre [9, p19], motivated by the theory of buildings. It generalises
the usual notion of complete reducibility, which is the special case G = GLn(k).
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A subgroup H of G is said to be separable if Lie(CG(H)) coincides with
cLie(G)(H), where CG(H) denotes the centraliser of H in G and cLie(G)(H) de-
notes the centraliser of H in the Lie algebra Lie(G). Note that Lie(CG(H)) is
always contained in cLie(G)(H), but the inclusion may be proper: for example,
take H = G = SLp(k).

Separability of H appears as a hypothesis in several results involving G-complete
reducibility (see Section 3 below). In this talk we describe some of our recent work
involving the interaction between separability and G-complete reducibility.

A subgroup H of G is either G-completely reducible or not. In either case one
can say useful things. Here are some examples.

Proposition 1. [1, Cor. 3.17] If H is G-completely reducible then the centraliser
CG(H) is also G-completely reducible.

Proposition 2. If H is not G-completely reducible then there exists a parabolic
subgroup P = P (H) of G such that P ⊇ HCG(H) and H is not contained in any
Levi subgroup of P .

We call P (H) from Proposition 2 the optimal destabilising parabolic subgroup for
H . Optimal destabilising parabolics play a part in the proof of Proposition 1 and
other results concerning G-complete reducibility [6], [5, Prop. 2.2], [1, Thm. 3.10,
Thm. 5.8].

2. The geometric approach

Let N ∈ N. The group G acts on GN by simultaneous conjugation:

g · (g1, . . . , gN ) := (gg1g
−1, . . . , ggNg−1).

Let h = (h1, . . . , hN ) ∈ GN and let H be the algebraic subgroup of G generated
by the hi. Note that there is no loss of generality in assuming that any subgroup
H under consideration is of this form [1, Rem. 2.9, Lem. 2.10].

Theorem 3. [8, Thm. 16.4, Prop. 16.9], [1, Thm. 3.1] H is G-completely reducible
if and only if the orbit G · h is a closed subset of GN .

Theorem 3 allows us to apply methods from geometric invariant theory to the
study of G-complete reducibility. In particular, there is a more general notion
of optimal destabilising parabolic subgroup P (v) whenever we have an affine G-
variety V and v ∈ V such that the orbit G · v is not closed in V [4, Thm. 3.4]; the
parabolic P (H) in Proposition 2 is precisely P (v), where V = GN , v = h and H
is the algebraic subgroup of G generated by the hi.

3. Separability and Non-Separability

We now give three results involving G-complete reducibility which have sepa-
rability of a certain subgroup as a hypothesis. Let M be a reductive subgroup of
G and let H be a subgroup of M . First we recall a definition [7]: if Lie(M) has
an M -stable complement in Lie(G) then we say that (G, M) is a reductive pair.
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Proposition 4. Suppose (G, M) is a reductive pair and H is separable in G. If
H is G-completely reducible then H is M -completely reducible.

This follows from Theorem 3 together with part (b) of the following result.

Proposition 5. Let h = (h1, . . . , hN ) ∈ MN such that H is the algebraic subgroup
of G generated by the hi. Suppose (G, M) is a reductive pair and H is separable
in G. Then

(a) G · h ∩ MN is a finite union of M -orbits;
(b) each of these M -orbits is closed in G · h ∩ MN .

The proof is based on a nice geometric argument due to Richardson [7, Thm. 4.1].
Guralnick has shown that if N = 1 then part (a) holds without the hypotheses
that (G, M) is a reductive pair and H is separable in G [3, Thm. 1.2].

Proposition 6. Suppose H is separable in G. If Lie(G) is a semisimple H-module
then H is G-completely reducible.

In recent work [2], we studied what happens when one removes the hypothesis
that H is separable from Propositions 4, 5 and 6. We suspect that Proposition 6 is
false with the hypothesis removed, though we have no counterexample. We have
found a different hypothesis which gives the same conclusion [2, Cor. 4.5]:

Proposition 7. Suppose p is good for G and [G, G] is simply connected or adjoint.
If Lie(G) is a semisimple H-module then H is G-completely reducible.

On the other hand, both parts of Proposition 5 — and hence also Proposition
4 — can fail without the separability hypothesis.

Theorem 8. [2, Sec. 7] Let p = 2, let G be simple of type G2 and let M be a

subgroup of G of type A1Ã1. Then (G, M) is a reductive pair, and there exists a
finite subgroup H of M such that H is G-completely reducible but not M -completely
reducible. Moreover, there exists h = (h1, h2) ∈ M2 such that G · h ∩ M2 is an
infinite union of M -orbits.

We finish with a criterion for separability of a subgroup [2, Thm. 1.2].

Theorem 9. Let H be a connected reductive subgroup of G. If p is very good for
G then H is separable.
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Strange images of profinite groups

Nikolay Nikolov

Let G be a profinite group. By ’strange image’ of G in the title I mean an image
which is not continuous. The interest in such images arises in connection with the
problem of closed verbal subgroups in profinite groups.

Let w be a word, i.e. an element of the free group F on k generators. The set
of all values of w and w−1 in G is denoted by Gw. The verbal subgroup w(G) is
just 〈Gw〉, the subgroup of G generated by Gw. We say that w has width m in G
if

w(G) = Gw · Gw · · ·Gw (m times)

The following is well known.

Lemma. Let G be a profinite group and w be a word. Then the following are
equivalent

1. w(G) is closed in G,
2. w has finite width in G
3. w has bounded width in the collection {G/N | N ⊳o G} of continuous finite

images of G.

Clearly whenever w(G) is not closed q in G then w(G)/w(G) is a strange image

of w(G).

A major problem in this area is to characterize the words w which satisfy the
equivalent conditions of Lemma 1 for any finitely generated profinite groups. This
has been done for pro-p groups by A. Jaikin [1]

Theorem 1. Let p be a prime and w ∈ F be a word. Then w(P ) is closed in each
finitely generated pro-p group P if and only if w 6∈ F ′′(F ′)p.

For general profinite groups Nikolov and Segal [3] proved

Theorem 2. Suppose that w is either a basic commutator [x1, . . . , xk] of else a d-
locally finite word for some d ∈ N. Then w(G) is closed in all d-generated profinite
groups G.

In view of these results is is sensible to focus first on prosoluble groups.
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Conjecture. The words w ∈ F such that w(G) is closed in all finitely generated
prosoluble groups are presicely those outside the union of F ′′(F ′)p for all primes
p.

By work of Segal it follows that if Conjecture 1 is false then there is a prosoluble
group with a nontrivial perfect image. So we ask

Problem. Does there exist a prosoluble group with a nontrival perfect image?

By [4] such a group cannot be finitely generated.

We are interested in strange images from another direction. It follows from
Theorem 2 (see [3]) that finitely generated profinite groups do not have strange
finite images. Therefore they cannot have strange residually finite images. It is
natural to try to extend these results and ask the following:

Blaubeuren problem. Is there a profinite group with an infinite finitely
generated image?

Again by [4] the answer is No for prosoluble groups and in my talk I showed that
the same answer holds for Cartesian products of finite nonabelian simple groups.
This easily follows from the following

Proposition. Let G be a cartesian product of nonabelian finite simple groups.
Then every simple image of G is either finite or uncountable.

The proof of Proposition 1 uses ultralimits and a theorem of Liebeck and Shalev
[2] on diameters of conjugacy classes in finite simple groups.
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Conjugation Sequences

Bernd Fischer

Let a0, b0 be elements of a finite group G; let ai+1 = abi

i , bi+1 = bai

i and
L(a0, b0) = {(ai, bi)|i ≥ 0}; let L1(a0, b0) = |{ai|i ≥ 0}|, L2(a0, b0) = |{bi|i ≥ 0}|.

Let r = |L(a0, b0)| and s = |L(ar, br)|; then define Type (a0, b0) = [r, s]. Types
are ordered partially by [r, s] ≤ [p, q] iff r ≤ p and s divides q. If N is a normal
subgroup of G then Type (a0N/N, b0N/N ≤ Type (a0, b0).

Let a, b be acycles of length t in the symmetric group Σ2l−1 generating A2l−1

or Σ2l−1. The following table lists a few examples including the terminating group
〈ar, br〉.
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t [ , ] 〈ar, br〉
2 [2,1] C2

3 [3,2] A4

4 [4,1] C4

5 [7,2] A5

7 [18,8] PGL(3, 2)
11 [16,2] M12
23 [3.7.37.137, 2] A24

Let a2 = 1 = b3 generate PSL(2, p) or PGL(2, p) such that Type (a, b) = [r, r];
in many cases L1(a, b) = L2(a, b) = r, but there are exceptions:

P [ , ] L1 L2 (L1, L2)
37 [190,190] 4 5 38
67 [462,462] 6 7 66
163 [378,378] 6 7 54

Lemma. G is nilpotent iff a, b ∈ G, type (a, b) = [r, s] ⇒ r = s and r divides
|〈a, b〉/Z(〈a, b〉)|.

Problem. Let Pn be the class of p-groups G such that [a, b] ≤ [pm, pn]. Then Pn

is a formation and Pn ⊇ Cn+1, the p-groups of class at most n + 1.
Is there m ∈ N with Cn+m ⊇ PnCn+1

Opposition in triality

Hans Cuypers

(joint work with Arjeh Cohen and Ralf Gramlich)

Opposition plays a crucial role in various parts of the theory of buildings. For
instance the opposition relation on the set of chambers of a thick two-spherical twin
building uniquely determines the Weyl distances and the Weyl codistance of that
twin building, cf. [5]. For a twin building T the opposite chamber system Opp(T )
is of particular interest for geometric group theory. Its simple connectedness gen-
eralizes the famous Curtis-Tits Theorem to groups generated by an F-locally split
two-spherical root group datum for a sufficiently large field F, cf. [4, 8]. Moreover,
the sphericity of the sub-chamber system opposite a fixed chamber implies finite-
ness properties of S-arithmetic subgroups of algebraic groups over local fields, cf.
[1, 2, 3]. Furthermore, the simple connectedness of the system of chambers of
Opp(T ) fixed by a flip of T (i.e., an involution interchanging the two halves of the
twin building isometrically) generalizes Phan’s group-theoretic recognition tools
[9, 10] as explained in [6, 7].

Motivated by these results related to the opposition relation we study the sub-
system of those chambers of a D4 building that are as far as possible from their
image under the standard triality. In particular, we prove the following result.
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Theorem 1. Let F be a field containing at least three elements and let C(F) be the
subsystem of chambers of the D4(F) building which are as far as possible from their
image under the standard triality τ . Then the incidence system G(F) associated
to C(F) is a thick simply connected residually connected geometry admitting G2(F)
as a flag-transitive group of automorphisms. Moreover, the triality τ acts as a
correlation on G(F).

Theorem 1, Tits’ Lemma, cf. [11], and the simple connectedness of the rank
three residues of G(F) imply the following.

Theorem 2. If the field F contains at least three elements, then the group G2(F)
equals the universal enveloping group of the amalgam consisting of the rank one
and rank two parabolics of the action of G2(F) on G(F).
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Growth in groups and graphs

Harald Andrés Helfgott

“Growth” can mean one of many things.

(1) Growth in graphs. Let Γ be a graph. How many vertices can be reached
from a given vertex in a given amount of time?

(2) Growth in infinite groups. Let A be a set of generators of an infinite group
G. Let B(t) be the number of elements that can be expressed as products
of at most t elements of A. How does B(t) grow as t → ∞?
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(3) Random walks in groups. Let A be a set of generators of a finite group G.
Start with x = 1, and, at each step, multiply x by a random element of
A. After how many steps is x close to being equidistributed in G?

(4) More on growth in graphs: the spectral gap. Let Γ be a graph. Consider
its adjacency matrix. What lower bounds can one give for the difference
between its two largest eigenvalues?

(5) Growth in arithmetic combinatorics. Let G be an abelian group. Let
A ⊂ G. How large is A + A compared to A, and why? In general, let G
be a group. Let A ⊂ G. How large1 is A ·A ·A compared to A, and why?

Question (5) has been extensively studied in the abelian setting. Some time
ago, I started studying it for non-abelian groups, and proved [He] that every set
of generators A of G = SL2(Fp) grows: |A · A · A| > |A|1+ǫ, ǫ > 0, provided
that |A| < |G|1−δ, δ > 0. (Here |S| is the number of elements of a set S.) This
answered question (1) (on growth in graphs) immediately in the case of the Cayley
graph of SL2(Fp); the bounds obtained were strong enough to constitute the first
proved case of a standard conjecture (Babai’s). Questions (3) and (4) (on random
walks and spectral gaps) are closely related to each other, and somewhat more
indirectly to (1) and (5); the result in [He] gave non-trivial bounds for (3) and
(4). These bounds were greatly improved by Bourgain and Gamburd ([BG]), who
showed how to use a technique of Sarnak’s [SX] to derive from the results in [He]
bounds for (3) and (4) that are qualitatively optimal (sufficient to amount to an
expander graph property for all sets of generators A of G such that (G, A) has the
large girth property).

1. Main result

It remained to be seen whether the result in [He] on growth in SL2(Fp) could
be generalised to other groups. Much of the work in [He] was specific to SL2(Fp).
In [BG2], the result was generalised (in a suitably strong form) to SU2(C); there is
also a recent generalisation by O. Dinai [Di] to SL2(Fq), as well as results [Bo] on
SL2(Z/dZ). From the point of view of the Lie algebra, all of these groups are very
closely related to SL2(Fp). Thus, the matter of the extent to which the methods
in [He] were truly flexible were remained open.

Very recently, I finished a proof of growth for SL3(Z/pZ). Part of the proof is
ultimately derived from that in [He], and is likely to be valid for all semisimple
groups of Lie type; part of the proof is essentially new.

Theorem 1. Let G = SL3. Let K = Z/pZ, p a prime. Let A ⊂ G(K) be a set of
generators of G(K).

Suppose |A| < |G(K)|1−δ, δ > 0. Then

(1) |A · A · A| ≫ |A|1+ǫ,

where ǫ > 0 and the implied constant depend only on δ.

1In the non-abelian case, there are technical reasons why it makes more sense to consider
A · A · A rather than A · A. The product A · A could be small “by accident”.



1056 Oberwolfach Report 20/2008

We could, as in [He], write let A be a subset of G(K) not contained in a proper
subgroup of G(K) instead of let A be a set of generators of G(K); the two state-
ments are equivalent.

2. Consequences on diameters

By a result of Gowers, Nikolov and Pyber2 [NP, Cor. 1 and Prop. 2],

(2) A · A · A = SLn(K)

for A ⊂ G, |A| > 2|G|1−
1

3(n+1) , where G = SLn(K) and K = Z/pZ.
Together with (2), the main theorem implies results on diameters. The diameter

of a graph Γ is

max
v1,v2∈V

(shortest distance between v1 and v2),

where V is the vertex set of Γ. We are especially interested in the diameters of
Cayley graphs. The Cayley graph Γ(G, A) of a pair (G, A) (where G is a group
and A ⊂ G) is defined to be the graph that has G as its set of vertices and
{(g, ag) : g ∈ G, a ∈ A} as its set of edges. It is easy to see that the diameter
diam(Γ(G, A)) of a Cayley graph Γ(G, A) is the least integer k such that

G = {I} ∪ A ∪ (A · A) ∪ · · · ∪ (A · A · · ·A︸ ︷︷ ︸
k times

).

If A is a set of generators of G, then, by definition, every element of G can be
expressed as a product of elements of A ∩ A−1; when G is finite, this implies
that every element of G can be expressed as a product of elements of A, i.e.,
the diameter diam(Γ(G, A)) of the Cayley graph Γ(G, A) is finite. The question
remains: how large can the diameter diam(Γ(G, A)) be in terms of G and A?

The following statement is known as Babai’s conjecture.

Conjecture ([BS]). For every non-abelian finite simple group G and any set of
generators A of G,

(3) diam(Γ(G, A)) ≪ (log |G|)c,

where c is some absolute constant and |G| is the number of elements of G.

Until recently, there was no infinite family of groups G for which the conjecture
was known for all A. In [He], I proved Babai’s conjecture for G = SL2(Z/pZ) and
all A. I shall now prove the conjecture for G = SL3(Z/pZ).

2Gowers [Gow] proved a statement from which (2) quickly follows, as was pointed out by
Nikolov and Pyber; see [NP]. The results in [Gow] and [NP] are of a general nature; with the
aid of standard lower bounds on the dimensions of complex representations of SLn, the special
cases SL2 and PSLn were worked out in [Gow] and [NP], respectively. More general statements
can be found in [BNP]. A weaker version of (2) for n = 2 was proven in [He, Key proposition,
part (b)].
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Corollary 1 (to the main theorem and (2)). Let p be a prime. Let G = SL3(Z/pZ).
Let A be a set of generators of G. Then

(4) diam(Γ(G, A)) ≪ (log |G|)c,

where c and the implied constant are absolute.
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Root shadow spaces

Arjeh M. Cohen

(joint work with Gábor Ivanyos and Dan Roozemond)

Let D be a Dynkin diagram and let J be the set of nodes adjacent to the node
used to build the extended Dynkin diagram of D. A root shadow space is the J-
shadow space of a building of type D. These spaces are parapolar spaces with the
property that, for each point p and symplecton S, the set of points in S collinear
to p is not a singleton. Professor Ernest Shult has recently reduced the hypotheses
needed for his characterization with Kasikova of certain root shadow spaces as
parapolar spaces to this single property besides the known rank conditions and
the requirement that the diameter of the collinearity graph be at least 3.

This result helps to provide a geometric proof that every simple Lie algebra of
finite dimension over a field of characteristic at least 5 containing an element x
such that the image of adx is the space spanned by x is either the 5-dimensional
Witt algebra over a field of characteristic 5 or a classical Lie algebra.

See [Arjeh M. Cohen, Gábor Ivanyos, and Dan Roozemond, Simple Lie algebras

having extremal elements, http://arxiv.org/abs/0711.4268]. It also leads to an
alternative proof of parts of Timmesfeld’s characterization of systems of abstract
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root groups, [F.G. Timmesfeld. Abstract root subgroups and simple groups of Lie-

type, Monographs in Mathematics, vol. 95, Birkhäuser, 2001]; see [A.M. Cohen
& G. Ivanyos, Root filtration spaces from Lie algebras and abstract root groups,

J. Algebra 300 (2006) 433–454] and [A.M. Cohen, G. Ivanyos, Root shadow spaces,

European J. Combinatorics, 28 (2007) 1419–1441].

Strong involutions in finite Lie type groups of odd characteristic

Cheryl E. Praeger

(joint work with Alice C. Niemeyer and Frank Lübeck)

The motivation for this work originated in a question from Charles Leedham-
Green and Eamonn O’Brien concerning the analysis of a Monte Carlo algorithm to
construct a certain type of involution in a finite classical group. Finding such an
involution is a key step in their new Las Vegas algorithm [2] for constructing stan-
dard generators for a finite n-dimensional classical group H in odd characteristic
in its natural action. The required involution was one with fixed point subspace
of dimension between n/3 and 2n/3, a so-called strong involution.

They construct a strong involution by making random selections from H to find
a strong preinvolution, that is an even-ordered element h such that the involution
in 〈h〉 is strong. The number of random selections, and hence the complexity of this
procedure, depends on the proportion of strong pre-involutions in H . Leedham-
Green and O’Brien showed in [2, Theorem 8.1] that this proportion is at least c/n
for some constant c, so that O(n) random elements needed to be tested.

In [1, Theorem 1.1] (see Theorem 1 below), we improve the lower bound to
c/ logn, thus enabling the number of random elements tested to be reduced to
O(log n). We work with a wider class of finite Lie type groups H than in [2],
including projective groups. For I ⊂ H a subset of involutions in H , let

(1) PreInv(H ; I) = {h ∈ H | |h| is even, h|h|/2 ∈ I}

that is, the set of elements of H which “power up” to an involution in I. We denote
by GSp2ℓ(q), GUn(q) and GOn(q) the general symplectic, unitary, and orthogonal
groups, respectively, that is, the groups preserving the relevant forms up to a scalar
multiple; GO±

2ℓ(q)
0 denotes the connected general orthogonal group - the index 2

subgroup of GO±
2ℓ(q) that does not interchange the two SO±

2ℓ(q)-classes of maximal
isotropic subspaces.

Theorem. Let q be a power of an odd prime and ℓ an integer with ℓ ≥ 2. Let
S, X, n be as in one of the lines of Table 1, so that n is the dimension of the
natural representation of X. Let H satisfy S ≤ H ≤ X and let I ⊂ H be the set of
involutions which have a fixed point subspace of dimension r with n/3 ≤ r < 2n/3.
Then

|PreInv(H ; I)|

|H |
≥

1

5000 log2 ℓ
.

Moreover, if Z0 ≤ Z(X), I := IZ0/Z0, and L := LZ0/Z0 for L ≤ X, then
S ≤ H ≤ X, and |PreInv(H ; I)|/|H | ≥ 1/(5000 log2 ℓ).
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S X n
SLℓ+1(q) GLℓ+1(q) ℓ + 1
SUℓ+1(q) GUℓ+1(q) ℓ + 1
Sp2ℓ(q) GSp2ℓ(q) 2ℓ
SO2ℓ+1(q) GO2ℓ+1(q) 2ℓ + 1
SO±

2ℓ(q) GO2ℓ
±(q)0 2ℓ

Table 1. Table for Theorem

Type of X G2
2G2

3D4 F4 E6
2E6 E7 E8

c .375 .578 .578 .333 .328 .328 .168 .353
Type of X Aℓ

2Aℓ Bℓ Cℓ Dℓ
2Dℓ

Values for ℓ 1, 2, 3, 4 2, 3, 4 3, 4 2, 3, 4 4 4
c .171 .187 .134 .134 .105 .132

Table 2. Table for Theorem

We also deal with groups of Lie type of small rank in odd characteristic (in-
cluding all exceptional simple types) and I a subset of involutions with any fixed
type of centralizer.

Theorem. Let X = Xℓ(q) be a finite group of Lie type of rank ℓ defined over
a field of odd order q, such that X and a positive real number c are as in one
of the cases of Table 2. Let I be a conjugacy class of involutions in X. Then
|PreInv(X ; I)|/|X | ≥ c.
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Primitive permutation groups of bounded orbital diameter

Katrin Tent

(joint work with Martin Liebeck, Dugald Macpherson)

In this talk I will present a classification of infinite classes of finite primitive groups
with a uniform bound on the diameters of all orbital graphs. It is well known that
a group action is primitive if and only if all orbital graphs are connected. The
starting point for our considerations was the problem that being a primitive group
or a connected graph is in general not a first-order property. However, if there is
a uniform bound on the diameters of orbital graphs, this can be expressed by a
first order sentence.
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Our aim is to classify all finite primitive groups with a given bound on the
diameters of their orbital graphs. We use the classification of the finite simple
group, but only in a weak sense, namely we assume that the number of sporadic
groups is finite.

If C is an infinite family of finite primitive groups, by applying the O’Nan-Scott
theorem and passing to an infinite subset, we may assume that the members of C
are of one of the following types:

(1) affine;
(2) almost simple of unbounded L-rank;
(3) almost simple of bounded L-rank;
(4) simple diagonal actions;
(5) product actions;
(6) twisted wreath actions.
It is fairly easy to see that up to isomorphism there are only finitely many

primitive groups of twisted wreath type for any given bound on the diameters.
We obtain the following theorem (Here, the L-rank denotes the untwisted Lie

rank, or n if the group in question is An. By t-bounded classical type and standard
t-action we mean some fairly canonical induced actions.)

Theorem 1. Let C be an infinite class of finite primitive permutation groups of
one of the types (1) − (6) above.

(1) If C consists of affine groups, then the diameters of the orbital graphs of C
are bounded essentially (assuming that groups contain scalars) if and only if these
are all of t-bounded classical type, for some bounded t.

(2) If C consists of almost simple groups of unbounded L-ranks, then the diam-
eters of the orbital graphs of C are bounded (essentially) if and only if the socles
of groups in C of sufficiently large L-rank are alternating or classical groups in
standard t-actions, where t is bounded.

(3) If C consists of almost simple groups G of bounded L-rank and the diameters
of the orbital graphs of C are bounded , then point stabilizers Gx have unbounded
orders; moreover, if G has socle G(q), of Lie type over Fq, and Gx is a subfield
subgroup G(q0), then |Fq : Fq0 | is bounded.

Conversely, if C is a class consisting of primitive almost simple groups G of
bounded L-rank such that

(i) point stabilizers Gx (G ∈ C) have unbounded orders, and
(ii) if G ∈ C has socle G(q), of Lie type over Fq, and Gx is a subfield subgroup

G(q0), then |Fq : Fq0 | is bounded.
Then the class C is bounded.
(4) If C consists of primitive groups G of simple diagonal type, then the diam-

eters of the orbital graphs of C are bounded if and only if these have socles of the
form T k, where T is a simple group of bounded L-rank and k is bounded.

(5) If C consists of primitive groups (X, G) of product action type, where X =
Y k and G ≤ H wr Sk for some primitive group (Y, H), then then the diameters
of the orbital graphs of C are bounded if and only if k is bounded, and (Y, H) has
bounded diameter.
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(6) No bounded class C consists of primitive groups (X, G) of twisted wreath
type.

For example, the theorem tells us that if C consists of the groups E8(q) (q
varying) acting on the coset space E8(q)/X(q) for some maximal subgroup X(q)
arising from a maximal connected subgroup X(K) of the simple algebraic group
E8(K), where K = F̄q (for example X(K) = D8(K) or A1(K)), then the diameters
of all the orbital graphs are bounded by an absolute constant.

The main point of the argument in proving that such classes do indeed have
bounded orbital diameter uses fairly deep results about the model theory of pseu-
dofinite fields and difference fields and the fact that ultraproducts of primitive
groups are primitive if and only if all orbital diameters are bounded.

Here is an application of the theorem: recall that a distance-transitive graph
is one for which the automorphism group is transitive on pairs of vertices at any
given distance apart. Thus a finite distance-transitive graph is an orbital graph
for the automorphism group (acting on the vertex set) in which the diameter is
equal to one less than the permutation rank.

Corollary 2. There is a function f : N → N such that the following holds. Let
G be a finite almost simple group with socle G(q) of Lie type over Fq, and of L-
rank r. Suppose G acts primitively on a set X, with Gx a non-parabolic subgroup,
and suppose there exists a (non-complete) distance-transitive graph on X with
automorphism group containing G. Then q < f(r).

The Phan-type theorem for finite Chevalley groups

Ralf Gramlich

The main purpose of my talk was to state the success of the project called Phan
theory. It has been initiated in [1]. A survey on the methods can be found in [6].

Phan-type theorems can be considered as an analogue of the famous Curtis-Tits
Theorem. The latter states (cf. e.g. [5, Theorem 2.9.1]) that a Chevalley group
K of rank at least three equals the universal enveloping group of the amalgam of
fundamental rank one and two subgroups of K; this system of fundamental rank
one and two subgroups is called a Curtis-Tits system of K.

In case K is a non-twisted Chevalley group over a field of square order, let G be
the subgroup of K fixed by the product of the Chevalley involution (with respect
to the above choice of a fundamental system) and the field involution. Then the
intersections of the fundamental rank one and rank two subgroups of G with K
equal twisted Chevalley groups of rank one and two; the system of these subgroups
of G is called a Phan system of G. A weak Phan system of an abstract group is a
generating collection of subgroups of that abstract group which, as an amalgam,
is isomorphic to a Phan system of a twisted Chevalley group.
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The Phan-type Theorem over finite fields. Let q ≥ 3, let ∆ be a spherical
Dynkin diagram of rank at least three, and let G be a group with a weak Phan
system of type ∆ over Fq2 . Then G is isomorphic to a quotient of

• SUn+1(q
2), if ∆ = An and q ≥ 4

(Bennett, Shpectorov [3], Phan [11]);
• Spin2n+1(q), if ∆ = Bn and q ≥ 4

(Bennett, G., Hoffman, Shpectorov [2], G., Horn, Nickel [9]);
• Sp2n(q), if ∆ = Cn

(G., Hoffman, Shpectorov [10], G., Horn, Nickel [8]);
• Spin±

2n, if ∆ = Dn and q ≥ 4, of plus type if n even, of minus type if n
odd
(G., Hoffman, Nickel, Shpectorov [7], Phan [12]);

• the universal Steinberg-Chevalley group of type 2E6(q
2), if ∆ = E6 and

q ≥ 4
(Devillers, G., Mühlherr [4], G., Hoffman, Mühlherr, Shpectorov 2005,
Phan [12]);

• the universal Steinberg-Chevalley group of type E7(q), if ∆ = E7 and
q ≥ 4
(Devillers, G., Mühlherr [4], G., Hoffman, Mühlherr, Shpectorov 2005,
Phan [12]);

• the universal Steinberg-Chevalley group of type E8(q), if ∆ = E8 and
q ≥ 4
(Devillers, G., Mühlherr [4], G., Hoffman, Mühlherr, Shpectorov 2005,
Phan [12]);

• the universal Steinberg-Chevalley group of type F4(q), if ∆ = F4 and q ≥
13
(G., Hoffman, Mühlherr, Shpectorov 2007).

References

[1] Curtis D. Bennett and Ralf Gramlich and Corneliu Hoffman and Sergey Shpectorov, Curtis-
Phan-Tits theory, in: Groups, Combinatorics and Geometry: Durham 2001 (edited by
Alexander A. Ivanov and Martin W. Liebeck and Jan Saxl), World Scientific, 2003, 13–29.

[2] Curtis D. Bennett and Ralf Gramlich and Corneliu Hoffman and Sergey Shpectorov, Odd-
dimensional orthogonal groups as amalgams of unitary groups, part 1: general simple con-
nectedness, J. Algebra 312 (2007), 426–444.

[3] Curtis D. Bennett and Sergey Shpectorov, A new proof for Phan’s theorem, J. Group Theory
7 (2004), 287–310.

[4] Alice Devillers and Ralf Gramlich and Bernhard Mühlherr, The
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Classification of Buildings – a local approach

Mark Ronan

In the first part of this talk I summarised the classification of buildings under three
broad headings: spherical, affine, other. Spherical buildings, whose apartments are
tilings of a sphere, arise naturally from groups of Lie type. Affine buildings, whose
apartments are tilings of Euclidean space, arise naturally from groups of Lie type
over fields–such as p-adic fields–having a discrete valuation. The affine building
yields the usual spherical building ‘at infinity’. Other types of building–for example
hyperbolic buildings–arise from Kac-Moody groups.

In his 1974 book on buildings Jacques Tits classified all irreducible spherical
buildings of rank at least 3. In the process he showed that the local structure
determines the global structure; for instance, the local structure for a building
of type E8 is determined by a commutative field, and there is exactly one such
building for each field. These buildings can be created independently of the groups
by a simple combinatorial construction given by Ronan and Tits in their 1987
paper, Building Buildings. This then allows Tits’s methods to be used to create
the groups, independently of the Lie theory.

In a 1986 paper entitled Immeubles de type affine, Tits also classified irreducible
affine buildings of rank at least 4. Their local structure does not determine their
global structure, but the classification uses the spherical building at infinity, which
has rank one less than the affine building; for example an affine building of type
E9 has a spherical building of type E8 at infinity.

Other types of buildings, such as E10, arise from Kac-Moody groups, and E10

buildings are not known from any other source. Possibly their local structure
determines their global structure, and to investigate this question I discussed twin
buildings, where we already know from a theorem of Mühlherr and Ronan in 1995
that the local structure does determine the global structure. A Kac-Moody group
yields a twin building, so it is plausible that buildings of type E10 are twinnable.
With this in mind I gave conditions under which a twinning from a single chamber
(a rank 0 twinning) can be extended to a full twinning. This involved the following
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two theorems, in which the term ‘non-fragile’ means that if the rank 2 residues are
Moufang then they cannot be of type Sp4(2), G2(2), G2(3) or 2F4(2). Condition H
is a technical condition that is both necessary and sufficient for a rank 0 twinning
to extend to a rank 1 twinning.
Theorem 1: If ∆ is a 2-spherical, non-fragile building satisfying condition H,
then every rank 0 twinning extends uniquely to a rank 1 twinning.

Theorem 2: Let ∆ be a 3-spherical, non-fragile building satisfying condition H.
Then every rank 0 twinning extends uniquely to a twinning of ∆ with another
building ∆′. In particular ∆ is twinnable.

Condition H is not only sufficient, but also necessary, for a rank 1 extension. Of
course this work begs the question as to whether one can create a rank 0 twinning,
and this remains entirely open.

Fixed point sets and Lefschetz modules for sporadic simple groups

Silvia Onofrei

(joint work with John Maginnis)

The present work investigates various properties of the reduced Lefschetz modules.
The underlying simplicial complexes arise in a natural way from the group struc-
ture and are relevant to the mod p cohomology and to the modular representation
theory of the group. We are specially interested in those complexes which can be
related to p-local geometries for the sporadic simple groups.

Terminology. Let G be a finite group and p a prime dividing its order. An
element of order p in G is called p-central if it lies in the center of a Sylow p-
subgroup of G. A subgroup Q of G is a p-radical subgroup if Q = Op(NG(Q)).
The subgroup Q is p-centric if its center Z(Q) is a Sylow p-subgroup of CG(Q). A
group G is said to have characteristic p if CG(Op(G)) ≤ Op(G). A group is said
to have local characteristic p if CH(Op(H)) ≤ Op(H) for all p-local subgroups H
of G. A group has parabolic characteristic p if all p-local subgroups which contain
a Sylow p-subgroup of G have characteristic p.

A collection C is a family of subgroups of G which is closed under conjugation
by G and it is partially ordered by inclusion. The subgroup complex ∆ = ∆(C)
associated to C is the simplicial complex whose simplices are proper inclusion
chains in C. For a simplex σ in ∆ let Gσ denote its isotropy group. Also let
∆Q denote the elements in ∆ fixed by Q, a subcomplex which affords the action
of NG(Q). In what follows Bp(G) will denote the Bouc collection of nontrivial
p-radical subgroups.

For Cp(G) a collection of p-subgroups of G denote by Ĉp(G) the collection of
subgroups in Cp(G) which contain p-central elements in their centers. We call

Ĉp(G) the distinguished Cp(G) collection. We shall refer to the subgroups in Ĉp(G)
as distinguished subgroups.
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In [3], we obtained various results about equivariant homotopy equivalences in-
volving categories of distinguished p-subgroups as well as the categories defined by
Dwyer (the orbit category and the category whose objects are the monomorphisms
to G), relevant to the study of homology decompositions for the classifying space
BG of G. These homotopy equivalences have been proven under one of a list of
three hypotheses about G which are valid for most of the sporadic groups.

Let k denote a field of characteristic p. The reduced Lefschetz module is given
by the alternating sum of the chain groups; it can also be described using induced
modules:

L̃G(∆, k) =
∑

σ∈∆/G

(−1)dim(σ)IndG
Gσ

k − k

where ∆/G denotes the orbit complex of ∆.

Fixed point sets of p-elements. This section contains the three main results
presented in this talk. They describe the structure of the fixed point sets under
the action of elements of order p; the details of the proofs can be found in [4]. Let

∆ = ∆(B̂p(G)) denote the complex of distinguished p-radical subgroups in G.

Proposition 1. Let G be a finite group of parabolic characteristic p. Set Z = 〈z〉
with z a p-central element in G. Then the fixed point set ∆Z is NG(Z)-contractible.

For an element t which is not of central type, the homotopy type of the cor-
responding fixed point set is determined by the group structure of its centralizer
C = CG(t).

Proposition 2. Let G be a finite group of parabolic characteristic p. Let t be a
noncentral element of order p and set T = 〈t〉. Assume that Op(C) contains a
p-central element. Then the fixed point set ∆T is NG(T )-contractible.

Theorem A. Assume G is a finite group of parabolic characteristic p. Set T = 〈t〉
with t an element of order p of noncentral type in G. Suppose that the following
hypotheses hold:

(1) Op(C) does not contain any p-central elements;

(2) The quotient group C = C/Op(C) has parabolic characteristic p.

Then there is an NG(T )-equivariant homotopy equivalence ∆T ≃ ∆(B̂p(C)).

The proof of the theorem is quite technical and a few pages long and requires
a combination of several homotopy equivalences. It relies on:

- techniques of poset homotopies; in particular strings of equivariant poset maps
which are homotopy equivalent to the identity map;

- the p-local structure of the group G, properties of groups of characteristic p
and local characteristic p.

Information about fixed point sets leads to details about the vertices of inde-
composable summands of the reduced Lefschetz module, as can be seen from the
following result:
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Proposition. [5, Robinson] The number of indecomposable summands of

L̃G(∆, k) with vertex Q is equal to the number of indecomposable summands

of L̃NG(Q)(∆
Q, k) with the same vertex Q.

With ∆ the complex of distinguished p-radical subgroups in G, set L̃ = L̃G(∆, k),
the associated reduced Lefschetz module. If G has parabolic characteristic p, then

L̃ is projective relative to those p-subgroups which do not contain any p-central

elements; therefore the vertices of indecomposable summands of L̃ are also among
such subgroups.

An example: the Fischer group Fi22 and p = 2. Consider the sporadic sim-
ple group Fi22, which has parabolic characteristic 2 and has three conjugacy classes
of involutions, denoted 2A, 2B and 2C in the Atlas[1]. The class 2B is 2-central.
Their centralizers are CFi22 (2A) = 2.U6(2), CFi22 (2B) = (2×21+8

+ : U4(2)) : 2 and
CFi22 (2C) = 25+8 : (S3 × 32 : 4).

We consider the simplicial complex ∆ whose vertex stabilizers are four maximal
2-local subgroups of Fi22:

H1 = (2 × 21+8
+ : U4(2)) : 2 H2 = 25+8 : (S3 × A6)

H3 = 26 : Sp6(2) H4 = 210 : M22

The complex ∆ (the standard 2-local geometry for Fi22) is G-homotopy equiv-
alent to the complex of 2-centric and 2-radical subgroups, and since Fi22 has
parabolic characteristic 2, this is equal to the complex of distinguished 2-radical
subgroups; for details we refer the reader to Benson and Smith [2, Sections 8.16
and 9.4].

We shall use the notation from the Modular Atlas homepage, where ϕi denotes
an irreducible module of Fi22 and PFi22(ϕi) is its corresponding projective cover.

Proposition 3. Let ∆ be the standard 2-local geometry for Fi22.

(a) The fixed point sets ∆2B and ∆2C are contractible.
(b) The fixed point set ∆2A is equivariantly homotopy equivalent to the building

for the Lie group U6(2).
(c) There is precisely one nonprojective summand of the reduced Lefschetz

module, it has vertex 〈2A〉 and lies in a block with the same group as
defect group.

(d) As an element of the Green ring: eLF i22(∆) = −PF i22(ϕ12) − PF i22(ϕ13) −
6ϕ15 − 12PF i22 (ϕ16) − ϕ16.
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A Shadow of O’Nan

Inna (Korchagina) Capdeboscq

(joint work with Richard Lyons)

In this talk we continue the discussion of characterization of various bicharac-
teristic finite simple groups G in the sense of [KoL] and the earlier papers [KoS],
[KoLS]. The strategy is part of the GLS revision project [GLS1], but expanded
to the case e(G) = 3 to make the GLS project fit with the Aschbacher-Smith
Quasithin Theorem [AS].

We use the following notation: G is a finite simple group, p is an odd prime,
mp(X) is the p-rank of an arbitrary group X , m2,p(G) is the maximum value of
mp(N) over all subgroups N ≤ G such that O2(N) 6= 1, and e(G) is the maximum
value of m2,p(G) as p ranges over all odd primes. Moreover mI

p(G) is the maximum
value of mp(CG(z)) as z ranges over all involutions of G.

We fix an odd prime p and set

H(G) = {H ≤ G|H is a 2-local subgroup of G and mp(H) = m2,p(G)}

The groups that we consider in this paper satisfy the following conditions:

m2,p(G) = e(G) = 3 and mI
p(G) ≤ 2. (H1)

We state our theorem, tie it in with the main theorem of [KoL] to obtain a
corollary, and then discuss the technical terminology in the theorem.

Theorem 1. Suppose that G satisfies the following conditions:

(1) G is a finite K-proper simple group;
(2) G has restricted even type; and
(3) For some odd prime p, G satisfies (H1) and has weak p-type.

Then p = 3 and there exists H ∈ H such that F ∗(H) = O2(H). Moreover, for
any H ∈ H(G) and any B ≤ H such that B ∼= E33 , there is a hyperplane B0 of B
such that L3′(CG(B0)) ∼= A6.

The conclusion of Theorem 1 implies that G satisfies all the hypotheses of
Theorem 1.2 of [KoL]. That theorem in turn yields that G has the structure
asserted in the corollary, or G ∼= Sp8(2) or F4(2). But these last two groups do
not satisfy the assumption mI

3(G) ≤ 2. Indeed, in both, the centralizer of a long
root involution is a parabolic subgroup P with Levi factor isomorphic to Sp6(2),
so mI

3(G) ≥ m3(Sp6(2)) = 3. Thus we have the following corollary.

Corollary 2. If G satisfies the assumptions of Theorem 1, then G ∼= A12 or G
has the centralizer of involution pattern of F5.

The K-proper assumption in Theorem 1 means that all proper simple sections
of G are among the known simple groups, as is appropriate for the inductive
classification [GLS1].
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The hypothesis that G is of weak p-type [KoL] means that:

For every x ∈ G of order p such that mp(CG(x)) ≥ 3, and for every component
L of E(CG(x)/Op′ (CG(x))), L ∈ Cp, and Op′(CG(x)) has odd order.

Here Cp is an explicit set of quasisimple K-groups defined for any odd prime p
(cf. [GLS1; p.100]).

The term “restricted even type” is defined on page 95 of [GLS1]. This definition
implies that if z is an involution of G with centralizer C = CG(z), then any
component L of C lies in the set C2 defined in [GLS1;p.100].

It is somewhat arbitrary that the definition of C2 excludes the covering groups
4L3(4). This is because the sporadic group O′N , in which the centralizer of an
involution has such a component, in GLS emerges from the analysis of groups of
odd type in [GLS6]. Nevertheless, our assumptions in Theorem 1 inevitably lead
toward the situation in which F ∗(CG(z)) is a covering group of L3(4) by Z4, and
this situation is prevented only by the definition of C2. In Bender’s terminology,
O′N is a “shadow” group in our setup.
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Strongly p-embedded subgroups

Christopher Parker

(joint work with Gernot Stroth)

For p a prime and G a finite group, a subgroup H of G is strongly p-embedded
in G if the following two conditions hold.

(i) H < G and p divides |H |; and
(ii) if g ∈ G \ H , then p does not divide |H ∩ Hg|.

One of the most important properties of strongly p-embedded subgroups H is
that they contain NG(X) for any non-trivial p-subgroup X of H . In the final
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phases of the project orchestrated by Meierfrankenfeld, Stellmacher and Stroth to
understand the groups G of local characteristic p [3], a simple subgroup H of G
is often constructed which is strongly p-embedded in G. In this environment, the
group G is what is known as a K-proper group. That is G is a group in which every
proper subgroup has its composition factors from among the simple groups listed
in the Classification of Finite Simple Groups. Notice that every group with cyclic
Sylow p-subgroups possesses a strongly p-embedded subgroup or has a non-trivial
normal p-subgroup. Thus any investigation of groups with a strongly p-embedded
subgroup with p odd must have some condition on the p-rank of H .

Suppose that G is a finite group and H is a strongly p-embedded subgroup of
G. If p = 2, then Bender’s strongly 2-embedded theorem [1], shows that, if G is a
simple group, then G ∼= PSL2(2

n), n ≥ 2, PSU3(2
n), n ≥ 2 or 2B2(2

2n+1), n ≥ 1.
Indeed, if the p-rank of G is at least 3, then a consequence of the Classification
of Finite Simple Groups is that the simple groups with a strongly p-embedded
subgroup are precisely the Lie Type groups of rank 1 defined in characteristic p
(See [2, Theorem 7.6.1]).

Our main theorem is as follows.

Theorem 1. Suppose that G is a finite K-proper group, p is an odd prime and
that H is a strongly p-embedded subgroup of G such that H ∩ K is of even order
for any non-trivial normal subgroup K of G. Assume that Op′ (H) = 1 and that
mp(CH(t)) ≥ 2 for every involution t of H. Then either F ∗(G) ∼= PSU3(p

n) for
some n ≥ 2 or, p = 3 and F ∗(G) ∼= 2G2(3

2n−1) for some n ≥ 2.

Considering G as in the theorem, we may suppose that H is not strongly 2-
embedded for the groups with a strongly 2-embedded subgroup do not satisfy our
hypothesis. Thus there is an involution t ∈ H , such that CG(t) 6≤ H . The structure
of CH(t) is easy to understand. In particular, our condition on the p-rank of CH(t)
and the fact that H is strongly p-embedded in G imply that Op′ (CG(t)) ≤ H and
that X = F ∗(CG(t)/Op′(CG(t))) is a simple group with a strongly p-embedded
subgroup with p-rank at least 2. Using the fact that G is K-proper and Op′(H) = 1,
we know the possibilities for X . This begins to limit the possibilities for CG(t)
and thus for G. One of the first interesting consequences of this observation is the
somewhat surprising fact that CG(s) 6≤ H for all involutions s ∈ H . The proof of
Theorem 1 involves a detailed investigation of the possibilities for CG(t) and takes
strikingly different directions depending upon whether H has components or not.
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fest läßt, J. Algebra 17 (1971), 527 - 554.

[2] Gorenstein, Daniel; Lyons, Richard; Solomon, Ronald. The classification of the finite simple
groups. Number 3. Part I. Chapter A. Almost simple K-groups. Mathematical Surveys and
Monographs, 40.3. American Mathematical Society, Providence, RI, 1998.

[3] Meierfrankenfeld, Ulrich; Stellmacher, Bernd; Stroth, Gernot. Finite groups of local charac-
teristic p: an overview. Groups, combinatorics & geometry (Durham, 2001), 155–192, World
Sci. Publishing, River Edge, NJ, 2003.



1070 Oberwolfach Report 20/2008

Codistance

Hendrik Van Maldeghem

(joint work with Alice Devillers & Bernhard Mühlherr)

Let (W, S) be a Coxeter system and B = (C, δ) a building of type (W, S). A
codistance on B is a function f : C → W such that, for all s ∈ S and P an s-panel
of C, there exists w ∈ W with f(x) ∈ {w, ws} for all x ∈ P and P contains a
unique chamber with f -value the longest word of the two, see [2].

As an example, if B is half of a twin building and x is a chamber in the other
half, the twinning restricted to x is a codistance on B.

A natural question is whether the class of examples just given is unique. In
other words, does a codistance on a building imply a twinning?

It is easy to see that every tree without finite ends admits a codistance, but
a twin tree is necessarily bi-regular. Hence the above question must be answered
in the negative in general. This example shows that we must restrict ourselves to
the 2-spherical case (i.e., all rank 2 residues are spherical). Here, one is tempted
to conjecture that the answer is positive, certainly considering the fact that p-adic
affine buildings do not admit any codistance, see [3].

In this note, we present a result that answers the above question positively
for 3-spherical buildings under some mild conditions (basically saying that the
building is locally large enough). Here is the theorem.

Theorem: Let B− = (C−, δ−) be a thick building of 3-spherical type (W, S). As-
sume that the following two conditions hold.

(lco) If R is a rank 2 residue containing a chamber c, then the set of chambers
opposite c inside R is connected.

(lsco) If R is a rank 3 residue containing a chamber c, then the set of chambers
opposite c inside R is simply 2-connected.

If there exists a codistance function f : C− → W , then there exists a building
B+ = (C+, δ+) and a mapping δ∗ : (C− × C+) ∪ (C+ × C−) → W such that the
following two statements hold.

a) (B−,B+, δ∗) is a twin building.
b) There exists a chamber c ∈ C+ such that δ∗(c, x) = f(x) for all x ∈ C−.

The conditions (lco) and (lsco) are not too restrictive. In practice, only con-
dition (lsco) puts a restriction on the building B−. Indeed, if the diagram of B−

is not connected, then we can apply the theorem to each non-spherical connected
component. Noting that every spherical connected component trivially admits a
twinning, we can thus restrict to irreducible non-spherical 3-spherical buildings
B−. If the diagram is simply laced, then (lco) is void, and (lsco) is equivalent with
requiring that each panel contains at least 4 chambers; in the other case the only
rank 2 residues are, besides projective planes, generalized quadrangles, and there
is at least one rank 3 residue with a C3 diagram. It is well known that a building
of type C3 satisfies (lsco) whenever it corresponds to an embeddable polar space
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and panels contain at least 16 chambers (but this is only a sufficient condition).
In this case, however, Condition (lco) is automatically satisfied.

In the course of the proof of the theorem one uses filtrations to show that the
set of chambers with codistance the identity is simply 2-connected (see the paper
by Alice Devillers in these proceedings). The simply 2-connectivity allows one to
construct adjacent codistances (of any type), and that is a rather technical part
of the proof. Eventually, all codistances that one can construct this way form the
second half of a twin building. Details are given in [1].
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Filtrations of buildings

Alice Devillers

(joint work with Bernhard Mühlherr)

Filtrations of buildings have been used by Abels, Abramenko [2, 1] in order to study
finiteness properties of groups acting on buildings. In that work, buildings were
considered as simplicial complexes. In this talk, we presented a chamber system
version of their fundamental tool, known as Brown’s criterion. That ‘translation’ of
Brown’s criterion to chamber systems turns out to be extremely useful for several
applications described below.

We describe here our theorem [3], as well as two major applications.
We refer to [3] for the definitions of chamber system, residue and simple 2-

connectedness.
Let I be a set and let C = (C, (∼i)i∈I) be a chamber system over I. The

example to have in mind here is the chamber system point of view on buildings of
type (W, S), with I = S.

In the following we denote the set of non-negative integers by N.
A filtration of C is a family F = (Cn)n∈N of subsets of C such that the following

holds.

(F1) Cn ⊂ Cn+1 for all n ∈ N,
(F2)

⋃
n∈N

Cn = C,
(F3) for each n > 0 if Cn−1 6= φ then there exists an index i ∈ I such that for

each chamber c ∈ Cn there exists a chamber c′ ∈ Cn−1 which is i-adjacent
to c.

A filtration F = (Cn)n∈N is called residual if for each ∅ 6= J ⊂ I and each J-residue
R the family (Cn∩R)n∈N is a filtration of the chamber system R := (R, (∼j)j∈J ).
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For each x ∈ C we put |x| := min{λ ∈ N | x ∈ Cλ}. For a residue R of C
we put |R| := min{|x| | x ∈ R} and aff(R) := {x ∈ X | |x| = |R|}. Note that
C0 = aff(C) (assuming that C0 6= ∅).

We say that F satisfies Condition (lco), resp. (lsco), if aff(R) is a connected,
resp. simply 2-connected, subset of the chamber system R = (R, (∼j)j∈J ) for all
J ⊆ I and all J-residue R.

Theorem A. Suppose that the residual filtration F = (Cn)n∈N of the chamber
system C = (C, (∼i)i∈I) satisfies (lco), (lsco) and C0 6= ∅. Then the following are
equivalent:

a) C is simply 2-connected;
b) (C0, (∼i)i∈I) is simply 2-connected.

We explained partly the proof of this result in our talk.
This theorem was crafted with an application to Phan’s Theory in mind. Let

∆ = (B+,B−, δ∗) be a twin building of type (W, S), provided with a flip τ (see
[3] for a definition). We choose an injection w 7→ |w| from W into N such that
l(x) < l(y) implies |x| < |y| for all x, y ∈ W and such that |1W | = 0. We define
Cn := {x ∈ C+ | |δ∗(x, xτ )| ≤ n}. Then the family Fτ := (Cn)n∈N is a residual
filtration of the chamber system C+, and so our Theorem gives a local criterion
to show that C0 = τop is simply 2-connected. Ralf Gramlich explained in his talk
why this result is important for Phan’s Theory.

Another very recent application concerns codistances on a building. A codis-
tance on a building B is a function f : C → W such that, for all s ∈ S and P
an s-panel of C, there exists w ∈ W with f(x) ∈ {w, ws} for all x ∈ P and P
contains a unique chamber with f -value the longest word of the two. Suppose f
is a codistance on B, then defining Cn := {x ∈ C | |f(x)| ≤ n} (where | | is as
above), we get a residual filtration Ff := (Cn)n∈N. Assuming local criteria, we
then get that C0 = fop is simply 2-connected. This is a crucial step in showing
that a building admitting a codistance is ’twinnable’ [4], as explained in his talk
by Hendrik Van Maldeghem.
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[4] A. Devillers, B. Mühlherr, H. Van Maldeghem, Codistances of 3-spherical buildings, preprint



Groups and Geometries 1073

Applications of the Gowers trick

László Pyber

(joint work with N. Nikolov and in part with L. Babai)

Answering an 1985 question of Babai and Sós [BS] Gowers [Gow] shoved that

the group Γ = PSL(2, p) has no product-free subsets of size ≥ c|Γ|
8
9 for some c > 0.

He obtained this as a consequence of the following general result.

Theorem: Let G be a group of order n, such that the minimal degree of a nontrivial

representation is k. If A, B, C are three subsets of G such that |A||B||C| > n3

k ,
then there is a triple (a, b, c) ∈ A × B × C such that ab = c.

The starting point of [NP] is the following surprising consequence.

Corollary 1. [NP]. Let G be a group of order n, such that the minimal degree
of a nontrivial representation is k. If A, B, C are three subsets of G such that

|A||B||C| > n3

k , then we have A ·B ·C = G. In particular, if, say, |B| > n

k
1
3
, then

we have B3 = G.

Corollary 1 apart from its intrinsic interest, seems to be an extremely useful
tool.

For groups of Lie type rather strong lower bounds on the minimal degree of a
representation are known [LS].

Combining these bounds with Corollary 1 e.g. for L = PSL(n, q) we obtain
the following.

Proposition 2. Let B be a subset of size at least 2|L|/q
n−1

3 . Then we have
B3 = L.

A slightly weaker result in the case of Γ = PSL(2, p), p prime was obtained
earlier by Helfgott [He1]. The result proved in [He1] plays an important role in
proving the main result of [He1]; namely that the diameter of any Cayley graph
of Γ is bounded by (log p)c for some constant c.

Recently Helfgott [He2] (resp. Dinai [Di]) has obtained similar polylogarithmic
bounds for the diameters of Cayley graphs of PSL(3, p) (resp. PSL(2, pα)) using
(among many other tools) Proposition 2.

In [BNP] several extensions of Corollary 1 are obtained. These can be used to
prove the following results.

Theorem A. [BNP] Let G be a nonabelian finite simple group. For a group word
w let W = w(G) denote the set of values of w in G.

Then the probability that for three random elements y1, y2, y3 of W we have
y1, y2, y3 = g is (1 + o(1))|G|−1 for all g ∈ G.

This implies a deep result of Shalev [Sh]; if G is a large enough simple group
than we have W 3 = G.

The proof of Theorem A rests on estimates for |w(G)| obtained in [LSh] and
[LP].
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Theorem B. [BNP]
Let G be finite simple group in Lie(p). Then G is a product of 5 Sylow p-

subgroups.

Earlier Liebeck and Pyber [LP] have proved that 25 Sylow p-subgroups suffice.
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