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Introduction by the Organisers

The workshop was conducted jointly with a workshop in statistical learning
theory. There was substantial interaction between the two groups, both formally
in terms of talks attended by members of both groups, as well as via informal
discussions. The intellectual themes which were presented during the workshop
are described below.

Sensor nets and engineering applications:

In the opening talk R. Ghrist spoke about the topology necessary to develop
methods for determining intruders have entered a net of sensors, and for counting
their number. Ghrist, jointly with V. de Silva and Y. Baryshnikov, has developed
techniques based directly on homological calculations as well as on integrals over
Euler characteristics which hold promise for implementable algorithms. In order
for such algorithms to be maximally useful, one must develop error insensitive
methods, which will require more probabilistic methods to be included within the
algebraic topological framework.
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Combinatorial applications:

Several presentations at the workshop elaborated on the subject of combinato-
rial algebraic topology. D. Kozlov has given a survey talk, which has set the
accents on the subject, tying together structures, methods, and applications, as
these are present at the current state of the development. Talks by R. Jardine and
M. Raussen concerned the combinatorial and computational aspects of homotopy
theory, finding applications of such abstract notions as Quillen’s closed model cat-
egory. K. Knudson gave an interesting account of connections between persistent
homology and discrete morse theory. Finally, the talk of E. Babson dealt with
more probabilistic aspects and served as a bridge to the presentations of M. Kahle
and P. Bubenik.

Dynamical systems:

K. Mischaikow and S. Day spoke about the use of algebraic topology to under-
stand the qualitative structure of dynamical systems. Mischaikow introduced his
paradigm of building databases of dynamical systems based on choices of param-
eter values. His methods permit the construction of partitions of parameter space
within which the qualitative structure remains the same. In addition, Conley index
methods, or rather their computational versions, are used to prove the existence
of fixed points, recurrent points, and invariant subsets within a given region in a
spatial domain.

Data analysis:

G. Carlsson and V. de Silva spoke about applications of various kinds of diagrams
to understand the qualitative geometric nature of data sets. For example, persis-
tence diagrams allow one to recover Betti numbers of sublevel sets of a probability
distribution, multidimensional persistence allows one to study sublevel sets of var-
ious functions as well, and the analysis of structure theorems for certain kinds of
quivers permits one to extend the bootstrap methods to clustering, Betti numbers,
as well as to perform dynamic clustering (i.e. clustering over time). There are now
viable computational methods for all of these applications.

Probabilistic methods:

M. Kahle and P. Bubenik spoke about the beginnings of stochastic algebraic topol-
ogy. Work at the level of zeroth Betti numbers has already been carried out by M.
Penrose, under the heading of “geometric random graphs”. What is now needed
is an extension of this work to higher dimensional homology groups, as well as to
the barcodes which arise in persistent homology. Ultimately, precise results along
these lines will open up the possibility of direct evaluation of significance of various
qualitative observations given a null hypothesis.

There were also several talks more centered at applications, such as vision recog-
nition (J. Giesen) and material science (R. MacPherson).



Computational Algebraic Topology 1605

All things considered, the workshop was a great success in terms of scientific
interaction, both within this group, as well as with the researchers in statistical
learning theory, as was witnessed by many involved discussions, which often lasted
well into the late evenings.
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Abstracts

Fundamental Groups of random 2-complexes

Eric Babson

(joint work with Christopher Hoffman and Matthew Kahle)

The random graph G(n, p) is the probability space of all graphs on vertex set
[n] := {1, 2, . . . , n} with each edge inserted independently with probability p. One
frequently considers p a function of n and asks whether a typical graph in G(n, p)
is likely to have a given monotone property as n → ∞. We say G(n, p) almost
always has property P if limn→∞ P(G(n, p) ∈ P) = 1, which we sometimes
abbreviate as ‘a.a.’ A famous result of Erdős and Rényi [Erdős and Rényi, 1959]
is that p = logn/n is the threshold function for the connectivity of the random
graph. More precisely, they showed the following.

Theorem 1. [Erdős and Rényi, 1959] Let ω(n)→∞ as n →∞. If p = (logn−
ω(n))/n then G(n, p) is almost always disconnected, and if p = (logn + ω(n))/n,
G(n, p) is almost always connected.

Nathan Linial and Roy Meshulam recently exhibited a 2-dimensional homolog-
ical analogue of Theorem 1. They defined the random 2-dimensional simplicial
complex Y (n, p) to be the probability space of simplicial complexes on vertex set

[n] and edge set
(
[n]
2

)
, with each 2-face appearing independently with probability

p.

Theorem 2. [Linial and Meshulam, 2005a] Let ω(n) → ∞ as n → ∞. If p =
(2 logn−ω(n))/n then almost always H1(Y,F2) 6= 0, and if p = (2 logn+ω(n))/n
then H1(Y,F2) = 0 almost always.

Meshulam and Wallach later extended this result to H1(Y,Fq) for any prime q
and proved analogous results for random higher dimensional simplicial complexes
[Meshulam and Wallach, 2006].

In this article we address the analogous question for π1(Y (n, p)). We show that
the threshold for vanishing of π1(Y (n, p)) is approximately p = n−1/2, in contrast
to the Linial-Meshulam threshold for homology of roughly p = n−1.

Theorem 3. If

p ≥
(

3 logn+ ω(n)

n

)1/2

where ω(n)→∞, then π1(Y (n, p)) = {1} a.a.

The proof of Theorem 3 is based on showing that once every pairwise intersec-
tions of vertex links is connected, every triangle bounds an embedded disk. Then
every cycle can be factored as a product of triangles, since the underlying graph
is complete, and by simplicial approximation, every loop is homotopy equivalent
to a product of cycles.

Our main result shows that the exponent 1/2 in Theorem 3 is best possible.
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Theorem 4. For any ǫ > 0 if

p ≤ n−ǫ

n1/2

then π1(Y (n, p)) 6= {1} and is hyperbolic a.a.

Our proof of Theorem 4 is geometric in spirit and relies on general notions
of negative curvature due to Gromov. In particular, we show that when p is in
this range, Y (n, p) is hyperbolic in the sense of satisfying a linear isoperimetric
inequality.
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Statistical persistent homology

Peter Bubenik

(joint work with Gunnar Carlsson, Peter T. Kim, Zhiming Luo)

We are interested in the following problem. We have a sample of pointsX1, . . . , XN

from some manifold, which we assume was obtained, with errors, from some prob-
ability density. We would like to use the sample to recover, as best as possible,
the topology of the underlying density.

First we need to say what we mean by the topology of the underlying density.
Let (M, g) be a compact, connected Riemannian manifold, with a dominating

measure ν (the invariant measure which in local coordinates is
√
|g|dx1...dxd).

Let f : M → [0,∞] such that
∫

M
fdν = 1. This probability density gives an

increasing filtration of M by sublevel sets

Mf≤r = {x ∈M | f(x) ≤ r}.
This induces an increasing filtration on C∗(M), the Morse filtration: Fr(C∗(M)) =
C∗(Mf≤r), from which we can calculate the persistent homology [3, 4]. This is what
we earlier referred to as the topology of f . Of course, the study of other invariants
on Mf≤r is possible.

In order that we may do statistics, we need to assume that f = fθ belongs to a
family of densities

{fθ | θ ∈ Θ}
where θ is the parameter and Θ is the parameter space which can be finite dimen-
sional (the parametric case), or, infinite dimensional (the nonparametric case).

Our goal is to find an estimate θ̂ of θ so that the persistent homology of fθ̂ is
close to the persistent homology of fθ.

For a basic example, consider the following unimodal densities on the unit
sphere Sp−1, called von Mises-Fisher densities:

fµ,κ(x) = cκ exp{κxtµ},
where µ ∈ Sp−1, κ ∈ [0,∞), and cκ is a normalizing constant. Using the Morse
filtration on C∗(S

p−1) with fµ,κ, we see that the only non-trivial persistent ho-
mology occurs in degrees 0 and p− 1. Here we encode the persistent homology in
a set of intervals called a barcode:

β0(fµ,κ) = {[cκe−κ,∞]} and βp−1(fµ,κ) = {[cκeκ,∞]}.
LetX = (X1, X2, . . .Xn) be a sample on Sp−1 according to the von Mises-Fisher

density fµ,κ. Let X̄ = 1
n

∑
Xi be the sample mean. The maximum likelihood

estimators are given by:

µ̂ =
X̄

||X̄|| and κ̂ = A−1
p (||X̄ ||), where Ap(λ) =

I p
2
(λ)

I p−1
2

(λ)
,

with Iν denoting the the modified Bessel function of the first kind and order ν.
Using the estimator κ̂ we obtain the following estimates for the persistent homology
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of the Morse filtration in degrees 0 and p− 1:

β0(fµ̂,κ̂) = {[cκ̂e−κ̂,∞]} and βp−1(fµ̂,κ̂) = {[cκ̂e−κ̂,∞]}.
The large sample asymptotics are given by

√
n(κ̂− κ)→d N(0, 1

A′
p(κ) ) as n→∞,

where N denotes the normal distribution. To measure how close our estimators
βi(fκ̂) to the true parameter βi(fκ), we use the least symmetric difference metric
on the space of barcodes. We obtain [1]

E(D(βi(fµ̂,κ̂), βi(fµ,κ))) ≤ cκ√
n
.

Now let us consider the more interesting nonparametric case. For simplicity,
take f : M→ R to be a Morse function with distinct critical values. Here we encode
the persistent homology using the persistence diagram [2]. Let Dp(f) denote the
persistence diagram for the degree p persistent homology of C∗(M) filtered using
the sublevel sets of f . Let dB denote the bottleneck distance [2] between persistence
diagrams.

The bridge between topology and statistics is provide by the Stability Theo-

rem [2]. Take f to be an unknown function and f̂ to its statistical estimator.
Then, by the Stability Theorem,

dB(Dp(f), Dp(f̂)) ≤ ‖f − f̂‖∞.
We would like to be able to solve the following Data Analysis Problem. Let

X1, . . . , XN be data sampled (with noise) from an unknown probability density

f on a compact manifold M. Find an estimator f̂ that minimizes ‖f − f̂‖∞ and
calculate the asymptotics as N →∞.

For now, we consider the closely related Gaussian White Noise model, which is
easier to work with. It remains to show that the two problems are equivalent. Let
M be a compact, connectedm-dimensional Riemannian manifold with Riemannian
metric ρ(·, ·) and volume element dω. Consider the Hölder class of functions on
M,

Λ(β, L) =
{
f : M→ R | |f(x) − f(y)| ≤ Lρ(x, y)β , x, y ∈M

}
,

where 0 < β ≤ 1.
Our result is the following. In the white–noise model,

EdB(Dp(f̂ε), Dp(f)) ≤ Cψε,

as ε→ 0, where ψε = ε2 log(ε−2) and C = Lm/(2β+m)
(

(β+m)m2

vol(Sm−1)β2

) β
(2β+m)

.
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Topological Methods for the Analysis of High Dimensional Data Sets
and 3D Object Recognition

Gunnar Carlsson

It is well understood that the analysis of high dimensional data sets of various
kinds is a task which is of crucial importance to modern sciences and engineering.
Data is being produced at a rate which is much greater than our capacity to
analyze it, and furthermore traditional methods for analysis are often inadequate.
One particularly useful set of methods which has been developed are the geometric
ones, i.e. methods which rely on the introduction of a metric, or notion of distance,
on the set of data points. The distance is often reflecting an intuitive notion of
similarity, in that points which are a small distance apart are regarded as similiar.
Methods based on these ideas are the multidimensional scaling and locally linear
embedding methods, which find low dimensional visual representations of the data
in question, and R. Coifman’s notions of diffusion distance and diffusion mapping.
Inducing a metric can then permit the introduction of geometric methods from
pure mathematics which can be quite useful in making sense of the data. It is
then interesting to ask what methods from geometry are particularly well adapted
to data geometries. In considering this question, it is useful to keep in mind the
following two points about distances frequently used in studying data.

• Although short distances reflect a notion of similarity well, it is often the
case that long distances are not particularly well related to the problem
in question. For example, when comparing two genomic sequences, they
are defined to be close if one can be obtained from the other by a small
number of substitutions. On the other hand, knowing that two sequences
are related by a particular large number of substitutions is not so useful.
• Quantitative comparison of short distances is often not so significant ei-

ther.

1.5
1.8

In the above image, two comparisons of pairs of nearby points which
are far apart within the space does not, for the most part, suggest that
one pair is reliably more similar than the other.

These observations suggest that topological methods should be useful in data
analysis, since topology studies qualitative properties of metric spaces by ignoring
quantitative comparisons between distances, and instead studies only the notion



1614 Oberwolfach Report 29/2008

of a point being infinitely close to a subset. In this talk, we described three specific
ways in which topological methods can be imported into the analysis of data.

(1) Homological signatures can be inferred using the method of persistent ho-
mology [4] and [7]. This technique was used to study particular examples,
one from natural image statistics [3] and one from neuroscience [6]. The
method involves the study and classification of a family of diagrams of
vector spaces, called persistence diagrams. The method can be used to
produce a map describing the topological type of various subsets of data
sets, perhaps those of high density, as determined by a choice of density
estimator and a threshold for density. Below is a map obtained for the
case of Mumford’s data set of high contrast 3×3 image patches in natural
images.

It shows how representations of patches can be mapped out to lie on a
Klein bottle. The rectangular picture corresponds to the usual identifica-
tion space model of a Klein bottle.

(2) Simplicial constructions from topology can be used to devise methods
for visualization which in many situations are more flexible and sensitive
than standard methods which are more strongly metric dependent. This
methodology, whose software realization is called Mapper, was introduced
in [5], and was used in [1] to understand some questions in RNA folding.
Here is a picture which is output from Mapper.

The loop present in the middle of this diagram turns out to yield po-
tentially different folding mechanisms. This example illustrates the fact
that this method is capable of finding small features within a larger data
set. Sometimes these features will turn out to be artifacts, but this can
only be determined by returning to examination of the data.

(3) Topological methods can be introduced using different diagrams, so-called
zig-zag diagrams. These diagrams turn out to be interpretable as repre-
sentations of quivers, in fact of quivers of finite representation type. They
can shed light on the stability and consistency of qualitative invariants
(such as the cluster decompositions) and the presence of loops, as well as
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provide a useful summary for the understanding of dynamical clustering.
This is discussed in [2].
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Zig-zag persistence

Vin de Silva

(joint work with Gunnar Carlsson)

1. Discrete invariants

It is well understood how to assign discrete algebraic invariants to continuous
topological spaces; this is the art of classical algebraic topology. These invariants
capture and quantify the intuitive topological properties of common objects: the
hole ‘in’ a bagel; the cavity inside a tennis ball; the one-sided nature of a Möbius
band; the triplewise but not pairwise linking of the Borromean rings.

It is less well understood how to assign algebraic invariants to statistical spaces;
by which I mean finite samples taken from a probability distribution, perhaps con-
centrated on a simplicial complex or submanifold of some Euclidean space. Con-
sider the simplest possible topological invariant, b0, which counts the connected
components of a topological space. The corresponding statistical quantity is the
number of clusters of a sampled distribution. This is much more slippery than
b0; in fact there exists a huge literature on clustering in statistics and machine
learning, and even an impossibility theorem, due to Kleinberg [1].

Why are connected components easy, and clusters difficult? A simple explana-
tion is that the class Top of continuous topological spaces is discrete, whereas the
class Stat of discrete statistical spaces is continuous in character. (One can evolve
continuously from a data set with two separate clusters to a data set which has
only one cluster; whereas to reach a surface of genus 2 from a surface of genus 1
requires a quantum leap.) Thus, discrete invariants (such as b0) occur naturally
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on Top, but are necessarily discontinuous when defined on Stat. Such invariants
are unstable.

2. Persistent homology

The theory of persistence provides a mechanism for overcoming these difficulties.
We wish to assign homological invariants (which are discrete) to statistical spaces
(which vary continuously). The way around this is to decorate the homological
invariants with a continuous parameter. For instance, let X ⊂ Rn be a finite set.
Replacing each point by a ball of radius ǫ, we can define Xǫ =

⋃
x∈X Bx(ǫ) and

homology groups Hǫ = H∗(X
ǫ). Whenever ǫ ≤ δ there is an inclusion Xǫ ⊆ Xδ,

and hence an induced map Hǫ → Hδ. Thus we have a direct system {Hǫ} which
we can regard as the primary homological invariant of the point cloud.

The advantage of this framework is that homological cycles (or features) come
labelled with a real-valued lifetime: given α ∈ Hǫ its remaining lifetime is defined
as inf{δ ≥ ǫ | α ∈ ker(Hǫ → Hδ)}. A feature which persists over a long interval
[ǫ, δ) is by default taken more seriously than a feature which perishes quickly.
Short-lived features are more likely to be artifacts of the construction or of noise
in the data. If X is a topologically ambiguous configuration, then this may be
reflected by the presence of features whose lifetime is not clearly short or long.

Two ingredients make these ideas effective: a concise description of the struc-
ture of the directed system {Hǫ}, and an algorithm for computing this description.
Such a description and algorithm first appeared in [4], with a more general alge-
braic treatment in [5]. The compact description comes from the fact that {Hǫ}
decomposes as a direct sum of one-dimensional summands, each comprising a sin-
gle cycle αi which appears at time bi (birth) and disappears at time di (death).
Moreover, the summands are canonical, in the sense the the collection of pairs
(bi, di) is independent of the splitting. This description requires that we work
with field coefficients, and we also assume that the vector spaces Hǫ are finite
dimensional (to avoid obvious pathology).

The multiset of pairs (bi, di) can be regarded as a collection of half-open intervals
[bi, di) (the barcode description) or else as a subset of R

2 lying above the diagonal
x1 = x2 (the persistence diagram). It is now known that this object is stable under
perturbations of the underlying construction under very mild hypotheses [6].

The complete protocol for topological measurement can be summarised as fol-
lows. Given a statistical space X , represent the spaces Xǫ as simplicial complexes
Cechǫ(X) which are the nerves of the covering Xǫ =

⋃
xBx(ǫ); then apply the

persistence algorithm to {Cechǫ(X)} to obtain a barcode description of the family
{Hǫ}. There are several alternatives to the Cech construction (such as Rips com-
plexes, witness complexes [7]) but all have the same qualitative properties for the
purposes of this discussion.

The idea of using persistence in statistical topology appears to have occurred
independently several times. Two early references are [2] and [3]. In the last
few years there has been considerable work in this area. One recent example is a
response [8] to Kleinberg’s impossibility theorem.
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3. Zig-zag persistence

Persistent homology as described in [4, 5] works only for nested (or at least
direct) systems of spaces {Xǫ}. We propose a method for extending this paradigm
to more general 1-parameter families of spaces {Xt} derived from statistical data.
Our main technical support comes from the theory of quivers. We note in passing
that 2-parameter persistence is known to be a hard problem [9], even in the simplest
case of a bifiltration: there is provably no concise description of a system of vector
spaces of the form {Hδ,ǫ}.

Consider a sequence of topological spaces X0, . . . , Xn and maps p1, . . . , pn.
Each pi = fi or gi takes one of two possible forms: fi : X i−1 → X i (forwards)
or gi : X i → X i−1 (backwards). For instance if every pi maps forwards then we
recover ordinary persistence, discretized at the values ǫ = 0, . . . , n.

Applying the homology functor (with field coefficients) produces a diagram
of vector spaces {V i = H∗(X

i)}. In the language of quiver theory, this is pre-
cisely a quiver representation of type An. As with ordinary persistence, such
representations have a canonical decomposition into summands. Each interval
[i, j] ⊂ {0, . . . , n} corresponds to a summand type Ii,j which has one-dimensional
components over the indices i, . . . , j connected by isomorphisms, and which is zero
elsewhere. This structure theorem can be proved directly, but can also be seen
from the higher vantage points of Gabriel’s theorem (which classifies quivers with
a well-behaved decomposition theory) or Kac’s theorem (which asserts that the
decomposition theory is in some sense independent of the directions of the maps
pi). See [10] for a general introduction to quivers.

Because the decomposition is canonical (up to isomorphism), the summands of
an An-diagram of vector spaces can be calculated explicitly using greedy induction
along the index i. The situation is more involved when the vector spaces are
presented homologically, but the principle remains the same.

Now consider a 1-parameter family of finite sets Xt ⊂ Rm. To define persistence
over {Xt}, we discretize t to a finite set of parameter values 0, . . . , n and construct
spaces Yi = (Xi)

ǫ for a fixed value of ǫ. There are no natural maps between
the Yi, so we introduce interpolating spaces Zi = Yi−1 ∩ Yi. The inclusion maps
Zi → Yi−1, Zi ⊂ Yi lead to a diagram with alternating arrows (or zig-zag)

Y0 ← Z1 → Y1 ← · · · → Yn−1 ← Zn → Yn.

Applying the homology functor gives a quiver representation which can be decom-
posed into summands, giving us the desired barcode description.

When the Yi are represented as Čech complexes Cechǫ(Xi), each Zi is most
naturally represented as a bisimplicial complex Cechǫ

2(Xi−1, Xi) contained in the
Cartesian product Cechǫ(Xi−1)×Cechǫ(Xi). There are analogous bicomplexes for
the Rips and witness constructions.
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Symbolic Dynamics via Computational Topology

Sarah Day

With recent advances in computing power, numerical studies of nonlinear dynam-
ical systems have become increasingly more popular. However, errors inherent to
such studies may obscure the dynamics or, at the very least, raise doubts about the
existence of numerically observed structures. Furthermore, unstable behavior, an
intrinsic element of complicated systems, may be difficult to track even with very
careful numerical work. I will discuss techniques based on computational alge-
braic topology, and in particular Conley index theory, which allow for the rigorous
detection of dynamical structures of various stability types.

I will focus on the application of these techniques to discrete-time dynamical
systems given as continuous maps f : X → X . The phase space X may be finite or
infinite dimensional, so long as it may be discretized in a natural way. Two exam-
ples are 2-dimensional Euclidean space R2 and the infinite-dimensional function
space L2. The maps themselves may also take many forms, but obtaining rigorous
verification of the results requires the computation of bounds for truncation and
other errors inherent to the numerical study. These errors reflect a necessary loss
of information resulting from viewing the system at a fixed resolution required for
a numerical study. The well-studied Hénon map and the Kot-Schaffer integrod-
ifference population model from ecology are two examples of discrete models for
which discretization and the corresponding error bounds may be computed.

Sample results for the Hénon and Kot-Schaffer models illustrate the use of the
topological tools. Our goal is to produce a semi-conjugacy between the studied
system and a constructed symbolic dynamical system. The symbolic system then
serves as a (partial) catalogue of important structures called invariant sets. In
joint work with O. Junge and K. Mischaikow on the Kot-Schaffer model ([1]),
we used the techniques to locate (up to machine precision) and rigorously verify
the existence of unstable periodic orbits, connecting orbits, and more complicated
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invariant sets–one with positive topological entropy (one measurement of complex-
ity) and another described by chaotic symbolic dynamics. In more recent work
with R. Frongillo and R. Treviño on the Hénon map ([3]), we automated both
the initial numerical work and the processing of the Conley index information in
order to construct a semi-conjugate symbolic dynamical system on many symbols,
yielding a high lower bound on the topological entropy.

In this work, the constructed symbolic dynamical system, or subshift of finite
type, is specified by a directed graph. Verifying that all allowed periodic symbol
sequences (cycles in the directed graph) correspond to orbits in the original system
requires both computation and interpretation of the Conley index. Continuity and
compactness arguments allow us to extend the result from all cycles in the graph to
all infinite paths, thereby proving the semi-conjugacy to the constructed symbolic
system. Since the directed graphs we are interested in often contain infinitely many
cycles, there may be an infinite list of indices to check. Obtaining the results in
[3] relied on developing and automating a procedure for reducing this infinite set
of computations to a finite list.

Related topics and possible extensions include:

(1) Detecting spurious solutions – studying the relationship between the nu-
merics/simulations alone and the topological information given by the
Conley index.

(2) Optimization of the algorithms for automated construction of subshifts of
finite type on many symbols and topological entropy bounds.

(3) Applications to broader classes and families of discrete dynamical systems
and interpretation of the results.
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Euler Calculus

Robert Ghrist

(joint work with Yuliy Baryshnikov)

Consider the problem of using a network of sensors to count targets. For reasons
of power conservation and simplicity in design, sensors are assumed to be minimal:
targets cannot be localized or identified, but merely counted. This presents the
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problem of aggregating all the redundant data over the network in order to return
an accurate count.

We formalize the problem as follows. Fix an o-minimal structure on subsets of
Euclidean space [10] (e.g., one may restrict to piecewise-linear, or semi-algebraic,
or subanalytic sets): these are fixed as the “tame” sets in what follows. Assume
that W is the target space, where a finite number of targets Tα reside. Assume
a dense collection of counting sensors, parametrized as a sensor space X . The
sensing relation is the subset S ⊂ W ×X given by S = {(w, x) : a target at w
is seen by a sensor at x}. The sensor field on X returns a counting function
h : X → N given by h(x) = the number of targets seen by sensor x.

Each target Tα activates some collection of sensors Uα ⊂ X — the fiber of S
over Tα under projection W ×X 7→W . Call this fiber the target support. The
following theorem gives a means of enumerating targets with minimal assumptions
on the shape or size of the target supports.

Theorem 1 (Baryshnikov-Ghrist). Given h : X → N the counting function for
{Uα} a collection of tame target supports in X with uniform Euler characteristic:
χ(Uα) = N 6= 0 for all α. Then

(1) #α =
1

N

∫

X

h dχ.

The theorem and proof uses a calculus based on Euler characteristic χ viewed
as a measure dχ. The history of this calculus is convolved: it appears in inchoate
form in the works of Blaschke [2], Hadwiger [6], Groemer [5], and Rota [7], all of
which view the Euler characteristic as a scale-invariant valuation on polyhedra.
In the 1980s, Viro [11] (based on MacPherson’s work on sheaves) and Schapira [8]
(based on Kashiwara’s work on sheaves) independently formulated a rich integral
calculus based on Euler characteristic. Most recently, the Euler calculus has been
rediscovered as a foreshadowing of motivic integration [3, 4].

A few definitions suffice to set up the calculus. By the o-minimal Triangulation
Theorem [10], any tame set admits a partition into the homeomorphic image of a
(not necessarily closed) simplicial complex. The geometric Euler characteris-
tic of a tame space is defined as

(2) χ(A) =
∑

σ

(−1)dim σ =

∞∑

k=0

(−1)k dimHBM
k (A),

where σ denotes the simplices in a triangulation of A andHBM
k denotes the Borel-

Moore homology of A. The geometric Euler characteristic is a homeomorphism
invariant.

Let CF (X) denote the class of constructible functions on X : functions
h : X → Z of compact support whose level sets are tame. The Euler integral
is the pushforward

∫
X
· dχ : CF (X)→ CF ({pt}) ∼= Z induced by the trivial map

X → {pt}. It has an explicit construction: any h ∈ CF (X) can be expressed as
h =

∑
α cα1σα

for {σα} a collection of (sets homeomorphic to open) simplices and

{cα} coefficients. Then
∫

X h dχ =
∑

α(−1)dim σαcα.
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As this integral operator is expressed as a pushforward, it respects all the gluing
and restriction operations implicit in sheaves of constructible functions: it really is
an integration theory. To wit, since χ(A∪B) = χ(A)+χ(B)−χ(A∩B), one has that∫

X
h dχ is invariant under how h is decomposed [11, 8]. Much more is knowable

and known, including a Fubini theorem, convolutions, integral transforms, and
duality [9, 3].

Given this calculus, the proof of Theorem 1 is trivial.

Proof.

(3)

∫

X

h dχ =

∫

X

(
∑

α

1Uα

)
dχ =

∑

α

∫

X

1Uα
dχ =

∑

α

χ(Uα) = N #α.

�

Unfortunately, sensors do not yet come in the continua Theorem 1 assumes:
they come in discrete networks. Intuition from numerical analysis suggests that,
given a discrete sampling of an integrand h, one should use the piecewise-linear
interpolant hPL as a good approximation to h. However,

∫
X
· dχ does not take real-

valued functions as an argument. Rota [7] and those following define integration
for R-valued integrands; however, in that theory, integrals of continuous functions
always vanish. We propose the following definition.

Given a tame mapping h : X → R (the graph of h is a tame set), define

(4)

∫

X

h⌊dχ⌋ = lim
n→∞

1

n

∫

X

⌊nh⌋dχ.

This limit exists, is well-defined, and gives a plethora of computational formulæ,
including some deep relations to Morse theory — the integral of a Morse function
is an alternating sum of critical values of h, graded by the Morse index. Unfor-
tunately, the integral operator is no longer linear. In recompense, we do have the
following:

Theorem 2 (Baryshnikov-Ghrist). Let h ∈ CF (Rn) be a constructible upper
semi-continuous function whose chambers are all codimension-0 in Rn. Then, for
a sufficiently fine and regular triangulation of Rn, the PL interpolation hPL of h
over the vertex set of the triangulation satisfies

(5)

∫

Rn

hPL dχ =

∫

Rn

h dχ.

This allows one to begin the process of developing numerical analysis, signal
processing, filters, and expectations for the topological integration theory of Euler
calculus.

References

[1] Y. Baryshnikov and R. Ghrist, “Target enumeration via Euler characteristic integrals,” to
appear, SIAM J. Appl. Math., preprint 2008.

[2] W. Blaschke, Vorlesungen über Integralgeometrie, Berlin, 1955.



1622 Oberwolfach Report 29/2008

[3] R. Cluckers and M. Edmundo, “Integration of positive constructible functions against Euler
characteristic and dimension,” J. Pure Appl. Algebra, 208(2), 2007, 691 - 698.

[4] R. Cluckers and F. Loeser, “Constructible motivic functions and motivic integration,” In-
ventiones Mathematicae, 173(1), 2008, 23–121.

[5] H. Groemer, “Minkowski addition and mixed volumes,” Geom. Dedicata 6, 1977, 141–163.
[6] H. Hadwiger, “Integralsätze im Konvexring,” Abh. Math. Sem. Hamburg, 20, 1956, 136–154.
[7] G.-C. Rota, “On the combinatorics of the Euler characteristic,” Studies in Pure Mathemat-

ics, Academic Press, London, 1971, 221–233.
[8] P. Schapira, “Operations on constructible functions,” J. Pure Appl. Algebra 72, 1991, 83–93.
[9] P. Schapira, “Tomography of constructible functions,” in proceedings of 11th Intl. Symp.

on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 1995, 427–435.
[10] L. Van den Dries, Tame Topology and O-Minimal Structures, Cambridge University Press,

1998.
[11] O. Viro, “Some integral calculus based on Euler characteristic,” Lecture Notes in Math.,

vol. 1346, Springer-Verlag, 1988, 127–138.

Surface Reconstruction

Joachim Giesen

(joint work with Tamal K. Dey, Bardia Sadri, Edgar A. Ramos, Madhusudan
Manjunath)

Given a smooth closed surface Σ embedded into R
3. Let P ⊂ Σ be a finite sampling

of Σ. The surface reconstruction problem asks to reconstruct Σ from P , i.e., to
compute a piecewise linear surface Σ′ interpolating P that is isotopic to Σ and
geometrically close.

There are sampling conditions on P such that the surface reconstruction prob-
lem can be solved. A popular condition introduced by Amenta, Bern and Epp-
stein [1] is based on the medial axis of Σ. The medial axis M(Σ) is the closure of
the set of all maximal, empty, open balls in R3. Empty means that the ball does
not intersect Σ, and maximal means the ball is not contained in another empty,
open ball. The local feature size is the function f : Σ→ R+, x 7→ d(x,M(Σ)), and
P is an ε-sampling of Σ if for all x ∈ Σ there is a p ∈ P with d(x, p) ≤ εf(x). In
the following we require P to be an ε-sampling with sufficiently small ε > 0.

One way to get a isotopic reconstruction of Σ from P is based on the approx-
imation of the distance function dΣ : R3 → R+, x 7→ d(x,Σ) by dP : R3 →
R+, x 7→ d(x, P ). The gradient of dΣ at x ∈ R3 is defined as as follows: let
N(x) = {y ∈ Σ | d(x, y) = d(x,Σ)} and B(x) be the smallest enclosing ball of N(x)
with center c ∈ R

3 and radius r ∈ R+. If x /∈ conv(N(x)), then ∇dΣ(x) = x−c
dΣ(x) ,

where conv(N(x)) is the convex hull of N(x). If x ∈ conv(N(x)), then x is called a
critical point of dΣ. The gradient of dΣ can be approximated by the gradient ∇dP

of dP . It can be shown [3] that the critical points of dP are either very close to Σ
(in terms of ε) or close to M(Σ). The two types of critical points can be separated
algorithmically [3]. The stable manifold of a critical point c is the closure of all
points that flow into c under the gradient flow of ∇dP

. The union of all stable
manifolds of critical points close to Σ essentially provide an isotopic reconstruction
of Σ if ǫ > 0 is small enough.
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So far guarantees known for smoothly embedded surfaces cannot be extended
to surfaces with sharp edges and corners. Empirically one observes that isotopic
reconstruction is often possible in practice and that making a computed isotopic
piecewise linear approximation Σ′ to Σ tighter gives geometrically better results. A
surface is called tightly embedded if any hyperplane cuts it into at most two pieces.
Tight surfaces minimize the total absolute Gaussian curvature for the topological
type of Σ. When aiming for a tighter surface this observation leads to the problem
to minimize the total absolute Gaussian curvature of Σ′ while keeping the topolog-
ical type and the vertex set P . For a variant of this problem NP-hardness has been
shown [2]. A probably weaker goal is to minimize the absolute Gaussian curvature
locally, i.e., to move a vertex p ∈ P such that absolute Gaussian curvature of Σ′

at p is minimized. Note that the Gaussian and absolute Gaussian curvature of
a piecewise linear surface Σ′ is concentrated in the vertices of Σ′. The problem
to minimize the absolute Gaussian curvature locally can be abstracted as follows:
given a piecewise linear embedding C of S1 into R3 such that the vertices of C have
rational coordinates. Find a point q ∈ R3 \ C such that piecewise linear surface
that contains one triangle with vertex q for every edge in C has minimum absolute
Gaussian curvature. We have shown [4] that in general q is not constructible,
i.e., there exists no finite sequence of expressions (E1, . . . , El) starting with the
coordinates of the vertices of C, where Ei is obtained from previous expressions
by addition, subtraction, multiplication, division or taking of k’th roots. We im-
plicitly construct a polygon C whose vertices have rational coordinates and for
which a unique minimizer q exists, and show that the coordinates of q are not
constructible.
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Local persistence: homotopy theory of filtrations

J.F. Jardine

Suppose that a, b are real numbers, and that a < b. A filtration of a simplicial set
X is a simplicial set-valued functor

F•(X) : [a, b]→ sSet

defined on the poset [a, b], with t 7→ Ft(X) for a ≤ t ≤ b, such that
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• Ft(X) = lim−→s<t
Fs(X) for all t ∈ [a, b],

• F (b) = X .

Examples include the Čech and Rips complex constructions, defined on an interval
[a, b] where a is a small positive number and b is large. In persistence applications,
Fa(X) is a discrete set of points, Fb(X) = X is a big contractible space, and the
vertex functor Ft(X)0 = X0 is constant.

The idea of “persistent homotopy theory” is to find homotopical features of
the filtration steps Ft(X) that survive (or are defined) along subintervals of [a, b].
Persistent homology theory concerns the functors t 7→ H∗(Ft(X)).

For a filtration F•(X), if I ⊂ [a, b] is a subinterval, say that a persistent ho-
mology class on I in Hn(F•(X)) is a family of classes αt ∈ Hn(Ft(X)) such that
αt 7→ αt′ under the map

Hn(Ft(X))→ Hn(Ft′(X))

for all t ≤ t′ in I. In other words, a persistent homology class on I is an element
of

lim←−
t∈I

Hn(Ft(X)).

The assignment

I 7→ lim←−
t∈I

Hn(Ft(X))

defines a contravariant functor on the category Int[a, b] of open subintervals of
[a, b], with inclusions. One similarly defines persistent classes in h(F•(X)) on I for
all homotopy functors h, such as homotopy groups.

Observe that there could be a non-zero element α ∈ lim←−t∈I
Hn(Ft(X)) in the

kernel of the map

lim←−
t∈I

Hn(Ft(X))→ Hn(Fs(X))

for some s ∈ I, in which case α would be persistently 0 on some open subinterval
of I.

There are various ways to study filtrations F•(X), or more generally to study
functors Y : I → sSet as homotopy theoretic objects, where I is some interval.
Here are two related constructions:

1) The category sSetI consists of all functors Y : I → sSet taking values in
simplicial sets and all natural transformations between them.

The injective model structure on sSetI has for weak equivalences (respectively
cofibrations) all maps Y → Z for which all maps Y (t) → Z(t), t ∈ I, are weak
equivalences (respectively inclusions) of simplicial sets. Injective fibrations are
defined by a right lifting property.

Application: to construct the homotopy inverse limit holim←−−− IX of an I-diagram
X : I → sSet, take an injective fibrant model j : X → Y (ie. trivial cofibration
such that Y is injective fibrant) and set

holim←−−− IX = lim←−
I

Y.
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2) The open subintervals of [a, b] are the subintervals of the form [a, c), (d, e) and
(f, b], along with the empty set, and these are the objects of the poset Int[a, b] of
open subintervals, where the morphisms are inclusions. Covering families of open
subintervals are defined in the usual way, and we get a Grothendieck topology on
Int[a, b]. The corresponding sheaf category on Int[a, b] is equivalent to the standard
sheaf category for the topological space [a, b]

Suppose that X : [a, b]→ Set is a set-valued functor defined on the poset [a, b].
Suppose that I ⊂ [a, b] is an open subinterval. Define

lim←−X(I) = lim←−X |I ,
where X |I is the composite functor

I ⊂ [a, b]
X−→ Set.

Then the assignment I 7→ lim←−X(I) defines a presheaf lim←−X on Int[a, b], and we
have the following:

• lim←−X is a sheaf on Int[a, b].

• Let (lim←−X)t be the stalk of the sheaf lim←−X at t ∈ [a, b]. Then we have
the following:

1) (lim←−X)t

∼=−→ lim−→s<t
X(t) if t ∈ (a, b], and

2) (lim←−X)a
∼= X(a).

There is a model structure on the category sPre(Int[a, b]) of simplicial presheaves
on Int[a, b], for which a cofibration is an inclusion of simplicial presheaves, and a
weak equivalence is a map X → Y which induces weak equivalences Xx → Yx of
simplicial sets in all stalks. Fibrations for this theory are called global (or injective)
fibrations, and the weak equivalences are called local weak equivalences.

We have the following:

• If Y : [a, b]→ sSet is a functor, then lim←−Y is a simplicial sheaf on Int[a, b].

• A weak equivalence (or cofibration) Y → Z in sSet[a,b] induces a local
weak equivalence (or cofibration)

lim←−Y → lim←−Z
of simplicial sheaves on Int[a, b].
• If F•(X) : [a, b]→ sSet is a filtration of a space X , then

(lim←−F•X)t ≃ Ft(X).

Suppose that Y = F•(X) : [a, b] → sSet is a filtration of a space X , and let

j : Y → Z be a functorial injective fibrant model in sSet[a,b]. Then the induced
map

j∗ : lim←− Y → lim←− Z

is a local weak equivalence of simplicial presheaves on Int[a, b], and the restricted
map

j|I : X |I → Z|I
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is an injective fibrant model for the restriction of X along the inclusion I ⊂ [a, b],
for each open subinterval of [a.b].

There is a spectral sequence

Ep,q
2 = lim←−

p
I(πqY ) = lim←−

p
I(πqZ)⇒ πq−p(lim←− IZ),

involving the higher derived functors lim←−
p
I of inverse limit.

The simplicial presheaf lim←−Z on Int[a, b] may satisfy descent (there are good

reasons for expecting this), but in general it has a functorial injective fibrant model

i : lim←−Z →W

in the model structure for simplicial presheaves on Int[a, b]. The map i induces

weak equivalences Ft(X) = Y (t)
≃−→Wt for all t ∈ [a, b].

Finally, there is a descent spectral sequence with

Ep,q
2 = Hp([a, b], π̃q(lim←−Y ))⇒ πq−pW ([a, b]).

where the E2-term is composed of sheaf cohomology groups for the space [a, b] with
coefficients in homotopy group sheaves. This spectral sequence is global sections
of a presheaf of spectral sequences on Int[a, b], for the homotopy groups of the
spaces W (I).
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Geometric random complexes

Matthew Kahle

(joint work with Gunnar Carlsson, Persi Diaconis)

There has recently been exciting activity in understanding the topology of point
cloud data. However, there is a feeling that we are still in need of detailed null
hypotheses to carefully compare with real world situations.

One step in this direction was some recent work by Steve Smale, et. al. on
understanding what happens when we build the Čech complex on points uni-
formly sampled from a compact manifold embedded in Euclidean space. Their
main result is to estimate the number of epsilon-balls necessary to take before
one completely covers the manifold, and hence can compute the homology of the
manifold by working with the nerve. This was further extended to the situation
where the points are assumed to be sampled uniformly, but each with an unknown
Gaussian error term. This second analysis is more difficult, since, in particular,
the distribution does not have compact support.

A difference in our approach here is that we consider all possible values of
epsilon, and not only the ones which are large enough that we can completely
recover some underlying space. In practice, it is clear that one needs a robust,
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multi-scale approach to understand, for example, the homology of point cloud
data. For this reason, there is much current research centered around persistent
homology. This is part of our motivation to study even small values of epsilon –
to get a clearer picture of the “signature” of random points.

The main problem we study is the following. Take n points, sampled indepen-
dently and identically distributed according to a standard normal distribution on
Rd. Connect pairs of points by an edge of their distance is less than r(n), and
build the Vietoris-Rips complex of this graph. The basic question is what we can
say about the topology of such a complex as n approaches infinity. For example,
what can one say about the expected size of the Betti numbers, etc.?

There are four main regimes of interest. These regimes have already been
identified by random geometric graph theorists, particularly by Matthew Penrose
in his book “Random geometric graphs.” From our point of view here, only the
1-skeleton of our complex has been studied in detail, but we rely heavily on the
detailed calculations that have already been done for subgraph counts, etc., in
geometric random graphs.

Sparse regime: When the radius is small enough, the underlying graph consists
of almost as many connected components as vertices. The f -vector is decreasing,
and the dimension is finite, but increasing. Subgraphs of arbitrary large order
start appearing. In particular, subgraphs representing the boundary of the k + 1-
dimensional cross-polytope appear for every k, and as isolated components. These
represent nontrivial k-dimensional homology classes, and in fact they dominate
k-dimensional homology.

What is perhaps surprising is that homology appears in arbitrarily high dimen-
sion, even when d = 2. Basically, the dimension of k-dimensional homology is
growing as a power of n, and the exponent approaches one as the radius grows
toward the critical regime.

Because we have good control over the structure of these complexes, and by
using Poisson and normal approximation theorems for subgraph counts, we can
prove strong laws of large numbers for the Betti numbers.

Another upshot is that although we show Betti numbers can grow arbitrarily
large, we know exactly what the classes look like, so it is easy to see that the
persistent homology is extremely small by factoring through the Čech complex.

Critical regime: This is sometimes called the thermodynamic limit, since it is
where percolation appears. In this regime, we are able to continue the argument
from above, and the expectation for every Betti number is growing linearly with
n.

It is known that a giant component appears in this range. It would be interesting
to know if there are higher dimensional analogues of the giant – it is plausible that
they each have their own threshold here, even when d = 2.

Dense regime: Just as the Betti numbers increased as the radius approached the
critical regime, now they start to decrease. In this regime, there is a spatial phase
transition between “dense” and “sparse” regions. In the dense region, a discrete
Morse theory argument shows that the complex is contractible. In the sparse
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region, there are many isolated components, and we can repeat the argument
from the sparse regime. A little care is required at the boundary between these
regions.

Connected regime: Eventually the radius r(n) is large enough that every ver-
tex has at least one edge. In this same range, we see that the Čech complex is
homotopy equivalent to a star-shaped domain in the plane. Similarly, one can use
Morse theory to show that the Rips complex is contractible.

This seems to give a relatively complete picture of the rate of growth of the
Betti numbers of Gaussian random complexes. Many of the techniques used here
(and even some of the results, as stated) are applicable to any density function,
and not just normally distributed points.

One notable feature of these results is that they actually tell us quite a lot about
persistent homology. First of all, they give strong evidence that persistence should
give us a much better picture than homology on its own, since the persistence bars
should all be quite short. This is intuitively clear, but we are not aware of any
results in that direction. Second, the results show that the most natural thing
to check when measuring the length of a persistence bar is not the difference
between the two endpoints, but the ratio. This might be the most interesting
aspect of this research in terms of applying the ideas to real world implementations
of computational homology.

Persistent homology and discrete Morse theory

Kevin P. Knudson

Let K be a finite simplicial complex equipped with a filtration

∅ = K−1 ⊂ K0 ⊂ K1 ⊂ · · · ⊂ Kn = K.

We assume that each subcomplex Ki+1 is obtained from Ki by attaching a single
simplex: Ki+1 = Ki ∪ σi+1. In this talk we explore the relationship between
the persistent homology pairing of Edelsbrunner–Letscher–Zomorodian [1] and
Forman’s discrete Morse theory [2]. In what follows, we use the notation α < β
to indicate that α is a codimension-one face of β.

The basic idea behind persistence is the following. As simplices enter the com-
plex K homology classes are created or destroyed. If a class α is born at filtration
level i and dies at level j, we say the persistence of α is j − i− 1. This concept is
useful in topological data analysis as homology classes that persist for long inter-
vals may be considered to be real features of a point cloud while those that live
for short intervals may be regarded as noise.

The persistence pairing is defined using homology with Z/2-coefficients. Say the
simplex σ has dimension k. When σ enters the complex, one of two events occurs.
Either σ creates a new k-cycle, or it destroys a (k−1)-dimensional homology class.
In the first case, we call σ positive and in the second case it is called negative. This
allows one to pair the simplices of K in the following way. Given a simplex τ ,
consider the list of positive simplices in ∂τ . Say σ is the youngest simplex in ∂τ in
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the sense that it entered the filtration at the latest stage. If σ is not already paired
with one of its cofaces, then we pair σ and τ . If σ is paired with some τ ′, then we
may write ∂τ in terms of ∂τ ′ and some other positive simplices, and we then pair
τ with the youngest in this list of positive simplices, unless it is already paired.
We iterate this procedure until an unpaired positive simplex is found (which must
occur since we always search backwards in the filtration). A complete description
of the algorithm may be found in [1]. Denote the resulting collection of pairs {σ, τ}
by P . Note that it is possible that σ is not a face of τ in such a pair.

Forman’s discrete Morse theory is meant to mimic the smooth theory on an
arbitrary simplicial complex (or more generally a regular cell complex). The most
convenient formulation of this theory is in terms of discrete vector fields on the
complex. A discrete vector field V onK is a collection of pairs of simplices {α < β}
such that each simplex of K is in at most one pair in V . A V -path is a collection
of simplices

α0 < β0 > α1 < β1 > · · · > αr < βr > αr+1,

where each {αi < βi} ∈ V . Such a path is called closed if αr+1 = α0. The vector
field V is a gradient if there are no closed V -paths. A simplex in K which does
not appear in any pair in V is called critical, while those which are paired are
called regular. The usual theorems of smooth Morse theory have their analogues
in the discrete case; in particular, if V is a discrete gradient on K, then K has
the homotopy type of a CW-complex with one cell of dimension p for each critical
simplex of dimension p.

Now suppose we have a filtered complex as above, and we produce a persistence
pairing P . For the pairs {σ, τ} in P , there are two possibilities: either σ < τ or σ
is not a face of τ . Define a discrete vector field VP on K by

{σ, τ} ∈ VP ⇔ σ < τ and {σ, τ} ∈ P.
If a simplex is unpaired by P or if a simplex is paired with another simplex not
containing it as a face, then the simplex is critical for VP .

Theorem 1. VP is a gradient vector field on K.

Note that simplices not included in P correspond to homology classes in the
complex K. If two non-adjacent simplices are a pair in P , then the persistence
of the associated homology class is probably somewhat large, and we may want
to view them as defining some topologically interesting feature. There will be
gradient paths between them, however, and we expect the following to be true.

Conjecture 2. If {σ, τ} ∈ P are such that σ is not a face of τ , then there is a
single gradient path from τ to σ in the vector field VP .

Since the cells σ and τ do not correspond to homology classes inK, the existence
of a single gradient path joining them implies that we may cancel the cells (see
[2]), thereby simplifying the vector field. In general, though, this procedure is
computationally expensive, which we should expect in light of the result of Joswig
and Pfetsch [3] which asserts that the construction of optimal discrete gradients
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is NP-complete (the persistence pairing runs in polynomial time, so cancellation
must be complicated).

Now, suppose V is a discrete gradient on K. A useful way to visualize this is to
modify the Hasse diagram of K in following way. Recall that the Hasse diagram
of K is the directed graph whose vertices correspond to the simplices of K, and
there is an arrow from β to α if α < β. We modify the Hasse diagram by reversing
the arrows for every {α < β} ∈ V . Since V is a gradient, the resulting directed
graph G has no directed loops. There is therefore an integer-valued function f
on the vertices of G which is strictly decreasing along every directed path. We
may assume that the absolute minimum of f is 0. Given such an f , we define a
filtration of K by setting Ki to be the subcomplex generated by f−1(−∞, i]. This
may lead to multiple simplices entering at one time, but we may order the simplices
in such a way that we may still talk about the persistence pairing associated to
this filtration. We therefore obtain a persistence pairing P{V,f}. Of course, this
also depends on the choice of the function f , but we expect the following to hold.

Conjecture 3. Suppose P is a persistence pairing on K. Then with the correct
choice of f , we have P{VP ,f} = P .

Of course, we cannot expect to have VP{V,f}
= V for an arbitrary gradient V .

Indeed, the easiest example of this is V = ∅, in which every simplex is critical.
Since any associated persistence pairing P{V,f} will contain a pair of adjacent
simplices (in particular an edge and one of its vertices), VP{V,f}

6= ∅.
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Combinatorial Algebraic Topology: Structures, Methods, and
Applications

Dmitry Kozlov

Combinatorial Algebraic Topology is a contemporary field of mathematics which
concerns itself with computing invariants in Algebraic Topology for combinato-
rial cell complexes by combinatorial means.

Here, by combinatorial cell complexes we mean CW complexes which are com-
binatorial locally, i.e., having simple cell attachments, for example - simplicial or
prodsimplicial complexes, as well as globally, which means that their cells are in-
dexed by various combinatorial objects, such as graphs, partitions, permutations,
various combinations and taking boundary is described by a combinatorial rule for
the indexing objects, for example - removing vertices in graphs, merging blocks in
partitions, relabeling, etc.
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We also say that the computation is done by combinatorial means if it is mostly
done by using matchings, orderings, labelings, et cetera, to simplify or to com-
pletely eliminate algebraic computations and topological deformations.

We would like to distinguish the following aspects of this theory:

• discrete structures are derived as models for topological spaces,
• there exist many constructions of cell complexes with discrete structures

as input,
• using standard Algebraic Topology tools uncovers ties between discrete

structures,
• properties of discrete structures are distinguished by how well they behave

with respect to Algebraic Topology.

There are also numerous applications stemming from the fact that the study
of discrete structures yields information about the topology of the original spaces
and vice versa. The main reference for this field is the recent monograph by the
speaker, [4].

The talk was divided into three parts, which were called structures, methods,
and applications respectively, which contained an example or two of each.

I. Structures

1. Acyclic categories.
A category is called acyclic if every non-identity morphism

• is not a loop
• has no inverse.

To an acyclic category C we associate a regular trisp ∆(C).
The category of intervals I(C) (aka factorization category, edgewise subdivi-

sion) of an acyclic category C is defined by:

• the set of objects of I(C) is the set of morphisms of C;
• for two objects m1 and m2 of I(C), the set of morphisms from m1 to
m2 in I(C) is indexed by all pairs (α, β) such that α, β ∈ M(C) and
m2 = β ◦m1 ◦ α,

where the composition rule in I(C) is the standard trapezoidal combination rule.

Theorem. For any acyclic category C, the regular trisp ∆(I(C)) is a subdivision
of the regular trisp ∆(C), i.e., we have

∆(I(C)) ; ∆(C).

2. Witness complex.
Definition. The abstract simplicial complex W (A,B), called the witness com-
plex, consists of all subsets σ ⊆ B such that for every τ ⊆ σ there exists a point
w in A that “witnesses” τ in the following sense: every point in τ is closer to w
than every point in B \ τ .
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The points in A are called landmark points, and the points in B are called data
points. Usually one assumes that there are many more data points than landmark
points.

Reformulation in the language of Combinatorial Algebraic Topology.

Every landmark point x induces an order on the data points: sort with respect
to their distances to x. Every such ordering can be visualized as a path in the
Hasse diagram of the Boolean lattice: start from the point nearest to the chosen
landmark point, proceed to the union of the two closest ones, then to the union of
the three closest ones, and so on. The witness complex W (A,B) is the maximal
abstract simplicial complex whose face poset is contained in the union of these
paths.

II. Methods: Poset maps with small fibers

Definition. A partial matching M on the Hasse diagram of a poset P is called
acyclic if there does not exist a cycle

b1 ≻ d(b1) ≺ b2 ≻ d(b2) ≺ · · · ≺ bn ≻ d(bn) ≺ b1,

where n ≥ 2, all bi ∈ P are distinct, and (ai, bi) ∈M for all i.

The unmatched elements are called critical, their set is denoted by C(P,M).

Proposition. A polyhedral complex ∆ is collapsible if and only if the poset F(∆)∪
{0̂} allows a complete acyclic matching.

Definition. A poset map ϕ : P → Q is said to have small fibers if for any
q ∈ Q, the fiber ϕ−1(q) is one of the following:

empty - a single element - two comparable elements.

The fibers of cardinality 2 yield a partial matching M(ϕ).

Theorem. (DK, 2007) ( Acyclic matchings via poset maps with small fibers)
For any poset map with small fibers ϕ : P → Q, the partial matching M(ϕ) is
acyclic. Conversely, any acyclic matching on P can be represented as M(ϕ) for
some poset map with small fibers ϕ.

Definition. A poset map with small fibers ϕ : P → Q is called a collapsing
order if ϕ is surjective as a set map, and Q is a chain.

Definition. For an acyclic matching M on a poset P we define the poset U(P,M)
as follows:

• the set of elements of U(P,M) is M ∪ C(P,M);
• the partial order is the transitive closure of the elementary relations given

by S1 ≤U S2, for S1, S2 ∈ U(P,M), if and only if x ≤ y, for some x ∈ S1,
y ∈ S2.
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Theorem. (DK, 2007) (Universality of U(P,M))
For any acyclic matching M on a poset P , we have:

(1) the partial order on U(P,M) is well-defined;
(2) the induced quotient map q : P → U(P,M) is a poset map with small

fibers;
(3) the linear extensions of U(P,M) are in 1-to-1 correspondence with col-

lapsing orders for M ;
this correspondence is given by the composition of the quotient map q with
a linear extension map.

Definition. A poset fibration (aka Grothendieck construction) is a pair (B,F),
where

• B is a poset - the base of the fibration;
• F = {Fx}x∈B is a collection of posets, indexed by the elements of B - the

fibers.

The total space is the poset E(B,F) = ∪x∈BFx, with the order relation:
α ≥ β in E(B,F) if either α, β ∈ Fx, and α ≥ β in Fx, for some x ∈ B, or α ∈ Fx,
β ∈ Fy, and x > y in B.

Theorem. (DK, 2007) (Decomposition theorem)
For an arbitrary poset fibration (B,F), where F = {Fx}x∈B, and an arbitrary
poset P , there is a 1-to-1 correspondence between

• poset maps ϕ : P → E(B,F);
• pairs (ψ, {gx}x∈B), where ψ and gx are poset maps ψ : P → B and gx :
ψ−1(x)→ Fx, for each x ∈ B.

Under this bijection, the fibers of ϕ are the same as the fibers of the maps gx.

Theorem. (DK, 2007)(Patchwork theorem)
Assume that ϕ : P → Q is a poset map, and that we have acyclic matchings
on subposets ϕ−1(q), for all q ∈ Q. Then the union of these matchings is itself
an acyclic matching on P .

III. Applications: Complexes of graph homomorphisms

The applications which we have presented in this talk went along the following
logical scheme.

graph G −→ topological space X(G)

↓

combinatorial ←− topological
properties of G properties of X(G)
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The main idea was to introduce a cell complex related to the set of graph
colorings of a fixed graph. Recall that for two graphs T and G, a graph homo-
morphism from T to G is a map φ : V (T ) → V (G), such that for every edge
(x, y) in T the pair (φ(x), φ(y)) is an edge in G. It is an easy observation that G
is n-colorable if and only if there exists a graph homomorphism φ : G → Kn.

Furthermore, the composition of two homomorphisms φ1 : G1 → G2 and is
again a homomorphism φ2 ◦φ1 : G1 → G3, hence we obtain the category Graphs
with graphs as objects and graph homomorphisms as morphisms.

A cell in Hom (T,Kn) is an assignment of subsets of [n] to vertices of T , such
that an arbitrary choice of one color per list yields an admissible coloring of T .

Generalizing we replace Kn with an arbitrary graph G, and see that

• the vertices of G are the colors;
• homomorphisms T → G replace the valid colorings.

Hom -complexes enjoy several nice properties:

(1) The cells in Hom (T,G) are products of simplices: every cell η is a product
of |V (T )| simplices of dimension |η(x)|−1 for x ∈ V (T ). Hence, Hom (T,G)
is a prodsimplicial complex.

(2) Hom (T,−) is a covariant and Hom (−, G) is a contravariant functor from
Graphs to Top. In particular, the group Aut(T ) × Aut(G) acts on
Hom (T,G). When G is loopfree and φ ∈ Aut(T ) flips an edge, the in-
duced map φG � Hom (T,G) is fixed point free.

Introducing characteristic classes as obstructions to graph colorings.

Recall that a CW complex X is called a Z2-space, if Z2 freely acts on X . In
this case there exists a continuous Z2-map ψ : X → S∞

a . The induced quotient
map φ : X/Z2 → RP∞ is up to homotopy independent of the choice of ψ. This
induces a map of algebras

φ∗ : H∗(RP∞; Z2)→ H∗(X/Z2; Z2),

which is independent of the choice of ψ. Let z be the generator of H1(RP∞; Z2).
Then

w1(X):= φ∗(z)

is called the Stiefel-Whitney class. These classes are functorial in the following

sense: if ψ : X → Y is a Z2-map, and ψ̃ : X/Z2 → Y/Z2 is the induced map
between the quotient spaces, then

ψ̃∗(w1(Y )) = w1(X) .

Stiefel-Whitney characteristic classes were recently applied by Eric Babson and
the speaker to settle the following conjecture (more generally

wn−2
1 (Hom (C2r+1,Kn)) = 0

holds).
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Lovász Conjecture:

Hom (C2r+1, G) is k-connected =⇒ χ(G) ≥ k + 4 .

See [1] for details. Roughly, the proof is based on spectral sequence computations
coupled with using topological obstructions as follows.

Assume that χ(G) ≤ k + 3, that is ∃ϕ : G → Kk+3. The functoriality of the
Hom -construction yields a Z2-map

ψ : Hom (C2r+1, G)→ Hom (C2r+1,Kk+3).

On the other hand, when Hom (C2r+1, G) is k-connected, there exists a Z2-map
ρ : Sk+1

a → Hom (C2r+1, G). For the characteristic classes we get

0 = wk+1
1 (Hom (C2r+1,Kk+3)) −→ wk+1

1 (Hom (C2r+1, G)) −→ wk+1
1 (Sk+1

a ) 6= 0,

which yields a contradiction.
Further spectral sequence computations were also used by the author to derive

the following result.

Theorem. (DK, 2005) For integers m,n, such that m ≥ 5, n ≥ 4, we have

H̃∗(Hom (Cm,Kn); Z) =




⌊(m−2)/3⌋⊕

t=1

At,m,n


⊕Bm,n,

where

At,m,n =

{
Z(tn− 3t)⊕ Z(tn− 3t+ 1), if n or m+ t odd,
Z2(tn− 3t+ 1), if n and m+ t even,

and

Bm,n =






Z2n−3(nk −m), if m = 3k,
Z(nk −m+ 2), if m = 3k + 1,
Z(nk −m), if m = 3k − 1.

So, for example, we have

• H̃∗(Hom (C6,K4); Z) = A1,6,4⊕B6,4 = Z(1)⊕Z(2)⊕Z13(2) = Z(1)⊕Z14(2);

• H̃∗(Hom (C8,K6); Z) = A1,8,6 ⊕A2,8,6 ⊕B8,6 =
Z(3)⊕ Z(4)⊕ Z2(7)⊕ Z(10).

The author has also developed the following homology tests for graph color-
ings. Recall that the Stiefel-Whitney height of a non-empty Z2-space X is the

maximal h(X), such that w
h(X)
1 (X) 6= 0. The following is true in general.

Theorem. Let X be a non-empty Z2-space of finite Stiefel-Whitney height, then

H̃h(X)(X ; Z2) 6= 0.

Hence we get

Theorem. (DK, 2006) Let T be a graph with a Z2-action flipping an edge, such
that
(1) T is a Stiefel-Whitney test graph: h(Hom (T,Kn)) = n− χ(T ),

(2) H̃i(Hom (T,G); Z2) = 0, for i ≤ d,
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then χ(G) ≥ d+ 1 + χ(T ).
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The Geometry of Materials

Robert MacPherson

1. Cell Complexes Arising from Materials.

The structure of two different sorts of materials leads to a cell decomposition
of a region of 3-space:

• Metals and ceramics are generally divided into individual crystals, typi-
cally of size ∼ 10−5 meters, which are the cells of a cell complex.
• Foams are a cell complex whose cells are the individual bubbles.

Both of these situations have interesting two dimensional analogues, which give
cell decompositions of a region of 2-space:

• In very thin sheets of metals and ceramics, the grains are essentially two
dimensional.
• Bubbles trapped between two parallel sheets of glass are essentially two

dimensional.

The structures of these cell complexes are key to understanding many of the prop-
erties of the material. The cell complexes are very large and complicated. New
ideas in topology are probably needed to understand them adequately.
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2. Time Evolution.

In all of these situations, the cell complex evolves over time. In the case of
metals and ceramics, individual atoms jump from being part of one crystal to
being part of a neighboring crystal. In the case of foams, air molecules diffuse
through the liquid separating one bubble from the next one. As a result of this
time evolution, some cells become smaller and disappear, so the average cell size
becomes larger. This process is sometimes called coarsening.

There is a standard mathematical model for this time evolution. In the case of
a metal or ceramic, this model can be informally summarized by saying that the
cell decomposition evolves according to −C grad A where C is a constant depend-
ing on the material and the temperature, and A is the total area (or length in
2 dimensions) of all the grain boundaries separating adjacent grains. The idea is
that the grain boundaries have an energy cost proportional to their area, which is
decreased over time. Made mathematically rigorous, this model stipulates that the
grain boundaries move by mean curvature flow (curvature flow in 2 dimensions),
and that adjacent grain boundaries meet at 120◦ angles. Like most mathematical
models, this one is an approximation. More accurate models would involve the
complication of an energy cost that varies with the orientation of the boundary.
However, this model is already very accurate for many materials. There are in-
teresting mathematical questions that are not understood even for this for this
model.

Foams evolve according to a different model which we won’t go in to here.
However, the results stated below hold for foams as well.

3. Growth of an Individual Cell.

A fundamental result in the field is the formula for the growth of an individual
grain, due to von Neumann (1952) and Mullins (1956).

The von Neumann - Mullins Relation for Grains in Two Dimensions.
Assuming the model for grain evolution described above, rate of change of the area
A of an individual grain is given by

dA

dt
= K(n− 6)

where n is the number of 0-cells around the grain, K is a constant depending on
the material and the temperature, and t is time.

In joint work with David Srolovitz, we generalized von Neumann - Mullins result
to higher dimensions. First restate the two dimensional von Neumann-Mullins
relation as follows:

Restatement of von Neumann - Mullins. The rate of change of the area
of a grain G in two dimensions is

dA

dt
= K (L0(G0)− 6L0(G))



1638 Oberwolfach Report 29/2008

where L0 denotes the Euler characteristic and G0 is the union of the 0-dimensional
cells around G.

This is the same formula, because L0(G0) = n and L0(G) is 1 since G is a cell.
(Actually, we’ve already gained something by this restatement. It is possible to
set up conditions where an individual grain has holes in it. Then, L0(G) is no
longer 1. The restated formula is the correct one, in this situation.)

The three dimensional analogue is then is the following:

Three dimensional von Neumann - Mullins relation. (joint with D.
Srolovitz) The rate of change of the volume V of a grain G in three dimensions
is

dV

dt
= K (L1(G1)− 6L1(G))

where L1 denotes the mean width and G1 is the union of the 1-dimensional cells

aroundG. (The quantity L1(G1) is just the sum of the lengths of the 1-dimensional
cells in G1.)

The mean width L1(G) a measure of length associated to G. It is one of a series
of measures from integral geometry that go by various names: “quermassintegrals’,
“intrinsic volumes”, “Minkowski functionals”, or “Hadwiger measures”. The initial
one, L0(G) is the Euler characteristic, and Li(G) scales as i dimensional area.
These measures have an extensive literature of characterizations, formal properties,
and algorithms for computation that we won’t go in to here.

4. Universality of the Long Time Limit.

Almost all materials scientists believe the following universality conjecture: For
generic initial conditions, the cell complex of grains evolves toward a universal
(random) cell complex, defined up to a scaling factor. This universal cell complex
should be independent of the material. If a cell complex is already universal,
then with further time evolution, it stays universal, but scaled in accord with the
increase of the average grain size. This universality conjecture is certainly not
proved. I don’t even know a mathematically precise formulation. However there
is a lot of evidence for it as a phenomenon - both from numerical simulations and
from physical experiments.

Assuming the conjecture, the universal cell decomposition by grains is a very
important object. All real metals and ceramics are likely to be in this universal
state, because early in their formation the temperature was high so the evolution
was fast. However, very little is known about it.

Enumerative Combinatorics of Cell Complexes. The universality conjec-
ture implies that quantities associated to the cell complex should have a universal
distributions. The subject of enumerative combinatorics of cell complexes studies
several such quantities obtained by counting faces of various dimensions (the “f-
vectors”). These quantities are subject to identities called the Dehn-Sommerville
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relations. Using these identities we find that for a two dimensional complex of
grains

〈The number of vertices on a grain〉 = 6

where 〈X〉 means the expected value of X .
In three dimensions, the situation is more interesting. There is one free param-

eter F.

〈The number of faces on a grain〉 = F

Then Dehn-Sommerville relations yield:

〈The number of edges on a grain〉 = 3F − 6

〈The number of vertices on a grain〉 = 2F − 4

〈The number of edges on a face〉 = 6− 12

F

What can we say about this quantity F for the universal cell decomposition by
grains? We have one rigorous result:

Theorem.

F =
13.39

1 + 2.13C
where C is the average of the integral of the Gauss curvature over a face of the

cell complex. Here, the precise values of the constants are:

2.13 = 1 +
1

3 cos−1(1/3)− π

13.39 = 2 +
2π

3 cos−1(1/3)− π
I call 13.39 this Coxeter’s number, because Coxeter gave a plausibility argument

that F should be this number. One can think of our theorem as a rigorous ver-
sion of Coxeter’s argument. In fact, simulations and experiments show that F is
between 13.5 and 14 for the universal cell complex in three dimensions, so our
theorem can be read backwards to say that the average Gauss curvature over a
face is negative.

Other Questions. One contribution that pure mathematics could make to the
study of universal cell complexes is to identify what the interesting invariants to
study are (just as the mean width, the Gauss curvature, and the invariants from
enumerative combinatorics mentioned above came from pure mathematics). This
raises new mathematical questions, such as the following:
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• Are there interesting (quantum) invariants of cell decompositions of a man-
ifold with boring global topology, such as a ball in three space? (This would
be analogous to the phenomenon that there are very interesting invariants
of a one manifold embedded in a three manifold with boring topology.)
• Is there a hierarchy of invariants in the style of enumerative combinatorics

of which the f-vectors discussed above are the leading item in the hier-
archy? (For example, counting how many 3-cells have n 2-cells as faces
might be in the next order of the hierarchy.)
• What are interesting metric invariants of such cell complexes? Obvious

examples are the volumes of 3-cells, the areas of 2-cells, etc. However there
should be more interesting metric invariants, perhaps using the ideas of
persistent homology.

Stability of Clustering Methods

Facundo Mémoli

(joint work with Gunnar Carlsson)

Despite being one of the most commonly used tools for unsupervised exploratory
data analysis and despite its extensive literature, very little is known about the
theoretical foundations of clustering methods.

Standard clustering methods take as input a finite metric space (X, d) and out-
put a partition ofX . Kleinberg [2] discussed this situation in an axiomatic way and
identified a set of reasonable properties of standard clustering schemes, namely,
scale invariance, richness and consistency. He then proved, in the same spirit of Ar-
row’s impossibility theorem, that no clustering scheme satisfying these conditions
simultaneously can exist.

Datasets can exhibit multiscale structure and this can render standard cluster-
ing algorithms inapplicable in certain situations, see Figure 1. This motivates the
use of Hierarchical clustering methods.

Figure 1. Dataset with multiscale structure.
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In a similar spirit to Kleinberg’s theorem we prove that in the context of hier-
archical methods, one obtains uniqueness instead of non-existence.

1. Hierarchical clustering: formulation

Given a finite metric space (X, d), a hierarchical clustering method f returns a
nested family of partitions, or dendrogram (a.k.a. persistent set) of X :

f(X, d) ∈ D(X)

where D(X) = {(X, θ)| θ : [0,∞)→ P(X)} s.t.

(1) θ(0) = {{x1}, . . . , {xn}}.
(2) There exists t0 s.t. θ(t) is the single block partition for all t ≥ t0.
(3) If r ≤ s then θ(r) refines θ(s).
(4) For all r there exists ε > 0 s.t. θ(r) = θ(t) for t ∈ [r, r + ε].

We represent dendrograms (= rooted trees) as ultrametric spaces: a metric
space (X,u) is an ultrametric space if and only if for all x, x′, x′′ ∈ X ,

max(u(x, x′), u(x′, x′′)) ≥ u(x, x′′).
For n ∈ N let Xn (resp. Un) denote the set of all metric spaces (resp. ultra-metric
spaces) with n points. Let X = ⊔n≥1Xn denote set of all finite metric spaces and
U = ⊔n≥1Un all finite ultrametric spaces. Then, a hierarchical clustering method
can be regarded as a map

T : X → U
s.t. Xn ∋ (X, d) 7→ (X,u) ∈ Un, n ∈ N.

There is a canonical construction: Let T ∗ : X → U be given by (X, d) 7→ (X,u∗)
where

u∗(x, x′) := min

{
max

i=0,...,ℓ−1
d(xi, xi+1)|x = x0, . . . , xℓ = x′

}
.

This construction yields exactly single linkage clustering, [1].

For X ∈ X let sep(X, d) := minx 6=x′ d(x, x′).

Theorem 1. Let T be a clustering method s.t.

(1) T
(
{p, q},

(
0 δ
δ 0

))
=
(
{p, q},

(
0 δ
δ 0

))
for all δ > 0.

(2) Whenever X,Y ∈ X and φ : X → Y are such that for all x, x′ ∈ X we
have dX(x, x′) ≥ dY (φ(x), φ(x′)), then it also holds

uX(x, x′) ≥ uY (φ(x), φ(x′))

for all x, x′ ∈ X, where T (X, dX) = (X,uX) and T (Y, dY ) = (Y, uY ).
(3) For all (X, d) ∈ X ,

u(x, x′) ≥ sep(X, d) for all x 6= x′ ∈ X
where T (X, d) = (X,u).

Then T = T ∗.
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1.1. Metric stability of T ∗. We also obtain the Proposition and Theorem below
asserting metric stability and asymptotic consistency of the method T ∗. We use
the notion of Gromov-Hausdorff distance between metric spaces, [3].

The Gromov-Hausdorff distance dGH(X,Y ) between compact metric spaces
(X, dX) and (Y, dY ) is defined to be the infimal ε > 0 s.t. there exists a met-
ric d on X ⊔Y with d|X×X

= dX and d|Y ×Y
= dY for which the Hausdorff distance

between X and Y (as subsets of (X ⊔ Y, d)) is less than ε.

Proposition 2. For any finite metric spaces (X, dX) and (Y, dY )

dGH((X, dX), (Y, dY )) ≥ dGH(T ∗(X, dX), T ∗(Y, dY )).

Fix a finite set X . For a symmetric function W : X×X → R+ let L(W ) denote
the maximal metric on X less than of equal to W , i.e.

L(W )(x, x′) = min

{
m∑

i=0

W (xi, xi+1)|x = x0, . . . , xm = x

}

for x, x′ ∈ X .

Theorem 3. Assume (Z, dZ) is a compact metric space. Let X and X ′ be any two
finite sets of points sampled from Z and r, r′ > 0 such that Z ⊂ ∪x∈XB(x, r) and
Z ⊂ ∪x′∈X′B(x′, r′). Let dX = dZ |X×X

and dX′ = dZ |X′×X′ . Let T ∗(X, dX) =

(X,uX) and T ∗(X ′, dX′) = (X ′, uX′). Then,

(1) (Finite Stability) dGH((X,uX), (X ′, uX′)) ≤ (r + r′).
(2) (Convergence/consistency) Assume in addition that Z = ⊔α∈AZα where A

is a finite index set and Zα are compact, disjoint and path-connected sets.
Let (A, dA) be the finite metric space with underlying set A and metric
given by dA := L(W ) where

W (α, α′) := min
z∈Zα,z′∈Zα′

dZ(z, z′) for α, α′ ∈ A.

Let T ∗(A, dA) = (A, uA). Then, as r → 0 one has

dGH((X,uX), (A, uA))→ 0.

An extended version of this work has appeared in [4].
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Building a database for the global dynamics of multi-parameter
systems

Konstantin Mischaikow

(joint work with Z. Arai, W. Kalies, H. Kokubu, H. Oka, and P. Pilarczyk)

The global dynamics of a nonlinear system can exhibit structures at all spatial
scales, for example, the fractal structures associated to chaotic dynamics. The
same phenomenon can occur with respect to the parameters, that is, global dy-
namical structures can change on Cantor sets in parameter space. From the point
of view of scientific computation, only a finite amount of information can be com-
puted, and therefore, any computational characterization of global dynamics of
a multiparameter system can be expected to represent a dramatic reduction of
information. Nevertheless, the computation of global dynamical information is an
important problem for applications, which leads to the questions of how to charac-
terize global dynamical structures and how to identify changes in these structures
in practice. The fact that this is a nontrivial task has been made clear by the work
of the dynamical systems community over the last century.

Identifying and classifying the qualitative properties of models over a wide
ranges of parameter values is of fundamental importance in many disciplines. For
biologists the question of the preservation of qualitative structures over large ranges
of parameter values is of considerable interest. This question is in some sense con-
trary to the classical topic of singularity or bifurcation theory, where the focus is
on understanding how the dynamics changes. The fact that most topics of interest
in systems biology are dynamic in nature suggests the need for a comprehensive,
yet efficient method for cataloging the global dynamics of nonlinear systems. In
other words, a method is desired which computationally constructs a database of
global dynamical behavior of a specific system over a range of parameters.

The starting point for our computational methods is Conley’s topological ap-
proach to dynamics. We shall argue that Conley theory provides an appropriate
theoretical base for designing algorithms in computational dynamics and demon-
strate that these ideas can be used to design an efficient computational framework
for constructing databases of global dynamics of specific systems over multiple
parameters. While the methods we propose are general, we illustrate them us-
ing a two-dimensional version of an overcompensatory Leslie population model
g : R2 × R4 → R2 given by

[
x1

x2

]
7→
[

(θ1x1 + θ2x2)e
−c(x1+x2)

px1

]
,

where the fertility rates decay exponentially with population size.
The database takes the form of a continuation graph. The nodes contain the

information about the continuation classes and the edges indicate the connectiv-
ity (in parameter space) of the continuation classes. The continuation classes are
associated to regions in parameter space and consist of acyclic directed graphs,
called Conley-Morse graphs. Each node of a Conley-Morse graph is associated
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with a Morse set and its Conley index. The continuation graph provides a com-
pact easily queriable description of the global dynamics over the entire range of
parameter spaces.

Trace spaces: Organization, Calculation, Applications

Martin Raussen

A topological approach to the study of concurrency phenomena in theoretical
Computer Science has led to the definition of Higher Dimensional Automata: The
main interest, both mathematically and in concurrency, is in the study of directed
(d)-paths in a pre-cubical complex (and more generally, a d-space) up to directed
homotopy (d-homotopy). These d-paths can, in general, not be reversed; hence
algebraic topological invariants of the spaces of d-paths in a d-space may vary with
the selection of start and end points. For technical reasons, it is often advisable
to divide out (weakly) increasing reparametrizations; the quotient objects are the
so-called traces – whence the title of the talk.

In a given d-space X , let ~T (X)(x, y) denote the space of all d-paths starting at
x and ending at y with the CO-topology. If X is a pre-cubical complex, we show
that this space is metrizable, separable, locally contractible, locally compact and
that it has the homotopy type of a CW-complex.

Apart from the number of components of such a trace space that often can be
calculated using a Seifert-van Kampen type theorem due to Marco Grandis, not
much has been known in general about the topology of d-path or trace spaces. We
use a version of the Vietoris-Begle theorem due to S. Smale to arrive at additional
information, e.g.:

Decomposition: Suppose given a collection of disjoint “layers”
L1, . . . , Ln−1 ⊂ X in a d-space X with additional properties (satis-
fied by the geometric realization of a pre-cubical complex). If the set
of layers is unavoidable from x to y – in the sense that every d-path
can be decomposed into d-paths that start in one layer, end in another
without touching any of these or other layers in between – then the space
~T (X)(x, y) of traces in X from x to y is (at least weakly) homotopy

equivalent to a union of fibered product of spaces ~T (X)(Li, Li+1).

Reachable sequences: If, moreover, ~T (X)(xi, xi+1) is either empty or
(weakly) contractible for every xi ∈ Li, xj ∈ Lj belonging to subsequent

layers, then ~T (X)(x, y) is weakly homotopy equivalent to the subspace of
“mutually reachable” sequences (x1, . . . , xn−1) ∈ Xn−1 connecting points
in these layers. In particular, for a nice space X , the infinite dimensional
trace spaces can often be identified with a subspace of a finite dimensional
space.

Piecewise linear traces: If X is the geometric realization of a precubical
complex, one may consider the piecewise linear (geodesic) d-paths in X
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that are linear on each cell (including its boundary). The space of piece-

wise linear traces ~Tl(X)(x, y) is (at least weakly) homotopy equivalent to

the space of all traces ~T (X)(x, y). It can be subdivided into “cube paths”
containing all PL-d-paths that are contained in a given sequence of subse-
quent cubes. Such a cube path turns out to be a product of simplices, and
~Tl(X) comes thus equipped with a prodsimplicial combinatorial structure.
Since cube paths can be ordered by their length in “rounds”, (higher)
connectivity computations as in the work of Herlihy et al. seem promising
along these lines.

Moreover, the following topics have been dealt with:

Arc length: In a pre-cubical complex, there is a natural notion of arc-length
(l1) and natural parametrization; this makes it possible to represent every
trace by a canonical d-path. It is not difficult to see that arc length is
preserved under a d-homotopy.

Variation of invariants: A categorical organisation of the algebraic topo-
logical invariants of trace spaces with varying end points giving rise to a
decomposition of the parameter space, that has to be viewed as a subspace
of X ×X .
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Computational Algebraic Topology à la Eilenberg-Mac Lane

Pedro Real

By Computational Algebraic Topology we mean an area of Computational Mathe-
matics dealing with the effective and efficient construction of algebraic topological
invariants for discrete or continuous objects. Eilenberg and Mac Lane in the six-
ties of the last century develop a framework for Algebraic Topology mainly based
on the notions of simplicial sets and chain homotopy equivalences. This setting
which gives preference to chain homotopy operators in combinatorial ambiance is
suitable for developing computational algebraic topological work related to A(∞)-
algebra cohomology computation. As example of this modus operandi, we show an
application in Digital Volume Processing. More concretely, a binary digital (voxel-
based) volume is seen from an geometric-algebraic point of view as a special chain
homotopy operator acting on every cell of the polyhedral continuous analogous
associated to the volume. Discrete Morse Theory and Homological Perturbation
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Theory can be integrated to this framework in a straightforward and algorithmic
manner.

Local Scale Selection for Large High Dimensional Data

Gurjeet Singh

(joint work with Gunnar Carlsson, Facundo Mémoli)

We introduced a method called Mapper (in [3]) for the qualitative analysis, sim-
plification and visualization of high dimensional datasets with respect to filter
functions defined on the dataset. In many cases, data coming from real applica-
tions is massive and it is not possible to visualize and discern structure even in
low dimensional projections. The method can be used to reduce high dimensional
datasets into simplicial complexes with far fewer points which can capture topolog-
ical and geometric information at a specified resolution. Our construction provides
a coordinatization of the data by providing a discrete and combinatorial object, a
simplicial complex, to which the dataset maps and which can represent the dataset
in a useful way. We propose an extension to Mapper in the form of a method that is
able to extract different scale dependent views of the data. This method is a scale
detection procedure in which we compute a graph that encodes all the multiscale
structure present in the data as viewed w.r.t a function prescribed on the data.

In the simplest case, Mapper begins with a sample from a metric space X , and a
continuous real valued function f : X → R, to produce a graph. This function can
be a function which reflects geometric properties of the dataset, such as the result
of a density estimator, or can be a user defined function, which reflects properties
of the data being studied. In the first case, one is attempting to obtain information
about the qualitative properties of the dataset itself, and in the second case one is
trying to understand how these properties interact with interesting functions on
the dataset. The basic idea behind Mapper can be referred to as partial clustering,
in that a key step is to apply standard clustering algorithms to subsets of the
original dataset, and then to understand the interaction of the partial clusters
thus formed with each other. That is, if U and V are subsets of the dataset,
and U ∩ V is non-empty, then the clusters obtained from U and V respectively
may have non-empty intersections, and these intersections are used to construct a
simplicial complex.

In more detail, assume f : X → R is given together with an open covering
{Uα}α∈A of its range, for a finite index set A. Then {f−1(Uα)}α∈A forms an
open covering of X . For each α we consider the decomposition of f−1(Uα) into

its path connected components: f−1(Uα) = ∪jα

i=1V (α, i) where jα is the number
of connected components of Uα. Let W = {Wβ}β∈B be the set of all V (α, i) for
all 1 ≤ i ≤ jα and α ∈ A. Note that |B| =

∑
α∈A jα. Next we construct the

nerve N (W ) of the covering W , i.e. the simplicial complex with vertex set B and
where a family {β0, . . . , βk} spans a k-simplex in N (W ) if and only if Wβ0 ∩Wβ1 ∩
. . . ∩Wβk

6= ∅. The practical counterpart of the operation of decomposing a set
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[htbp]

a b

Figure 1. (a) The data is sampled from a noisy circle, and the
function used is f(x) = ||x − p||2, where p is the leftmost point
in the data. The dataset is shown on the top left, colored by the
value of the function. We divide the range of the function into 5
equal intervals and a 20% overlap between subsequent intervals.
For each interval we compute the clustering of the points lying in
all the preimages of the intervals. Finally we connect the clusters
with edges whenever they have non empty intersection. At the
bottom is the simplicial complex which we recover; its vertices
are colored by the average function value. (b) Application of
Mapper to shape simplification. The horse shape is colored with
the function f which we choose to be the average geodesic distance
to all other points on the shape (blue is low and red is high). The
output of Mapper is a graph, its vertices being colored by the
average function value of the points in the corresponding cluster.

into its path connected components is of course clustering. We show two practical
examples of application of Mapper in the Figure 1.

Instead of using a function f : X → R, one can use a function f : X → Z,
where Z is any topological space e.g. Z could be R2 or S1. In the first case, one
produces a two dimensional simplicial complex, together with a natural map from
the dataset to it. In the second case, one constructs a graph with a map from the
graph to a circle. Roughly, our construction amounts to a generalization of the
Reeb graph (see [1]) associated with the filter function.

In the practical implementation of the procedure one must deal with some
clustering algorithm. Our procedure is not tied to any particular choice. In our
experiments, however, we choose to work with single linkage clustering. Regardless
of the clustering algorithm one picks, it is always necessary to estimate certain pa-
rameters (thresholds) that ultimately determine the number of clusters recovered.
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In the case of using a hierarchical clustering procedure and a function f : X →
R, we propose a procedure that detects spatial coherence of the scales in the partial
datasets f−1(Uα) to obtain a coherent choice of parameters. This procedure is
called the scale space procedure. Roughly, we construct a scale space graph, which
encodes all the scale dependent information in the dataset relative to the function
f . This graph is a layered, directed and planar graph. Refer to Figure 2 for an
example.
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Figure 2. This is the scale space graph corresponding to the
shape and the filter function shown in Figure 1(b). The filter was
divided into 30 intervals; there is a layer of vertices corresponding
to each interval. A path (like the red path shown here) picks a
vertex from each layer which represents a threshold for each layer.
A path in this graph which picks one vertex from each layer can be
used to generate one Mapper output. The Mapper output shown
in Figure 1(b) corresponds to the red path shown here. The set
of all paths in this graph represent the set of all possible Mapper

outputs. One can assign weights to the edges in this graph and
search for optimal paths.
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(Multidimensional) Persistence

Afra Zomorodian

(joint work with Gunnar Carlsson and Gurjeet Singh)

Persistence refers to one type of multi-scale analysis: the technique of identifying
features by analyzing geometric histories of data. The key notion is that features
persist through history while noise is short-lived. In this talk, we review two the-
ories of persistence: persistent homology [9] and multidimensional persistence [2].
We also discuss algorithms for both theories, including recent work [1].

We model scientific data as a set of d-dimensional points S augmented with
n− 1 real-valued functions fj : S → R, 1 ≤ j ≤ n− 1, defined at the samples, for
n > 1. Our representation for such data is a multifiltered complex. A topological
space X is multifiltered if we are given a family of subspaces {Xu}u, where u ∈ Nn

and Xu ⊆ X such that for u,w1, w2, v ∈ Nn, the diagrams

(1)

Xu Xw1

Xw2 Xv

��

//

��

//

commute whenever u ≤ w1, w2 ≤ v. We call the family of subspaces {Xu}u a
multifiltration.

To generate multifiltrations, we first capture the multi-scale connectivity of S
with a one-parameter family Kǫ of cell complexes. There are a variety of tech-
niques for constructing such complexes, such as the Čech, Rips-Vietoris [5], and
witness [4] complexes. These techniques give a scale function ǫ : K → R, where K
is the complex at maximum scale ǫmax, and ǫ(σ) is when cell σ enters K. Extend-
ing the functions fj piecewise-linearly over K, we may define F : K → Rn, where
F (σ) = (f1(σ), f2(σ), . . . , fn−1(σ), ǫ(σ)) . We filter K via the excursion sets {Ku}u
of F : Ku = {σ ∈ K | F (σ) ≤ u ∈ Rn}. Excursion sets are also called sublevel
sets and are inspired by Morse theory. These complexes form an n-dimensional
multifiltration [2]. Note that cell σ enters Ku at u = F (σ) and will remain in the
complex for all u ≥ F (σ). We call this property 1-critical.

When S does not come with functions fj , we simply have a one-dimensional
multifiltration or a filtration. The theory of persistent homology captures the
homology of a filtration. In any dimension, this homology corresponds to a graded
R[t]-module, where R[t] is the ring of polynomials with indeterminate t over ring
R. Over fields k, k[t] is a principal ideal domain (PID), so a consequence of the
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standard structure theorem for graded k[t]-modules gives the full classification:

(2)

n⊕

i=1

ΣαiF [t] ⊕
m⊕

j=1

ΣγjF [t]/(tnj ),

where Σα denotes an α-shift upward in grading. The classification gives us n half-
infinite intervals [αi,∞) and m finite intervals [γj , γj +nj). The multiset of n+m
intervals is a complete discrete invariant. We call this multiset the persistence
barcode.

This algebraic framework also enables us to derive an algorithm for persistent
homology directly from the standard reduction algorithm in algebraic topology [6].
The persistence algorithm has complexity Θ(n3), although it has shown a linear
running time in practice. While initially defined for simplicial complexes, the
theory extends to singular homology, and the algorithm extends to a broad class of
filtered cell complexes. A generic implementation of this algorithm is part of Plex,
a library of Matlab routines developed at Stanford University for manipulating
simplicial objects [8].

The theory of multidimensional persistence captures the homology of a multifil-
tration. In any dimension, this homology corresponds to an n-graded An-module
M , where An = k[x1, . . . , xn] is the n-graded module of polynomials with n inde-
terminates over a field k. Unlike its one-dimensional counterpart, An is not a PID
and An-modules have no structure theorem. Nevertheless, we establish a full clas-
sification of this structure in terms of three invariants. The first invariant, ξ0(M) is
the multiset of generators for the free approximation of M . The second invariant,
ξ1(M) is the multiset of generators for the free hull of M . These invariants have
intuitive meaning as analogs of the left and right endpoints of the intervals in a
barcode, respectively. Unfortunately, we show that there is no way to match these
endpoints consistently as the remaining invariant corresponds to the set of orbits
of an algebraic group action on an algebraic variety. Unfortunately, such as set is
not, in general, an algebraic variety. The number of orbits may be uncountable,
giving us a continuous invariant.

Multidimensional persistence shows that no complete discrete invariant exists
for parametrized data. To capture persistence information, we have proposed a
new discrete invariant by extending the group definition of persistent homology.
For each pair u, v ∈ Nn with u ≤ v, Xu ⊆ Xv by definition, so Xu →֒ Xv.
This inclusion, in turn, induces an injection ιi(u, v) at the ith homology level
Hi(Xu) → Hi(Xv) that maps a homology class in Xu to the one that contains
it in Xv. The ith persistence module is the image of ιi for all pairs u ≤ v. The
ith rank invariant is ρi(u, v) = rank ιi(u, v). for all pairs u ≤ v ∈ Nn, where ιi
is the injection defined above. We prove that the rank invariant is equivalent to
the persistent barcode in the one-dimensional case, so it is complete when it can
be [2]. Unlike the barcode, the rank invariant extends to higher dimensions as an
incomplete but useful invariant.

For an n-dimensional multifiltration of m cells, a naive computation of the rank
invariant gives an O(m2n+3) time algorithm. To store the rank invariant, we also
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require Θ(m2n) space. Neither is feasible. We have recently utilized algorithms
from computational algebraic geometry for direct computation of multidimensional
persistence [3]. For 1-critical multifiltrations, the boundary operator is a linear
homomorphisms between free n-graded free chain modules over An and may be
written as a matrix. To compute homology, we have three tasks, all of which may
be translated into problems within algebraic geometry.

(1) Compute the boundary module (im ∂i+1): Intuitively, this is analogous
to computing the range space of the matrix for ∂i+1. In this case, this
is the submodule membership problem (SMP). This problem is solved by
computing a Gröbner basis for the submodule using the Buchberger algo-
rithm. We may then check membership using the division algorithm for
multivariate polynomials.

(2) Compute the cycle module (ker ∂i): As before, this is analogous to the null
space of the boundary operator’s matrix. With multivariate polynomial
entries, the problem is equivalent to computing the syzygy submodule [3].
This problem is solved using Schreyer’s algorithm.

(3) Compute the quotient Hi: All we need to do is test whether the generators
of the syzygy submodule (cycles) are in the boundary submodule. This is
an instance of the SMP problem as in our first task.

While the above algorithms exist, they are not widely used for analysis due to
their complexity. The SMP problem is a generalization of the polynomial ideal
membership problem (PIMP) at the ring level, and PIMP is already Expspace-
complete, requiring exponential space and time [7]. However, our current work
shows that in our setting, the algorithms are poly-time, requiring O(n7) time
and O(n4) space. This significant reduction is due to the additional structure
coming from the multigrading as the matrix entries are homogeneous monomials.
This time and space bound still imply that computation is out of reach for large
datasets with our current algorithms.

Open questions include efficient algorithms for computing the rank invariant,
defining alternate discrete invariants that contain persistence information, and new
theories of persistence for other classes of data, such as dynamic data, as discussed
by Vin de Silva in this workshop.
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