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Introduction by the Organisers

The workshop Invariants in low-dimensional topology, organised by Louis H. Kauff-
man (Chicago), Simon A. King (Jena), Vassily O. Manturov (Moscow) and Jozef
Przytycki (Washington) was held May 4th–May 10th, 2008. This meeting was
attended by 46 participants, including various researchers with recent PhD, one
PhD student and one graduate student.

The main objective of this workshop was to look intensively at the present state
of the art of invariants in low dimensional topolgy, particularly invariants of knots
and three dimensional manifolds. This field is rapidly growing with a remarkable
influx of new ideas and techniques. This activity was originally inspired in the
1980’s by the discovery of the Jones polynomial. Vaughan Jones formulated his
invariant in terms of braids and von Neumann algebras and also gave a formula for
it via a skein relation (a relation among knot and link diagrams) that was a clear
generalization of the Conway skein relation for the classical Alexander polynomial.
This led at once to the discovery by many people of a generalization called the
Homflypt polynomial, and then sometime later another skein theoretic generali-
zation — the Kauffman polynomial — and to a general skein theory for knots in
three-manifolds (skein modules and skein algebras) due to Jozef Przytycki. The
Jones polynomial is related to statistical mechanics. A key notion from statistical



1158 Oberwolfach Report 22/2008

mechanics that was imported here was the idea to write an invariant in analogy
to a partition function. This means that the invariant is expressed as a sum over
combinatorial states related either to a link diagram or a triangulation of a three-
manifold. The first example of this is the state sum for the Jones polynomial called
Kauffman bracket. The state sums generalize to sums involving solutions to the
Yang-Baxter Equation (originally used in statistical mechanics) and this in turn
led to constructions of invariants from quantum groups and Hopf algebras.

Then in the latter part of the 1980’s ideas from quantum field theory (and the
work of Witten) crystallized in the notion of Topological Quantum Field Theories
(due to Witten and Atiyah) and corresponding invariants of knots and three-
manifolds. At about the same time Vassiliev and Goussarov introduced new ideas
about the space of knots and associated invariants that were quickly reformu-
lated through the work of Birman, Lin, Kontsevich and Bar-Natan yielding deep
relationships with Lie algebras and new ways to understand the previous construc-
tions involving quantum groups. In 1996 Kauffman introduced a generalization
of knot theory called virtual knot theory, which is given diagrammatically, and is
equivalent to a stabilized theory of knots in thickened surfaces.

At the same time there was an evolution in the concept of the fundamental
group of the knot complement with Joyce’s introduction of the quandle in 1979
and Matveev’s independent discovery of this structure (distributive groupoids).
After 2000 Fenn, Kauffman, Manturov and others generalized the quandle to a
stronger invariant called the biquandle which is very important for virtual knots.

In 1998 Khovanov introduced a categorification of the Jones polynomial. This
means that he constructed a homology theory based on link diagrams whose graded
Euler characteristic equals the original Jones polynomial. This led eventually to
an explosion of significant results and new constructions. Khovanov and Rozansky
found ways to categorify the Homflypt polynomial, and at this conference Rozan-
sky announced the categorification of the Kauffman 2-variable polynomial. After
Khovanov’s original discovery, a categorification of the Alexander polynonmial
(Knot Floer Homology) was found by Ozsvath and Szabo (2002) and eventually
made purely combinatorial by Manolescu, Ozsvath and Sarkar. This categorifica-
tion of the Alexander polynomial has led one of the most startling results in knot
theory: The minimal genus of an orientable spanning surface for a knot, can be
calculated from the Knot Floer homology, and this is a finite combinatorial matter
in terms of a diagram for the knot.

This conference collected many active researchers in this field with talks on all
of the topics mentioned above. We shall now mention the main themes of the
workshop and the participants who were influential or gave talks on these themes:

• TQFT and skein theory Marta Asaeda, Christian Blanchet, Charles
Frohman, Patrick Gilmer, Uwe Kaiser, Joanna Kania-Bartoszyńska,
Thomas Kerler, Gregor Masbaum, Michael Müger, Jozef Przytycki and
Adam Sikora.
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• Knots, braids, and geometric topology Simon King, Elena Kudryavt-
seva, Sofia Lambropoulou, Sóstenes Lins, Sergei Matveev, Cameron McA.
Gordon, Wolfgang Metzler, Hugh Morton, Carlo Petronio, Michael Polyak,
Nikolai Saveliev, Radmila Sazdanovic, Pawel Traczyk, Vladimir Vershinin
and Oleg Viro.
• Categorified invariants and link homology Marta Asaeda, Dror Bar-

Natan, Anna Beliakova, Christian Blanchet, Mikhael Chmutov, Karl-Mag-
nus Jacobsson, Vassily Manturov, Jozef Przytycki, Yongwu Rong, Lev
Rozansky, Radmila Sazdanovic and Alexander Shumakovitch.
• Quandles, Biquandles and Algebraic Categorification Dror Bar-

Natan, Scott Carter, Alissa Crans, Roger Fenn, Sergei Matveev, Maciej
Niebrzydowski, Jozef Przytycki and Masahico Saito.
• Virtual and Welded Knots Dror Bar-Natan, Heather Dye, Roger Fenn,

Louis Kauffman and Lev Rozansky.
• State Sums Sergei Chmutov, Heather Dye, Louis Kauffman, Simon King,

Sostenes Lins, Sergei Matveev and Maciej Mroczkowski.
• Hopf and Frobenius Algebras and three-manifold invariants Uwe

Kaiser, Louis Kauffman, Thomas Kerler, Michael Müger and David Rad-
ford.
• Vassiliev Invariants Dror Bar-Natan, Sergei Chmutov, Sergei Duzhin

and Michael Polyak.

In our opinion, many of the results in the conference were new and significant.
Having the conference at the Mathematisches Forschungsinstitute enabled the par-
ticipants not only to listen to new results but also to the opportunity to converse
and do mathematics together.
The conference was dedicated to the 60th birthday of Oleg Yannovich Viro.
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Abstracts

Projectivization, Welded Knots and Alekseev-Torossian

Dror Bar-Natan

Summary

My talk had two parts:

• In the first part I described the (tentative and speculative) “Projectiviza-
tion Paradigm”, which says, roughly speaking, that everything graded
and interesting is the associated graded of something plain (“ungraded”,
“global”) and even more interesting. The paradigm is absolutely general,
encompassing practically every algebraic structure that might exist, and
there is a diverse base of interesting examples and candidates for future
examples.
• In the second part I described my latest example of an instance of the

Projectivization Paradigm: I showed that the projectivization of “the cir-
cuit algebra of welded tangles” describes a good part (and maybe, in the
future, all) of the recent work by Alekseev and Torossian on Drinfel’d as-
sociators and the Kashiwara-Vergne conjecture. This is cool: it leads to
a nice conceptual construction of tree-level associators which might even
be brought to a closed form, and it seems like a step towards a better
understanding of quantum universal enveloping algebras and the work of
Etingof and Kazhdan.

The work is very new. I’m quite confident of the overall picture but the details
are subject to change.

To a very large extent my talk followed the two-page handout which is available
at http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-0805/

1. The Projectivization Speculative Paradigm

I started by reminding the conference about the “Categorification Speculative
Paradigm”, which says, in very rough terms, that all of mathematics, or at least
all of integer-coefficient mathematics, is the “Euler shadow” of vector-space, ho-
mological, mathematics. This, of course, is merely a speculative paradigm. One
cannot expect it to be literally true, yet it is an excellent guiding principle for
research. A lot of interesting mathematics arises as one tries to explore the extent
to which this speculative paradigm holds true.

In a similar manner I proposed the “Projectivization Tentative1 Speculative
Paradigm”, which says, in very rough terms, that all of graded mathematics is
the projectivization of “plain”, “ungraded” or “global” mathematics: all graded

1“Tentative” because I’m not even sure if the name “projectivization” (meant to be catchy
and convey a “graded” feeling) is appropriate.

http://www.math.toronto.edu/~drorbn/Talks/Oberwolfach-0805/
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algebraic structures are the projectivizations of global ones, and all graded equa-
tions are the equations for “homomorphic expansions”, or for “automorphisms” of
homomorphic expansions.

I then proceeded to explain most of the terms appearing in the above paragraph.
For a start, I gave a few examples of “graded equations” (these are the entities
the projectivization paradigm is supposed to explain):

• The exponential equation e(x+ y) = e(x)e(y) [BN4].
• The pentagon and hexagon equations for Drinfel’d associators [Dr2, Dr3,

BN1, BN2].
• The equations defining a quantized universal enveloping algebra in the

sense of Drinfel’d [Dr1] and Etingof-Kazhdan [EK]. For the long term,
these are the equations I care about the most, and my dream is to even-
tually incorporate them to within the projectivization paradigm.
• The equations appearing in the Alekseev-Torossian work [AT] on Drinfel’d

associators and the Kashiwara-Vergne Conjecture [KV]. These equations
are the main concern of the second part of this talk. One wonderful fea-
ture of these equations is that (in suitable quotients) they have explicit
solutions, that will likely lead to explicit formulas for tree-level associators.

I then moved on to explain what is “the projectivization of an algebraic struc-
ture”. For this purpose, an “algebraic structure” O is practically anything that
is made of “spaces” and “operations”. Allowing for formal linear combinations
and extending all operations in a multi-linear manner, we can always define an
“augmentation ideal” I along with its powers In, and then we can set

projO :=
⊕

n≥0

In/In+1.

One can see that projO is endowed with the same operations as O, though they
need not satisfy the same “axioms” that the operations of O may satisfy. We
noted that if O is an appropriate space of knotted objects, then projO is the
corresponding space of “chord diagrams”.

Some warm up examples followed. We noted that the projectivization of a
group is a graded associative algebra, and that the projectivization of a quandle
is a graded Lie algebra.

I then moved on to discuss the central notion in the statement of the projec-
tivization paradigm — the notion of an “expansion” [Li], and more importantly,
of a “homomorphic expansion” — a “homomorphism” Z : O → projO which
“covers” the identity map on projO. When O is “finitely presented”, finding an
expansion involves finding values for Z(gi) (where the gi’s are the generators of
O), where these values must satisfy the equations corresponding to the “defin-
ing relations” of O. Hence as promised2 in the statement of the projectivization
paradigm, finding a homomorphic expansion is a matter of solving equations in a
graded space, projO.

2The other source of graded equations, “automorphisms of homomorphic expansions”, was
not discussed in my talk.
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A pretty example involves “knotted trivalent graphs” [BN3]. Here the relevant
algebraic structure O = KTG has a “space” for each trivalent graph — the space of
“knottings” of that graph, and the operations are “delete”, “unzip” and “connected
sum”. With these operations KTG is finitely generated, with the most interesting
generator being the unknotted tetrahedron T . The interesting relations that T
satisfies turn out to be (after appropriate language changes) the pentagon and
the hexagons, and therefore it turns out that the equations for a “homomorphic
expansion” for KTG are equivalent3 to the equations for an associator.

I then explained how homomorphic expansions may be used — they convert
certain kinds of “global” problems into problems that can be addressed “degree
by degree”. In the case of knotted trivalent graphs we arrive at what one may
call “Algebraic Knot Theory” [BN3]. Certain knot theoretic properties, such as
the knot genus and the property of being a ribbon, are “definable” using “delete”,
“unzip” and “connected sum”, and hence they are in principle susceptible to study
using homomorphic expansions.

2. Welded Knots and Alekseev-Torossian

Due to time constraints, the second half of my talk had to be sketchy. Fol-
lowing a talk Lou Kauffman gave in 2001, I recalled virtual knots [Ka], welded
knots [FRR], and the relationship between welded knots and tori in R4 [Sa].

Welded knots form a “circuit algebra”, and as a circuit algebra, their projec-
tivization turns out to contain all the spaces (most notably tdern, sdern and trn)
considered by Alekseev and Torossian [AT]. As a circuit algebra, the related space
of “welded trivalent graphs” is generated by the “Y-vertex” and by crossings. Call-
ing the images of these generators via a homomorphic expansion F and R, we find
that F and R need to satisfy some equations — precisely the equations studied
by Alekseev and Torossian. Finally, as welded trivalent graphs contain a quotient
of knotted trivalent graphs, the Alekseev-Torossian theory contains a quotient of
the Drinfel’d theory, which turns out to be the theory of tree-level associators.

3. Propaganda

Visit!

Edit!
http://katlas.org

Leopold Kronecker (paraphrased)

"God created the knots,

all else in topology is the work of mortals"

References
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3Well, at least if one ignores the fine print. The precise statement is a bit longer but follows
the same spirit.



1166 Oberwolfach Report 22/2008

[BN1] D. Bar-Natan, Non-Associative Tangles, in Geometric topology (proceedings of the Geor-
gia international topology conference), (W. H. Kazez, ed.), 139–183, Amer. Math. Soc.
and International Press, Providence, 1997.

[BN2] D. Bar-Natan, On Associators and the Grothendieck-Teichmuller Group I, Selecta
Mathematica, New Series 4 (1998), 183–212.

[BN3] D. Bar-Natan, Algebraic Knot Theory — A Call for Action, web document (2006),
http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html .

[BN4] D. Bar-Natan, The Existence of the Exponential Function, web document (2007),
http://www.math.toronto.edu/~drorbn/papers/Exponential.html .

[Dr1] V. G. Drinfel’d, Quantum Groups, in Proceedings of the International Congress of Math-
ematicians, 798–820, Berkeley, 1986.

[Dr2] V. G. Drinfel’d, Quasi-Hopf Algebras, Leningrad Math. J. 1 (1990), 1419–1457.
[Dr3] V. G. Drinfel’d, On Quasitriangular Quasi-Hopf Algebras and a Group Closely Connected

with Gal(Q̄/Q), Leningrad Math. J. 2 (1991), 829–860.
[EK] P. Etingof and D. Kazhdan, Quantization of Lie Bialgebras, I, Selecta Mathematica, New

Series 2 (1996), 1–41, arXiv:q-alg/9506005.
[FRR] R. Fenn, R. Rimanyi and C. Rourke, The braid-permutation group, Topology 36 (1997),

123–135.
[KV] M. Kashiwara and M. Vergne, The Campbell-Hausdorff Formula and Invariant Hyper-

functions, Invent. Math. 47 (1978), 249–272.
[Ka] L. H. Kauffman, Virtual Knot Theory, European J. Comb. 20 (1999), 663–690,

arXiv:math.GT/9811028.
[Li] X-S. Lin, Power series expansions and invariants of links, in Geometric topology (pro-

ceedings of the Georgia international topology conference), (W. H. Kazez, ed.), 184–202,
Amer. Math. Soc. and International Press, Providence, 1997.

[Sa] S. Satoh, Virtual Knot Presentations of Ribbon Torus Knots, J. of Knot Theory and its
Ramifications 9-4 (2000) 531–542.

A simplification of combinatorial link Floer homology

Anna Beliakova

Heegaard Floer homology provides a new powerful invariant of knots discovered in-
dependently by Ozsváth–Szabo and Rasmussen. This invariant, called knot Floer
homology, detects the knot genus and its fiberedness. Knot Floer homology as-
signs to a knot a chain complex, whose graded Euler characteristic is the Alexander
polynomial and whose homology is a new knot invariant. This procedure is known
as categorification.

The quantum sl(2) link invariant – the Jones polynomial – was categorified in
1998 by Khovanov [6]. In [7], Khovanov and Rozansky categorified the quantum
sl(N) link invariant. The last two constructions are purely algebraic.

In 2004, Rasmussen [10] gave a combinatorial proof of the Milnor conjecture,
which was previously accessible only via gauge theory. In his proof, Rasmussen
uses a new invariant, now known as Rasmussen invariant, extracted from the
Khovanov homology.

In 2006 Manolescu, Ozsváth, Szabó and D. Thurston (MOST) provided a com-
binatorial construction of link invariants arising from Heegaard Floer homology
[9]. The MOST construction uses rectangular link diagrams, where counting of

http://www.math.toronto.edu/~drorbn/LOP.html#NAT
http://www.math.toronto.edu/~drorbn/LOP.html#Associators
http://www.math.toronto.edu/~drorbn/papers/AKT-CFA.html
http://www.math.toronto.edu/~drorbn/papers/Exponential.html
http://msp.warwick.ac.uk/~cpr/
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holomorphic discs reduces to applying the Riemann mapping theorem. Unfor-
tunately, the MOST complex is quite big. Already in the simplest case of the
trefoil, it has 120 generators, while the knot Floer homology has rank 3. Existing
programs realizing MOST algorithm allows to compute knot Floer homology over
Z/2Z for knots up to 12 crossings.

In Heegaard Floer theory, the differential is given by counting holomorphic
discs (or domains), alternatively bounded by two Lagrangian submanifolds. The
main difficulty is to decide which domains count and which do not. In the MOST
complex, all domains are of the same simple form (rectangles), and therefore all
of them count. The price for that is that the complex is very big.

In my talk, I explained how the MOST complex can be simplified [1]. For this,
by using a well known lemma from homological algebra I construct a recursive
algorithm, which decides the countability for any domain. In my setting, a choice
of the complex structure is replaced by an additional combinatorial choice (the
order in which ovals are shortened). As a byproduct, I defined a big class of
domains which always count (independently of the order).

My chain complex is homotopy equivalent to the MOST complex, but it turns
out to be simpler. For all knots with less than 6 crossings, my complex has the same
rank as its homology. My student Jean–Marie Droz extended my construction
over Z [5] and wrote a program computing the homology of this complex [4]. His
program allows to compute knot Floer homology over Z for knots with 16 crossings
and detect fiberedness and Seifert genus for knots up to 18 crossings. Moreover,
Droz checked that for knots with up to 12 crossings, knot Floer homology is torsion
free.

There exist homological constructions for the Jones and HOMFLY polynomials,
which count graded intersection points between two submanifolds of a configura-
tion space of points in a punctured disc (compare [2], [3]). A categorification
of these constructions will clarify the relationship between Seidel–Smith [11] and
Khovanov homologies, as well as between Manolescu [8] and Khovanov–Rozansky
ones. My next goal is to provide combinatorial approaches to Seidel–Smith and
Manolescu Lagrangian Floer homologies. By applying methods developed in [1],
we were able to construct a differential between Bigelow generators. The complex
with this differential is conjectured to be homotopy equivalent to the Seidel–Smith
and Khovanov complexes.
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Link homology and trivalent TQFT

Christian Blanchet

1. Introduction

Our purpose is to consider sl(n) link homology in relation with trivalent TQFT.
Here a trivalent TQFT is a TQFT functor on the cobordism category whose objects
are colored trivalent graphs, and whose morphisms are represented by colored
trivalent surfaces or more generally by so called foams. A trivalent surface has a
1-dimensional singular locus (a binding) which is modeled on a colored Y times an
interval; a foam may contain singular points whose link is a colored tetrahedron.
We first revisit sl(2) link homology and present a slight variant which is defined
over the integers and is strictly functorial.

2. sl(2) functorial link homology revisited

A state s of a link diagram D associates to a positive (resp. negative) crossing
either 0 or 1 (resp. −1 or 0). Ds is a planar trivalent graph defined by the rule
below. Here in a trivalent graph edges are labeled by either 1 or 2; a 2-labeled
edge is depicted by a thick edge.

if s(c) = 0, then c is replaced by

if |s(c)| = 1, then c is replaced by

Let ds =
∑
s(c), and let ∆s be the free abelian group generated by crossings c

with |s(c)| = 1. Suppose that we have a functor:

trivalent graph G 7→ module V (G) .

cobordism Σ 7→ linear map V (Σ) .
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Σ : Σ′ :

Figure 1.

(Here Σ is a trivalent surface or more generally a foam). Then we define a complex
whose underlying abelian group is

(1) K(D) =
⊕

s

V (Ds)⊗ ∧ds∆s

The cohomological degre is ds; if the functor V is graded then the complex is
bigraded. The boundary operator δ between summands indexed by states s and s′

is zero unless s and s′ are different only in one crossing c where s′(c) = s(c)+1. It
is then defined using the TQFT map associated with the cobordisms Σ, Σ′ which
are identity outside a neighbourhood of the crossing, and are depicted in figure 1
around the crossing c. For a positive crossing c:

δ = V (Σ)⊗ (• ∧ c) : V (Ds)⊗ ∧ds∆s → V (Ds′)⊗ ∧ds′ ∆s′

For a negative crossing c,

δ = V (Σ′)⊗ < •, c >: V (Ds′)⊗ ∧ds′ ∆s′ → V (Ds)⊗ ∧ds∆s

A TQFT functor for trivalent surfaces can be obtained from the Frobenius alge-
bras A = H∗(CP 1) ≈ Z[X ]/X2, and B = Z with non standard trace ǫB(1) = −1.
We obtain this way a categorification of the Jones polynomial. Following Lee-
Rasmussen construction [Lee, Ras] we can start with the deformed Frobenius
algebra A′ = Z[X ]/X2 − 1 and obtain a filtrated complex and a corresponding
spectral sequence which can be used to prove strict functoriality of the categorifi-
cation.

3. sl(n) link homology via TQFT and foams

The categorification of the sl(n) specialisation of Homflypt polynomial was first
obtained by Khovanov-Rozansky [KR] using matrix factorisations. We obtain a
categorification over integers using the trivalent cobordism category. A similar ap-
proach using Kapustin-Li formula was carried over by Mackaay-Stosic-Vaz [MSV].
Our TQFT construction uses cohomology of partial flag manifolds as Frobenius
algebras, may be with some non standard signs in the definition of traces. Co-
homology of grassmanian are associated resto colored faces; cohomology of flags
of length 2 are associated to bindings, and cohomology of flags of length 3 are



1170 Oberwolfach Report 22/2008

associated to vertices. In this situation we have a whole bunch of structural maps
which can be used for evaluating closed foams. The TQFT functor is then ob-
tained by a universal construction [BHMV]. It is shown to satisfy the required
properties needed for Reidemeister moves invariance.
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Diagrammatic Cohomology and Knot Invariants

J. Scott Carter

A quandle is a set with a self-distributive binary operation for which all elements
are idempotent and for which right multiplication is a bijection. In [12] a cohomo-
logy theory for (the slightly weaker structure of) a rack [11] was defined. This was
modified in [9] to take into consideration the idempotence of the elements, and to
define invariants of classical knots and knotted surfaces. These invariants have a
number of applications such as:

(1) proving that many 2-twist spun knots are non-invertible [2, 9];
(2) providing an orientation class for classical knots [10];
(3) giving lower bounds for the number of triple points of projections of knot-

ted surfaces [15, 13];
(4) measuring colored chirality of classical knots [7];
(5) determining the minimal number of Reidemeister type III moves in iso-

topies that connect two diagrams [8];
(6) determining the minimal number of sheets needed to represent spun knots

[14];
(7) determining if certain tangles embed in the unknot [1].

In a series of papers [3], [4],[5], and [6], my collaborators and I have developed a
cohomology theory in which quandle cocycles and other cocycles co-exist and are
non-trivial. The cohomology theory is defined diagrammatically by a process of
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“infiltrating algebraic identities.” This talk develops the idea in the case of a Hopf
algebra. For the rest of this abstract, the Hopf algebra case will be discussed in
more detail.

A Hopf Algebra is a vector space, H , with an associative unital multiplication,
µ, a coassociative counital comultiplication, ∆, a compatibility between these two
operations, and an antipode map, S : H → H , whose properties will not be listed
here. The adjoint map A : H ⊗ H → H in a Hopf algebra is defined by the
equation A(x ⊗ y) = S(y(1))xy(2) where the notation suppresses a sum and the
Sweedler notation is used for the coproduct of two elements. The adjoint satisfies
two important properties:

A(A ⊗ |) = A(| ⊗ µ)

and

(A⊗ µ)(| ⊗X ⊗ |)(∆⊗∆) = (| ⊗ µ)(X ⊗ |)(| ⊗∆)(| ⊗A)(X ⊗ |)(| ⊗∆)

where X denotes the transposition of adjacent tensor factors, and | denotes the
identity map on the appropriate tensor factor.

In this talk, I indicate a diagrammatic proof of the second identity qand demon-
strate (via diagrams) Woronowicz’s proof [16] that these two properties give that
R = (|⊗A)(X⊗|)(|⊗∆) satisfies the Yang-Baxter equation: (R⊗|)(|⊗R)(R⊗|) =
(|⊗R)(R⊗|)(|⊗R). The differentials in the “adjoint cohomology” theory for Hopf
algebras are described in dimension 1, 2, and 3. The talk sketches the proofs that
the composition of a pair of successive differentials (d2) is 0. by using diagrammatic
techniques.

Let H denote a Hopf algebra. Lower dimensional chain groups are given as:

C2
A(H ;H) = Hom(H⊗2, H), C3

A(H ;H) = Hom(H⊗3, H)⊕Hom(H⊗2, H⊗2),

and for n = 1,

C1
A(H ;H) = {f ∈ Homk(H,H) | fµ = µ(f ⊗ 1) + µ(1⊗ f),

∆f = (f ⊗ 1)∆ + (1⊗ f)∆ }.

Differentials are defined as

D1 = d1,1 : C1
A(H ;H)→ C2

A(H ;H), D2 = d2,1 + d2,2 : C2
A(H ;H)→ C3

A(H ;H),

D3 = d3,1 + d3,2 + d3,3 : C3
A(H ;H)→ C3

A(H ;H),

where the maps di,j are given as follows. For f ∈ C1
A(H ;H), define d1,1(f) =

A(| ⊗ f)− fA+A(f ⊗ |). For φ ∈ C2
A(H ;H), the second differentials are given by

d2,1
A (φ) = A(φ ⊗ |) + φ(A⊗ |)− φ(| ⊗ µ),

d2,2
A (φ) = (φ ⊗ µ)(| ⊗X ⊗ |)(∆⊗∆)

− (| ⊗ µ)(X ⊗ |)(| ⊗∆)(| ⊗ φ)(X ⊗ |)(| ⊗∆).
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Let ξi ∈ C3,i(H ;H) for i = 1, 2. Then

d3,1
A (ξ1, ξ2) = A(ξ1 ⊗ |) + ξ1(| ⊗ µ⊗ |)− ξ1(A⊗ |⊗2 + |⊗2 ⊗ µ),

d3,2
A (ξ1, ξ2) = (A⊗ µ)(| ⊗X ⊗ |)(|⊗2 ⊗∆)(ξ2 ⊗ |)

+ (| ⊗ µ)(X ⊗ |)(| ⊗ ξ2)(RA ⊗ |)
+ (1⊗ µ)(|⊗2 ⊗ µ)(X ⊗ 12)(1 ⊗ | ⊗ 1)(|⊗2 ⊗∆)((|⊗2 ⊗ ξ1)
· (| ⊗X ⊗ |⊗2)(X ⊗ |⊗3)(|⊗3 ⊗X ⊗ |)(| ⊗∆⊗∆))
− (ξ1 ⊗ µ)(|⊗2 ⊗X ⊗ |)(|⊗2 ⊗ µ⊗ |⊗2)

· (1 ⊗X ⊗ 1⊗3)(∆⊗∆⊗∆)

− ξ2(| ⊗ µ),

d3,3
A (ξ1, ξ2) = (| ⊗ µ⊗ |)(X ⊗ |⊗2)(| ⊗∆⊗ |)(| ⊗ ξ2)(X ⊗ |)(| ⊗∆)

+ (ξ2 ⊗ µ)(| ⊗X ⊗ 1)(∆⊗∆)− (| ⊗∆)ξ2.

In the case of the group algebra of a finite group, where ∆(g) = g ⊗ g, and
S(g) = g−1, the adjoint map is given by conjugation. In this case, the differentials
give cocycle conditions that are essentially those for a groupoid. A discussion of
the distinct cohomologies of the group algebra and the function algebra for a finite
group are given. The talk ends with a discussion for further directions of this
research.
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Polyak–Viro formulas for coefficients of the Conway polynomial

Sergei Chmutov

(joint work with Michael (Cap) Khoury, Alfred Rossi)

This work has been done by students Michael (Cap) Khoury and Alfred Rossi
during the Summer 2006 VIGRE working group “Knots and Graphs”:
(http://www.math.ohio-state.edu/~chmutov/wor-gr-su06/wor-gr.htm)
at the Ohio State University, funded by NSF grant DMS-0135308. The problem
was to describe Polyak-Viro arrow diagram formulas for coefficients of the Conway
polynomial. Later we realized that this description is equivalent to F. Jaeger’s state
model [Ja].

1. Jaeger’s state model for the Conway polynomial

Let us first reformulate the Jaeger model on a language suitable for our purpose.
A subset S of the crossings of a knot diagram K is said to be one-component if

the curve obtained fromK by smoothing all crossings of S according to orientation
has one component.

Assume that the diagram K has a base point and S is a one-component subset
of crossing. Let us travel along K starting with the base point. Suppose we
approach to the first crossing of the subset S along an overpass. Let us jump
down to the underpass and continue to travel along K (more precisely along the
oriented smoothing of K at the crossing). Repeat the procedure for the remaining
crossings of S. If it is possible to trace the whole curve K like this, always jumping
down at the first approaching to a crossing of S and jumping up at the second
approaching to it, then the subset S is said to be jump down.

Define the down polynomial, in variable t, as

Cdown(K) :=
∑

S jump down
one-component

(∏

x∈S

wr(x)
)
t|S| ,

where wr(x) is the local writhe of the crossing x. If S is the empty set, then we
set the product to be equal 1 by definition. Therefore the free term of Cdown(K)
always equals 1.

Corollary of the main Theorem. The Conway polynomial C(K) a knot K
is equal to the down polynomial of its diagram,

C(K) = Cdown(K) .
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Let us remind that the Conway polynomial is defined by the equations

C
( )

− C
( )

= tC
( )

, C
( )

= 1 .

Similarly to Cdown(K), one can define the up polynomial Cup(K). It turns out
that for all classical knots Cdown(K) = Cup(K). However this fails for virtual
knots.

2. Gauss diagrams and Polyak-Viro formulas

Definition 1. A Gauss diagram is a chord diagram with oriented chords and with
numbers +1 or −1 assigned to each chord.

With a knot diagram we associate a Gauss diagram whose outer circle is the
parameterizing circle S1 of our knot, a chord is drawn for each double point of the
diagram, each chord is oriented from the overpass to the underpass and the local
writhe number is assigned to each double point (chord). M. Polyak and O. Viro
suggested [PV] the following approach to represent knot invariants in terms of
Gauss diagrams.

Definition 2. An arrow diagram is a based chord diagram with oriented chords.

Definition 3. Let A be an arrow diagram and let G be a Gauss diagram, both with
base points. A homomorphism ϕ from A to G, ϕ ∈ Hom(A,G), is an injective
map of chords of A to chords of G which respects the orientation of the chords
and their positions to the base points.

Definition 4. The pairing between a based arrow diagram and a based Gauss
diagram is defined by

〈A,G〉 :=
∑

ϕ∈Hom(A,G)

∏

c chord in A

sign(ϕ(c)) .

In general, if you take an arbitrary arrow diagram A, the value 〈A,G(K)〉 is
not uniquely defined by the knot K. Nevertheless, for we can extend the pairing
to a linear combination of arrow diagrams

〈
∑

i

λiAi, G〉 :=
∑

i

λi〈Ai, G〉

by linearity. Then some linear combinations of arrow diagrams may yield knot
invariants by this construction. Moreover, with a slight generalization of arrow
diagrams pairing, there is a general theorem due to M. Goussarov [G, GPV] stating
that any Vassiliev invariant can be obtained from a suitable linear combination of
arrow diagrams (possibly with signed chords).
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3. Main Theorem

Definition 5. A chord diagram D is said to be one-component if after parallel
doubling of each chord the resulting curve will have one component, |D| = 1.

Example 6. There is only one one-component chord diagram with two chords:

∣∣∣
∣∣∣ = 1 ⇐= ,

∣∣∣
∣∣∣ = 3 ⇐= .

With four chords, there are four one-component diagrams:

d4
1 = , d4

5 = , d4
6 = , and d4

7 = .

Definition 7. Choosing a base point we can turn a one-component chord diagram
into an arrow diagram according to the following rule. Starting from the base
point we travel along the diagram with doubled chords. In this journey we pass
both copies of each chord in opposite directions. Choose an arrow on a chord
which correspond to the direction of the first passage of the copies of the chord.
Here is an example.

.

Definition 8. Let us define the Conway combination C2n of arrow diagrams as a
sum of all based arrow diagrams with 2n arrows obtained from one-component
chord diagrams by the rule above. For example,

C2 := ,

C4 := + + + + +

+ + + + + + + + +

+ + + + + + + + .

Note that for a given one-component chord diagram we have to consider all possible
choices for the base point. However, some choices may lead to the same arrow
diagram. In C2n we list them without repetitions.

Main Theorem. For n > 1, the coefficient c2n of t2n in the Conway polynomial
of a knot K with the Gauss diangram G is equal to

c2n = 〈C2n, G〉 .
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Algebraic Categorification

Alissa S. Crans

In the past several decades, operations satisfying self-distributivity:

(a ⊳ b) ⊳ c = (a ⊳ c) ⊳ (b ⊳ c)

have secured an important role in knot theory. Such operations not only provide
solutions of the Yang–Baxter equation and satisfy a law that is an algebraic dis-
tillation of the type (III) Reidemeister move, but they also capture one of the
essential properties of group conjugation.

Let X be a set equipped with a binary operation � : X ×X → X . The map �

satisfies the self-distributive law if

(x � y) � z = (x� z) � (y � z).

The primordial example of a self-distributive operation comes from group conju-
gation:

x ⊳ y = y−1xy.

The Yang–Baxter equation arises in many contexts in mathematics and physics.
All these concepts are related by the fact that this equation is an algebraic distil-
lation of the ‘third Reidemeister move’ in knot theory:

%
%
%
%
%
%

=

Originally, mathematical physicists concentrated on solutions to the Yang–Baxter
equation in the category of vector spaces with the tensor product, obtaining solu-
tions from quantum groups. More recently, there has been interest in set-theoretic
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solutions to the Yang–Baxter equation, and a set with a self-distributive operation
provides such a solution.

It turns out that there is a relationship between Lie algebras and solutions
to the Yang–Baxter equation. It is, perhaps, not so surprising that Lie algebras
are related to braidings since the bracket in a Lie algebra is all about switching
the order of two Lie algebra elements. Moreover, the interesting feature of a Lie
algebra, the Jacobi identity, involves three Lie algebra elements and the Yang–
Baxter equation, or third Reidemeister move, involves three strands. It turns out
that the the two are equivalent in a suitable context:

Proposition 1 ([2]). Let L be a vector space over k equipped with a skew-symmetric
bilinear operation [·, ·] : L × L → L. Let L′ = k ⊕ L and define the isomorphism
B : L′ ⊗ L′ → L′ ⊗ L′ by B((a, x) ⊗ (b, y)) = (b, y) ⊗ (a, x) + (1, 0) ⊗ (0, [x, y]).
Then B is a solution of the Yang–Baxter equation if and only if [·, ·] satisfies the
Jacobi identity.

At this point, several questions arise: What is so special about the space L′ that
enabled us to define a solution to the Yang–Baxter equation on it? What is the
relationship between self-distributive operations and solutions to the Yang–Baxter
equation? Are we able to define a self-distributive operation on the space L′?

All of these questions can be answered using the category-theoretic language of
‘internalization. [3]’ All familiar mathematical concepts were defined in the cate-
gory of sets, but most of these can live in other categories as well. This idea, known
as internalization, is actually very familiar. For example, the notion of a group
can be enhanced by looking at groups in categories other than Set, the category
of sets and functions between them. We have the notions of topological groups,
which are groups in the category of topological spaces, Lie groups, groups in the
category of smooth manifolds, and so on. Internalizing a concept consists of first
expressing it completely in terms of commutative diagrams and then interpreting
those diagrams in some sufficiently nice ambient category, K.

Definition 2. Let X be an object in a category K with finite products. A map
q : X × X → X is a self-distributive map in K if the following diagram
commutes:

X ×X ×X

X ×X ×X ×X

X ×X ×X ×X

X ×X ×X X ×X

X

X ×X

q×1

**UUUUUUUUUUU
1×1×∆

uujjjjjjjjj

1×τ×1

��

1×1×q $$JJ
JJ

JJ

q×1
//

q

::tttttt

q

��
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where ∆ : X → X ×X is the diagonal morphism in K and τ : X ×X → X ×X is
the transposition. We also say that a map q satisfies the self-distributive law.

Returning to the Lie algebra example considered above, we will denote elements
of L′ = k ⊕ L as either (a, x) or a + x, depending on clarity, where a ∈ k and
x ∈ L. In fact, L′ is a cocommutative coalgebra with counit. Recall that a
coalgebra is a vector space C over a field k together with a comultiplication
∆ : C → C ⊗ C that is linear and coassociative: (∆ ⊗ 1)∆ = (1 ⊗ ∆)∆. A
coalgebra is cocommutative if the comultiplication satisfies τ∆ = ∆, where
τ : C ⊗ C → C ⊗ C is the transposition τ(x ⊗ y) = y ⊗ x. A coalgebra with
counit is a coalgebra with a linear map called the counit ǫ : C → k such that
(ǫ⊗ 1)∆ = 1 = (1 ⊗ ǫ)∆ via k ⊗ C ∼= C.

The space L′ is a cocommutative coalgebra with comultiplication and counit
given by ∆(x) = x⊗ 1 + 1⊗ x for x ∈ L and ∆(1) = 1⊗ 1, ǫ(1) = 1, ǫ(x) = 0 for
x ∈ L. We can extend these to elements of the form (a, x) ∈ L′. Since the solution
to the classical YBE follows from the Jacobi identity, and the YBE is related to
self-distributivity via the third Reidemeister move, it makes sense to expect that
there is a relation between the Lie bracket and the self-distributivity axiom.

Proposition 3 ([1]). The map q : L′ ⊗ L′ → L′ defined by

q((a, x) ⊗ (b, y)) = q((a+ x)⊗ (b+ y)) = ab+ bx+ [x, y] = (ab, bx+ [x, y])

satisfies the self-distributive law in the category of cocommutative coalgebras.

This Lie algebra example suggests that self-distributive operations deserve study
independent of their knot theory applications and in the context of other well-
known algebraic structures. We therefore consider self-distributive maps in the
category of coalgebras and their relationships to solutions of the Yang–Baxter
equation.

Let X be a coalgebra and q : X ⊗ X → X a linear map. The linear map
Bq : X ⊗X → X ⊗X defined by

Bq = (1⊗ q)(τ ⊗ 1)(1⊗∆)

is said to be induced from q. Conversely, let B : X ⊗X → X ⊗X be a linear
map. The linear map qB : X ⊗X → X defined by

qB : (ǫ⊗ 1)B

is said to be induced from B.
Our goal is to relate solutions of the YBE and self-distributive maps in the

category of coalgebras via these induced maps, which we do in the following results:

Theorem 4 ([1]). Let X be a coalgebra with counit. Let B : X ⊗X → X ⊗X be
a solution of the Yang–Baxter equation. Suppose B also satisfies

(ǫ⊗ ǫ)B = ǫ⊗ ǫ
BqB

= B

Then qB satisfies the self-distributive law and is a coalgebra morphism.
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Theorem 5 ([1]). Let X be a cocommutative coalgebra equipped with a linear map
q : X ⊗X → X that preserves comultiplication and satisfies the self-distributive
law. Then Bq is a solution of the Yang–Baxter equation.
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Polynomial Invariants and Virtual Crossing Number

Heather A. Dye

(joint work with Louis H. Kauffman)

The virtual crossing number of a virtual knot or link, L, (denoted v(L)) is the
minimum number of virtual crossings in any diagram equivalent to L. If v(L) ≥ 0
then L is non-classical and not equivalent to the unknot. We introduce a polyno-
mial invariant that determines a lower bound on the virtual crossing number of
the virtual link and is computed from a skein relation.

Virtual knot theory is a generalization of classical knots theory introduced by
Louis Kauffman in [10]. Virtual knot and link diagrams incorporate virtual cross-
ings (indicated by a solid, circled crossing) in addition to classical crossings which
are marked with under and over passing information. Two diagrams are equiva-
lent if the are related by a sequence of classical Reidemeister moves and virtual
Reidemeister moves. The virtual Reidemeister moves are illustrated in figure 1.
Classical invariants such a the bracket polynomial can be extended to virtual knots.

Figure 1. Virtual Reidemeister moves

However, the bracket polynomial is also invariant under virtualization; resulting
in larges classes of virtual knots that have bracket polynomial equivalent to that
of the unknot. Other classical invariants, such as the fundamental group and the
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Witten-Reshetikhin-Turaev invariant [3] have also been extended to virtual knots
and links. Kishino’s knot [11] is undetected by the bracket polynomial and is
typically used to test the efficacy of any invariant of virtual knots and links.

Virtual links can be viewed as stable equivalence classes of knots and links
embedded in thickened two dimensional, oriented surfaces. Equivalence classes
are determined by isotopy within the thickened surfaces, Dehn twists of the sur-
face, and handle addition and cancelation. The virtual Reidemeister moves can
be described in this context [1], [9]. Kuperberg [12] demonstrated that a virtual
knot or link (viewed as a stable equivalence class of a knot or link embedded in a
thickened surface) has a unique minimal genus surface. As a result, virtual knots
are non-classical if the minimal genus surface has genus greater than zero. This
was utilized in the the surface polynomial [2]. These results suggest several ap-
proaches to determining if a knot is non-classical or not equivalent to the unknot:
polynomials obtained from skein relations, detecting the minimal genus, and de-
termining the virtual crossing number. The problem of determining the virtual
crossing number is introduced in [4]. For example, it is possible to have a virtual
knot with minimal genus one but with an arbitrarily high virtual crossing number.

We present a simplified version of the extended bracket polynomial [8] that also
generalizes the Miyazawa polynomial [5]. The polynomial is invariant under the
Reidemeister II and III moves, as well as the virtual Reidemeister moves. The
polynomial can also be normalized to obtain invariance under the Reidemeister
I move. The skein relation, shown in figure 2, incoroporates nodal arrows that

= A + A
−1

= A + A
−1

type a type b

type c type d

Figure 2. Skein relation and arrow reduction

associate a set of numbers, the arrow set of a link L, with the polynomial. States,
determined by selecting a smoothing for each crossings, are collections of closed
curves with nodal arrows. Reducing the states under the Reidemeister moves
and the move shown in figure 2 results in a disjoint collection of closed curves
marked with an even number of nodal arrows. The arrow number of a state is
determined by the number of nodal arrows remaining in the state after reduction.
The arrow number of a state is the total number of arrows in a state divided
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by two and the arrow set is the set of arrow numbers obtained from all possible
states of the diagram. The maximum value of the arrow set is a lower bound on
the virtual crossing number. This information is encapsulated in the polynomial;
a closed loop with arrow number zero is evaluated as −A2 − A−2 and a loop
with arrow number n (n ≥ 0) is evaluated as An. The polynomial invariant is a
polynomial in the variables Z[A,A−1, A1, A2, . . .]. Individual arrow numbers are
determined by summing the subscripts of a summand. With Naoko Kamada’s
argument [6],developed for the Miyazawa polynomial, and some combinatorial
arguments, we show that the maximum value of the arrow set is a lower bound on
the crossing number. The simiplicity of the argument suggests that this technique
may be applied to other skein theoretic invariants. This invariant also suggests
new approaches to the Khovanov homology of virtual knots and links [13].
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Biquandles

Roger Fenn

Many invariants of knots and links have been found by labelling the arcs of a
diagram and introducing a relation at every crossing.

a

b

ba

The binary operation (a, b) −→ ba means b is acted upon by a above and is
chosen to respect the Reidemeister moves. This defines a quandle and allows
us to calculate the determinant or the Alexander polynomial or the fundamental
group or indeed the fundamental quandle [FR, J, M]. It turns out that this is
almost a complete invariant for knots. The only ambiguity is orientation. Even
this can be taken care of by considering a homology class in the classifying space
of the quandle [FRS].

An obvious question is “what if we change the label of the overcrossing as well”?

a

b

ba

ab

We get a new binary operation (a, b) −→ ab meaning that a is acted upon by
b below and now both operations have to respect the Reidemeister moves. This
defines a biquandle.[FJK]

The two operations can be bundled together by S(a, b) = (ba, ab) giving a map
S : X2 −→ X2 where X is the labelling space. A consequence of the third
Reidemeister move is the equation

(S × 1)(1× S)(S × 1) = (1× S)(S × 1)(1× S)

a set version of the Yang Baxter equation.
Many examples of biquandles are known [FJK]. One of the most useful is the

linear S = (A B
C D ) where A,B satisfy

F : A−1B−1AB −B−1AB = BA−1B−1A−A
and C,D are defined by C = A−1B−1A(1 −A) and D = 1−A−1B−1AB.

The commutative case AB = BA defines the Alexander biquandle. A non-
commutative example is the Budapest A = 1 + i, B = j, C = −i,D = 1 + i where
i, j is the usual notation for quaternions. All quaternion and 2 × 2 matrix in
addition to families of n× n solutions to F have been found [F, FT].

Why do we do this? After all the fundamental quandle is a complete invariant
of knots so what is the point of a fundamental biquandle?

The answer is to consider virtual knots where there have been many useful
applications [BF, BuF, F, FT]. Diagrams of virtual knots have additional crossings
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of the form

a

b

b

a

The Budapest solution to F can be used to show that the Kishino knot illustrated
below is not classical.

Two questions with the expected answer yes can be posed.

(1) Is there a non-trivial virtual knot which cannot be seen by the linear
biquandle? One candidate for this could be defined as follows. Let κ be
a non-trivial braid in the kernel of the Burau map. [B, SB]. Let τ be a
virtual braid. Now consider the closure of κτκ−1τ−1.

(2) Is the fundamental biquandle a complete invariant of virtual knots (up to
orientation)?

For the second question it may be necessary to make the operator T at a
virtual crossing change by something stronger than T (a, b) = (b, a). If we put
q = A−1B−1AB −B−1AB then q commuting with A,B implies the following.

(1) A,B satisfy F
(2) S2 = (1 − q)S + q
(3) If u = B and v = B−1A−1 then uv − qvu = 1.

The last equation is sometimes called the quantum harmonic oscillator or quan-
tum Weyl algebra.

In general Sn = αnS + βn where

αn = 1− q + q2 − · · · (−q)n−1, βn = q(1 − q + q2 − · · · (−q)n−2) = 1− αn.

The soubriquet quantum, is dropped when q = 1. This case corresponds to flat
knots when an overcrossing cannot be distinguished from an undercrossing and
S2 = 1 eg [FT].

For example if

u =
(

1 1 0
0 1 1
0 0 1

)
, v =

(
y 0 0
1 y 0
0 2 y

)
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working mod 3 we find that the second ideal of the presentation matrix of the flat
Kishino knot is generated by ∆1 = 2 + 2y [As].

This shows that it is non-trivial.
In general Sn = 1 when q is a root of unity. This may be useful for finding

invariants of n-moves when n twists are ignored.
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Khovanov homology vs. Representation Varieties

Magnus Jacobsson

We report on work in progress which explores a relation between Khovanov ho-
mology and SU(2)-representation varieties of knot groups. The work is joint with
Ryszard Rubinsztein at Uppsala University [2].

Let L be a link and π the fundamental group of the complement of L in S3.
Let C be the conjugacy class of traceless matrices in the Lie group SU(2).
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We consider the space JC(L) of representations of π in SU(2) which send each
meridian of the link into C. Typically JC(L) has several connected components
JrC(L). Let

H∗(JC(L); Z) =
⊕

r

H∗(JrC(L); Z)

be the singular integral cohomology of this space. On the other hand, let Khi,j(L)
denote the integral Khovanov homology of L. This is a bigraded collection of
abelian groups. Let Khk(L) denote the singly graded homology theory obtained
by collapsing the bigrading along k = i− j.

We make the following observation.

Observation 1. For every knot L with seven crossings or less, and for every (2, n)-
torus link, there are integers Nr = Nr(L) such that

Kh∗(L) =
⊕

r

H∗(JrC(L); Z){Nr}.

In other words, the singly graded Khovanov homology consists of pieces, which
are isomorphic to the cohomology of the components of the representation variety
JC(L), but with each such component shifted by some integer.

Example 2. A (2, n)-torus link T2,n has two components if n is even and one if n
is odd. For n even, the representation variety for T (2, n) is

JC(T2,n) = S2 ∪ S2 ∪
n−1

2⋃

i=1

RP 3.

For n odd, the formula is the same, except that only one of the copies of S2

appears.
The Khovanov homology of (2, n)-torus links was computed in [3]. Collapsing

the bigrading in Khovanov’s formula gives

Kh∗(T2,n) ∼= H∗(S2){n− 2} ⊕H∗(S2){2n− 2} ⊕
n−1

2⊕

i=1

H∗(RP 3){2i− 2 + n}

where the second term only appears when n is even, and we see that the observation
holds in this case.

The representation variety JC(L) fibres over C. One may consider the cohomo-
logy of its fibre over a point in C. In all the examples of the Observation above
this reproduces the singly graded reduced Khovanov homology [4].

Example 3. In the case of (2, n)-torus links, the fibre projection is the identity on
the S2-components and the natural projection on the RP 3:s. Thus the fibre is

{∗} ∪ {∗} ∪
n−1

2⋃

i=0

S1,



1186 Oberwolfach Report 22/2008

where the second term only appears if n is even. Reduced Khovanov homology is

H∗(∗){n− 1} ⊕H∗(∗){2n− 1}
n−1

2⊕

i=0

H∗(S1){2i− 1 + n}.

In this talk we describe an enhancement of the link invariant JC(L) in the form
of a grading on its connected components. This grading has the form of a Maslov
index. To define it we need to put JC(L) in a symplectic context. This is achieved
as follows.

In [1], Guruprasad, Huebschmann, Jeffreys and Weinstein study the moduli
space M of flat SU(2)-connections on a surface with n marked points. (The
space M plays a central role in quantum Chern-Simons theory.) They express
M by symplectic reduction of a certain symplectic manifold M . We put M to
use in the following way. We show that M admits a braid action preserving the
symplectic structure. Furthermore, every braid defines a Lagrangian submanifold
Γσ in M . In particular the identity braid defines a Lagrangian submanifold Λ, and
Γσ = σ(Λ). Finally, Λ and Γσ intersect in a space homeomorphic to JC(L). When
the Lagrangian intersection is clean we can use the two Lagrangian submanifolds
to define a Maslov index associated to the components of JC(L). This requires
care since the second homotopy group of M is non-trivial. At least for (2, n)-torus
links the grading coincides with the shifts in the above examples. In future work
we aim to extend our new invariant to a Lagrangian Floer homology theory, which
most likely will be related to Khovanov homology by a spectral sequence.
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Skein modules and skein algebras of surfaces in 3-manifolds

Uwe Kaiser

Frobenius algebras, respectively 2-dimensional topological quantum field theories
(see [1]), can be used to define skein modules of surfaces in 3-manifolds in a very
obvious way. For details and proofs see [5]. This is motivated by recent work on
Khovanov homology [3], [6], [9], [4], [7] and the work of Asaeda and Frohman [2].
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Throughout R is a commutative ring with 1 and ⊗ = ⊗R. A Frobenius algebra
over R is a 3-tuple F = (A,∆, ε), where A is a commutative R-algebra (multiplica-
tion µ) with a fixed inclusion R ⊂ A (unit) and a cocommutative and coassociative
coproduct ∆ : A → A ⊗ A (an A-bialgebra map) with counit ε : A → R (an R-
module map) satisfying the Frobenius identity: µ(ε⊗Id)∆ = Id (see [6] for further
details and references).

Example 1. (i) The universal rank 2 Frobenius algebra is defined over R = Z[h, t]
with A = R[x]/(x2 − hx − t) and ∆(1) = 1 ⊗ x + x ⊗ 1 − h1 ⊗ 1, ε(1) = 0 and
ε(x) = 1.
(ii) For G a finite group the group algebra RG has the natural structure of a
Frobenius algebra with ∆(1) =

∑
g∈G g ⊗ g−1, ε(1) = 1 and ε(g) = 0 for g 6= 1.

We prove in [5] that the natural functor from the cobordism category of surfaces
and their boundaries into the category of R-modules extends naturally to a func-
tor where the morphism sets of the cobordism category are extended to R-linear
combinations of surfaces with components colored by elements of A. Moreover, the
kernels are generated by three types of relations: (i) R multi-lineariy in the colors
of the components of the surfaces, (ii) sphere-relations : a sphere colored by a ∈ A
can be replaced by multiplication by ε(a), (iii) neck-cutting: If ∆(1) =

∑r
i=1 ui⊗vi

then a surface with a simple closed curve on it can be replaced by a sum of r sur-
faces which are all topologically given by cutting the neck (replace the annulus
neighborhood by two disks) and with the colors ui, vi distributed to the left re-
spectively right hand side of the neck. The original color of the components and
the ui, vi will be multiplied in A to define morphisms of the linearized category.

The above kernel relations are local and extend eaasily to embedded surfaces
in 3-manifolds: Just require in (ii) that 2-spheres bound 3-balls, and in (iii) that
the simple closed curve is compressible (such that the neck cutting will produce an
embedded surface). Then let (M,α) be a 3-manifold with a closed 1-manifold α
in the boundary. We consider R-linear combinations of isotopy classes of surfaces,
properly embedded in M and bounding α, and with the components colored by
elements of A. The quotient of this free R-module by the submodule generated by
the embedded versions of (i)-(iii) is denoted F(M,α). Let F(M) denote the skein
module for α = ∅. Here is a list of some easily proved properties:

• F(M,α∪ur) = F(M,α)⊗A⊗r , where ur is a union of r inessential circles
in ∂M \ α, in particular F(D3, ur) = A⊗r, for all r ≥ 0.
• The image of a connected surface of genus g, colored by a ∈ A, is
ε((µ∆(1))ga) ∈ R ∼= F(D3), and the images of components are multiplied
in R.
• If A is R-generated by b ⊂ A then F(M,α) is R-generated by incompress-

ible b-colored surfaces. (This extends the result of Asaeda and Frohman
[2].)
• (M,α) → F(M,α) is a functor from the category of pairs (M,α) where

morphisms (M,α)→ (N, β) are embeddings i : M →֒ N such that i(α) =
β ⊂ ∂N .
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Example 2. (i) If A = R is the trivial Frobenius algebra then

F(M) ∼= RH2(M ; Z2),

and there is a similar result in the relative case [5]. The skein modules of group
algebras will R-map onto RH2(M ; Z2) and thus can be considered as natural
deformations of the 2-dimensional homology of M with Z2-coefficients.
(ii) For h = t = 0 in Example 1 (i) above the module F(M) is the Bar-Natan
module as discussed in [2]. If an inverse of 2 is adjoined then this module is
equivalent to the geometric Bar-Natan module defined in [3], see also [9].

The following result is discussed in detail and proved in [5]:

Theorem 3. Suppose b ⊂ A is an R-basis of an irreducible 3-manifold M and
α ⊂ ∂M . Let B(M,α) denote the set of incompressible b-colored surfaces in M
bounding α. Then

F(M,α) ∼= RB(M,α)/tunneling relations

Tunneling relations can be described in general [5] but the following example
gives a good hint at the idea:

Example 4. Let K ⊂ S3 be a nontrivial knot, and M be the closed knot com-
plement. Let S be a torus parallel to ∂M , which is incompressible. If the tunnel
number of K is g then in F(M) the following relation holds: ε((µ∆(1))g+1) mul-
tiplied by the empty surface is equal to S colored by (µ∆(1))g.

In [8] the Bar-Natan skein modules of the torus for 2n longitudes in the bound-
ary are computed, using the above representation theorem.

Of particular interest are the skein modules F(Σ × I, α × 0 ∪ β × 1) for Σ an
oriented surface, because they are related to Bar-Natan’s tautological functor in
the surface case [3]. In fact, using naturality of the skein modules with respect
to mapping class group actions one can see that the most important cases to
understand are the algebras F(M) and F(M,η × 0 ∪ η × 1), where η is a simple
closed non-separating curve on Σ.

Theorem 5. For each closed oriented genus g surface Σg there is a natural epi-
morphism of algebras:

T (A)/((ε((µ∆(1))2ga) = ∆(a), a ∈ A))→ F(Σg × I)
where T (A) is the tensor algebra of A and (( )) denotes the two-sided ideal.

It is a conjecture that this is an isomorphism.
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A Extended Bracket Polynomial for Virtual Knots and Links

Louis H. Kauffman

We define a new invariant of virtual knots and flat virtual knots that we call the
extended bracket invariant [3]. Virtual knot theory is an extension of classical
knot theory to stabilized embeddings of circles into thickened orientable surfaces
of genus possibly greater than zero. Classical knot theory is the case of genus
zero. There is a diagrammatic theory for studying virtual knots and links, and this
diagrammatic theory lends itself to the construction of numerous new invariants of
virtual knots as well as extensions of known invariants. In the bibliography of this
announcement we list a number of papers on virtual knot theory and background
material that will be of interest to the reader. This papers include the initial
paper [11] by the author, and an independent initial paper [1] on the subject by
Goussarov, Polyak and Viro.

Figure 1 illustrates the moves for virtual knots and the extra virtual crossing
that is used to extend classical knot theory in this way. Figure 2 gives the oriented
expansion on which the exteneded bracket invariant is based.

A

B

C

RI

RII

RIII

vRI

vRII

vRIII

mixed
  RIII

planar
isotopy

Figure 1. Moves for Virtual Knot Theory

For a given virtual link K, the extended bracket invariant is denoted by 〈〈K〉〉
and takes values in the module generated by isotopy classes of virtual 4-regular
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2 -2
δ = - A    - A

K =     Kδ

= A              + A      -1

= A               + A      -1

Figure 2. Oriented Bracket Expansion

K1

K2

Figure 3. Reduction Relation for Simple Extended Bracket.

graphs over the ring of Laurent polynomials Z[A,A−1] where Z denotes the inte-
gers. A virtual graph is represented in the plane via a choice of cyclic orders at
its nodes. The virtual crossings in a virtual graph are artifacts of the choice of
placement in the plane, and we allow detour moves for consecutive sequences of
virtual crossings just as in the virtual knot theory. Two virtual graphs are isotopic
if there is a combination of planar graph isotopies and detour moves that connect
them. The extended bracket is defined by a state summation with a new reduction
relation on the states of the original bracket state sum.

Examples of calculation of the extended bracket include a verification of the
non-classicality of the simplest example of virtualization of a classical knot dia-
gram, a verification that the Kishino diagram and the flat Kishino diagram are
non-trivial, and a verification that a particular flat diagrams are non-trivial. We
use the extended bracket state sum to prove that an infinite family of single cross-
ing virtualizations of classical diagrams are non-trivial and non-classical. The
extended bracket is an invariant of flat diagrams by taking the specialization of
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its parameters so that A = 1 and δ = −2. We give an example showing that the
extended bracket can detect a long virtual knot whose closure is trivial. This is a
capability that is beyond the reach of the Jones polynomial.

We prove two estimates for the virtual crossing number V C(K) for a virtual
link K. The virtual crossing number is the least number of virtual crossings in any
planar diagram that represents the virtual link. Our estimates are based on the
virtual crossing numbers of the graphs that appear in the extended bracket state
sum. We combine use the fact an adequate or semi-adequate link (one whose A or
A−1 states do not have any self-touching sites) has highest or lowest degree terms
that can be pinpointed without calculating the entire state sum. This means that
one can, for such links, estimate the virtual crossing number without calculating
the entire extended bracket state sum. We use this method to calculate virtual
crossing numbers and give an infinite collection of virtual links L(n) whose virtual
crossing number is n = 1, 2, 3, · · · and such that each L(n) can be represented by
an embedding in a thickened torus. Finally, we give an infinite collection of virtual
knots K(n,m) with minimal genus n+ 1 and virtual crossing number n+m.

We construct a simple extended bracket invariant that we denote by B[K]. This
invariant of regular isotopy of virtual knots and links is obtained by the same
method as the extended bracket, but we weaken the state reductions so that the
reverse oriented smoothings each become two individual graphical vertices. Fig-
ure 3 illustrates the reduction rules for the simple extended bracket invariant. The
separated vertices do not all disappear in the reduction process and one obtains
reduced states that are disjoint unions of decorated circle graphs. These non-trival
circle graphs are denoted by commuting algebraic variables Kn so that B[K] is a
polynomial in the variables A, A−1 and Kn, representing the reduced circle graphs
as shown in Figure 3. The invariant B[K] is quite strong and can be determined by
a computer program. The simple extended bracket is studied further by Heather
Dye and the author in joint work under preparation. In this work, we show that,
weighting each Kn with degree n, the maximal degree in these extra variables is
a lower bound for the virtual crossing number.
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Invariants of framed links and p-adic framed links

Sofia Lambropoulou

(joint work with J. Juyumaya)

The framed braid group on n strands is defined as Fn = Zn ⋊ Bn and it is
generated by the elementary braids σ1, . . . , σn−1 and the ‘elementary framings’
hi := (0, . . . , 0, 1, 0, . . . , 0) with 1 in the ith position. Then, an element of Fn
can be written as ha1

1 h
a2

2 . . . han
n σ where σ ∈ Bn. Geometrically, a framed braid

is a classical braid with an integer, its framing, attached to each strand. Fur-
ther, for d ∈ N, the d-modular framed braid group on n strands is defined as
Fd,n = (Z/dZ)n⋊Bn. Closure of framed braids gives rise to oriented framed links
and there is an obvious analogue of the classical Markov theorem for oriented
framed link isotopy in terms of equivalence classes of framed braids.
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Passing now to the group algebra CFd,n, we have the following idempotents:

ed,i :=
1

d

d−1∑

s=0

hsih
−s
i+1 (i = 1, . . . , n− 1)

The Yokonuma-Hecke algebra Yd,n(u), for u ∈ C\{0} fixed, is then defined as the
quotient of the group algebra CFd,n over the quadratic relations:

(1) g2
i = 1 + (u − 1) ed,i − (u − 1) ed,i gi

01

= u-1

d-1

d
+

02 d-2

+ ...

01d-1

+ +

000000

+

- u-1
d

01 d-1

+

02 d-2

+ ...

01d-1

+ +

000

00 0

_

_

In [2] Juyumaya constructed inductively a unique linear Markov trace:

trd : Yd,n+1(u) −→ C[z, x1, . . . , xd−1]

with the main two rules: trd(agnb) = z trd(ab) and trd(ah
m
n+1) = xmtrd(a) for

a, b ∈ Yd,n(u). In order that trd yields a framed link invariant, say Γd, it should
have the property that it factors through trd(α):

trd(αg
−1
n ) = trd(g

−1
n ) trd(α)

for any α ∈ Yd,n(u), so that after an appropriate re-scaling one obtains Γd(α̂σ
−1
n ) =

Γd(α̂σn). By g−1
i = gi − (u−1 − 1) ed,i + (u−1 − 1) ed,i gi, linearity of trd and

by the fact that trd(α ed,n gn) = z trd(α), the property reduces to requiring:
trd(αed,n) = trd(ed,n) trd(α). To have this, we must impose conditions on the
set of variables {x1, . . . , xd−1}. Indeed, for 0 ≤ k ≤ d − 1 we define the more
general elements:

e
(k)
d,i :=

1

d

d−1∑

s=0

hk+si h−si+1 and also, E
(k)
d := trd

(
e
(k)
d,i

)
=

1

d

d−1∑

s=0

xk+sx−s

where x0 := 1 and the sub-indices are regarded modulo d. With the above no-

tation ed,i = e
(0)
d,i and we set E

(0)
d := Ed. We shall say that the set of variables

{x1, . . . , xd−1} has the E–condition if it satisfies the following E–system of equa-
tions in C:

(2) E
(m)
d = xmEd (1 ≤ m ≤ d− 1)

The E–system (2) has non-trivial solutions for any d. Then, given the E–condition,
the following is an isotopy invariant of the oriented framed link α̂ for any α ∈ Fn:

Γd(α) :=

(
1− ωu√
ω(1− u)Ed

)n−1

(trd ◦ Ωd,ω) (α)
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where ω = (uz)−1[(u − 1)Ed + z] and the representation Ωd,ω : Fn −→ Yd,n(u) is
defined by: σi 7→

√
ωgi, hj 7→ hj .

In [3] the authors introduced, for a prime p, the notion of a p–adic framed braid.
This is an infinite duplication of the same classical braid, such that the framings
of the corresponding strands form a p–adic integer. Alternatively, a p–adic framed
braid can be viewed as a classical braid, each strand of which is assigned a p–adic
integer, or as an infinite cabling of a braid in Bn, such that the framings of each
infinite cable form a p-adic integer.

a1
b1

,

a 2
b2

, ...,

a 3
b3

(a , a  , a  ,...)1 2 3 (b , b  , b  ,...)1 2 3
... ...ba

~

The p-adic framed braid group on n strands F∞,n is defined as:

F∞,n := Znp ⋊Bn ∼= lim←−Fpr ,n

and it contains Fn as a dense subgroup. This means that any p-adic framed braid
can be approximated by a sequence of classical framed braids. Further, the natural
algebra epimorphisms: φrs : CFpr,n −→ CFps,n (r ≥ s), induce the algebra
epimorphisms: ϕrs : Ypr ,n(u) −→ Yps,n(u) (r ≥ s), through which we define
the p-adic Yokonuma–Hecke algebra as the inverse limit: Y∞,n(u) := lim←−Ypr ,n(u).

In Y∞,n(u) quadratic relations analogous to (1) hold. For the algebra Y∞,n+1(u)
we then have that there exists a unique p-adic linear Markov trace:

τ := lim←− τr : Y∞,n+1(u) −→ lim←−C[Xr ]

where Xr = {z, x1, x2, . . . , xpr−1} is a set of indeterminates and τr is the trace
trpr . Now, the closure of a p-adic framed braid defines a p-adic oriented framed
link:

ba

closure
ba

Moreover, solutions of the E–condition for some d lift to solutions for d′, when d
is a factor of d′. This means that the framed link invariant Γd lifts to an invariant
of p-adic oriented framed links, that uses the p-adic trace τ . We hope that this
construction may lead to new 3-manifold invariants ([4], [7]).

The authors acknowledge gratefully support by Fondecyt 10 85 00 2, Dipuv, U.
Valparaiso and the National Technical U. Athens.
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A state sum regular isotopy link invariant with only 18n + 1 states
and even though detecting mutants

Sóstenes Lins

Summary

The main state sum regular isotopy invariant for links on S3 (given by plane
diagrams) which I introduce in this work is a generalization of the Kauffman
bracket and so of the Jones Polynomial. Thus it distinguishes any pair of links
which are distinguishable by the latter. For a link diagram L with n crossings
it is called the V SE-invariant (or the ν∞-invariant) of L, it has 3n states and
is denoted by ν∞(L). For each positive integer ℓ there is an specialization of ν∞,
denoted νℓ and named the truncation of the VSE-invariant at the level ℓ. The
value of νℓ(L) is also a regular isotopy invariant. The number of states of νℓ(L)

is max{∑ℓ
j=0

(
n
j

)
2j , 3n}. The invariant νℓ(L) is a normal form of a polynomial

in 8 variables relative to some fixed Gröbner basis Bℓ. V SE stands for Virtual-
Shaded-Exterior.

If L is an n-crossing link diagram and k is a positive integer, denote by L ∗ k
the link diagram obtained from L by replacing each component of it by k parallel
copies of it. The link diagram L ∗ k is called the k-parallel cabling of L and it has
k2 n crossings. For a link diagram L, ℓ ∈ {∞, 1, 2, . . .} and k ∈ {1, 2, . . .} define
ηk,ℓ(L) = νℓ(L∗k). It follows that ηk,ℓ is a regular isotopy invariant of L and that

it has max{∑ℓ
j=0

(
nk2

j

)
2j , 3nk

2} states. For k = 3 and ℓ = 1 this formula yields

only 18n+ 1 states for η3,1.
Surprisingly enough the η3,1-invariant proves that mutants Conway knot

(K11n34) and Kinoshita-Terasaka knot (K11n42) are distinct. The state sums
of these knots involve the addition of only 199 monomials. The normal forms of
the resulting pair of polynomials are relative to a fixed Gröbner basis, B1, which
has only 14 polynomials whose maximum absolute value of a coefficient is 3. The
maximum number of monomials of a polynomial in B1 is 16.
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The name-codes for the knots are from the tables in Bar-Natan page [1]. The
Gröbner basis B1 is given at the end of Section 1 and the values of η3,1(Conway)
and of η3,1(KinoshitaT erasaka) in Section 2. The η3,1-invariant is a subtle inva-
riant which deserves to be more investigated. It can be computed for links with
thousand of crossings. A glimpse of its behavior is given in Section 2.

1. Overview of the strategy

The Jones polynomial, [2] or its equivalent non-oriented counterpart, Kauff-
man’s bracket [3] does a superb job of distinguishing inequivalent knots and links.
However, computations are limited to links with a few crossing because there are
2n states to be enumerated and evaluated for a link diagram having n crossings.
Here I present a practical strategy to overcome exponentiability. The result of
the strategy yields the discovery of regular isotopy invariants with a very small
number of states and it consists in a 4-step strengthening of Kauffman’s expansion
for the bracket [3]. The state sum of the VSE-invariant lives in the ring

R = Z[A,B, F,X, Y, Z,M, o].

The first strengthening relative to Kauffman’s bracket is to use the 2-coloration
(shaded and white faces) of the link diagram. This permits the distinctions of
two kinds of crossing X1 and X2: the crossing of type X1 is the one that going
counterclockwise from an overpass to an underpass the sweeped region is shaded;
otherwise, if this region is white, the crossing is of type X2. The two types of
crossings enable the definition of 4 variables A,B,X, Y ) instead of the usual 2
variables A,B, of the bracket. The second strengthening is that the virtual term
of the expansion is included, by means of new variables F and Z. The third
strengthening is to introduce a new variable M to control the level: to obtain the
ℓ-specialization, this variable is declared to satisfy M ℓ+1 = 0. Crossings of both
types are expanded according to the two rules of Fig. 1.

c

a

b

d
X1

a

b c

d a

b

d

c

=  M A +  M B +  F

a

b

d

c

c

a

b

d a

b

d

c

=  M X +  M Y +  Z

a

b

d

c

X2

a d

b c

Figure 1. The virtual shaded 3-fold expansion producing
the VSE-invariant

Note that the bracket expansion corresponds to the particular case M = 1,
X = A, Y = B and F = Z = 0. Each monomial of a full expansion is the
coefficient of a set of m (maybe crossing) closed curves in the plane which are
replaced by om. Because of the shading, there are two types of Reidemeister
moves 2 and two types of Reidemeister moves 3.
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The fourth strengthening relative to Kauffman’s bracket is to consider each
type of exterior in the above moves to be a pesudo-variable Vext, where ext is
an encoding of the particular transitions relative to the corresponding exterior.
Equality must hold for all values of the exterior variables. In each monomial of
the state sum, each exterior variable has degree at most 1. So, if I take the partial
derivatives of the state sum relative to each of these variables, the exterior pseudo-
variables disappear. But to have invariance, I must impose each such derivative to
be zero, thus obtaining a polynomial equation for each exterior pseudo-variables
and each move. This scheme using exterior pseudo-variables (which disappear) is
clearly stronger than the usual one which does not make use of these variables:
any solution of the old scheme is a solution for the new scheme but not vice-
versa. Details about similar external pseudo-variables can be found in the simpler
expansion of [6].

To obtain invariance under the 4 moves, a set of 27 polynomial equations are
produced. Instead of trying to solve a system of 27 polynomial equations poli = 0,
in the spirit of King, [5], I take the ideal generated by the left hand side of the
system of equations. These polynomials generate an ideal, named I∞. I compute
a Gröbner basis B∞ for the ideal I∞ relative to a fixed monomial ordering. The
VSE-invariant is the normal form ν∞(p) of the classes of polynomials p ∈ R/I∞.
It follows that if p and q are VSE-state sums of two links diagrams Lp and Lq
which can be transformed one into the other by Reidemeister moves 2 and 3, then
ν∞(p) = ν∞(q).

I have written a subroutine to obtain automatically the polynomials relative to
a given set of moves. The ideal I∞ of R = Z[A,B, F,X, Y, Z,M, o] corresponding
to Reidemeister moves 2 and 3 is generated by the 27 polynomials. A specific
Gröbner basis B∞ with the previous variable ordering and lexicographical mono-
mial ordering is found and has 15 polynomials. The VSE-invariant of a link is
defined to be the normal form ν∞ relative to the Gröbner basis B∞ applied to the
V SE-state sum of the link. Define

Iℓ = 〈I∞ ∪ {M ℓ+1}〉

and let Bℓ be a Gröbner basis for Iℓ with the same monomial order. I have
computed explicitly specific Gröbner basis B1, B2, . . . , B10, B11. They have re-
spectively

14, 25, 30, 37, 44, 53, 62, 73, 84, 97, 110

(not horrendous) polynomials. They permit the definition of νℓ, ℓ ∈ {1, . . . , 11},
along similar lines as ν∞ was defined. Below I present B1:

B1 = {M2, Z2o3 − o3 + Z2o2 − o2 − 2Z2o+ 2o, MoZ2 −Mo, oZ4 − 2oZ2 +
o, o2Z3 − o2Z + 2MoX + 2MoY, Fo3 − Zo3 + Fo2 − Zo2 − 2Fo+ 2Zo, FMo−
MoZ, −oZ3 + FoZ2 + oZ − Fo, oF 2 − 2oZF + oZ2, −Fo2 +BMo2 −MY o2 +
Zo2 + Fo−BMo+MY o− Zo, BZ2o2 +XZ2o2 −Bo2 + Y o2 − FXZo2 −

FY Zo2 −BZ2o−XZ2o+Bo− Y o+ FXZo+ FY Zo, o2Z3 − 3o2Z + 2Fo2 +
2AMo+ 2BMo, AoZ2 +BoZ2 + oXZ2 + oY Z2 − 2FoXZ − 2FoY Z −Ao−



1198 Oberwolfach Report 22/2008

Bo+ oX + oY, AFo2 −BFo2 − FXo2 + FY o2 −AZo2 +BZo2 +XZo2 −
Y Zo2 −AFo+ BFo+ FXo− FY o+AZo−BZo−XZo+ Y Zo}.

2. Remarks: a glimpse of η3,1

The η3,1-invariant also distinguishes the Thistlethwaite first link in [7] from the
unlink. It does not distinguishes 942 from its mirror. It does distinguish 41 and
K11n19. It does not distinguish 88 from 10129. Repeating once more, it does dis-
tinguish the mutants Conway (K11n34) and Kinoshita-Terasaka (K11n42). Here
are the value of the η3,1-invariants of these knots:

η3,1(Conway) =
1

2
o
(
2M(o− 1)Y o2 + Z

(
2o2 − 3Z2o+ 3o+ 2Z2 − 2

))
,

η3,1(KinoshitaT erasaka) = −1

2
o
(
6M(o− 1)Y o2

+ Z
(
−2o2 − 13

(
Z2 − 1

)
o+ 14

(
Z2 − 1

)))
.

The above computations give a glimpse of η3,1. It is a subtle invariant which
deserves to be better understood. If not otherwise, because of the speed in which
it can be computed for links with thousands of crossings. (This awaits a proper
implementation, in a non-interpreted language.)
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Atoms, Khovanov Homology, and Heegaard-Floer Homology

Vassily O. Manturov

The Main Goal. We argue that for links and virtual links there is a genus
called atom genus, [Ma1] (Turaev genus [Tu]) which plays the same role for the
Kauffman bracket [Ka1] and Khovanov homology [Kh] as Seifert genus plays for
the Alexander polynomial and Heegaard-Floer homology. From the point of view
of atoms, classical knots are seen as an essential part of virtual knots [Ka2], [Ka3].

The main construction. An atom (first defined by Fomenko [Fom]) is a pair
(M,Γ) where M is a 2-manifold, and Γ is a four-valent graph embedded in M
such that M\Γ is a disjoint collection of checkerboard coloured 2-cells with fixed
colouring. For an alternating diagram of a classical link K, one constructs an atom
as follows: one takes all circles of the A-state of the Kauffman bracket 〈K〉 and all
circles of the B-state. They naturally correspond to the 2 cells of S2\shadow K.
Thus, for an alternating link, one gets an atom with S2 = M . In general, the atom
genus measures the non-alternatibility of the diagram. Starting with a diagram K
of a (possibly, virtual) link, we take its shadow to be the frame of the atom. For
each classical vertex, we fix how the edges are split into two pairs of opposite ones.
Now, for each vertex of the atom, we have two pairs of opposite angles. The angle
swept by passing from an overcrossing half-edge to the undercrossing half-edge in
the clockwise direction is decreed to be white as well as the opposite angle; the
remaining two angles are black. Paste black and white cells to it as follows. The
boundary of each cell is a cycle on the shadow of the knot passing from any edge
to an adjacent one in such a way that two adjacent edges locally form the angle of
the corresponding colour. An atom can be reconstructed from the corresponding
knot diagram in a unique way. The inverse operation is not unique: our knot
diagram is defined up to virtualization, a move which flanks a classical crossing by
two virtual moves with writhe number preserved.

White cells of the atom are in 1-1 correspondence with the circles of the A-
state. One can restore the whole state cube from the atom, that is, to recover the
Kauffman bracket of the initial knot, which agrees with the fact that the Kauffman
bracket is invariant under virtualization.

Main Theorems. Recall the formulation of the celebrated Kauffman-Murasugi
Theorem.

Theorem 1 ([Mur]). For a non-split connected diagram K of a classical knot, we
have span〈K〉 ≤ 4n, where n is the number of crossings of K. Moreover, if K is
alternating, then the equality holds.

This yields the positive solution of the Tait conjecture saying that alternating
diagram are minimal with respect to the number of classical crossings. Analysing
the Kauffman bracket of a link diagram, one gets the following far-reaching gene-
ralization of Theorem 1.

Theorem 2 (see, e.g.[Ma1]). For a non-split connected virtual diagram K we have
span〈K〉 ≤ 4n−4g, where n is the number of classical crossings of K and g is the
genus of the corresponding atom.
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This theorem means that for a link K where the equality span〈K〉 = 4n − 4g
holds we can decrease the number of crossings only at the expense of decreasing
the genus g. A combination of this result with cabling leads to a new [Ma1] proof of
Thistlethwaite’s celebrate theorem [Th] saying that adequate diagrams are minimal
where a classical knot diagram is adequate if the corresponding atom has no vertex
where one black cell touches itself. On the other hand, the genus of the atom can
be estimated by using Khovanov homology.

Theorem 3 ([Ma1]). For a non-split connected virtual link diagram K we have
Th(Kh(K)) ≤ 2 + g, where Th means thickness, i.e., measures the number of
diagonals with slope 2 supporting Khovanov homology.

This theorem follows from understanding the notion of atom in the context of
the Wehrli-Kofman-Champanerkar [Weh, ChK] spanning tree (a Khovanov com-
plex has the same homology as a complex with chains corresponding to single circle
states of the Kauffman bracket). The same estimate Th(Kh(K)) ≤ 2 + g holds
for odd Khovanov homology, [ORS]. For reduced (and reduced odd) Khovanov
homology one has Th(Kh(K)) ≤ 1 + 2g. The set of 1-circle states not only sup-
port the usual Khovanov homology, but they are also in 1-1 correspondence with
the knot Heegaard-Floear complex, [OSz]. This leads to a theorem of Lowrance,

[Low] saying that Th(ĤF (K)) ≤ 1 + g, where by Th we consider the number of
diagonals of slope −1 supporting the Heeggaard-Floer homology. This yields

Theorem 4. Assume for a reduced non-split virtual diagram K we have
span〈K〉 = 4n − 4g and either Th(Kh(K)) = 2 + g, where Kh means usual
or odd Khovanov homology or Th(KhR(K)) = 1 + g, where KhR means the re-

duced Khovanov homology, or Th(ĤF (K)) = 1 + g holds. Then K is minimal
with respect to the number of classical crossings.

Khovanov’s homology also estimates the Seifert genus of a link. In Rasmussen’s
paper [Ras], it is shown how to estimate the Seifert genus by using a single invariant
s coming from a spectral sequence starting from usual Khovanov homology and
having differentials with boundary slopes 0, 4, 8 etc. For instance, for alternating
link diagrams (for which the complex is supported in 2 adjacent diagonals) all
differentials except the first one equal zero. Now we see that the atom genus
essentially estimates the term when the Rasmussen spectral sequence converges.
Namely, for g = 0, 1 we have E2 = E∞ for g = 2, 3 we have E3 = E∞ etc. A
construction similar to Rasmussen’s goes straightforwardly if we deal with the
category of knots and cobordisms corresponding to orientable atoms (see ahead).

On Khovanov Homology for Virtual Knots.Atoms play a key role not only
for estimating crossing number, atom genus, knot genus etc., but or constructing
the Khovanov homology itself. The Khovanov complex [Kh, BN, Viro, Ma1] is a
bigraded complex constructed out of a link diagram in such a way that its Euler
characteristic is equal to Kauffman bracket (in a slightly different normalization).
Going along the lines of [Kh], we associate with each circle a 2-dimensional graded
vector space V (thus, for a state with m circles we have V ⊗m), and set the ho-
mological grading to be the number of B-smoothings of the state. Thus, from
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each state we have partial differentials going along edges of the cube, and (being
endowed with ± signs, together they compose the differential of the Khovanov
complex. The second grading comes from the grading of V ⊗... shifted by the first
grading.

In the classical construction, there are two possibilities when we change the
smoothing at a classical crossing: two circles merge to a single circle or one circle
splits into two circles. At the level of partial differentials, it is expressed in terms
of multiplication V × V −→ V and comultiplication V −→ V × V . For
commutativity of 2-faces of the cube the multiplication and the comultiplication
should satisfy the axioms of the Frobenius algebra. An appropriate edge labeling
(by ±1) makes faces anticommutative which guarantees ∂2 = 0. For virtual knots,
a bifuraction of type 1 −→ 1 occurs which means that one should introduce a
new operation V −→ V compatible with all possible 2-faces of the bifurcation
cube. All possible 2-faces are atoms with 2-vertices. By grading reasons, this
map V −→ V can not be anything but zero, which does not fit into the original
Khovanov setup. We have

Lemma 1 ([Ma2]). For a diagram K, 1 −→ 1-bifurcations occur if and only if
the corresponding atom is non-orientable.

So, the original Khovanov homology works in the category of orientable atoms.
For the case of non-orientable atoms, I have introduced twisted coefficients in the
Frobenius algebra and the exterior of different V ’s corresponding to circles of the
same state (instead of just tensor product). This leads to Khovanov homology
theory for all virtual knots [Ma2]. An extension of that theory is described in
[Ma3].
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On representations of mapping class groups in Integral TQFT

Gregor Masbaum

In this talk, I discussed the theory of integral TQFT which I have developed in
joint work with Patrick Gilmer [6, 7]. In usual Reshetikhin-Turaev TQFT, the
mapping class group of a compact orientable surface Σ is represented on a finite-
dimensional vector space, say Vp(Σ), over a cyclotomic field, say Q(ζp) (here ζp
is a primitive pth root of unity). For integral TQFT, the vector space should be
replaced by a free lattice Sp(Σ) over Z(ζp) = the ring of algebraic integers in Q(ζp).
In particular, it means that mapping classes are now represented by matrices with
integral coefficients.

In [7], we have shown how to construct such an integral TQFT refinement for
the Reshetikhin-Turaev SO(3) TQFT at q = ζp, p an odd prime, starting from
the skein-theoretical approach to this TQFT as in [2]. The integral lattice Sp(Σ)
is contained in the vector space Vp(Σ) and has a natural definition in terms of
the vector-valued quantum SO(3)-invariants for 3-manifolds with boundary (see
below). (If p ≡ 1 mod 4, the coefficient ring considered in [7] is actually a quadratic
extension of Z(ζp), but for simplicity of exposition I will ignore this and similar
details in this talk.)

The mapping class group representation on the lattice Sp(Σ) preserves a natural
non-degenerate hermitian form with values in Z(ζp). One may ask whether the
image of the mapping class group under this representation coincides with the
automorphism group of this form. Note that the analogous statement for the U(1)-
TQFT is the well-known fact that the image of the mapping class group acting in
homology is the symplectic group Sp(2g,Z), that is, the group of automorphisms
of the integral homology lattice of Σ which preserve the intersection form.

Another question about the image of the mapping class group concerns its group
theoretic structure. It is known that Dehn twists are represented by matrices of
order p; are there any other relations in the image that don’t already hold in
the mapping class group? For the torus without boundary, there must be more
relations, because the image is known to be a finite group (Gilmer [4]). But for the
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torus with one boundary component, I can show that there are no other relations.
One may wonder whether this is a general fact for hyperbolic surfaces, and if so,
what is its geometric meaning?

Bases of the vector space Vp(Σ) are well understood in terms of admissible
colorings of uni-trivalent graphs. But the Z(ζp)-span of such a graph basis is
almost never invariant under the mapping class group, and hence cannot be equal
to the integral lattice Sp(Σ). In [7], we show that Sp(Σ) admits what we call
graph-like bases associated to a special kind of uni-trivalent graph which we call
a lollipop tree. Roughly speaking, a graph-like basis is obtained from the usual
graph basis associated to the lollipop tree by the composition of two operations:
a certain triangular base change, and some rescaling depending on the colors. For
precise definitions, see [7].

Integral TQFT contains more topological information than the usual TQFT
over a field. For example, it allows to study embedding questions as follows. Con-
sider the following problem. Given an orientable compact connected 3-manifold
N with boundary ∂N = Σ, does it embed into the 3-sphere? This translates in
TQFT to a condition on the vector v = vp(N) in Vp(Σ) associated to N : since

N ∪ (S3 −N) = S3

there must be a vector v′ (namely v′ = vp(S
3 −N)) such that

〈v, v′〉 = 1

(since the quantum invariant of S3 is 1 in the normalization which is relevant here).
In usual TQFT, this condition just requires v to be non-zero (since the form 〈 , 〉
is non-degenerate). But in integral TQFT, both v and v′ must lie in the integral
lattice Sp(Σ). This puts lots of restrictions on v, and they may be used to show
in some cases that N does not embed into S3. An example is given at the end of
our paper [7]. More examples can be found in Gilmer [5].

To understand how this works in practice, one needs to know that the integral
lattice Sp(Σ) is exactly the span, over Z(ζp), of the vectors vp(N

′) where N ′

has boundary Σ and no closed components. The numbers 〈v, v′〉 where v′ ∈
Sp(Σ) span an ideal in Z(ζp) which we call the FKB-ideal since Frohman and
Kania-Bartoszynska were the first to consider this kind of quantum obstruction to
embedding one manifold into another [3]. Clearly, if N embeds into S3, then there
is a v′ in Sp(Σ) such that 〈v, v′〉 = 1, so the FKB-ideal is trivial (i.e., contains 1).
But to decide effectively whether such a v′ exist, we need a basis (or at least, a finite
generating set) of Sp(Σ). Frohman and Kania-Bartoszynska could not compute
the ideal except in rather trivial situations. But our integral TQFT-bases from
[7] make their idea into an effective tool. I like to think that this shows at the
same time that integral TQFT, which is defined over a ring of algebraic integers,
represents the actual topological information much more closely than the usual
TQFTs defined over a field.

I would like to close this short report with two more results about TQFT
representations of mapping class groups.
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The first one concerns the relationship between TQFT and the Nielsen-Thurston
classification of mapping classes of surfaces. In my paper [1] with J. E. Andersen
and K. Ueno, we make the following

Conjecture. Let Σ be a compact orientable surface with negative Euler cha-
racteristic and let ρk be the TQFT representation of the mapping class group of
Σ at level k (say for the Reshetikhin-Turaev TQFT associated to some quantum
group). Then a mapping class ϕ has a pseudo-Anosov piece if and only if there
exists k0 = k0(ϕ) such that the matrix ρk(ϕ) has infinite order for all k ≥ k0.

Note that it is easy to see that if ϕ has no pseudo-Anosov piece, then the
matrix ρk(ϕ) has finite order for all k (although ϕ itself may have infinite order
as a mapping class). For more discussion of this conjecture, see [1].

In [1], we prove the conjecture in the SU(n)-case for the mapping class group
M(0, 4) (i.e. when Σ is a four-holed sphere). In the SU(2)-case, we can even
show that the stretching factor of a pseudo-Anosov mapping class ϕ is the limit,
as k → ∞, of the maximal eigenvalue of the TQFT-matrix ρk(ϕ). As already
mentioned in [1], I also know how to prove this for M(1, 1) (i.e. Σ is now a torus
with one boundary component), but the proof in this case involves integral bases
[8].

The second result about TQFT representations I would like to mention is un-
published work of mine from 2005 [9]. It affirms the existence of a limit repre-
sentation (at least on the Torelli group) as the order of the quantum parameter
q = ζp goes to infinity. For this result integral TQFT is crucial and I consider
again the integral SO(3)-TQFT lattices constructed with Gilmer in [7].

Theorem. There exist ordered bases of the integral lattices Sp(Σ) (p an odd
prime), such that for every mapping class ϕ in the Torelli subgroup of the mapping
class group of Σ, and for every (i, j), the matrix entries (ρp(ϕ)ij converge in
Ohtsuki’s sense as p→∞.

Note that since the rank of Sp(Σ) goes to infinity as p → ∞, for every (i, j)
the matrix entry (ρp(ϕ)ij is defined for all big enough p. This matrix entry lies in
Z(ζp). The limit in Ohtsuki’s sense of a sequence of algebraic integers Ip ∈ Z(ζp)
is defined as follows. Write

Ip =

p−2∑

n=0

an,p(ζp − 1)n

where an,p ∈ Z. We say that the sequence Ip converges to a power series

τ =

∞∑

n=0

anh
n ∈ Q[[h]]

if for every n and every prime p >> n, the integer an,p and the rational number
an are congruent modulo p (note that this makes sense for p bigger than the
denominator of an).

This definition goes back to Ohtsuki. If Ip(M) denotes the Reshetikhin-Turaev
invariant of an integral homology sphere M , it is known by H. Murakami [11]
that Ip(M) ∈ Z(ζp) (a skein-theoretical proof of this result was given in my paper
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[10] with J. Roberts; it was the beginning of my interest in integrality questions
in TQFT). Then Ohtsuki showed that Ip(M) converges in the above sense to a
power series τ(M) ∈ Q[[h]] called the Ohtsuki series of M [12].

My theorem stated above generalizes Ohtsuki’s result to the TQFT represen-
tation of the Torelli group. If the integral homology sphere M is obtained in the
usual way from a Torelli mapping class ϕ, we may choose the basis of the lattice
Sp(Σ) such that the invariant Ip(M) is one of the entries of the matrix ρp(ϕ) (in
fact, the entry in the upper left corner of the matrix). While Ohtsuki’s theorem
says that this matrix entry converges as p→∞, my theorem says the same thing
for all matrix entries. Observe that the truth of a statement of this kind will
depend crucially on what basis one chooses. In fact, this convergence result would
not be true without using the integral TQFT bases I found in my work with Gilmer
in [7].

The limit representation can be explicitly described using skein theory, and as
a corollary I obtain a purely skein-theoretical construction of the Ohtsuki series
τ(M). I made some more comments in my talk about this limit representation,
but for lack of space I will not reproduce them here. Hopefully a written account
of this matter will soon appear elsewhere.
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Invariants of genus 2 mutants

Hugh R. Morton

(joint work with Nathan Ryder)

This is a report of joint work with Nathan Ryder, [6].
Genus 2 mutation of knots was introduced by Ruberman [8] in a general 3-

manifold. Cooper and Lickorish [1] give a nice account of an equivalent construc-
tion for knots in S3, using genus 2 handlebodies, and we use their construction.

Genus 2 mutant knots provide a test-bed for comparing knot invariants, in the
sense that they can be shown to share a certain collection of invariants, and so any
invariant on which some mutant pair differs must be completely independent of
the shared collection. This procedure can be refined by restricting further the class
of genus 2 mutants under consideration, so as to increase the shared collection,
and then looking for invariants which differ on some restricted mutants.

In a recent paper [2] Dunfield, Garoufalidis, Shumakovitch and Thistlethwaite
survey some of the known results about shared invariants for genus 2 mutants,
and show that Khovanov homology is not shared in general. They also give an
example of a pair of genus 2 mutants with 75 crossings which differ on their Homfly
polynomial. These are smaller examples than the known satellites of the Conway
and Kinoshita-Teresaka knots [4]. They ask for examples of genus 2 mutants which
don’t share the 2-variable Kauffman polynomial, in the expectation that their 75
crossing knots, which are out of range of current programs for calculating the
Kauffman polynomial, will indeed give such an example.

We have found a number of smaller genus 2 mutant pairs with different Hom-
fly polynomials, and can show that they also have different 2-variable Kauffman
polynomials. The smallest examples to date have 55 crossings.

The fact that their Kauffman polynomials are different can be detected without
having to make a complete calculation. When their Homfly polynomials are com-
pared as polynomials in z with coefficients in Z[v±1] they differ in their constant
term P0(v). Since the constant terms in the Homfly and Kauffman polynomials
for a knot are always the same this establishes quickly that the knots found have
different Kauffman polynomials. This technique does not work for the 75 crossing
knots in [2], since the polynomials P0(v) agree in this case. This is also the case
for the recent examples of Stoimenow and Tanaka [9].

The difference in their Homfly polynomials persists in our 55 crossing examples,
and in some but not all of the other examples, after making the substitution
v = s3. This substitution calculates their quantum sl(3) invariant when coloured
by the fundamental 3-dimensional module. Work of Morton and Ryder [5] on the
Kuperberg skein of the twice punctured disc, which can be used in comparing
the quantum sl(3) invariant of genus 2 mutant knots, in fact pointed us in the
direction of the 55 crossing examples.

Our examples also allow us to make a distinction between the invariants for
general genus 2 mutants and those arising as satellites of Conway mutant knots.
Our examples include a pair of genus 2 mutants which differ on a degree 7 Vassiliev
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invariant, while work of Duzhin [3] ensures that satellites of Conway mutants share
all Vassiliev invariants of degree ≤ 8, extended to degree 10 more recently by Jun
Murakami [7].
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Simple formulas for 3-manifold invariants

Michael Polyak

1. Casson-Walker Invariant

The Casson-Walker invariant λ(M) of rational homology 3-spheres is one of the
fundamental invariants in 3-manifold topology [1, 6]. It is an integer extension of
the Rokhlin invariant. In the theory of finite type invariants of 3-manifolds it is
the simplest Z-valued invariant after |H1(M)|.

For a manifold M = ML obtained from S3 by surgery on a framed link L
λ(M) remains, however, in general quite difficult to compute. While it is easy to
calculate if L is a knot [2], the same question for links remains quite complicated.
In particular, for 2-component links only some special cases were studied (see e.g.
[3]).

We present a simple diagrammatic formula (in the spirit of [4, 5]) for calculating
λ(ML) for spheres presented by 2-component framed links. The formula helps us
to understand/separate the dependence of the invariant on the link L and on the
surgery coefficients.
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Theorem 1. Let L be an oriented, framed 2-component link with the linking
matrix L =

(
a b
b d

)
and det(L) 6= 0. Denote by signature(L) the signature of the

bilinear form defined by L. Let G be a Gauss diagram of L with the blackboard
framing. Then

det(L)

(
λ(ML)

2
+

signature(L)

8

)
=

〈
1 2 1 2 21 1 2− − −− , G

〉

+
b3 − b

12
− (a+ d)(2b2 − ad− 2)

24

Here the pairing 〈A,G〉 denotes the algebraic number of subdiagrams of G isomor-
phic to A. Each such subdiagram of G is counted with its sign, which equals to the
product of signs of all its arrows.

2. Surgery on graphs and extension of invariants

We also introduce a notion of surgery on framed knotted graphs. This allows us
to reduce the operation of handle slide to a simple local move. Finally, we extend
Gauss diagram formulas for invariants from links to graphs.

To prove that an invariant of framed links gives an invariant of 3-manifolds,
one should check that it is preserved under (de)stabilization and handle slides.
Unfortunately, handle slide is not a local move, and is therefore difficult to check.
We reduce it to a simple local “fusing/unfusing” move, fusing two link compo-
nents together into a ribbon Θ-graph, pulling one of the 3-valent vertices along by
isotopy, and unfusing the link components. For this purpose we introduce surgery
on framed knotted trivalent graphs similarly to surgery on links – cutting out a
tubular neighborhood of each component, gluing discs in an appropriate way de-
trmined by the framing, and finally gluing in 3-balls to the remaining boundary
components.

It turns out that Gauss diagram invariants of framed links which are invariant
under handle slides naturally extend to knotted graphs. A problem of extension
is of an independent interest and has various applications.

For example, the simplest finite type invariant of 3-manifolds is |H1(M)|. For
a manifold otained by surgery on a 2-component framed link L in S3, it equals
| det(L)|. It turns out that the determinant is easy to extend to Θ-graphs:

Theorem 2. For a knotted Θ-graph with a Gauss diagram G one has

det(Θ) =
〈

+ − − −+ , G
〉
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Some algebraic structures, and representations of Hopf algebras,
leading to invariants of knots and links

David E. Radford

There are very basic algebraic structures, generalizations of quasi-triangular Hopf
algebras, which account for regular isotopy invariants of 1-1 tangles or knots and
links [7, 9, 11, 12, 13]. Twist quantum algebras give rise to invariants of unoriented
knots and links. Invariants of oriented knots and links come from their twist
oriented counterparts. See [15] for a survey. There is a corresponding structure
for virtual links [8].

Let k be a field. A basic structure for us is a Yang-Baxter algebra, a pair
(A, ρ), where A is an algebra over k and ρ ∈ A⊗A is an invertible solution to
the quantum Yang-Baxter equation. A twist quantum algebra over k is a tuple
(A, ρ, s,G), where (A, ρ) is a Yang–Baxter algebra, s : A −→ Aop is an algebra
isomorphism such that ρ = (s⊗s)(ρ) and ρ−1 = (s⊗I)(ρ), and G ∈ A is invertible
and satisfies s(G) = G−1 and s2(a) = GaG−1 for all a ∈ A. If (A, ρ, v) is a ribbon
Hopf algebra with antipode s then (A, ρ, s,G) is a twist quantum algebra, where
G = uv−1 and u is the Drinfel’d element of A. Basic examples of quasditriangular
Hopf algebras are (D(H), ρ), where H is any finite-dimensional Hopf algebra over
k. A necessary and sufficient condition is found for (D(H), ρ) to have a ribbon
element in [10].

A final ingredient is needed to construct regular isotopy invariants of unoriented
knots and links from a twist quantum algebra (A, ρ, s,G); namely a tracelike func-
tional tr : A −→ k which satisfies tr◦s = tr. Tracelike means tr(ab) = tr(ba)
for all a, b ∈ A. Generally there are many possibilities for tracelike functionals
[18]. Regular isotopy invariants are computed via the “bead sliding” formalism of
[7]. See [9, 13] also. That the Jones polynomial can be derived from such a twist
quantum algebra structure on A = M2(k) is shown in [7].

A twist oriented quantum algebra is a tuple (A, ρ,D,U,G), where (A, ρ) is a
Yang–Baxter algebra, D and U are commuting algebra automorphisms of A such
that ρ is invariant under D⊗D, U⊗U , and (I⊗U)(ρ), (D⊗I)(ρ−1) are inverses
in the algebra A⊗Aop, and finally G ∈ A is invertible, invariant under D and
U , and (D◦U)(a) = GaG−1 for all a ∈ A. A basic example: if (A, ρ, s,G) is a
twist quantum algebra over k then (A, ρ, I, s−2, G−1) is a twist oriented quantum
algebra over k. If (A, ρ) is a quasitriangular Hopf algbebra with antipode s over
k then (A, ρ, I, s−2, u−1) is a twist oriented quantum algebra over k.
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Regular isotopy invariants of oriented knots and links are computed from a
twist oriented quantum algebra via bead sliding formalism and the additional
ingredient of a tracelike functional tr : A −→ k which satisfies tr◦D = tr and
tr◦U = tr. To compute invariants there is no loss of generality in assuming D = I.
Such a twist oriented quantum algebra is called standard. Note that (A, ρ, I, U,G)
is determined by the triple (A, ρ,G) and the conditions on a tracelike function are
automatically satisfied. The triple is (A, ρ,G) described by very simple axioms.

There is a rich algebraic theory of these objects which involves their representa-
tions [11, 12]. Representations have a similar algebraic structure and thus account
for invariants as well. The reason is quite general.

Suppose that (A, ρ,G) determines a standard twist oriented quantum algebra as
above and f : A −→ B is an algebra homomorphism. Then (B, (f⊗f)(ρ), f(G))
determines a strandard oriented quantum algebra. Suppose further that trA :
A −→ k and tr : B −→ k are tracelike functions. If trA = trB◦f then the invari-
ants derived from (A, ρ,G) and (B, (f⊗f)(ρ), f(G)) and their respective tracelike
functions are the same. Strict oriented quantum algebra structures on A give
rise to strict oriented quantum algebra structures on representations of A, and via
these structures invariants derived from representations are invariants arising from
strict twist oriented algebra structures on A.

The classification of finite-dimensional pointed Hopf algebras over an alge-
braically closed field of characteristic zero whose coradical is commutative has
been completed to a very satisfactory degree [1, 2, 3, 4, 5, 6]. These Hopf algebras
include the very important “small quantum groups” and thus form a fundamental
class of finite-dimensional Hopf algebras [14]. Hopf algebras of special interest
are A = u(D, λ, 0), where D = (Γ, (gi)1≤i≤θ, (χi)1≤i≤θ, (ai,j)1≤i,j≤θ), where Γ is

a finite abelian group, gi ∈ Γ, χi ∈ Γ̂ is a k-valued character, and (ai,j) is a ma-
trix of finite Cartan type. λ = (λi,j)1≤i,j≤θ is a family of scalars called linking
parameters. The conditions

χj(gi)χi(gj) = χi(gi)
ai,j and χi(gi) 6= 1

are satisfied for all 1 ≤ i, j ≤ θ.
We do not write down the generators and relations for u(D, λ, 0) here. The

reader is referred to [2]. In our examples the root vector relations are zero; gener-
ally they are not.

Work on the general representation theory of these algebras is well under way
[16, 17]. As we have seen combinatorial data determines these Hopf algebras.
Characterization of data which gives rise to quasi-triangular Hopf algebras, and
nature of the resulting invariants, especially those arising through their represen-
tations, are problems whose time has come.
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Clock Moves and Combinatorial Knot Homology

Yongwu Rong

(joint work with Kerry Luse)

This talk is motivated by an attempt to reconstruct the combinatorial knot
homology by Manolescu, Ozsvath, and Sarkar [MOS] using the clock moves intro-
duced by Kauffman [K83]. In the past several years, there has been a great deal
of developments in various homology theories for knots and 3-manifolds. In [K00],
Khovanov introduced a graded homology theory for knots, and proved that its
graded Euler characteristic is the Jones polynomial. In a series of papers, Ozsvath
and Szabo developed what they call the ”Heegaard Floer homology” theory. The
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corresponding theory for knots was also independently developed by Rasmussen.
In this case, the graded Euler characteristic is the Alexander polynomial.

The Heegaard Floer homology is considered as a milestone towards an easier
approach to the gauge theory type invariants over the past two decades. It is almost
entirely combinatorial, except for the Maslov grading that is still needed. This was
finally resolved in a 2006 paper by Manolescu, Ozsvath, and Sarkar [MOS], where a
combinatorial description of the Heegaard Floer homology for links in S3 is given.
Their chain complex, while entirely combinatorial and certainly beautiful, is quite
complicated. It is generated by n! generators where n is the size of the ”grid
diagram” of the link. An interesting problem is to find a simpler combinatorial
description for the Heegaard Floer homology.

In this talk, we explain a graded homology theory, the clock homology, using a
state sum model of the Alexander polynomial and the clock moves due to Kauff-
man. For each link diagram D represented by a (1,1) tangle, its states are as-
signments, for each crossing, of a dot to a region adjacent to that crossing such
that each of the bounded regions of D contains exactly one dot. One defines the
Alexander grading and the Maslov grading appropriately. The boundary map is
then defined using a restricted version of Kauffman’s clock moves. This does yield
a graded chain complex whose Euler characteristic is the Alexander polynomial
of the link. Unfortunately, the homology groups are not always preserved under
Reidemeister moves. Therefore, we are unable to achieve our goal of reconstruct-
ing the knot Floer homology. Nonetheless, we do have a homology theory for link
diagrams that categorifies the Alexander polynomial.

The idea of applying clock moves to knot homologies is natural, and several
participants indicated that they have looked into this. One may want to modify
the differentials to get topological invariance. Presumably this can be done by
translating the counting of gradient flows of pseudoholomorphic disks in the origi-
nal definition by Ozsvath-Szabo and Rasmussen. It is also natural to see whether
one can extract topological invariants, beyond the Alexander polynomial, from
these groups. Some specific questions are as follows.

(1) Study how the clock homology behaves under Reidemeister moves. This
may help to modify the construction here to yield a topological invariant.

(2) Explore the possibility of extracting a topological invariant from the clock
homology. Certainly the Alexander polynomial is an invariant extracted
from these groups. We would like to know if one can obtain information
beyond the Alexander polynomial.

(3) Understand relationships between the clock homology and the knot Floer
homology. Peter Ozsvath has pointed out the existence of a spectral se-
quence starting at the clock homology and converging to knot Floer homol-
ogy. It would be interesting to use this connection to determine inductively
all the differentials needed to get topological invariance.

(4) Study the clock homology as an invariant of link diagrams, to see if it
could give an estimate on the number of Reidemeister moves between
two given diagrams of the same knot. This certainly depends on a good
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understanding of the behavior of the clock homology under Reidemeister
moves (see Problem 1).

We wish to thank Marta Asaeda, Charlie Frohman, Vassily Manturov, and
others for their comments during the workshop.
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Categorification and virtual knots

Lev Rozansky

(joint work with Mikhail Khovanov)

1. A 2-variable HOMFLY-PT polynomial and categorification

program

In [4] we categorify the 2-variable HOMFLY-PT polynomial, thus extending our
SU(N) HOMFLY-PT categorification [3] as well as the previous results of Soergel
[6] and Rouquier [5], who worked out the commutative algebra categorification of
the Hecke algebra.

The 2-variable HOMFLY-PT polynomial PL(q, t) is an invariant of an oriented
link L defined by the famous skein relation

t

??__

− t−1

??__

= (q − q−1)

??__

(1)

and the normalization condition

Punknot(q, t) =
t− t−1

q − q−1
.(2)

Let α be a diagram of a braid. Its circular closure creates an oriented link diagram
Lα. To a diagram Lα we associate a complex of bigraded vector spaces

C•(Lα) =
(
· · · ∂−→ Ci(Lα)

∂−→ Ci−1(Lα)
∂−→ · · ·

)
, Ci(Lα) =

⊕

j,k

Ci,j,k(Lα)(3)

in such a way that, first, if two diagrams Lα and Lβ represent the same link (that
is, the braids represented by α and β are related by a sequence of Markov moves)
then the corresponding complexes are homotopy equivalent: C•(Lα) ≃ C•(Lβ)
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and, second, the bi-graded Euler characteristic of the complex C•(Lα) is equal to
the HOMFLY-PT polynomial:

PLα
(q, t) =

∑

i,j,k

(−1)i+j t2jqk dimCi,j,k(Lα).(4)

2. A categorification of the braid group algebra

Let us sketch the construction of C•(Lα) in terms used in [2] in order to establish
the relation between the results of [4] and those of Soergel [6] and Rouquier [5].
Fix a set of ‘incoming’ variables x = x1, . . . , xn and a set of outgoing variables
y = y1, . . . , yn. To an n-strand braid diagram α Rouquier associates a complex of
Q[x,y]-modules

α̂•;x,y =
(
· · · ∂−→ α̂i;x,y

∂−→ α̂i−1;x,y
∂−→ · · ·

)
.(5)

The modules α̂i;x,y are ‘q-graded’: deg q xi = deg q yi = 2.
The assignment α 7→ α̂•;x,y satisfies three properties. First, if the diagrams

α and β define the same braids, then their complexes are homotopy equivalent:

α̂•;x,y ≃ β̂•;x,y. Second, to a composition of braids αβ one associates a Q[y] tensor
product of modules:

α̂β•;x,z = α̂•;y,z ⊗Q[y] β̂•;x,y.(6)

Third, for an n-strand braid α and an m-strand braid β let α × β denote an
(n+m)-strand braid constructed by placing α and β ‘side-by-side’. Then to α×β
one associates a Q tensor product of modules:

α̂× β•;x,x′,y,y′ = α̂•;x,y ⊗Q β̂•;x′,y′ .(7)

The relations (6) and (7) indicate that in order to construct the complex α̂•;x,y,
it is sufficient to define it appropriately for the ‘identity’ 1-strand braid and for

two elementary 2-strand braids
??__

and
??__

. The choice for the 1-strand braid
module complex is determined by the rule (6): it is just the module

̂
x // y = Q[x, y]/(y − x).(8)

In order to construct the complexes
̂??__

and
̂??__

one has to extend the notion
of a braid by allowing braided graphs of a special kind. Following Soergel [6],

one allows the element
__ ??••
��������

��������
to be a part of a braid diagram. The HOMFLY-PT

polynomial of a graph-link diagram, which includes the elements
__ ??••
��������

��������
, is defined

through the relations

__ ??

•
•
��������

��������

= t

??__

+ q−1

??__

= t−1

??__

+ q

??__

.(9)
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Soergel chose the associated Q[x,y]-module as

̂
__ ??

•
•
��������

��������

x,y

= Q[x,y]/(y1 + y2 − x1 − x2, y1y2 − x1x2) {1} ,(10)

where {1} denotes the q-degree shift. Since, according to eqs. (8) and (7),

?̂?__

x,y

= Q[x,y]/(y1 − x1, y2 − x2),(11)

there exist two homomorphisms (of lowest possible q-degree)

̂
__ ??

•
•
��������

��������

χout=1
//

?̂?__

χin=y2−x1

oo , deg q χin = deg q χout = 1.(12)

The formulas (9) can be used to express the crossings
??__

and
??__

in terms of

the elementary graph
__ ??••
��������

��������
:

??__

= t−1




__ ??

•
•
��������

��������

− q−1

??__


 ,

??__

= t




__ ??

•
•
��������

��������

− q
??__


 .

(13)

Motivated by these relations, Rouquier chose the categorification complexes for
elementary braids as

?̂?__

=




̂
__ ??

•
•
��������

��������

1

2

χout
//

?̂?__

− 1

2

{1}




〈
1

2

〉
,(14)

?̂?__

=




?̂?__

1

2

{−1} χin
//

̂
__ ??

•
•
��������

��������

− 1

2




〈
−1

2

〉
,(15)

where 〈1〉 denotes a shift of the t-degree. Note that the formula (4) indicates that
t-degree is of homological nature, hence total homological degrees of the modules
in eqs. (14) and (15) are integer despite half-integer degree shifts.

3. Braid closure and Hochschild homology

Now it remains to turn the braid complex α̂•;x,y (constructed by taking the
tensor products (6) and (7) of the elementary complexes (14) and (15)) into a
link complex C•(Lα). The idea is to apply the Hochschild homology to individual
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modules of the complex (5) (considered as bimodules over Q[x]). For an individual
module α̂i;x,y, its Hochschild homology is defined as torsion

(16) HH•(α̂i;x,y) = Tor•(α̂i;x,y,1x,y), where1x,y = Q[x,y]/(y1 − x1, . . . , yn − xn).

In other words, one can start with a Koszul resolution of the module 1x,y1free
x,y =

n⊗

i=1

(
Q[x,y]1

yi−xi // Q[x,y]0

)
(17)

and take the δ-homology of its tensor product with α̂i;x,y:

HH•(α̂i;x,y) = H
δ
•

(
α̂i;x,y ⊗Q[x,y] 1free

x,y

)
,(18)

where δ is the total differential of the Koszul complex (17). The q-degree shifts of
the resolution modules have to be arranged in such a way that deg q δ = 2. The
Hochschild homology degree translates into t-degree (that is, it becomes the index
j of Ci,j,k(Lα)).

Now we define

C•(Lα) = HH(α̂•;x,y)[−n/2]〈n/2〉{−n}(19)

=
(
· · · ∂−→ HH(α̂i;x,y)

∂−→ HH(α̂i−1;x,y)
∂−→ · · ·

)
,

where [1] denotes the shift of the homological degree of the categorification com-
plex (3). The simplest case of this formula is a categorification complex for the
unknot which, up to a degree shift, is the Hochschild homology of the algebra Q[x].
It is easy to verify that its graded Euler characteristic is precisely (2).
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Cohomology Theories of Frobenius Algebras and Applications

Masahico Saito

Frobenius algebras are used for Khovanov homology [7] in relation to 2D-TQFT.
The relation between categorifications of knot polynomials to Hochschild coho-
mology of associative algebras was pointed out in [11], and further used in [8].
This is one of the situations that make it interesting to explore cohomology theo-
ries of Frobenius algebras in analogy with Hochschild cohomology of algebras and
bialgebras.

A series of work [2, 3, 4] gave a unified view on self-distributive operations and
their cohomology theories in coalgebra category, that include quandles, Lie alge-
bras and adjoint maps of Hopf algebras. These are related by constructions of low
dimensional cohomology theories by deformations and graph diagrams. Following
these ideas, we define cohomology theories for Frobenius algebras.

We construct chain complexes [1] for Frobenius algebras from deformations of
associativity, coassociativity and compatibility of multiplications and comultipli-
cations of Frobenius algebras, also using graph diagrams and polyhedrons. The
2-cocycles are explicitly computed, and used to find deformations of R-matrices.
Variations of differentials will be discussed.

We expand this view of self-distributivity to state-sum invariants of 3-manifolds
constructed by triangulations, Heegaard splittings and framed links, including
those found in [9, 10] for example, and make direct connections between manifold
structures and self-distributive structures. For example, Hopf algebra invariants
[10] assign the adjoint map to each crossing of a knot diagram. On the other hand,
the multiplication of quantum double is constructed from the adjoint map and gives
rise to the R-matrix used in [9]. Self-distributive operations are visualized from
manifold structures in each context. Methods used for quandle cocycle invariants
are expected to be applied to other cocycle invariants, for example those for 4-
manifolds studied in [6].
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A link invariant from SO(3) representations

Nikolai Saveliev

(joint work with Eric Harper)

In 1992, Xiao–Song Lin [2] introduced an invariant h(K) of knots K ⊂ S3 by
counting irreducible representations π1(S

3−K) −→ SU(2) sending the meridians
of K to trace zero matrices. He computed his invariant using the skein model and
discovered that

h(K) =
1

2
sign(K).

This somewhat mysterious equality has since been generalized in several directions,
see for instance Herald [1], and found a number of applications in equivariant gauge
theory and other areas.

In the spirit of Lin’s construction, we introduce an invariant h(L) of two–
component links L ⊂ S3, in any of the following three equivalent ways, compare
with [4] :

• count representations π1(S
3 − L) −→ SO(3) that do not lift to SU(2)

representations;
• let T be a tunnel in S3−L connecting the two link components, then count

representations π1(S
3− (L∪ T )) −→ SU(2) that send the meridian of T

to −1;
• count gauge equivalence classes of flat connections in the SO(3) bundle

over S3 − L with the non–trivial second Stiefel–Whitney class.

We prove that the invariant h(L) is well defined, and compute it using the
skein model and Milnor’s work [3] on link homotopy. It turns out that, for all
links L = L1 ∪ L2 in S3,

h(L) = ± lk (L1, L2).
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Patterns in odd Khovanov homology

Alexander Shumakovitch

In this talk we discuss properties of an odd version of the Khovanov homology [2]
that was recently introduced by Ozsváth, Rasmussen and Szabó [6]. The odd
Khovanov homology equals the original (even) one modulo 2 and, in particular,
categorifies the same Jones polynomial. In fact, the corresponding chain complexes
are isomorphic as free bigraded Z-modules and their differentials are only different
by signs. On the other hand, the resulting homology theories often have drastically
different properties.

The definition of the odd Khovanov homology is motivated by a paper by
Ozsváth and Szabó [7] where they showed that for every link L there exists a
spectral sequence that has the reduced Khovanov homology of L over Z2 as its
second term and converges to the Heegaard-Floer homology (over Z2) of the dou-
ble branched cover of S3 along L. It is conjectured that a similar spectral sequence
exists for the odd Khovanov homology over Z.

Most of the experimental observations about the odd Khovanov homology that
are discussed below, were obtained using KhoHo, a program by the author to
compute and study the Khovanov homology.

We start by listing properties that are the same for both even and odd Khovanov
homology. First of all, for a non-split alternating link both of them are completely
determined by the Jones polynomial and signature of the link. They both satisfy
the same long exact sequence. The odd Khovanov homology over Z often behaves
similar to the even one over Z2. It was proved by the author [8] that the Khovanov
homology over Z2 equals two copies of the reduced Khovanov homology with an
appropriate grading shift. The same is true [6] for the odd Khovanov homology
over Z. This implies that it is enough to consider the reduced version of the odd
Khovanov homology only.

This is where the similarities end though. While the non-reduced even Kho-
vanov homology has many torsion factors, most of which have even order (the
first known example of a knot with odd torsion in the original Khovanov homol-
ogy, the (5,6)-torus knot, has 24 crossings), and the first knot with torsion in the
reduced even Khovanov homology has 13 crossings, the odd Khovanov homology
has plenty of torsion of all orders. The most common one is 2- and 3-torsion, but
other torsion orders appear frequently as well.

Odd Khovanov homology is much better at detecting quasi-alternating knots [4]
than the even one. The class of quasi-alternating knots and links is defined recur-
rently as the smallest one that contains the unknot and has a property that if a
link L has a plane diagram D such that two Kauffman resolutions of this diagram
at one crossings represent two links L0 and L1 that are both quasi-alternating
and, moreover, det(L) = det(L0) + det(L1), then L is quasi-alternating as well.
Because of the recurrent definition, it is often highly non-trivial to show that a
given link is quasi-alternating. It is equally challenging to show that it is not.
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To proof the latter, one usually employs the fact that quasi-alternating knots
have homologically thin Khovanov homology over Z and Knot Floer homology
over Z2 (see [4]). The same also can be shown for the odd Khovanov homology.

After the work of Champanerkar and Kofman [1], there were only two knots, 946

and 10140 in Rolfsen notation, for which it was not known whether they are quasi-
alternating or not. Both of them have homologically thin Khovanov and Knot
Floer homology. On the other hands, computations with KhoHo have shown that
these knots have homologically thick odd Khovanov homology. More precisely, the
free parts of their homology are located along one diagonal, while there is a single
finite cyclic homology group of order 3 that is located outside of that diagonal.
It is worth mentioning that the knots 946 and 10140 are (3, 3,−3)- and (3, 4,−3)-
pretzel knots respectively. As it turns out, (n, n,−n)- and (n, n + 1,−n)-pretzel
links for n ≤ 6 all have torsion of order n. This suggest a certain n-fold symmetry
on the chain complex for the odd Khovanov homology for these pretzel links that
cannot be explained by the construction.

Another application of the odd Khovanov homology is in finding bounds for the
Thurston-Bennequin number of knots. It was shown by Ng [3] that the Khovanov
homology can be used to provide an upper bound for this number. This bound is
often better than those that were known before. There are only two knots with
up to 13 crossings for which the Khovanov homology bound on the Thurston-
Bennequin number is worse than the one coming from the Kauffman polynomial.
As it turns out, the odd Khovanov homology bound is equally good than the
Kauffman one for these two knots. This means that this bound is the best among
all currently known ones for all knots with at most 13 crossings.

Finally, it turns out that the odd Khovanov homology might have only torsion
in homological grading 0. The first such knot has 10 crossings. There is one
more with 11 crossings and 8 more with 12. This is very surprising, since the
even Khovanov homology must have rank of at least 2 in homological grading 0.
What is even more interesting is that such knots appear to have special properties,
namely being transversely non-simple.

A (topological) knot type is said to be transversely non-simple, if it has two
transverse representatives with respect to the standard contact structure on R3

that are different as transverse knots but have the same self-linking number. The
first example of a transversely non-simple knot, a (2,3)-cable of the trefoil, was
found by Etnyre and Honda in 2005. More examples were found by Birman and
Menasco in 2006 and later by Ng, Ozsváth and Thurston [5] using the Knot Floer
homology. Comparison with [5] and personal communication with Lenhard Ng
show that many if not all of the knots with only torsion in homological degree 0
are transversely non-simple. This observation has no explanation at the moment.
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Quantizations of Character Varieties and Quantum Knot Invariants

Adam S. Sikora

Witten introduced (in a mathematically non-rigorous way) a family of invariants of
3-manifolds defined by path integrals with Chern-Simons action. These invariants
fit into the framework of the topological quantum field theory which associates
with each semi-simple Lie group G, a positive integer r, and a closed orientable
surface F , a Hilbert space VG,r(F ), quantizing the moduli space, XG(F ), of flat
G-connections over F. (If G is a complex reductive algebraic group then XG(F ) is
the G-character variety of π1(F ).)

Witten’s quantum invariants of a 3-manifold M with boundary F are vectors
IG,r(M) ∈ VG,r(F ), for r = 2, 3, ... Although they have been rigorously defined by
Reshetikhin and Turaev, [RT], a (mathematically rigorous) geometric interpreta-
tion of IG,r(M) in the context of moduli spaces of flat connections is still missing.
Weitsman and Jeffrey, [W, JW], suggested that IG,r(M) can be defined via a
quantization of XG(∂M) with polarization given by a foliation of MG(∂M) by
Lagrangian submanifolds, one of which is the image of XG(M) in XG(∂M). (This
approach is based on the fact that XG(∂M) is a symplectic manifold, [Go1], and
the image of XG(M) in XG(∂M) is an isotropic submanifold, [Go2].) Motivated
by their approach we propose the following conjecture:

Conjecture 6. The Witten-Reshetikhin-Turaev quantum invariants, IG,r(M) ∈
VG,r(F ), for all r determine the image of XG(M) in XG(∂M).

If true, the above conjecture provides a very strong connection between the
topology of 3-manifolds and their quantum invariants. G-quantum invariants of
3-manifolds can be generalized to invariants of oriented framed links in 3-manifolds
labeled by representations of G. It is easy to prove that the following statement
similar to Garoufalidis’ AJ-conjecture, [Ga2], is a special case of Conjecture 6.

Conjecture 7. For every complex reductive G, the quantum G-invariants of a knot
K ⊂ S3 determine the image of XG(π1(S

3 \K)) in XG(torus). (Equivalently, if
knots K1,K2 have the same G-quantum invariants then the images of XG(π1(S

3 \
Ki)) in XG(torus) coincide.)



1222 Oberwolfach Report 22/2008

As the relation between quantum invariants and character varieties in the above
conjecture is implicit only, our goal is to make it explicit, by building upon the
work of Garoufalidis and Le on q-holonomicity of quantum invariants.

Let WRTg,V (L) be the Witten-Reshetikhin-Turaev Uq(g)-quantum invariant of
a link L ⊂ S3 whose all components are labeled by a representation V of g. It
is a polynomial in q±1/D(g), where D(g) is the determinant of the Cartan matrix
of g. Given a Cartan subalgebra h ⊂ g and fixed positive roots of g, each finite
dimensional irreducible representation of g is determined by its highest weight.
Therefore, if we denote the g-representation with the highest weight λ by V (λ)
then λ −→ WRTg,V (λ)(L) is a function defined on the set of all dominant weights.
We extend this function to the entire weight lattice of g, Λg as follows:

Each λ ∈ Λg defines the Verma module M(λ) which is an infinite-dimensional
indecomposable g-module of highest weight λ such that each indecomposable g-
module of highest weight λ is a quotient of M(λ). Rozanski (for sl(2)) and Le (for
all g) observed that Reshetikhin-Turaev construction of quantum invariants for
knots (but not links) makes sense for all Verma modules of g. Furthermore,

(1) WRTg,M(λ)(K) = WRTg,V (λ)(K),

for all dominant weights λ. Let

(2) Jg,K : Λg −→ C[q±1/D(g)], Jg,K(λ) = WRTg,M(λ−ρ)(K),

where ρ is the half-sum of positive roots of g. We call it the g-Witten-Reshetikhin-
Turaev function of K. Due to the shift by ρ in (2) Jg,K is equivariant with respect
to the Weyl group action on the weight lattice of g :

Proposition 8. For every element w of the Weyl group,

Jg,K(w · λ) = sgn(w) · Jg,K(λ),

where sgn(w) = ±1 is the sign of w.

Example 9. For g = sl(2), ρ = 1 ∈ Λg = Z. Jg,K(0) = 0, Jg,K(1) = 1, and Jg,K(2)
is the Jones polynomial of K. More generally, Jg,K(n) is the Jones polynomial of K
colored by the n-dimensional representation for n ≥ 1 and Jg,K(n) = −Jg,K(−n)
for negative n.

We are going to argue that Jg,K encodes the g-quantum invariants of K in a
form which is very useful in the context of Conjecture 7. For that consider the
C[q±1/D(g)]-vector space F (Λg,C[q±1/D(g)]) of all C[q±1/D(g)]-valued functions on
Λg and two families of operators on it:

Eαf(β) = f(α+ β), Qαf(β) = q(α,β)f(β),

for all α, β ∈ Λg. Let Ag be the algebra of C[q±1/D(g)]-linear endomorphisms of

F (Λg,C[q±1/D(g)]) generated by Eα’s and Qα’s for α ∈ Λg. Asl(2) is the q-torus
algebra of [GL].

Theorem 10. (1) For every complex reductive algebraic group G and its Lie alge-
bra g, AWg is a deformation-quantization of XG(torus).
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(2) For every classical group, G = GL(n,C), SL(n,C), O(n,C), Sp(n,C), this
deformation-quantization is in the direction of Goldman bracket.

For any f : Λg −→ C[q±1/D(g)] the set

If = {P ∈ Ag : Pf = 0} ⊂ Ag

is a left-sided ideal in Ag called the recursive ideal of f, c.f. [Ga1]. This term
reflects the fact that each element of If represents a recursive relation for f. By
adapting the definition of [GL], one can define the q-holonomicity of f and prove
it for Jg,K for g 6= G2. (Roughly speaking, function f is q-holonomic iff If is ”as
large as possible”.)

The Weyl group of g acts on F (Λg,C[q±1/D(g)]) by w · f(α) = f(w−1 ·α). (The
inverse is needed to make sure that this is a left action.) Additionally, W acts
on Ag via w · Eα = Ew·α, w · Qα = Qw·α, and this action is compatible with the

W -action on F (Λg,C[q±1/D(g)]). We call the W -invariant part of the recursive
ideal, IW

g,K ⊳ AW
g
, the invariant g-recursive ideal of K.

Conjecture 11. For every g and K, Jg,K is uniquely determined among W -equi-
variant functions (i.e. functions satisfying the statement of Proposition 8) by a
finite number of its values together with the recursive relations of IW

g,K .

In [S] we relate the ideal IW
g,K ⊳ AW

g
to the topology of S3 \K in two different

ways: an algebraic one (using character varieties, related to Conjecture 7) and a
”quantum topological” way (using skein modules of S3 \K). Here is a summary
of the first approach:

By Theorem 10, there is a C-algebra homomorphism

(3) ε : AW
g
−→ C[XG(Z2)]

given by evaluation q = 1.
Given a knot K ⊂ S3, let MK be the compactification of S3 \K with boundary

torus, ∂Mk = T . The embedding ∂MK →֒ MK defines a homomorphism φK :
C[XG(T )] −→ C[XG(MK)] whose kernel we denote by AG,K . We call it the AG-
ideal of K. The reason for this name is that the AG-ideal of K for G = SL(2,C)
determines the A-polynomial of K of [CCGLS].

Conjecture 12. The zero set of ε(IW
g,K) ⊳ C[XG(T )] is the closure of the image of

XG(MK) −→ XG(T ). Equivalently,
√
ε(IW

g,K) = AG,K ,

where
√· denotes the nil-radical.

We can prove some simple special cases of this conjecture. We can also prove
that Conjecture 12 for a given K and g implies the AJ conjecture (Conjecture 2
and Question 1 of [Ga2]). Nonetheless, Conjecture 12 appears stronger than the
AJ conjecture.



1224 Oberwolfach Report 22/2008

References

[CCGLS] D. Cooper, M. Cullere, H. Gillet, D.D. Long, P. B. Shalen, Plane Curves Associated
to Character Varieties of 3-manifolds, Inventiones Math. 118 (1994) pp. 47–84.

[JW] L. C. Jeffrey, J. Weitsman, Half density quantization of the moduli space of flat con-
nections and Witten’s semiclassical manifold invariants, Topology 32 (1993) 509–529.

[Ga1] S. Garoufalidis, Difference and differential equations for the colored Jones function, J.
of Knot Th. and its Ram., 17 (2008) 495–510, arXiv: math.GT/0306229

[Ga2] S. Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings
of the Casson Fest, Geom. Topol. Monographs Vol. 7, Proceedings of the Casson Fest,
291–309.

[GL] S. Garoufalidis, T. T. Le, The colored Jones function is q-holonomic, Geom. and Topol.
9 (2005) 1253–1293, arXiv: math.GT/0309214

[Go1] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math.
54 (1984) 200–225.

[Go2] W. Goldman, unpublished.
[RT] N. Yu. Reshetikhin, V. G. Turaev, Invariants of 3-manifolds via link polynomials and

quantum groups, Invent. Math. 103 547–597.
[S] A.S. Sikora, Quantizations of Character Varieties and Quantum Knot Invariants,

preprint.
[W] J. Weitsman, Quantization via Real Polarization of the moduli space of flat connections

and Chern-Simons gauge theory in genus 1, Comun, Math. Phys. 137 (1991) 175–190.

Twisted acyclicity of circle and link signatures

Oleg Ya. Viro

Introduction The goal of this talk is to simplify and generalize a part of the
classical link theory based on various signatures of links (Murasugi [5],[6], Tristram
[11], Levine [2] [3] signatures). This part is known for its relations to topology of
4-dimensional manifolds, see [11], [1], and applications in topology of real algebraic
curves [7].

Similarity of the signatures to the new invariants [9], [8], which were defined in
the new frameworks of link homology theories and had spectacular applications
[9], [4], [10] to problems on classical link cobordisms, gives a new reason to revisit
the old theory.

There are two ways to introduce Murasugi-Tristram-Levine signatures: the orig-
inal 3-dimensional, via Seifert surface and Seifert form, and 4-dimensional, via the
intersection form of the cyclic coverings of 4-ball branched over surfaces. Here the
latter approach is developed. Technically the work is based on a systematic use
of intersection forms in the twisted homology of the link complements and other
auxiliary spaces. Only the simplest kinds of twisted homology is used, the one
with coefficients in C.

This approach allows us to generalize the classical links to collections of transver-
sal to each other oriented submanifolds of codimension two.
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Twisted homology In this paper by twisted homology we mean homology with
coefficients in local system, which is a C-bundle with a fixed flat connection, that
is an operation of parallel transport. A local coefficient system of this kind is
defined by the monodromy representation π1(X) −→ C×. The theory is parallel
to the untwisted homology theory, but H0 may be trivial.

Example 1. X = S1, with non-trivial monodromy π1(X) = Z −→ C×, say
µ : 1 7→ a 6= 1. Then ∂σ1 = (a− 1)σ0 6= 0, and H1(X ; Cµ) = H0(X ; Cµ) = 0.

Generalization. X = S1 × Y , π1(X) = Z × π1(Y ). The monodromy is
ϕ × ψ : Z × π1(Y ) −→ C×. Then C∗(X ; Cϕ×ψ) = C∗(S

1; Cϕ) ⊗ C∗(Y ; Cψ) and
H∗(X ; Cϕ×ψ) = H∗(S

1; Cφ)⊗H∗(Y ; Cψ) = 0 ⊗H∗(Y ; Cψ)= 0.
Furthermore, the same holds true for any locally trivial fibration with fiber S1

and non-trivial monodromy along the fiber. Pieces of a space of this kind are
invisible for twisted homology.
Duality Let X be a connected oriented compact manifold of dimension n. Then
Hn(X, ∂X) = Z, Hn(X, ∂X ; C) = C, an orientation of X is a generator of
Hn(X, ∂X).

Pairing of local coefficient systems: Cµ ⊗ Cµ−1 = C induces a non-singular
bilinear intersection pairing Hp(X, ∂X ; Cµ)⊗Hn−p(X ; Cµ−1) −→ C.

Representation µ : π1(X) −→ C× is unitary if µ−1 = µ pointwise: (µ(α))−1 =

µ(α) for any α ∈ π1(X). If µ is unitary, then the conjugation induces a semilinear
bijection Hq(X ; Cµ) −→ Hq(X ; Cµ) = Hq(X ; Cµ−1).

In the case of oriented compact n-dimensional manifold, it turns a non-singular
bilinear intersection pairing Hp(X, ∂X ; Cµ)⊗Hn−p(X ; Cµ−1) −→ C into a non-
singular sesqui-linear intersection pairing Hp(X, ∂X ; Cµ)⊗Hn−p(X ; Cµ) −→ C,
composed with relativization, it gives Hp(X ; Cµ)⊗Hn−p(X ; Cµ) −→ C.

In the middle dimension this is a Hermitian or skew-Hermitian form. If ∂X = ∅,
or ∂X is fibered with fibre S1, then the intersection pairing is non-singular.
Signatures Let M be a compact oriented 2n-dimensional manifold, L1, . . . , Lk
its oriented compact (2n− 2)-dimensional submanifolds transversal to each other
with ∂Li = Li ∩ ∂M , let L = ∪iLi. Let µ ∈ Hom(H1(M r L),C×), and Cµ be
the corresponding local coefficient system on M r L. If n is even, then denote by
σµ(M rL) the signature of the Hermitian intersection form in Hn(M rL; Cµ). If
n is odd, then denote by σµ(M rL) the signature of the Hermitian form obtained

from the skew-Hermitian intersection form in Hn(M rL; Cµ) multiplied by
√
−1.

2. If W is an oriented compact manifold, M = ∂W , and Fi ⊂ W are compact
oriented transversal to each other, Li = ∂Fi, then σµ(M r L) = 0.

3. Let M ′ be another compact oriented 2n-dimensional manifold, L′
1, . . . , L

′
k its

oriented compact (2n−2)-dimensional submanifolds transversal to each other with
∂L′

i = L′
i∩∂M ′, and L′ = ∪iL′

i. Let M ∩M ′ = ∂M ∩∂M ′ be a compact manifold
of dimension 2n− 1 and the orientations induced on M ∩M ′ from M and M ′ are
opposite to each other.

Let µ′ ∈ Hom(H1(M
′ rL′),C×), and Cµ′ be the corresponding local coefficient

system on M ′ rL′ and Cµ|M∩M ′ = Cµ′ |M∩M ′ . Assume that ∂(M ∩M ′) is fibered
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with fibers circles on which µ is non-trivial. Then σµ∪µ′((M ∪M ′) r (L ∪ L′)) =
σµ(M r L) + σµ′(M ′ r L′).

Corollary 4. σµ(M r L) is invariant with respect to cobordisms of
(M ;L1, . . . , Lk;µ).

Link signatures Let L = L1 ∪ · · · ∪ Lm ⊂ S3 be a classical link, ζi ∈ C, |ζi| = 1,
ζ = (ζ1, . . . , ζm) ∈ (S1)m and µ : π1(S

3 r L) −→ C× takes a meridian of Li
to ζi. Let Fi ⊂ D4 be smooth oriented surfaces transversal to each other with
∂Fi = Fi ∩ ∂D4 = Li. Extend µ to D4 r ∪iFi.

In H2(D
4 r ∪iFi; Cµ) there is a Hermitian intersection form.

Theorem 5. Its signature σζ(L) does not depend on F1, . . . , Fm.

Proof. Any F ′
i with ∂F ′

i = F ′
i ∩ ∂D4 = Li is cobordant to Fi. The cobordisms

Wi ⊂ D4 × I can be made pairwise transversal. They define a cobordism D4 ×
I r ∪iN(Wi) between D4 r ∪iN(Fi) and D4 r ∪iN(F ′

i ). The boundary of the
cobordism consists of D4 r∪iN(Fi), D

4 r∪iN(F ′
i ) and a homologically negligible

part ∂(N(∪iWi)), the boundary of a regular neighborhood of the cobordism ∪iWi

between ∪iFi and ∪iFi. Hence, σ(D4 r ∪iFi) = σ(D4 r ∪iF ′
i ).

The same arguments work for L = ∪mi=1Li, where Li are oriented submanifolds
of codimension 2 of S2n−1 transversal to each other, and Fi are submanifolds of
D2n transversal to each other.

If n is odd, then the intersection form in Hn(D
2nr∪iFi; Cµ) is skew-Hermitian.

Multiply it by i =
√
−1 and denote the signature of the Hermitian form by σζ(L).

Digression on higher dimensional links. There is a spectrum of objects con-
sidered generalizations of classical links. The closest higher-dimensional counter-
part of classical links are pairs (Sn, L), where L is a collection of its disjoint smooth
submanifolds diffeomorphic to Sn−2. Then the restrictions to submanifolds are
weakened, but the submanifolds are usually required to be disjoint.

I suggest to allow transversal intersections of the submanifolds. Here are a few
arguments in favor of this. In the classical dimension it is easy to be disjoint.
Generic submanifolds of codimension 2 in a manifold of dimension > 3 intersect.
A link of an algebraic hypersurface H ⊂ Cn with n ≥ 3 cannot be a union of
disjoint submanifolds.
Span inequalities Let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal to
each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm. Let ζi ∈ C be
algebraic numbers with |ζi| = 1, and fi be irreducible integer polynomials with
fi(ζi) = 0. Suppose prime number p divides fi(1) for i = 1, . . . ,m. Let µ :
π1(S

2n−1 r L) −→ C× take a meridian of Li to ζi.
Let Fi ⊂ D2n be oriented compact smooth submanifolds transversal to each

other, with ∂Fi = Fi ∩ ∂D2n = Li. Put F = ∪iFi. Extend µ : π1(S
2n−1 rL) −→

C× to µ : π1(D
2n r F ) −→ C×.

Then |σζ(L)| ≤ dimHn−1(F ; Z/p). Indeed, |σζ(L)| ≤ dimHn(D
2n r F ; Cµ) ≤

Hn(D
2n r F ; Z/p) = dimHn−1(F ; Z/p). Similarly one can prove:
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Theorem 6. For any integer r with 0 ≤ r ≤ n
2

|σζ(L)|+ ∑2r
s=0(−1)s dimHr−1−s(S

2n−1 r L; Cζ)

≤∑2r
s=0(−1)s dimHn−1+s(F,L; Z/p) +

∑2r
s=0(−1)s dimHn−2−s(F,L; Z/p)

Put nrζ(L) =
∑2r

s=0(−1)s dimHn+s(S
2n−1 r ∪mi=1Li; Cµ). This allows us to

rewrite the inequlity of Theorem 6 as follows:
|σζ(L)|+ nrζ(L)

≤∑2r
s=0(−1)s dimHn−1+s(F,L; Z/p) +

∑2r
s=0(−1)s dimHn−2−s(F,L; Z/p)

In particular, |σζ(L)|+ n0
ζ(L) ≤ dimHn(F,L; Z/p) + dimHn−1(F,L; Z/p).

Slice inequalities Again, let L1, . . . , Lm ⊂ S2n−1 be smooth oriented transversal
to each other submanifolds of codimension 2, L = L1 ∪ · · · ∪ Lm. Let ζi ∈ C
be algebraic numbers with |ζi| = 1, and fi be irreducible integer polynomials
with fi(ζi) = 0. Suppose prime number p divides fi(1) for i = 1, . . . ,m. Let
µ : π1(S

2n−1 r L) −→ C× takes a meridian of Li to ζi.

Theorem 7. Let Λi ⊂ S2n be oriented closed smooth submanifolds transversal
to each other and to S2n−1, with ∂Λi ∩ S2n−1 = Li. Put Λ = ∪iΛi. Extend
µ : π1(S

2n−1 r L) −→ C× to µ : π1(S
2n r Λ) −→ C×. Then |σζ(L)| ≤

1
2 dimHn−1(Λ; Z/p)

|σζ(L)|+ n0
ζ(L) ≤ 1

2 dimHn−1(Λ; Z/p) + dimHn−2(Λ rL; Z/p) |σζ(L)|+ nrζ(L) ≤
1
2

∑2r
s=−2r(−1)s dimHn−1+s(Λ; Z/p) +

∑2r
s=0(−1)s dimHn−2−s(Λ r L; Z/p)
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