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Introduction by the Organisers

Following the successful pattern of the meeting in 2005, this year’s workshop on
’Nonlinear Evolution Problems’ focussed on a small number of currently very active
areas in this field. By far the dominant theme, however, were geometric evolution
equations of parabolic type, followed by the topic of wave equations and water
waves/Navier-Stokes equations both in a classical and relativistic framework.

Among the geometric evolution equations, curvature flows of hypersurfaces were
considered with priority. In several talks, applications of these to isoperimetric
problems and to formulation of appropriate local mass concepts were presented.
One talk dealt with mean curvature flow in certain degenerate spaces. Several
talks looked into harmonic and biharmonic map flow as well as Ricci flow.

Among the nonlinear hyperbolic equations, the water wave equation, Einstein’s
equations, semilinear wave equation and, for the first time, the d-brane equation
from string theory were featured. For the latter, an ǫ-regularization method was
used to establish an existence proof. This is another example of a method which
has now been applied to different types of nonlinear equations. It had previously
been applied to mean curvature flow and to minimal surfaces.

The last theme concerned dispersive equations. This was represented only in a
talk by Markus Keel, albeit on seminal work on resonant decompositions applicable
to a wide class of example.
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All together, 21 talks were presented by international specialists from Aus-
tralia, Canada, Germany, Great Britain, Italy, Sweden, Switzerland and the United
States. Many of the speakers were only a few years past their Ph.D., some even
still working towards their Ph.D.; 6 out of 42 participants and 4 out of 21 speakers
were women.

As a rule, three lectures were delivered in the morning session; two lectures
were given in the late afternoon, which left ample time for individual discussions.
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Abstracts

A sub-Riemannian analogue of the mean curvature flow

Luca Capogna

In a joint project with Giovanna Citti (Bologna), we study a weak form of sub-
Riemannian mean curvature flow in the setting of Carnot groups (in particular, in
the model space of the Heisenberg group). Our motivation for this work is twofold:
First, it is plausible that such mean curvature flow may prove useful in the solution
of the isoperimetric problem in the Heisenberg group [2]; Second, a related sub-
Riemannian mean curvature flow arises in the recent work [3] in conjunction with
a model of the first layer of the visual cortex V 1 in mammals.

LetG be an analytic and simply connected Lie group with topological dimension
n and such that its Lie algebra G admits a stratification G = V 1 ⊕ V 2 ⊕ ...⊕ V r,
where [V 1, V j ] = V j+1, if j = 1, ..., r − 1, and [V k, V r] = 0, k = 1, ..., r. Such
groups are called stratified nilpotent Lie groups. Fix X1, ..., Xm a basis of V 1,
called the horizontal frame, and complete it to a basis (X1, ..., Xn) of G by choosing
for every k = 2, · · · r a basis of Vk. If Xi belongs to Vk, then we will set d(i) = k.
We will denote by xX =

∑n
i=1 xiXi a generic element of G. Since the exponential

map exp : G → G is a global diffeomorphism we use exponential coordinates in G,
and denote x = (x1, · · · , xn) the point exp

(

xX
)

. We also set xH = (x1, · · · , xm)
and xV = (xm+1, ..., Xn) so that x = (xH , xV ). Define non-isotropic dilations as
δs(x) = (sd(i)xi), for s > 0.

We denote by (X1, ..., Xn) (resp. (X̃1, ..., X̃n)) the left invariant (resp. right
invariant) translation of the frame (X1, ..., Xn) of G. Set H(0) = V 1, and for any
x ∈ G we let H(x) = xH(0) = span[X1, ..., Xm](x). The distribution x → H(x)
is called the horizontal sub-bundle H . On H we define a left invariant positive
definite bilinear form g0, so that X1 · · · , Xm is an orthonormal frame. We let
∇ = (X1, · · · , Xm) denote the horizontal gradient operator. The vectors X1....Xm

and their commutators span all the Lie algebra G, and consequently one can de-
fine a control distance dC(x, y) associated to the distribution X1....Xm, which

is called the Carnot-Carathéodory metric (denote by d̃C the corresponding right
invariant distance). We call the couple (G, dC) a Carnot Group. We define a
family of left invariant Riemannian metrics gε, ε > 0 in G by requesting that
{X1, · · · , Xm.εXm+1, · · · , εXn} is an orthonormal frame. We will denote by dε

the corresponding distance functions. Correspondingly we use ∇ε, (resp. ∇̃ε) to
denote the left (resp. right) invariant gradients. It is well known1 that (G, dε)
converges in the Gromov-Hausdorff sense as ε → 0 to the sub-Riemannian space
(G, dC).

1See for instance [4]
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1. Horizontal mean curvature flow of hypersurfaces

Let M ⊂ G be a C2 smooth hypersurface, denote by n
ε the unit normal in the

metric gε and by n
0 =

∑

d(i)=1(n
0)iXi its normalized projection in the gε norm

onto the horizontal plane. Note that this is not dependent on ε and is well defined
only outside the characteristic set Σ(M) = {x ∈ M | H(x) ⊂ TxM}. The vector
n

0 is called horizontal normal and its (horizontal) divergence

(1) K0 =
∑

d(i)=1

Xin
0

i

is known as the horizontal mean curvature of M at x.
The horizontal mean curvature flow is defined as an evolution Mt of an initial

manifold M such that the velocity is horizontal and proportional to −K0, i.e.

(2) ∂tF (x, t) = −K0n
0,

where F : M × [0, T ) → G is a family of embeddings and K0 is the horizontal
mean curvature of Mt = F (M, t). This is the horizontal flow along which the sub-
Riemannian perimeter of Mt decreases faster. In the study of this flow we are then
faced with two novel features: (a) Generically there are singularities (characteristic
points) at all times, even with smooth initial data; (b) The PDE is only defined
outside Σ(Mt). The level set approach consists in studying a PDE describing the
evolution of a function u(x, t) such that2 Mt = {x ∈ G| u(x, t) = 0}. In this
setting one has n

ε = ∇εu/|∇εu| and n
0 = ∇0u/|∇0u|. Consequently, on a formal

level, the relevant PDE is ∂tu = K0|∇0u|. This equation is ”well approximated”
by the Riemannian mean curvature flows ∂tx = −Kεn

ε, where Kε =
∑n

i=1X
ǫ
i n

ε

i

is the gε mean curvature of M . The corresponding evolution PDE for the level
sets is ∂tu

ε = Kε|∇εu|. In fact, we observe that for a given hypersuface, n
ε → n

0

and Ke → K0 as ε → 0. Away from characteristic points, the sub-Riemannian
flow can be rewritten more explicitly as

(3) ut =

m
∑

i,j=1

(

δij −
XiuXju

|∇0u|2
)

XiXju, for x ∈ G, t > 0.

If the Carnot group is a product G × R and we use coordinates (x, e) ∈ G × R,
then a special class of evolutions is given by graphs over G of the form Mt =
{(x, u(x, t)) | x ∈ G, t > 0} where u : G→ R is a solution of

(4) ut =

m
∑

i,j=1

(

δij −
XiuXju

1 + |∇0u|2
)

XiXju, for x ∈ G, t > 0.

Note that such graphs are always non-characteristic. Since the PDE (3) is not
defined at characteristic points we will interpret the flow in a generalized form, as
flow of singular surfaces, and use the viscosity solutions approach

2When a manifold is defined as a level set, we tacitly assume that the gradient of the defining
function does not vanish in a neighborhood of the manifold.
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Definition 1. A function u ∈ C(G × [0,∞) is a weak subsolution of (3) in G ×
(0,∞) if for any (x, t) ∈ G × (0,∞) and any function φ ∈ C2(G) × (0,∞) such
that u− φ has a local maximum at (x, t) then

(5) ∂tφ ≤






∑m
i,j=1

(

δij − XiφXjφ
|∇0φ|2

)

XiXjφ if |∇0φ| 6= 0
∑m

i,j=1(δij − pipj)XiXjφ for some p ∈ Rm, |p| ≤ 1, if |∇0φ| = 0.

Weak supersolutions and solutions are defined accordingly.

Our results are: (1) Comparison principles, (2) Existence of weak solutions, (3)
Constructions of explicit bounded barriers.

Theorem 2. Assume that u is a bounded weak subsolution and v is a bounded
weak supersolution of (3). Suppose further (i) For all (xH , xV ), (xH , yV ) ∈ G
u(xH , xV , 0) ≤ v(xH , yV , 0). (ii) Either u or v is uniformly continuous when re-
stricted to G× {t = 0}. Then u(x, t) ≤ v(x, t) for all x ∈ G and t ≥ 0.

Theorem 3. Assume that u is a bounded weak subsolution and v is a bounded
weak supersolution of (4). Suppose further (i) For all x ∈ G u(x, 0) ≤ v(x, 0).
(ii) Either u or v is uniformly continuous when restricted to G × {t = 0}. Then
u(x, t) ≤ v(x, t) for all x ∈ G and t ≥ 0. In particular, bounded weak solutions of
(4) are unique.

Remark 4. For bounded domains and in the special case of the Heisenberg group
this theorem follows from the results of Bieske [1]. See also the comparison prin-
ciple for the Gauss curvature flow established in [5].

In proving the existence of weak solutions to the initial value problem for (3),
such solution will arise as limit of solutions of regularized parabolic equations:
For δ, σ > 0, for all ξ ∈ G and 1 ≤ i, j ≤ n we define the coefficients of the

approximating equations Aε,δ
ij (ξ) =

(

δij − ξiξj

|ξ|2+δ

)

, and Aε,δ,σ
ij (ξ) = Aε,δ

ij (ξ)+σδij .

Proposition 5. For any f ∈ C∞(G) there exists a unique solution uε,δ ∈ C∞(G)×
(0,∞)) of the initial value problem

(6)
∂

∂t
uε,δ =

n
∑

i,j=1

Aε,δ
ij (∇εu

ε,δ)Xε
i X

ε
j u

ε,δ in x ∈ G, t > 0,

and uε,δ(x, 0) = f(x) for all x ∈ G.

Moreover, for all t > 0 one has ||uε,δ(·, t)||L∞(G) ≤ ||f ||L∞(G) and

||∇̃εu
ε,δ(·, t)||L∞(G) ≤ ||∇̃εf ||L∞(G). For any compact set K ⊂ G there exists

C = C(K,G) > 0 such that if 0 ≤ ε < 1, ||∇εu
ε,δ(·, t)||L∞(K) ≤ C||∇Ef ||L∞(G).
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Theorem 6. For any bounded f ∈ C(G) there exists a viscosity solution u ∈
Lipg1(G× (0,∞)) of

(7) ∂tu =

m
∑

i,j=1

A0,0
ij (∇0u)XiXju in G× (0,∞) and u(x, 0) = f(x).

Theorem 7. Let G be a Carnot group of step two. If we assume that the function
f ∈ C(G) is constant in a neighborhood G \K of infinity then any weak solution
u of the initial value problem (7) constructed as in Theorem 6 is constant in a set
of the form {|x| + t ≥ R}, with R depending on K.

We show two basic geometric properties for the flow, namely (i) separation
property and (ii) show that the right invariant distance between level sets is not
increasing with time. We say that a level set M = {u(x) = 0} is cylindric if
u(xH , xV ) is constant in the xV variables.

Proposition 8. Let M0, M̂0 be subset of G and denote by Mt and M̂t the corre-
sponding generalized flows. We have (i) If M0 ⊂ M̂0 and M̂t, t ≥ 0 is cylindric,

then Mt ⊂ M̂t, for all t > 0. (ii) For every compact initial data M0, the corre-
sponding evolution Mt has a finite extinction time. (iii) For this part we consider

the flows Mt, M̂t arising as level set of the solutions constructed in Theorem 6. If
we denote by d̃(·, ·) the right invariant CC distance, then d̃(M0, M̂0) ≤ d̃(Mt, M̂t)
for all t > 0.

In a joint project with Mario Bonk (Michigan) we study smooth solutions of the
flow F⊥(x, t) := 〈F (x, t),n1〉1 = −K0〈n1,n0〉1 in the setting of the Heisenberg
group Hn = (z, x2n+1) = (x1, ..., x2n+1) ∈ R2n+1. We interpret the PDE to hold
at a characteristic point x0 if the limit of both sides exist and coincide for some
sequence of non-characteristic points converging to x0. This is always the case
for the class of cylindrically symmetric solutions, i.e. level sets of functions of the
form u(x, t) = w(x2

1 + ...+x2
2n, x2n+1, t). In the special case when Mt is the graph

of a radial function f : R+ × R → R, that is u(x, t) = x2n+1 − f(|z|, t), the PDE

becomes ∂tf =
4r2∂2

rf+(∂rf)3/r

(∂rf)2+4r2 , here we have let r = |z|. We show:

1) A flow {Mt} evolving by horizontal mean curvature is self-similar with re-
spect to homogeneous group dilations if there exists a real valued function λ(t) > 0
such that for all times Mt = δλ(t)M0.

Theorem 9. A smooth flow {Mt} is self-similar with respect to dilations if there
exists a constant α and a time t0 > 0 such that −α

2D⊥(y) = K0〈~n, νh〉0 for all y ∈
Mt0 \ Σ(Mt0). Here D(y) = (y1, . . . , y2n, 2y2n+1) is the vector field generating the
dilations group in Hn. In other words, if the surface Mt is self-similar then the
flow produces the same normal velocity as if the evolution Mt were driven by the
vector −αD(y)/2.

Lemma 10. The only self-similar analytic solutions of horizontal mean curvature
flow that have cylindrical symmetry and correspond to initial data that satisfy
the conditions f(0) = c0, f

′(0) = 0, are the paraboloids level sets of u(x, t) =
x2n+1 − c0[1 − αt− α(x2

1 + ...+ x2
2n)/2].
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2) Two C2 solutions corresponding to disjoint initial closed hypersurfaces cannot
meet for the first time at non-characteristic points.

3) Two C2 cylindrically symmetric solutions, corresponding to disjoint initial
closed hypersurfaces cannot intersect for all t > 0 for which the flows are defined.

4) A closed, C2 cylindrically symmetric solution, corresponding to a strictly
convex initial data has a legendrian foliation composed of curves with strictly
positive curvature for all t > 0 for which the flow is defined.
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Birkhäuser Verlag, Basel, 2007.

[3] Citti, G., and Sarti, A. A cortical based model of perceptual completion in the roto-
translation space. J. Math. Imaging Vision 24, 3 (2006), 307–326.

[4] Gromov, M. Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser
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Highly degenerate harmonic mean curvature flow

Maria-Cristina Caputo

(joint work with Panagiota Daskalopoulos)

We study the evolution of a weakly convex surface Σ0 in R3 with flat sides by
the Harmonic Mean Curvature flow. We establish the short time existence as well
as the optimal regularity of the surface and we show that the boundaries of the
flat sides evolve by the curve shortening flow. It follows from our results that a
weakly convex surface with flat sides of class Ck,γ , for some k ∈ N and 0 < γ ≤ 1,
remains in the same class under the flow. This distinguishes this flow from other,
previously studied, degenerate parabolic equations, including the porous medium
equation and the Gauss curvature flow with flat sides, where the regularity of the
solution for t > 0 does not depend on the regularity of the initial data. We con-
sider the motion of a compact, weakly convex two-dimensional surface Σ0 in space
R3 under the harmonic mean curvature flow (HMCF)

(HMCF)
∂P

∂t
=
K

H
N

where each point P of Σ0 moves in the inward normal direction N with velocity
equal to the harmonic mean curvature of the surface, namely the harmonic mean

K

H
=

λ1 λ2

λ1 + λ2
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of the two principal curvatures λ1, λ2 of the surface.
The existence of solutions to the HMCF with strictly convex smooth initial data

was first shown by Andrews in [1]. Andrews also showed that, under the HMCF,
strictly convex, smooth surfaces converge to round points in finite time. In [2],
Dieter established the short time existence of solutions to the HMCF with weakly
convex smooth initial data and mean curvature H > 0. More precisely, Dieter
showed that if at time t = 0 the surface Σ0 satisfies K ≥ 0 and H > 0, then
there exists a unique strictly convex smooth solution Σt of the HMCF defined on
0 < t < τ , for some τ > 0. By the results of Andrews, this solution exists up to
the time where its enclosed volume becomes zero. However, the highly degenerate
case where the initial data is weakly convex and both K and H vanish in a region
is not studied in [2] .

We will consider in this work the evolution of a surface Σ0 with flat sides by
the HMCF. The parabolic equation describing the motion of the surface becomes
degenerate at points where both curvatures K and H become zero. Our main
objective is to study the solvability and optimal regularity of the evolving surface
for t > 0, by viewing the flow as a free-boundary problem. It will be shown that
a surface Σ0 of class Ck,γ with k ∈ N and 0 < γ ≤ 1 at t = 0, will remain in the
same class for t > 0. In addition, we will show that the strictly convex parts of
the surface become instantly C∞ smooth up to the flat sides and the boundaries
of the flat sides evolve by the curve shortening flow.

For simplicity we will assume that the surface Σ0 has only one flat side, namely
Σ = Σ1 ∪ Σ2, with Σ1 flat and Σ2 strictly convex (both principal curvatures are
strictly positive). We may also assume that Σ1 lies on the z = 0 plane and that Σ2

lies above this plane since the equation is invariant under rotation and translation.
Therefore, the lower part of the surface Σ0 can be written as the graph of a function

z = h(x, y)

over a compact domain Ω ⊂ R2 containing the initial flat side Σ1. Let Γ denote
the boundary of the flat side Σ1. We define g = hp, for some 0 < p < 1. Our main
assumption on the initial surface Σ0 is that it satisfies the following non-degeneracy
condition (⋆):

(⋆) |Dg(P )| ≥ λ and gττ (P ) ≥ λ, for all P ∈ Γ

for some number λ > 0. Here τ denotes the tangential direction to the level sets
of g and gττ denotes the second order derivative in this direction.
Under the above conditions, our main results show that for t ∈ (0, T ):

(1) The HMCF admits a solution Σt = (Σ1)t ∪ (Σ2)t of class Ck,γ , for some
k ∈ N and 0 < γ ≤ 1 depending on p, which is smooth up to Γt = ∂(Σ1)t.

(2) (Σ1)t is flat and its boundary Γt evolves by the curve shortening flow.

The fact that the solution Σt remains in the class Ck,γ distinguishes this flow from
other, previously studied, degenerate free-boundary problems (such as the Gauss



Nonlinear Evolution Equations 1485

curvature flow with flat sides, the porous medium equation and the evolution p-
laplacian equation) in which the regularity of the solution for t > 0 does not
depend on the regularity of the initial data. For more details, the reader is invited
to read her PhD thesis [3].

References

[1] B. Andrews. Motion of hypersurfaces by Gauss curvature Pacific J. Math. 195, no. 1, 1-34,
2000

[2] S. Dieter. Nonlinear degenerate Curvature flow for weakly convex hypersurfaces Calculus of
Variations and Partial Differential Equations, 22, 2: 229 - 251, 2005

[3] M.C. Caputo. Highly Degenerate Harmonic Mean Curvature Flow PhD Thesis, Columbia
University, May 2006

Shock Reflection and Free Boundary Problems

Mikhail Feldman

(joint work with Gui-Qiang Chen)

One of important problems in mathematical fluid dynamics is reflection of shock
by a wedge. It arises in many physical application, and in the study of mutidi-
mentional conservation laws since its solutions are building blocks and asymptotic
attractors for the gemeral solutions of Euler equations for compressible fluids. The
reflection picture was first described by Ernst Mach in 1878. In later works, exper-
imental, computational, and asymptotic analysis have shown that various patterns
of reflected shocks may occur, including regular and Mach reflection [2, 5, 6, 7, 8, 9].
However, there has been no rigorous mathematical results on the global existence
and structural stability of shock reflection, especially for potential flow equation,
which has been used in aerodynamics. Such problems involve several difficul-
ties in the analysis of nonlinear partial differential equations including equations
of elliptic-hyperbolic mixed type, free boundary problems, degenerate ellipticity
along the sonic line.

In the talk I describe recent results on regular shock reflection for potential flow
equation in dimension two. For potential flow, velocity u is DxΦ, where Φ is the
potential.

A plane shock in the (x, t)–coordinates, x = (x1, x2) ∈ R2, with left state
(ρ,DxΦ) = (ρ1, u1, 0) and right state (ρ0, 0, 0), u1 > 0, ρ0 < ρ1, hits a symmetric
wedge W := {(x1, x2) : |x2| < x1 tan θw, x1 > 0} at time zero. We can consider
only upper half-plane R2

+ = {x2 > 0}. We are looking for a solution in Λ = R2
+\W

of the time-dependent potential flow system satisfying initial data

(1) (ρ,Φ)|t=0 =

{

(ρ0, 0) for |x2| > x1 tan θw, x1 > 0,

(ρ1, u1x1) for x1 < 0,

and boundary condition

(2) ∇Φ · ν|∂Λ = 0.
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Since self-similar solutions are expected, we rewrite this as a quasi-static problem
in self-similar plane.

Potential flow equation for self-similar solutions, in self-similar variables (ξ, η) =

(
x

t
,
y

t
), is

(3) div (ρ(|Dϕ|2, ϕ)Dϕ) + 2ρ(|Dϕ|2, ϕ) = 0,

with ρ(|Dϕ|2, ϕ) =

(

ργ−1
0 −(γ−1)(ϕ+

1

2
|Dϕ|2)

)
1

γ−1

, where ϕ(ξ, η) is the pseudo-

velocity potential, ρ is density, and γ > 1, ρ0 > 0 are constants. Equation is
elliptic-hyperbolic mixed, which is elliptic (resp. hyperbolic) if and only if

|Dϕ| < c(|Dϕ|2, ϕ),
(

resp. |Dϕ| > c(|Dϕ|2, ϕ)
)

,

where c(|Dϕ|2, ϕ) is the sonic speed defined by c2 = ργ−1. Solution is called
subsonic (resp. supersonic) in elliptic (resp. hyperbolic) regions. Shocks are

discontinuities in the pseudo-velocity Dϕ. That is, if Ω+ and Ω− := Ω \ Ω+ are
two nonempty open subsets of Ω ⊂ R2 and S := ∂Ω+ ∩Ω is a C1–curve where Dϕ
has a jump, then ϕ ∈ W 1,1

loc (Ω) ∩ C1(Ω± ∪ S) ∩ C2(Ω±) is a global weak solution
of (3) in Ω if and only if ϕ satisfies equation (3) in Ω± and the Rankine-Hugoniot
conditions on S:

(4) [ϕ]S = 0,
[

ρ(|Dϕ|2, ϕ)Dϕ · ν
]

S
= 0.

The plane incident shock solution in the (x, t)–coordinates with states
(ρ,∇xΨ) = (ρ0, 0, 0) and (ρ1, u1, 0) corresponds to a weak solution ϕ of (3) of
the form:

ϕ0(ξ, η) = −1

2
(ξ2 + η2) for ξ > ξ0,(5)

ϕ1(ξ, η) = −1

2
(ξ2 + η2) + u1(ξ − ξ0) for ξ < ξ0,(6)

respectively, where S0 = {ξ = ξ0} is the incident shock. Here ξ0 is uniquely
determined by (ρ0, ρ1, γ) through (4). Denote by P0 the point of intersection of S0

with the wedge boundary, that is, P0 = (ξ0, ξ0 tan θw). Shock reflection problem
is now reduced to the following problem in self-similar plane:

Problem 1. Seek a solution ϕ of equation (3) in the self-similar domain Λ with
the slip boundary condition (2) and the asymptotic boundary condition at infinity:

ϕ→ ϕ̄ :=

{

ϕ0 for ξ > ξ0, η > ξ tan θw,

ϕ1 for ξ < ξ0, η > 0,
when ξ2 + η2 → ∞,

where the convergence holds in the sense that lim
R→∞

‖ϕ− ϕ‖C(Λ\BR(0)) = 0.

Since ϕ1 does not satisfy the slip boundary condition (2), the solution must
differ from ϕ1 in {ξ < ξ0} ∩ Λ and thus a shock diffraction by the wedge occurs.

Denote by P0 = (ξ0, ξ0 tan θw) the point of intersection of the incident shock
S0 with the wedge boundary. There exists an angle θsonic ∈ (0, π/2) determined
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by ρ0, ρ1, γ such that for the wedge angles θw ∈ (θsonic, π/2) there exists uniform
state

(7) ϕ2(ξ, η) = −1

2
(ξ2 + η2) + u2(ξ − ξ0) + (η − ξ0 tan θw)u2 tan θw,

which satisfies (2) on the wedge boundary {η = ξ tan θw}, and satisfies Rankine-
Hugoniot conditions (4) with ϕ1 at P0 and thus along the line S1 = {ϕ1 = ϕ2}.
Constant velocity (u2, u2 tan θw) and density ρ2 are determined by (θw, ρ0, ρ1, γ)
from the two algebraic equations expressing the conditions above. Moreover ρ2 >
ρ1, and ϕ2 is supersonic(hyperbolic) at the point P0. For such wedge angles
θw ∈ (θsonic, π/2) the structure of global solution ϕ to Problem 1 is expected to
be regular reflection which described as following:

Let B be the sonic circle for state (2) with center (u2, u2 tan θw) and radius

c2 = ρ
(γ−1)/2
2 > 0 (the sonic speed of ϕ2). Denote by P1 (resp P4) the point of

intersection of ∂B with S1 (resp. with the wedge boundary {η = ξ tan θw}). It is
expected that the solutions ϕ and ϕ1 differ within {ξ < ξ0} only in the domain
P0P1P2P3P4, where P2 ∈ {ξ < 0, η = 0} and P3 = (0, 0). The curve P0P1P2 is
the reflected shock with the straight segment P0P1. Then, within P0P1P2P3P4,
solution ϕ differs from ϕ2 in the domain Ω = P1P2P3P4, where the equation (3)
is elliptic. Boundary of Ω consists of the sonic arc P1P4, line segments P2P3 and
P3P4 and the curved part of the reflected shock P1P2, which is apriory unknown
(the free boundary).

Theorem 1 ([3]). For any γ > 1 and ρ1 > ρ0 > 0 there exist θc = θc(ρ0, ρ1, γ) ∈
(0, π

2 ) and α = α(ρ0, ρ1, γ) ∈ (0, 1) such that, when θw ∈ [θc,
π
2 ), there exists a

weak solution of Problem 1, which satisfies the following:

(i)

ϕ ∈ C0,1(Λ), ϕ ∈ C∞(Ω) ∩ C1,α(Ω̄),

ϕ =







ϕ0 for ξ > ξ0 and η > ξ tan θw,
ϕ1 for ξ < ξ0 and above the reflection shock P0P1P2,
ϕ2 in P0P1P4.

(ii) equation (3) is elliptic in Ω;
(iii) ϕ ≥ ϕ2 in Ω;
(iv) the reflected shock P0P1P2 is C2 at P1 and C∞ elsewhere;
(v) ϕ is C1,1 across the part Γsonic = P1P4 of the sonic circle.

Theorem 2 ([4]). Let γ > 1 and ρ1 > ρ0 satisfy the condition u1 < c1, where
c21 = ργ−1. Then solution of Problem 1 satisfying properties (i)-(v) of Theorem 1
exists for all θw ∈ (θsonic, π/2).

The condition in Theorem 2 is an explicit algebraic condition in terms of
γ, ρ0, ρ1.

Next we show that C1,1 regularity near and accross sonic arc Γsonic = P1P4

where ellipticity degenerates is optimal:
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Theorem 3 ([1]). Let ϕ be a solution of Problem 1 satisfying properties (i)-(v) of
Theorem 1. Then:

(i) ϕ is C2,α in Ω up to Γsonic away from the point P1 for any α ∈ (0, 1),
(ii) ϕ is C1,1 but not C2 across Γsonic, specifically D2ϕ has a jump across

Γsonic,
(iii) The limit lim (ξ,η)→P1

(ξ,η)∈Ω

D2ϕ does not exist.

For the proofs, we reformulate Problem 1 as a free boundary problem for the
free boundary Γsonic and ϕ in the elliptic region Ω. Free boundary conditions
are Rankine-Hugoniot conditions on Γsonic. We solve this problem by method of
continuity, which involves deriving some regularity estimates for degenerate elliptic
equations, and controlling geometry of free boundary using maximum principle.
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Isoperimetric inequalities in Riemannian and Lorentzian manifolds

Gerhard Huisken

Let L4(h) be a cosmological space-time, ie a globally hyperbolic Lorentzian man-
ifold diffeomorphic to Σ3 × (0, T ), where Σ3 is a compact 3-manifold. We as-
sume that the Lorentzian metric h satisfies the timelike convergence condition
Rich(X,X) ≥ 0 for all timelike vectors X and admits a crushing initial singu-
larity. Cosmological space-times of this type admit foliations by hypersurfaces
satisfying geometric partial differential equations related to their mean curvature:
Constant mean curvature foliations have been found by Gerhardt [2], solutions of
mean curvature flow were constructed by Ecker and Huisken [1], and solutions to
inverse mean curvature flow were constructed by Holder [4]and, in greater gener-
ality, Gerhardt [3].

In the lecture it is demonstrated that certain integrals of mean curvature are
monotone under the mean curvature flow and the inverse mean curvature flow
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respectively: Solutions F : Σ3 × (0, T ) → L4(h) of mean curvature flow and
inverse mean curvature flow satisfy the equations

d

dt
F = H ν and

d

dt
F = − 1

H
ν

respectively, where ν is the timelike past-directed normal to the evolving hyper-
surfaces and H is the mean curvature. Using these monotonicity formulae it is
possible to derive reverse isoperimetric inequalities of the type

|Σ3| 43 ≤ C0Vol(Σ3),

where Vol(Σ3) denotes the 4-volume of the space-time between Σ3 and the crush-
ing singularity. In this Lorentzian setting the mean curvature flow moves in the
expanding direction whereas inverse mean curvature flow decreases the area of the
hyperurfaces exponentially and approaches the crushing singularity. It turns out
that the constant C0 is related to the behavior of the curvature integrals mentioned
above both in the expanding and the crushing directions; in a constant mean cur-
vature foliation it is determined by the asymptotic behavior of the scaling invariant

quantity H |Σ3| 13 .
The lecture also explains that the above relation between the isoperimetric

inequality and geometric evolution equations holds in Riemannian manifolds of
nonnegative Ricci-curvature. In this case mean curvature flow is used to sweep
out the interior of a bounded region while inverse mean curvature flow can relate
a bounded region to the behavior of the manifold near infinity. The constant C1

in the isoperimetric inequality is then determined by the asymptotic behavior of
the integral of Hn near infinity, a quantity that turns out to be monotonically
decreasing under inverse mean curvature flow in manifolds of non-negative Ricci
curvature. We get

|Σn|n+1
n ≥ C1Vol(Σn)

with the constant determined by the infimum of the integral of Hn on outward
minimising boundaries in the manifold. The method relies in this case on inverse
mean curvature flow in Riemannian manifolds developed by Huisken and Ilmanen
[5] and on the regularity theory for mean curvature flow by White [6].

In the special case of Riemannian 3-manifolds the above results can be extended
to the case of non-negative scalar curvature, leading to a concept of isoperimetric
mass in asymptotically flat 3-manifolds related to the supremum of the Hawking
mass on outward minimising boundaries.
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Dynamics of topological defects in nonlinear field theories

Robert L. Jerrard

A vigorous line of research, dating back at least 30 years, establishes various ways
in which solutions of semilinear elliptic equations such as

(1) −∆u+
1

ε2
(1 − |u|2)u = 0 u : Ω ⊂ R

N → R
k, k = 1 or 2

are connected to minimal surfaces when N > k and 0 < ε ≪ 1. In the scalar
case k = 1, these results (see for example [9, 11, 5, 6, 10]) demonstrate with
varying degrees of precision that a if solution u satisfies conditions such as suitable
boundary conditions together with bounds on an associated energy functional, then
roughly speaking u has the form

(2) u ≈ q(
d

ε
)

where

(3) q : R → R solves −q′′ + (q2 − 1)q = 0, q(±∞) = ±1, and q(0) = 0,

and d : Ω → R is the signed distance function to some minimal hypersurface Γ of
Ω. That is, Γ is a hypersurface whose mean curvature vanishes identically, and d
is characterized in a neighborhood of Γ by the properties

(4) d = 0 on Γ, |∇d|2 = 1 near Γ.

Other results of the same general character assert for example that an energy den-
sity associated with a solution u of (1) concentrates around a minimal submanifold
Γ.

In the case of a vector-valued solution u : Ω → R2 of (1), no descriptions
exactly analogous to (2) are known, due to the difficulty in pinning down rotational
degrees of freedom, but there are numerous results ([8, 2, 1], among many others)
showing that for suitable solutions, energy concentrates around a codimension 2
submanifold Γ with mean curvature identically equal to zero.

Analogous results are also known for the parabolic equation

(5) ut − ∆u+
1

ε2
(1 − |u|2)u = 0 in u : (0, T ) × R

N → R
k, k = 1 or 2

when N > k and 0 < ε≪ 1. For example, in the scalar case, solutions u are again
known have roughly the form (2), where for every t, d(t, ·) is the signed distance
function from a hypersurface Γt, so that d(t, ·) = 0 on Γt and |∇d(t, ·)|2 = 1 near
Γt; and the hypersurfaces {Γt}0≤t≤T evolve by mean curvature flow.
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In the case k = 2, results establishing a relationship between (5) and codimen-
sion 2 mean curvature flow are known and are typically stated, roughly speaking,
in terms of concentration of energy densities.

We prove results of a similar character for the semilinear wave equation

(6) utt − ∆u+
1

ε2
g(|u|2)u = 0 in u : (0, T )× R

N → R
k, k = 1 or 2

when N > k and 0 < ε ≪ 1. Here g(|u|2) = 1 − |u|2 for N ≤ 4, and for general
N , g = 1

2G
′ for some smooth G : [0,∞) → [0,∞) such that G(1) = 0, G′′(1) >

0, G(s) > 0 for s 6= 1; and with G satisfying growth conditions that guarantee
global well-posedness of (5).

There are very few prior results on this problem. Some work [4, 7] has analyzed
dynamics of vortices in the case when N = k = 2. This is easier in that the
topological defect in question are points rather than submanifolds, and in addition
they move at subrelativistic speeds (in the situations considered by [4, 7].) A recent
preprint [3] establishes the asymptotic stability of a flat kink when N = 3, with
respect to very smooth, compactly supported perturbations.

One of our main results is

Theorem 1. Let N ≥ 2, and let u : R1+N → R solve (6) with initial data

(7) u(0, x) = q(
d0(x)

ε
), ut(0, x) = 0.

where

(8) q : R → R solves −q′′ + g(q2)q = 0, q(±∞) = ±1, and q(0) = 0,

d0 : RN → R is the signed distance function from a smooth hypersurface Γ0 ⊂ RN .
In particular d0 satisfies (4) (with Γ replaced by Γ0).

Let Γ ⊂ [0, T )×RN be a timelike Minkowski minimal surface such that Γ∩{t =
0} = Γ0, and with zero velocity at t = 0.

Then for any compact subset K ⊂ [0, T ) × RN , there exists a constant C(K),
independent of ε, such that

‖u− Uε‖L2(K) ≤ C
√
ε

where Uε is an explicitly constructed function that has the form

Uε = q(
d

ε
)

near Γ, with d defined in a neighborhood of Γ by

(9) d = 0 on Γ, −d2
t + |∇d|2 = 1 near Γ.

and satisfying d(0, x) = d0(x) near Γ0. In other words, d is the signed Minkowski
distance to Γ,

The condition d(0, x) = d0(x) near Γ0 can be arranged to hold due to the
assumption that Γ has velocity 0 at t = 0. It is needed only to fix a sign.
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A timelike Minkowski minimal surface is a critical point of the (Minkowski)
area functional. For example, if Γ0 in the statement of the theorem is the graph
of some smooth, compactly supported function h0, ie if

Γ0 = {y, h0(y)) : y ∈ R
N−1}

then a minimal surface Γ with zero initial velocity and Γ ∩ {t = 0} = Γ0 is given
by

Γ = {(t, y, h(t, y)) : (t, y) ∈ R × R
N−1}

where h solves

(10) ∂t

(

ht
√

1 − h2
t + |∇h|2

)

−∇
(

∇h
√

1 − h2
t + |∇h|2

)

= 0

with initial data

h(0, y) = h0(y), ht(0, y) = 0.

A smooth solution of the above equation is known to exist locally in t. Note that
the left-hand side of (10) is exactly the mean curvature of Γ with respect to the
Minkowski (pseudo) metric.

The most important step in the proof is to perform a change of variables that
reduces the problem under consideration to the studying behavior of an equation
of roughly the form

2g,τv − ∂2
XN

v +
1

ε2
g(|v|2)v = b ·Dv

where 2g,τ denotes a wave-like operator in the “tangential” variables t, x1, .., xN−1

and |bN | ≤ C|xN |. This equation is studied for initial data that is a small pertur-
bation of

v(0, x) = q(
xN

ε
), vt(0, x) = 0.

In a second main result, we prove that if u : R1+N → R2 solves (6) for suitable
initial data, then u exhibits energy concentration around a codimension 2 timelike
submanifold that is a critical point of the Minkowski area functional, at least as
long as this submanifold remains smooth. Again, a main point is a change of
variables similar to that used in the scalar case.
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Resonant decompositions and almost conservation laws for dispersive
PDE in higher dimensions

Markus Keel

(joint work with James Colliander, Gigliola Staffilani, Hideo Takaoka, Terence
Tao)

1. Introduction

We consider the Cauchy problem for the cubic defocusing nonlinear Schrödinger
(NLS) equation

{

i∂tu+ ∆u = |u|2u,
u(0, x) = u0(x) ∈ Hs

x(R2),
(1)

in a Sobolev space Hs
x(R2), where the unknown function u : J × R2 7−→ C is a

strong solution to (1) on a time interval J ⊂ R in the sense that u ∈ C0
t,locH

s
x(R2)

and u obeys the integral equation

u(t) = eit∆u0 − i

∫ t

0

ei(t−t′)∆[|u|2u(t′)] dt′

for t ∈ J . Here of course the propagators eit∆ are defined via the Fourier transform

f̂(ξ) :=

∫

R2

e−ix·ξf(x) dx

by the formula

êit∆f(ξ) := e−it|ξ|2 f̂(ξ)

and the Sobolev space Hs
x(R2) is similarly defined via the Fourier transform using

the norm

‖f‖Hs
x(R2) := ‖〈ξ〉sf̂(ξ)‖L2

ξ
(R2)

where 〈ξ〉 := (1 + |ξ|2)1/2. For later use we shall also need the homogeneous
Sobolev norms

‖f‖Ḣs
x(R2) := ‖|ξ|sf̂(ξ)‖L2

ξ
(R2).
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We are interested primarily in the global-in-time problem, in which we allow J to
be the whole real line R.

Both the local and global-in-time Cauchy problems for this NLS equation (1)
have attracted a substantial literature [23], [8], [18], [16],[3], [4], [14], [2], [9]. One
has local well-posedness in Hs

x(R2) for all s ≥ 0, and if s is strictly positive then a
solution can be continued unless the Hs

x(R2) norm of the solution goes to infinity
at the blowup time (see e.g. [7], [21]). Also, due to the smooth nature of the
nonlinearity, any local Hs(R2) solution can be expressed as the limit (in C0

t,locH
s
x)

of smooth solutions. The space L2
x(R2) is the critical space for this equation, as it

is invariant under the scaling symmetry

(2) u(t, x) 7→ 1

λ
u(

t

λ2
,
x

λ
)

of (1).
Now we turn our attention to the global-in-time well-posedness problem. Based

on the local well-posedness theory, standard limiting arguments, and the time
reversal symmetry u(t, x) 7→ u(−t, x), global well-posedness of (1) for arbitrarily
large data1 in Hs

x(R2) for some s > 0 follows if an a priori bound of the form

(3) ‖u(T )‖Hs
x(R2) ≤ C(s, ‖u0‖Hs

x(R2), T )

can be established for all times 0 < T < ∞ and all smooth-in-time, Schwartz-
in-space solutions u : [0, T ] × R2 → C, where the right-hand side is some finite
quantity depending only upon s, ‖u0‖Hs

x(R2), and T . Thus we shall henceforth
restrict our attention to such smooth solutions, which will in particular allow us
to justify all formal computations, such as verification of conservation laws.

As is well known, the equation (1) enjoys two useful conservation laws, the
energy conservation law

E(u(t)) :=

∫

R2

1

2
|∇u(t, x)|2 +

1

4
|u(t, x)|4 dx = E(u0).(4)

and the mass conservation law

(5) ‖u(t)‖L2
x(R2) = ‖u0‖L2

x(R2).

¿From these laws one easily establishes (3) for s = 1 (with bounds uniform in T ).
The mass conservation law (5) also gives (3) for s = 0, but unfortunately this does
not immediately imply any result for s > 0 except in the small mass case.

It is conjectured that the equation (1) is globally well-posed in Hs
x(R2) for

all s ≥ 0, and in particular (3) holds for all s > 0. This conjecture remains open
(though in the radial case, this conjecture has recently been settled in [22] and [19]).
However, there has been some progress in improving the s ≥ 1 results mentioned
earlier. The first breakthrough was by Bourgain [3], [4], who established (3) (and

1Global well-posedness and even scattering is known when the mass ‖u0‖L2
x(R2) is sufficiently

small (see e.g. [7], [21]), or if suitable decay conditions (e.g. xu0 ∈ L2
x(R2) are also imposed on

the initial data [23]). Our interest here however is in the large data case with no further decay
conditions beyond the requirement that u0 lies in Hs

x(R2).
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hence global well-posedness in Hs
x(R2)) for all s > 3/5, using what is now referred

to as the Fourier truncation method.
In [14] the bound (3) was established for all s > 4/7, using the “I-method”

developed by the authors in [11], [12] (see also [20]). The main result of this
abstract is the following improvement:

Theorem 1 (Main theorem). The bound (3) holds for all s > 1/2. In particular,
the Cauchy problem (1) is globally well-posed in Hs

x(R2) for all s > 1/2.

Our arguments refine our previous analysis in [14] by adding a “correction
term” to a certain modified energy functional E(Iu), as in [12] or [13], in order to
damp out some oscillations in that functional; also, we establish some more refined
estimates on the multilinear symbols appearing in those integrals. The main new
difficulty is that, due to the multidimensional setting of this equation, the direct
analogue of the correction terms used in [12], [13] contains a singular symbol and
is thus intractable to estimate. We get around this new difficulty by truncating
the correction term to non-resonant interactions, and dealing with the resonant
interactions separately by some advanced estimates of Xs,b type. This method
seems quite general and should lead to improvements in global well-posedness
results for other non-integrable evolution equations which are currently obtained
by the “first-generation” I-method (i.e. without correction terms). A resonant
decomposition similar to that employed here appeared previously in the work [5],
and more recently in [1].

Fang and Grillakis [17] have obtained a stronger version of Theorem 1 - their
result holds for s ≥ 1/2, by a different method based upon a new type of Morawetz
inequality. The Fang-Grillakis interaction Morawetz estimate has recently [10]
been improved and combined with the I-method (following the general scheme
from [15]) to prove that (1) is globally well-posed in Hs for s > 2/5. The techniques
leading to the improved energy increment control obtained in the above theorem
which is N−1/2 better than what was obtained in [14] and used in [15], [10])
may also improve the “almost Morawetz” increment in [10] by N−1/2. Such an
improvement would improve the global well-posedness result to s > 4/13. The
arguments in [17], [10] are based on Morawetz inequalities and are thus restricted
to the defocusing case. Provided the mass of the initial data is less than the mass
of the ground state, Theorem 1 also holds true, using [24], for the focusing analog
of (1). The focusing problem is expected to be globally well-posed and scatter for
L2 initial data with mass less than the ground state mass.

One of the main Lemmas used to handle the resonant terms which arise (specif-
ically, that part of the correction term which contains a singularity in the symbol
- now truncated so that it is supported on a set where the various frequencies
involved obey a certain orthogonality condition) is the following modification of
the bilinear Strichartz estimate from [3].

Lemma 2 (Angularly refined bilinear Strichartz estimate). Let 0 < N1 ≤ N2 and
0 < θ ≪ 1. Suppose that v1, v2 are solutions of the linear Schrödinger equation on
R2 with spatial frequency supports |ξ| ∼ N1, N2 respectively. Assume in addition
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that these supports also satisfy | cos∠(ξ1, ξ2)| ≤ θ for any ξ1 ∈ supp (v̂1(t, ξ)), ξ2 ∈
supp (v̂2(t, ξ)).

We conclude,

(6) ‖v1 · v2‖L2
t,x

. θ1/2‖v1(0, ·)‖L2(R2)‖v2(0, ·)‖L2(R2).
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Asymptotic stability for the Kadomtsev-Petviashili II equation

Herbert Koch

(joint work with Martin Hadac, Sebastian Herr)

In [3] we study the Kadomtsev-Petviashvili-II (KP-II) equation

∂x(∂tu+ ∂3
xu+ u∂xu) + ∂2

yu = 0 in (0,∞) × R
2

u(0, x, y) = u0(x, y) (x, y) ∈ R
2

(1)

which has been introduced by B.B. Kadomtsev and V.I. Petviashvili to describe
weakly transverse water waves in the long wave regime with small surface tension.
It generalizes the Korteweg - de Vries equation, which is spatially one dimensional
and thus neglects transversal effects. The KP-II equation has a remarkably rich
structure. Let us begin with its symmetries and assume that u is a solution of (1).

• Translation: Translates of u in x, y and t are solutions.
• Scaling: If λ > 0 then also

(2) uλ(t, x, y) = λ2u(λ3t, λx, λ2y)

is a solution.
• Galilean invariance: For all c ∈ R the function

(3) uc(t, x, y) = u(t, x− cy − c2t, y + 2ct)

satisfies equation (1).

The KP-II equation is integrable in the sense that there exists a Lax pair.
Formally, there exists an infinite sequence of conserved quantities [7], the two
most important beeing the L2 norm and the energy. The conserved quantities
besides the L2 norm seem to be useless for proofs of well-posedness, because of
the difficulty to define ∂−1

x and because the quadratic term is indefinite. The line
solitons are among the simplest solutions. An analysis of the spectrum of the
linearization and inverse scattering indicate that the line soliton is stable [5, 6]. A
satisfactory nonlinear stability result for the line soliton is an outstanding problem.

I report on a modest step towards this challenging question: Well-posedness
and scattering in a critical space.
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We study the Cauchy problem (1) for initial data u0 in the non-isotropic Sobolev

space H− 1
2 ,0(R2) and in the homogeneous variant Ḣ− 1

2 ,0(R2), respectively, which
are defined as spaces of distributions with − 1

2 generalized x-derivatives in L2(R2).
The well-posedness of (1) has been thoroughly studied in the last two decades.

After a first well-posedness result by S. Ukai [10] in more regular spaces, J. Bour-
gain established global well-posedness in L2(T2; R) and L2(R2; R) in his seminal
paper [1] by combining the Fourier restriction norm method with the L2 con-
servation law. N. Tzvetkov [9] improved the local theory within the scale of non-
isotropic Sobolev spaces. Local well-posedness in the full sub-critical range s > − 1

2
was obtained by H. Takaoka [8] in the homogeneous spaces and by the first author
[2] in the inhomogeneous spaces. Global well-posedness for large, real valued data
in Hs,0(R2) has been pushed down to s > − 1

14 by P. Isaza - J. Mej́ıa [4].
The first main result is concerned with small data global well-posedness in

Ḣ− 1
2 ,0(R2). For δ > 0 we define

Ḃδ := {u0 ∈ Ḣ− 1
2 ,0(R2) | ‖u0‖

Ḣ−
1
2

,0 < δ},

and obtain the following:

Theorem 1. There exists δ > 0, such that for all initial data u0 ∈ Ḃδ there exists
a solution

u ∈ Ż− 1
2 ([0,∞)) ⊂ C([0,∞); Ḣ− 1

2 ,0(R2))

of the KP-II equation (1) on (0,∞). If for some T > 0 a solution v ∈ Z− 1
2 ([0, T ])

on (0, T ) satisfies v(0) = u(0), then v = u|[0,T ]. Moreover, the flow map

F+ : Ḃδ → Ż− 1
2 ([0,∞)), u0 7→ u

is analytic.

The definition of the spaces Ż− 1
2 (I) and Z− 1

2 (I) is of central importance. A

consequence of Theorem 1 is scattering for small data in Ḣ− 1
2 ,0(R2) and hence

asymptotic stability for small data.
The proof relies on bilinear estimates, a strategy, which are by now standard

in the context of the Xs,b spaces of Bourgain. To access critical problems by Xs,b

spaces one is forced to use b = ±1/2. But then crucial embeddings fail. A remedy
is the use of a Besov type modification Xs,1/2,1 resp. Xs,−1/2,∞. In our case this
seems to be insufficient and we use functions spaces V p and Up with

X0,1/2,1 ⊂ U2 ⊂ V 2 ⊂ X0,1/2,∞,

which are based on entirely different ideas.
Let Z be the set of finite partitions −∞ = t0 < t1 < . . . < tK = ∞ and let Z0

be the set of finite partitions −∞ < t0 < t1 < . . . < tK <∞. In the following, we
consider functions taking values in L2 := L2(Rd; C), but in the general part of this
section L2 may be replaced by an arbitrary Hilbert space. The following spaces
were introduced by N. Wiener [11].
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Definition 2. Let 1 ≤ p <∞. We define V p as the normed space of all functions
v : R → L2 such that v(∞) := limt→∞ v(t) = 0 and v(−∞) exists and for which
the norm

(4) ‖v‖V p := sup
{tk}K

k=0∈Z

(

K
∑

k=1

‖v(tk) − v(tk−1)‖p
L2

)

1
p

is finite. Likewise, let V p
− denote the normed space of all functions v : R → L2

such that v(−∞) = 0, v(∞) exists, and ‖v‖V p <∞, endowed with the norm (4).

Let S(t) be the unitary group defined by the linear equation,

‖u‖V p

S
= ‖S(−t)u(t, .)‖V p

and V p
S the space of right continuous functions for which this norm is finite. Then

V 2
S is a suitable replacement for X0,1/2.
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A construction of weak solutions of a biharmonic map heat flow

Roger Moser

For n ≥ 4, let Ω ⊂ Rn be an open, bounded domain with smooth boundary. We
consider a compact, smooth Riemannian manifold N that is embedded isometri-
cally in a Euclidean space Rm. A sufficiently smooth map u : Ω → N induces a
pull-back vector bundle u−1TN with a covariant derivative ∇u coming from the
Levi-Civita connection on N . The functional

E2(u) =
1

2

∫

Ω

|∇udu|2 dx

can be thought of as a second order counterpart to the Dirichlet energy. Therefore,
the L2-gradient flow for E2 is a higher order analogue of the harmonic map heat
flow

(1)
∂u

∂t
= τ(u) := trace∇udu.

It gives rise to a fourth order parabolic problem given by

∂u

∂t
+ ∇u

α∆u ∂u

∂xα
+R(u)

(

∇u
α

∂u

∂xβ
,
∂u

∂xα

)

∂u

∂xβ
= 0,

where we use a standard summation convention, ∆u = trace(∇u)2 is the Laplacian
belonging to ∇u, and R denotes the Riemann curvature tensor onN . The equation
can also be written in the form

(2)
∂u

∂t
+ ∆2u+ div a(u, du,∇udu) + b(u, du,∇udu) = 0,

where a and b are smooth functions that satisfy

|a(y, ξ, ζ)| ≤ C0|ξ|(|ξ|2 + |ζ|)
and

|b(y, ξ, ζ)| ≤ C0|ζ|(|ξ|2 + |ζ|)
for a constant C0 that depends only on n and N .

In the form (2), the equation has a weak interpretation if u belongs to the space
L∞((0,∞), H1(Ω, N)), where

H1(Ω, N) =
{

v ∈ H1(Ω,Rm) : v(x) ∈ N for almost every x ∈ Ω
}

,

and if in addition the second derivative ∇2u exists in the weak sense with |∇2u| ∈
L2

loc((0,∞) × Ω). We consider initial and boundary conditions of the form

u(t, x) = u0(x) for t = 0 or x ∈ ∂Ω,(3)

du(t, x) = du0(x) for x ∈ ∂Ω,(4)

for a given map u0 ∈ H2(Ω, N). The conditions (3) and (4) can be under-
stood in the sense of traces, provided that u ∈ L∞((0,∞), H1(Ω, N)) with |∂u

∂t | ∈
L2((0,∞) × Ω) and |∇udu(t, · )| ∈ L2(Ω) for almost every t ∈ (0,∞).

Weak solutions of the harmonic map heat flow (1) have first been constructed
by Chen and Struwe [1] for all dimensions n, and their arguments also give partial
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regularity of the solutions. But despite some formal similarities of the problems,
these methods seem inappropriate for the L2-gradient flow of E2. On the other
hand, there exists a different approach to the harmonic map heat flow, due to Haga,
Hoshino, and Kikuchi [2], which is more suitable for the higher order equation. It
is based on a time discretization method, and its implementation for E2 involves
the construction of a sequence of maps uh

0 , u
h
1 , . . . for a fixed h > 0 as follows. The

map uh
0 coincides with the initial map u0, and uh

1 , u
h
2 , . . . are chosen recursively

such that uh
k+1 minimizes the functional

E2(u) +
1

2h

∫

Ω

|u− uh
k |2 dx

for k = 1, 2, . . . under the boundary conditions uh
k+1 = u0 and duh

k+1 = du0 on
∂Ω. Formally, these minimization problems give rise to the equation

uh
k+1 − uh

k

h
+ ∆2uh

k+1 + div a
(

uh
k+1, du

h
k+1,∇uh

k+1duh
k+1

)

+ b
(

uh
k+1, du

h
k+1,∇uh

k+1duh
k+1

)

= 0.

This is a time discretized version of the biharmonic map heat flow. For h ց 0,
one hopes to obtain a limit that solves equation (2).

In order to carry out such a scheme successfully, we obviously have to be able
to minimize a functional as above. The minimization problem for E2 has been
studied in a recent paper [3], and the additional term is not difficult to handle in
this context. The same paper provides some tools to study the regularity of the
minimizers, most importantly a monotonicity formula that permits estimates of
|∇udu| in the appropriate Morrey spaces. For the functional that we study here,
however, we have to assume that n ≤ 8 in order to use these arguments. Using
also an idea of Scheven [5], we obtain some initial regularity results, and other
arguments of Wang [6, 7, 8] give higher regularity. We can then prove a uniform
estimate for the H4-norm of the minimizers under small energy assumptions. This
is crucial when we pass to the limit hց 0, because such an estimate implies that
there is a limit map (for a certain subsequence) that solves (2). With this method,
we can prove the following result.

Theorem 1. Let n ≤ 8 and suppose that u0 ∈ H2(Ω, N). Then there exists a map
u ∈ L∞((0,∞), H1(Ω, N)) with |∇2u| ∈ L2

loc((0,∞) × Ω), |∂u
∂t | ∈ L2((0,∞) × Ω),

and |∇udu| ∈ L∞((0,∞), L2(Ω)), such that (2) holds weakly and (3) and (4) are
satisfied in the sense of traces.

The details of the proof are given in another paper [4].
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Monotone volume formulas for geometric flows

Reto Müller

Perelman’s result from [6] that the Ricci flow ∂t gij = −2Rij may be interpreted
up to a pull-back with a family of diffeomorphisms as the gradient flow of the
F -energy

F(g, f) =

∫

M

(

R+ |∇f |2
)

e−fdV

was successfully adopted to related flows, e.g. certain renormalization group flows
of worldsheet nonlinear sigma models arising in quantum field theory, cf. [5], or
List’s extended Ricci flow system [1] which is motivated by a problem from general
relativity. Moreover, it also led to the creation of new geometric flows like the
Ricci Yang-Mills flow introduced by Streets in [7] or the Ricci flow coupled with
harmonic map heat flow

(1) ∂t gij = −2Rij + 2α∇iφ
κ∇jφ

κ, ∂t φ = τgφ,

which we introduce in [3]. Here, φ : M → N →֒ Rk is a map between closed
manifolds (M, g) and (N, γ) with tension field τgφ and α = α(t) is a positive and
non-increasing coupling function. This is the gradient flow of

Fα(g, φ, f) =

∫

M

(

R+ |∇f |2 − α |∇φ|2
)

e−fdV.

Note that setting α ≡ 2 and N = R, this flow reduces to List’s system from [1].
One motivation to study (1) is the fact that for large α we can bound the energy
density of φ along the flow without any restriction on the curvature of the target
manifold N .
A natural question is to what extent the other monotone functionals of Perelman
can be adopted to these geometric flows, or more generally to any flow of the form

(2) ∂t gij(t) = −2Sij(t),

for a symmetric tensor Sij . Of particular interest to us was the monotonicity of
his reduced volume, since it implies useful non-collapsing results for the flow – a
crucial step in Perelman’s proof of the Poincaré conjecture. Given any symmetric
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tensor Sij and a point p ∈M , we define the (forwards) reduced distance between
(p, 0) and (q, t1) by

ℓ(q, t1) := inf
γ∈Γ

{

1

2
√
t1

∫ t1

0

√
t
(

S + |∂t γ|2
)

dt

}

,

where Γ = {γ : [0, t1] → M | γ(0) = p, γ(t1) = q} and S = gijSij is the trace of
Sij . The (forwards) reduced volume is then given by

V (t) :=

∫

M

(4πt)−n/2eℓ(q,t)dV (q).

While studying Perelman’s work in [4], we already noticed that for a static mani-
fold, i.e. Sij = 0, the monotonicity of V (t) only holds under the additional assump-
tion that the Ricci curvature of M is nonnegative. After solving the corresponding
problem for List’s flow in joint work with Valentina Vulcanov, we found the fol-
lowing general condition.

Theorem 1 ([2]). Along the flow (2), if the symmetric tensor Sij satisfies

(3) ∂t S−△S − 2 |Sij |2 + 4(∇iSij)Xj − 2(∇jS)Xj + 2RijXiXj − 2SijXiXj ≥ 0,

then the (forwards) reduced volume V (t) is non-increasing.

A similar statement holds true for a backwards reduced volume quantity which
is non-decreasing along the flow. Condition (3) is obviously satisfied for the Ricci
flow or for a static manifold with nonnegative Ricci curvature. Moreover, it also
holds for the Ricci flow coupled with harmonic map flow – and thus also for List’s
flow. A further example, pointed out by Mu-Tao Wang, is the mean curvature flow
of spacelike hypersurfaces in a Lorentzian manifold, where (3) yields a curvature
condition on the ambient Lorentzian manifold.

Towards the proof: The quantity on the left hand side of (3) can be written as the
difference of two Harnack type quantities for the flow (2), which also appear in the
first and second variation formulas for the reduced length functional. The proof
then proceeds similar to Perelman’s proof in the Ricci flow case by comparing
with a carefully chosen variation. It is then easy to see that at the points where
ℓ(q, t) is smooth, the integrand v(q, t) = (4πt)−n/2eℓ(q,t) of the reduced volume is
a subsolution to the adjoint heat equation under the flow (2). By constructing
barriers at the null set of points in space-time where ℓ(q, t) fails to be smooth, we
then conclude that the inequality for v(q, t) still holds in the distributional sense,
which is good enough for the monotonicity of V (t).
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Translating solutions of Lagrangian mean curvature flow

André Neves

1. Introduction

The idea of Lagrangian mean curvature flow is to deform a given initial La-
grangian into a minimal Lagrangian (also called Special Lagrangian) using mean
curvature flow. One case where this procedure has been successful is when we
restrict ourselves to simple curves on the plane. It is a theorem of Grayson that if
we apply curve shortening flow to an embedded noncompact curve, then the flow
will exist for all time and if it converges, it will converge to a straight line.

Optimistically, one could expect that some sort of long-time existence result
should also hold for Lagrangian mean curvature flow in C2. Unfortunately, it is
known from [1] that there are ”very good“ initial conditions for which the flow,
nonetheless, develops a finite time singularity.

Thus, if we want to use the flow to produce Special Lagrangians, we need to be
able to understand how singularities for. Before we proceed, I need to introduce
some definitions.

Let J and ω denote, respectively, the standard complex structure on C2 and
the standard symplectic form on C2. We consider also the closed complex-valued
2-form given by

Ω ≡ dz1 ∧ dz2
where zj = xj + iyj are complex coordinates of C2, and the Liouville form

λ =

2
∑

j=1

xjdyj − yjdxj .

IA smooth 2-dimensional submanifold L in C2 is said to be Lagrangian if ωL = 0
and this implies that

ΩL = eiθvolL,

where volL denotes the volume form of L and θ is a multivalued function called
the Lagrangian angle. When the Lagrangian angle is a single valued function the
Lagrangian is called zero-Maslov class and if

cos θ ≥ ε0

for some positive ε0, then L is said to be almost-calibrated. The Lagrangian L is
said to be exact if the Liouville form is an exact form on L. Finally, the relation
between the Lagrangian angle and the mean curvature is given by

H = J∇θ.
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The expectation is that if L is an almost-calibrated Lagrangian in C2, then the
singularities are isolated for the flow. The almost calibrated condition is necessary
because otherwise there are know counterexamples (see [2]).

The way to approach this problem is to understand rescales of finite time singu-
larities. Assume that (Lt)0<t<T is a solution to Lagrangian mean curvature flow
that becomes singular at x0 at time T . Consider sequences (λi)i∈N, (ti)i∈N, and
(xi)i∈N that converge to infinity, T , and x0 respectively. Set

Li
s := λi(Lti+s/λ2

i
− xi),

which is still a solution to Lagrangian mean curvature flow. If ti = T and xi = x0

for all i ∈ N, then the optimal compactness theorem regarding the sequence Li
s

was proven in [1]. If we allow the points (xi, ti) move in space-time, then we can
always carefully chose them so that Li

s converges smoothly to an eternal solutions
(Lt)−∞<t<∞ of Lagrangian mean curvature flow that is almost calibrated.

If singularities are indeed isolated, the expectation is that (Lt)−∞<t<∞ will have
zero mean curvature. We remark that without the almost calibrated condition
one can construct examples of finite time singularities for which a sequence os
rescales converges to an eternal solution which is not minimal. For this reason it
is important to study eternal solutions to Lagrangian mean curvature flow in their
own right.

Next I describe all the know examples of eternal solutions in to Lagrangian
mean curvature flow in C2. First is the case where L0 is a Special Lagrangian.
Second is the case where (γt)−∞<t<∞ denotes the grim reaper in C and

Lt := γt × R ⊂ C × C.

The final set of examples was discovered by Dominic Joyce, Yng-ing Lee, and
Mao-Pei Tsui. They are described as follows. Let w be a curve in C such that

wt :=
√

2tw for t > 0

is a solution to curve shortening flow in C. This curve can be chosen in a way that
the angle θ that the tangent vector makes with the x-axis has arbitrarily small
oscillation. Set

(1) L :=

{( |w|2(y) − x2

2
− iθ(y), xw(y)

)

, |x, y ∈ R

}

⊂ C × C.

Using the fact that the curvature of w satisfies

~k = w⊥,

it is a straightforward computation to check that L is Lagrangian and that

Lt = L+ t(1, 0, 0, 0)

is a solution to Lagrangian mean curvature flow. Moreover, the Lagrangian angle
of L coincides with θ and hence its oscillation can be made arbitrarily small.

In this talk I presented two theorems (joint work with Tian) that look at the
structure of eternal solutions. In order to state the first theorem we need one
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more definition. Given an eternal solution (Lt)−∞<t<∞ and a sequence (λi)i∈N

converging to zero, we define the sequence of blow-downs to be

Li
s := λiLs/λ2

i
.

Theorem 1. If (Lt)−∞<t<∞ is an eternal solutions which is almost calibrated
and exact for all t, then any sequence of blow-downs converges, after passing to
a subsequence, to weak solution L∞

s which is a union of planes with multiplicities
for all s ≤ 0 and a self expander

√
sL∞

1 for all s > 0.

The almost calibrated condition is necessary because otherwise the grim reaper
is a counterexample. We should point out that the fact that we can say something
for L∞

s when s is positive is a very unique property of Lagrangian mean curvature
flow.

The second theorem gives conditions that assure when a translating solution is
trivial, i.e., a plane.

Theorem 2. Let (Lt)−∞<t<∞ be a translating solution to Lagrangian mean cur-
vature flow that satisfies

i) L0 is almost calibrated.
ii) There is a sequence of blow-downs that converges to a union of planes for

all s.

Then L0 is a plane.

Condition i) is important to exclude the grim reaper. Condition ii) is important
to exclude the non-trivial solutions found by Joyce, Lee and Tsui.
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Invariant curvature cones and the Ricci flow

Huy Nguyen

My research centres on the construction of invariant curvature cones and the Ricci
flow. In my thesis and together in a paper with my supervisor, Dr. Ben Andrews,
we develop a new technique to construct sets of curvature operators that are
preserved by the Ricci flow. This technique is based on the maximum principle for
geometric evolution equations. The idea is as follows, we consider a set of curvature
operators defined by an inequality of a curvature function of the orthonormal
frame bundle, F (Riijk) ≥ 0.. Examples of such functions are linear combinations
of sectional curvature. To show that such sets are preserved, by the advanced
maximum principle for tensors, it suffices to show that the ODE associated to the
nonlinearity of the Ricci flow,

d

dt
F (R) = F (R)2 + F (R)#,
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preserves the set.We note here that the nonlinearity is quadratic in the curvature.
furthermore, to show that curvature cone is preserved, we need only show that the
ODE preserves the set at the boundary, that is where F (Rijkl) = 0. However,F
is a function of the orthonormal frame bundle, and as it takes a minimum at
boundary, we may differentiate the equation with respect to derivatives in O(n).
Consequently, the first order derivatives are zero and the matrix of second order
derivatives is non-negative. Using the differential equality, we simplify the cur-
vature evolution equation. To show that the evolution equations preserves the
curvature cone, it remains to use the matrix of second derivatives and control
the remaining terms in the nonlinearity. This part of the proof has additional
subtleties, the matrix of second derivatives has entries whose terms are linear in
curvature, whereas the nonlinearity is quadratic. Using generalized determinants
we are able to overcome this problem. We carry out the computation in two cases,
that of positive isotropic curvature in dimensions n ≥ 4 and for quarter pinched
flag curvature for n = 4 and prove the following two theorems. Firstly we will
need a definition,

Definition 1 (Non-negative Isotropic Curvature (PIC) ). Let (M, gij) be a Rie-
mannian manifold, then (M, gij) has non-negative isotropic curvature if for any
set of four orthonormal vectors, {e1, . . . , e4} ⊂ TxMn, we have

R1313 +R2424 +R1414 +R2323 ≥ ±R1234.

The curvature condition above was first introduced in [MM88], where it was
used to study the space of minimal two spheres in a manifold using harmonic
maps. Then we have to following theorem,

Theorem 2 ([Ngu07]). Let (M, gij(t)) be a solution to Ricci flow equation such
that the initial metric has nonnegative isotropic curvature. Then gij(t) has non-
negative isotropic curvature.

This was first shown in by Hamilton in dimension four [Ham97], where a partial
classification of manifold with PIC was proven . We note that the second theorem
was also proved by Brendle and Schoen,[BS07].

Theorem 3 ([AN07]). Let M be a compact four-manifold, and g0 a Riemannian
metric on M which has λ-pinched flag curvatures, with λ > 1/4. Then M is
diffeomorphic to a space form.

The condition quarter-pinched flag curvature is explained as follows, let (M, g)
be a compact Riemannian 4-manifold, with curvature tensor R. We suppose that
M has positive sectional curvatures and that for every x ∈M and every orthonor-
mal basis {e1, . . . , e4} for TxM , we have

(1) R(e2, e1, e2, e1) ≥ λR(e3, e1, e3, e1).

To put this in a more geometric way, for each e1 in TxM there is an associated
bilinear form Re1 on the orthogonal subspace, the flag curvature in direction e1,
defined by Re1(v, v) = R(e1, v, e1, v). The condition (1) says precisely that the
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ratio of any two eigenvalues of Re1 is bounded below by λ. That is, each of the
flag curvatures of M is λ-pinched.
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Regularity of solutions to the Navier-Stokes equations evolving from
small initial data in a critical space

Nataša Pavlović

(joint work with Pierre Germain and Gigliola Staffilani)

1. Introduction

In this note we present an overview of our results [2] concerning regularity,
decay and analyticity of solutions to the Navier-Stokes equations in Rd.

The Navier-Stokes equations for the incompressible fluid in Rd are given by

(1)
∂u

∂t
+ (u · ∇)u+ ∇p = ∆u+ f,

(2) ∇ · u = 0,

and the initial condition

(3) u(x, 0) = u0(x),

for the unknown velocity vector field u = u(x, t) ∈ Rd and the pressure p =
p(x, t) ∈ R, where x ∈ Rd and t ∈ [0,∞).

Existence of global in time solutions to (1)-(3) when d = 3, their uniqueness
and regularity are long standing open problems of fluid dynamics. One approach
in addressing these problems is to construct solutions to the corresponding inte-
gral equation via a fixed point theorem, so called “mild” solutions. However the
existence of mild solutions to the Navier-Stokes equations (1) - (3) in Rd for d ≥ 3
has been established only locally in time and globally for small initial data. Before
we address the types of initial data for which the existence of solutions has been
established, we recall the scaling invariance of the Navier-Stokes equations. If the
pair (u(x, t), p(x, t)) solves (1) in Rd then (uλ(x, t), pλ(x, t)) with

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t)
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is a solution to the system (1) for the initial data λu0(λx). The spaces which
are invariant under such a scaling are called critical spaces for the Navier-Stokes
equations. Examples of critical spaces for the Navier-Stokes in Rd are:

(4) Ḣ
d
2−1 →֒ Ld →֒ Ḃ

−1+ d
p

p|p<∞,∞ →֒ BMO−1.

Kato [4] initiated the study of the Navier-Stokes equations in critical spaces, which
was then continued by many authors (see [2] for references). In 2001 Koch and
Tataru [5] established the existence of global solutions to (1) - (3) in Rd cor-
responding to initial data small enough in BMO−1. The space BMO−1 has a
special role since it is the largest critical space among the spaces listed in (4)
where such existence results are available.

Motivated by the work [5] of Koch and Tataru, in [2] we analyze regularity
properties of the solution constructed in [5] and show that under certain small-
ness condition of the initial data in BMO−1, the solution u to the Navier-Stokes
equations (1) - (3) satisfies the following regularity property:

(5) t
k
2 ∇ku ∈ X0, for all k ∈ N ∪ {0} ,

where X0 denotes the space where the solution constructed by Koch and Tataru
belongs (for a precise definition of X0, see Section 2). As a corollary we obtain:

(a) A decay estimate in time for any space derivative.
(b) Space analiticity of the solution.
(c) A regularity result for self-similar solutions.

Similar regularity properties of solutions to the Navier-Stokes equations in the
Lebesgue space Ld were obtained in [3] and [1], and in the homogeneous Sobolev

space Ḣd/2−1 in [8].

2. Statements of the results

2.1. Preliminaries. First, let us recall the definition of BMO−1:

(6) ‖f(·)‖BMO−1 = sup
x0,R

(

1

|B(x0,
√
R)|

∫ R

0

∫

B(x0,
√

R)

|et∆f(y)|2 dy dt
)

1
2

.

In [5] Koch and Tataru proved the following existence theorem for the solutions
to the Navier-Stokes equations:

Theorem 1. The Navier-Stokes equations (1) - (3) with f = 0 have a unique
global solution in X0

(7) ‖u‖X0 = ‖u‖N0
∞

+ ‖u‖N0
C
,

where

‖u(·, ·)‖N0
∞

= sup
t
t

1
2 ‖u(·, t)‖L∞

‖u(·, ·)‖N0
C

= sup
x0,R

(

1

|B(x0,
√
R)|

∫ R

0

∫

B(x0,
√

R)

|u(y, t)|2 dy dt
)

1
2

,

for all initial data u0 with ∇ · u0 = 0 which are small in BMO−1.
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We shall call such a solution the Koch-Tataru solution to the Navier-Stokes
equations.

2.2. Formulation of results. Now we are ready to formulate our main result:

Theorem 2. There exists ǫ = ǫ(d) such that if ‖u0‖BMO−1 < ǫ, the Koch-Tataru
solution u associated to the initial value problem (1) - (3) with f = 0 verifies

t
k
2 ∇ku ∈ X0

for any k ≥ 0.

Theorem 2 implies the following decay in time of the space derivatives:

Corollary 3. If ‖u0‖BMO−1 < ǫ(d), the Koch-Tataru solution u satisfies

(8) ‖∇ku‖BMO−1 ≤ C

tk/2
,

for any t ≥ 0 and any k ≥ 0.

Also the proof of Theorem 2 implies the following result:

Theorem 4. If ‖u0‖BMO−1 < ǫ(d), then the Koch-Tataru global solution u is
space analytic.

We prove Theorem 2 via a fixed point algorithm. Our arguments are based on
the following three results of harmonic analysis:

(a) A Carleson-type estimate (a bound on the space-time L2 norm of

βk(x, t) = t
k
2 (−∆)

k+1
2 et∆

∫ t

0

N(x, s) ds

in terms of L1 norms, one of which is over parabolic cylinders)
(b) Generalized maximal regularity of the heat kernel
(c) Estimates of the Oseen kernel

In [2] we prove (a) by applying the TT ∗ argument followed by a sequence of
integration by parts, while we prove (b) by applying the Fourier transform in
space and time. A version of (c) can be found in [6].

Remark: We note that regularity of solutions to the Navier-Stokes equations
in BMO−1 was considered by Miura and Sawada [7] too. More precisely, in [7]
Miura and Sawada prove that the global solution to the system (1) - (3) evolving
from small initial data in BMO−1 satisfies the following regularity property:

(9) t
k
2 ∇ku ∈ N0

∞, for all k ∈ N ∪ {0} .
Recalling (7), we see that our regularity result can be understood as an extension of
the result of Miura and Sawada. Indeed, a major part of our paper [2] concentrates
on obtaining the regularity result for the Carleson part of the norm1 given by N0

C .

1We use this to obtain a regularity result for self-similar solutions too.
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Future stability of the Einstein non-linear scalar field system, power
law expansion

Hans Ringström

Let us define what we mean by the Einstein-non-linear scalar field system. To
begin with, we are interested in Einstein’s equations:

(1) G = T.

Here G is the Einstein tensor, i.e.

(2) G = Ric − 1

2
Sg,

where Ric is the Ricci tensor and S is the scalar curvature of a Lorentz manifold
(M, g). Furthermore, T is the stress energy tensor, the exact form of which depends
on the choice of the matter model. We shall only consider the case

(3) T = dφ⊗ dφ−
[

1

2
〈gradφ, gradφ〉 + V (φ)

]

g,

where 〈·, ·〉 := g, V ∈ C∞(R) is referred to as the potential (specifying V cor-
responds to specifying the matter model) and φ ∈ C∞(M) is referred to as the
scalar field. If the stress energy tensor is of the form (3), we shall say that the
matter model is of non-linear scalar field type. The scalar field should satisfy a
matter equation, given by

(4) 2gφ− V ′(φ) = 0.

Note that (4) ensures that the stress energy tensor is divergence free, and thereby
that the choice of matter model is consistent with (1) (since the Bianchi identities
imply that the divergence of the Einstein tensor is zero). We shall refer to the
system (1)-(4) as the Einstein non-linear scalar field system.
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One reason why it is of interest to study the above system is that the spacetimes
used to model the universe are ones with accelerated expansion nowadays. One way
to induce accelerated expansion is by means of a positive cosmological constant.
Another way is to couple Einstein’s equations to a non-linear scalar field. Since it
is unclear what potential to use, it is of interest to study different cases.

In an earlier paper, [4], we studied the case where V has a positive non-
degenerate minimum at the origin, i.e.

V (0) > 0, V ′(0) = 0, V ′′(0) > 0.

This matter model includes Einstein’s vacuum equations with a positive cosmo-
logical constant as a special case, and the model solutions exhibit exponential
expansion. In [4], we developed a rather general framework for considering the
question of future stability in the Einstein non-linear scalar field setting. As a test
of this framework, it is of interest to use it to prove future stability for some other
potential. We here consider potentials of the form

(5) V (φ) = V0e
−λφ,

where V0 and λ are positive constants. We shall restrict the values of λ later. In
this case, the model solutions exhibit power law expansion. To the best of our
knowledge, the first person to consider this case was Halliwell, cf. [2].

The question we wish to discuss here is that of future stability of certain spatially
locally homogeneous solutions. In order to be able to give a precise definition of
what future stability means, it is necessary to formulate the inital value problem
in the Einstein non-linear scalar field setting.

Definition 1. Initial data for (1)-(4) are given by (Σ, h, k, φa, φb), where Σ is an
n dimensional manifold, h is a Riemannian metric, k is a symmetric covariant
2-tensor and φa and φb are two functions on Σ, all assumed to be smooth and to
satisfy

r − kijk
ij + (trhk)

2 = φ2
b +DiφaDiφa + 2V (φa),(6)

Djkji −Di(trhk) = φbDiφa,(7)

where D is the Levi-Civita connection of h, r is the associated scalar curvature
and indices are raised and lowered by h.

Definition 2. Let (Σ, h, k, φa, φb) be initial data for (1)-(4). A development of
the initial data is given by (M, g, φ), where M is an n + 1 dimensional manifold,
g is a Lorentz metric on M and φ ∈ C∞(M). Furthermore, (M, g, φ) should
satisfy (1)-(4). Finally, there should be an embedding i : Σ → M such that i(Σ)
is a spacelike hypersurface in (M, g), i∗g = h, φ ◦ i = φa, and if N is the future
directed unit normal and κ is the second fundamental form of i(Σ), then i∗κ = k
and (Nφ) ◦ i = φb. If i(Σ) is a Cauchy hypersurface, we shall say that (M, g, φ) is
a globally hyperbolic development.

Remark. A Cauchy hypersurface in a Lorentz manifold is a set which is inter-
sected exactly once by every inextendible timelike curve, cf. [4]. Not all Lorentz
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manifolds admit Cauchy hypersurfaces. Those that do are called globally hyper-
bolic.

The fundamental theorem concerning developments is due to Yvonne Choquet-
Bruhat and Robert Geroch, cf. [1]. However, in order to formulate it, we need to
introduce some more terminology.

Definition 3. Given initial data (Σ, h, k, φa, φb) for (1)-(4), a maximal globally
hyperbolic development of the data is a globally hyperbolic development (M, g, φ),
with embedding i : Σ →M , such that if (M ′, g′, φ′) is any other globally hyperbolic
development of the same data, with embedding i′ : Σ → M ′, then there is a map
ψ : M ′ → M which is a diffeomorphism onto its image such that ψ∗g = g′,
ψ∗φ = φ′ and ψ ◦ i′ = i.

Theorem 4. Given initial data for (1)-(4), there is a maximal globally hyperbolic
development (MGHD) of the data which is unique up to isometry.

Finally, we are in a position to state the question of future stability: Given
a globally hyperbolic and future causally geodesically complete solution to the
equations, do small perturbations of the corresponding initial data also yield future
causally geodesically complete MGHD’s?

Recall that causal geodesics are curves along which freely falling test particles
and light travel. Future causal geodesic completeness thus means that neither
freely falling test particles nor light exit the spacetime to the future after a finite
parameter “time” (proper time in the case of freely falling test particles). To
demand that the MGHD’s corresponding to the perturbed initial data are future
causally geodesically complete is a minimal requirement if one wishes to claim
that the solution is global to the future. It is of course also of interest to calculate
asymptotic expansions of the solutions. One can do so, see [5], but we do not wish
to state the results here, due to lack of space.

Let us state our main result in the 4-dimensional spatially locally homogeneous
case (for previous results, see [3]).

Theorem 5. Let V be given by (5), where V0 is a positive number and λ ∈
(0,

√
2). Let M be a connected and simply connected 3-dimensional manifold and

let (M,h, k, φa, φb) be initial data for (1)-(4). Assume, furthermore, that one of
the following conditions is satisfied:

• M is a unimodular Lie group different from SU(2) and the isometry group
of the initial data contains the left translations.

• M = H3, where Hn is the n-dimensional hyperbolic space, and the initial
data are invariant under the full isometry group of the standard metric on
H3.

• M = H2 × R and the initial data are invariant under the full isometry
group of the standard metric on H2 × R.

Assume finally that trhk > 0. Let Γ be a cocompact subgroup of M in the case
that M is a unimodular Lie group and a cocompact subgroup of the isometry group
otherwise. Let Σ be the compact quotient. Then (Σ, h, k, φa, φb) are initial data.
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Make a choice of Sobolev norms ‖ · ‖Hl on tensorfields on Σ. Then there is an
ε > 0 such that if (Σ, ρ, κ, ϕa, ϕb) are initial data for (1)-(4) satisfying

‖ρ− h‖H4 + ‖κ− k‖H3 + ‖ϕa − φa‖H4 + ‖ϕb − φb‖H3 ≤ ε,

then the maximal globally hyperbolic development corresponding to (Σ, ρ, κ, ϕa, ϕb)
is future causally geodesically complete.
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Improved Uniqueness for the harmonic map heat flow in two
dimensions

Melanie Rupflin

Let Mm and N ⊂ Rk be compact Riemannian manifolds.
We consider the harmonic map heat flow

(1) ∂tu− ∆u = A(u)(∇u,∇u),
where A is the second fundamental form of N .
This is the negative gradient flow of the Dirichlet energy

E(u) =
1

2

∫

M

|Du|2 dvolM

of maps u : M → N .
For smooth solutions of the flow, uniqueness to a given initial condition is a con-
sequence of the structure of the equation. On the other hand, when considering
weak solutions, i.e. functions u ∈ H1 satisfying (1) in the sense of distributions,
the question of uniqueness is much more complex.
We consider this problem in the critical dimension (m = 2) and assume that M is
closed.
Then given any initial condition u0 ∈ H1, there is a unique global weak solution
constructed by Struwe [6], which is smooth away from finitely many points in
space-time and has non-increasing energy.
It was shown by Freire [2] that every weak solution with non-increasing energy is
identical to the corresponding Struwe solution. Thus, uniqueness holds for weak
solutions with non-increasing energy.
As a generalization, we show



Nonlinear Evolution Equations 1515

Theorem 1 ([5]). For M a closed Riemannian surface and N compact, there
exists ε1 > 0 such that for weak solutions u ∈ H1([0, T ]×M) of (1), the condition

(2) lim
sցt

E(u(s)) < E(u(t)) + ε1 for all t ∈ [0, T )

is sufficient for uniqueness, i.e. any such u is identical to the corresponding Struwe
solution.

Examples of non-uniqueness were constructed by Topping [7] and Bertsch et al.
[1] based on backwards bubbling. This causes a positive energy jump of at least
ε⋆ to occur, where

ε⋆ = min

{

1

2

∫

S2

|∇u|2 dx, u : S2 → N is a non-constant harmonic map

}

.

Topping conjectured that non-uniqueness in the critical dimension was always
caused this way and therefore that assuming condition (2) with ε⋆ instead of ε1
was enough to ensure uniqueness.
Assuming weak a priori regularity of the energy functional, we can indeed prove
this conjecture. More precisely,

Theorem 2 ([5]). Let M , N be as above. Then for weak solutions u ∈ H1([0, T ]×
M), the conditions

• TV (E(u(·))) <∞
• lim

sցt
E(u(s)) < E(u(t)) + ε⋆ for all t ∈ [0, T )

are sufficient for uniqueness.

A few words on the proof:
The proof is built on techniques introduced by Moser in [4] by stopping time and
considering (1) as a perturbation of the harmonic map equation. This allows to
apply techniques from the stationary case.
Studying such perturbed harmonic map equations in general, we can derive local

estimates for |∇u|4 + |∇2u|2 for fixed times, if the local energy is small enough.
It is important to note that this estimate is based on an interpolation inequality
holding only in two dimensional domains and it ”separates” the influence of the
energy distribution and the perturbation term. This separation allows to pass to
space-time estimates, assuming that the local energy can be controlled uniformly
for small time intervals.
Finally, the assumptions about the global energy allow to obtain the necessary
control of the local energy, which then leads to uniqueness.

Outlook:
While the technique is restricted to the critical dimension, it may be extended to
higher order equations. More precisely, for the extrinsic biharmonic flow on a four
dimensional closed domain manifold with flat metric, the analogous result may be
shown as a generalization of [3].
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Nonlinear evolution by mean curvature and isoperimetric inequalities

Felix Schulze

Let F0 : Mn → Nn+1 be an immersion of a hypersurface Mn
0 = F0(M

n)
into a Riemannian manifold (Nn+1, h). We study smooth one-parameter families
F : Mn × [0, T ] → Nn+1 of hypersurfaces Mn

t = F (Mn, t) satisfying the following
initial value problem:

(⋆)







F (·, 0) = F0(·)
dF

dt
(·, t) = −Hk(·, t) ν(·, t) ,

where ν(p, t) is a choice of unit normal at F (p, t), k ≥ 1, and the mean curvature
H of the hypersurface is given by the sum λ1 + . . .+λn of the principal curvatures
at a each point on the surface.

Let M0 ⊂ Rn+1 be a closed hypersurface with positive mean curvature. The
positivity of the mean curvature ensures that there exists a smooth solution
(

Mt

)

0≤t<T
to the initial value problem (⋆) on a maximal, finite time interval

[0, T ). Let us denote by A(t) its surface area and by V (t) the enclosed volume at
time t. The central observation is that the ’isoperimetric difference’

(1) A(t)
n+1

n − cn+1V (t)

is decreasing under the flow for k ≥ n − 1. Here cn+1 denotes the Euclidean
isoperimetric constant. If the flow contracts smoothly to a point, as it is the case
for convex surfaces (see [2]), this proves the Euclidean isoperimetric inequality for
the initial configuration. But it is to be expected, that in general, as for the mean
curvature flow, this flow develops singularities before the enclosed volume goes to
zero. To overcome this obstacle we develop a weak level-set formulation for such
a flow. More precisely, let M0 = ∂Ω with positive mean curvature and Ω ⊂ Rn+1
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be open and bounded. A weak level-set solution u : Ω → R of the Hk-flow is then
formally a solution to the equation

div
( Du

|Du|
)

= − 1

|Du| 1
k

,

with u = 0 on ∂Ω. Using elliptic regularisation we show the existence of approx-
imative solutions to this equation, as well as the existence of appropriate weak
solutions. We furthermore show that the isoperimetric difference, appropriately
defined for the weak flow, is still decreasing. Since this flow is defined past singular-
ities, we apply it to prove the isoperimetric inequality for all initial configurations
Ω, where ∂Ω has positive mean curvature. By a direct replacement argument one
can then show that for n ≤ 7 this suffices to prove the isoperimetric inequality for
any open and bounded set Ω ⊂ Rn+1 with smooth boundary.
It is furthermore possible to show that such a weak flow also exists on a 3-
dimensional, simply connected manifold with nonpositive sectional curvatures and
that again the isoperimetric difference is decreasing along the flow. This yields
a new, alternative proof of the result of Kleiner [1] that on such a manifold the
Euclidean isoperimetric inequality is satisfied. If the the sectional curvatures are
bounded from above by −κ, κ ≥ 0, it also possible to use this flow approach to
give as well an alternative proof of the fact that the isoperimetric profile of such
a manifold is comparable with the isoperimetric profile of the model space with
sectional curvatures equal to −κ.
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Phase transitions in elastic atomistic chains

Hartmut R. Schwetlick

(joint work with Johannes Zimmer)

1. Summary

We study the existence of travelling wave solution for a Fermi-Pasta-Ulam chain.
Motivated by martensitic phase transitions the elastic interaction energy is as-
sumed to be a multi-well potential. We focus on the special case where the poten-
tial is piecewise quadratic, with two wells representing two stable phases. In the
physically interesting regime of subsonic speeds we prove rigorously the existence
of ’heteroclinic’ travelling waves, that is, the asymptotic strains are contained in
different wells of the potential. The existence proof is able to provide a very de-
tailed insight into the structure and regularity of the solution. Thus, we are able to
deduce important information on the macroscopic dissipation, namely, the kinetic



1518 Oberwolfach Report 27/2008

relations governing the dependence of the configurational force on the speed of the
moving interface.

2. Introduction

This article is concerned with travelling waves and the pertaining kinetic re-
lations for the Fermi-Pasta-Ulam chain with a piecewise quadratic interaction
potential. The precise setting is described below. The aims of this article are
threefold. First, the existence of a family of travelling heteroclinic waves is estab-
lished. Here, heteroclinic is understood in the sense that the asymptotic states
are in different wells of the on-site potential. The existence result is an extension
of earlier work [3], where the existence of one travelling wave is shown. Here, we
prove that this solution is in fact embedded in a one-parameter family of solutions.
Second, the chosen parametrisation of solutions gives give to a parametrisation of
the so-called kinetic relation (relating the wave speed to the applied configuratinal
force). This significantly extends the previous result [3], where only the trivial
force-free kinetic relation was found. Third, we demonstrate that in the frame-
work employed here, it is easy to give a good approximation of the solutions in
the sense that it is proven that the plots differ from the real solution by at most
1
2 in the L∞-norm. This should be contrasted with the traditional representation
of the solution as an infinite sum of Fourier-like components, where error bounds
on the solution do not seem to exist in the literature.

The precise setting is as follows. The Fermi-Pasta-Ulam chain is defined by the
Equation of motion

(1) üj(t) = V ′(uj+1(t) − uj(t)) − V ′(uj(t) − uj−1(t))

for every j ∈ Z; it describes the motion of a one-dimensional chain of atoms {qj}j∈Z

on the real line by the deformation of atom j ∈ N by uj : R → R. Equation (1)
describes the evolution governed by Newton’s law, with neighbouring atoms being
linked by springs.

The argument of the elastic potential is the discrete strain, which is given by
the difference of the deformations uj+1(t) − uj(t). We consider phase transitions
and thus face the challenge that V : R → R is nonconvex. As in several previous
studies [2, 4, 5, 3], we consider the simplest possible elastic potential V , namely a
piecewise quadratic function. Specifically, we define

(2) V (ε) :=
1

2
min{(ε+ 1)2, (ε− 1)2}.

For the strain, this implies

(3) σ(ε) := ε+ 1 − 2H(ε) = ε+H(−ε) −H(ε)

equals V ′(ε) wherever V is differentiable, that is, for every ε 6= 0. Here, H is the
symmetrised Heaviside function,

H(x) =











0 for x < 0
1
2 for x = 0

1 for x > 0

.
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With the travelling wave ansatz uj(t) = u(j−ct) for j ∈ Z, Equation (1) reduces
to

c2ü(x) = V ′ (u(x+ 1) − u(x)) − V ′ (u(x) − u(x− 1)) .

In terms of the discrete strain ε(x) := u(x)−u(x−1), the travelling wave equation
is

(4) c2ε′′(x) = ∆1V
′ (ε(x)) ,

where
∆1f(x) := f(x+ 1) − 2f(x) + f(x− 1)

is the discrete Laplacian. Specialising the potential to the choice made in (2),
Equation (4) becomes

(5) c2ε′′(x) = ∆1 [ε(x) +H (−ε(x)) −H (ε(x))] = ∆1ε(x) − 2∆1H (ε(x)) .

For the sake of clarity, we order into linear and nonlinear part and rewrite (5) as

(6) c2ε′′ − ∆1ε = −2∆1H(ε).

We want to study the existence of heteroclinic travelling wave solutions for this
nonlinear advance-delay equation. To keep the technicalities to a minimum we
assume that the dispersion relation

(7) D(κ) := −c2κ2 + 4 sin2
(κ

2

)

,

associated to the linear operator above, has only one positive real zero κ0, which
says that κ0 is not too large, or c2 is not too far away from the sonic speed 1. In
fact, we show that there is a family of solutions, rather than one solution.

Theorem 1. Suppose the dispersion relation (7) has one positive zero κ0 with
κ2

0 <
1
2 . Then there exists a family of heteroclinic solution to Equation (6). The

solutions all have odd symmetry and satisfy the one-transition property

(8) ε > 0 for x > 0 and ε < 0 for x < 0.

3. The Rankine-Hugoniot condition

We now show that the family of waves of Theorem 1 satisfy the Rankine-
Hugoniot condition. Our ansatz to describe the solution ε(x) = εpr(x) − εcor(x)
with an approximate profile εpr and a remainder εcor ∈ L2(R) is here very helpful
since it allows that macroscopic quantities such as the Rankine-Hugoniot condition
can be directly read off from the profile function εpr, which is known explicitly.

Let us assume that the position of the interface is s(t), and let us introduce
the notation [[f ]] for f(s(t)+, t) − f(s(t)−, t), (here, f(x0±) is the shorthand no-
tation for the limits from the left and the right at x0). For an interface moving
with velocity c, either the strain ux or the velocity u̇ may be discontinuous at
the interface. However, the moving interface must satisfy the Rankine-Hugoniot
conditions [1, Equations (2.6) and (2.7)]

[[σ(ux)]] = −ρc [[u̇]] ,

c [[ux]] = − [[u̇]] ,
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which we combine by writing for ε = ux

(9) ρc2 [[ε]] = [[σ(ε)]] .

Here, one has ρ ≡ 1 and, thanks to (3), [[σ(ε)]] = [[ε]]− 2, so (9) is equivalent to

(10) [[ε]] =
2

1 − c2
.

Although the strain is continuous, it oscillates at ±∞. Thus, the jump in ε in (10)
needs to be understood in the sense

(11) [[ε]] = ε̄+ − ε̄−,

where ε̄± are the limits of the averaged strains

ε̄+ := lim
x→∞

lim
s→∞

1

s

∫ x+s

x

ε(ξ) dξ,

and

ε̄− := lim
x→−∞

lim
s→∞

1

s

∫ x

x−s

ε(ξ) dξ.

As mentioned earlier, only εpr contributes to the asymptotic strains ε̄±. A direct
calculation shows that

ε̄+ = α

(

1 + ξ

κ2
0

+
1

β2

)

+
−2

c2
1

2
=

α

κ2
0

γ−2 − 1

c2
=

1

1 − c2
+
αξ

κ2
0

.

Analogously

ε̄+ = α

(−1 + ξ

κ2
0

+
1

β2

)

− −2

c2
1

2
=

α

κ2
0

γ−2 − 1

c2
= − 1

1 − c2
+
αξ

κ2
0

.

Thus, as in the symmetric case,

(12) ε̄+ − ε̄− = 2
1

1 − c2
,

and, via (11), we have verified the Rankine-Hugoniot condition (10).

4. The kinetic relation

A central observation of this paper is that the kinetic relation is essentially
determined by function in the kernel of the linear operator L from Equation (??),
in the following sense: if the profile εpr contains no functions in ker(L) other than
the zero function, then the kinetic relation is trivial, namely the zero function.
This is the case for a symmetric profile [3]. In the asymmetric case, the profile
εpr contains non-zero functions from ker(L), and it is those kernel functions that
render the kinetic relation non-trivial.

Before discussing this in detail, let us recall the definition of a kinetic relation,
after introducing the notation. {σ} := 1

2 (σ(s(t)+, t) + σ(s(t)−, t)) for the average
stress across the discontinuity. A moving interface can dissipate energy, and the
amount of dissipation is measured by the configurational force (or driving force).
Furthermore, if the strain on both sides of the interface is constant, say εl for the
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strain on the left and εr for the strain on the right, then, the configurational force
acting on an interface is

(13) f :=

∫ εr

εl

σ(ε) dε− {σ} [[ε]]

(see, for example, [1, Equation (2.11)]). Since the configurational force depends
on the speed c of the interface, we write f = f(c). Furthermore,

(14) R(c) := cf(c)

is the (macroscopic) rate of the energy dissipation or energy flux [1, Equation
(2.10)]. The entropy inequality requires that fc ≥ 0.

Here, the waves can oscillate, possibly widely, on both sides of the interface.
We thus have to interpret Equation (13) in an averaged sense by setting εl := ε̄−
and analogously εr := ε̄+. We find

(15) {σ} = {ε} =
ēl + ēr

2
=
αξ

κ2
0

.

Furthermore, by (12),

(16) [[ε]] = ε̄+ − ε̄− = 2
1

1 − c2
.

Finally,

∫ εr

εl

σ(ε) dε =

∫

1
1−c2 +

αξ
κ2
0

1
1−c2

σ(ε) dε−
∫ − 1

1−c2 +
αξ
κ2
0

− 1
1−c2

σ(ε) dε

= 2 · 1

1 − c2
· αξ
κ2

0

− 2 · αξ
κ2

0

(17)

In summary, the kinetic relation (13) becomes with (15), (16) and (17)

(18) f = −2 · αξ
κ2

0

.

Thus, the kinetic relation is non-zero unless ξ = 0. In particular, the force on the
interface is exactly determined by functions in the kernel of the linear operator L
in (6). We emphasise that is is this local asymmetry which imposes dissipation on
the macroscopic scale.
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Some Results concerning the Parabolic Scalar Curvature Equation

Brian Smith

This talk focuses on the parabolic scalar curvature equation (pse), which is as
follows:

H̄r
∂u

∂r
= u2∆γu+

(

r
∂H̄

∂r
− H̄ +

1

2

(

H̄2 + |χ̄|2
)

)

u−
(

κ(γ) − r2R

2

)

u3

Here, (γ(r),Σ) is a smooth family of 2-manifolds defined on an interval I, with κ

the Gauss curvature, χ̄ = γ+ 1
2r

∂γ
∂r , and H̄ = χ̄ABγ

AB. A positive solution of the

pse yields a metric g on M = I × S2 of prescribed scalar curvature R in the form

g = u2dr2 + r2γ.

The first version of this equation was derived by Robert Bartnik [1] for quasi-
spherical metrics. It was later fully generalized by Smith and Weinstein [7], and
Shi and Tam [3].

In order to obtain short time existence, one assumes H̄ ≥ δ > 0, which is
equivalent to the strict positivity of the mean curvature of the foliation surfaces
Σr = {r} × Σ. When this assumption is made and Σ remains smooth, standard
parabolic theory implies “short time” existence; i.e. given inial data at r0, one has
existence on some interval [r0, r0 + ε). Note that when R ≡ 0 and κ > 0 we get
sufficient bounds for global existence by the maximum principle.

All of the results discussed today will be related to global existence in more gen-
eral cases. Before summarizing these, we should consider briefly what one hopes
to accomplish. The following problem, which is strongly motivated by general
relativity, is certainly broad enough: one would like to be able to use the pse to
construct as many asymptotically flat manifolds of non-negative scalar curvature
as possible—outside of any apparent horizons. By results of Huisken and Sines-
trari [2], it might be sufficient to assume that the foliation at each r consists of
a union of topological spheres. However, κ cannot be assumed to be positive in
general, and we must also allow for foliations that have singularities. Dealing with
singular foliations seems to be very difficult. Also, it essentially requires a solu-
tion to the problem of obtaining global existence in certain situations in which
κ− r2R/2 must change signs, and so for the time being we focus on the latter.

Related to this problem, this talk addresses the following results: (1) Blow-up
occurs in many cases, but if the foliation is homothetic, r2R/2−κ is non-decreasing,
and the blow-up occurs at least as fast as (r1 − r)−1/2, then the blow-up rate is
uniform so that the blow-up corresponds to a maximal area totally geodesic outer
boundary [4]. Moreover, spherically symmetric blow-up is stable. (2) In the case of
null prescribed scalar curvature and a foliation by spheres, let A denote the area of
the foliation spheres, and V the enclosed volume. Then as long as ∂A/∂V remains
bounded away from 0, one has a supremum bound, and hence global existence [5].
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(3) Solving an ”initial time” blow-up problem in the case of prescribed null scalar
curvature leads to the following result: If κ(γ) > 0, the surface (S2, γ) can be
realized as a stably embedded minimal surface in a null scalar curvature manifold.
That is, one may construct black hole initial data with a horizon of prescribed
geometry (S2, γ) [6].

Finally, I would like to point out new avenues of investigation in which γ is
assumed to flow by a geometric flow such as, for instance, the area preserving
Ricci flow. To obtain a parabolic system one can introduce a cross term in the
metric to obtain H̄ ≡ 2, which implies that the foliation flows by inverse mean
curvature as well.
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An Analysis of the Euler-Nordström System via the Method of
Energy Currents

Jared Speck

1. Overview

My research focuses on the analysis of nonlinear partial differential equations
(PDEs) used to model physical phenomena. In particular, I have studied the
motion of self-gravitating relativistic fluids and relativistic electrodynamics, which
are examples of evolutionary processes that are typically modelled by quasilinear
hyperbolic systems of PDEs. The most fundamental questions concerning a system
of hyperbolic PDEs are

(1) Given initial data belonging to the function/distribution space X, does
the system posses a unique solution that exists locally in time, remains in
X, and depends continuously on the initial data? If these conditions are
satisfied, the system is said to be well-posed in X. Often times, the search
for a space X in which the system is well-posed is a challenging question
in itself.

(2) Does a given solution exist for all time, or does a singularity form in finite
time? If a singularity forms, what is its nature?
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In my research, I strive to answer (1), (2), and many related questions for systems
that are only partially understood.

2. Techniques and Recent Results

2.1. The Method of Energy Currents. It is well-known that for first-order
symmetric hyperbolic (FOSH) systems of PDEs, an energy principle is available
that implies well-posedness in the Sobolev space HN , if the integer N is large
enough. The proof is based on the fact the symmetry of the equations allows
one to estimate the time derivative of the L2 norm of the solution in terms of
the L2 norm of the solution itself, which allows one to make a Gronwall estimate.
There is also a generalization of this energy principle available that applies to
strictly-hyperbolic (in the sense of Leray) systems.

However, not all first order hyperbolic systems are treatable via these two meth-
ods. For example, the Euler-Nordström system (see Section 2.2 below) is neither
manifestly symmetric hyperbolic or strictly hyperbolic. Fortunately, Christodou-
lou has constructed a framework of alternate techniques ([Chr00], [Chr07]) that
provide energy currents for any hyperbolic system that is derivable from a La-
grangian. The energy currents, which are vectorfields on the domain, enable one to
make the same energy estimates that are available in the theory of FOSH systems;
in particular, for a hyperbolic system derivable from a Lagrangian, well-posedness
in the Sobolev space HN for N large enough follows.

While Christodoulou’s methods are not the only techniques available for prov-
ing the well-posedness of a hyperbolic system in a Sobolev space, they are powerful
and natural in the sense that they exploit the inherent geometry of the equations.
In contrast, one may proceed by seeking a change of state-space variables that
renders the system FOSH. For example, Makino applies this symmetrizing tech-
nique to the Euler-Poisson equations in [Mak86], and Makino and Ukai apply it to
the relativistic Euler equations without gravitational interaction in [MU95a] and
[MU95b]. Yet the symmetrizing method is not without disadvantages: one must
solve a formally over-determined system of equations to find the symmetrizing vari-
ables, and the resulting state-space variables, if they exist, may place un-physical
and/or mathematically unappealing restrictions on the function spaces with which
one would like to work. However, it should be noted that Makino’s symmetrization
of the Euler-Poisson system is currently capable of dealing with a restricted class
of compactly supported data, while the technique of energy currents as applied
to my study of the Euler-Nordström system (which is discussed in Section 2.2)
cannot yet handle such data due to singularities in the energy current when the
proper energy density ρ of the fluid vanishes.

2.2. The Euler-Nordström System. The Euler-Nordström (EN) system is a
Lorentz covariant scalar caricature of the general covariant Euler-Einstein system
describing a gravitationally self-interacting fluid. Mathematically speaking, the
EN system is a quasilinear hyperbolic system of PDEs. In [Spe08b], we intro-
duced a positive cosmological constant κ2 into the EN system (and designated the
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resulting system ENκ) in order to ensure the existence of non-zero constant solu-
tions. Accordingly, we studied the initial value problem for an HN perturbation
of an infinitely extended uniform quiet fluid. Although the ENκ system is neither
symmetric hyperbolic nor strictly hyperbolic, Christodoulou’s constructive results
on the existence of energy currents for hyperbolic systems derivable from a La-
grangian can be adapted to provide energy currents that can be used in place of the
standard energy principle available for first-order symmetric hyperbolic systems.
After providing such energy currents, we proved the following theorem:

Theorem (Well Posedness for ENκ). Let N ≥ 3 be an integer. Assume that

the initial data V̊ for the ENκ system are an HN (R3) perturbation of a constant
background solution V̄. Then this data launch a unique solution V existing on a
spacetime slab [0, T ] × R3 and which possesses the regularity property V − V̄ ∈
C0([0, T ], HN(R3))∩C1([0, T ], HN−1(R3)). Furthermore, the map from the initial

perturbation V̊−V̄ to V−V̄ is a continuous map from an open subset of HN (R3)
into C0([0, T ], HN(R3)).

2.3. The Non-relativistic limit of the ENκ System. We have also studied
the non-relativistic (also known as the “Newtonian”) limit (i.e. c → ∞) of the
family of Euler-Nordström systems indexed by the parameters κ and c (ENc

κ),
where κ2 is the cosmological constant and c is the speed of light. The limit c→ ∞
is singular because the ENc

κ system is hyperbolic for all finite c, while the limiting
system, namely the Euler-Poisson system with a cosmological constant (EPκ), is
not hyperbolic. Using Christodoulou’s techniques to generate energy currents,
together with harmonic analysis, we developed Sobolev estimates and used them
to prove [Spe08a] the following theorem:

Theorem (The Non-relativistic Limit of ENc
κ). For initial data belonging

to an appropriate Sobolev space, the corresponding solutions to the ENc
κ system

converge uniformly on a spacetime slab [0, T ] × R3 to the solution of the EPκ

system as the speed of light c tends to infinity.

As mentioned above and discussed in detail in [Spe08b], we consider the ENc
κ

system to be a mathematical scalar caricature of the Euler-Einstein (EE) system.
We now provide some justification for this point of view. The above theorem shows
that for large c, the EN c

κ system well-approximates the EPκ system. Furthermore,
in [Oli07], Oliynyk shows the existence of a class of non-stationary solutions to the
Euler-Einstein equations which converge to solutions of the EP0 system in the
Newtonian limit. Hence, both the ENc

κ system and the EE system have the same
Newtonian limit, and we therefore expect1 that achieving an understanding of the

1We temper this expectation by noting that our proof does not work in the case κ = 0
and that in contrast to the initial value problem we studied in [Spe08b], Oliynyk considered
compactly supported data under an adiabatic equation of state. This special class of equations
of state allows Oliynyk to make a “Makino” change of variable which regularizes the equations
and overcomes the singularities that typically occur in the equations in regions where the proper
energy density vanishes. See [Mak86] and [Ren92] for additional examples of this change of
variables in the context of various fluid models.
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evolution of the ENc
κ system will provide insight into understanding the behavior

of the vastly more complicated EE system.
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Blow-up results for energy critical semilinear wave equations

Daniel Tataru

The aim of the talk is to survey some recent results concerning the existence
of blow-up solutions for energy critical semilinear wave equations. This is joint
work with Joachim Krieger and Wilhelm Schlag. There are two models we have
considered so far. The first is the 2 + 1 dimensional wave-map equation into the
sphere,

2U = U(∂αU∂αU), U : R
2+1 → S

2

Here the energy is preserved,

E(U) =

∫

R2

〈DU(·, t), DU(·, t)〉 dx = const

and it is invariant with respect to the scaling of the equation, u(x, t) → u(λx, λt).
We note that a fairly satisfactory understanding has been achieved for small-

energy wave maps from R2+1 to general targets, see Tao [9], Tataru [10]–[11], and
Krieger [4], as well as for rotationally invariant wave maps and general initial data
by Christodoulou, Tahvildar-Zadeh [2], and Struwe [8]. In particular, the latter
never develop singularities, see [8].

Instead, we consider equivariant wave maps of co-rotation index 1,

U(ωx, t) = ωU(x, t), ω ∈ SO2
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where SO2 acts in standard fashion on R2, and the action on S2 is induced from
that on R2 via stereographic projection. A recent paper by Rodnianski, Ster-
benz [7] considers equivariant wave maps of higher co-rotation index.

In polar coordinates one obtains an equation for the longitudinal angle u,

(1) −utt + urr +
ur

r
=

sin(2u)

2r2

This equation admits a soliton-like solution, namely the stereographic projection
and its rescaled versions,

Q(r) = 2 arctan r, Qλ(r) = Q(λr), λ > 0

Numerical evidence in Bizon, Tabor [1], and Isenberg, Liebling [3] suggests singu-
larity development following a rescaled soliton profile,

u(t, r) ≈ Q(λ(t)r) + o(1)

A second model we consider is the focusing quintic semilinear wave equation in
3 + 1 dimensions,

(2) ∂ttu− ∆u − u5 = 0

This has a conserved energy

E(u) =

∫

R3

[1

2
(u2

t + |∇u|2) − |u|6
6

]

dx

which is invariant with respect to the scaling associated to the equation, u(x, t) →
λ

1
2 u(λx, λt).
For this equation we seek spherically symmetric blow-up solutions. It admits a

soliton-like solution and its rescaled versions

Q(r) = (1 + r2/3)−
1
2 , Qλ(r) = λ

1
2 u(λr), λ > 0.

Our main result asserts that for both models there are blow-up solutions with
soliton profiles corresponding to a large range of polynomial blow-up rates:

Theorem 1. Let ν > 1
2 and δ > 0. Then there exists an energy solution u of (1)

respectively (2) which blows up precisely at r = t = 0 and which has the following
property: in the cone |x| = r ≤ t and for small times t the solution has the form,
with λ(t) = t−1−ν ,

u(x, t) = Qλ(t)(r) + η(x, t)

where E(η)(t) → 0 as t→ 0 and outside the cone u(x, t) satisfies

E(u)[|x|≥t] < δ

for all sufficiently small t > 0. In particular, the energy of these blow-up solutions
can be chosen arbitrarily close to E(Q), i.e., the energy of the stationary solution.

The restriction ν > 1
2 is technical, and should probably be replaced by ν > 0.

These blow-up solitions are also unstable.
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A key role in the analysis is played by the linearized evolution around the
soliton. After a suitable renormalization this has the form

(∂2
t + L)v = 0

where L is given by

L = −∂2
R +

3

4R2
− 8

(1 +R2)2

in the case of wave-maps, respectively

L = −∂2
R − 5(1 +R2/3)−2

A key common feature of these operators is that they have a resonance at 0, which
is given by

φ0 =
d

dλ
Qλ(R)|λ=1

This resonance appears to be the main driving force behind the above blow-up
dynamics.
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On the notion of quasi-local mass (energy-momentum) in general
relativity

Mu-Tao Wang

(joint work with Shing-Tung Yau)

As is well known, by the equivalence principle there is no well-defined concept of
energy density in general relativity. On the other hand, when there is asymptotic
symmetry, concepts of total energy and momentum can be defined. This is called
the ADM energy-momentum and the Bondi energy-momentum when the system
is viewed from spatial infinity and null infinity, respectively. These concepts are
fundamental in general relativity and have been proven to be natural and to satisfy
the important positivity condition in the work of Schoen-Yau, Witten, etc. How-
ever, there are limitations to such definitions if the physical system is not isolated
and cannot quite be viewed from infinity where asymptotic symmetry exists. It
was proposed more than 40 years ago to measure the energy of a system by enclos-
ing it with a membrane, namely a closed spacelike 2-surface, and then attach to it
an energy-momentum four-vector. It is natural to expect that the four-vector will
depend only on the induced metric, the second fundamental form, and the con-
nection on the normal bundle of the surface embedded in spacetime. This is the
idea behind the definition of quasilocal mass of this surface. Obviously there are a
few conditions the quasilocal mass has to satisfy: Firstly, the ADM or Bondi mass
should be recovered as spatial or null infinity is approached. Secondly, the correct
limits need be obtained when the surface converges to a point. Thirdly and most
importantly, quasilocal mass must be nonnegative in general and zero when the
ambient spacetime of the surface is the flat Minkowski spacetime. It should also
behave well when the spacetime is spherically symmetric. Many proposals were
made by Hawking, Penrose, etc. The most promising one was proposed by Brown-
York where they motivated their definition by using the Hamiltonian formulation
of general relativity (see also Hawking-Horowitz ). They found interesting local
quantities from which the definition of quasilocal mass was extracted. Their defi-
nition depends on the choice of gauge along the three dimensional spacelike slice
which the surface bounds. It has the right asymptotic behavior but is not positive
in general. Shi and Tam proved that it is positive when the three dimensional slice
is time symmetric. Motivated by geometric consideration, Liu and Yau introduced
a mass which is gauge independent, and proved that it is always positive. However,
it was pointed out by Ó Murchadha, Szabados and Tod that the Liu-Yau mass
can be strictly positive even when the surface is in a flat spacetime. In [1] and [2],
we explore more in the direction of the Hamilton-Jacobi analysis of Brown-York.
Combining some ideas from Liu-Yau, we define a quasilocal mass which is gauge
independent and nonnegative. Moreover, it is zero whenever the surface is in the
flat Minkowski spacetime. We believe that the present definition satisfies all the
requirements necessary for a valid definition of quasilocal mass, and it is likely
to be the unique definition that satisfies all the desired properties. A variational
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characterization of the quasilocal mass and its evolution equation in the spherical
symmetric case are also discussed in this talk.
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Almost global wellposedness of the 2-D full water wave problem

Sijue Wu

We consider the motion of the interface separating an inviscid, incompressible,
irrotational fluid, under the influence of gravity, from a region of zero density in
the two dimensional space. We assume the surface tension on the interface is zero.
Assume that the density of the fluid is one, the gravitational field is (0,−1), and
at the time t ≥ 0, the free interface is Γ(t), and the fluid occupies the region Ω(t)
below the interface Γ(t). The motion of the fluid is described by

(1)



















vt + v · ∇v = (0,−1)−∇P on Ω(t), t ≥ 0,

divv = 0, curlv = 0, on Ω(t), t ≥ 0,

P = 0, on Σ(t)

(1,v) is tangent to the free surface (t,Σ(t)),

where v is the fluid velocity, P is the fluid pressure. In [15] we showed that the
initial value problem of the full nonlinear water wave system (1) is uniquely solvable
locally in time in Sobolev spaces, for any initially nonself-intersecting interfaces
and incompressible irrotational velocities. Earlier Nalimov [10], and Yosihara [18]
obtained the existence and uniqueness of solutions locally in time in Sobolev
classes for small initial data, for 2-D water wave of infinite and finite depths. Other
related results concerning local in time wellposedness of the water wave motion in
higher dimensions and with additional effects such as a bottom, a non-zero surface
tension and non-zero vorticity can be found in [1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 16, 19].
However the question concerning the solution behaviors globally in time remains
open.

In this paper we study the global in time behavior of solutions of the infinite
depth water wave system (1), assuming that the initial data is small.

In what follows, we regard the 2-D space as a complex plane and use the same
notation for a complex form z = x+ i y and a point z = (x, y). So z̄ = x− i y.

Let z = z(α, t) = x(α, t) + i y(α, t), α ∈ R, be the equation of the free interface
Σ(t) at time t in Lagrangian coordinate α, that is zt(α, t) = v(z(α, t), t). Let

(2) Hf(α, t) =
1

πi
p.v.

∫

f(β, t)zβ(β, t)

z(α, t) − z(β, t)
dβ
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be the Hilbert transform associated with z = z(·, t). We know system (1) is
equivalent to the following nonlinear system on the interface:

(3)

{

ztt + i = iazα

z̄t = Hz̄t

where a is a real valued function determined by system (3). (In fact, a = −∂P
∂n

1
|zα| .)

Taking a derivative to t to the first equation in (3), we obtain

(4) zttt − iaztα = iatzα

We showed in [15, 16] that the left hand side of (4) consists of the higher order
terms, and constructed energy using these higher order terms and proved local in
time well-posedness of the system (3).

The study of the long time behavior of solutions of (3) requires us to understand
better the nature of the nonlinearity of the water wave system (3).

For f = f(α, t), g = g(α, t), we use the notation Ugf(α, t) = f ◦ g(α, t) =
f(g(α, t), t). Let Φ(·, t) : Ω(t) → P− be the Riemann mapping from the fluid
domain Ω(t) to the lower half plane P−, satisfying limz→∞ Φz(z, t) = 1. Let
h(α, t) = Φ(z(α, t), t) and

(5) k(α, t) = 2x(α, t) − h(α, t).

Let k−1 be such that k ◦ k−1(α, t) = α. Let ψ(α, t) = φ(z(α, t), t), where φ is the
velocity potential.

In this paper, we find that the quantities

(6) χ = Uk−1(I − H)y, v = Uk−1∂t(I − H)y, λ = Uk−1(I − H)ψ,

we name χ, v, λ by Θ, satisfy equations of type

(∂2
t − i∂α)Θ = G

where G consists of nonlinear terms of only cubic and higher orders. Using these
equations for χ, v, λ and the method of invariant vector fields, we prove the
following almost global well-posedness result for the 2-D water wave.

Let the initial interface be a graph z(α, 0) = α + i ǫf(α), the initial velocity
zt(α, 0) = ǫg(α), α ∈ R, f and g are smooth and decay fast at infinity, and
ḡ = H0ḡ, here H0 is the Hilbert transform associated with the initial interface
z(·, 0).

Theorem 1. There exist ǫ0 > 0, T > 0, depending only on f and g, such that for
0 < ǫ < ǫ0, the initial value problem of the 2-D water wave system (3) (equivalently
(1)) has a unique classical solution for a time period [0, eT/ǫ]. During this time
period, the solution has the same regularity as the initial data and remains small,
and the interface is a graph.

The details of this work is contained in [17].
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