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Introduction by the Organisers

The conference was organized by Randolph E. Bank, UCSD, La Jolla, Wolfgang
Hackbusch, MPI Leipzig, and Gabriel Wittum, University of Heidelberg. This was
the fourth one in a series of conferences on fast solvers held at Oberwolfach since
1999. The idea of these workshops is to bring together experts from the different
thriving areas of solvers and offer a platform for scientific exchange and progress.
The field of solvers for the algebraic systems arising from the discretization of par-
tial differential equations has developed to a major area of numerical mathematics
and scientific computing. Solvers are an essential part of simulation codes for
problems from science and technology, in many cases determining the complexity
of the whole simulation. By virtue of that, the choice of the solver can decide
on the reliability of a simulation and if it can be done at all. Thus, solvers are a
substantial mathematical component of most simulation tools and a major con-
tribution of mathematics to quite a lot of applied disciplines. This has increased
the interest in mathematics of colleagues from the applied sciences over the last
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decade substantially.
Major areas of solvers represented at the workshop are: Multigrid methods, H-
matrices, domain decomposition methods, and conjugate gradient methods. Of-
ten these methods are combined, e.g. multigrid is mostly used as a preconditioner
nowadays. Besides that, several talks were given on other aspects of solving partial
differential equations, such as discretization schemes and the algebraic properties
of the resulting stiffness matrices, overall solution strategies, and application areas
where solving plays a crucial role.
The question of the right solver for critical application problems is still open, but
new approaches have been developed in recent years. Novel refined approaches
like multi-graph-ILU with adaptive choice of elimination thresholds give a new
chance of substantially improving the performance. In addition, new lights is shed
on the solver question by the recent change of paradigm in computer architecture.
The modern multicore processors with additional strong GPU accelerators pose
a new and serious challenge for the development of fast solvers. A total of 27
presentations gave a nice overview over the current research, open problems and
new developments. Intense discussions provided the opportunity to go into details
of novel algorithms and approaches.
In multigrid methods, a lot of research is going in the direction of developing robust
methods for special applications. This is a challenging topic requiring mathemat-
ical expertise as well as understanding of the model and the application process
itself. Another major topic is Algebraic Multigrid. AMG methods are already
widespread in several applied communities. However, a lot of open problems re-
mains and the final alforithm is not yet in sight. Several talks also were related to
performance issues of multigrid on certain computer architectures such as super
scalar or parallel computers. Multigrid research is thriving more than ever.
Another bunch of talks were about domain decomposition methods. These meth-
ods are of particular interest for multiphysics problems and parallelization issues.
Several new developments have been reported and discussed, giving interesting
future perspectives. Often techniques from domain decomposition analysis can be
used to analyze other methods e.g. multigrid. A novel technique useful together
with domain decomposition and multigrid, but which can also stand on its own, is
given by hierarchical matrices (H-matrices). Here, several talks have shown the im-
pressive level of development these methods already have since their introduction
in 1998. Further talks have discussed solver techniques for application problems
e.g. low Mach-number flow or electromagnetics as well as other problem areas like
optimization. Moreover, talks about novel techniques like meshless methods and
several other solver techniques have been given.
In total, the workshop was very successfull in bringing together international-
level experts from different areas and disciplines. Meanwhile, the Oberwolfach
workshop on “Schnelle Löser für partielle Differentialgleichungen” is established
as major event in the solver community and a mainstay for novel developments.
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Abstracts

A generalized regularity result for elliptic PDEs with L∞ coefficients

Steffen Börm

Let Ω ⊆ R
d be an open domain, let C : Ω→ R

d×d a mapping satisfying

C(x) = C(x)T , αI ≤ C(x) ≤ βI for all x ∈ Ω

with 0 < α ≤ β. We consider the strongly elliptic partial differential operator

L : H1
0 (Ω)→ H−1(Ω), u 7→ − divC gradu,

and aim to solve the equation
Lu = f

for arbitrary right-hand sides f ∈ H−1(Ω).
We discretize the equation by Galerkin’s method: for a family (ϕi)i∈I ofH1

0 (Ω)-
conforming basis functions, we let

Φ : R
I → H1

0 (Ω), x 7→
∑

i∈I

xiϕi,

and replace the original equation by

Lx = b, L := Φ∗LΦ, b := Φ∗f.

The Galerkin approximation of the solution u is given by un := Φx. A major
challenge of this approach is finding an efficient solver for the linear system, par-
ticularly if the coefficient mapping C is not smooth.

Hierarchical matrix techniques are very successful in this respect. They con-
struct a data-sparse approximation of L−1 by choosing subsets t, s ⊆ I of the
index set and replacing the corresponding submatrix L−1|t×s by a low-rank ap-
proximation. The existence of an approximation of L−1|t×s with rank k ∈ N and
accuracy ǫ ∈ R>0 is equivalent to the existence of a space W ⊆ R

t of dimension k
such that

inf{‖(L−1y)|t − z‖2 : z ∈W} ≤ ǫ‖y‖2 for all y ∈ R
I

with supp y ⊆ s.
In the continuous setting, this inequality corresponds to

inf{‖(L−1g)|τ − w‖H1(τ) : w ∈ W} ≤ ǫ‖g‖H−1(Ω) for all g ∈ H−1(Ω)

with supp g ⊆ σ
for a k-dimensional spaceW and pairs τ, σ ⊆ Ω of subdomains. If the parameters of
the problem are analytic, standard interior regularity results imply that (L−1g)|τ
is analytic with sufficiently large convergence radius if an admissibility condition
of the form

diam(τ) ≤ η(τ, σ)

holds, therefore we can chooseW as the space of polynomials of order m ∈ N and
get exponential convergence with respect to m.
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Using the techniques presented in [1], it is possible to prove that an approxi-
mating space W still exists if the problem parameters are no longer analytic, as
long as the spectra of the coefficient matrices C(x) are uniformly bounded away
from from 0 and ∞.

In order to get a similar result for the matrix L−1, the original work [1] uses
an L2-projection to construct an approximation of L−1 from an approximation of
L−1. Since the L2-projection is non-local, this approach is not able to provide
error estimates for individual blocks.

In order to improve this result, we replace the L2-projection by a Clément-type
interpolation operator [3], since its locality properties allow us to find blockwise
estimates. We define the operator based on a family (λi)i∈I of L2-continuous
functionals satisfying

suppλi ⊆ suppϕi for all i ∈ I, (locality)

λi(ϕj) = δij for all i, j ∈ I, (projection)

‖λi(u)ϕi‖L2(Ω) . ‖u‖L2(supp ϕi) for all i ∈ I, u ∈ L2(Ω). (stability)

Using these functionals, an intermediate operator

Λ : L2(Ω)→ R
I , u 7→ (λi(u))i∈I

can be defined, and I := ΦΛ is a Clément-type interpolation operator. The matrix

S := ΛL−1Λ∗

provides a second approximation of u in the discrete space: we have

ũn := ΦSb = ΦΛL−1Λ∗Φ∗f = IL−1
I
∗f.

Using the projection property and L2-stability of I, we can prove

‖un − ũn‖L2(Ω) . ‖un − u‖L2(Ω),

therefore ũn will converge to un at a rate that is consistent with the rate of the
L2-norm convergence.

This means that we can restrict our attention to approximating the matrix S
instead of the inverse L−1. Since the mapping Λ defining S is local, the approxi-
mation estimates for L−1 carry over directly to discrete counterparts for S, and we
can conclude that S, and therefore also L−1, can be approximated by hierarchical
matrices.

Using the general theory presented in [2], we can prove that S can also be
approximated by H2-matrices. Numerical experiments indicate that this approach
is particularly efficient for large problem dimensions.

References
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Reliable a posteriori error estimates without generic constants

Dietrich Braess

(joint work with Joachim Schöberl)

The talk is concerned with a posteriori error estimates for finite element solutions
of elliptic differential equations. Specifically we want upper estimates that have
no generic constant in the main term. It turns out that we obtain in this way also
a priori error estimates which are not known from classical finite element theory.
Moreover for the hp method, the asymptotic behavior of the new estimator is
better than that of residual estimators.

For convenience, we restrict ourselves to the Poisson equation in a two-dimen-
sional domain Ω,

(1)
−∆u = f in Ω,

u = 0 on ∂Ω

and to linear elements on a partition Th of Ω into triangles. Here the mixed
method for the Poisson equation will also be important, i.e., the system σ = ∇u,
div σ = −f . A flux σ which satisfies the second equation is called equilibrated.
The point of departure is the following theorem [14]. ΓD and ΓN are the parts of
the boundary with Dirichlet and Neumann boundary conditions, respectively. All
norms without specification are L2 norms.

Theorem of Prager and Synge (Two-Energies-Principle).
Let σ ∈ H(div), σ · n = 0 on ΓN while v ∈ H1(Ω), v = 0 on ΓD , and assume that

(2) div σ + f = 0.

Furthermore, let u be the solution of the Poisson equation. Then,

(3) ‖∇u−∇v‖2 + ‖∇u− σ‖2 = ‖∇v − σ‖2.
There is much freedom in choosing v and σ. We also find the name hypercircle

method in connection with the theorem. We emphasize that it is not restricted
to the Poisson equation. We will refer at the end of this abstract to some other
elliptic problems for which there are also theorems of Prager–Synge type.

Let v = uh be a finite element solution for which an a posteriori error estimate is
wanted. The crucial step is the construction of an equilibrated flux σ. In contrast
to Neittaanmäki and Repin [12] we perform the construction by computing a
correction σ∆ := σ−∇uh to the given gradient of uh, i.e., we use the information
that we have a finite element solution.

Following [8] the computation will be performed within the broken Raviart–
Thomas space of lowest order

RT −1 := {τ ∈ L2(Ω); τ |T = aT + bTx, aT ∈ R
d, bT ∈ R ∀T },

and the triangulation is the same as that for which the finite element solution was
computed. The subspace of functions with continuous normal components is the
usual space

RT 0 := RT −1 ∩H(div).
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Furthermore we denote the space of piecewise constant functions byM0.
The first step of the construction brings a separation of the data oscillation

ch‖f − f̄‖.
Here, f̄ is the L2 projection of the given right-hand side of (1). This term of higher
order is found in most a posteriori error estimates.

Now we make an excursion to the mixed method by Raviart–Thomas

(4)
(σh, τ) + (div τ, wh) = 0 ∀τ ∈ RT 0

(div σh, v) = −(f̄ , v) ∀v ∈M0.

Note that σh is a piecewise linear function. Therefore, div σh is piecewise constant
as well as f̄ is by definition. Since we also test with functions in M0, it follows
that

(5) div σh = −f
holds in the classical sense. In particular σh is equilibrated. It is easy to show
that σh is even the equilibrated function in RT 0 for which ‖σ−∇uh‖ is minimal.

The computation of the solution of (4), however, is considered as too expensive
for an a posteriori error estimation. Fortunately there is a cheap local procedure
that provides a suitable approximation. It proceeds on patches of the FE-mesh.

Consider a vertex V of the triangulation Th and let ωV denote the patch of
triangles around V :

ωV :=
⋃

V ∈T̄

T .

The nodal basis function ϕV with ϕV (V ) = 1 and support ωV is inserted into the
finite element equation

∫

ωV
∇uh · ∇ϕV =

∫

ωV
fϕV . By partial integration we see

that the left-hand side equals
∑

E⊂ωV

∫

E [∇uh · n]ϕV . We recall that div σ = −f̄
is the aim. Since all factors in the integrals are now piecewise linear or piecewise
constant, we conclude that in the 2-dimensional case

(6)
1

2

∑

E⊂ωV

[∇uh · n]E |E| =
1

3

∑

T⊂ωV

div σT |T | .

For this reason, we can shift one half of the jumps of ∇uh ·n to obtain a Raviart–
Thomas function σωV

with one third of the required divergence in all triangles of
the patch. The algorithmic implementation for problems in 2-space has a simple
geometric interpretation and is described in [4, p. 181]. Otherwise merely small
systems of algebraic equations have to be solved.

By repeating the procedure on all patches ωV for all vertices V , we encounter
each edge twice and each triangle three times. Hence, the sum σ∆ :=

∑

V σωV

yields a function σh := ∇uh + σ∆ ∈ RT 0 with div σh = −f̄ . Now the theorem of
Prager and Synge provides the guaranteed estimate

(7) ‖∇u−∇uh‖ ≤ ‖σ∆‖+ ch‖f − f̄‖ .
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This is the required upper estimate. The ingredients in (6) for the construction are
just the quantities found in residual estimators. Therefore, (7) is equivalent to the
residual estimator, and the new estimator is not only reliable, but also efficient.

The main diffference to other estimates with equilibrated fluxes (e.g., [12]) or
with local Neumann problems [2] is our reduction to finite dimensional auxiliary
problems. The construction on refined meshes, however, is required, e.g., in [9]. We
emphasize that the connection between papers on this topic is often not recognized
at first glance, if the theorem of Prager and Synge, the hypercircle method, and
the two-energies-method are not cited.

It follows from the theorem of Prager and Synge and the efficiency of (7) that
we have ‖σh −∇u‖ ≤ c ‖∇uh −∇u‖ + ch‖f − f̄‖. This inequality applies to the
solution σh of the mixed method by Raviart–Thomas. A byproduct is a comparison
of different finite element families.

Classical results say that the error of the conforming P1 element u
(1)
h , of the

nonconforming P1 element uCR
h , and of the Raviart–Thomas element σRT

h , respec-
tively, is O(h). It is not excluded that one method is substantially better than the
other ones for a special right-hand side f1, while there is a different preference for
some f2. Now we get a more positive information by recalling that we have already
used complementary spaces in (7). We also incorporate Ainsworth’ application of
the hypercircle method [1]. As usual, A � B means A ≤ cB and A ≈ B that
A � B and B � A holds.

Theorem. Assume that f is piecewise constant on the FE-mesh. Then

‖∇u(2)
h −∇u‖ � |∇uCR

h −∇u‖0,h ≈ ‖σRT
h −∇u‖ � ‖∇u(1)

h −∇u‖ .

We will comment on the differences to similar procedures in the literature and
note that small changes may have much impact on the computing effort. Moreover,
applications to quite different elliptic problems will be listed (without saying how
our procedure has to be adapted). Because of the lack of space, we will cite
explicitly only one representer of closely related research.

Remarks.
1. Melenk and Wohlmuth [10] showed by theoretical and numerical investiga-

tions that the efficiency of residual estimators deteriorates as O(p) when applied
to the hp method. Numerical experiments, however, show efficiency factors not
far from

√
2 for the hypercircle method. Indeed, full efficiency could be proven for

rectangular grids by the construction of uniformly bounded right inverses of the
divergence operator in polynomial spaces, i.e.,

‖σh‖L2 ≤ c‖f‖H−1 .

The main tool is a suitable interpolation on tensor products [7]. However, we did
not succeed in treating triangular meshes.

2. The construction of equilibrated fluxes for the Lamé equation is more in-
volved, since mixed methods for symmetrical stress tensors require a larger number
of local degrees [13].



1242 Oberwolfach Report 23/2008

3. The approach of Repin (see, e.g., [12]) is directed to arbitrary approximate
functions with respect to the elliptic problem, and the knowlege of the FE solution
is not used for the construction. The latter is therefore more expensive.

4. Edge elements and the equations of magnetostatics are easily treated in the
framework of the two-energies-principle [8].

5. A theorem of Prager–Synge type can be formulated for variational inequali-
ties as found in obstacle problems or contact problems. An implementation with-
out extra terms, however, is restricted to active sets with some regularity; see,
e.g., [6, 15].

6. The two-energies-principle has also been applied on the continuous level in
order to justify or discard plate models [3, 11]. Admissible functions for v and σ
in 3-space are constructed from the solutions in the lower dimensional spaces.
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Adaptive Eigenvalue Computation

Wolfgang Dahmen

(joint work with T. Rohwedder, R. Schneider, A. Zeiser)

Given a Gelfand-triple H →֒ X →֒ H and a symmetric positive definite norm-
isomorphism L from H onto its normed dual H′, consider the eigenvalue problem

(1) Lu = λEu,
where E : H → H′ is the canonical embedding. In particular, one is interested in
finding the eigenpair (λ, u) where λ is the smallest eigenvalue which is assumed to
be simple and separated from the rest of the spectrum. The typical approach is
to discretize (1) and then look for efficient methods for solving the resulting finite
dimensional eigenvalue problem. There is a vast amount of literature on problems
of this type and a rich supply of tools developed in numerical linear algebra. In
this work we deviate from the known approaches in that the discretization and
solution process is completely intertwined. In fact, we outline the design and anal-
ysis of an adaptive scheme that determines λ and its corresponding eigensolution u
within a given accuracy tolerance at a possibly low computational cost, depending
on the regularity of the ground state u [2]. Typical examples that are covered
by the approach are 〈Lu, v〉 = a(u, v) where a(·, ·) is a symmetric H1

0 (Ω)-elliptic
bilinear form, in which caseH = H1

0 (Ω),X = L2(Ω), or the stationary Schrödinger
operator (with an appropriate spcetral shift). A related adaptive procedure for
similar problem classes has recently been proposed also in [4] in a finite element
framework which, however, does not give any complexity estimates. In the spirit
of [1] the strategy used here relies on transforming the original problem with the
aid of a Riesz basis for H (wavelet bases, hyperbolic wavelet bases, eigenfunctions
derived from single particle operators) into an equivalent eigenproblem formulated
on ℓ2, the space of square summable sequences on the index set stemming from
the Riesz basis. In contrast to the situation encountered with standard discretiza-
tions, the representation in terms of the Riesz basis can be shown to guarantee
the the (infinite dimensional) problem is well conditioned. As a consequence a
gradient type iteration for the minimization of Rayleigh quotients on all of ℓ2
turns out to exhibit a fixed error reduction rate per step. Some ingredients of
the proof are highlighted. It then remains to realize numerically these (ideal) it-
erations within suitable dynamically updated error tolerances. This is based on
the adaptive application of operators so as to compute the relevant quantities in
the ideal iteration within properly chosen tolerances at minimal cost. It is shown
under which circumstances the resulting adaptive scheme, which can be viewed
as a perturbation of the ideal descent scheme on all of ℓ2, exhibits in some sense
asymptotically optimal complexity when compared with rates of best N -term ap-
proximation. This can be shown to hold when the matrix representations are
compressible in the sense of [1, 3] which is known to be the case for a wide span
of operators and wavelet bases. Furthermore, it is indicated how to exploit the
fact that in the infinite dimensional (ideal) iteration the accuracy of the Rayleigh
quotient corresponding to an approximate eigenvector is essentially the square of
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the accuracy of that approximate eigenvector. It is shown that, in principle, this
leads to an even improved concergence and complexity order when compared with
the N -term approximation rate of u.
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Parallel Sweeping Algorithms in SN Transport

Robert Falgout

A potential bottleneck when solving Boltzmann transport equations in parallel is
the inversion of the streaming operator. The discretized form of this operator is
a lower triangular matrix or block lower triangular matrix with small blocks. The
solution of these triangular systems by direct methods is inherently sequential.
Although various overloading techniques have been used to amortize the costs of
these lower triangular solves or “sweeps”, the practicality of scaling to massively
parallel machines with tens of thousands of processors is unclear.

In this talk, we present new theoretical scaling models for sweeping algorithms
and compare with experiment. In theory, these algorithms have the potential to
scale like O(dP 1/d + M), where d is the spatial dimension of the problem, M is
the number of angles, and P is the number of processors. When M is fairly large,
it masks the effect of the P term, whereby delaying the poor asymptotic scaling
behavior. This delay may be adequate in some cases to get practical performance,
even up to tens of thousands of processors. However, some popular parallel sweep
algorithms scale worse than this best-case theoretical model. This is also discussed
in the talk.

Flux-based level set method

Peter Frolkovič

(joint work with Karol Mikula and Christian Wehner)

Flux-based level set method is a new finite volume method to solve partial differen-
tial equations that describe the movement of all isolines (in 2D case) or isosurfaces
(in 3D) of some level set function.

The most common application of such level set equations is an implicit represen-
tation of dynamic interfaces that can represent, e.g., the free boundary between
different phases in two-phase flows [4], the moving subjective surface in image
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segmentation [8], the first arrival time for fire spread [3], and so on. In such ap-
plications, the interface is represented by, e.g., the zero level set, and the level set
equation is solved on an enlarged fixed domain that contains the moving interface.
For a comprehensive review on level set methods we refer to [11, 12].

The most concise form of the level set equation can be given by

∂tφ+ ~v · ∇φ = f ,(1)

where the unknown function φ = φ(x, t) is prescribed at t = 0 by some initial

conditions. The velocity ~v can be defined by some external vector field ~v = ~V (x)

and/or by some speed F in normal direction ~N to isolines or isosurfaces. In the

latter case one has ~v = F ~N and ~N = ∇φ
|∇φ| (if the gradient of φ is well defined), so

(1) turns to

∂tφ+ F |∇φ| = f .(2)

Usualy, the right hand side of (1) is zero (i.e., f ≡ 0), but for some applications
where the stationary solution of (1) is searched, f can be non-zero. The boundary
conditions for (1) are not discussed here.

The so called complementary volume discretization scheme for level set like
equations was studied in [9] that can be viewed as finite volume method for the
equation

∂tφ− |∇φ|∇ ·
( ∇φ
|∇φ|

)

= 0 .(3)

The level set equation (3) describes the movement of all level sets by the normal
mean curvature field and can be obtained from (1) by setting F = −κ, where κ

denotes the mean curvature and can be computed from κ = ∇ · ~N . The finite
volume method used in [9] is second order accurate, semi-implicit, linear scheme
which is unconditionally stable in L∞ and W 1,1 sense for arbitrary time step. The
main ingredient of the method is integrating (3) over a co-volume and integrating
by parts to obtain the flux-based formulation of finite volume method.

In [5] (or in its extended version [6]), this finite volume technique was derived
for more general form of (2), where the speed F includes also a constant normal
velocity, e.g., F = δ. The idea is to reformulate the non-divergence form of (1) to
conservation law with source term

∂tφ+∇ · (φ~v) = −φ∇ · ~v(4)

and to use the finite volume discretization method. By computing ~v = δ∇φ/|∇φ|
from previous time step, the explicit in time, first order accurate, flux-based
method of characteristics [1, 2] with recursive flux redistribution was used for (4)
with no CFL constraint on the choice of time step. Several examples in 2D and
3D on structured grids for the evolution of curves and surfaces involving topolog-
ical changes are presented in [6] with a detailed analysis of unconditionally stable
behavior of the scheme for large time steps.
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In [7], the so called “high-resolution” form of flux-based level set method was
derived for advective level set equation (1), i.e., for the case

~v = ~V + δ ~N.(5)

The method is consistent and second order accurate for unstructured grids with
the possibility of limiting the scheme locally to first order accuracy if necessary
(the “limiter” procedure). The method is explicit in time and fulfills the discrete
minimum/maximum principle under some restriction on time step (the CFL con-
straint). Several popular benchmarks were computed in [7], including the examples
of an expanding/shrinking and rotating circle/square, the single vortex example,
and the rotation of Zalesak’s disk. All examples are provided with a detailed nu-
merical convergence study (the so called experimental order of convergence) and
they document, among others, very good ”conservation” property of the scheme.

In [3], the high-resolution flux-based level set method was considered on rect-
angular grids for level set equation (1) with f 6= 0 and ~v given by (5). Several
well-established techniques for the computation of (reconstructed) gradient were
used and compared. In such way, the benchmarks like the rotation of Gaussian
function or the single vortex example could be computed with the experimental
order of convergence approaching the order 2 sharply from above. Moreover, new
benchmark examples for the computation of first arrival time for the fire spread
in the presence of wind were studied numerically in details.

Recently, two more advanced applications were solved using flux-based level
set method. Firstly, the method was applied for (subjective) surface evolution in
image segmentation of 3D biological data, see [8, 10]. Secondly, a two-phase flow
problem using level set formulation for the interface between different phases was
solved using finite volume method, see [4].
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GPU Accelerated Algebraic Multigrid

Gundolf Haase

(joint work with Manfred Liebmann, Gernot Plank)

1. Developments in graphics hardware and programming tools

The race for higher and higher clock frequencies hit a physical road block five
years ago, forcing the big processor companies to focus on multi–core architec-
tures instead. The main directions the industry is moving right now are: First,
the multi–core CPU architecture implemented by Intel, AMD and others with
complex deeply pipelined processing cores and a complex multilevel cache hierar-
chy. Second, the many–core GPU architecture of Nvidia and AMD with hundreds
of simple scalar processors with only a small amount of on–chip memory and a
very high bandwidth memory interface. The current generation of GPUs deliver
300–400 GFLOPS peak in single precision arithmetic. The next generation GPUs
with full IEEE double precision floating point support will be available in the sec-
ond half of 2008 with similar performance. The high performance scalar processors
on the GPU are fed by a very high bandwidth memory interface to the on-board
DRAM with up to 75GB/s throughput. This is an order of magnitude faster than
on a typical CPU based server.

Before the introduction of the compute unified device architecture (CUDA) by
Nvidia, programming GPUs for non–graphics tasks was very difficult and greatly
limited. One had to use vertex and pixel shaders to accomplish data manipulation
in a stream based architecture. In contrast CUDA is designed for general purpose
algorithms to be executed on the GPU. CUDA provides tools and compilers for the
C/C++ programming language for easy integration of GPU kernels with existing
code. A great variety of algorithms had already be ported to the graphics process-
ing units using CUDA with great success. A recent collection of applications can
be found on the CUDA Showcase1 page.

Results for unstructured sparse matrix operations [5] using a parallel scan based
approach are however discouraging, with no advantage over highly tuned CPU
based kernels at all. But as we will outline below, these limitations can be overcome
with an highly tuned sparse matrix-vector kernel.

1http://www.nvidia.com/object/cuda showcase.html

http://www.nvidia.com/object/cuda_showcase.html
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2. Algorithmic view on algebraic multigrid

We want to solve the system of equations

(1) Ku = f

for a symmetric, positive definite N ×N Matrix K and a given right hand side f.
The sparse matrix K results from a FEM (FDM, FVM) discretization of the
underlying second order boundary value problem in 2D or 3D, see [3].

The basic idea of multigrid consists in a sequence of discretizations, respectively
matrices Kq, such that the high frequency error components will be reduced on
the fine discretization q by smoothing and the lower frequency error components
will be projected onto the coarser discretization q − 1 [1]. The algorithm assumes

Algorithm 1 Multigrid Method: uq ⇐ mgm(Kq, uq, fq, q)

if q == 1 := CoarsestLevel then
uq ⇐ Solve (Kq · uq = fq ) {solution on the coarsest grid}

else
for i = 1 step 1 until ν1(q) do

uq ⇐ Gpre
q (uq) {presmoothing}

end for
dq ← fq − Kq · uq {defect calculation}
dq−1 ← Iq−1

q · dq {restriction}
wq−1 ← 0 {coarse grid initial guess}
for j = 1 step 1 until γ(q − 1) do

wq−1 ⇐ mgm(Kq−1,wq−1, dq−1, q − 1) {recurrent call}
end for
wq ← Iq

q−1 ·wq−1 {prolongation}
uq ← uq + wq {coarse grid correction}
for i = 1 step 1 until ν2(q) do

uq ⇐ Gpost
q (uq) {postsmoothing}

end for
end if

that matrices/operators are already defined. If we have access to the finest dis-
cretization then the algebraic multigrid (AMG) method can be applied.

The algebraic multigrid method consists of two parts: First, the setup builds a
hierarchy of coarser discretizations from the finest one according to the classical
approach by Ruge and Stüben [4], which defines intergrid transfer matrices Iq

q−1,

Iq−1
q and calculates the coarse matrices Kq−1 := Iq−1

q KqI
q
q−1 via the Galerkin

approach. Due to the high algorithmic complexity of the setup, this part of AMG
has not yet been implemented on the GPU. Second, after the setup a normal
multigrid cycle using the automatically generated hierarchy is applied.
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We choose Jacobi-iteration as pre- and postsmoothing operators G
pre
q and G

post
q .

Therein, in the defect calculation as well as in prolongation Iq
q−1 and in the restric-

tion Iq−1
q , the sparse matrix-vector-product is the dominating operation. Hence,

a fast matrix–vector product on the GPU is key to a fast AMG solver.

3. Unstructured matrix operations on the GPU

The implementation of a sparse matrix–vector kernel on the GPU is compli-
cated by several factors: Most important, the GPU requires a very high degree
of parallelism to work efficiently. This means that thousands of threads must be
executing for a single computational kernel. A single matrix–vector multiplication
thus has to be split into thousands of parallel threads. With a matrix K ∈ R

N×N

stored in compressed row storage format (CRS) and u, b ∈ R
N as full vectors, this

goal can be achieved by scheduling a thread for every sparse scalar product.

• CRS Sparse Matrix-Vector Kernel
– Schedule a thread for every sparse scalar product!

– Thread i calculates ui =
∑N

j=1Kijbj

Although this approach gives us enough threads, the performance of this kernel
is very poor. Problems and solutions:

• Non-coalesced memory access!
– Rearrange CRS data structure for coalesced access
– Interleave the sparse matrix rows for at least 16 consecutive rows
– Holes in the data structure: Not critical! Typical 5-10% increase in

storage
• Random access to b vector!

– Use texture unit of the GPU for random access to b vector
– Texturing is optimized for spacial locality: Small read-only cache

With the implementation of coalesced memory access and using the texture unit for
random access to the vector b the GPU kernel delivers outstanding performance.

4. Numerical results

First, we consider the matrix-vector product for two sparse test matrices orig-
inating from the pressure correction in a premixed flame problem (courtesy of
Brenn/Steiner, TU Graz).
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N #A AMD Opteron Intel C2D Nvidia Geforce
8347 E6850 8800 GT

(a) 720,000 5,020,800 0.25 0.97 10.1
(b) 274,625 7,189,057 0.58 1.17 10.8

Table 1. Performance of sparse matrix-vector multiplication in GFLOPS

The benchmark results in table 1 show an order of magnitude performance
advantage for the Nvidia Geforce 8800GT GPU over a high–end Intel workstation
and a factor 20–40 compared with an AMD Opteron server. All benchmarks use
single precision arithmetics to make the comparison fair.

Furthermore, the sparse matrix-vector kernel is used to implement prolongation
and restriction operators and the Jacobi-smoothers together with several routines
for vector addition and scaling to give the full AMG muligrid cycle on the GPU.
We applied the AMG solver as a preconditioner in a preconditioned conjugate
gradient (PCG) algorithm to solve the pressure equation from above [(a) and (b)]
and to solve the potential problems occurring in the simulation of the electrical
activity in a rabbit heart [(c) and (d)].

N #A Intel E6850 Nvidia 8800 GT

(a) 720.000 5, 020.800 0.089777 0.0122688
(b) 274.625 7, 189.057 0.050223 0.0078146
(c) 862.515 12, 795.209 0.158694 0.0219833
(d) 111.589 1, 445.373 0.017278 0.0038916

Table 2. Timing of PCG-AMG iteration in seconds

The PCG-AMG benchmark for solving the system of equations 1 shows that the
GPU version is 6–8 times faster compared with a high-end Intel C2D E6850 3.0Ghz
workstation running the highly optimized implementation of the Parallel Toolbox2.
For the AMD Opteron 8347 1.9 GHz machine the performance differential is even

2http://paralleltoolbox.sourceforge.net

http://paralleltoolbox.sourceforge.net
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wider, giving the GPU a 16–24 fold advantage. All benchmarks used single preci-
sion arithmetics.

5. Conclusions and Future Work

The results prove that GPU computing is very competitive to the traditional
approach to high performance computing. Where a single GPU delivers the per-
formance of a whole cluster of HPC-servers. Even for complicated algorithms and
data structures as used in the PCG-AMG solver the graphics hardware and pro-
gramming tools are now mature enough for a successful implementation. Although
all results so far have been achieved with single precision arithmetics, double pre-
cision hardware will be available soon. With full double precision support and
several GB of on–board memory, it can be expected that GPU computing will
play a significant role in future HPC applications.

Future work on the PCG-AMG algorithm [2] will be focused on supporting
parallel computers with multiple GPU boards. Thus enabling the solution of large
scale problems on GPU clusters.
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Manifold Mapping for Two-Level Optimization

Peter W. Hemker, D. Echeverŕıa

Studying the space-mapping iteration technique by Bandler et al. [IEEE Trans.
Microwave Theory Tech. 42 (1994) pp. 2536–2544] for the efficient solution of
optimization problems, we observe the difference between the solution of the op-
timization problem and the computed space-mapping solution. We repair this
discrepancy by exploiting the correspondence between space-mapping and defect-
correction iteration and we construct the manifold-mapping algorithm, which is
as efficient as space-mapping but converges to the true solution.

To increase the robustness of the algorithm we introduce a regularization tech-
nique based on the generalized singular value decomposition of the linearized fine
and coarse manifold representations. As an example of the effect of this technique
we show the results for an engineering problem from practice.
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Details about the algorithm are found in P.W. Hemker and D. Echeverŕıa, A
trust-region strategy for manifold-mapping optimization, Journal of Computational
Physics 224 (2007) pp. 464-475.

Low Frequency Stable Maxwell Formulations

Ralf Hiptmair

(joint work with F. Krämer and J. Ostrowski)

Introduction. We aim to devise a variational formulation of the full linear
Maxwell’s equations in frequency domain (angular frequency ω > 0) that remains
stable when passing to the stationary limit. We consider the case, where field com-
putation is confined to an artificially bounded domain Ω ⊂ R

3 of simple topolgy,
see Fig. 1 for a typical geometric situation. Inside Ω there is an Ohmic conductor
occupying the region Ωc.

Ωc

Γ0 Γ1

js

Figure 1. Typical geometry requiring full Maxwell modelling.

Voltage boundary conditions are imposed at Γ0 and Γ1, whereas ideal coils
and space charges may be prescribed inside Ω. In particular, js = js0 + iωjs1. This
provides a setting in which both inductive and capacitive effects matter. This rules
out using the simpler eddy current model.

We use the Coulomb gauged a-ϕ-formulation of Maxwell’s equations supple-
mented with Ohm’s law j = σe + js0 inside Ωc. Its variational form relies on the
Sobolev spaces

V := {v ∈H(curl,Ω): curlΓvt = 0 on ∂Ω,

∫

τ

v · ~ds = 0},

H(U) := {ψ ∈ H1(Ω): ψ|Γ0
= 0, ψ|Γ1

= U} ,
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and reads: seek a ∈ V , ϕ ∈ H(U) such that

(µ−1 curl a, curl a′)− ω2(ǫa,a′) + iω(σa,a′)

+((iωǫ+ σ) gradϕ, a′) = (js,a′) ,

(ǫa, gradϕ′) = 0 ,

(1)

for all a′ ∈ V , ϕ′ ∈ H(0) ((·, ·) =̂ L2 inner product).
Low-frequency instability. It is well known that Gauss’ law div(ǫe) = ρ is

contained in (1) for any ω > 0, but becomes an independent equation in Ωe :=
Ω \ Ωc in the stationary limit ω = 0. This decoupling manifests itself as a loss of
control of the scalar potential ϕ in Ωe in (1) as ω → 0. In mathematical terms,
the norm of the solution operator for (1) will blow up as ω → 0; (1) lacks uniform
stability as ω → 0, since the recovery of ϕ becomes ill-posed. Eventually, even
round-off errors will severely pollute any approximate solution for ϕ.

Generating system approach. Ill-conditioned discrete variational problems
can often be stabilized by augmenting the underlying basis with additional vectors
in the span of the basis, thus obtaining a generating system. Using it to “discretize”
the variational problem yields a singular matrix.

The key observation is that most iterative solvers can well cope with singular
matrices provided that the right hand sides of the linear systems are consistent [1]:
crucial is the distribution of non-zero eigenvalues, which indicates the stability of
the generating system. It is worth noting that the very same augmentation idea
accounts for the power of multigrid methods [2, 3] and has been used to enhance
ILU-preconditioners in [4]. The idea is also related to recent attempts to use
frames for the discretization of operator equations [5, 6].

Stabilzed variational formulation. Our generating systems approach boils
down to using non-direct decompositions of trial and test spaces. For (1) we may
use the non-direct splitting

H(U) = H(U)′ +H1
e (Ω) ,

H1
e (Ω) :=

{

v ∈ H1(Ω) : v ≡ const on all connected components of Ωc,
v|Γ0

= 0, v|Γ1
= 0 .

}

.

Accordingly, in (1) we replace ϕ with the sum ϕ = ϕ̃+ ψ, ϕ̃ ∈ H(U), ψ ∈ H1
e (Ω).

The introduction of an extra unknown has to be balanced by an extra equation,
which we obtain by testing the first equation of (1) with ψ′ ∈ H1

e (Ω).
Note that gradψ′ ≡ 0 inside ΩC : the extra equation is redundant for any ω > 0,

but after dividing by iω it represents Gauss’ law in the non-conducting domain.
This is exactly the information that is missing (1) in the stationary limit.

Eventually, we arrive at the following variational problem: seek a ∈ V , ϕ̃ ∈
H(U), ψ ∈ H1

e (Ω) such that for all a ∈ V , ϕ̃′ ∈ H(0), ψ′ ∈ H1
e (Ω)

(µ−1 curl a, curl a′)− ω2(ǫa,a′) + iω(σa,a′)+
((iωǫ+ σ) grad ϕ̃, a′) + iω(ǫ gradψ, a′)= (js,a′) ,

(ǫa, grad ϕ̃′) = 0 ,
(ǫ grad ϕ̃, gradψ′) + (ǫ gradψ, gradψ′) =(div js1, ψ

′) .

(2)
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If (a, ϕ) solves (1), then the same functions together with ψ = 0 will supply a
solution of (2). Fittingly, in (2) the second equation arises from combining the first
and the third. Both observations remain valid also after discretization by means
of conforming finite elements, that is, in the case of edge element approximation
for a and continuous piecewise linear element used for ϕ̃ and ψ. Consequently, the
linear systems of equations arising from (2) will be square but singular, which is
natural for the generating systems approach.

Stationary limit. Setting ω = 0 (stationary limit) in (2) perfectly decou-
ples the system into the familiar and stable variational problems of stationary
electromagnetism:

First, we recover the stationary currents boundary value problem inside the
conductor and the electrostatic potential equation in Ωe through testing the first
equation with gradients, and using the second: find ϕ ∈ H(U) with

(σ gradϕ, gradϕ′)Ωc
= 0 ∀ϕ′ ∈ H(0) .(3)

(ǫ gradϕ, gradψ′) = (div js1, ψ
′) ∀ψ′ ∈ H1

e (Ω) .(4)

Charge balance is hidden in the second variational equation, because integration
by parts reveals

∫

∂Ωc
ǫ gradϕ ·n dS =

∫

∂Ωc
js1 ·n dS. The source term js1 enables us

to fix the total charge of connected components of the conductor, which is another
freedom in the stationary limit.

Second, the equations of magnetostatics emerge from the first and second equa-
tion of (2): with ϕ from (3), (4), seek a ∈ V such that for all a′ ∈ V , ϕ′ ∈ H(0)

(µ−1 curl a, curl a′) = (js,a′)− (σ gradϕ, a′) , (ǫa, gradϕ′) = 0 .

The bottom line is that the limit equations are perfectly well-posed, which bodes
well for the behavior of iterative solvers when applied to a discretized version of
(2): we can expect robustness with respect to small values of ω, which is confirmed
by first numerical experiments reported in [7].
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Analysis and Adaptive treatment of a geometric PDE in
Mathematical Physics.

Michael Holst

The Einstein constraint equations have been studied intensively for half a century;
our foces in this lecture is on a thirty-year old open question involving existence
of solutions to the constraint equations on space-like hyper-surfaces with arbitrar-
ily prescribed mean curvature, and on the develpment of a provably convergent
adaptive numerical method. All known existence results have involved assuming
either constant (CMC) or nearly-constant (near-CMC) mean extrinsic curvature.
After giving a survey oh known CMC and near-CMC conditions through 2007,
we outline a new topological fixed-point framework that is fundamentally free of
both CMC and near-CMC conditions, resting on the construction of ”global bar-
riers” for the Hamiltonian constraint. We then present such a barrier construction
for the case of closed manifolds with positive Yamabe metrics, giving the first
known existence results for arbitrarily prescribed mean extrinsic curvature. Our
results are devloped in the setting of a ”weak” background metric which requires
building up a set of premilinary results on Sobolev classes and elliptic operators
on manifolds with weak metrics. This allows us to recover the recent ”rough”
CMC existence results of Choquet-Bruhat (2004) and of Maxwell (2004, 2006) as
two distinct limiting cases of our non-CMC results. Our results also extend to
other case such as compact manifolds with boundary. We then describe an AFEM
algorithm based on a standard SOLVE-ESTIMATE-MARK-REFINE procedure,
and establish that it is a constraction when applied to the Hamiltonian constraint.
The proof uses a nonlinear extension of the 2007 article of Cason et al., based on
a nonlinear indicator reduction lemma and a nonlinar quasi-orthogonality result.

Adaptive Multilevel Primal-Dual Interior-Point Methods in PDE
Constrained Optimization

Ronald H.W. Hoppe

(joint work with Harbir Antil, Christopher Linsenmann)

We are concerned with structural optimization problems where the state variables
are supposed to satisfy a PDE or a system of PDEs and the design variables are
subject to inequality constraints. A typical shape optimization problem associated
with a time-independent PDE or a system thereof as the underlying state equation
amounts to the minimization of a shape functional J over bounded domains Ω in
Euclidean space R

d. The state function u is assumed to satisfy a boundary value
problem as described by means of a partial differential operator L, and there may
be further equality and/or inequality constraints on the domain.

inf
Ω

J(u,Ω) , J(u,Ω) :=

∫

Ω

j(x, u(x)) dx,(1a)

subject to Lu = f in Ω , u = g on Γ , h(Ω) ≥ 0.(1b)
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The inherent difficulty that the minimization is over a certain class of domains
instead of a set of functions in an appropriate function space can be circum-
vented based on a parametrization of the domain by a finite number of design
variables. In particular, the design variables are chosen as the Bézier control points
α ∈ R

m,m ∈ N, of a composite Bézier curve representation of the boundary Γ.
The inequality constraints are expressed by means of the design variables as well.
For the numerical solution of (1a)-(1b) we use a finite element discretization of
(1a)-(1b) with respect to a simplicial triangulation Th(Ω(α)) of the computational
domain Ω(α). This leads to a finite dimensional optimization problem

inf
uh,α

Jh(uh, α),(2a)

subject to Lhuh = bh , h(α) ≥ 0,(2b)

where uh ∈ R
n is the finite element approximation of the state u, Jh(uh, α) the

discretized objective functional and Lhuh = bh the algebraic system arising from
the finite element discretization of the PDE.
The inequality constraints in (1b) are coupled by logarithmic barrier functions
with a barrier parameter β = 1/µ > 0, µ → ∞, and the equality constraint by a
Lagrange multiplier λh ∈ R

n. This leads to the saddle point problem

(3) inf
uh,α

sup
λh

L(µ)
h (uh, λh, α) .

Here, L(µ)
h is the Lagrangian

(4) L(µ)
h (uh, λh, α) = B(µ)(uh, α) + 〈λh, Lhuh − bh〉

with B(µ)(uh, α) denoting the so-called barrier function

(5) B(µ)(uh, α) := Jh(uh, α) − 1

µ
ln(h(α)) .

and 〈·, ·〉 the Euclidean inner product on R
n. The barrier path µ 7−→ xh(µ) :=

(uh(µ), λh(µ), α(µ))T is given as the solution of the nonlinear system

F (xh(µ), µ) =





∂uh
L(µ)

h (uh, λh, α)
∂λh
L(µ)(uh, λh, α)

∂αL(µ)(uh, λh, α)



 = 0 ,(6)

where the subindices refer to the derivatives of the Lagrangian with respect to the
primal, the dual, and the design variables.
We solve (5) by an adaptive continuation method based on the affine invariant
convergence theory of Newton-type methods. The adaptive continuation method
is a predictor-corrector method with an adaptively determined continuation step
size in the predictor and Newton’s method as a corrector. It relies on the affine
invariant convergence theory of Newton and Newton-type methods and ensures
that the iterates stay within a neighborhood (contraction tube) of the barrier
path so that convergence to a local minimum of the original minimization problem
can be achieved. Given some approximation for xh(µ) = (uh(µ), λh(µ), α(µ))T at
µk, the predictor step relies on tangent continuation along the trajectory of the
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Davidenko equation Fxh
(xh(µ), µ) x′h(µ) = −Fµ(xh(µ), µ) and amounts to the

implementation of an explicit Euler step. As a corrector, we use Newton’s me-
thod applied to F (xh(µk+1), µk+1) = 0 with the prediction as the start vector. A
monotonicity test based on a simplified Newton correction checks contractivity. If
it fails, the continuation step has to be repeated with a reduced steplength (see [1]).

Figure 1. Two-level predictor-corrector scheme

The predictor-corrector scheme is realized within a multilevel framework with
respect to a hierarchy of discretizations. In case of a two-level scheme with the
levels ℓ − 1 and ℓ (cf. Fig. 1), the prediction is done by nested iteration in such
a way that a certain number of adaptive continuation steps are performed on
the coarser level ℓ − 1 before a predicted value is computed on the finer level ℓ.
The corrector is a Newton multigrid method incorporating a two-level PDE solver
featuring appropriate smoothers. The iterates are checked for acceptance by the
level ℓ monotonicity test. In the general case of more than 2 levels, the multilevel
predictor-corrector continuation method consists of a recursive application of the
two-level scheme (see [2] for details).
As an application, we consider the optimal design of capillary barriers in microflui-
dic biochips that are used in pharmaceutical, medical and forensic applications
for high throughput screening, genotyping and sequencing by hybridization in
genomics, protein profiling in proteomics, and cytometry in cell analysis (see [3]).
Recent nanotechnological devices are biochips with integrated fluidics on top of the
chip consisting of a lithographically produced network of channels and reservoirs.
Between the channels and the reservoirs are pressure driven capillary barriers (cf.
Fig. 2 (left)) which have to be designed in such a way that a precise filling of the
reservoirs is guaranteed.

The objective functional is of tracking type, whereas the state equations are
given by a Stokes system with Signorini type boundary conditions at the outflow
boundary for modeling the barrier. Fig. 2 (right) shows a visualization of the
velocity field in the flow mode for the optimized geometry of the barrier.
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Figure 2. Capillary barrier and reservoir (left) and velocity field
for an optimized design of the barrier (right)
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Tensor Approximation of Multidimensional Operators with
Applications

Boris N. Khoromskij

We describe a novel tensor approximation method for discretised multi-
dimensional functions and operators in R

d, based on the idea of multigrid ac-
celeration presented in [4]. The approach stands on successive reiterations of the
orthogonal Tucker tensor approximation on a sequence of nested refined grids. On
the one hand, it provides a good initial guess for the nonlinear iterations to find the
approximating subspaces on finer grids, on the other hand, it allows to transfer
from the coarse-to-fine grids the important data structure information on loca-
tion of the so-called most important fibers in directional unfolding matrices. The
method indicates linear complexity with respect to the size of data representing
the input tensor.

The method is tested by 3D electronic structure calculations. For the multigrid
accelerated low Tucker-rank approximation of the all electron densities having
strong nuclear cusps, we obtain high resolution of their 3D convolution product
with the Newton potential. The accuracy of order 10−6 in max-norm is achieved
on large n×n×n grids up to n = 1.6 · 104, with the time scale in several minutes.

Some related topics of tensor methods can be found in [1] - [3].
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Preconditioned nullspace method for the Oseen problem

Sabine Le Borne

The Oseen problem, which arises in the simulation of the time-dependent Navier-
Stokes equations for incompressible fluid flow, leads to indefinite, non-symmetric
and possibly ill-conditioned linear systems of equations. This talk presents a
method to obtain a reduced linear system from the original system which is then
solved by the preconditioned GMRES method. The system reduction is obtained
through an efficient implicit representation of a basis of discretely divergence free
functions, also known as the nullspace method. We will analyse the spectrum of
the preconditioned reduced system, and present numerical tests to illustrate the
performance of this method which shows only mild dependence on the mesh size
and viscosity dominance.

As a model problem, we consider the Oseen equations: Let Ω ⊂ R
d, (d ∈ {2, 3}),

denote a bounded, connected domain with a piecewise smooth boundary Γ. Given
a force field f : Ω → R

d, boundary data g : Γ → R
d, the kinematic viscosity

coefficient ǫ, and a given, divergence-free coefficient b : Ω→ R
d, the problem is to

find the velocity field u : Ω→ R
d and the pressure p : Ω→ R such that the Oseen

equations

−ǫ∆u+ (b · ∇)u +∇p = f in Ω,

−divu = 0 in Ω,

Cu = g on Γ,

are satisfied. Here, C denotes some type of boundary operator. A stable mixed
finite element discretization of the Oseen equations leads to a system of equations
of the form

(1)

(

A B
BT 0

)(

x
y

)

=

(

f
g

)

where A ∈ R
n×n and B ∈ R

n×m with m < n.
In order to employ the nullspace method to solve the linear system (1), we will

make the following assumptions:
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• B ∈ R
n×m has full rank m;

• ker(A + AT )∩ ker(BT ) = {0} (which guarantees that the saddle point
matrix in (1) is invertible);
• A particular solution x̂ of BTx = g is available;
• A null space basis Z ∈ R

n×(n−m) of BT is available, i.e.,

BTZ = 0 and rank(Z) = n−m.
The required particular solution x̂ may be computed through x̂ = B(BTB)−1g.
The solution set of BTx = g is described by x = Zv + x̂ as v ranges in R

n−m.
Substituting x = Zv + x̂ in Ax + By = f , we obtain A(Zv + x̂) + By = f .
Premultiplying by the full-rank matrix ZT yields ZTA(Zv + x̂) + ZTBy = ZT f ,
and using BTZ = 0 as well as rearranging the equation yields the reduced, non-
singular problem

ZTAZv = ZT (f −Ax̂).
Once the solution v∗ of the reduced problem has been computed, we set x∗ =
Zv∗ + x̂. Finally, the solution y∗ can be found by solving BTBy = BT (f − Ax∗)
for y, a reduced system of order m with a sparse, symmetric positive definite
coefficient matrix BTB.

The construction and representation of an orthogonal nullbasis of the discrete
divergence operator BT is based on the following two observations:

• The last n−m columns of the orthogonal factor Q = [Y Z] ∈ R
n×n, with

Z ∈ R
n×(n−m), in a full QR factorization B = QR, form an orthogonal

null basis of BT .
• The orthogonal factor Q in a full QR factorization B = QR of a discrete

(finite element/finite difference) gradient B has an efficient block repre-
sentation which is presented in Theorem 1 [1].

Theorem 1. Let B =

(

B1

B2

)

∈ R
n×m with B1 ∈ R

m×m, B2 ∈ R
(n−m)×m and

rank(B) = m. Let R ∈ R
m×m denote the upper triangular Cholesky factor of

BTB. Under the additional assumption that the LU factorization of B1−R exists,
we denote these LU factors by V,W (i.e., B1 − R = VW ). Then an orthogonal
null basis of BT is represented by

(2) Z =

(

0
I2

)

+

(

B1R
−1 − I1

B2R
−1

)

V −TW−TBT
2 .

Whereas the representation (2) is valid for arbitrary rectangular matrices B =
(

B1

B2

)

∈ R
n×m, it becomes particularly efficient when applied to finite element

matrices B after certain row and column reorderings, i.e., when applied to B̃ :=
PrBPc with permutation matrices Pr, Pc. In particular, it is proposed to choose
Pc as a nested dissection ordering of the column index set to facilitate the Cholesky
factorization of B̃T B̃. If an exact Cholesky factorization is too expensive, it may
be replaced by an approximation (e.g., incomplete Cholesky or hierarchical matrix
Cholesky factorization). The row permutation Pr, on the other side, has no impact
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on the Cholesky factorization and is chosen to facilitate the LU factorization of
B̃1 − R. In particular, with Pc given already, Pr is chosen so that B̃1 becomes
“almost” upper triangular, i.e., has as few as possible entries in its lower triangular
part. For further details on this implicit null basis representation and suitable
orderings we refer to [1].

In order to solve the reduced system ZTAZv = ZT (f −Ax̂), we use a precon-

ditioned GMRES method with preconditioner ZT Ã−1Z where Ã−1 is an approxi-
mation of A−1. In our subsequent numerical results, we use an H-LU factorization
of A to obtain Ã−1. In the case of Ã−1 = A−1, one obtains the following result
on the eigenvalues of the preconditioned matrix.

Theorem 2. Let Q = [Y Z], Y ∈ R
n×m be the orthogonal factor in the QR-

factorization of B. The spectrum of ZTA−1ZZTAZ satisfies

λ(ZTA−1ZZTAZ) ⊂ {1} ∪ {1− λi(Y
TA−1ZZTAY ) | i = 1, . . . ,m}.

In particular, there are at most m eigenvalues not equal to one.

In Table 3, we show numerical results for the Oseen problem in two spatial
dimensions. We use H-arithmetic with adaptive accuracy δ = 10−8 to compute an
H-LU factorization of A which is used as Â−1 and an H-Cholesky factorization of
BTB to obtain an approximate null basis Ẑ (see, e.g., [2] for further details on H-
matrices). We record the number of GMRES steps as well as the required time (in
seconds) to reduce the residual by a factor of 10−6. At this point, we only compute
solutions for the velocity but not the pressure. (Once the velocity is available, the
pressure can be computed through a triangular solve with R since Y TB = R). All
numerical tests have been performed on a Dell 690n workstation (2.33GHz, 32GB
memory) using the standard H-matrix library HLib (cf. http://www.hlib.org).

In Table 3, we show results for varying convection dominance (through the
choice of ǫ in the Oseen problem) and convection directions bxline(x, y) = (1, 0)T ,

bcirc(x, y) = (−y, x)T
, as well as brecirc(x, y) =

(

−(x2 − 1)y, (y2 − 1)x
)T
. The

results show some dependence on the convection direction, but only a very mod-
erate dependence on the convection dominance and the problem size.

Future work includes the application of the proposed preconditioned nullspace
method to problems of three spatial dimensions as well as sequences of saddle
point problems in time dependent problems.
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Table 3. Preconditioned nullspace method: GMRES steps (and
time in seconds) for fixed H-accuracy δ = 10−8

n−m 70,398 137,758 280,798 561,753 1,121,598
ǫ = 0.1 17 (3.0) 18 (6.5) 20 (15) 23 (37) 24 (75)

b = bxline ǫ = 10−2 11 (2.0) 13 (4.8) 15 (11) 18 (29) 21 (65)
ǫ = 10−3 9 (1.6) 9 (3.3) 8 (6.2) 8 (13) 8 (26)
ǫ = 0.1 21 (3.7) 24 (8.6) 26 (19) 30 (48) 33 (103)

b = bcirc ǫ = 10−2 21 (3.6) 24 (8.6) 29 (22) 34 (54) 40 (126)
ǫ = 10−3 28 (4.6) 30 (10.4) 31 (22) 34 (53) 37 (113)
ǫ = 0.1 19 (3.3) 22 (8.0) 25 (19) 28 (45) 31 (96)

b = brecirc ǫ = 10−2 20 (3.4) 23 (8.2) 27 (20) 32 (51) 36 (112)
ǫ = 10−3 37 (6.0) 38 (13) 40 (29) 42 (65) 46 (140)

On the Use of Linear Programming to Compute Sparse Approximate
Solutions of PDEs

Volker Mehrmann

(joint work with Sadegh Jokar, Marc Pfetsch, Harry Yserentant)

The sparse representation of functions via a linear combination of a small number
of basic functions has recently received a lot of attention in several mathematical
fields such as approximation theory [11, 23, 25, 26] as well as signal and image
processing [3–9, 12–18]. In terms of representations of functions, we can describe
the problem as follows. Consider a linearly dependent set of n functions φi, i =
1, 2, . . . , n, (a dictionary [10]) and a function f represented as

f =

n
∑

i=1

xi φi.

Since the set of functions is not linearly independent, this representation is not
unique and we may want to determine the sparsest representation, i.e., a repre-
sentation with a maximal number of vanishing coefficients among x1, . . . , xn.

In the setting of numerical linear algebra, this problem can be formulated as
follows. Consider a linear system

(1) Φx = b,

with Φ ∈ R
m,n, where m ≤ n and b ∈ R

m. The columns of the matrix Φ and
the right hand side b represent the functions φi and the function f , respectively,
with respect to some basis of the relevant function space. The problem is then
to find the sparsest possible solution x, i.e., x has as many zero components as
possible. This optimization problem is in general NP-hard [19, 24]. Starting from
the work of [9], however, a still growing number of articles have developed sufficient
conditions that guarantee that an (approximate) sparse solution x̂ to (1) can be
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obtained by solving the linear program

min ‖x‖1, s.t. Φx = b,

which can be done in polynomial time [21, 22].
In the literature, the development has mostly focused on the construction of

appropriate coding matrices Φ that allow for the sparse representation of a large
class of functions (signals or images). Furthermore, properties of the columns of
the matrix (or the dictionary) have been investigated, which guarantee that the
computation of the sparse solution can be done efficiently via a linear programming
approach, see, for instance, [8, 20]. Often the term compressed sensing is used for
this approach.

We consider a related but different problem. We are interested in the numerical
solution of partial differential equations

Lu = f,

with a differential operator L, to be solved in a domain Ω ⊂ R
d with smooth

boundary Γ and appropriate boundary conditions given on Γ.
Considering a classical Galerkin or Petrov-Galerkin finite element approach,

see e.g. [2], one seeks a solution u in some function space U (which is spanned by
φ1, . . . , φn), represented as

(2) u =

n
∑

i=1

ui φi.

Again we are interested in sparse representations with a maximal number of van-
ishing coefficients ui. In contrast to the cases discussed before, here we would like
to construct the space U and the basis functions φi in the finite element discretiza-
tion in such a way that first of all a sparse representation of the solution to (2)
exists and second that it can be determined efficiently. Furthermore, it would be
ideal if the functions φi could be constructed in a multilevel or adaptive way.

The usual approach to achieve this goal is to use local a posteriori error estima-
tion to determine where a refinement, i.e., the addition of further basis functions
is necessary. For example, in the dual weighted residual approach [1] this is done
by solving an optimization problem for the error.

Here, we examine the possibility to use similar approaches as those used in com-
pressed sensing, i.e., to use ℓ1-minimization and linear programming to perform
the adaptive refinement in the finite element method in such a way that the solu-
tion is sparsely represented by a linear combination of basis functions. In order to
achieve this goal, we propose the following framework.

We determine u ∈ U as the solution of the weak formulation

(v, Lu− f) = 0 for all v ∈ V.

Here, V is a space of test functions and (·,·) is an appropriate inner product. In the
simplest version of a two-level approach, we construct finite dimensional spaces of
coarse and fine basis functions U

n
1 ⊂ U

N
1 ⊂ U and corresponding spaces for coarse
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and fine test functions V
n
1 ⊂ V

N
1 ⊂ V. Then we determine the approximate

sparsest solution in U
N
1 , such that

(v, Lu− f) = 0 for all v ∈ V
1
N \ V

1
n

via the solution of an underdetermined system of the form (1). Based on the sparse
solution, we determine new coarse and fine spaces U

n
2 ⊂ U

N
2 ⊂ U, V

n
2 ⊂ V

N
2 ⊂ V,

and iterate this procedure.
This framework combines the ideas developed in compressed sensing with well-

known concepts arising in adaptive and multilevel finite element methods. But
instead of using local and global error estimates to obtain error indicators by
which the grid refinement is controlled, here the solution of the ℓ1-minimization is
used to control the grid refinement and adaptivity.

However, many issues of this approach have not yet been resolved, in particular,
the theoretical analysis of this approach. We see the following potential advantages
and disadvantages of this framework. On the positive side, the ℓ1-minimization
approach allows for an easy automation. On the downside, the analysis of the
approach seems to be hard even for classical elliptic problems, and due to the
potentially high complexity of the linear programming methods this approach will
only be successful if the procedure needs only a few levels and a verysmall sparse
representation of the solution exists.
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Large Deformations and Error Estimation

Arnd Meyer

The efficient fast solution of deformation problems using adaptive h-refined
finite element approximation requires an appropriate mesh control. In linear elas-
ticity this can be obtained from a residual error estimator in the following sense.

We consider the error functional

J1(u− uh) = a(u − uh, u− uh)1/2,

where u is the exact and uh the finite element soution. Here, a(u, v) is the under-
lying bilinear form, such as

a(u, v) =

∫

Ω

σ(u) : ǫ(v) dΩ

with small strain tensor ǫ and stress tensor σ(u) = C : ǫ(u) for some constant
Hook’s tensor C.
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With the well-known techniques [1–3] we obtain

J1(u− uh) ≤ const ·
(

∑

∀T

η2
T

)1/2

with the element error contribution ηT for the single element T of the actual finite
element mesh. Hence, those elements with large contribution ηT are marked for
refinement, what leads to a very efficient adaptive approximation of the problem
with a moderate number of unknowns.

The generalization of this approach to the more complicate case of geometrically
nonlinear (large strain) deformations is now considered here.

We obtain a nonlinear weak formulation with

a(U ;V ) =

∫

Ω

T1(U) : GradV TdΩ =

∫

Ω

T2(U) : E(U ;V ) dΩ.

Here, T1 denotes the 1st Piola Kirchhoff stress tensor,
T2 = T1F

T the 2nd Piola Kirchhoff stress tensor and

E(U ;V ) =
1

2
(GradV +GradV T +GradUGradV T +GradV GradUT )

occurs in linearizing the large strain tensor

E(U) =
1

2
(GradU +GradUT +GradUGradUT )

with the deformation gradient F = I +GradUT .
Now, different to the linear case, we have no energy norm (such as a(u, u)). The

generalization of a residual type error estinator is based on a slight change of the
error functional to

J2(U − Uh) =
a(U ;U − Uh)− a(Uh;U − Uh)

b(U − Uh, U − Uh)1/2
,

when b(V, V )
1
2 stands for a norm on V. An appropriate definition is:

b(U, V ) =

∫

Ω

E(x)(GradV )T : GradU dΩ

with a “material size field” E(x). Note that in the linear case the definition
b(U, V ) = a(U, V ) leads to J1.

Now, exactly the same techniques as for linear elasticity applied to J2 leads to
the error estimator:

J2(U − Uh) ≤ CI(
∑

η2
T )1/2,

with the (small) constant CI from the interpolation estimates and with

η2
T =

1

λT

(

h2
T ‖rT ‖20,T +

∑

E⊂∂T

hE‖rE‖20,E

)

.

Here, the element residual is rT = DivT1 + f and rE are the edge jump terms
again defined with T1(Uh) as: rE = [n · T1]
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Hence, the error estimator for large deformation coincides with its linear coun-
terpart. The non–symmetric tensor T1 occurs instead of the small–stress tensor.
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A Software Infrastructure JASMIN for Parallel Adaptive Structured
Mesh Applications

Zeyao Mo

This talk will introduce a software infrastructure JASMIN for large scale parallel
adaptive structured mesh applications using thousands of processors. JASMIN is
a software project for very large scale scientific computing supported by IAPCM
and the National Basic Key Research Special Fund in China. It is developed to
solve the more and more serious difficulties arising from the large scale parallel
numerical simulations while the adaptive structured meshes are required and thou-
sands of processors are used. These difficulties include the reduction of software
complexities, the data structure for high performance, the simplification of parallel
implementation, the fast algorithms and robust solvers, the visualization of large
scale data set, and so on. The layered, modularized and object-oriented parallel
programming techniques is used to design JASMIN. Three layers are provided.
The basic layer includes the parallel adaptive implementations. In this layer,
efficient data structure “hierarchy- level-patch-patch data” suitable for the high
Cache hit ratio is used. Data communications and load balancing are organized
and encapsulated. Mesh adaptivity operations are also encapsulated. Many useful
programming tools are presented. In the middle layer, efficient time integration
algorithms are integrated, robust solvers such as KINSOL and Hypre developed in
LLNL are encapsulated, the description of the complex geometries are permitted.
In the top layer, abstract interfaces based on the data structures such as patch
and patchdata are presented, visualization tools are presented. Based on JAS-
MIN, user is required to serially implement the abstract interfaces according to
the physical models and the computational methods, then he will automatically
get a parallel code which can efficiently run on the modern parallel computers using
thousands of processors. Now, JASMIN is successfully applied to solve many re-
alistic applications arising from the multi-material radiation hydrodynamics using
various hydrodynamics methods such as the Euler, Lagrangian or Moving-Mesh,
turbulence and interface instability simulation, laser plasma interactions using the
Particle-In-Cell method, earth atmosphere environment simulation, material sci-
ence using the molecular simulation, and so on. On a massively parallel computer,
JASMIN can support many applications scaling up to 4096 processors.
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Exponential functionals of Brownian motion and class one Whittaker
functions

Neil O’Connell

(joint work with Fabrice Baudoin, Toulouse)

If (B
(µ)
t , t ≥ 0) is a standard one-dimensional Brownian motion with drift µ,

(

B
(µ)
t + log

(∫ t

0

e−2B(µ)
s ds

)

, t ≥ 0

)

is a diffusion with generator given by

1

2

d2

dx2
+

(

d

dx
logKµ(e−x)

)

d

dx
.

This is a theorem of Matsumoto and Yor [8] and can be regarded as an extension of
Pitman’s ‘2M −X ’ theorem; the latter can be recovered by Brownian scaling and
the method of Laplace. An interpretation of the law of this process as that of the
Brownian motion with drift conditioned on the law of the exponential functional
∫∞

0 exp(−2B
(|µ|)
t )dt is given in [2]. We identify a class of diffusions which should

play a similar role in a multi-dimensional version of this theorem, analogous to
the multi-dimensional versions of Pitman’s ‘2M −X ’ theorem obtained in [5,6,9].
As a starting point, we consider exponential functionals of a multi-dimensional
Brownian motion with drift, defined via a collection of linear functionals. We
give a characterisation of the Laplace transform of their joint law as the unique
bounded solution, up to a constant factor, to a certain partial differential equation.
We then consider a family of diffusions which can be interpreted as having the law
of the Brownian motion with drift conditioned on the joint law of these exponential
functionals. In the case where the collection of linear functionals is a set of simple
roots, the Laplace transform of the joint law of the corresponding exponential
functionals can be expressed in terms of a class one Whittaker function associated
with the corresponding semi-simple Lie group. In this case, we study in detail some
properties of the associated diffusion processes, which we call Whittaker processes.
Class one Whittaker functions associated with semi-simple Lie groups have been
studied extensively in the literature. They are closely related to Whittaker models
of class one principal series representations and play an important role in the study
of automorphic forms associated with semi-simple Lie groups [7]. In the integrable
systems literature, they arise as eigenfunctions of the quantum Toda lattice [1].
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Numerical Mathematics Aspects of Computational Finance

Cornelis W. Oosterlee

When valuing and risk-managing exotic derivatives, practitioners demand fast
and accurate prices and sensitivities. As the financial models and option contracts
used in practice are becoming increasingly complex, efficient methods have to be
developed to cope with such models. Aside from non-standard exotic derivatives,
plain vanilla options in many stock markets are actually of the American type. As
any pricing and risk management system has to be able to calibrate to these plain
vanilla options, it is important to be able to value these American options quickly
and accurately.

By means of the risk-neutral valuation formula the price of any option without
early exercise features can be written as an expectation of the discounted payo?
of this option. Starting from this representation one can apply several numerical
techniques to calculate the price itself: Monte Carlo simulation, numerical solution
of the corresponding partial-(integro) differential equation (P(I)DE) and numerical
integration. While the treatment of early exercise features within the first two
techniques is relatively standard, the pricing of such contracts via quadrature
pricing techniques has not been considered until recently, see [1, 9]. Each of these
methods has its merits and demerits, though for the pricing of American options
the PIDE approach currently seems to be the clear favourite.

In the past couple of years a vast body of literature has considered the modeling
of asset returns as infinite activity Lévy processes, due to the ability of such
processes to adequately describe the empirical features of asset returns and at the
same time provide a reasonable fit to the implied volatility surfaces observed in
option markets. Valuing American options in such models is however far from
trivial, due to the weakly singular kernels of the integral terms appearing in the
PIDE, as reported in, e.g., [2, 4, 6, 11].

In this presentation we present a quadrature-based method for pricing options
with early exercise features. The method combines the recent quadrature pricing
methods of [1] and [10] with the methods based on Fourier transformation pio-
neered by [3, 7, 8]. Though the transform methods so far have mainly been used
for the pricing of European options, we show how early exercise features can be
incorporated naturally. The requirements of the method are that the increments
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of the driving processes are independent of each other, and that the conditional
characteristic function of the underlying asset is known. This is certainly the case
for many exponential Lévy models and models from the broader class of regular
affine processes, which also encompasses the exponentially affne jump-diffusion
class of [5]. In contrast to the PIDE methods, processes of infinite activity, such
as the Variance Gamma (VG) or CGMY models can be handled with relative ease.

All transform methods start from the risk-neutral valuation formula that, for a
European option, reads:

(1) V (t, S(t)) = e−rτ
E[V (T, S(T ))],

where V denotes the value of the options, r is the risk-neutral interest rate, t is
the current time point, T is the maturity of the option and τ = T −t. The variable
S denotes the asset on which the option contract is based. The expectation is taken
with respect to the risk-neutral probability measure. As (1) is an expectation, it
can be calculated via numerical integration provided that the probability density
is known in closed-form. This is not the case for many models which do however
have a characteristic function in closed form.

The best known examples of options with early exercise features are American
and Bermudan options. American options can be exercised at any time prior to
the option’s expiry, whereas Bermudan options can only be exercised at certain
dates in the future. We now define the set of exercise dates as T = {t1, . . . , tM}
and 0 = t0 ≤ t1. For the ease of exposure we assume the exercise date are equally
spaced, so that tm+1 − tm = ∆t. If the option is exercised at some time t ∈ T the
holder of the option obtains the exercise payoff E(t, S(t)). The Bermudan option
price can then be found via backward induction as














V (tM , S(tM )) = E(tM , S(tM ))
C(tm, S(tm)) = e−r∆t

Etm
[V (tm+1, S(tm+1))]

V (tm, S(tm)) = max{C(tm, S(tm)), E(tm, S(tm))},
V (t0, S(t0)) = C(t0, S(t0)),

m = M − 1, . . . , 1,(2)

with C the continuation value of the option and V the value of the option imme-
diately prior to the exercise opportunity. Note that we nw attached a subscript
to the expectation operator to indicate that the expectation is being taken with
respect to all information available at time tm.

The dynamic programming problem in (2) is a successive application of the
risk-neutral valuationi formula, as we can write the continuation value as

(3) C(tm, S(tm)) = e−r∆t

∫ +∞

−∞

V (tm+1, y)f(y|S(tm))dy,

where f(y|S(tm)) represents the probability density describing the transition from
S(tm at tm to y at tm+1. The previous literature does not seem to have picked up
on a presentation by Reiner [10], where it was recognised that for a Black-Scholes
model the risk-neutral valuation formula in (3) can be seen as a convolution or
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correlation of the continuation values with the transition density. As convolutions
can be handled very efficiently by means of the FFT, an overall complexity of
O(MN log2N) can be achieved.

As one of the defining properties of a Lévy process is that its increments are
independent of each other, the insight of Renier has a much wider applicabil-
ity than only to the Black-Scholes model. This is especially appealing since the
usage of Lévy processes in finance has become more stablished nowadays. By
combining Reiner’s ideas with the work of Carr and Madan, we introduce the
Convolution method, or CONV method for short. The complexity of the method
is O(MN log2N) for an M -times exercisable option.

Our method has similarities with both the quadrature pricing and the PIDE
methods. However, our application of the FFT to approximate convolution in-
tegrals bears more resemblance to the approximation of the integral term in the
numerical solution of a PIDE.
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Proving H1+α Bernstein inequalities for non-nested multilevel spaces

Peter Oswald

Non-nestedness Vj−1 6⊂ Vj in multiscale ladders of discretization spaces {Vj}j≥0

appears naturally (non-conforming finite-element discretizations, constrained dis-
cretizations such as discretely divergence-free discretizations for incompressible
flow, multilevel partition of unity methods, etc.), and leads to some technical dif-
ficulties from the point of view of multigrid theory. In non-nested situations, the
additional degree of freedom is the choice of appropriate coarse-to-fine prolonga-
tion operators, and the main difficulty to control the perturbations introduced by
their recursive appearance in multiscale algorithms. Bramble et al. (see the mono-
graph [1]) have made a first attempt to develop a generic theory, it guarantees W-
cycle optimality with sufficiently many smoothing steps, and variable V-cycle opti-
mality. Later Brenner [2,3] was able to cover V-cycle and F-cycle multigrid meth-
ods with sufficiently many smoothing steps. Independently, the author obtained
suboptimality results for additive Schwarz multilevel preconditioners for standard
nonconforming finite element discretizations [4,8] by proving uniform energy norm
bounds for iterated prolongation operators Pℓ→j = Pj · · ·Pℓ+1 : Vℓ → Vj . Other
approaches such as the ”switching” procedure (i.e., mapping to a nested hierarchy
of discretization spaces by a two-level method) have been developed as well.

The case most resistent to theoretical treatment is the analysis of Schwarz-
type multilevel preconditioners and V-cycle algorithms with one or two smoothing
steps, where perturbations coming from the prolongations may not be sufficiently
damped by smoothing. In [9] we recently solved a particular instance of this
open problem by showing optimality of a hierarchical basis preconditioner for
non-conforming P1 elements proposed in [7]. The last step of improving the O(J)
condition number bound from the original 1992 paper [7] to the optimal O(1)
bound is based on a discrete H1+α Bernstein inequality involving the iterated
prolongation operators for some α > 0. For proving such Bernstein inequalities,
ideas borrowed from the theory of semi-regular subdivision methods were essential
(for a survey of this class of multiscale algorithms with applications to geometric
modeling, see [5]). In the terminology of the latter, our result is equivalent to
proving H1+α regularity of the limit surfaces of the subdivision scheme generated
by the prolongations. This in turn requires the consideration of local subdivision
operators for a finite number of so-called invariant neighborhoods which for two-
dimensional triangular meshes are associated with regular triangles, extraordinary
interior vertices of valence 6= 6, and boundary edges and vertices (in [9] we have
opted to treat the boundary by an alternative extension trick), and the study of
their spectral properties. In the particular case of the standard prolongation opera-
tors for nonconforming P1 elements (obtained by averaging the two-sided limits at
discontinuity points located on coarse edges), we showed that the Sobolev regular-
ity of the limit surfaces near regular triangles equals s2 = 1.2838 . . ., and that near
extraordinary vertices it stays > 1 for all valences. This is sufficient to conclude
the uniform upper spectral bound for the associated multilevel preconditioner.
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The methodology of this case study is more widely applicable, at least, it easily
extends to non-nested discretizations of symmetric positive-definite elliptic prob-
lems of order 0 < k < 3. In [6], we applied it to

√
3-refined triangular meshes

and discretizations of Laplace-type problems.
√

3-refinement has the advantage
of a slower growth of the dimensions of discretized problems (with factor ∼ 3
rather than factor ∼ 4 for standard quadrisection), and additionally offers an im-
proved directional selectivity. The paper [6] also elaborates on how to prove lower
bounds for the spectrum of the associated multilevel preconditioner for general
prolongations.

Another (so far only experimentally supported) insight we gained is that the per-
formance of multilevel preconditioners in the pre-asymptotic range depends on the
prolongation operators essentially through the actual size of the spectral radii of
the iterations of a transfer operator associated with the involved local subdivision
operators. This has lead us to the construction of a new prolongation operator for
non-conforming P1 element discretizations with improved preconditioning power
in both the asymptotic and pre-asymptotic range [10]. In comparison with the
standard prolongation, the calculated limit Sobolev smoothness of s2 = 1.6165 . . .
for the associated subdivision method near regular triangles is considerably higher.

Future research will focus on higher-order elliptic problems (e.g., 4-th order el-
liptic problems and non-nested discretely divergence-free Stokes discretizations),
and three-dimensional situations, where more complex local mesh topologies be-
come a major challenge.
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Recent advances in Composite Finite Elements

Daniel Peterseim

(joint work with Stefan A. Sauter)

Many physical processes that can be modeled by partial differential equations
such as groundwater or ocean flows take place in complex environments (shore
lines are rarely smooth). Finite element methods are known to be very powerful
tools in the numerical investigation of such processes. In principle, the concept of
finite elements is sufficient to handle problems on complicated domains, but the
standard requirement saying that the underlying finite element mesh has to resolve
the boundary of the physical domain is too restrictive if the domain contains small
geometric details such as rough boundaries or holes. The resolution condition links
the number of elements to the number (and size) of geometric details. Therefore,
the minimal dimension of the approximation space reaches a size which is not
feasible to solve with a standard computer. Neither can spaces based on resolving
grids serve as coarse grid spaces in multilevel solvers. In practice, one is often
interested in a moderate accuracy that cannot be achieved at a moderate effort
if the mesh has very fine parts used to resolve the geometry. Furthermore, the
mesh density of coarse shape regular triangulations of complicated domains is
determined by the geometry and not by the smoothness properties of the solution.

To be more precise, consider the simple setting of the Poisson equation−∆u = f
on a polyhedral domain Ω ⊂ R

2 having NΩ sides. In case of Dirichlet boundary
condition the discrete weak variational problem reads

(1)

∫

Ω

∇u · ∇v =

∫

Ω

fv, ∀v ∈ V,

where V = VT ⊂ H1
0 (Ω) contains typically continuous piecewise polynomials with

respect to some regular triangulation T of Ω. The a priori error for a piecewise

ΓN
1

ΓN
2

Ω

(a) Model domain Ω
with tiny holes.

(b) Solution velocity
(black= 0, white= 1).

Ω

(c) Model domain Ω
with oscillating bot-
tom boundary.

(d) Solution velocity
(black= 0, white=
0.5).

Figure 1. Model problems: (a-b) Stokes flow on the unit square with
100 tiny holes, a Dirichlet inflow boundary and two Neumann outflow
boundaries. (c-d) Force driven Stokes flow in a domain with rough slip
bottom boundary.
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(a) Initial coarse trian-
gulation.

(b) Structured refinement of
triangulation in 2a, degrees of
freedom (•).

(c) Composite basis function
(fulfills the Dirichlet boundary
condition in an approximative
way).

Figure 2. Structured overlapping triangulation of a two dimensional
domain with a rough boundary and composite finite element basis func-

tion.

linear finite element approximation uT ∈ V can be estimated by

(2) ‖u− uT ‖ . inf
v∈V
‖u− v‖H1(Ω) . hr|u|H1+r(Ω),

where h denotes the maximal meshwidth of T and r ∈ (1
2 , 1]. The crucial condition

for this estimate in case of NΩ large is the so called conformity condition V ⊂
H1

0 (Ω) since it demands T to be exact. No matter which accuracy one is interested
in, the dimension of V is always bounded from below by NΩ. The resulting linear
system might be too large to be solved efficiently. The situation can be even worse
in three space dimensions where mesh generation is still a bottle neck in many
cases. Overlapping triangulations T (cf. Figure 2a) allow the definition of low
dimensional approximation spaces, but the resulting approximation error will be
reflected truly by the sum

inf
v∈V
‖u− v‖H1(Ω) + sup

v∈V \{0}

‖v‖L2(∂Ω)

‖v‖H1(Ω)
.

While the infimum still can be estimated in terms of the maximal mesh width h,
the supremum has a negative effect (pollution) on the overall approximation. To
overcome this problem we define coarse finite element spaces (cf. [4]) that preserve
the a priori bound given in (2) without the crucial coupling between domain ge-
ometry and space dimension. This work bases on the concept of composite finite
elements introduced by Hackbusch and Sauter (cf. [2], [3]). Starting from a pos-
sibly coarse, overlapping triangulation (cf. Figure 2a) all triangles that intersect
the boundary are refined successively (cf. Figure 2b). Note, that the number of
refinement steps does not depend on the complicated geometry but only on the
meshwidth h of the initial grid. Additionally, the degrees of freedom are the same



1276 Oberwolfach Report 23/2008

as in the initial coarse triangulation. New nodes do not enlarge the space dimen-
sion, since they become slave nodes. Composite shape functions ucfe are defined
by mapping shape functions u according to the initial triangulation to the finite
element space with respect to the refined triangulation. The (linear) mapping is
explicitly given by the simple formula

(3) ucfe(x) =

{

u(x), x interior node
u(x)− u(x∂Ω), else,

where x∂Ω denotes an (approximative) projection of x to the boundary of Ω. A
typical basis function of the resulting space V cfe is depicted in Figure 2c. The
dimension of the composite space V cfe does not depend on NΩ. Apart from this
result, the composite finite element approximation fulfills an a priori error bound
which is optimal in the meshwidth parameter h (cf. [5]):

‖u− ucfe‖ . hr|u|H1+r(Ω).

The estimate remains true for Lipschitz domains in two as well as three space
dimensions (cf. [4] and [1]). Recently, the concept of composite finite elements
has further been extended to Stokes problem with mixed Dirichlet, Neumann, slip
and leak boundary conditions (cf. [4], [1]). It allows to compute Stokes flows with
reasonable accuracy with only a few degrees of freedom. In many cases (see for
instance Figure 1) their number can be chosen much smaller than the number of
geometric details (NΩ).
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Numerical methods for two-phase incompressible flows

Arnold Reusken

(joint work with Maxim Olshanskii)

Let Ω ⊂ R
3 be a polyhedral domain containing two different immiscible incom-

pressible phases. The time dependent subdomains containing the two phases are
denoted by Ω1(t) and Ω2(t) with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. We assume
that Ω1 and Ω2 are connected and ∂Ω1 ∩ ∂Ω = ∅ (i. e., Ω1 is completely contained
in Ω). The interface is denoted by Γ(t) = Ω̄1(t) ∩ Ω̄2(t). A typical example is a
rising air bubble or liquid droplet in a surrounding fluid. The standard model for
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describing incompressible two-phase flows consists of the Navier-Stokes equations
in the subdomains with the coupling condition

(1) [σn]Γ = τKn

at the interface, i. e., the surface tension balances the jump of the normal stress
at the interface. The surface tension coefficient τ is assumed to be constant. We
use the notation [v]Γ for the jump of v across Γ, n = nΓ is the unit normal at the
interface Γ (pointing from Ω1 into Ω2), K the curvature of Γ and σ the stress tensor
defined by σ = −pI + µD(u) with D(u) = ∇u + (∇u)T . Furthermore p = p(x, t)
denotes the pressure, u = u(x, t) the velocity and µ the viscosity. We assume
continuity of u across the interface. Based on the conservation laws for mass and
momentum the fluid dynamics is modeled by the Navier-Stokes equations in the
two subdomains combined with [u]Γ = 0 and the coupling condition in (1), cf.
for example [8, 11]. A level set method can be used for capturing the unknown
interface, cf. [7, 9, 10]. The level set function, denoted by φ = φ(x, t) is a scalar
function with φ(x, 0) < 0 for x ∈ Ω1(0), φ(x, 0) > 0 for x ∈ Ω2(0), φ(x, 0) = 0 for
x ∈ Γ(0). It is desirable to have the level set function at t = 0 as an approximate
signed distance function.

The evolution of the interface is given by the linear hyperbolic partial differential
equation φt + u · ∇φ = 0 for t ≥ 0 and x ∈ Ω.

The jumps in the coefficients ρ and µ can be described using the level set
function (which has its zero level set precisely at the interface Γ) in combination
with the Heaviside function H . We define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ),

µ(φ) := µ1 + (µ2 − µ1)H(φ).
(2)

The effect of the surface tension can be expressed in terms of a localized force at the
interface, cf. the so-called continuum surface force (CSF) model [2,7]. Combination
of the CSF approach with the level set method leads to the following model for
the two-phase problem in Ω× [0, T ]

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρ(φ)g + div(µ(φ)D(u)) + τKδΓnΓ(3)

div u = 0(4)

φt + u · ∇φ = 0(5)

together with suitable initial and boundary conditions for u and φ. This is the
continuous problem that we use to model our two-phase flow problem. It is also
used in, for example, [7, 11, 12].

We formulate this problem in an appropriate weak form and use finite element
techniques for discretization, cf. [3, 12]. We briefly address the weak formulation
of the localized surface tension force. The surface tension term in (3) results in
the functional

(6) fΓ(v) := τ

∫

Γ

KnΓ · v ds, v ∈ V := H1
0 (Ω)3.
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The approximation of this localized surface tension force is based on the following
Laplace-Beltrami characterization of the curvature. Let idΓ : Γ → R

3 be the
identity on Γ and K = κ1 + κ2 the sum of the principal curvatures. For all
sufficiently smooth vector functions v on Γ the following holds:

(7) fΓ(v) =

∫

Γ

KnΓ · v ds = −
∫

Γ

(∆Γ idΓ) · v ds =

∫

Γ

∇Γ idΓ ·∇Γv ds.

In [4] we introduced and analyzed the following discretization method for the
surface tension force. Define

ñh(x) :=
∇φh(x)

‖∇φh(x)‖ , P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh, x not on an edge.

Here Γh is a polyhedral approximation of Γ that is obtained as the zero level of
an isoP2 approximation of the piecewise quadratic approximate level set function
φh. The discrete surface tension force is given by

(8) fΓh
(vh) = τ

3
∑

i=1

∫

Γh

P̃h(x)ei · ∇Γh
(vh)i ds,

with ei the i-th basis vector in R
3 and (vh)i the i-th component of vh.

The implementation of this functional requires the numerical integration over
the triangulated surface Γh = ∪T∈Fh

T of functions that are smooth on the planar
segments T this triangulation.

In many two-phase flow systems surface active agents (surfactants) are present
as impurities or added to the bulk fluid. To describe the effect of such surfactants
a convection-diffusion equation at the interface is added to the fluid dynamics
model (3)-(5). Let the velocity field u be decomposed in a tangential and normal
component: u = uΓ + u⊥n. Let DΓ > 0 be a given diffusion coefficient of Γ. The
following type of transport equation for the surfactant concentration c = cΓ can
be found in the literature, cf. [1]:

(9) ∂t,nc−DΓ∆Γc+∇Γ · (cuΓ)−Ku⊥c = 0,

where ∂t,nc denotes the derivative of c along a purely normal path. In case of a
soluble surfactant a source term is added that describes the process of ad- and
desorption of the surfactant. The flow field u results from the fluid dynamics
model (3)-(5).

We present a new finite element approach for the discretization of elliptic partial
differential equations on surfaces, cf. [6]. The main idea is to use finite element
spaces that are induced by triangulations of an “outer” domain to discretize the
partial differential equation on the surface. The method is particularly suitable for
problems in which there is a coupling with a flow problem in an outer domain that
contains the surface, for example, two-phase incompressible flow problems. In [6]
it is proved that this method has optimal order of convergence both in the H1 and
in the L2-norm. Results of numerical experiments illustrate this optimality. The
coupling of this technique with the two-phase flow solver is discussed.
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Eulerian-Lagrangian Methods for Multiphase flows

Thomas Russell

Eulerian-Lagrangian methods (ELMs, also called ”semi-Lagrangian”, ”characteris-
tic Galerkin”, etc. ) have been very successful in modeling many types of problems,
including scalar convection-diffusion equations. It has not been clear how to extend
these schemes to complicated systems of convection-dominated PDEs, in which the
behavior of the dominant hyperbolic system could be problematic. This talk dis-
cusses a conceptual breakthrough in understanding how to make this extension
for models of multiphase flows in the subsurface, such as compositional petroleum
reservoir simulation or transport of groundwater, nonaqueous-phase phase liquid
(NAPL) contaminants, and volatile organic compounds (VOCs). Such methods
promise to improve the efficiency and accuracy of these simulations –reduced nu-
merical diffusion, reduced nonphysical oscillations, obtainable with coarser grids
and larger time steps than are possible with methods in current use. We first
present background that motivates an operator-splitting approach on the basis of
decomposing the system into weakly coupled subsystems, such that the couplings
can be neglected within a Newon iteration, while the couplings are restored when
the Newton residual is driven to zero. Lagrangian transport is relatively weakly
coupled to the other processes in the system. Then we summarize the history of
ELMs and present the Eulerian-Lagrangian localized adjoint method (ELLAM),
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which applies its Lagrangian tracking to the adjoint (dual) of the original (primal)
system. We show that, in contrast to the primal (wave-oriented) equation, the
dual equations are viewed naturally in terms of movement of masses, volumes, or
finite particles, and vecause these equations are linear, then characteristics do not
cross and are always well-defined. The physical picture of movement of multiple
fluids is directly reflected in the mathematical representation, thus also guiding
the design of the numerical scheme. We present a simple shock propagation and a
1-D Buckley-Leverett example to illustrate the concept, including the manner in
which both mass and volume can be properly conserved.

Finite Volume/DG Schemes Based on Constrained Minimization
Function Recovery

Panayot S. Vassilevski

abstract

In this talk we give an outline on the construction of finite volume/discontinuous
Galerkin (FV/DG) schemes for the equations of gas dynamics in Lagrangian coor-
dinates. The schemes utilize non–oscillatory smooth function recovery procedures.
The recovery procedures are formulated as total variation (TV) functional mini-
mization subject to constraints. The constraints have physical meaning, namely
non-negativity of the internal energy (or pressure). We touch upon the implemen-
tation of the schemes and present some preliminary test results. A main task in
the implementation is the solution of the nonlinear constrained minimization prob-
lems coupled with the multilevel local refinement involved in the non–oscillatory
smooth function recovery. More details are found in the preliminary report [3].

1. The equations of gas dynamics in Eulerian and Lagrangian
coordinates

1.1. The equation of gas dynamics in Eulerian coordinates. The Euler
equations for a compressible inviscid fluid (where the heat conduction is neglected)
can be written in the following conservative form (cf., e.g. [1]):

(1.1)

∂̺
∂t = − div(̺ v),

∂(̺ v)
∂t = −∇p−

d
∑

j=1

∂(̺vj v)
∂xj

,

∂(̺ E)
∂t = − div ((̺ E + p)v) .

Here, ̺ is the density of the fluid, v = (v1, . . . , vd) is the fluid velocity, p is the
pressure, e is the specific (per unit mass) internal energy, and E = e + 1

2 |v|2 is
the specific (per unit mass) total energy. The equations in (1.1) describe the laws
of conservation of mass, momentum, and total energy of the fluid. There is one
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more equation, referred to as equation of state (or E.O.S.) associated with (1.1)
that specifies the pressure p. In general it has the form

p = p(̺, e) = EOS(̺, e),

which in the case of polytropic ideal gas reads p = (γ−1) ̺e, for a constant γ > 1.

1.2. The equations of gas dynamics in Lagrangian coordinates and their
integral form. Here, we present the equations of gas dynamics in Lagrangian
coordinates in somewhat more general form than is traditionally used with the
purpose to be used in the derivation of higher order DG schemes. The derivation
is based on [1] (see [3]).

1.2.1. Lagrangian coordinates. Let v = v(x, t) be the velocity field of the fluid
flow. We consider the dynamical system dx

dt = v(x, t) with initial condition
x|t=0 = ξ. Consider the mapping ξ 7→ the solution x(ξ, t) of the initial value
problem. By definition, the pair (ξ, t) is called Lagrangian coordinates associated
with the velocity field v.

1.2.2. Integral form of the equations. For a given multi-index α = (αi)
d
i=1, denote

xα =
d
∏

i=1

xαi

i . For any given cell V = V (t), we have the following integral form of

the conservation of mass:

(1.2)
∂

∂t

∫

V (t)

xα ̺ d x = 0.

The integral form of the conservation of momentum equation reads

(1.3)
∂

∂t

∫

V (t)

xα ̺v d x = −
∫

V (t)

xα ∇p d x.

The energy conservation equation has the following integral form

(1.4)
∂

∂t

∫

V (t)

xα ̺ E dx = −
∫

V (t)

xα div (pv) dx.

The more general formulas (with α 6= 0) are the basis for deriving higher order
DG schemes. However, in what follows we let α = 0.

2. Smooth function recovery from averages

Given an initial set of primal cells V = V (0) ∈ TH , introduce time discretization
tn+1 = tn + ∆t and let Vn = V (tn), Vn+1 = V (tn+1). From (1.2), we obtain that
the mass m(Vn) =

∫

V (tn)

̺ d x = Const. Thus, approximating the density with
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piecewise constants, gives ̺n = m(V )
|Vn| where |Vn| =

∫

Vn

1 dx. Discretizing (1.3) as

m(V )

∆t







1

|Vn+1|

∫

Vn+1

v dx− 1

|Vn|

∫

Vn

v dx






= −

∫

Vn

∇p dx

shows that the cell-averages 1
|Vn+1|

∫

Vn+1

v dx are computable. Thus, we end up

with the following problem of function recovery that is central to our schemes.
Given the average values, we want to construct a smooth function vh (that has
the prescribed averages) to be used in the approximation of the conservation of
energy equation

1

∆t







∫

Vn+1

̺ e dx−
∫

Vn

̺ e dx






= −

∫

Vn+1

p div vh dx.

This (numerical differentiation) task (as well–known) is an ill-posed problem. To
resolve this issue, we choose to minimize the total variation (or TV) functional
(subject to the prescribed averages equality constraints) since this functional gives
non–oscillatory recovery. An illustration of a TV constrained minimization proce-
dure is shown in Figure 4: a discontinuous (piecewise constant) function is approx-
imated on a locally refined mesh by an H1–conforming finite element function.

In the recovery procedure, we need a second (finite element) mesh Th, a refine-
ment of the primal (FV or finite element) mesh TH . We note that the accuracy
of the overall scheme is determined by the primal mesh TH . The TV function
recovery reads: Find a finite element function vh with minimal total variation

JTV (vh) =

∫

Ω

|∇vh| dx 7→ min,

with prescribed integral moments for all V = Vn+1 ∈ TH

∫

V

̺ vh dx.

In addition to the above (equality) constraints, we impose inequality constraints
that represent the non-negativity of the internal energy. To this end, consider the
conservation of energy equation (for T ∈ Th):

∫

Tn+1

̺n+1En+1 dx =

∫

Tn

̺nEn dxn −∆t

∫

∂Tn+1

phvh · n dσ.

Since

E = e+
1

2
|v|2,
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and from physical consideration (nonnegative internal energy), we have

0 ≤







∫

Tn+1

̺e dx =







∫

Tn

̺nEn dxn −∆t

∫

∂Tn+1

phvh · n dσ − 1

2

∫

Tn+1

̺n+1 |vh|2 dx.

This is a quadratic inequality constraint for vh = vn+1 imposed on any T =
Tn+1 ∈ Th for given ̺n+1 and ph.

A similar somewhat simpler problem can be formulated for ph. Note that the
quadratic inequality constraint for vh implies (using the E.O.S.) nonnegativity of

the average pressure p ≡ γ−1
|Vn+1|

∫

Vn+1

̺e dx ≥ 0.

3. Implementation of the function recovery based FV schemes

In this section, we summarize in an algorithm form (presented for the lowest
order case α = 0) the main steps needed to implement our FV/DG schemes.

We have a primal (moving) mesh TH . In the recovery procedures, we need
a dynamically constructed mesh Th that is a refinement of TH . With Th we
associate a finite element space Sh that is H1-conforming. Its vector version will
be denoted Sh = (Sh)d. A typical choice is Sh piecewise linear.

Algorithm 3.1 (Conservative FV Scheme).
Let {xn} be the set of vertices of the primal cells in TH at time tn. The algorithm

below computes xh, vh ∈ Sh and ph ∈ Sh by iterations. It also computes the
average values v and p over the moving primal cells.

• To move the mesh, find a finite element function xh ∈ Sh such that

‖xh − (xn + ∆t vn)‖20 + ǫ

∫

Ωn

|∇xh| 7→ min .

Then, xn+1 equals xh restricted to the vertices of TH (at t = tn) and
defines the vertices of the moved TH at time t = tn+1. Thus, we can
compute the volumes |V | for any cell V = Vn+1 ∈ TH . Hence,

̺n+1 =
m(V )

|Vn+1|
, vn+1 =

1

m(V )







∫

Vn

̺nvn dxn −∆t

∫

Vn+1

∇ph dxn+1






.

• Solve the constrained energy minimization problems for vh ∈ Sh and
ph ∈ Sh:

JROF (vh) = ‖vh − vn+1‖20, ̺n+1
+ ǫ

∫

Ωn+1

|∇vh| dxn+1 7→ min,

JROF (ph) = ‖ph − pn+1‖20 + ǫ

∫

Ωn+1

|∇ph| dxn+1 7→ min,
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subject to the quadratic inequality constraints for any T = Tn+1 ∈ Th

−1

2

∫

Tn+1

̺n+1 |vh|2 dx−∆t

∫

∂Tn+1

phvh · n dσ +

∫

Tn

̺En dxn ≥ 0.

We note that we have incorporated the equality constraints into the TV func-
tional imposed (approximately) as a penalty. The resulting, Rudin-Osher-Fatemi
(or ROF) functional ( [2]), is very popular in noise removal algorithms.

Figure 1. Recovered pressure at time t = 0.2005 and t = 0.8005.

Figure 2. Recovered pressure at time t = 1.0005 and t = 1.1005.

Figure 3. Moved mesh at time t = 0.4005 and t = 0.8005.
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The above algorithm contains several inner–outer loops. They can be arranged
in a number of ways. For example, starting with some initial approximation for ph

(one possibility is to use an explicit time stepping approximation), we compute the
average values vn+1 and then solve (approximately) the constrained minimization
problem for vh. Once we have vh and ph, we can compute the moments

1

|Vn+1|

Z

Vn+1

̺e dx =
1

|Vn+1|

2

6

6

4

Z

Vn

̺nEn dxn − ∆t

Z

∂Vn+1

phvh · n dσ −
1

2

Z

Vn+1

̺n+1 |vh|
2

dx

3

7

7

5

.

From the E.O.S. we can then compute the averages pn+1 = 1
|Vn+1|

∫

Vn+1

ph dx

and solve the ROF–minimization problem for a new pressure approximation ph.
The process can be repeated several times. At every step, we refine the mesh
Th gradually to capture the possible large gradients of ph (and vh). The ROF–
minimization problems are linearized using simple Picard approximation coupled
with the local mesh refinement of Th, then the quadratic constrained minimization
problems are approximately solved by 1D monotone Gauss–Seidel iterations.

4. Numerical illustration

We consider a model test problem posed on the unit square domain Ω. We set at
the initial time t = 0, v = 0 and ρ = 1. Also, the pressure p is zero outside a single
volume (square) V ∈ TH and p equals to a constant on V such that

∫

Ω

ρE dx = 1.

We keep v · n = 0 on ∂Ω for t ≥ 0 so that the domain Ω stays fixed.

Figure 4. TV recovered pressure at time t = 0.0005.

In the figures we show how the shock wave travels from the bottom left corner
of Ω, reaches the opposite one and starts coming back. Although the results
are only preliminary and not as accurate, the potential of the schemes is clearly
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seen. We expect much better results when the higher order moments (α 6= 0) are
incorporated combined with higher order time discretization.

Acknowledgment. This work was performed under the auspices of the U.S. Depart-
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Domain decomposition theory when subdomains are irregular

Olof Widlund

(joint work with Clark R. Dohrmann, Axel Klawonn, Oliver Rheinbach)

In the theory for domain decomposition methods, we have previously often as-
sumed that each subdomain is the union of a small set of coarse shape-regular
triangles or tetrahedra. In this study, we discuss recent progress which makes
it possible to analyze cases with irregular subdomains such as those provided by
mesh partioners.

Our goal is to extend our analytic tools to problems on subdomains that might
not even be Lipschitz and to characterize the rates of convergence of our methods
in terms of a few, easy to understand, geometric parameters of the subregions.
For two dimensions, we have already obtained some best possible results for scalar
elliptic and linear elasticity problems: the subdomains should be John or Jones
domains and the rate of convergence is determined using the parameters that
define such domains and tha of an isoparametric inequality. Progress and three
dimensions will also be reported.

New results have also recently been obtained concerning variants of classical
two level additive Schwarz preconditioners. Our family of overlapping Schwarz
methods borrows and extends coarse spaces from older iterative substructuring
methods, i.e. methods based on non-overlapping sudbomains. The local compo-
nents of these preconditioners, on the other hand, are based on Dirichlet problems
defined on a set of overlapping subdomains which cover the original domain.

Our methods are robust even in the presence of large changes, between sub-
domains, of the materials being modeled in the finite element models. An extra
attraction is that our methods can be applied directly to problems where the
stiffness matrix is available only in its fully assembled form.

We will also discuss several applications of the new tools. They include new
results on almost incompressible elasticity and mixed finite elements using spaces of
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discontinuous pressures. We will also touch on recent work on Maxwell’s equations
in two dimensions.

Our work has been carried out in close collaboration with Clark R. Dohrmann
of the Sandia National Laboratories, Albuquerque, NM, and Axel Klawonn and
Oliver Rheinbach of the University of Duisburg-Essen, Germany.

SQP methods for plastictiy

Christian Wieners

The radial return together with a consistent linearization is the standard so-
lution procedure for incremental plasticity. Although this class of algorithm is
very general (with variants for a broad variety of plasticity models) and in most
cases also efficient and reliable, the convergence analysis is restricted to simple
situations. In particular, the standard approach can be reformulated as a semi-
smooth Newton method, and—since the radial return is Lipschitz and strongly
semi-smooth—we obtain locally quadratic but globally mesh-dependent conver-
gence.

This can be improved by the application of well understood methods in math-
ematical programming. Algorithms in mathematical programming have a long
tradition in computational plasticity, in particular for the solution of local opti-
mization problem for the internal variables. In the last years algorithms of numer-
ical optimization where transferred to the full variational problem of incremental
plasticity: semi-smooth Newton methods for a simultaneous approximation of dis-
placement and plastic strain, interior-point algorithms and SQP methods.

In particular SQP methods appear to have a structural advantage: the SQP it-
erates for the stresses are a minimizing sequence for the dual minimization problem
in incremental plasticity, whereas the iterates for the displacements of the radial
return method minimize a suitable primal functional. Since the dual problem for
the stress is uniformly convex (which is not the case for the primal displacement
problem), we expect (and indeed observe in examples) at least asymptotically bet-
ter convergence for the SQP method. Nevertheless, in the application to perfect
plasticity the solution of the quadratic problem in the single SQP step remains
difficult and no uniform bounds are available.

In this contribution we present the SQP method for perfect plasticity and for a
plasticity model with hardening. Hardening adds some regularity to the quadratic
problem in the single SQP step, so that we now can prove global convergence for the
semi-smooth Newton method which is used to solve this quadratic minimization
problem with linearized constraints.

The new algorithm can be realized by a linearization of the flow rule which
then leads to a sequence of linear variational problems with linear inequality con-
straints. So, the subproblem itself can be realized with a simplified radial return
algorithm. This fits perfectly into our framework of parallel finite elements, so that
large scale simulations are possible. In addition, this solution method transfers to



1288 Oberwolfach Report 23/2008

more advanced models such as elasto-plastic non-polar models (with appended
infinitesimal Cosserat rotations) and to nonlocal plasticity.
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Automated Transformations of PDE Systems

Irad Yavneh, Shmuel Onn, Yossi Gil, Zvika Gutterman

We study an approach for transforming systems of partial differential equations
(PDE) in order to obtain new formulations, especially decoupled ones that are
more accessible to numerical solution. An algorithm is developed for generat-
ing such transformations automatically, using symbolic manipulations employing
Groebner bases. The algorithm is implemented using freely available symbolic soft-
ware. This approach, along with planned developments, will potentially provide a
powerful set of tools for handling large systems of partial differential equations.

Sparse Grids and the exponential representation of functions

Harry Yserentant

Methods that are suitable to approximate high-dimensional functions need to have
properties that largely contradict each other. They should first be able to take ad-
vantage of smoothness properties like the existence of high-order mixed derivatives
and of symmetry properties as they are common in theoretical physics and chem-
istry. Secondly, they should reproduce products of lower dimensional functions
as products of same type. These goals can hardly be reached with methods that
are based on linear ansatz spaces. In the talk a construction has been presented
that satisfies all these conditions and does basically not suffer from the curse of
dimensionality. It is based on the representation of functions in terms of certain
excitation operators. These operators form a commutative Banach algebra and
can be represented in exponential form.



Schnelle Löser für partielle Differentialgleichungen 1289

Cache oblivious Memory Management for PDE-solvers

Christoph Zenger

(joint work with Michael Bader and Miriam Mehl)

In modern Computer architectures, the gap between the relatively high speed
of arithmetic processor units and the relatively low speed of access to memory
reduces the efficiency of programs for numerical simulations in an intolerable way,
and this situation shall even deteriorate in the future. This is observed especially,
if the access to memory addresses jumps in an irregular way, because in this case
the cache hierarchy designed to reduce the significance of the problem cannot
work properly. In computer science, algorithms working on stacks or tapes play
an important role, and, because the access to stacks or tapes stays always local,
the problem of memory non-locality is also substantially reduced. We demonstrate
that this technique can also be used successfully in scientific computing algorithms.
In an introductory example, we analyse an algorithm for matrix multiplication,
where the matrices are stored on tapes with a special ordering based on Peano
space filling curves. In this algorithm, access to memory moves only from one
location to a direct neighbour. Jumps do not occur, which results in a very efficient
program execution on modern processor architectures. [BZ,HB]

As a more sophisticated example, we present a computational kernel for an
adaptive multilevel solver for elliptic PDEs based on hierarchically refined space
tree grids. It can be shown that essentially all data, which grows linearly with the
number of unknowns, can be stored on 8 stacks during the execution of the program
for a three-dimensional space tree. Thus, access to memory stays strictly local.
Among other advantages of the program structure, a dramatic reduction of cache
misses is observed in comparison to standard implementations. [GMPZ, MWZ]
This advantage would be even more visible, if modern operating systems would
support stacks and tapes as basic data structures as they do, for example, for
pipes. Moreover, memory modules used for stacks or tapes would not require
address calculations, which shows further potential for acceleration by a specialized
memory architecture.
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Universitätsstr. 150
44801 Bochum

Prof. Dr. Wolfgang Dahmen

Institut für Geometrie und
Praktische Mathematik
RWTH Aachen
Templergraben 55
52056 Aachen

Dr. Robert D. Falgout

Center of Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O.Box 808, L-561
Livermore, CA 94551
USA

Dr. Peter Frolkovic

Department of Mathematics
Faculty of Civil Engineering
Slovak University of Technology
Radlinskeho 11
81368 Bratislava
SLOVAKIA

Dr. Alfio Grillo

IWR Technische Simulation
Universität Heidelberg
Im Neuenheimer Feld 368
69120 Heidelberg

Univ.-Prof. Dr. Gundolf Haase

Institut für Mathematik und
wissenschaftliches Rechnen
Karl-Franzens-Universität Graz
Heinrichstr. 36
A-8010 Graz

Prof. Dr. Wolfgang Hackbusch

Max-Planck-Institut für Mathematik
in den Naturwissenschaften
Inselstr. 22 - 26
04103 Leipzig

Prof. Dr. Pieter W. Hemker

Centrum voor Wiskunde en
Informatica
Kruislaan 413
NL-1098 SJ Amsterdam

Prof. Dr. Ralf Hiptmair

Seminar für Angewandte Mathematik
ETH-Zentrum
Rämistr. 101
CH-8092 Zürich
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