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Introduction by the Organisers

This meeting was focused on asymptotic aspects of group theory. The resulting
problems lead, in particular, to the study of infinite groups, with an emphasis
on the asymptotic behaviour of their finite quotients. Also, properties of infinite
families of finite groups are at the center of interest in the field.

We had talks on the most important recent developments in the field of asymp-
totic and profinite group theory. We single out some of these new results.

The classification of finite simple groups has provided an impetus for the de-
tailed investigation of properties of families of groups of Lie type and of alternating
groups. This has produced many results of asymptotic or probabilistic nature, de-
scribing in a quantitative way properties that hold for all sufficiently large simple
groups, or else that hold ‘almost surely’ as the orders of the groups are tending to
infinity. Here we had a talk of Aner Shalev on his recent solution (with coauthors)
of Ore’s conjecture.

Recently there has been much activity in the study of infinite groups, with an
emphasis on the asymptotic behaviour of their finite quotients, or their finite-index
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subgroups. The theory of subgroup growth is now well established; the theory of
the associated zeta functions is making good progress. More subtle variations of
subgroup growth are also developing into significant theories in their own right:
there are important new results on representation growth – of arithmetic groups,
nilpotent groups and pro-p groups; and on maximal subgroup growth, with appli-
cations to probabilistic generation properties.

Profinite groups are ‘asymptotic limits’ of finite groups. The nature of verbal
subgroups and verbal mappings, in both finite and profinite groups, has been the
focus of much recent work. This has led among other things to the solution of
Serre’s problem on subgroups of finite index in finitely generated profinite groups;
other significant results include the characterisation of closed verbal subgroups in
pro-p groups and new characterisations of solubility in finite groups.

Branch groups, both discrete and profinite, are certain groups of automorphisms
of rooted trees; introduced by Grigorchuk and others over 20 years ago, they have
provided the solution to several outstanding problems, and their study continues
to provide new results. Some of them were reported on in our meeting.

We also had talks from important fields of mathematics in which profinite and
asymptotic group theory finds application. There is, for instance, the study of the
absolute Galois group of the rationals and in particular its closed pro-p subgroups.
Methods from pro-p group theory have successfully been applied in order to un-
derstand fundamental groups of (hyperbolic) 3-manifolds. The interplay between
the topological fundamental group of a complex algebraic surface and its profinite
completion which is the etale fundamental group of the surface is the subject of
recent research.

We believe that the meeting was exciting and successful. The high quality
lectures covered a lot of very recent results in the field. There were many intense
discussions between mathematicians of different fields. Altogether there were over
50 participants from all over the world. The percentage of young researchers was
very high.

The following extended abstracts were collected and edited by Dr. Evija Rib-
nere.
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Abstracts

Counting arithmetic lattices and arithmetic surfaces

Alex Lubotzky

(joint work with M. Belolipetsky, T. Gelander, A. Shalev)

Let G be a non-compact simple Lie group with Haar measure µ. A classical
theorem of Wang asserts that if G is not isomorphic to PSL2(R) or PSL2(C) then
for every 0 < x ∈ R, there exists only finitely many conjugacy classes of lattices
Γ in G with µ(G/Γ) < x. This is clearly not true for PSL2(R) and PSL2(C).
(The former even have continuous families of such lattices and the latter countably
many). Still Borel shows that if one restricts himself only to arithmetic lattices,
the result is still true.

In recent years there have been a number of works giving quantitative estimates
to Wang’s Theorem. Here we give quantitative estimates on Borel’s Theorem.
So let ALG(x) denote the number of conjugacy classes of arithmetic lattices of
covolume at most x in G. We prove:

Theorem A1. There exists 0 < b ∈ R such that for every x≫ 0,

ALG(x) ≤ xbx.

Theorem A2. If G = PSO(n, 1) then there exists 0 < a = a(n) ∈ R such that
for every x≫ 0,

xax ≤ ALG(x).

For G = PSL2(R), we have a very precise estimate:

Theorem B. Let G = PSL2(R) and µ the Haar measure of G obtained from
lifting the hyperbolic measure from H2 = G/K - the upper half plane. Then

lim
x→∞

logALG(x)

x log x
=

1

2π
.

Theorem A1 and B are proved by first giving upper bounds on the number of
maximal arithmetic lattices. As this number is “small” (bounded by xc log x) we
can fix a maximal arithmetic lattice and count its finite index subgroups. For this
we use the following Theorem which is of independent interest:

Theorem C. Let G be a simple Lie group. Then there exists a constant c such
that for every lattice Γ in G, d(Γ) ≤ cµ(G/Γ) when d(Γ) denotes the number of
generators of Γ.

By subgroup growth theory the number of subgroups of index n in Γ is bounded
by nd(Γ)n and this proves Theorem A1. For Theorem B one needs a more delicate
analysis. Here, the miracle which enables such a precise estimate is that the
covolume of a lattice Γ is proportional to X(Γ) - the Euler characteristic of Γ (by
Gauss-Bonnet formula). At the same time the subgroup growth of a Fuchsian
group Γ is approximately n−x(Γ)n. (The proof of this last result is based on
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estimates of the character values of the symmetric group!). A combination of these
two facts gives the upper bound of Theorem B. The lower bound of Theorem B
and Theorem A2 are proved using an analysis of how many subgroups of index n
in Γ can be conjugate in G.

Cohomology and presentations

Robert M. Guralnick

(joint work with W.M.Kantor, M.Kassabov and A.Lubtozky)

Let G be a finite group. We are interested in giving a short and/or bounded
presentations of G both as a discrete group and as a finite group. Write G =
F/R where F is a free group on d generations and R can be generated (as a
normal subgroup) by r elements. We write r(G) for the minimum number of
relations required (this certainly depends on d and perhaps depende on the given
presentation). We are also interested in the length of the presentation (we define
the length to be the number of generators plus the sum of the lengths of each
relator).

It is conjectured that every finite group has a presentation with length
O(log |G|)3) (and this is best possible). This problem has been reduced to the
case of simple groups (if one can show every finite simple group has a presentation
of length O(log |G|), then the general result follows.

Note that if G is cyclic of prime order p, then it has a presentation with 1
generator and 1 relation. However the length of this presentation is p+ 1 – much
bigger than log |G|. Indeed, it is trivial to see that there can be no family of
bounded presentations with length O(log p). On the other hand, one can write
down presentations of length O(log p). In fact, very recently, Goldstein, Hales
and Stong proved that limp→∞ ℓ(p)/3 log p → 1, where ℓ(p) is the length of the
shortest presentation of the cyclic group of prime order p. In the example, they
construct, there are roughly (1/2) log p) generators with the length of the relations
(5/2) log p.

The log |G| bound was known for almost all families of finite simple groups, but
in fact we prove much more ([1]):

Theorem A. Let G be a finite nonabelian simple group other than a sporadic
group or 2G2(3

2k+1). Then G has a presentation with at most C relations with
total length O(log qn).

Here G is a Chevalley group defined over the field of q elements of rank 1 (An+1

has q = 1 and n = n). This is an asymptotic result and so the sporadic groups are
not relevant. This theorem does not depend on the classifciation of finite simple
groups except for asserting there are no more (the theorem could just be stated for
Chevalley groups and alternating groups). The log(qn) is essentially best possible.
It is not known whether the Ree groups have either a bound presentation or short
presentation (O(log |G|); let alone whether this can be done simultaneously.
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If we do not worry too much about the length or use a different notion of length
(eg, bit length), one can do better ([3]):

Theorem B. Let G be a finite nonabelian simple group other than 2G2(3
2k+1).

Then G has a presentation with 2 generators and at most 80 relations.

In many cases, one can do much better. For example, if G = Ap+2 with p ≡ 11
mod 12 prime, then G × T has a presentation with 2 generators and 3 relations
where T is the subgroup of index 2 in AGL(1, p) (this is an example of an efficient
presentation – the number of relations for this group has to be larger than the
number of generators). Thus, G itself has a presentation with 2 generators and
4 relations (close to the optimal of 2 generators and 3 relations). This leads to ([3]):

Theorem C. If G = An or Sn, then G has a presentation with 3 generators and
at most 7 relations.

Suppose now we consider profinite presentations (so F is a free profinite group
on d generators and R is a closed normal subgroup of F generated as a closed
normal subgroup by r̂ elements. Write r̂(G) for the minimal number of profinite
relations. In fact, now r̂(G) only depends on d (indeed, r̂(G) − d is invariant).

Clearly, r(G) ≥ r̂(G) and it is unknown whether this is an equality for all finite
groups. In this case, there is a formula in terms of cohomology groups for r̂.

If M is an RpG-module of finite dimension, define

ν2(M) =
⌈dimH2(G,M) − dimH1(G,M) + dimH0(G,M)

dimM

⌉
.

Then
r̂ − d = max{ν2(M) − 1},

where p ranges over all primes and M ranges over all irreducible FpG-modules.
This depends upon a theorem of Swan and was proved independently by Gruen-
berg-Kovács and Lubotzky. Using a combination of cohomology results and pre-
sentations, we show ([2]):

Theorem D. Let G be a finite simple group. Then G has a profinite presentation
with 2 generators and at most 17 relations.

It is like that the right number of required relations (even in the disrete case as
conjectured by John Wilson) is 2 plus the rank of the Schur multiplier (which is
at most 2). This allows us to prove Holt’s conjecture:

Corollary E. Let G be a finite group, k a field and M an irreducible faithful
kG-module. Then dimH2(G,M) ≤ (18.5) dimM .

We conjecture that if G is a finite group, k a field and M ia an absolutely
irreducible kG-module, then for any j > 0, there is a constant Cj such that
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dimHj(G,M) ≤ Cj(dimM)j−1. There are examples to show that one can do no
better. This is a theorem for j = 2 but open in all other cases (for j = 1, this is a
conjecture of the speaker from 1984).
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On the clique and chromatic numbers of the generating graphs of
finite groups

Andrea Lucchini

(joint work with A. Maroti)

Define a graph Γ(G) on the elements of a finite group G by connecting two
vertices by an edge if and only if they generate G. Let the clique number (size of a
largest complete subgraph) of Γ(G) be ω(G), and let the chromatic number (least
number of colors needed to color the vertices of the graph in such a way that for
each edge in the graph the endpoints receive different colors) of Γ(G) be χ(G). It
is clear that ω(G) ≤ χ(G). A covering for a group G is a set of proper subgroups
of G whose union is G. For a finite non-cyclic group G denote the minimal size of
a covering for G by σ(G). Clearly, χ(G) ≤ σ(G) for a non-cyclic finite group G.

The functions ω(G) and σ(G) were much investigated. For example Blackburn
[1] showed that ω(G) = σ(G) for infinitely many symmetric and alternating groups
G. He asked whether ω(G)/σ(G) tends to 1 as the size of the non-abelian finite
simple group G tends to infinity. We have proved [3]:

Theorem 1. There exists a constant c ≥ 1 such that if G is a projective special
linear group, a Suzuki group, a Ree group, an alternating group of degree not
divisible by 4 and not a prime of the form (qk − 1)/(q − 1) where q is a prime
power and k is a positive integer, then (1 − c/m(G))σ(G) ≤ ω(G) ≤ σ(G) where
m(G) is the minimal index of a proper subgroup in G.
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It is tempting to ask whether there exists a universal constant c ≥ 1 such that
for any finite simple group G the estimate (1 − c/m(G))σ(G) ≤ ω(G) holds. The
answer to this question is not known even for alternating groups.

The proof of the previous theorem together with a result of Liebeck and Shalev
(saying that there exists a constant c such that ω(G) ≥ cm(G) for any non-abelian
simple group [2, Theorem 7.2]) implies:

Theorem 2. Let α denote ω, χ, or σ. For a positive number x define α(x) to
be the number of positive integers n at most x with the property that there exists
a non-abelian finite simple group G so that α(G) = n. Then α(x) = (2

√
2 +

o(1))(
√
x/ lnx).

For simple groups the numbers ω(G), χ(G) and σ(G) are conjectured to be not
too different and coincide in many cases. One can ask whether something similar
holds for any finite (non cyclic) 2-generated group. A negative answer to this
question comes from the following result:

Theorem 3. Let S be a non-abelian finite simple group, and let n be the largest
positive integer such that G = Sn is 2-generated. Then σ(G) = σ(S) while ω(G) ≤
(1 + o(1))m(S) (as |S| tends to infinity).

For example, if m ≡ 2 mod 4 is large enough, then σ(Alt(m)n) = σ(Alt(m)) =
2m−2 (see [1]) while ω(Alt(m)n) ≤ 2m.

The previous result is strong enough to conclude that the quotient σ(G)/ω(G)
can be arbitrarily large. However we don’t know how sharp this lower bound is.
In particular we don’t know if there exists a non-abelian simple group S with
ω(Sn) > 3.

The situation could be different in the solvable case. No 2-generated solvable
group G is known with σ(G) 6= ω(G) and for example the following have been
proved:

Theorem 4. If G is a non cyclic 2-generated solvable group of Fitting length at
most 2, then ω(G) = χ(G) = σ(G).
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[3] A. Lucchini, A. Maróti, On the clique and covering numbers of finite groups, In preparation.



1546 Oberwolfach Report 28/2008

The Abstract Commensurators of Profinite Groups

Yiftach Barnea

(joint work with M. Ershov and T. Weigel)

It is well know that the Nottingham group Jp shares many properties with

SL1
d(Fp[[t]]) the first congruence subgroup of SLd(Fp[[t]]), where Fp[[t]] are for-

mal power series over a field of p elements. The latter group can be embedded as
an open subgroup in a topologically simple group, namely PSLd(Fp[[t]]). During
the conference Groups St. Andrews 2005 Thomas Weigel asked me the following
question: is it possible to embed Jp as an open subgroup in a topologically simple
group?

I had no idea what is the answer to this question. However, the following
evening Claas Röver described to me his work [5] in which he was able to embed
the (discrete) Grigorchuk group into a finitely presented simple group. His main
tool was the abstract commensurator of the Grigorchuk group. This stroke me
also as the right tool to approach Weigel’s question.

Let L be a group and let G be a subgroup of L. The (relative) commensurator
of G in L, denoted CommL(G), is defined as the set of all h ∈ L such that the
group hGh−1∩G has finite index in both G and hGh−1. A particularly interesting
case is when L is a totally disconnected locally compact group and G is an open
compact subgroup. In this case G is a profinite group with the induced topology
from L and CommL(G) = L.

We recall that two groups U and V are commensurable if they contain subgroups
of finite index which are isomorphic. In the case when U and V are profinite groups
we require that the isomorphism is continuous and replace finite index by open.

A virtual automorphism of a group G is defined to be an isomorphism be-
tween two finite index subgroups of G; two virtual automorphisms are said to be
equivalent if they coincide on some finite index subgroup of G. As before if G
is profinite, then we require the isomorphism to be continuous and replace finite
index by open. Equivalence classes of virtual automorphisms are easily seen to
form a group, called the abstract commensurator (or just the commensurator of
G) and denoted Comm(G).

Several celebrated rigidity theorems, like Pink’s analogue of Mostow’s strong
rigidity theorem for simple algebraic groups defined over local fields, see [4], and
the Neukirch-Uchida theorem, see [2], [3] and [6], can be reformulated as structure
theorems for the commensurators of certain profinite groups. Recently, Mikhail
Ershov [1] was able to show that Comm(Jp) = Aut(Jp) = Aut(Fp((t))) for p > 3.

If G is a subgroup of a larger group L, then conjugation induces a natural map
CommL(G) → Comm(G) which is injective under some natural conditions. So
Comm(G) often contains information about all relative commensurators. For in-
stance, one can use Ershov’s result to give a negative answer to Weigel’s question:
the Nottingham group for p > 3 cannot be embedded as an open subgroup of a
topologically simple group. Moreover, Ershov’s result implies that if G is commen-
surable to the Nottingham group (p > 3) and G satisfies some mild conditions, it
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must be an open subgroup of Aut(Fp((t))). (We must have some conditions on G,
otherwise for instance one can take direct sum of any group commensurable with
Jp with any finite group.) Thus, the commensurators play an important role in
classifying profinite groups up to commensurability.

As we have seen in the case of the Nottingham group it is interesting to under-
stand the connection between the local structure of a locally compact group and
its global structure. George Willis [7] proved that a profinite soluble group cannot
be embedded as an open subgroup of a compactly generated topologically simple
group. We are able to prove similar result that if G is a profinite group with a
non-trivial nilpotent Fitting radical and G has no element with centralizer which
is open in G, then G cannot be embedded as an open subgroup of a compactly gen-
erated topologically simple group. For example, a parabolic subgroup of SLn(R)
for some infinite profinite ring R cannot be embedded as an open subgroup of a
compactly generated topologically simple group.

We also have a positive result in that direction. Using Röver’s result we were
able to construct a new compactly generated simple topologically group which
contains the pro-2 completion of the Grigorchuk group as an open subgroup. As a
corollary one obtains that there exists a compactly generated topologically simple
group which contains every countably based pro-2 group as a closed subgroup.

I would like to mention briefly that in addition to the results above, we studied
more structural properties of Comm(G) when G is a profinite group. For instance,
we found two natural ways to turn Comm(G) into a topological group and we
studied the connection between the algebraic properties of G and properties of
these topologies. A particularly important case in which we have general results
is when G is a hereditarily just infinite profinite group.
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A proof of Ore’s Conjecture

Aner Shalev

1. Prehistory

In 1951 Ore [7] proposed the following:

Conjecture. Every element of a (nonabelian) finite simple group is a commutator.

At the time this was a rather daring conjecture; first, the classification, and
even the construction, of all finite simple groups was far from completed yet; and
secondly, even for known families of simple group very little was known.

Ore himself proved his conjecture for alternating groups An (but in fact this
was established much earlier by G.A. Miller). Versions for certain Lie groups and
algebraic groups were obtained in 1949-1963 by Goto, Ree and others.

In a series of papers [9, 10, 11] from 1961-1962, R.C. Thompson proved Ore’s
conjecture for special linear groups PSLn(q). The case where q = 2, 3 is more diffi-
cult and required special treatment. This will be typical also in later investigations
of the conjecture, where groups over tiny fields present the biggest challenge.

2. History

More progress was obtained on Ore’s conjecture in the 80s and the 90s. In 1984,
using methods of computational group theory, Neubüser, Pahlings and Cleuvers
proved Ore’s conjecture for the 26 sporadic simple groups [6].

Some symplectic groups where handled by Gow [3], and Bonten proved the
conjecture for exceptional groups of rank at most 4. Bonten also showed that, for
every fixed simple Lie type X , there exists a number q0, such that Ore’s conjecture
holds for simple groups X(q) if q > q0.

This was greatly improved by Ellers and Gordeev [1] in 1998. They showed
that the conjecture holds for all simple groups X(q) where q is any prime power
greater than 8. Their precise result is more detailed and gives better bounds on q
for certain families of Lie type groups.

3. Commutators and probability

In 1984 J.S. Wilson showed, using tools from model theory, that there exists an
absolute constant c such that every element of a finite simple group is a product
of c commutators [12]. Using a probabilistic approach and character theory we
showed the following.

Theorem 1. (Shalev [8])
(i) The probability that a randomly chosen element of finite simple group G is

a commutator tends to 1 as |G| → ∞.
(ii) Every element in a large enough finite simple group is a product of 2 com-

mutators.
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Note that part (ii) easily follows from part (i): once the number of commutators
in |G| exceeds |G|/2 every element of G is a product of 2 commutators. Further
probabilistic properties of the commutator map on finite simple groups are given
below.

Theorem 2. (Garion-Shalev [2]) Let G be a finite simple group and let α : G×G→
G be the commutator map α(x, y) = [x, y].

(i) α is almost measure preserving, in the sense that there exists ǫ(G) which
tends to 0 as |G| → ∞, such that for every subset Y ⊆ G we have |α−1(Y )|/|G|2−
|Y |/|G|| ≤ ǫ(G).

(ii) The probability that a randomly chosen element g ∈ G is a commutator
g = [x, y] where x, y generate G tends to 1 as |G| → ∞.

Part (ii) follows from part (i) and the well known result that almost all pairs of
elements in a finite simple groups are generating pairs (see [4]). Note that assertion
(ii) above is novel even for groups for which Ore’s Conjecture was established; it
is intriguing that this assertion can be applied to prove a conjecture of Guralnick
and Pak on the Product Replacement Algorithm (see [2] for details).

4. Proving Ore’s Conjecture

The results of the previous section already show that most elements in a fi-
nite simple group are commutators, and the challenge is to replace most by all.
Recently, in joint work with Liebeck, O’Brien and Tiep, we achieved this.

Theorem 3. (Liebeck-O’Brien-Shalev-Tiep [5]) Ore’s Conjecture holds in general.

The strategy of the proof is to combine three ingredients: character theory,
induction on dimension, and computational group theory. Let us now describe it
in some more detail.

The connection with character theory is based on the classical result of Frobe-
nius that an element g of a finite group G is a commutator if and only if 0 6=∑

χ χ(g)/χ(1), where the sum is over all irreducible characters of G. Using char-
acter theory of groups of Lie type we estimate the sum above. We show that if g
is an element with a small centralizer, then the numbers |χ(g)|/χ(1) are small for
χ 6= 1, and the main contribution to the sum

∑
χ χ(g)/χ(1) comes from the trivial

character χ = 1. This enables us to deduce that this sum is positive, so elements
with small centralizer are commutators.

For elements whose centralizers are not small, our strategy is to reduce to groups
of Lie type of lower dimension and use induction. In our proof for symplectic
or orthogonal groups, this is usually possible since such elements have a Jordan
decomposition into several Jordan blocks, and hence lie in a corresponding product
of smaller symplectic or orthogonal groups; if we can (inductively) express each
block as a commutator in the smaller classical group, then clearly the original
element is itself a commutator. However, various technical difficulties have to be
overcome to make this idea work, and for unitary groups our proof is somewhat
different.
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Since the proofs are inductive, we need to establish various base cases. This is
done using computational methods. We note that our proof of Ore’s Conjecture
seems to be a rare case where the difficulty lies not just in the inductive argument,
but also in establishing the induction base; indeed quite large groups had to be
conisdered, and altogether this required about 3 years of CPU time.
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Profinite properties and property Tau

Martin Kassabov

(joint work with N. Nikolov)

A property P defined for residually finite finitely generated groups is called profinite

if for any two groups Γ1 and Γ2 with isomorphic profinite competitions Γ̂1 ≃ Γ̂2

either both have property P or neither one has it.
There are many (almost trivial) examples of profinite properties: any property

P which is defined using only the pro-finite completion of the group is trivially
profinte, e.g. subgroup growth, being virtually abelain, etc.

Alex Lubotzky possed the question weather property Tau is a profinite property.
There are reasons to expect that it is – in ”some sense” a group Γ has property

Tau ”if” the profinite completion Γ̂ has property T.
On the other side the examples of families of finite groups which admit both

expanding and no-expanding generating sets suggest that property Tau may not
be a profinite one.

The main result combines results from [1] and [2] to show:
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Theorem: There exists two finitely generated groups Γ1 and Γ2 with

Γ̂1 ≃ Γ̂2 ≃
∏

n>3

Alt(n),

such that Γ1 does not have property Tau but Γ2 has property Tau.
As a result of this theorem one immediately obtains that property Tau is not a

profinite property.

References

[1] M. Kassabov, Symmetric groups and expander graphs, Inventiones 2008
[2] M. Kassabov, N. Nikolov, Cartesions Products as profinite completions, IMRN 2006???

On the dynamics of profinite group actions

Miklos Abert

(joint work with G. Elek)

Let Γ be a finitely generated group. A chain in Γ is a sequence Γ = Γ0 ≥ Γ1 ≥
. . . of subgroups of finite index in Γ. We say that the chain is normal if it consists
of normal subgroups. Let T = T (Γ, (Γn)) denote the coset tree of Γ with respect
to (Γn) and let ∂T denote the boundary of T . Then Γ acts on ∂T by measure-
preserving homeomorphisms; we call this action the boundary representation of Γ
with respect to (Γn). An especially nice case is when the chain is normal with
trivial intersection. Here ∂T is simply the profinite completion of Γ with respect
to (Γn), endowed with the normalized Haar measure.

Let f and g be measure preserving actions of Γ on the probability spaces (X,µ)
and (Y, ν), respectively. We say that f weakly contains g (f � g) if for all measur-
able subsets A1, . . . , An ⊆ Y , finite sets F ⊆ Γ and ε > 0 there exist measurable
subsets B1, . . . , Bn ⊆ X such that

|µ(Bγi ∩Bj) − ν(Aγi ∩Aj)| < ε (1 ≤ i, j ≤ n, γ ∈ F ).

This means that we can ‘copy’ the action g into X with arbitrarily small error.
We call f and g weakly equivalent (f ≈ g) if f � g and g � f .

Theorem 1. Let f and g be boundary representations of Γ such that f is strongly
ergodic. If f and g are weakly equivalent then they are isomorphic.

In terms of chains, this means that all elements in one of the chains contains a
conjugate of an element of the other chain and vice versa. The representation f is
strongly ergodic e.g. when the corresponding chain has Luboztky’s property (τ).

This leads to a new result on the edit distance of expanders from bipartite
graphs. By a covering tower of graphs, we mean a sequence Gn of graphs such
that for all n ≥ 1 there is a covering map from Gn+1 to Gn.
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Theorem 2. Let Gn be an expanding covering tower of k-regular graphs. Then
one of the following holds:
1) all but finitely many of the Gn are bipartite;
2) there exists r > 0 such that for all n one needs to delete at least r |Gn| edges of
Gn to make it bipartite.

Equivalently, the so-called independence ratio of Gn (the maximal size of an
independent subset divided by the size of the graph) is bounded away from 1/2.

On spectral language, Theorem 2 takes the following equivalent form. For a
k-regular graph G on v points, let λ1(G) ≥ λ2(G) ≥ . . . ≥ λv(G) = λ−(G) denote
the eigenvalues of the adjacency matrix of G. Then λ1(G) = k and λ−(G) ≥ −k.
Assuming that G is connected, equality holds if and only if G is bipartite.

Corollary. Let Gn be a covering tower of non-bipartite k-regular graphs. If
λ2(Gn) is bounded away from k then λ−(Gn) is bounded away from −k.

Trivially, all these results are far from being true for an arbitrary expander
sequence of k-regular graphs.

We demonstrate the use of this rigidity result by answering a question of
Lubotzky and Zuk. They asked whether if Hn is a family of finite index sub-
groups in Γ with property (τ), then the set






k⋂

j=1

Hgj
nj

| nj ∈ N, gj ∈ Γ






also has property (τ). The answer is negative.

Theorem 3. There exists a family of finite index subgroups Hn ≤ F4, such that
Hn has property (τ), but the chain Γn = ∩nk=1Hk does not.

Our subgroups Hn are explicitely constructed.
Using amaneble groups, we can say something about free groups.

Proposition 1. Let p be a prime and let Γ be a finitely generated free group. Then
the action of Γ on its pro-p completion is weakly equivalent to the action on its
pro-(finite solvable) completion.

Functional equations for zeta functions of groups and rings

Christopher Voll

Let Λ be a torsion-free ring of finite rank, i.e. a torsion-free abelian group of
rank n, say, with a bi-additive (not necessarily associative or commutative) multi-
plication. The subring zeta function ζΛ(s) of Λ is the Dirichlet generating function
enumerating finite index subrings in Λ:

ζΛ(s) :=
∑

H≤Λ

|Λ : H |−s,
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where s is a complex variable. It is well-known that ζΛ(s) satisfies an Euler prod-
uct decomposition into local factors ζΛ,p(s), indexed by the primes, enumerating
subrings of p-power index. We mainly discussed the following result.

Theorem 1. [1, Theorem A] For almost all primes p, the local factors satisfy the
functional equation

ζΛ,p(s)|p→p−1 = (−1)np(
n

2)−nsζΛ,p(s).

In general, formulae for the local factors involve the cardinalities of smooth pro-
jective algebraic varieties over GF (p). By the Weil conjectures, these cardinalities
can be expressed as alternating sums of Frobenius eigenvalues. The definition of
the operation p→ p−1 involves the inversion of these complex numbers.

The proof of this result proceeds by expressing the local factors in terms of
p-adic integrals over flag varieties, and analysing them using techniques from alge-
braic geometry (principalization of ideals) and combinatorics (generating functions
associated to rational polyhedral cones).

An immediate corollary of this theorem is an analogous result on local zeta
functions of finitely generated groups. I also discussed some variants, including
the ideal zeta functions of torsion-free nilpotent Lie rings, where the phenomenon
of local functional equations breaks down, in general.
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Reduced zeta functions of Lie algebras

Anton Evseev

This is a brief exposition of some of the results of [3]. Let L be a finite-
dimensional Lie algebra over Z, torsion-free as an abelian group. If m ∈ N, let a⊳

m

be the number of ideals of index m in L and a≤m be the number of subalgebras
of index m in L. The following zeta functions have been studied in some detail
(see [2, 4], for example):

ζ∗L(s) :=
∞∑

m=1

a∗mm
−s,

where ∗ stands for one of ⊳ and ≤ here and in the sequel and s is a complex
variable. Corresponding local zeta functions can also be defined for each prime p:

ζ∗L,p(s) =

∞∑

n=0

a∗pnT n.

In fact, an Euler product formula holds:

ζ∗L(s) =
∏

p

ζ∗L,p(s).
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It is more convenient for us to view p−s as a single formal variable. Therefore, we
modify the definition:

ζ̃∗L,p(T ) :=

∞∑

n=0

a∗pnT n ∈ Z[[T ]].

In some cases (though by no means always) there is a rational function f(X,Y )

such that ζ̃∗L,p(T ) = f(p, T ) for almost all primes p. In this work we consider,

loosely speaking, the reduced zeta function R∗
L(T ) := f(1, T ). This function en-

codes a lot less information than the usual local zeta function, but is often a lot
easier to calculate and to analyse and possesses certain multiplicativity properties
that ζ∗L,p(s) lacks.

In order to give a general definition of reduced zeta functions, we use motivic
zeta functions developed by du Sautoy and Loeser [1]. These are defined as follows.
Let L be a finite-dimensional Lie algebra over C[[t]]. Let Xn = Grn(L/tnL) be
the Grassmannian which consists of all subspaces of L/tnL of codimension L. Let
A∗
n ⊆ Xn be the constructible set of all ideals (if ∗ =⊳) or subalgebras (if ∗ =≤)

of codimension n in L (or, equivalently, in L/tnL). Let M be the Grothendieck
ring of varieties. The motivic zeta function is defined by

P ∗
L(T ) =

∞∑

n=0

[A∗
n]T n ∈ M[[T ]],

where [A∗
n] is the element of M corresponding to the constructible set A∗

n (see [1]
for more detail). We define the reduced zeta function by

R∗
L(T ) =

∞∑

n=0

χ(A∗
n)T

n,

where χ is the Euler characteristic. It is proved in [1] that P ∗
L(T ) is rational in

a certain sense, and it follows that R∗
L(T ) ∈ Q(T ). If L is a Lie algebra over a

subring S of C[[T ]] then we define R∗
L(T ) = R∗

L⊗SC[[t]](T ).

From now on, assume that L is a Lie algebra over C[[t]], torsion-free as a module.
Let B = {x1, . . . , xd} be a basis for L. Call B simple if for all i, j, either [xi, xj ] = 0
or [xi, xj ] = axk for some k and some invertible element a ∈ C[[t]]. Call a pair
(i, j) removable (with respect to B) if there exist integers l1, . . . , ld such that

(1) for all z ∈ C \ {0}, the map given by xr 7→ zlrxr is an automorphism of L;
(2) li 6= lj .

Call B nice if all pairs 1 ≤ i < j ≤ d are removable. If B is simple, define
polyhedral cones:

C⊳

B = {y ∈ Rd≥0 : yi ≥ yk and yj ≥ yk whenever [xi, xj ] = axk, a 6= 0} and

C≤
B = {y ∈ Rd≥0 : yi + yj ≥ yk whenever [xi, xj ] = axk, a 6= 0}.

If C ⊆ Rd≥0, define the power series

SC(T ) =
∑

n∈C∩Zd

T n1+···+nd .
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Theorem 1. Suppose B is a nice and simple basis of L. Then

R∗
L(T ) = SC∗

B
(T ).

This result allows one to calculate zeta functions in many cases (e.g. free nilpo-
tent Lie algebras of class 2, Lie algebras of maximal class), though the hypotheses
are not satisfied by a ‘random’ Lie algebra.

As indicated above, reduced zeta functions are multiplicative with respect to
direct sums under certain conditions.

Theorem 2. Let L and N be finite-dimensional torsion-free Lie algebras over
C[[t]]. Then

R⊳

L⊕N(T ) = R⊳

L (T )R⊳

N (T ).

Suppose further that there is a basis {x1, . . . , xd} of L such that, for all j ∈ [1, d],
there exist integers lj1, . . . , ljd with the properties that ljj 6= 0 and, for all z ∈
C \ {0}, the map xr 7→ zljrxr induces an automorphism of L. Then

R≤
L⊕N(T ) = R≤

L (T )R≤
N (T ).

It has been observed that in many cases there is a functional equation

ζ̃∗L,p(T
−1)|p→p−1 = (−1)ǫpaT bζ̃∗L,p(T ).

for some integers ǫ, a and b. The existence of such a functional equation has been
recently established by C. Voll [6] for zeta functions counting ideals in nilpotent
Lie algebras of class 2 and for zeta functions counting subalgebras in arbitrary Lie
algebras. (There are examples of zeta functions counting ideals with no functional
equation: see [2].) Using Theorem 1 and a combinatorial result of Stanley [5],
one can easily find conditions for a reduced zeta function to possess a functional
equation as long as the Lie algebra in question has a nice and simple basis.

Proposition 1. Under the hypotheses of Theorem 1,

R≤
L (T−1) = (−1)dT dR≤

L (T ),

where d = dimL as before.

In the case of zeta functions counting ideals, we assume that L is nilpotent and
has a nice and simple basis {x1, . . . , xd}. Let hi be the smallest number such that
xi ∈ Zhi

, where

0 = Z0 ≤ Z1 ≤ · · · ≤ Zc = L

is the upper central series of L. Write xl ≺ xi if there exists j such that [xi, xj ] =
axl, a 6= 0 and extend this relation by transitivity.

Proposition 2. In addition to the statements in the preceding paragraph, assume
that whenever xl ≺ xi and hi > hl+1, there exists r such that xl ≺ xr ≺ xi. Then

R⊳

L (T−1) = (−1)dT
Pd

i=1
hiR⊳

L (T ).
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Representation zeta functions of compact p-adic analytic groups

Benjamin Klopsch

(joint work with C. Voll)

This is a report on joint work with Christopher Voll. Full proofs of the results
described will be made available in form of a preprint later this year.

Let G be a profinite group. For n ∈ N we denote by rn(G) the number of
(isomorphism classes of) continuous irreducible n-dimensional complex represen-
tations of G. These numbers are finite if and only if G is FAb, i.e. if and only
if every open subgroup of G has finite abelianisation. If G is a compact p-adic
analytic group, then G is FAb if and only if the Qp-Lie algebra associated to G
is perfect. Consequently, a promising field for investigation is the representation
growth of open compact subgroups of semisimple p-adic Lie groups, e.g. groups
like SLn(Zp) and its principal congruence subgroups.

The representation zeta function of a FAb profinite group G is defined as

ζ irr
G (s) :=

∞∑

n=1

rn(G)n−s.

The zeta functions of prominent compact p-adic analytic groups, e.g. SLn(Zp),
can also be interpreted as local Euler factors of the representation zeta functions
of corresponding arithmetic groups, if the latter satisfy the Congruence Subgroup
Property, e.g. SLn(Z) for n ≥ 3; cf. [5, 1]. Using the Kirillov orbit method and
model theoretic arguments, Jaikin-Zapirain [4] showed that the representation zeta
function ζ irr

G (s) of a FAb p-adic analytic pro-p group G is a rational function over
Q in p−s, for p odd.1 In fact, he proved a more general theorem which applies to
compact p-adic analytic groups.

Three central themes of our investigation are: ‘functional equations’, ‘unifor-
mity’ and ‘poles’. For specific families of groups one may also try to find explicit
formulae for the corresponding representation zeta functions. As Jaikin-Zapirain,

1The same assertion is expected to be true for p = 2, and it is known to hold if one further
assumes that G is uniform.
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we use the Kirillov orbit method, but an additional key step of our approach con-
sists in expressing the zeta functions under consideration in terms of generalised
Igusa local zeta functions, in the same spirit as in [7].

Regarding the topic of functional equations, we give a positive result in a general
global setting, which applies in particular to open pro-p subgroups of semisimple p-
adic Lie groups. For this we consider families of p-adic Lie groups whose associated
Lie algebras share a common Z-Lie sublattice. Denote by P the set of all primes.
Let L be a Lie lattice over Z, and for p ∈ P let Lp := L⊗ZZp denote the localisation
of L at p. Then for all p ∈ P and all k ∈ N, with k ≥ 2 if p = 2, the Zp-Lie lattice
pkLp is powerful and thus corresponds to a uniform pro-p group Gp,k by p-adic
Lie theory; cf. [3].

Theorem A. Let L be a Lie lattice over Z such that Q ⊗Z L is a perfect Q-Lie
algebra of dimension d. For p ∈ P consider the family of FAb uniform pro-p
groups Gp,k corresponding to the family of powerful Zp-Lie lattices pkLp, k ∈ N

where k ≥ 2 if p = 2.
Then for almost all p ∈ P the representation zeta functions associated to the

groups Gp,k, k ∈ N, satisfy the functional equations

ζ irr
Gp,k

(s)|p→p−1 = p(1−2k)dζ irr
Gp,k

(s).

The functional equation is to be interpreted as follows. The zeta function
ζ irr
Gp,k

(s) is a rational function in p−s whose coefficients can be expressed as polyno-

mials in p and in the numbers of Fp-points of certain smooth projective Fp-defined
varieties V . In case of the latter, the operation p→ p−1 is performed by inverting
certain Frobenius eigenvalues associated to V .

A second central problem concerning the local zeta functions associated to an
arithmetic group (or a Lie ring defined globally over Z) is suggested by the phe-
nomenon of ‘uniformity’. In our context it is natural to pose the concrete

Question. Let L be a Lie lattice over Z such that Q ⊗Z L is a semisimple Q-Lie
algebra of dimension d. For p ∈ P and k ∈ N let Gp,k be defined as in Theorem A.
Is there a rational function WL(X,Y ) ∈ Q(X,Y ) such that for almost all p ∈ P,

ζ irr
Gp,k

(s) = pdkWL(p, p−s) for all k ∈ N?

Our approach towards answering this question is based upon a geometric inter-
pretation of the generalised Igusa local zeta functions which play a central role in
the proof of Theorem A. A sketch of the ideas involved is as follows. Let L be
a Lie lattice over Z such that L := C ⊗Z L is a semisimple Lie algebra of dimen-
sion d. Recall that the rank rk(L) of L is equal to the dimension of any Cartan
subalgebra of L. We define an invariant ρ of L so that 2ρ = d− rk(L) = |Φ| where
Φ denotes the root system associated to L. It is well known that for every element
x ∈ L the difference between the dimension of its centraliser CL(x) and rk(L) is a
non-negative even number. We consider the stratification

L = V0 ⊇ V1 ⊇ . . . ⊇ Vρ = {0},
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where
Vi = {x ∈ L | dimCL(x) ≥ rk(L) + 2i}.

The elements of L which lie outside V1 are known as the regular elements of L. We
show that computing the representation zeta function of the groupsGp,k associated
to the Z-lattice L via pkLp at the prime p is as difficult as working out the Igusa
type integral

Zp(r, t) =

∫

(x,y)∈pZp×(Lp\pLp)

|x|tp
∏

1≤j≤ρ

‖Fj(y) ∪ Fj−1(y)x2‖rp
‖Fj−1(y)‖rp

dµ(x,y),

where Fj(Y) denotes a finite set of integer polynomials defining the algebraic
variety Vρ+1−j , ‖F‖p = max{|f |p | f ∈ F} and the Haar measure µ is normalised
so that µ(Zp × Lp) = 1. In theory such an integral can be evaluated by taking
a principalisation of the chain of ideals corresponding to the stratification Vi,
0 ≤ i ≤ ρ; cf. [6]. If such a principalisation could be carried out more effectively,
one would probably be able to answer the above question about uniformity.

Let G denote the adjoint group of the semisimple Lie algebra L. The theory
of sheets associated to the adjoint action of G on L provides a useful tool for
studying the stratification Vi, i ∈ {0, . . . , ρ}; cf. [2]. Indeed, a sheet of L is a
maximal irreducible subset of L consisting of G-orbits of a fixed dimension. Thus
Vi \ Vi+1 is a (finite) union of sheets for each i ∈ {0, . . . , ρ− 1}. In particular, this
point of view allows us to compute explicit formulae for the representation zeta
functions of principal congruence subgroups of SL2(Zp) and SL3(Zp).

Proposition B. Let p ∈ P and k ∈ N. Then

ζ irr
SLk

2
(Zp)(s) =

{
p3k(1 − p−2−s)(1 − p1−s)−1 for p > 2,

23k(22 − 2−s)(1 − 21−s)−1 for p = 2 and k ≥ 2.

From these formulae one can derive the representation zeta functions of the
compact groups SL2(Zp), which for p > 2 were computed by Jaikin-Zapirain [4]
by a careful study of the characters of finite congruence quotients.

Proposition C. Let p ∈ P with p 6= 3, and let k ∈ N with k ≥ 2 if p = 2. Then

ζ irr
SLk

3
(Zp)(s) =

p8k−5(p5 + p5u(p−1)p−2s + u(p)p−3s + p−5s)

(1 − p1−2s)(1 − p2−3s)

where u(X) = 1 +X −X2 −X3 −X4.

We are in the process of computing from this result the representation zeta
functions of the groups SL3(Zp), p 6= 3, which can be interpreted as local factors of
the representation zeta function associated to the arithmetic group SL3(Z). Note
that Propositions B and C yield positive answers to the above question about
‘uniformity’ in the two special cases under consideration and that they illustrate
the more general Theorem A.

Larsen and Lubotzky [5] determined the precise abscissae of convergence of
the representation zeta functions associated to norm-1 groups SL1(Dp) of central
division algebras Dp over Qp. Our approach allows us to regain relatively easily
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their result in the special case where the index of Dp over Qp is a prime number.
Moreover we can provide a set-up for computing an explicit formula for ζ irr

SL1(Dp)(s)

in this case. Thus far, we have carried out the calculation fully for norm-1 groups
in non-split quaternion algebras.

Proposition D. Let p ∈ P with p > 3. Let Dp denote a non-split quaternion
algebra over Qp with maximal order ∆p. Then the representation zeta functions

of SL1(Dp) and its principal congruence subgroups SLk1(∆p), k ∈ N, are

ζ irr
SL1(Dp)(s) =

(p+ 1)(1 − p−s) + 4(p− 1)((p+ 1)/2)−s

1 − p−s+1
,

ζ irr
SLk

1
(∆p)(s) = p3(k−1) p

2 − p−s

1 − p−s+1
.

Similar formulae for higher principal congruence subgroups are also valid for
p ∈ {2, 3}, namely as soon as the Kirillov orbit method can be applied.
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The fake degree conjecture for odd prime numbers p

Thomas Weigel

(joint work with A. Previtali)

For a given finite p-group P there are four basic questions concerning its character
theory:

(i) How can one parametrize the P -conjugacy classes?
(ii) How can one compute the class number hP of P (the number of P -

conjugacy classes)?
(iii) How can one describe the irreducible characters Irr(P )?
(iv) How can one compute the number of irreducible characters of P of degree

pk?
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Generalized Cayley maps - as introduced by T. A. Springer in [6] - provide a
rather elegant solution of problem (i) for certain classes of p-groups. However,
at the moment it is not clear for which class of finite p-groups this approach will
apply.

Let f : P → L be the logarithmic generalized Cayley map given by Lazard
correspondence. In this case the orbit method of A. A. Kirillov (see [4]) turns out
to produce irreducible characters of P , and thus provides a solution to problem
(iii). This result goes back to D. Kazhdan (see [3]). However, this approach is
limited to p-groups of nilpotency class less or equal to p. For powerful p-central
p-groups a similar result has been proved recently by J. Gonzàlez-Sànchez.

Together with A. Previtali, we investigated recently question (ii) and (iv) for
the class of algebra groups. A finite p-group P is called an algebra group, is there
exists a finite nilpotent associative Zp-algebra A such that P = 1+A. I. M. Isaacs
introduced this notion in [1] for answering a question of J. Thompson on the
character degrees of the finite p-groups Un(q), the upper uni-triangular matrices
over the finite field with q-elements.

Let f : P → L be a generalized Cayley map of a finite p-group P onto a finite
Zp-Lie algebra L. Then P is acting on L

∨ - the Pontrjagin dual of L - and the set
of P -orbits O is called the set of co-adjoint orbits of P . The following question
arises: Under which conditions is it true that

{χ ∈ Irr(P ) | χ(1) = pk } = {Ω ∈ O | |Ω| = 2k }
for all k ≥ 0? For algebra group with its classical Cayley map this question was
also called the fake degree conjecture. In [2], A. Jaikin-Zapirain showed that this
conjecture is wrong for p = 2. It is somehow surprising that for odd primes the
situation is quite different. In fact we showed that if P is an algebra group for a
on odd prime number p, then the fake degree conjecture holds for P .

In [5], A. A. Kirillov asked whether one can compute the class number of the
finite p-group U = Un(q), q = pf , from a certain sum involving the strictly upper
triangular matrices and the strictly lower triangular matrices. We were able to
answer his question for odd primes p in a broader context. As a consequence we
were able to show the following: Let f : P → L be a generalized Cayley map of a
finite p-group P onto a finite Fq-Lie algebra L satisfying two additional properties.
Then

hP =
|L0|
|L| ,

where L0 = { (x, y) ∈ L × L | [x, y] = 0 }.
This result is related to another question of J. Thompson which has attracted

much attention in recent years. Does there a exist e a polynomial t ∈ Z[T ] such
that

hUn(q) = t(q)?

Obviously there is an affine algebraic variety V defined over Z such that

V(q) =
|L0(Un(q))|
|L(Un(q))| .
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The variety V is just given by the vanishing of the Lie bracket on the wedge
square of L. Therefore, we have reformulated J. Thompson’s question as follows:
Is |V(Fq)| a polynomial function in q? Although this might be likely there is some
experimental evidence that the geometric complexity of the varieties V increases
with the rank n. Further investigations using more machinery from algebraic
geometry seem to be necessary for answering this question.
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A new construction in (geometric) group theory

Thomas W. Müller

(joint work with I. M. Chiswell)

My talk described a new and powerful construction associating with each (discrete)
group G a group RF(G) together with a canonical action by isometries of RF(G)
on some R-tree XG. To some extent these groups RF(G) may be viewed as
continuous analogues of free groups. Results, as presented in the talk, include

(1) functoriality of RF(−) on the category of groups and monomorphisms,

(2) a characterisation of bounded subgroups,

(3) the construction of a non-trivial generalised exponent sum ex : RF(G) →
R for each non-involution x ∈ G via Lebesgue measure theory; leading
to the conclusion that RF(G) is not generated by its elliptic elements,
provided G is not an elementary abelian 2-group,

(4) an analogue of cyclic reduction,

(5) an algebraic characterisation of elliptic and hyperbolic elements,

(6) an analog of the transformation law for free groups (conjugacy of hyper-
bolic elements),

(7) a detailed analysis of the centralizers of hyperbolic elements,

(8) the absence of bounded and soluble normal subgroups,
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(9) a stability theorem. Let

Inv(G) =
{
x ∈ G : x2 = 1G

}

be the set of involutions in G, and denote by E(G) the subgroup generated
by the elliptic elements of RF(G). Then our theorem states: if G and H
are groups such that

|G| = |H |
and

|Inv(G)| = |Inv(H)|,
then we have

|RF(G)| = |RF(H)|
and

RF(G)/E(G) ∼= RF(H)/E(H);

(that is, both the cardinality of RF(G) as well as the isomorphism type of
the quotient RF(G)/E(G) depend only on two cardinal numbers, namely
the order of G, and the number of its involutions).

I also discussed a number of open problems related to this construction.
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Invariant and stationary measures for groups of toral automorphisms

Shahar Mozes

The growth of free products

Avinoam Mann

Let the group G be generated by the finite set S. Each element x ∈ G can
be written as a product of elements from S and their inverses, and the minimal
length of such a product is termed the length l(x) of x. Write sG(n) (or just s(n))
for the number of elements of length at most n. G is said the have exponential
growth, if there exist numbers A > 0 and c > 1, such that s(n) ≥ ACn. It
is easy to see that this notion is independent of the set of generators. Write
ω(G,S) = lim s(n)1/n (this limit always exists). Then G has exponential growth
iff ω(G,S) > 1. Write Ω(G) = inf ω(G,S), the infimum taken over all finite
generating sets of G. G has uniform exponential growth, if Ω(G) > 1. Groups
of non-uniform exponential growth exist, but there are many classes of groups
in which all groups of exponential growth are of uniform exponential growth.
E.g. soluble groups, elementarily amenable groups, linear groups, hyperbolic and
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relatively hyperbolic groups,...M.Bucher, P.de la Harpe, and R.I.Grigorchuk have
shown that amalgamated free products, HNN-extensions, and 1-relator groups
are, with explicitely known exceptions, of uniform exponential growth, and indeed
Ω(G) ≥ 4

√
2. We improve the constant for all three classes. E.g. if G is an

HNN-extension, then Ω(G) ≥ 1+
√

5
2 (the golden ratio).

Random p-groups

Nigel Boston

Suppose that G is a pro-p group with d(G) = g generators and r(G) = r relators.
Let F denote the free pro-p group on g generators. We wish to compute the
probability for a fixed p, g, r that if r elements are picked randomly with respect
to the Haar measure on the Frattini subgroup of F , then the group presented is
isomorphic to G. Call this probability pr(G).

If G is finite, then

(∗) pr(G) = φp(g)φp(r)p
gr−g(g+1)/2−r(r+1)/2|G|g−r/|Aut(G)|

where φg(n) = (pn − 1)(pn−1 − 1)...(p− 1).
If g = r = 2 and p is fixed, then the probability that the group presented is

finite is > 99% and < 100%. The lower bound follows by using (∗) and summing
pr(G) over many explicit 2-generator 2-relator finite p-groups. The upper bound
follows by a refinement of the theorem of Golod and Shafarevich, indicating that
2 relations at a certain fixed depth inside the free pro-p group on 2 generators
necessarily present an infinite group.

There are also relative versions of (∗). In particular, the theorem reads the same
if we take G to be of p-class ≤ c and consider presentations qua p-class ≤ c. This
yields a version of (∗) for infinite groups, namely that if we denote the maximal
p-class c quotient of G by Gc, then

(∗′) pr(G) = φp(g)φp(r)p
gr−g(g+1)/2−r(r+1)/2 lim

c→∞
|Gc|g−r/|Aut(Gc)|

What is maybe surprising is that there exist infinite groupsG satisfying pr(G) >
0. This family includes the free pro-p groups (for which pr(G) = 1, i.e. if you
pick 0 relations, then with certainty the group presented is the free group) and
metaprocyclic pro-p groups. In this latter case, picking 1 relator from the free pro-
p group on 2 generators presents a metaprocyclic group with probability (p−1)/p.
Apparently, a relator chosen from the remaining 1/p presents a group G with
pr(G) = 0.

There are, however, other infinite groups G with pr(G) > 0. One such example
is the 3-generator 1-relator pro-2 group G =< x, y, z | xy = x3z2 >. For this
group pr(G) = 21/64. There are many other such 1-relator groups. The method
of proof will be elaborated upon in joint work with Charles Leedham-Green - the
idea is to show that if a p-group has only one immediate descendant that could be
a p-quotient of a 1-relator group, then the same is true of this descendant.
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Note that for the limit in (∗′) to be nonzero, g > r. In other words, any infinite
groupG with d(G) ≤ r(G) has pr(G) = 0. This observation is behind the following
result that the tame Fontaine-Mazur conjecture is true with probability 100% for
such groups.

Namely, fix a prime p and an integer g ≥ 1. Let S be a set of g primes that are
1 (mod p) and GS denote the Galois group of the maximal pro-p extension of Q
unramified outside S. It is known that d(GS) = r(GS) = g, but not much else is
known about GS , in particular when infinite. Fontaine and Mazur did, however,
conjecture that every continuous homomorphism GS → GLn(Zp) has finite image
(since algebraic geometry produces no others).

They were hesitant about this conjecture but in fact the above methods show
that if G is a randomly presented g-generator r-relator pro-p group where g ≤ r,
then with 100% probability every continuous homomorphism G → GLn(Zp) has
finite image.

One can also consider the probability that, as S varies through sets of g primes,
GS is isomorphic to a given g-generator g-relator pro-p group G. This probability
pr′(G) is given as a Dirichlet density. Comparing pr(G) and pr′(G) is analogous
to the work of Dunfield and Thurston comparing fundamental groups of random
3-manifolds with a genus g Heegaard splitting and random g-generator g-relator
discrete groups.

For example, if p is odd and G is the 2-generator 2-relator p-group of order p3,
then pr(G) = (1 − 1/p)3(1 + 1/p)2 whereas pr′(G) = (1 − 1/p)3(1 + 1/p). I have
a conjecture in joint work with Jordan Ellenberg that predicts that if α ∈ Aut(F )
and we set Gα =< x1, ..., xg | α(x1) = x1, ..., α(xg) = xg >, then pr′(G) is the
probability that as α varies through the pro-p braid group, Gα ∼= G. There is an
explicit formula for this and it may be considered as a nonabelian Cohen-Lenstra
heuristic.

Representation growth of arithmetic groups

Alex Lubotzky

(joint work with M. Larsen)

Let k be a number field, say k = Q for simplicity of notations, G a simple
k-algebraic group, G →֒ GLr. Let Γ = G(k) ∩ GLr(θ) an arithmetic group, e.g.
Γ = SLd(Z). We say that Γ has the congruence subgroup property (CSP, for

short) if Ker(Γ̂ → GLr(θ̂)) is finite. Lubotzky and Martin showed that Γ has
CSP iff it has polynomial representation growth, i.e., rn ≤ nc for some constant
c, where rn denotes the number of degree n irreducible representations of Γ.

Assume now Γ has CSP. Larsen and Lubotzky defined ξΓ(s) =
∑
n
rnn

−s and

studied its properties.

Proposition. ξΓ(s) = ξG(C)(s) × Π
p
ζG(Zp)(s).
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This enables one to reduce the study of ξΓ(s) to local cases: at infinity - i.e.,
studying the representation of the simple algebraic group G(C), and finite primes:
studying the representations of the p-adic analytic compact group G(Zp).

We were mainly interested in the abscissa of convergence:

α(Γ) = lim sup
n

logRn(Γ)

logn

when Rn(Γ) =
n∑
i=1

ri(Γ).

In a paper (JEMS 2008), we proved an absolute lower bound on α(Γ) for all Γ!
In fact α(Γ) ≥ 1

15 . We are now working on proving an absolute upper bound. But
the big mystery is what is the value of α(Γ). Nir Avni proved that this is a rational
number. We believe (based on some results on subgroup growth of lattices) that
if Γ is a lattice in a simple Lie group H , α(Γ) depends only on H and not on Γ.
But we do not have any idea (nor even a guess) what the value of α(Γ) is even for,
say, α(SLd(Z))

Applications of the Gowers trick

László Pyber

(joint work with N. Nikolov and in part with L. Babai)

Answering an 1985 question of Babai and Sós [BS] Gowers [Gow] shoved that

the group Γ = PSL(2, p) has no product-free subsets of size ≥ c|Γ| 89 for some c > 0.
He obtained this as a consequence of the following general result.

Theorem: Let G be a group of order n, such that the minimal degree of a nontrivial

representation is k. If A,B,C are three subsets of G such that |A||B||C| > n3

k ,
then there is a triple (a, b, c) ∈ A×B × C such that ab = c.

The starting point of [NP] is the following surprising consequence.

Corollary 1. [NP]. Let G be a group of order n, such that the minimal degree
of a nontrivial representation is k. If A,B,C are three subsets of G such that

|A||B||C| > n3

k , then we have A ·B ·C = G. In particular, if, say, |B| > n

k
1
3

, then

we have B3 = G.

Corollary 1 apart from its intrinsic interest, seems to be an extremely useful
tool.

For groups of Lie type rather strong lower bounds on the minimal degree of a
representation are known [LS].

Combining these bounds with Corollary 1 e.g. for L = PSL(n, q) we obtain
the following.

Proposition 1. Let B be a subset of size at least 2|L|/q n−1

3 . Then we have
B3 = L.
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A slightly weaker result in the case of Γ = PSL(2, p), p prime was obtained
earlier by Helfgott [He1]. The result proved in [He1] plays an important role in
proving the main result of [He1]; namely that the diameter of any Cayley graph
of Γ is bounded by (log p)c for some constant c.

Recently Helfgott [He2] (resp. Dinai [Di]) has obtained similar polylogarithmic
bounds for the diameters of Cayley graphs of PSL(3, p) (resp. PSL(2, pα)) using
(among many other tools) Proposition 1.

In [BNP] several extensions of Corollary 1 are obtained. For example we prove
the following

Theorem 1. [BNP] Let G be a finite group of order n, such that the minimal
degree of a nontrivial representation is k. Let X and Y be two probability distri-
butions over G. Then

‖X ∗ Y − U‖ ≤
√
n/k‖X − U‖‖Y − U‖

(where U is the uniform distribution over G and ‖ ‖ the ℓ2 norm.)

This can be used to prove the following results.

Theorem 2. [BNP] Let G be a nonabelian finite simple group. For a group word
w let W = w(G) denote the set of values of w in G.

Then the probability that for three random elements y1, y2, y3 of W we have
y1, y2, y3 = g is (1 + o(1))|G|−1 for all g ∈ G.

This implies a deep result of Shalev [Sh]; if G is a large enough simple group
than we have W 3 = G.

The proof of Theorem 1 rests on estimates for |w(G)| obtained in [LSh] and
[LP].

Theorem 3. [BNP]
Let G be finite simple group in Lie(p). Then G is a product of 5 Sylow p-

subgroups.

Earlier Liebeck and Pyber [LP] have proved that 25 Sylow p-subgroups suffice.
Finally we mention an application of the argument of Gowers to constructing

graphs which imitate random graphs.

Theorem 4. [Py] Let Γn be a sequence of graphs of order n and density ≥ p (for
some p > 0). Assume that the groups Gn = Aut(Γn) are primitive and the index
of the largest abelian normal subgroup of Gn goes to ∞. Then for λn, the second
largest eigenvalue of the adjacency matrix of Γn we have λn = o(n) i.e. Γn is
quasirandom.

(See [Gow] for motivation and terminology).
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Zeta functions of nilpotent groups, uniformity

Marcus du Sautoy

Random walks on finite permutation groups

Jan-Christoph Schlage-Puchta

Let G be a finite group, S a generating set of G. Define a random walk on G by
putting g0 = 1, gn+1 = sngn, where the random elements sn are chosen from S
independently and subject to the uniform distribution. Let δn be the distribution
function of gn. The question whether δn converges to the unifom distribution, and
if it does converge, how fast the speed of convergence is has become an important
area of research. In this talk I describe a strategy to obtain bounds for the mixing
time for groups acting in a well-understood way on some finite set. The idea is to
start a random walk and define t to be the least integer, such that δt resembles
the uniform distribution in some aspect, e.g. the expected number of fixed points
or orbits. If one can show that with high probability the element gt lies in large
conjugacy classes, one can obtain upper bounds for |χ(gt)| for a complex irreducible
character χ of G. One can then apply the upper bound lemma to obtain estimates
for the mixing time of the random walk.

If G = Sn the symmetric group on n letters, and S is a conjugacy class, one can
put for t the least integer such that the expected number of fixed points of gn is
less than logn. One then obtains a cut-off phenomenon for the symmetric group,
that is, the distance of δn to he uniform distribution stays close to the maximal
value for some time, and then declines over a much shorter time to 0. Similarly,
one can show that for a conjugacy class with o(

√
n) fixed points the mixing time

is at most 3.
If G = PSLn(Fq), and S is a conjugacy class, one can take the number of fixed

points of the induced action on the n − 1-dimensional projective space. In this
way one obtains the correct order of the mixing time for such walks.
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The same method can be applied to estimate the Fourier-coefficients of words
over Sn. Let w be an arbitrary word in {x±1

1 , . . . , x±1
k }. Then the representation

function
R(π) = #{σ1, . . . , σk ∈ Sn : w(σ1, . . . , σk) = π}

is a class function and can be expanded in terms of characters as

R(π) = n!k−1
∑

χ

αw(χ)χ(π).

Using this approach one obtains upper bounds for |αw(χ)| in comparison to χ(1),
which allows to estimate |Hom(Γ, Sn)|, where Γ is the one-relator group Γ =
〈x1, . . . , xk|w〉. As application we prove that for Γ+ = 〈x1, . . . , xk, y1, y2|w[y1, y2]〉
we have sn(Γ

+) ∼ δnn!k, where sn denotes the number of subgroup of index
n. This asymptotic equivalence can further be refined to an asymptotic series in
n−1. The coefficients of this series are algorithmically computable, more precisely,
they can be expressed in terms of character polynomials and the expected number
of short cycles of w(σ1, . . . , σk), where σ1, . . . , σk ∈ Sn are chosen at random.
Unfortunatelly, the effort to do so grows exponentially with the length of the
word.

The asymptotics of Dehn functions and algorithmic problems

Alexander Yu. Olshanskiy

On subgroup structure of a 3-generated 2-group of intermediate
growth

Rostislav Grigorchuk

(joint work with T. Nagnibeda)

1. Introduction

A group is branch if it acts faithfully on a spherically homogeneous rooted tree
and has the lattice of subnormal subgroups similar to the structure of the tree, [6].
A group G is self-similar if it has a faithful action on a d-regular rooted tree, d ≥ 2,
such that the section of any element g ∈ G is again an element of the group modulo
the canonical identification of the subtree and the original tree. Equivalently, it is
generated by states of non-initial invertible Mealy type automaton, [11]. Precise
definitions, more details, and relevant references can be found in [2, 11, 13].

Branch groups constitute one of three classes of just infinite groups [7]. Self-
similar groups appear naturally in holomorphic dynamics [13]. Although quite
different, these two classes of groups have large intersection, and many self-similar
groups are also branch. In the class of finitely generated branch self-similar groups
there are torsion groups and torsion free groups; groups of intermediate growth
and groups of exponential growth; amenable and nonamenable groups. Branch
self-similar groups have very interesting subgroup structure.
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Among popular examples of branch self-similar groups is the 3-generated 2-
group G of intermediate growth [5]. See [12] for an introduction to this group and
[8] for detailed information and a list of open problems about it. Much is known
about such subgroups of G as the stabilizers of vertices of the rooted binary tree
(on which G acts) and of points on the boundary of the tree; the rigid stabilizers;
the centralizers ; certain normal subgroups [4]). The group G has the congruence
subgroup property (that is, every subgroup of finite index contains a stabilizer

stG(n) of some level n), which allows to investigate its profinite completion Ĝ [10].

2. On closed subgroups of G. The result.

The main goal of this research is to understand subgroups of G closed in profinite
topology (the group G is residually finite). One class of such subgroups consists of
finitely generated subgroups, as proven in [9]. It is shown there that every finitely
generated subgroup of G is (abstractly) commensurable with G. This unusual
property relies on the fundamental result of Pervova [14] that every maximal sub-
group of G has finite (hence = 2) index. For just infinite groups the property to
have all maximal subgroups of finite index is preserved when passing to commen-
surable groups, and thus weakly maximal subgroups in G are closed in profinite
topology (a subgroup is weakly maximal if it has infinite index and is maximal
with respect to this property). For a branch group G, the stabilizers of points in
the boundary of the tree are examples of weakly maximal subgroups. It would be
interesting to describe all weakly maximal subgroups in G .

Torsion p-groups are of special interest in connection with the Kaplansky con-
jecture on Jacobson radical, which states that, in the case of a field of characteristic
p, the Jacobson radical JK[G] coincides with the augmentation radical AK[G] if
and only if the group is locally finite p-group. It is known that if JK[G] = AK[G],
any maximal subgroup of G is normal of finite index p . Therefore counterexam-
ples (if they exist) to Kaplansky conjecture should lie in the class of p-groups with
all maximal subgroups of finite index. If the group has as a homomorphic image
onto a group which has maximal subgroup of infinite index then the group itself
has a maximal subgroup of infinite index. Therefore it is natural to investigate
which just infinite groups have this unusual property. In view of the trichotomy
for just infinite groups mentioned above, and as finitely generated simple groups
obviously are primitive, one should concentrate on the following two questions. Is
it true that a finitely generated branch group has maximal subgroups only of finite
index? Is it true that every finitely generated hereditary just infinite group has a
maximal subgroup of infinite index?

The property of a group to have finitely generated subgroups closed in profinite
topology is quite rare. It holds for free groups by a celebrated result of Marshall
Hall Jr., as well as for a few other classes of groups. In [15] it is proven that
a subset of a free group which is a product of finitely many finitely generated
subgroups is closed in profinite topology. This remarkable property is known (in
finitely generated case) only for free groups and their trivial generalizations. We
believe that every subset of G which is a product of finitely many finitely generated
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groups is closed in profinite topology. Our results may be considered as positive
evidence towards this statement.

Let V (T) be a set of vertices of the rooted binary tree. The group G is regularly
branch over the subgroup K =< [a, b] >G. This implies that for any vertex
u ∈ V (T), the copy Ku of K acting on the subtree Tu with the root u and acting
trivially outside Tu is a subgroup of K. We shall say that two vertices u, v are
orthogonal if the subtrees Tu,Tv do not intersect. A subset U ⊂ V (T) is called
orthogonal if it consist of pairwise orthogonal vertices. It is called a section if every
infinite geodesic ray from the root of the tree intersects U in exactly one point. It
is clear that a section is a finite set. Two subsets U, V ⊂ V (T) are orthogonal if
every vertex of one set is orthogonal to every vertex of the other set. We consider
the lexicographic order on V (T).

Let U = (u1, . . . , uk) be an ordered orthogonal set of cardinality ≥ 2. Let
Φ = (φ2, . . . , φk) be a set of isomorphisms φi : Ku1

→ Kui
, i = 2, . . . , k. Then

the pair (U,Φ) determines a diagonal subgroup D (abstractly isomorphic to K),
consisting of elements g acting as g ∈ K on the subtree Tu1

; as φi(g) on the subtree
Tui

, i = 2, . . . , k; and trivially on the rest of the tree T.
Next we define a block subgroup. Let (U0, {Ui}i∈I) be a finite family of orthogo-

nal, pairwise orthogonal subsets of V (T) with |Ui| ≥ 2. Let {Φi}i∈I be a collection
of isomorphisms corresponding to {Ui}i∈I and {Di}i∈I be the set of corresponding
diagonal subgroups . The union of sets (U0, {Ui}i∈I) can be extended to a section
S of the tree. These data determine a block subgroup

B =
∏

u∈U0

Ku ×
∏

i∈I
Di ×

∏

v∈S\(U0∪
S

i∈I
Ui)

{1}

Theorem 1. Let H ≤ G be a finitely generated subgroup of G. Then there is block
subgroup H1 of Hof finite index.

This subgroup can be found algorithmically, given generators of H.

In addition to techniques developed in [9], the proof of Theorem 1 uses the
following new results.

Theorem 2. Let H ≤ G be a subgroup of finite index in G, and suppose that H ≃
Km for some m ≤ 1. Then there is a section S, |S| = m such that H =

∏
v∈S Kv.

In particular if a subgroup of finite index in G is isomorphic to K then it is equal
to K.

Theorem 3. The group G has no proper subgroups of finite index isomorphic to
the group.

Note that as G is self-similar, it has many proper subgroups isomorphic to it,
but, by Theorem 3, all of them are of infinite index. This last result relates to
investigation of a strong version of co-hopfianity called scale-invariance which asks
for a group to have proper subgroups of finite index isomorphic to the group, with
an additional condition that intersections of nested sequences of such subgroups
should be finite [3].
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On Grigorchuk’s Evil Twin

Laurent Bartholdi

(joint work with O. Siegenthaler)

We report on a malicious mutation of the Grigorchuk group; these results will form
part of the second author’s PhD.

1. The Good Guy

Recall Grigorchuk’s remarkable example [2] of a group G: it

is generated by four involutions: yet three involutions suffice;
is residually-2: the intersection of its subgroups of index a power of 2 is

trivial;
is just infinite: it is infinite but all of its proper quotients are finite;
is a torsion 2-group: every element has order a power of 2;
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has intermediate word-growth: the number γ(n) of group elements ex-
pressible as a product of at most n generators is asymptotically larger than
any polynomial, but smaller than any exponential;

is commensurable with its square: G and G×G have isomorphic finite-
index subgroups;

has finite width but infinite obliquity: the sections γn(G)/γn+1(G) a-
long the lower central series have bounded rank (actually, 1 or 2); there
does not exist a bound O such that that every normal subgroup is sand-
wiched between γn(G) and γn+O(G);

is recursively presented: define the endomorphism σ of {a, b, c, d}∗ by
σ(a) = aca, σ(b) = d, σ(c) = b, σ(d) = c; then

G = 〈a, b, c, d|σ|a2, bcd, [d, da], [d, dacaca]〉,
meaning that it is the largest group satisfying the given relations and on
which σ induces an endomorphism.

The Schur multiplier H2(G,F2), qua F2[σ]-module, is generated by the
last three relators, subject to the relation (σ − 1) · (bcd) = 0.

Much that can be said about G comes from its action on the binary rooted tree.
Recall that the automorphism group W of the binary rooted tree is a profinite
group W = proj lim ≀nC2, and that restriction of W to the link of the root gives
an isomorphism ψ : W →W ≀ C2.
G is naturally a subgroup ofW , possessing important other properties: it is self-

similar, in the sense that ψ restricts to an embedding G→ G ≀C2; this embedding
contracts the word metric on each coördinate. All elements g ∈ G satisfy the
following condition: there is a finite number of rays in the binary tree, such that
g acts non-rigidly only on vertices neighbouring these rays.
G may actually be defined by ψ: one has

ψ(a) = (1, 1)ε, ψ(b) = (a, c), ψ(c) = (a, d), ψ(d) = (1, b),

with ε the non-trivial permutation of the link of the root, and the condition that ψ
be an embedding specifies G uniquely. Note that σ as above is a partial splitting
of ψ, in the sense that ψ(σ(g)) = (∗, g). The commensurability of G with G ×G
takes the following concrete form: consider the subgroup K = 〈[a, b]〉G. Then K
has finite index (16) in G, and ψ(K) contains K ×K.

The closure G of G in W can be described by finitely many polynomial equa-
tions, and their replicas on subtrees; this was already reported in Oberwolfach [1].

The natural map from G’s profinite completion Ĝ to G is an isomorphism.

2. The Evil Twin

Consider now the following sly variation: the group H is again as generated by
four involutions, subject to

ψ(a) = (1, 1)ε, ψ(b) = (c, a), ψ(c) = (a, d), ψ(d) = (1, b).

H shares many properties in common with G: it is also generated by four involu-
tions, residually-2, just infinite, and 2-torsion; it is commensurable with its square,
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and similarly if one defines K = 〈[a, b], [b, c], [c, d], [b, d], bcd〉H then ψ(K) contains
K ×K; it has finite width (actually, 4) but infinite obliquity; it is recursively pre-
sented: letting τ denote the endomorphism of {a, b, c, d}∗ defined by τ(a) = aca,
τ(b) = d, τ(c) = aba, τ(d) = c, and setting x = cab we have

H = 〈a, b, c, d|τ |a2, [d, da], [d, x], [d, xc], [x, xa]〉.
The Schur multiplier H2(H,F2) is a free F2[τ ]-module generated by the last four
relators.

Yet H has mischievous differences with G. Its growth is unknown, but could
very well be exponential. It is certainly not isomorphic to G, since H ’s abelian-
ization has rank 4 and not 3.

Worse, H ’s closure in W equals G, so Ĥ 6= H . There is a natural map
H2(G,F2) → H2(H,F2), whose nature is a bit mysterious.

Rephrasing, there exist finite-index subgroups of H which for no n ∈ N ever
contain H ∩ker(W → ≀nC2); the simplest example is H ′ = [H,H ]. However, every
finite-index subgroup of H contains H∩ker(W → ≀nC2)

′ for some n ∈ N; it follows

that the “congruence kernel” C = ker(Ĥ → H = G) is abelian.
To describe C more precisely, set Q = K/(〈a〉G ∩K); then Q is a cyclic group

of order 4, generated by bcd. We have

C = proj lim · · · → Q22 → Q2 → Q→ 1,

where the maps Q2n → Q2n−1

are given by

(. . . , q2i−1, q2i, . . . ) 7→ (. . . , q2i−1 + q2i, . . . ).
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On the solvable radical of a finite group

Eugene Plotkin

(joint work with N. Gordeev, F. Grunewald, B. Kunyavskii)

In the talk we discuss new results about descriptions of the solvable radical of a
finite group. In particular, we will focus on the results below:

Theorem 1. The solvable radical of a finite group G coincides with the collection
of g ∈ G satisfying the property: for any 3 elements a, b, c ∈ G the subgroup
generated by the conjugates g, aga−1, bgb−1, cgc−1 is solvable.

This statement may be viewed as a theorem of Baer–Suzuki type with respect
to the solvability property, in light of
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Theorem 2. (Baer–Suzuki) The nilpotent radical of a finite group G coincides
with the collection of g ∈ G satisfying the property: for any a ∈ G the subgroup
generated by g, aga−1 is nilpotent.

The result from Theorem 1 is the best possible: in the symmetric groups Sn
(n ≥ 5) any triple of transpositions generates a solvable subgroup. However,
as mentioned by Flavell, one can expect a precise analogue of the Baer–Suzuki
theorem to hold for elements of prime order greater than 3 in R(G). We prove
that indeed:

Theorem 3. Let G be a finite group. An element x of prime order p > 3 belongs
to the solvable radical R(G) if and only if for any y ∈ G the subgroup

〈
x, yxy−1

〉

is solvable.

Theorem 3 implies

Corollary. A finite group G is solvable if and only if in each conjugacy class of
G every two elements generate a solvable subgroup.

We discuss also recent results by Flavell, Guralnick-Guest-Flavell, Shalev, J.
Wilson and others related to the solvable radical and solvability of a finite group.
In particular, Guralnick-Guest-Flavell announced the results coinciding with ones
presented in the talk.

A Cantor set of groups

Volodymyr Nekrashevych

The talk is an exposition of the papers [8] and [9].
For a finite alphabet X denote by X∗ the free monoid generated by X , i.e., the

set of finite words over X . Let X = {0, 1}. Define permutations of X∗ labeled by
infinite sequences w ∈ X∞ inductively by the rule

αw(0v) = 1v, αw(1v) = 0v,

βw(0v) = 0αs(w)(v), βw(1v) = 1γs(w)(v),

γw(0v) = 0βs(w)(v), γw(1v) = 1v,

if the first letter of w is 0, and

γw(0v) = 0v, γw(1v) = 1βs(w)(v),

if the first letter of w is 1, where s(x1x2 . . .) = x2x3 . . .. The defined transfor-
mations are elements of the profinite group Aut(X∗) of automorphisms of the
naturally defined rooted tree X∗, in which two vertices are adjacent if they are of
the form v, vx for v ∈ X∗ and x ∈ X .

Denote by Dw the discrete subgroup of Aut(X∗) generated by αw, βw, γw. The
groups Dw appear naturally in the study of iterations of the rational mapping

f(z, p) =

((
1 − 2z

p

)2

,

(
1 − 2

p

)2
)
.

We have the following characterization of the transformations αw, βw, γw.
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Proposition 1. The conjugacy classes in Aut(X∗) of αw, βw, γw do not depend
on w.

If g0, g1, g2 are (independently) conjugate in Aut(X∗) to αw, βw, γw, respec-
tively, then there exists a unique sequence w1 ∈ X∞ for which there exists h ∈
Aut(X∗) such that gh0 = αw1

, gh1 = βw1
, gh2 = γw1

.

As a corollary we get that for any w ∈ X∞ the set of words w1 ∈ X∞ such
that Dw is conjugate in Aut(X∗) to Dw1

, is countable.
Using rigidity theorems of [7] we prove that two groups Dw1

and Dw2
are iso-

morphic as abstract groups if and only if they are conjugate subgroups of Aut(X∗).
The following properties of the family of groups {Dw}w∈X∞ are proved in [8].

Theorem 1. Two groups Dw1
and Dw2

are isomorphic if and only if the sequences
w1, w2 are cofinal, i.e., are of the form w1 = v1w and w2 = v2w for w ∈ X∞ and
v1, v2 ∈ X∗ of equal length.

The closure of Dw in Aut(X∗) does not depend (up to conjugacy in Aut(X∗))
on the sequence w.

The family {Dw}w∈X∞ contains two known groups. The group D000... is the
iterated monodromy group of the polynomial z2 + i (see [2, 3]). It was proved
by K.-U. Bux and R. Perez that this group is of intermediate growth. The group
D111... coincides with one of the Grigorchuk groups, defined in [5]. This group was
also studied by A. Erschler in [4], where estimates on its growth were given.

Let G3 be the space of marked 3-generated groups with natural topology (see [5]).

Theorem 2. Let Ω ⊂ {0, 1}∞ be the set of sequences containing infinitely many
zeros. Then the map w 7→ (Dw, αw, βw, γw) from Ω to G3 is a homeomorphic
embedding.

Denote by Gw the limit of the groups Dw′ in G3 as w′ approaches w staying
inside Ω. Then Gw = Dw for w ∈ Ω, while the group G111... is an extension of C∞

4

by D111.... The same description of the isomorphism classes for the family Gw is
true as for the family Dw.

Theorem 3. The group G111... has non-uniform exponential growth, i.e., it has
exponential growth, but the exponent of growth can be made arbitrarily close to 1
by changing the generating set.

The question of existence of groups of non-uniform exponential growth was
asked by M. Gromov in [6]. The first examples of groups of non-uniform exponen-
tial growth were constructed by J. Wilson in [11, 10]. See also an example due to
L. Bartholdi [1].
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Finite presentability for subdirect products

Martin R. Bridson

Arithmetic Dynamics and the Characterization of Finite Solvable
Groups

Tatiana M. Bandman

(joint work with F. Grunewald, B. Kunyavskii)

There are two theorems, characterizing solvable groups in the class of finite groups
by identities in two variables ([1], [2]).

Theorems. Define two sequences un and sn in the following way:

u1(x, y) := x−2y−1x, s1(x, y) := x,

and, inductively,

un+1(x, y) := [xun(x, y)x
−1, y un(x, y) y

−1 ],

sn+1(x, y) := [ y−1 sn(x, y) y, sn(x, y)
−1 ].

A finite group G is solvable iff

– for any (x, y) ∈ G×G ∃n : un(x, y) = 1 ([1]);
– for any (x, y) ∈ G×G ∃n : sn(x, y) = 1 ([2]).

Our Question is: what should be the properties of a sequence which may be
used for characterization of finite solvable groups?
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It appears that our Question has an interpretation as a problem in Arithmetic
Dynamics on Affine Varieties. For both sequences the proof may be reduced to
finding a periodic set of an endomorphism of an affine variety, connected to a
group PSL(2,Fp) or Sz(2n).

For example, sequence sn defines a map ϕ : G×G→ G

(1) ϕ(x, y) = [y−1xy, x−1]

and an endomorphism ϕ̃ : G×G→ G×G,

(2) ϕ̃(x, y) = (ϕ(x, y), y).

We want this map to have periodic points x 6= 1, y 6= 1 for every p.

In order to understand dynamical properties of such endomorphism, we consider
the corresponding trace map. In G̃ = SL(2,Z) the trace of any word in two letters
(x, y) can be written as a polynomial in s = tr(x), u = tr(xy), t = tr(t). Denote
by A3

s,u,t the three-dimensional affine space with coordinates s, u, t. Let

f1(s, u, t) = tr(φ(x, y)), f2(s, u, t) = tr(φ(x, y)y),

ψφ̃(s, u, t) = (f1(s, u, t), f2(s, u, t), t).

π(x, y) = (tr(x), tr(xy), tr(y)).

The commutative diagram (factorization) follows:

Diagram 1

G̃× G̃
φ̃−→ G̃× G̃

π ↓ ↓ π
A3
s,u,t

ψ
φ̃−→ A3

s,u,t

The set

Σ = {f1(s, u, t) = s, f2(s, u, t) = u}
of fixed points of ψφ̃ has positive dimension.

Now the Question has arithmetic dynamics flavour: when the reduction of the
map ψφ̃ : A3(Fp) → A3(Fp) has periodic point for every p?

For example, for the map (2) for p big enough the corresponding fixed point set Σ
is defined over Fp and has irreducible components over Fp, thus Σ(Fp) 6= ∅.

Using Arithmetic Dynamics methods we provide some necessary and sufficient
conditions on a sequence to be appropriate for characterizing solvable groups.
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Meromorphic Continuation of Euler Products

Gautami Bhowmik

(joint work with J. C. Schlage-Puchta, F. Grunewald)

1. Introduction and results

The Euler-product of a Dirichlet series is one of the most effective ways to access
the series. Among important applications of Dirichlet-series is the asymptotic
estimation of the sum of its coefficients where the question of continuation of
Dirichlet-series beyond their domain of absolute convergence is a central issue.

In general, we would be interested in the series

D(s1, s2, · · · , sr) =
∏

p

W (p−s1 , · · · , p−sr)

where W is an integral polynomial in r variables. For the one-variable case
Estermann[3] in 1928 showed that for an integral polynomial W (x) with W (0) = 1
the Dirichlet-series D(s) =

∏
pW (p−s) is either a finite product of Riemann ζ-

functions, and therefore meromorphically continuable to the whole complex plane,
or it is continuable to the half-plane ℜ s > 0, and the line ℜ s = 0 is the natural
boundary of this function. The strategy of his proof was to show that every point
on the line ℜ s = 0 is an accumulation point of poles or zeros of D. This method
of proof was extended to much greater generality and it was recently shown that
[1] Estermann’s theorem can be extended to r variables. Much interest has been
generated by ζ-functions of nilpotent groups introduced by Grunewald, Segal and
Smith[6] as well as height zetafunctions [2] where the Euler products are often
of the form D(s) =

∏
W (p, p−s) for an integral polynomial W and where, in

general, the known results on natural boundaries do not apply. Du Sautoy and
Grunewald[4] gave a criterion for such a function to have a natural boundary,
which, in a probabilistic sense, applies to almost all polynomials. Again, it is
shown that all points on the presumed boundary is an accumulation point of zeros
or poles. The following conjecture [5] is believed to be true.

Conjecture 1. Let W (x, y) =
∑
n,m an,mx

nym be an integral polynomial with

W (x, 0) = 1. Then D(s) =
∏
pW (p, p−s) is meromorphically continuable to the

whole complex plane if and if only if it is a finite product of Riemann ζ-functions.
Moreover, in the latter case if β = max{n+1

m : an,m 6= 0}, then ℜ s = β is the
natural boundary of D.
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Here we show that any refinement of Estermann’s method is bound to fail to
prove this conjecture. Define an obstructing point z to be a complex number with
ℜ z = β, such that there exists a sequence of complex numbers zi, ℜ zi > β, zi → z,
such that D has a pole or a zero in zi for all i. Obviously, each obstructing point
is an essential singularity for D, the converse not being true in general.

Initially, D(s) may not be convergent on the half-plane ℜ s > β. To continue
it meromorphically to this half-plane, one writes D as a product of Riemann
ζ-functions and a function R(s) holomorphic, zero-free, and bounded on every
half-plane ℜ s > β + ǫ. More precisely, there exists integers cn,m, such that

D(s) =
∏

n,m

ζ(ns+m)cn,m ×R(s)

When approximating D(s) by a product of Riemann zeta-functions, the main
contribution comes from monomials an,mx

nym with n+1
m = β. We collect these

monomials into the monomial W̃ , that is, we have

W (x, y) = W̃ (x, y) +
∑∗

n,m
an,mx

nym,

where
∑∗

means summation over all pairs n,m with n+1
m < β.

Our main result is the following.

Theorem 1. Let W be a polynomial, and define β, W̃ as above. Then precisely
one of the following holds true.

(1) W = W̃ , and W is cyclotomic; in this case, D is a finite product of
Riemann ζ-functions;

(2) W̃ is not cyclotomic; in this case, every point of the line ℜ s = β is an
obstruction point;

(3) W 6= W̃ , W̃ is cyclotomic, and there are infinitely many pairs n,m with
an,m 6= 0 and n

m < β < n+1
m ; in this case, β is an obstruction point;

(4) W 6= W̃ , W̃ is cyclotomic, there are only finitely many pairs n,m with
an,m 6= 0 and n

m < β < n+1
m , but there are infinitely many primes p such

that the equation W (p, p−s) = 0 has a solution s0 with ℜ s0 > β; in this
case every point of the line ℜ s = β is an obstruction point;

(5) None of the above; in this case, no point on the line ℜ s = β is an obstruc-
tion point.

We give examples of each of these cases and show that there are Euler-products
like

g(s) =
∏

p

(
1 − p−s + p2−s

)

for which Estermann’s approach cannot work.
We then give an application by establishing a bijection between right cosets

of 2t × 2t symplectic matrices and submodules of finite index of Z2t which are
equal to their duals and which we call polarised. The counting function obtained
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corresponds to the p-adic zeta function [7] of algebraic groups G with respect to
their normalised Haar measure µ.

Z(s) =

∫

G+
p

| det(ρ(g)|spµG(g)

where G+
p = ρ−1(ρ(G(Qp)) ∩Mn(Zp)).

In [4] it was proved that ℜ s = 4
3 is the natural boundary when G = GSp6.

Using this information we can study the average order of the number of polarised
submodules.
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The conjugacy problem for some extensions of groups and a
presentation of Mihailova’s subgroup

Oleg Bogopolski

Let F be an arbitrary group and Fn be a free group of rank n. If two elements
u, v ∈ F are conjugate we write u ∼ v. Below we define a generalization of the
conjugacy problem CP(F ).

Let ϕ ∈ Aut(F ). We say that u, v ∈ F are twisted conjugate with respect to ϕ
and write u ∼

ϕ
v if there exists an f ∈ F such that ϕ(f)uf−1 = v. This relation

was introduced by K. Reidemeister in [11].

The twisted conjugacy problem for F , denoted TCP(F ) is the following: Given
u, v ∈ F and ϕ ∈ Aut(F ), decide whether u ∼

ϕ
v. If we fix ϕ, we get the ϕ-

twisted conjugacy problem for F , denoted TCPϕ(F ). Clearly TCPid(F ) coincides
with CP(F ). The following theorem was proven by O. Bogopolski, A. Martino,
O. Maslakova and E. Ventura in [1].

Theorem A [1]. 1) The twisted conjugacy problem for Fn is solvable.
2) The conjugacy problem for any extension Fn ⋊ Z is solvable.
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The second statement can be deduced also by combining the recent results
of A. Olshanski and M. Sapir [10] (if G is a finitely presented group with at
most quadratic Dehn function, then CP(G) is solvable) and M.R. Bridson and
D. Groves [4] (any extension Fn ⋊ Z has at most quadratic Dehn function).

Definition. A subgroup A 6 Aut(F ) is called orbit decidable if, given u, v ∈ F ,
one can decide whether there exists an α ∈ A such that α(u) ∼ v.

J.H.C. Whitehead [12] proved that the whole group Aut(Fn) is orbit decidable
in Aut(Fn) and P. Brinkmann [5] proved that any cyclic subgroup in Aut(Fn) is
orbit decidable.

Let F be a normal subgroup of a group G. Then G acts by conjugation on F
and so induces automorphisms on F . The group of all induced automorphisms is
denoted by AG. The following theorem says that under certain assumptions the
solvability of the conjugacy problem for G is equivalent to the orbit decidability
of the subgroup AG 6 Aut(F ).

Theorem B [2]. Let 1 → F → G → H → 1 be a short exact sequence, such
that the following three conditions are satisfied:

1) TCP(F ) is solvable;
2) CP(H) is solvable;
3) for any nontrivial h ∈ H holds |CH(h) : 〈h〉| < ∞ and one can compute a

set of coset representatives of 〈h〉 in the centralizer CH(h).
Then CP(G) is solvable if and only if AG 6 Aut(F ) is orbit decidable.

Note, that the condition 1) is satisfied for polycyclic groups, finitely generated
free groups and fundamental groups of compact surfaces. The condition 2) is
satisfied for torsion free hyperbolic groups.

From this theorem and from a result of J. McCool, we deduce the following
corollary.

Corollary 1 [2]. The conjugacy problem is solvable for any extension of the
form F2 ⋊ Fm and of the form Z2 ⋊ Fm.

Now we describe a method to construct an orbit undecidable subgroup A 6

Aut(F ). In view of Theorem B, this will enable us to construct some simple
examples of groups with unsolvable conjugacy proplem (but with solvable word
problem), see Theorem D.

For f ∈ F we denote Stab∗(f) = {ϕ ∈ Aut(F ) |ϕ(f) ∼ f}.

Theorem C [2]. Let A 6 B 6 Aut(F ) be such that the following two conditions
are satisfied:

1) the membership problem MP(A,B) is unsolvable;
2) there exists f ∈ F such that B ∩ Stab∗(f) = 1.
Then A 6 Aut(F ) is orbit undecidable.

In [8], K.A. Mihailova showed how to construct a finitely generated subgroup
A of B = Fn × Fn, n > 2, with unsolvable membership problem MP(A,B). Thus
we get
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Corollary 2 [2]. Let F be a group such that the following two conditions are
satisfied:

1) Aut(F ) contains a subgroup B ∼= Fn × Fn, where n > 2;
2) there exists an element v ∈ F such that B ∩ Stab∗(v) = 1.
Then Aut(F ) contains a finitely generated orbit undecidable subgroup A.

Note that the groups Aut(Z4) and Aut(F3) contain subgroups isomorphic to
F2 × F2. Using this, Corollary 2 and Theorem B, we deduce

Theorem D [2]. There exist extensions of the form Z4 ⋊ F14 and of the form
F3 ⋊ F14 with unsolvable conjugacy problem.

The statement about unsolvability of the conjugacy problem for some extensions
of the form Fn ⋊ Fm was proven ealier by C.F. Miller III (see [9]).

Questions. 1) Does there exists a finitely presented subgroup A 6 Aut(Fn),
which is orbit undecidable?

2) Is CP(Z3 ⋊ Fm) solvable?

In [7] F. Grunewald proved that the Mikhailova subgroup is not finitely pre-
sented. The aim of this paragraph is to give an explicit presentation of Mi-
hailova’s subgroup of Fn × Fn, where Fn is a free group with basis x1, . . . , xn,
and n > 2. Let H be a group which admits a finite Peiffer aspherical presentation
〈x1, x2, . . . , xn |R1, . . . , Rm〉 (see [6] for the definition of asphericity). By defini-
tion, Mihailova’s subgroup A(H) 6 Fn×Fn is generated by pairs di = (xi, xi) and
tj = (1, Rj), i = 1, . . . , n; j = 1, . . . ,m.

For any free group F and a nontrivial element f ∈ F , let root(f) denote the
element g ∈ F such that f = gk(g) and k(g) is maximal.

Theorem E. The Mihailova group A(H) has the following presentation:

〈d1, . . . , dn, t1, . . . , tm | [tj , z−1t−1
i Ri(d)z],

[ti, root(Ri(d))] (1 6 i, j 6 m; z ∈ Dn)〉,
where Dn denotes the free group generated by d1, . . . , dn, and Ri(d) denotes the
word in Dn obtained from Ri by replacing each xk by dk.
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