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Introduction by the Organisers

This workshop attracted 44 participants, some 30% of them recent PhDs and 10%
of them women. Its main themes could be divided into three large groups (i)
differential geometry; (ii) physics and materials; (iii) optimal transportation and
its applications.

The first general area encompassed the role of calculus of variations in dif-
ferential geometry, including minimal surface theory and general relativity. One
of the highlights was a substantial simplification of Almgren’s formidable regu-
larity theory for Q-valued functions, presented by Camillo DeLellis. This theory
restricts the singularities which can occur on area minimizing currents in codimen-
sion higher than one. Another highlight was the confirmation by Del Pino (with
Kowalczyk and Wei) of the counterexample long expected in dimensions N ≥ 9 to
DeGiorgi’s conjecture about the symmetry of transition profiles in the standard
model of phase segregation. Further progress showcased at the 2008 meeting in-
cluded a new approach to regularity theory for harmonic maps (Rivière, Struwe),
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and new existence and regularity results of Willmore surfaces from a PDE point
of view (Kuwert-Schätzle, Rivière).

Exciting developments were also discussed concerning the structure of space-
like surfaces in general relativity. Foliations by constant mean curvature surfaces
and by Willmore surfaces are being used to describe the center of mass and quasi-
local energy distribution of isolated gravitating systems: Tobias Lamm and Jan
Metzger described their recent work with Schulze showing that Willmore surfaces
behave in a similar way and can serve as an asymptotic center of mass.

Turning to physics and materials science, the highlights included a review pre-
sented by Elliott Lieb of variational approaches to calculating approximate quan-
tum ground states for atoms and molecules. A related challenge in applied math-
ematics is to find a satisfactory explanation for the emergence of periodic patterns
in physical models, a problem which has received important recent contributions
described by Andrea Malchiodi, Sylvia Serfaty, and Gero Friesecke. These in-
volved blending techniques from the calculus of variations with other kinds of
mathematics — in one case as far off as number theory. Another highlight, falling
somewhere between physics and the optimization problems described below, was
the idiosyncratic lecture by Eitan Bachmat explaining how supermarket queue-
ing, airline boarding, and optimal controlling of disk drive read/write operations
can be boiled down to variational problems concerning the longest future directed
geodesic in a Lorentzian spacetime.

Turning to the theory of optimal transportation and its connections to geome-
try, we recall the conference’s opening lecture by Cedric Villani, addressing local
to global curvature principles. In it he described his own work with John Lott
(and independently Sturm), using the displacement convexity from optimal trans-
portation to develop a theory of Ricci bounds in metric measure spaces. At the
same occasion, he discussed the stability of the curvature conditions used by Ma-
Trudinger-Wang to prove the regularity of optimal mappings. His first theme was
reprised in the talk of Peter Topping, which used displacement convexity to give
a new understanding of Perelman’s monotonicity of entropy along the Ricci flow.
Further talks by Figalli and Kim described new regularity results concerning free
boundary problems in optimal transportation, and continuity of optimal maps for
non-negatively cross-curved costs. The coordinate independence of these problems
leads to phenomena which are governed by invariant structures such as curvatures,
thus providing a strong point of thematic and methodological contact between this
topic and the more geometric questions described in the first paragraphs above.

Only a small sampling from the July 2008 Oberwolfach Workshop has been
mentioned above. Lectures which fell outside these three themes included those
by Gianni Dal Maso, Yury Grabovsky, Manuel Ritoré, Tatiana Toro, and Tobias
Weth, and there were lively informal discussions in which many young researchers
participated. Still, we hope this brief summary gives some flavor for the exciting
developments presented in the workshop, and which continue to take place in the
Calculus of Variations.
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Abstracts

Sufficient conditions for smooth strong local minimizers in classical
Calculus of Variations.

Yury Grabovsky

(joint work with Tadele Mengesha)

1. A classical variational problem

A classical variational problem is to find necessary conditions and sufficient
conditions for y0(x) ∈ A to be a strong local minimizer of

E(y) =

∫

Ω

W (x,y(x),∇y(x))dx,

where A = {y ∈ C1(Ω; Rm) : y(x) = g(x), x ∈ ∂Ω1}, g ∈ C1(∂Ω; Rm),
Ω ⊂ Rd—open, bounded and C1, ∂Ω1 ⊂ ∂Ω—relatively open, W—continuous,
and C2 on (x,y0(x),∇y0(x)). The following necessary conditions are well-known.

Euler-Lagrange equation:

(1)

∫

Ω

{(Wy(x),φ(x)) + (WF (x),∇φ(x))}dx = 0

for all φ ∈ Var(A) = {φ ∈ C1(Ω; Rm) : φ(x) = 0, x ∈ ∂Ω1}, where W (x) =
W (x,y0(x),∇y0(x)).

Non-negativity of second variation:

(2)

∫

Ω

δ2W (x,φ,∇φ)dx ≥ 0, φ ∈ Var(A),

δ2W =
1

2
((Wyy(x)φ,φ) + 2(WF y(x)φ,H) + (WF F (x)H ,H)).

These conditions have been obtained by testing the minimality by weak variations.
Definition: A weak variation is a sequence {φn} ⊂Var(A) such that

lim
n→∞

‖φn‖∞ = lim
n→∞

‖∇φn‖∞ = 0.

A typical weak variation is

(3) y0(x) → y0(x) + ǫφ(x).

In fact, the variation (3) has been used to obtain the necessary conditions (1) and
(2). In addition to these necessary conditions we also have

Quasiconvexity in the interior:

(4) −
∫

B

W (∇y0(x0) + ∇φ(z))dz ≥W (∇y0(x0)), φ ∈ C∞
0 (B; Rm)

for every x0 ∈ Ω, where B—unit ball in Rd. This condition is the analog of the
classical Weierstrass positivity condition. In sharp contrast to the one-dimentional
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case d = 1, this condition has no local formulation and is usually very difficult to
verify.

Quasiconvexity on the free boundary:

(5) −
∫

B−

n(x0)

W (∇y0(x0) + ∇φ(z))dz ≥W (∇y0(x0)), φ ∈ Vn(x0),

where x0 ∈ ∂Ω \ ∂Ω1 and Vn = {φ ∈ C∞(B−
n ; Rm) : φ(z) = 0 on ∂B ∩ B−

n},
B−

n = {z ∈ B : (z,n) < 0}. This condition was discovered relatively recently by
Ball and Marsden [2]. It is even more difficult to check than quasiconvexity in
the interior. These necessary conditions were derived by testing the minimality of
extremal by strong variations.

Definition: A strong variation is a sequence {φn} ⊂Var(A) such that

lim
n→∞

‖φn‖∞ = 0

A typical strong variation is the “Weierstrass needle”

y0(x) → y0(x) + ǫφ

(

x − x0

ǫ

)

, φ ∈ C∞
0 (B; Rm), x0 ∈ Ω.

Conditions (4) and (5) have been derived using this variation.
Stability with respect to the two types of variation determine the two types of

local minima
Definition: y0(x) is called a weak local minimizer if E(y0) ≤ E(y0 + φn) for

every weak variation and n large enough.
Definition: y0(x) is called a strong local minimizer if E(y0) ≤ E(y0 +φn) for

every strong variation and n large enough.
Now we want to strengthen the necessary condition in a “small way” but such

as to obtain sufficient conditions for local minima. In the case of weak variations
Taylor expansion can be used to express

∆E(φn) =

∫

Ω

{W (x,y0 + φn,∇y0 + ∇φn) −W (x)}dx

in terms of second variation, the uniform positivity of which is sufficient for y0 to
be a weak local minimizer.

If ‖∇φn‖∞ 6→ 0, as n → ∞, then neither Taylor expansion nor Weierstrass
field theory methods work (d > 1, m > 1). In fact field theory has been applied to
vectorial variational problems (see e.g. [3, 5, 12, 15]), but the sufficient conditions
were never close to the necessary ones. The reason was pointed out by Ball in
[1]. The field theory uses translations by null-Lagrangians (see e.g. [4, 7, 16]),
and is thus associated with polyconvexity, while the necessary conditions involve
quasiconvexity. Ball conjectured in [1, Section 6.2] that uniform quasiconvexity
together with sufficient conditions for weak local minima should be sufficient for
strong local minima. In [8, 9] we have proved Ball’s conjecture.

In addition to field theory we are aware of only two other approaches to the
problem of sufficient conditions. Levi’s “expansion method” [13] (see also [14])
and Hestenes’s normalized or directional convergence method [10]. Levi’s method
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was specific to d = 1, m = 1 case. Hestenes’s method, however, could be modified
to suite our purposes. Following Hestenes we consider the normalized functional
increment

δE({φn}) = lim
n→∞

∆E(φn)

‖φn‖2
1,2

and prove that it is positive. Following Hestenes, we start with an arbitrary
strong variation {φn}. If ‖∇φn‖p → ∞, then δE({φn}) = ∞, provided W (F ) ≥
C1|F |p − C2. If ‖∇φn‖2 is bounded, but not small, then we can use uniform
quasiconvexity to prove that δE({φn}) > 0. If ‖∇φn‖2 → 0, as n → ∞, we use
Decomposition Lemma of Kristensen [11] and Fonseca, Müller and Pedregal [6] to
split φn into pure strong and weak parts. To be more precise, we represent the
variation φn as φn = αnzn + αnvn, where αn = ‖∇φn‖2 → 0. The weak part
αnzn is characterized by the property that |∇zn|2 is equiintegrable and the strong
part by |{x ∈ Ω : ∇vn(x) 6= 0}| → 0, as n → 0. We can also arrange for the
boundary conditions to be statisfied zn = vn = φn = 0 on ∂Ω1.

2. Sufficiency theorem

Assume that

(H1) the partial derivatives of W (x,y,F ) of first and second order in (y,F )
exist and are continuous on Ω × O, where O is an open and bounded
neighborhood of (x,y0(x),∇y0(x));

(H2) c1(y)|F |p − c2(y) ≤W (x,y,F ) ≤ C(y)(1 + |F |p);
(H3) For every r > 0 and ǫ > 0 there exists δ > 0 so that for every x ∈ Ω,

{y,y′} ⊂ Rm, and {F ,F ′} ⊂ M, such that |y| < r, |y′| < r, |y − y′| < δ
and

|F − F ′|
1 + |F | + |F ′| < δ,

we have
∣

∣

∣

∣

W (x,y,F )

1 + |F |p − W (x,y′,F ′)

1 + |F ′|p
∣

∣

∣

∣

< ǫ

(H4) For every r > 0 and ǫ > 0 there exists δ > 0, so that for every F ∈ M,
|y| < r and {x′,x′′} ⊂ Ω, such that |x′ − x′′| < δ, we have

|W (x′,y,F ) −W (x′′,y,F )|
1 + |F |p < ǫ.

Suppose y0 ∈ A solves the Euler-Lagrange equation (1). Suppose, in addition, the
following conditions are satisfied

• δ2E(φ) ≥ β‖φ‖2
1,2, φ ∈ Var(A)

• for all x0 ∈ Ω and all φ ∈ C∞
0 (B; Rm)

∫

B

{W (∇y0(x0) + ∇φ(z)) −W (∇y0(x0)}dz ≥ β‖∇φ‖2
2
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• for all x0 ∈ ∂Ω2 = ∂Ω \ ∂Ω1 and all

φ ∈ Vn(x0) = {φ ∈ C∞
(

B−
n(x0)

; Rm
)

: φ(z) = 0 on ∂B ∩B−
n(x0)

}
∫

B−

n(x0)

{W (∇y0(x0) + ∇φ(z)) −W (∇y0(x0)}dz ≥ β‖∇φ‖2
2.

Then y0 is a strong local minimizer of the functional E(y). Moreover, δE({φn}) ≥
β‖∇φn‖2.
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On a conjecture by De Giorgi in large dimensions

Manuel del Pino

(joint work with Michal Kowalczyk, Juncheng Wei)

We consider the Allen-Cahn equation

(1) ∆u+ (1 − u2)u = 0 in R
N .

E. De Giorgi [3] formulated in 1978 the following celebrated conjecture:

(DG) Let u be a bounded solution of equation (1) such that ∂xNu > 0. Then the
level sets [u = λ] are hyperplanes, at least for dimension N ≤ 8.

De Giorgi conjecture has been fully established in dimensions N = 2 by Ghous-
soub and Gui [4] and for N = 3 by Ambrosio and Cabré [1]. Savin [5] proved its
validity for 4 ≤ N ≤ 8 under a mild additional assumption. A counterexample to
(DG) in dimension N ≥ 9 has long been believed to exist, but the question has
remained open. In this paper we disprove (DG) for N ≥ 9. (DG) is a statement
parallel to Bernstein’s theorem for minimal graphs which in its most general form,
due to Simons [7], states that any minimal hypersurface in RN , which is also a
graph of a function of N − 1 variables, must be a hyperplane if N ≤ 8. Bombieri,
De Giorgi and Giusti [2] proved that this fact is false in dimension N ≥ 9, by
constructing a nontrivial solution to the problem

(2) ∇ ·
(

∇F
√

1 + |∇F |2

)

= 0 in R
8.

by means of the super-subsolution method. Let us write

x′ = (x1, . . . , x8) ∈ R
8, u =

√

x2
1 + · · · + x2

4, v =
√

x2
5 + · · · + x2

8.

The BDG solution has the form F (x′) = F (u, v) with the symmetry property
F (u, v) = −F (v, u) if u ≥ v. In addition we can show that F becomes asymptotic
to a function homogeneous of degree 3 that vanishes on the cone u = v. Let
Γ = {x9 = F (x′)} be the minimal BDG graph so predicted, and let us consider for
α > 0 its dilation Γα = α−1Γ, which is also a minimal graph. Our result, which
disproves statement (DG) in dimensions 9 or higher is the following:
Theorem. Let N ≥ 9. For all α > 0 sufficiently small there exists a bounded
solution uα(x) of equation (1) such that uα(0) = 0,
∂xNuα(x) > 0 for all x ∈ RN , and |uα(x)| → 1 as dist (x,Γα) → +∞,

uniformly in all small α > 0.

The proof provides accurate information on uα. If t = t(y) denotes a choice
of signed distance to the graph Γα then, for a small fixed number δ > 0, the

solution looks like uα(x) ∼ w(t), if |t| < δ
α . with w(t) = tanh

(

t√
2

)

, the one-

dimensional heteroclinic solution to (1). Let us us assume N = 9 (which is
sufficient), and consider Fermi coordinates to describe points in R

9 near Γα,
x = y + zνα(y), y ∈ Γα, |z| < δ

α where να is the unit normal to Γα for which
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να9 > 0. Then we choose as a first approximation w(x) := w(z + h(αy)) where h
is a smooth, small function on Γ = Γ1, to be determined. Looking for a solution
of the form w + φ, it turns out that the problem becomes essentially reduced to

∆Γαφ+ ∂zzφ+ f ′(w(z))φ + E +N(φ) = 0 in Γα × R

where S(w) = ∆w + f(w), E = χ|z|<α−1δ S(w), N(φ) = f(w+ φ) − f(w) − f ′(w)φ+

B(φ), f(w) = w(1 − w
2), and B(φ) is a second order linear operator with small

coefficients, also cut-off for |z| > δα−1. Rather than solving the above problem
directly we consider a projected version of it:

(3) L(φ) := ∆Γαφ+ ∂zzφ+ f ′(w(z))φ = −E −N(φ) + c(y)w′(z) in Γα × R

(4)

∫

φ(y, z)w′(z) dz = 0 for all y ∈ Γα

A solution to this problem can be found in such a way that it respects the size
and decay rate of the error E, which is roughly of the order ∼ r(αy)−3e−|z|, this is
made precise with the use of a linear theory for the projected problem in weighted
Sobolev norms and an application of contraction mapping principle. Finally h s

found so that c(y) ≡ 0. We have c(y)
∫

w′2dz =
∫

(E + N(φ))w′ dz and thus we
get reduced to a (nonlocal) nonlinear PDE in Γ of the form

(5) J (h) := ∆Γh+ |A|2h = O(α)r(y)−3 +Mα(h) in Γ, h = 0 on Γ∩ [u = v],

whereM(h) is a small operator which includes nonlocal terms. A solvability theory
for the Jacobi operator in weighted Sobolev norms is then devised, with the crucial
ingredient of the presence of explicit barriers for inequalities involving the linear
operator above, and asymptotic curvature estimates by Simon [6]. Using this
theory, problem (5) is finally solved by means of contraction mapping principle.
The monotonicity property follows from maximum principle applied to the linear
equation satisfied by ∂x9u.
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Boundary regularity for solutions of divergence form operators on
non-smooth domains

Tatiana Toro

(joint work with E. Milakis)

A few years ago Kenig and Toro (see [12]) introduced two types of non-smooth
domains in Rn. Reifenberg flat domains with small constant are domains whose
boundary can be well approximated by affine (n − 1)-dimensional spaces in the
Hausdorff distance sense. Chord arc domains are sets of locally finite perimeter
which are NTA domains and whose surface measure at the boundary σ is Ahlfors
regular (i.e. σ(B(Q, r)) ∼ rn−1). A chord arc domain with small constant is a
chord arc domain for which the unit normal vector to the boundary has small
BMO norm. In joint work with Kenig we studied the boundary regularity of the
solutions to the Laplacian in these domains by analyzing the doubling properties
of the harmonic measure and the existence and regularity of the Poisson kernel.
Since then, several authors have studied PDE problems, free boundary regularity
problems and potential theory questions on these domains (see [1], [2], [3], [4], [5],
[9] [10], [11], [12], [13], [14]). In particular, chord arc domains with vanishing con-
stant (i.e those for which the unit normal vector to the boundary in in VMO(σ))
are good substitutes for C1 domains in this context.

In current joint work work with Milakis ([15]) we consider two types of opera-
tors.

We say that elliptic operator L ∈ L(λ,Λ, α) if

(1) Lu = div(A(X)∇u) in Ω

with symmetric coefficient matrix A(X) = (aij(X)), such that there are λ,Λ > 0
satisfying

(2) λ|ξ|2 ≤
n
∑

i,j=1

aij(X)ξiξj ≤ Λ|ξ|2

for all X ∈ Ω and ξ ∈ Rn. Furthermore we require that A ∈ Cα(Ω).

An elliptic operator Lu = div(A(X)∇u) defined on a chord arc domain Ω ⊂ R
n

is a perturbation of the Laplacian if the deviation function

(3) a(X) = sup{|Id − A(Y)| : Y ∈ B(X, δ(X)/2)}
where δ(X) is the distance of X to ∂Ω, satisfies the following Carleson measure
property: i.e. there exists C > 0 such that

(4) sup
0<r<diamΩ

sup
Q∈∂Ω

{

1

σ(B(Q, r))

∫

B(Q,r)∩Ω

a2(X)

δ(X)
dX

}

≤ C,

where σ = Hn−1 ∂Ω. Note that in this case L = ∆ on ∂Ω.

We now state our results.
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Theorem 1. Let Ω ⊂ R
n be a Reifenberg flat domain with vanishing constant, let

L ∈ L(λ,Λ, α) and let ω be its elliptic measure. Then for all τ ∈ (0, 1),

lim
ρ→0

inf
Q∈∂Ω

ω(B(Q, τρ))

ω(B(Q, ρ))
= lim
ρ→0

sup
Q∈∂Ω

ω(B(Q, τρ))

ω(B(Q, ρ))
= τn.

Theorem 2. Let Ω ⊂ Rn be a chord arc domain with vanishing constant. Assume
that L ∈ L(λ,Λ, α). Then log k ∈ VMO(∂Ω).

Theorems 1 and 2 are analogue to the results obtained for the Laplacian in
[12]. The structure of the proofs is similar to those in [12]. We require the Hopf
maximum principle (see [8] or [6]), the regularity theory for this type of operator
(see [6]), the maximum principle and several comparison theorems which are valid
on NTA domains.

Theorem 3. Let Ω be a chord arc domain. Let L be such that (4) holds. There
exists δ(n) > 0 such that if Ω ⊂ Rn is a chord arc domain with constant δ ∈ (0, δ(n)
then ω ∈ A∞(dσ).

The proof of Theorem 3 requires an argument along the lines of the one in [7],
as well as the use of Semmes decomposition theorem for chord arc domains with
small constant.
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The optimal partial transport problem

Alessio Figalli

The aim of the talk is to describe some recent results on a variant of the classical
optimal transport problem. The problem considered is the following: given two
densities f and g, we want to transport a fraction m ∈ [0,min{‖f‖L1, ‖g‖L1}]
of the mass of f onto g minimizing the transportation cost c(x, y) = |x − y|2.
More precisely, let f, g ∈ L1(Rn) be two nonnegative functions, and denote by
Γ≤(f, g) the set of nonnegative Borel measures on Rn × Rn whose first and sec-
ond marginals are dominated by f and g respectively. Fix a certain amount
m ∈ [0,min{‖f‖L1, ‖g‖L1}] which represents the mass one wants to transport,
and consider the following partial transport problem:

minimize C(γ) :=

∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ ∈ Γ≤(f, g) with
∫

dγ = m.
Using weak topologies, it is simple to prove existence of minimizers for any

fixed amount of mass m ∈ [0,min{‖f‖L1, ‖g‖L1}]. We remark however that in
general one cannot expect uniqueness of minimizers: if m ≤

∫

Rn f ∧ g, any γ sup-
ported on the diagonal {x = y} with marginals dominated by f ∧ g is a minimizer
with zero cost. To ensure uniqueness, in [1] the authors assume f and g to have
disjoint supports. Under this assumption they are able to prove (as in the classi-
cal Monge-Kantorovich problem) that there exists a (unique) convex function ψ
such that the unique minimizer is concentrated on the graph of ∇ψ. This ψ is
also shown to solve in a weak sense a Monge-Ampère double obstacle problem.
Then, strengthening the disjointness assumption into the hypothesis on the exis-
tence of a hyperplane separating the supports of the two measures, the authors
prove a semiconvexity result on the free boundaries. Furthermore, under some
classical regularity assumptions on the measures and on their supports, local C1,α

regularity of ψ and on the free boundaries of the active regions is shown.
In [2], we study what happens if one removes the disjointness assumption. Al-

though minimizers are non-unique for m <
∫

Rn f ∧ g (but in this case the set of

minimizers can be trivially described), uniqueness holds for any m ≥
∫

Rn f ∧ g.
Moreover, exactly as in [1], the unique minimizer is concentrated on the graph of
the gradient of a convex function.

We can also prove that the marginals of the minimizers always dominate the
common mass f ∧ g (that is all the common mass is both source and target).
This property, which has an interest on its own, plays also a crucial role in the
regularity of the free boundaries. Indeed, one can show that the free boundary has
zero Lebesgue measure (under some mild assumptions on the supports of the two
densities), and as a consequence of this fact one can apply Caffarelli’s regularity
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theory for the Monge-Ampère equation whenever the support of g is assumed to be
convex, and f and g are bounded away from zero and infinity on their respective
support. One can therefore deduce local C0,α regularity of the transport map, and
that it extends to an homeomorphism up to the boundary if both supports are
assumed to be strictly convex.

On the other hand, in this situation where the supports of f and g can intersect,
something new happens: usually, assuming C∞ regularity on the density of f and
g (together with some convexity assumption on their supports), one can show that

the transport map is C∞ too. In our case we will show that C0,α
loc regularity is

in some sense optimal: we can find two C∞ densities on R, supported on two
bounded intervals and bounded away from zero on their supports, such that the
transport map is not C1.
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New entire solutions to semilinear elliptic equations in Rn

Andrea Malchiodi

SISSA, via Beirut 2-4, 34014 Trieste, Italy.

malchiod@sissa.it

We construct new entire solutions of the equation

(Ep) −∆u+ u = up in R
n,

where p ∈
(

1, n+2
n−2

)

. These solutions decay exponentially away from three half

lines and are asymptotically periodic in their three directions.
The study of (Ep) has several motivations: as basic examples we mention non-

linear scalar field equations like the Nonlinear Klein-Gordon or the Nonlinear

Schrödinger. More precisely a special class of solutions of the latter, i~∂ψ̃∂t =

−~
2∆ψ̃ + V (x)ψ̃ − |ψ̃|p−1ψ̃, called standing waves, are complex-valued functions

ψ(x, t), (x, t) ∈ Rn×R, of the form ψ(x, t) = e−iωtu(x), where ω is a real constant
and u : Rn → R a real-valued function which satisfies the equation (adding ω to
V )

(NLS) −~
2∆u+ V (x)u = up in R

n

(V : R
n → R is the potential and, still, p > 1). Problem (Ep) plays a role in the

understanding of both the loss of compactness in (NLS) or the profile of solutions
in the semiclassical limit, when ~ tends to zero.

Other motivations for considering (Ep) arise in the study of models from biology:
for example, the Gierer-Meinhardt system, see [8], can be approached by studying
first the equation −ε2∆u+ u = up in a domain Ω ⊆ Rn, with Neumann boundary
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conditions. There is a broad literature on this problem, concerning existence and
multiplicity results on spike layers, namely solutions uε which concentrate at a
finite number of points of Ω, with the profile uε(x) ≃ U

(

x−x0

ε

)

, x0 ∈ Ω, where
U solves (Ep). For the above issues we refer the interested reader to [1], where a
rather complete list of references is given.

Recently, a different kind of solutions (whose existence has been conjectured for
some time, see [8]) has been shown to exist, for both the above mentioned singularly
perturbed problems. These have a different profile and scale only in one direction
(or, more generally, in k directions, with k ∈ {1, . . . , n − 1}), corresponding to
solutions of (Ep) which are independent of some of the variables, see [5], and
references therein.

Except when some symmetry is present, this kind of results asserts that con-
centration occurs provided we restrict ourselves to suitable sequences εj → 0: the
reason is that these solutions have a larger and larger Morse index, and there-
fore resonance occurs. As a consequence, if one wishes to employ local inversion
arguments, it is necessary to avoid some values of the parameter ε, so that the
linearized equation is invertible. Under symmetry assumptions one can work in
spaces of invariant functions and obtain existence for all epsilon’s: however the res-
onance phenomenon is still underlying, and this generates bifurcation phenomena,
see [2].

This bifurcation is indeed also present for a class of solutions of (Ep). For
example, one can start from entire (decaying) solutions of the equation in lower
dimension, say in Rn−1, and extend them (with obvious notation) to the whole

Rn by setting Ũ(x1, x
′) = Un−1(x

′). In [4] N.Dancer proved bifurcation of non-

cylindrical solutions from Ũ which are periodic in x1, considering the Morse index
of Ũ restricted to the strip DL :=

{

−L
2 ≤ x1 ≤ L

2

}

, and showing that this diverges
when L→ +∞. A similar strategy was previously used by R.Schoen to prove mul-
tiplicity of solutions for the Yamabe problem, see [9], and in fact other geometric
problems exhibit this kind of phenomenon, like that of finding surfaces in R3 which
have constant mean curvature, giving rise to Delaunay unduloids. These are used
as building blocks to produce complete surfaces in R3 with constant mean curvature
which are union of a compact set and a finite number of ends, namely subsets with
the topology of the cylinder which are asymptotically close to Delaunay surfaces.
Analogous constructions can be done with Yamabe metrics which are defined on
domains of Rn with a finite number of points removed, and which are singular at
these points. We refer for example to [7], and its references for details.
Denoting points of Rn by couples (x1, x

′) ∈ R × Rn−1, we consider first a family
of solutions uL to (Ep) which are periodic in the x1 variable and which decay
to zero at an exponential rate away from x′ = 0, counterparts of the Delaunay
surfaces. We focus on the case of large period L, which allows us to construct
the solutions of [4] using perturbative methods. In fact, setting zi = (iL, 0, . . . , 0)
and considering the function u0,L =

∑

i∈N
U(· − zi), this satisfies the Neumann

boundary conditions on ∂DL and is an approximate solution of (Ep) for L large.
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Using the implicit function theorem, one can add a correction wL to u0,L so that
uL = u0,L + wL solves (Ep) exactly.

To state our result, we introduce some extra notation: set

Π =
{

(z1, z2, 0, . . . , 0) : (z1, z2) ∈ R
2
}

⊆ R
n

and also, given θ ∈ Sn−1(⊆ Rn)∩Π, we define the ray lθ = {tθ : t ≥ 0}. We also
let Rθ denote the rotation in the plane Π (extended naturally to all of Rn) of the
angle θ. The distance function between two points (or between two sets) of R

n is
denoted by dist(·, ·). In the statement of Theorem 1 uL stands for the solution of
(Ep) periodic in x1 just described.

Theorem 1. ([6]) Problem (Ep) admits a three-dimensional (up to rotations and
translations) family of solutions which decay exponentially away from three rays
originating from a common point, and which have an asymptotic periodic profile
along the rays. More precisely, there exist a positive constant C, a neighborhood
U of 0 in R3, smooth functions θ1, θ2, θ3 : U → Sn−1 ∩ Π, L1, L2, L3 : U → R,
y1, y2, y3 : U → Π and a map from U into L∞(Rn), ζ ∈ U 7→ uζ , such that the
following properties hold

(i): uζ is a positive solution of (Ep);
(ii): if lθ1 , lθ2 , lθ3 are the rays corresponding to the directions θ1, θ2 and θ3

respectively, then

uζ(x) ≤ Ce−
1
C dist(x,(lθ1

∪lθ2
∪lθ3

)) for every x ∈ R
n;

(iii): for any ti → +∞, given any compact set K of Rn there holds

‖u (· − tiθa) − uLa (Rθa (· − ya))‖C2(K) ≤ CKe
1
C |ti|, for a = 1, 2, 3.

We can indeed characterize more precisely these solutions in terms of their as-
ymptotic behavior at infinity. In our construction the values of the numbers La,
a = 1, 2, 3, can be chosen arbitrarily large, but the differences |La − Lb|, with
a 6= b, stay uniformly bounded. Also, we have θa∠θb >

π
3 for every a 6= b, where

θa∠θb stands for the angle between the two versors θa and θb. It is also possible
to prove that the following function is positive and monotone in L (L≫ 1)

G(L) :=
1

4

∫

∂DL

(

|∇uL|2 + u2
L

)

dS − 1

2(p+ 1)

∫

∂DL

|uL|p+1dS,

and that it determines uniquely the asymptotic period and profile of the functions
uL. In analogy with a balance condition for the CMC surfaces or the singular
Yamabe metrics we have the following result.

Theorem 2. ([6]) Let u be a function satisfying the properties (i)-(iii) in The-
orem 1, and let θa, La, a = 1, 2, 3, be the corresponding quantities. Assume
that the angles θa∠θb between any two different θ’s are greater than π

3 . Then
∑

a=1,2,3 θaG(La) = 0.
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Remark 3. (a) Existence of solutions of semilinear elliptic equations with infi-
nitely-many bumps has been considered in other works, but from different points of
view from ours. For example, in [3], similar equations in the presence of a slowly-
oscillating potential have been considered. While in that paper is the potential
which mainly determines the locations of the bumps, here are precisely their mutual
interactions which allow us to perform the construction of Theorem 1.

(b) Concerning the Neumann problem mentioned above, we believe that the func-
tions constructed in Theorem 1, scaled in ε, might lead to the existence of solutions
concentrating at a singular set in Ω, with a triple point. This would be a new type
of phenomenon, since so far concentration at sets of dimension greater than zero
has been proved for smooth curves or manifolds only.
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Almgren’s Q–valued functions revisited

Camillo De Lellis

(joint work with Emanuele Spadaro)

A central problem in geometric measure theory is to understand the regularity
of integer rectifiable currents in the euclidean space, which arise as solutions of
the classical Plateau’s problem. There is a wide literature for the case of currents
of codimension 1. Instead much less is available in codimension higher than 1.
The big difference between these two cases is that in higher codimension a new
phenomenon can occur: that of branching. Building on an old observation of
Wirtinger, Federer showed that any holomorphic variety V in Cn = R2n is an
area minimizing current. That is, for any smooth bounded open set Ω, V ∩ Ω
is the unique area–minimizing current which bounds V ∩ ∂Ω. Since holomorphic
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varieties can branch on a set of real codimension 2, clearly the singular set of an
area–minimizing current has codimension at most 2.

Remark 1. In particular, the following example is a good model for the type of
singularities that might occur. Consider in C2 the algebraic variety V := {(z, w) ∈
C2 : z2 = w3}. This defines an integer rectifiable current of dimension 2 in
R4. By the discussion above, this is an area–minimizing current. However, in
a neighborhood of the origin there is no system of coordinates in which V can be
represented as the graph of a function.

In his fundamental work [1], Almgren proved the following

Theorem 1. Let Γ be a k–dimensional area–minimizing integer rectifiable current
in Rn. Denote by supp (∂Γ) the support of the current ∂Γ. Then Γ is an embed-
ded analytic submanifold outside on Rn \ (supp (Γ) ∪ Σ), where Σ is a subset of
Hausdorff dimension at most k − 2 (which is relatively closed in Rn \ supp (Γ)).

Relying on [1] this theorem was later improved by Chang in [2] in the case
k = 2:

Theorem 2. If k = 2, then Σ consists of isolated points.

The book [1] contains almost 1000 pages and it would be desirable to have
a more manageable proof. One reason for the complexity of this work is due
to branching. Indeed, one of the key ideas of the regularity theory for minimal
surfaces, dating back to the pioneering works of De Giorgi, is that, when the
current is approximately flat in an average sense, then it can be well approximated
by the graph of an harmonic functions. Such a statement which holds under
general assumptions in the codimension 1 case, fails in the higher codimension
when branching occurs. For instance, consider the holomorphic varieties Vε =
{z2 = ε2w3} ⊂ C2 = R4. As ε approaches 0, Vε converge to a double copy of the
plane {z = 0}. However, none of these currents can be approximated by the graph
of a function in a neighborhood of the origin.

One of the main ideas of Almgren is to bypass this difficulty by considering
“multiple–valued” functions. After defining these objects and introducing a suit-
able concept of Dirichlet energy for them, he dedicates a first part of his book
to the existence and regularity of minimizers. We note in passing that there is
no freedom in the choice of the energy: since the goal is to devise an appropriate
first order approximation to the area of an integer rectifiable currents, when the
multiple valued functions consists of separate sheets, its energy must be the sum
of the Dirichlet energies of the single sheets.

In [3] we revisit Almgren’s theory of multiple valued functions by giving two
different simplified approaches to it. The first is based on Almgren’s original
proofs, suitably shortened. The other substitutes part of his theory with a more
intrinsic one, which draws heavily on existing results for Sobolev spaces of functions
with metric targets. As an example of how this theory works, we will give here a
quick definition of Q–valued functions and of their energy.
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Definition: [Unordered Q-tuples] [[Pi]] denotes the Dirac mass in Pi ∈ Rn and

AQ(Rn) :=

{

Q
∑

i=1

[[Pi]] : Pi ∈ Rn for every i = 1, . . . , Q

}

.

Remark 2. (AQ(Rn),G) is a closed subset of a “convex” complete metric space.
Indeed, G coincides with the well–known L2-Wasserstein distance, W2, on the
space M2(R

n) of positive measures with finite second moment.

In order to simplify the notation, we use AQ in place of AQ(Rn) and we write
∑

i[[Pi]] when n and Q are clear from the context. Clearly, the points Pi do not
have to be distinct: for instance Q[[P ]] is an element of AQ(Rn). We endow
AQ(Rn) with a metric which makes it a complete metric space (the completeness
is an elementary exercise left to the reader).

Definition: For every T1, T2 ∈ AQ(Rn), with T1 =
∑

i[[Pi]] and T2 =
∑

i[[Si]],
we set

(1) G(T1, T2) := min
σ∈PQ

√

∑

i

∣

∣Pi − Sσ(i)

∣

∣

2
,

where PQ denotes the group of permutations of {1, . . . , Q}.
From now on, we will denote by Ω a bounded open subset of the euclidean

space Rm with sufficiently regular boundary (in fact, the Lipschitz regularity will
be enough for our purposes).

Definition: [Sobolev Q-valued functions] A measurable f : Ω → AQ is in the
Sobolev class W 1,p (1 ≤ p ≤ ∞) if there exist m functions ϕj ∈ Lp(Ω;R+) such
that

(i) x 7→ G(f(x), T ) ∈W 1,p(Ω) for all T ∈ AQ;
(ii) |∂j G(f, T )| ≤ ϕj a.e. in Ω for all T ∈ AQ and for all j ∈ {1, . . . ,m}.

It is not difficult to show the existence of minimal functions ϕ̃j fulfilling (ii),
i.e. such that, for any other ϕj satisfying (ii), ϕ̃j ≤ ϕj a.e.. We denote them by
|∂jf |. We then set

(2) |Df |2 :=
m
∑

j=1

|∂jf |2

and the Dirichlet energy of f ∈W 1,2(U ;AQ) is given by

Dir (f, U) :=

∫

U

|Df |2 .

Finally, the usual notion of trace at the boundary can be easily generalized to this
setting.

Definition: [Trace of SobolevQ-functions] Let Ω ⊂ Rm be a Lipschitz bounded
open set and f ∈ W 1,p(Ω;AQ). A function g ∈ Lp(∂Ω;AQ) is said to be the trace
of f at ∂Ω (and we denote it by f |∂Ω) if, for every T ∈ AQ, the trace of the
real-valued Sobolev function G(f, T ) coincides with G(g, T ).

We are now ready to state the main results of Almgren’s theory.
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Theorem 3 (Existence for the Dirichlet Problem). Let g ∈ W 1,2(Ω;AQ). Then,
there exists a Dir -minimizing f ∈ W 1,2(Ω;AQ) such that f |∂Ω = g|∂Ω.

Theorem 4 (Hölder regularity). There is a constant α = α(m,Q) > 0 with the
following property. If f ∈ W 1,2(Ω;AQ) is Dir -minimizing, then f ∈ C0,α(Ω′)
for every Ω′ ⊂⊂ Ω ⊂ Rm. For two-dimensional domains, we have the explicit
constant α(2, Q) = 1/Q.

For the second regularity theorem we need the definition of singular set of f .
Definition: [Regular and singular points] A Dir -minimizing f is regular at a point
x ∈ Ω if there exists a neighborhood B of x and Q analytic functions fi : B → Rn

such that

(3) f(y) =
∑

i

[[fi(y)]] for almost every y ∈ B

and either fi(x) 6= fj(x) for every x ∈ B, or fi ≡ fj . The singular set Σf of f is
the complement of the set of regular points.

Theorem 5 (Estimate of the singular set). Let f be Dir -minimizing. Then, the
singular set Σf of f is relatively closed in Ω. Moreover, if m = 2, then Σf is
at most countable, and if m ≥ 3, then the Hausdorff dimension of Σf is at most
m− 2.

In the paper [3], following in part ideas of [2], we improve this last theorem in
the following way.

Theorem 6 (Improved estimate of the singular set). Let f be Dir -minimizing
and m = 2. Then, the singular set Σ of f consists of isolated points.

Our paper [1] is considerably simpler than the first part of Almgren’s book.
However, the complexity of Almgren’s proofs is due in part to applications in later
chapters of his book, whereas we have completely ignored any issue which is not
directly relevant to the theory of Dir–minimizing Q–valued functions. Finally,
we wish to point out that parts of our “intrinsic theory” intersects with previous
works of Jordan Goblet (see for instance [4] and [5]).
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Foliations of asymptotically flat manifolds by surfaces of Willmore
type

Jan Metzger

(joint work with Tobias Lamm and Felix Schulze)

1. Introduction

In this talk we consider a problem motivated partly by General Relativity.
There 3-dimensional Riemannian manifolds (M, g) appear as initial data sets for
the Einstein equations. Therefore it is of interest to assign physical quantities such
as mass to such manifolds. An extremely useful concept for measuring the mass
contained in a region bounded by an embedded surface Σ in M is the Hawking
mass

mH(Σ) =
|Σ|1/2

(16π)3/2

(

16π −
∫

Σ

H2 dµ

)

.

Here |Σ| denotes the area and H the mean curvature of Σ. This quantity has
interesting properties which were for example exploited in [HI01] to show the
Riemannian Penrose inequality. Its key properties needed are non-negativity and
monotonicity on a class of particular surfaces, in the given reference for example
along inverse mean curvature flow. However, as one can see from the inequality

16π ≤
∫

Σ′

H2 dµ

for all surfaces Σ′ in Euclidean space, non-negativity can only be expected to hold
on a subset of all surfaces. In Euclidean space the surfaces with non-negative
Hawking mass are exactly the round spheres with mass zero.

Here we want to introduce a variational principle to produce a canonical selec-
tion of good surfaces. The most natural way is to maximize the Hawking mass
among all surfaces. If (M, g) is an asymptotically flat manifold representing an
isolated system with non-negative matter density, then one expects that increasing
the size of a surface also increases the contained mass. Therefore a maximum might
not be attained. To circumvent this issue, we consider the constrained problem

Maximize mH(Σ)

subject to |Σ| = a0.

Note that the area constraint renders this problem equivalent to minimizing the
Willmore energy

Minimize W(Σ) =

∫

Σ

H2 dµ

subject to |Σ| = a0.

The Euler-Lagrange equation of this problem is

(1) ∆H +H |
◦
A|2 +H Ric(ν, ν) + λH = 0.
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Here
◦
A = A− 1

2Hγ is the trace free part of the second fundamental form of Σ, γ
denotes the induced metric on Σ, Ric the Ricci-tensor on M , and ν is the normal
to Σ. The constant λ is the Lagrange parameter.

The goal of the work described here will be to foliate certain asymptotically flat
manifolds by surfaces satisfying (1) for varying λ. The detailed assumptions will
be presented below.

Previous work in this direction was done by Huisken and Yau [HY96] who
showed the existence of foliations by surfaces of constant mean curvature (CMC)
and used these foliations to define a center of mass in such manifolds. Further
directions include CMC foliations in other settings, such as asymptotically hyper-
bolic manifolds.

2. Model spaces

If one considers equation (1) in Euclidean space, we find that all round spheres
satisfy the equation with λ = 0. This is a manifestation of the invariance of
the functional W under translations and dilations. In particular the linearization
of (1) has an (at least) four dimensional kernel.

Now consider the spatial Schwarzschild manifold of mass m > 0,

(R3 \ {0}, gS = φ4geucl) with φ = 1 +
m

2r
.

Here r denotes the Euclidean radius. This manifold describes the exterior of a
single isolated body of mass m. It will be the background on which we model the
asymptotically flat manifolds we consider.

Centered spheres Sr(0) in this metric have

H = const,
◦
A = 0, and Ric(ν, ν) = −2mR−3 = const

with R = φ2r. Hence they satisfy (1) with λ = −Ric(ν, ν) = 2mR−3. Unlike in
flat space λ now depends on r and thus (1) distinguishes spheres of different radius.
It is convenient to express the linearization of (1) in terms of the Jacobi-operator
of minimal surfaces

Lu = −∆u− u
(

|A|2 + Ric(ν, ν)
)

.

Then the linearization M of the right hand side of (1) on centered spheres in
Schwarzschild becomes

Mu = L2u+ 1
2H

2(Lu− 3λu) + λLu.

In Schwarzschild, the spectrum of L is

σ(L) =
{

− 1
2H

2 + λ, 3λ, ckR
−2 +O(R−3)

}

,

where the ck are positive numbers. The eigenvalue 3λ has a three dimensional
eigenspace corresponding to the variations induced by translations. This implies
that the spectrum of M is

σ(M) =
{

µ2 + 1
2H

2(µ− 3λ) + λµ : µ ∈ σ(L)
}

=
{

− 1
2H

2λ = − 12m
R5 +O(R−6), 6λ2 = 24m

R6 ,
c̃k

R4 +O(R−5)
}
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where c̃k are also positive numbers. In particular M is invertible and the implicit
function theorem can be used to deform individual surfaces under slight pertur-
bations of the metric. However, the main difficulty is the construction of a whole
foliation.

3. Results and sketch of proof

Before we formulate the main results, we make the following definition

Definition 1. A three dimensional Riemannian manifold (M, g) is called (m, η, σ)-
asymptotically Schwarzschild if there is a compact subset B ⊂M and coordinates
x : M \B → R3 \Bσ(0) such that in these coordinates

(2) r2|g − gS| + r3|∇ −∇S | + r4|Ric−RicS | + r5|∇Ric−∇S RicS | ≤ η

where gS is the Schwarzschild metric of mass m. Furthermore ∇ is the Levi-Civita
connection of g and the quantities with the superscript S are taken with respect to
gS.

Theorem 1. For all C′ and m > 0 there exist η0 = η0(m) such that for all σ > 0
there is λ0 and C depending only on C,m, η and σ with the following properties.

If (M, g) is (m, η, σ)-asymptotically Schwarzschild and satisfies

(1) r−5| Scal | ≤ C′, where Scal is the scalar curvature of (M, g), and
(2) η ≤ η0

then for all λ ∈ (0, λ0) there exists a surface Σλ which solves (1) for the given λ.
The collection of the Σλ forms a foliation near the asymptotic end of M .

The surface is well approximated in C2-norm by a coordinate sphere Srλ
(aλ)

with |aλ| ≤ C.

Before we turn to the question of uniqueness, we have to describe some features
of the existence proof. A key observation is that the assumptions H > 0 and λ > 0
allow to derive the estimate

∫

Σ

λ+ |
◦
A|2 + |∇ logH |2 + 1

4H
2 dµ ≤ 4π + Cr−1

min

for a connected surface Σ satisfying (1) with r ≥ rmin. This follows by dividing (1)
by H and the Gauss equation together with Gauss-Bonnet. Together with the
estimate

∫

Σ

H2 dµ ≥ 16π − Cr−1
min

this implies that
∫

Σ

H2 + |∇ logH |2 dµ ≤ Cr−1
min.

Using methods from [KS01] these estimates can be improved to
∫

Σ

H2 + |∇ logH |2 dµ ≤ |Σ|
∫

Σ

|ω|2 +
(

Ric(ν, ν) + λ
)2
dµ

where ω = Ric(ν, ·)T . Since in Schwarzschild both of these terms vanish on cen-
tered spheres, this estimate can be eventually improved such that the right hand
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side is dominated by the error from (2), provided we can argue that the surfaces
in question are close to centered spheres. Taking advantage of the conformal in-

variance of the L2-norm of
◦
A, we get that the surfaces are well approximated by

spheres from [DLM05, DLM06].
To get position estimates we take advantage of the Gauss equation to rewrite

the functional as

(3) W(Σ) = 8π(1 − genus(Σ)) + 2V(Σ) + U(Σ)

where

V(Σ) =

∫

Σ

Ric(ν, ν) − 1
2 Scal dµ and U(Σ) =

∫

Σ

|
◦
A|2 dµ.

The main idea is to identify portions of this decomposition which are sensitive to
translations. The functional U is translation invariant in Schwarzschild and hence
it is clear that it does not contribute a centering force. We therefore concentrate
on the other two terms in (3).

The variation of W can be computed using equation (1), whereas the variation
of V requires some care. The main issue is that to first order V is translation
invariant on coordinate spheres in Schwarzschild. However, taking advantage of the
conformally flat structure and the geometric Pohozaev identity, we can explicitly
calculate the variation of V and get a definite term, which combines with the
variation of W to the contribution expected by the size of the 6λ2 eigenvalue of
M.

Recall that the estimates imply that solutions Σλ to (1) are approximated by
spheres Srλ

(aλ). Then τλ = |aλ|/rλ is a scale invariant measure for how off-center
Σλ is. Now we formulate the uniqueness theorem.

Theorem 2. Assume that (M, g) is as in the existence theorem. Then for all
ε > 0 there exists r0 = r0(m, η, σ, C, ε) with the following properties.

Let Σ′
λ be a family of surfaces satisfying (1) with λ > 0 and H > 0. Assume

that the approximating spheres Srλ
(aλ) for Σ′

λ satisfy,

r0 < min
Σλ

r, rλ < (min
Σλ

r)2−ε, and τλ < (min
Σλ

r)−ε.

Then all Σ′
λ coincide with the surfaces Σλ constructed in the existence theorem.
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Partial regularity for biharmonic maps, revisited

Michael Struwe

In [10], jointly with Tristan Rivière we presented a new approach to the partial
regularity for stationary weakly harmonic maps in dimension m ≥ 2 as a special
case of a regularity result for elliptic systems

(1) −∆ui = Ωij · ∇uj in B

on a ball B = Bm ⊂ Rm with Ω = (Ωij) ∈ L2(B,∧1Rm ⊗ so(n)) and with
u = (u1, . . . , un) ∈ H1(B,Rn) satisfying the Morrey growth assumption

(2) sup
x∈B, r>0

(

1

rm−2

∫

Br(x)∩B
(|∇u|2 + |Ω|2) dx

)1/2

< ε(m).

A key ingredient in this new approach is the natural use of gauge theory, which
is motivated by the anti-symmetry of the 1-form Ω = Ωij . Previously, Rivière [9]
already had recognized this structure as the essential structure of the harmonic
map system in m = 2 space dimensions, allowing him to obtain an equivalent
formulation of this equation in divergence form. His results generalize to a large
number of conformally invariant equations of second order. Subsequently, Lamm
and Rivière [7] obtained a similar equivalent formulation of the biharmonic map
system as a conservation law in the “conformal” case of m = 4 space dimensions.
However, just as the methods of [9] no longer seem applicable when m > 2, also
the approach in [7] seems to fail in dimensions m > 4.

The paper [11] extends the approach in [10] to fourth order equations, allowing
to recover the known partial regularity results for stationary (extrinsic) biharmonic
maps into a closed target manifold N ⊂ R

n by a simpler method and under less
stringent, possibly optimal regularity assumptions. In particular, we obtain the
following result which improves the pioneering work of Chang-Wang-Yang [4] and
the later results by Changyou Wang [16] and Strzelecki [12] in this regard.

Theorem 1. Let Nk ⊂ Rn be a closed submanifold of class C3. Let m ≥ 4 and
suppose u ∈ H2(B;N) is a stationary biharmonic map on a ball B = Bm ⊂ R

m.
There exists a constant ε0 > 0 depending only on N and m with the following
property. Whenever on some ball BR(x0) ⊂ B there holds

(3) R4−m
∫

BR(x0)

(|∇2u|2 + |∇u|4)dx < ε0,

then u is Hölder continuous (and hence as smooth as the target permits) on
BR/3(x0). In particular, u is smooth off a set S ⊂ B of vanishing (m − 4)-
dimensional Hausdorff measure.
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Recall that for any 1 ≤ p <∞ and any s < m a function f ∈ Lp(B) belongs to
the homogeneous Morrey space Lp,s(B) on a ball B ⊂ Rm, provided that

(4) ‖f‖pLp,s(B) = sup
x0∈B , r>0

(

1

rs

∫

Br(x0)∩B
|f |pdx

)

<∞ ,

and f ∈ Lp,m−kp
k (B), provided that f ∈ W k,p(B) with ∇lf ∈ Lp,m−lp(B) for

0 < l ≤ k.
Assume that condition (3) is satisfied on B3(0) for some sufficiently small num-

ber ε0 = ε0(m,N) > 0. As in [4], Lemma 4.8, or [16], Lemma 5.3, a first important
step in the proof of Theorem 1 then is the derivation of the Morrey estimate

(5) ε41 := ||∇2u||2L2,m−4(B2(0))
+ ||∇u||4L4,m−4(B2(0))

< Cε0

for a stationary biharmonic map u, with a constant C = C(N,m). In [11] we ob-
serve that this bound directly follows from the monotonicity formula for stationary
biharmonic maps due to Chang-Wang-Yang [4] and Angelsberg [2], whereas [4],
[16] in addition again use the biharmonic map system for the derivation of (5).

Next we cast the equation for a biharmonic map u ∈ H2(B,Rn) into the form

(6) ∆2u = ∆(D · ∇u) + div(E · ∇u) + F · ∇u in B

previously considered in [7] in dimension m = 4. Unlike [7], we decompose the
function F as F = G+∆Ω with Ω = (Ωij) ∈ H1(B,∧1Rn⊗so(n)). The coefficient
functions D, E, G, and Ω naturally depend on u and satisfy the growth conditions

(7) |D| + |Ω| ≤ C|∇u|, |E| + |∇D| + |∇Ω| ≤ C|∇2u| + C|∇u|2, etc.
Thus they also naturally inherit bounds in appropriate Morrey norms.

As in [10] we interpret the 1-form Ω ∈ H1(B;∧1Rn⊗ so(n)) arising in equation
(6) as a connection in the SO(n)-bundle u∗TRn. An extension of the classical
result of Uhlenbeck [15] on the existence of Coulomb gauges for connections in
Morrey spaces, due to Meyer-Rivière [8], Theorem I.3, and Tao-Tian [14], Theorem
4.6, then permits to find a gauge transformation P and an (m−2)-form ξ satisfying

dPP−1 + PΩP−1 = ∗dξ on B(8)

with natural Morrey bounds, thereby transforming Ω into Coulomb gauge. Ap-
plying the gauge transformation P to ∆u, we obtain the gauge-equivalent form

∆(P∆u) = div2(DP ⊗∇u) + div(EP · ∇u) +GP · ∇u+ ∗d∆ξ · P∇u(9)

of equation (6), where now |DP | ≤ C(|∇u| + |∇P |), etc.
We regard (9) and (8) as a coupled system of equations for u and P .
On any ball BR(x1) ⊂ BR0(x0) ⊂ B2(0) we split

(10) P∆u = f + h,

where ∆h = 0 in BR(x1) and where f
∣

∣

∂BR(x1)
= 0 in the weak sense. Similar to

[3] and following also [10] in this regard, for numbers 1 < p < m/2 < q < m with
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1/p+ 1/q = 1 we proceed to estimate f by duality, and we obtain

R2p−m
∫

BR(x1)

|f |p dx ≤ Cε1
(

||∇u||pL2p,m−2p(BR(x1))
+ ||∇P ||pL2p,m−2p(BR(x1))

+ ||∇u||2pL4,m−4(BR(x1))
+ ||∇P ||2pL4,m−4(BR(x1))

)

.

(11)

We can close the estimates by means of the following local version of a Gagliardo-
Nirenberg type interpolation result, due to Adams-Frazier [1] with later refine-
ments by Meyer-Rivière [8] and Strzelecki [13]. A similar result is stated in [16],
Proposition 4.3.

Proposition 2. For any 1 < s ≤ m/2 there exists a constant C such that for any

ball B ⊂ Rm and any u ∈ Ls,m−2s
2 (B) there holds

||∇u||2L2s,m−2s(B) ≤ C||∇u||L1,m−1(B)(||∇2u||Ls,m−2s(B) + ||∇u||Ls,m−s(B)).

Finally, with the help of the Campanato estimates for harmonic functions, as
in Giaquinta [5], proof of Theorem III.2.2, p.84 f., we derive a Morrey-type decay
estimate

(12)

∫

Br(x0)

|∇u|p dx ≤ Crm−p+αp

for all x0 ∈ B1(0) and all 0 < r < 1 with uniform constants C and α > 0. By
Morrey’s Dirichlet growth theorem then u ∈ C0,α(B1(0)), as claimed.

Note that in view of (11) we need to improve the estimates for P along with the
estimates for u; thus it is essential for our approach that the coefficient functions
Ω smoothly depend on u. An interesting question, that we discussed with Tristan
Rivière, is whether for a given Ω ∈ L2,m−4

1 ∩L4,m−4(B,∧1Rm ⊗ so(n)) in analogy

with our results for (1) weak solutions u ∈ L2,m−4
2 (B; Rn) to the linear equation

(13) ∆2ui = ∆Ωij∇uj ,
are Hölder continuous, provided u and Ω satisfy the analogue of (2).
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Minimizers of the Willmore functional under fixed conformal class

Reiner Schätzle

(joint work with E. Kuwert)

We prove the existence of a smooth minimizer of the Willmore energy in the
class of conformal immersions of a given closed Riemann surface into Rn, n = 3, 4,
if there is one conformal immersion with Willmore energy smaller than a certain
bound Wn,p depending on codimension and genus p of the Riemann surface.
For tori in codimension 1, we know W3,1 = 8π .

Some minimization problems in quantum mechanics

Elliott H. Lieb

(joint work with Rupert Frank, Robert Seiringer, Heinz Siedentop and Barry
Simon)

ABSTRACT: Three examples are given, in order of historical development,
of minimization problems in quantum mechanics arising from attempts to model
the N–body Schrödinger equation by simpler energy functionals involving only
densities. These simpler models are Thomas-Fermi theory, Hartree-Fock theory
and the Müller density matrix functional theory.

1. Introduction

The triumph of quantum mechanics was the explanation of the fact that a neg-
atively charged electron (with charge -1) does not fall into a positively charged
nucleus (of charge +Z). If the nucleus is located at R ∈ R3 the Hamiltonian
(energy function) is H = p2 + V (x) with V (x) = −Z/|x − R|. In classical me-
chanics the minimum of H is −∞, obtained with p = 0, x = R. Schrödinger’s
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Hamiltonian, instead, is an operator H = −∆+V (x) acting on L2(R3). Thanks to
Sobolev’s inequality, ||∇ψ||2 > C||ψ||6, one easily shows that E := inf{(ψ,Hψ) :
||ψ||2 = 1} = −C′Z2. The minimizing ψ(x) ∼ exp(−Z|x|/2).

The next problem to consider is a molecule comprised of many, say M , nuclei
located at R1, R2, . . . , RM in R3. For simplicity we shall assume here that they
all have the same charge +Z. There are N electrons now and the Hilbert space is
the tensor product H = ⊗NL2(R3). (To be precise it is L2(R3; C2), but this does
not change the qualitative picture.) The Hamiltonian operator is now

H = −
N
∑

j=1

∆j +W (X)

where X denotes the electron coordinates x1, . . . , xN in R3 and

W (X) =

N
∑

j=1

V (xj) +
∑

1≤i<j≤N
|xi − xj |−1 + U

with U being a constant and with V being the potential given by

U = Z2
∑

1≤i<j≤M
|Ri − Rj |−1 V (x) = −Z

M
∑

j=1

|x− Rj |−1.

These terms constitute the total electrostatic potential given by Coulomb’s law.
Again E := inf{(ψ,Hψ) : ||ψ||2 = 1}

The proof of the finiteness of E is the same as for an atom, but we would like to
know that when N and M are large, E is bounded below by E > −A(Z)(N +M)
for some Z–dependent constant A. This fact, known as Stability of Matter, was
proved in 1967 by Dyson and Lenard [1] and is absolutely essential if we are
to explain the real world. A much simpler proof was given in 1975 in [2]. It
is not true, however, unless we impose an additional condition on H, namely
H = ∧NL2(R3) ⊂ ⊗NL2(R3). That is, ψ must be an antisymmetric function of its
N arguments The key analytic fact at play in this (physical) H is the Lieb-Thirring
inequality for any normalized, antisymmetric ψ

N
∑

j=1

||∇φj ||22 ≥ C

∫

ρψ(x)5/3dx ,

where ρψ(x) = γψ(x, x) is the electron density and

γψ(x, y) := N

∫

R3(N−1)

ψ(x, x2, . . . , xN )ψ∗(y, x2, . . . , xN )dx2 . . . xN .

is the electron density matrix (which depends on ψ). This inequality fails miserably
without antisymmetry.

What we want is an accurate evaluation of E as a function of R1, . . . ,RM and
then minimize E over all configurations of the Rj . This project is of vast com-
mercial importance (apart from its purely mathematical interest) because success
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means the ability to compute the shape of molecules for pharmaceuticals, etc.
without trial and error in the laboratory. Large sums of money are obviously
involved here.

Most attempts proceed by focusing on ρ or γ and forgetting about ψ. One
posits the existence of some functional E of ρ or γ (depending parametrically on
the Rj) whose minimum is supposedly E. The condition imposed on ρ and γ is
∫

ρ = trace γ = N and 0 ≤ γ ≤ 1 as an operator. The last condition comes from
the antisymmetry of the underlying ψ.

History is replete with attempts to find accurate functionals. Some of them
work well in some circumstances, but there is no universal functional yet.

2. Thomas–Fermi Theory

The first attempt to find E was invented independently by Thomas and Fermi
one year after Schrödinger’s quantum mechanics. In a modern formulation [3, 4]

ETF (ρ) = K

∫

R3

ρ(x)5/3dx+

∫

R3

V (x)ρ(x)dx+
1

2

∫

R3

∫

R3

ρ(x)ρ(y)|x−y|−1dxdy+U .

ETF leads, of course, to a convex minimization problem. It was thoroughly studied
in[3, 4] and all essential properties are known. The most important conclusions
are:

(1) There is a minimizing ρ if and only if N ≤MZ. This coincides well with
what is expected for the Schrödinger equation.

(2) There is no binding, i.e., the configuration of the nuclei that minimizes
the energy is one of infinite separation.

(3) Nevertheless, ETF is asymptotically exact in Z, i.e., ETF /E → 1 as Z →
∞.

We can conclude that TF theory is accurate on some points, but does not tell
us anything about molecules.

3. Hartree–Fock Theory

Another approximation scheme that came shortly after Schrödinger’s equation
was developed by Hartree and Fock. One way to construct an antisymmetric ψ is
to take N orthonormal functions of one variable, Φ = φ1, . . . , φN and then form a
determinant:

ψ(x1, . . . , xN ) = (N !)−1/2detφi(xj)
∣

∣

N

i,j=1
.

For such a ψ we can compute γ(x, y) =
∑N

i=1 φi(x)φ
∗
i (y). We can also evaluate

(ψ, H ψ) = EHF (γ)

:= tr(−∆ + V (x))γ

+
1

2

∫

R3

∫

R3

[

γ(x, x)γ(y, y) − |γ(x, y)|2
]

|x− y|−1dxdy + U.
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This defines a minimization problem (for the N O.N. φi). Since it is not convex
there can be more than one minimizer. There is one if N < MZ + 1 (see [5]), and
it is known that there is no minimizer if N > MZ + constant for large Z [6]. It
is also known that this HF minimization problem is more accurate than TF, but
it is difficult to get an accurate evaluation of the minimum since N functions are
involved.

It was finally realized years later [7] that EHF (γ) defines a variational problem
in its own right. That is, if we ignore the N functions and simply try to minimize
EHF (γ) with respect to γ (but taking into account that 0 ≤ γ ≤ 1 and tr γ = N)
then this infimum is precisely what one obtains by assuming that γ has N eigenval-
ues 1, and the rest zero — which is the original HF problem. The determinantal
function ψ thus gives the minimizing γ for EHF (γ). We shall call this version the
HF–γ theory.

We have a minimization problem that is a little unusual in the calculus of
variations. We minimize a functional of a function, γ of two variables, but the
condition on this function is an eigenvalue condition on the function considered as
an integral kernel.

4. Müller–Functional Theory

To remedy a defect of HF-γ theory M’üller proposed the following change.
Replace the term ΞHF (γ) = −

∫ ∫

|γ(x, y)|2|x − y|−1dxdy, the so called exchange

energy, by the term ΞM (γ) = −
∫ ∫

|γ1/2(x, y)|2|x − y|−1dxdy; everything else

remains the same. Here γ1/2 means the square root in the operator sense, i.e.,
∫

γ1/2(x, z)γ1/2(z, y)dz = γ(x, y). This new minimization problem is obviously
technically more complicated but it has one big advantage over the HF problem.
It is convex!

The new exchange term ΞM (γ) is convex because of the following operator
inequality for operators A ≥ 0. A → −trA1/2LA1/2L† is convex for any L. This
was proved in [8] and generalized in [9] to the convexity of A → −trApLA1−pL†

for all 0 ≤ p ≤ 1. It is the basis for the strong subadditivity of quantum entropy
and other basic facts in quantum information theory.

This Müller minimization problem was studied in [10] where it was shown that
a minimizer exists up to N = MZ; it is not known if there is a maximum N
or not. Convexity helps, for it implies that the minimizer has a unique density
ρ(x) = γ(x, x). Nevertheless there are several interesting open problems in [10]
and everyone is welcome to try to solve them.
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Some applications of variational problems related to Lorentzian
geometry

Eitan Bachmat

(joint work with M. Elkin, V. Khachaturov, D. Berend, S. Skiena, L. Sapir, H.
Sarfati)

We consider several seemingly unrelated problems which arise in the analysis
of various systems. The first problem concerns the use of express lines in a su-
permarket. The express line is defined by a bound on gthe number of items, this
being related to the service time of the customer. We may extend this to all the
lines in the supermarket, by setting bounds on the number of items which are
allowed in each line. For example, the first line will handle up to 10 items, the
next 11-20 items, the third, 21-27 items and so on. Such a line management policy
was suggested in the context of computer servers by Mor Harchol Balter and her
collaborators. The question is how to set the bounds so that the resulting system
will be as efficient as possible, for example, will minimize the average waiting time
of customers.

A second problem concerns airplane boarding. Given an airplane, with known
leg room and number of passengers per row, how should the airline control the
queueing of passengers. Should it allow first the passengers from the back of the
airplane to board, following the passengerfs from the front, or perhaps it should
allow windows passengers first, followed by middle and then aisle passengers? or
perhaps some combination of these policies?

A third problem is related to the identification of horizontal cracks in a 2D or
3D picture. Mathematically, the question is the following, given a distribution of
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points in the plane or in space, how many ofthese points can reside on the graph
of a Lipschitz function with constant 1. This question was originally considered
by E. Arias-Castro, D. Donoho, X. Hou and C. Tovey.

A fourth problem concerns scheduling of I/O to a disk drive. Disk drives, such
as the ones in a PC or laptop can handle many concurrent requests to read and
write data. Due to mechanical motion, the order in which the requests are served
has a considerable effect on the total service time (performance) of the disk drive.
the question is to find the optimal order and to estimate the resulting service time.
This problem was considered by M. Andrews, M. Bender and L. Zhang.

As it turns out all these problems are related to Lorentzian geometry and the
answers are given in terms of variational problems. The process of passengers
boarding an airplane and the process of optimally scheduling I/O to a disk are
both described as a wave front propagating in a 2 dimensional Lorentzian domain.
Optimizing the number of items allowed in each line of the supermarket leads to a
variational problem which is very similar to the geodesic equation in a Lorentzian
domain, while the Lipschitz graph problem is a discrete variant of a maximal hy-
persurface, the Lorentzian analogue of a minimal surface in Riemannian geometry.

In the talk we discussed all of the above examples and showed how the discrete
setting leads to a nice interpretation of Einstein’s law of geodesic motion as being
probabilistically inevitable, assuming only causality.

Variational problems related to the area functional in the
sub-Riemannian Heisenberg groups

Manuel Ritoré

(joint work with César Rosales)

The Heisenberg group Hm is the product Cm × R with the Lie group structure

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ +
m
∑

i=1

Im(ziz̄
′
i)).

The Lie algebra of left-invariant vector fields is given by

Xj :=
∂

∂xj
+ yj

∂

∂t
, Yj :=

∂

∂yj
− xj

∂

∂t
, T :=

∂

∂t
, j = 1, . . . ,m.

The horizontal distribution is given, at p ∈ Hm, by Hp := span{(Xj)p, (Yj)p :
j = 1, ...,m}. It is not integrable since [Xj , Yj ] = −2T for any j. We shall
consider on Hm the left-invariant Riemannian metric g so that {Xj , Yj , T : j =
1, ...,m} is an orthonormal basis of tangent vectors at every point. Since the
horizontal distribution is bracket-generating, Chow’s Theorem [13] implies that
any pair of points in Hm can be joined by a piecewise smooth horizontal curve.
The Carnot-Carathéodory distance between p, q ∈ Hm is given by the infimum
of the Riemannian length in (Hm, g) in the class of piecewise smooth horizontal
curves joining p and q.
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The Riemannian volume element dvg associated to g coincides with the Haar
measure of Hm and with the Lebesgue measure of Cm × R, and it is taken as
the standard volume in Hm. Several notions of hypersurface area can be defined
on Hm, such as the Minkowski content associated to the Carnot-Carathéodory
distance, the horizontal perimeter [12], [11], or the spherical Hausdorff measure.
For C2 hypersurfaces Σ ⊂ Hm they are all equivalent and coincide with the sub-
Riemannian area given by

A(Σ) :=

∫

Σ

|NH | dΣ,

where N is a local unit normal to Σ in (Hm, g), NH is the orthogonal projec-
tion over the horizontal distribution, and dΣ is the Riemannian hypersurface area
element in Σ.

Variational problems related to this sub-Riemannian area functional have been
the object of recent intensive research. These include the isoperimetric problem,
consisting on finding the minimizers of perimeter under a volume constraint, and
problems of Bernstein type, concerning the classification of entire graphs over given
planes which are critical points of area. The reader is referred to the monograph
[6] for an exhaustive list of references. Interesting results on the Plateau problem
for t-graphs in Hm can be found in [8].

The first step toward a complete comprehension of critical points of area is the
computation of the first variation of area

Lemma ([19],[20]). Let Σ ⊂ H
m be an immersed oriented C2 hypersurface. Let

U be a smooth vector field with compact support, and {ϕs}s∈R the associated flow.
Assume that divΣ νH ∈ L1

loc(Σ). Then

(1)
d

ds

∣

∣

∣

∣

s=0

A(ϕs(Σ)) = −
∫

Σ

divΣ

(

u (νH)⊤
)

dΣ +

∫

Σ

u divΣ νH dΣ.

Here νH is the horizontal unit normal to Σ, defined out of the singular set Σ0 :=
{p ∈ Σ : TpΣ = Hp}, and u :=

〈

U,N
〉

. The function divΣ νH , defined on Σ − Σ0,
is the mean curvature of Σ. We must remark that a related first variation formula
for t-graphs was obtained in [8].

To characterize the critical points of area the Hausdorff dimension of the sin-
gular set Σ0 must be estimated [2], [8]. It turns out that Σ0 is of sufficiently low
Hausdorff dimension in Hm, m > 1, so that the first integral in (1) does not con-
tribute to the first derivative of area. For m = 1 the structure of the singular set
has been described by Cheng, Hwang, Malchiodi and Yang [7]: Σ0 is composed of
isolated points and singular C1 curves, and the first integral in (1) has in fact a non
trivial contribution to the first derivative of area. It follows that critical points of
area in H1 have zero (or constant if there is a volume constraint) mean curvature,
and the characteristic curves must meet orthogonally the singular curves [20].

Using this characterization, the ruling property of constant mean curvature
surfaces in H1, and properties of Jacobi fields in H1, it has been recently proven
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Alexandrov Theorem in H
1 ([20]). Let Σ ⊂ H

1 be a compact connected embedded
C2 surface which is a critical point of area for any variation keeping constant the
volume enclosed by Σ. Then Σ is congruent to a Pansu sphere.

A Pansu sphere is the union of all minimizing segments of horizontal geodesics
with the same non-vanishing curvature starting from a given point. A complete
description of geodesics and Pansu’s spheres can be found in [20, § 3]. This re-
sult gives a positive answer to Pansu’s conjecture [15] assuming C2 regularity of
solutions. Some other partial results can be found in [10], [14], [18].

Improving the characterization of Cheng, Hwang, Malchiodi and Yang [7] of
entire minimal xy-graphs, one gets the following Bernstein type result

Theorem ([20]). Let Σ ⊂ H1 be a C2 entire t-graph which is a critical point of
area for any variation with compact support. Then Σ is congruent either to a plane
or to the hyperbolic paraboloid t = xy.

We should mention that the regularity of critical points of area in the Heisenberg
group is still an open question. Examples of area-minimizing t-graphs in H1 with
Euclidean Lipschitz regularity have been given in [8], [17]. Existence and regularity
results have been obtained in [8], [9], see also [16]. Regularity properties of H-
regular surfaces [1] in terms of regularity properties of the horizontal unit normal
have been obtained by Bigolin and Serra-Cassano [3]. Strong regularity results for
Euclidean Lipschitz viscosity solutions of the minimal surface equation have been
obtained by Capogna, Citti and Manfredini [4], [5].
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Superquadratic curvature functionals and approximation of the
Willmore energy

Tobias Lamm

(joint work with Ernst Kuwert and Yuxiang Li)

For an immersed, closed surface f : Σ → Rn the Willmore functional is defined
by

W (f) =
1

4

∫

Σ

|H |2dµg

where H denotes the mean curvature vector of f , g is the pull-back metric and µg
is the induced area measure on Σ. By the Gauss equations and the Gauss-Bonnet
theorem we have the equivalent expression

W (f) =
1

4

∫

Σ

|A|2dµg + 2π(1 − q),

where A is the second fundamental form of the immersion and q denotes the genus
of the surface Σ. We also define the functional F by

F (f) =
1

4

∫

Σ

|A|2dµg.
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¿From the above we see that the critical points of F and W coincide and they are
called Willmore surfaces. In the case n = 3 the Euler-Lagrange equation of both
functionals is given by

∆gHS + |
◦
A|2HS = 0,

where
◦
A = A− 1

2Hg is the tracefree second fundamental form and HS = H · ν is
the scalar mean curvature.

One of the most ineresting properties of the Willmore functional is its conformal
invariance. This means that for every Möbius transformation Ψ : Rn → Rn and
every immersion f : Σ → Rn one has

W (Ψ ◦ f) = W (f).

Another interesting fact is that for all closed immersions one has the estimate

W (f) ≥ 4π(1)

and equality is attained only by round spheres. This shows that the round spheres
are the absolute minimizers of the Willmore functional among all closed immer-
sions. A natural question which then arises is whether there exist minimizers of
W with different genus?

To simplify the notation we define the numbers

βq = inf{W (f)|f : Σ → R
n smooth, closed immersion, genus(Σ) = q}.

¿From (1) it follows that β0 = 4π and the famous Willmore conjecture states
that β1 = 2π2, which is the energy of the Clifford torus. In 1993, Leon Simon [8]
showed that β1 is attained and that moreover the same is true for βq (q ≥ 2) if a
Douglas-type condition is satisfied. The Douglas-type condition was subsequently
shown to be true by Bauer & Kuwert [1].

In this talk we want to outline a different proof of the existence of a minimizer for
the Willmore functional for any genus. In order to do so we study regularizations
Fp and Wp (p > 2) of the Willmore energy. These functionals are defined by

Fp(f) =
1

4

∫

Σ

(1 + |A|2) p
2 dµg respectively

Wp(f) =
1

4

∫

Σ

(1 + |H |2) p
2 dµg.

A similar approximation has previously been studied by Sacks & Uhlenbeck [7]
in the case of the Dirichlet energy for maps from a Riemannian surface into a
Riemannian manifold.

It is interesting to note that the functionals Fp and Wp arise naturally in the
research area of image reconstruction and therefore their study is of independent
interest.

The critical points of Fp and Wp are weak solutions of a fourth order nonlinear
system of partial differential equations. Locally one can write these immersions as
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the graph of a function u : D1 → R
n−2 with u ∈ W 2,p. The Euler-Lagrange equa-

tions, written in terms of the function u, become strictly elliptic and one can apply
the standard difference quotient method to conclude that the graph functions are
actually in W 3,2. Moreover, by using a higher integrability result of Bildhauer,
Fuchs & Zhong [2], we show that u ∈ C2. By reinserting this improved regularity
into the difference quotient procedure we prove the Hölder continuity of the second
derivatives of u and by standard Schauder theory we finally obtain the smoothness
of critical points of Fp and Wp.

Next we show the existence of minimizers of the functionals Fp and Wp with
prescribed genus. This result is obtained by using standard variational techniques
once a compactness result for minimizing sequences has been obtained. In the
case of Fp the desired compactness result has been proved by Langer [5]. He
showed that for every p > 2 and every sequence of immersions fk : Σ → Rn with
uniformly bounded energy Fp(fk) ≤ c there exist diffeomorphims φk : Σ → Σ such
that fk ◦ Φk converges (modulo the choice of a subsequence) in C1 to a limiting
immersion f∞ : Σ → Rn with Fp(f∞) ≤ c.

We prove the corresponding result for a sequence of immersions fk : Σ → R
n

with uniformly bounded energy Wp and with Willmore energy W (fk) ≤ 8π− δ for
some δ > 0.

By connecting two-spheres with a catenoidal neck whose diameter tends to zero
along the sequence one sees that one can not drop the bound on the Willmore en-
ergy in order to get the desired compactness property in the case of the functional
Wp.

After having obtained the existence of critical points fp of Fp and Wp with genus
q we study their behavior as p → 2. In a first step we prove the so called small
energy estimates. These estimates show that if the second fundamental form of fp
is locally small in L2 then we get a uniform local control on the W 3,2-norm of fp.
For the Willmore flow corresponding estimates have been obtained by Kuwert &
Schätzle [3].

By a Pohozaev type argument it is easy to see that the area of the critical
immersions is converging to zero as p → 2. This means that in order to obtain
a non-zero limit we have to rescale fp such that the rescaled immersions f ′

p have
strictly positive and finite area. After having done this we conclude, by using
the small energy estimates, that f ′

p converges to a limiting Willmore immersion

f0 weakly in W 3,2 away from at most finitely many points. Around the singular
points we perform a blow-up and show that it converges to a smooth, non-trivial
and non-compact Willmore immersion f1. By repeating this procedure finitely
many times we can find all possible blow-up’s f i, 1 ≤ i ≤ m.

In the case that the sequence of critical points fp of Fp or Wp satisfies ad-
ditionally lim infp→2W (fp) < 8π we show that the point removability results of
Kuwert & Schätzle [4] and Rivière [6] apply and therefore the weak limit f is an
analytic Willmore embedding. Moreover, after suitably inverting the blow-up’s
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f i, 1 ≤ i ≤ m, we get smooth, closed and non-trivial Willmore immersions I(f i),
1 ≤ i ≤ m.

In summary we can state one of our main results as follows

Theorem 1. Let Σ be a surface with genus q and let fp : Σ → Rn be a sequence of
critical points of Fp respectively Wp with uniformly bounded energy. We assume
moreover that lim infp→2W (fp) < 8π. Then there exists a subsequence pk → 2
and an analytic Willmore embedding f0 : Σ0 → Rn of a surface Σ0 with genus
q0 such that fpk

→ f0 weakly in W 3,2 away from at most finitely many points.
Moreover there are at most finitely many smooth, closed and non-trivial Willmore
immersions I(f1) : Σ1 → R

n, . . ., I(fm) : Σm → R
n with genus(Σi) = qi such

that

(2) q =

m
∑

i=0

qi,

and

(3) lim inf
k→∞

Fpk
(fpk

) ≥W (f0) +

m
∑

i=1

(W (I(fi)) − 4π),

respectively

(4) lim inf
k→∞

Wpk
(fpk

) ≥W (f0) +

m
∑

i=1

(W (I(fi)) − 4π)

When restricting the attention to a sequence of minimizers of Fp respectively
Wp we show that

lim
p→2

βpq = βq < 8π,(5)

where

βpq = inf{Fp(f) resp. Wp(f) | f : Σ → R
n smooth, closed immersion,

genus(Σ) = q}.
(5) with Theorem 1 and the Douglas condition of Bauer & Kuwert [1] we are then
able to give a new proof of the existence of a minimizing Willmore surface with
given genus.

Theorem 2. Let q ∈ N0. Then there exists a smooth Willmore embedding f :
Σ → R

n with genus(Σ) = q and W (f) = βq.
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From the Ginzburg-Landau Model to Vortex Lattice Problems

Sylvia Serfaty

(joint work with Etienne Sandier)

(1) Gε(u,A) =
1

2

∫

Ω

|∇Au|2 + |h− hex|2 +
(1 − |u|2)2

2ε2
,

in the asymptotic regime of ε → 0. The main objects of interest are the vortices,
i.e. zeroes of u with nonzero topological degree, studied via the vorticity

(2) µ(u,A) = curl (iu,∇Au) + curlA.

In a first stage, we derived (see [2]) a mean-field model describing the optimal
vorticity at leading order: Considering hex = λ|log ε| we established by a Γ-
convergence approach that minimizers (uε, Aε) of Gε satisfy

µ(uε, Aε)/hex converges to µλ, as ε→ 0,

where µλ = −∆hλ + hλ, and hλ is the solution of the following minimization
problem

(3) min
h−1∈H1

0(Ω)

1

2λ

∫

Ω

| − ∆h+ h| + 1

2

∫

Ω

|∇h|2 + |h− 1|2.

This problem is in turn equivalent to an obstacle problem, and as a consequence,
if hex is large enough (larger than a valueHc1 = λ0|log ε|) there exists a subdomain
ωλ of Ω such that

µλ = mλ1ωλ
,where mλ = 1 − 1

2λ
.

This mean field description tells us that the vortices tend to arrange uniformly
in ωλ but is insensitive to the pattern formed by vortices. This pattern is in fact,
as we shall see, selected by the minimization of the next term in the asymptotic
expansion of the energy as ε → 0. The proof of this is achieved in this paper by
a splitting of the energy that separates the leading order term from a remainder
term, and then studying via Γ-convergence techniques the remainder term after
blow up at the scale of the expected intervortex distance 1/

√
hex.

Our main result can be stated in a rough way as
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Theorem 1 ([3]). Assume that

(4) log |log ε| ≪ hex −Hc1 , hex ≪ 1/ε2

and that (uε, Aε) is a minimizer of Gε. Then, choosing xε at random in ωλ,
and letting µ̃ε be the push-forward of µ(uε, Aε) under the blow-up map x 7→ (x −
xε)

√
mλhex, we have that almost surely µ̃ε converges weakly in the sense measures

to a measure µ̃∗ of the form

µ̃∗ =
∑

p∈Λ

2πδp,

where Λ is a discrete subset of R
2, and µ̃∗ minimizes a certain function W , more-

over, minGε may be computed up to o(hex).

The interaction function W is a logarithmic type interaction between points in
the plane. It is a sort of analogue of the renormalized energy W of [1] but for
an infinite number of points in the whole plane. Let us give its precise definition.
Given a function H in R2 such that

(5) −∆H = 2π
∑

i

δai − 1.

Consider a family of cutoff functions {χR}R>0 such that there exists C > 0
such that for every R > 0,

(6) i) χR = 0 outside BR, ii) χR = 1 in BR−C , iii) |∇χR| ≤ C in R
2.

We then define

(7) W (H) = lim inf
R→∞

W (H,χR)

|BR|
,

where

(8) W (H,χR) = lim
α→0

(

1

2

∫

R2\∪iB(ai,α)

χR|∇H |2 +
∑

i

χR(ai)(γ + π logα)

)

.

Here γ is a universal constant introduced in [1].
The renormalized energyW allows to distinguish among vortex patterns: indeed

we show that if we consider perfect lattice configurations (with a fixed density)
then W is uniquely minimized by the triangular lattice. This is, to our knowledge,
the first rigorous justification of the Abrikosov triangular lattice in this regime. At
least the triangular lattice is the best among perfect lattice configurations. The
proof of this fact involves ingredients from number theory.
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Partial symmetry of solutions to semilinear elliptic equations via
Morse index estimates

Tobias Weth

(joint work with Francesca Gladiali and Filomena Pacella)

In the talk I discussed a new type of symmetry results for classical solutions of
the semilinear elliptic equation

(1) −∆u = f(|x|, u) in Σ,

see [1, 2]. Here Σ is a radially symmetric (bounded or unbounded) domain in RN ,
N ≥ 2, so we consider the cases

Σ = B, Σ = A, Σ = R
N , Σ = R

N \B,

where B denotes a ball and A = {x ∈ RN : r1 < |x| < r2} denotes an annulus
centered at the origin. We also require Dirichlet boundary conditions

(2) u = 0 on ∂Σ,

which are empty if Σ = RN . The nonlinearity f : Σ × R → R is (locally) a
C1,α-function depending only on the radial space variable. Our aim is to derive
symmetry properties from Morse index information. Recently there has been a
growing interest in understanding the structure of the set of stable and finite Morse
index solutions of semilinear elliptic equations. One reason for this is the fact that
existence and multiplicity results based on variational methods often include Morse
index information. To state our results I recall the following definitions.

Definition 2. A function u ∈ C(Σ) is said to be foliated Schwarz symmetric if
there is a unit vector p ∈ R

N , |p| = 1 such that u(x) only depends on r = |x| and

θ = arccos
(

x
|x| · p

)

and u is nonincreasing in θ.

Hence a foliated Schwarz symmetric function is axially symmetric with respect
to an axis passing through the origin and nonincreasing in the polar angle from
this axis. Now let Qu denote the quadratic form corresponding to a solution of
(1) and (2), i.e.

(3) Qu(ψ) =

∫

Σ

[

|∇ψ|2 − Vu(x)ψ
2(x)

]

dx, ψ ∈ C1
0 (Σ),

where Vu(x) := f ′(|x|, u(x)). Here and in the following, f ′ stands for the derivative
of f with respect to u.
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Definition 3. We say that a C2-solution of (1) and (2)

• is stable if Qu(ψ) ≥ 0 for all ψ ∈ C1
0 (Σ);

• has Morse index equal to j ≥ 1 if j is the maximal dimension of a subspace
X of C1

0 (Σ) such that Qu(ψ) < 0 for all ψ ∈ X.

If Σ is bounded, the Morse index of u is precisely the number of negative eigen-
values of the operator −∆ + Vu : H2(Σ) ∩H1

0 (Σ) ⊂ L2(Σ) → L2(Σ).

Our first result is concerned with bounded radial domains.

Theorem 1. Suppose that Σ is either a ball or an annulus in RN , and that f(|x|, ·)
or f ′(|x|, ·) is convex in u for every x ∈ Σ. Then every solution of (1), (2) with
Morse index j ≤ N is foliated Schwarz symmetric.

For bounded radial domains Σ, it is well known that – without any convexity
assumption on f or f ′ – any stable solution of (1), (2) is radial. Easy examples
show that this is not true any more in the case of unbounded domains unless
additional assumptions on the asymptotic behavior of u are imposed. We have the
following result:

Theorem 2. Every bounded stable solution u of (1),(2) with Vu ∈ L∞(Σ) and
|∇u| ∈ L2(Σ) is radial.

For higher Morse index solutions, we obtain foliated Schwarz symmetry under
stronger decay assumptions.

Theorem 3. Suppose that Σ is an unbounded radial domain and that f(|x|, ·)
or f ′(|x|, ·) is convex for every x ∈ Σ. Suppose furthermore that u is a bounded
solution of (1),(2) with Morse index j ≤ N , Vu ∈ L∞(Σ) and such that

u ∈ H1
0 (Σ) or u ∈ D1,2

0 (Σ) and Vu ∈ LN/2(Σ).

Then u is foliated Schwarz symmetric.

In the case where the nonlinearity f does not depend on x, the following nonex-
istence result can be deduced.

Theorem 4. Suppose that Σ is an unbounded radial domain, f = f(u) does not
depend on x and f or f ′ is convex. Suppose furthermore that u is a bounded
solution of (1),(2) with Morse index j ≤ N , Vu ∈ L∞(Σ) and such that

u ∈ H1
0 (Σ) or u ∈ D1,2

0 (Σ) and Vu ∈ LN/2(Σ).

Then we have:

• if Σ = RN , then u does not change sign.
• if Σ = RN \B, then u ≡ 0.

The assumption that f does not depend on x is crucial here. Indeed, for a large
class of nonlinearities depending on |x|, sign changing solutions having Morse index
two can be constructed in both cases Σ = RN and Σ = RN \B.
We conjecture that the decay assumptions on u in Theorems 3 and 4 can be
replaced by the weaker assumption |∇u| ∈ L2(Σ). This is part of current work.
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The canonical shrinking soliton associated to a Ricci flow

Peter M. Topping

(joint work with Esther Cabezas-Rivas)

In 1982, Hamilton [2] introduced the study of Ricci flow, which evolves a Rie-
mannian metric g on a manifold M under the nonlinear evolution equation

(1)
∂g

∂t
= −2 Ric(g(t)),

for t in some time interval I ⊂ R.
In this talk, given a Ricci flow on a manifold M over a time interval I ⊂ R, we

introduce a second time parameter, and define a natural shrinking Ricci soliton
on the space-time M× I.

Theorem 1. Suppose g(τ) is a (reverse) Ricci flow – i.e. a solution of ∂g
∂τ =

2 Ric(g(τ)) – defined for τ within a time interval (a, b) ⊂ (0,∞), on a manifold
M of dimension n ∈ N. Suppose Ω ⊂⊂ M, I ⊂⊂ (a, b), and N ∈ N is sufficiently

large to give a positive definite metric ĝ on Ω × I ⊂ M̂ := M× (a, b) defined by

ĝij =
gij
τ

; ĝ00 =
N

2τ3
+
R

τ
− n

2τ2
; ĝ0i = 0,

where i, j are coordinate indices on the M factor, 0 represents the index of the
time coordinate τ ∈ (a, b), and the scalar curvature of g is written as R.

Then up to errors of order 1
N , the metric ĝ is a gradient shrinking Ricci soliton

on the higher dimensional space M̂:

(2) Ric(ĝ) + Hessĝ

(

N

2τ

)

≃ 1

2
ĝ,

by which we mean that on Ω × I ⊂ M̂, the quantity

N

[

Ric(ĝ) + Hessĝ

(

N

2τ

)

− 1

2
ĝ

]

is bounded independently of N , with respect to any fixed metric on M̂.

We show how part of the existing theory of Ricci flow is encoded in our soliton.
This geometric construction was discovered by consideration of the theory of

optimal transportation, and in particular by reconciling the results of [5] and [3],
and we discuss how this occured.

For more information, see [1].
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Continuity of optimal transport maps under a degenerate MTW
conditioin

Young-Heon Kim

(joint work with Alessio Figalli and Robert McCann)

This abstract reports a work in progress regarding continuity of optimal transport
maps for general cost functions. To focus on the presentation, our assumptions in
the following are not necessarily the most optimal ones and we refer the reader to
[3] for details.

Let Ω, Ω̄ be two smooth bounded domains in Rn. Let c ∈ C4(cl(Ω × Ω̄)) be a
cost function that governs the transportation between mass distributions ρ, ρ̄ > 0,
ρ ∈ L∞(Ω), ρ̄ ∈ L∞(Ω̄). That is, we seek for an optimal map F : Ω → Ω̄, which
minimizes the total cost functional

C(T ) :=

∫

Ω

c(x, T (x))ρ(x)dx

among all Borel measurable maps T : Ω → Ω̄ with the highly nonlinear constraint
∫

Ω

f(T (x))ρ(x)dx =

∫

Ω̄

f(x̄)ρ̄(x̄)dx̄ , ∀f ∈ C∞
c (Ω̄).

We further assume that for all (x, x̄) ∈ Ω × Ω̄, the maps

x̄ ∈ Ω̄ 7→ Dxc(x, x̄) ∈ T ∗
xΩ, x ∈ Ω 7→ Dx̄c(x, x̄) ∈ T ∗

x̄ Ω̄

are one-to-one, and the mixed second-order derivativeDxDx̄c is nondegenerate. By
the results of pioneers including Brenier, Caffarelli, Carlier, Gangbo, Ma, McCann,
Trudinger and Wang, there exists a unique optimal map F . Moreover, F satisfies
in a weak sense

−Dxc(x, F (x)) = Dxu(x)

where the function u, called the c-potential, is given in pairs as

u(x) = sup
x̄∈Ω̄

−c(x, x̄) + ū(x̄)

ū(x̄) = sup
x∈Ω

−c(x, x̄) + u(x),

and u is Lipschitz continuous.
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For the case c(x, x̄) = |x− x̄|2, a successful regularity theory for F is known due
to Caffarelli, Delanoë and Urbas. For general cost functions satisfying the above
assumptions, a significant regularity theory for F is initiated by Ma, Trudinger
and Wang. Their theory further requires on c that

MTW (p, p̄) := (−cijk̄l̄ + cijāc
ābck̄l̄b)p

ipj p̄k̄p̄l̄ ≥ 0

for all p ∈ TxΩ, p̄ ∈ Tx̄Ω̄ with picil̄p̄
l̄ = 0. Let MTW⊥ ≥ 0 denote this condi-

tion, and further use MTW⊥ > 0 to denote the same condition but with strict
inequality. Due to Loeper, MTW⊥ ≥ 0 is known to be a necessary condition for
the continuity of F . Namely, without this condition, there are smooth ρ, ρ̄ on nice
domains Ω, Ω̄, whose optimal transport map F is discontinuous. Moreover, it is
shown [4] that MTW (p, p̄) is the sectional curvature of the pseudo-Riemannian
metric h on the product Ω × Ω̄ defined as

h :=
1

2

(

0 −cil̄
−ck̄j 0

)

.

That is, MTW (p, p̄) = Rh(p ⊕ 0 ∧ 0 ⊕ p̄, p ⊕ 0 ∧ 0 ⊕ p̄) where Rh denotes the
Riemann curvature tensor of the pseudo-metric h, and p⊕ p̄ denotes the canonical
decomposition of tangent vectors in the product Ω × Ω̄.

For the domains Ω, Ω̄, we assume that they are uniformly c-convex with respect
to each other. That is, under the maps x 7→ Dx̄c(x, x̄) ∈ T ∗

x̄ Ω̄, x̄ 7→ Dxc(x, x̄) ∈
T ∗
xΩ for all x ∈ Ω, x̄ ∈ Ω̄, the image of Ω, Ω̄, respectively, is uniformly convex. Ma,

Trudinger and Wang show that under MTW⊥ ≥ 0, smooth mass distributions ρ, ρ̄
induce a smooth optimal map F . With a stronger condition MTW⊥ > 0, Loeper
obtain Hölder continuity of F for ρ, ρ̄ ∈ L∞ (in fact, even for ρ not necessarily
absolutely continuous with respect to the Lebesgue measure). His theory is fur-
ther extended by Delanoë, Figalli, Ge, Kim, Loeper, McCann, Rifford, Trudinger,
Villani and Wang. Such a lower regularity of F with ρ, ρ̄ merely in L∞ is miss-
ing for the degenerate condition MTW⊥ ≥ 0, except in two dimensions, where
Figalli and Loeper verify continuity of F . In [3], we show interior Hölder con-
tinuity of F for ρ, ρ̄ ∈ L∞, under a slightly stronger but still degenerate condi-
tion that MTW (p, p̄) ≥ 0 for all (p, p̄) ∈ TxΩ × Tx̄Ω̄, not necessarily satisfying

picil̄p̄
l̄ = 0. Let MTW ≥ 0 denote this condition. Examples of cost functions sat-

isfying this degenerate MTW condition (but notMTW⊥ > 0) include Riemannian
distance squared on the product of standard round spheres and Euclidean space
Sn1 ×· · ·×Snk ×Rn, and their Riemannian submersion quotients [5], for example,
products of complex projective spaces CPn×CPm×· · · . Note that there are cost
functions that satisfy MTW⊥ ≥ 0 but not MTW ≥ 0; e.g. c(x, x̄) = |x − x̄|−2

due to Trudinger. It is an interesting open question whether MTW⊥ ≥ 0 implies
MTW ≥ 0 for the Riemannian distance squared cost.

One of our key observations in [3] is to use the map x 7→ q := Dx̄c(x, x̄0) for
fixed x̄0 ∈ Ω̄, to have a change of variables c(x, x̄) = c̃(q, x̄). For each x̄ ∈ Ω̄, the
function mx̄(q) := −c̃(q, x̄) + c̃(q, x̄0) is convex under the assumption MTW ≥ 0.
(Under MTW⊥ ≥ 0, mx̄ is level-set convex due to Loeper, Trudinger, Wang, Kim,
McCann, Figalli and Villani. This level-set convexity is a key necessary property
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for the regularity theory of optimal transport maps.) Thus under the same change
of variables, the modified potential function

ũ(q) := sup
x̄∈Ω̄

−c̃(q, x̄) + c̃(q, x̄0) + ū(x̄)

becomes a convex function. This then enables us to extend Caffarelli’s theory
[1, 2] for convex potentials of optimal maps for c(x, x̄) = |x− x̄|2. Two of the most
important difficulties we overcome, are (1) to get Alexandrov-type estimates for
the convex c̃-potential ũ(q) whose supporting functions −c̃(q, x̄) + c̃(q, x̄0) + ū(x̄)
are not affine, and (2) to deal with the fact that the cost function c may not be
defined and smooth on the whole Rn × Rn. Our result is used by Liu, Trudinger
and Wang [6] to show the optimal transport map F is C1,α for ρ, ρ̄ ∈ Cα.
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[3] A. Figalli, Y.-H. Kim & R.J.McCann: Hölder continuity of optimal maps for non-
negatively cross-curved costs. Work in progress.

[4] Y.H.Kim & R.J.McCann: Continuity, curvature, and the general covariance of optimal
transportation. To apprear in J. Eur. Math. Soc. (JEMS).

[5] Y.H.Kim & R.J.McCann: Towards the smoothness of optimal maps on Riemannian sub-
mersions and Riemannian products (of round spheres in particular). Preprint, 2008.

[6] J.Liu, N.S.Trudinger and X.-J.Wang. Work in progress.

From interatomic potentials to Wulff shapes, via Gamma convergence.

Gero Friesecke

(joint work with Yuen Au Yeung and Bernd Schmidt)

1. Introduction

In this note we describe recent progress in the understanding of exact or approx-
imate minimizers of N particles interacting via interatomic potentials as N tends
to infinity.

In case of zero temperature, two dimensions, and short range pair potentials,
we establish

1. formation of a cluster of constant density and finite perimeter
2. formation of a local crystal lattice structure.

Moreover in the special case of the Heitmann-Radin potential, we show

3. emergence of a well defined anisotropic “surface energy”, in the sense of Gamma
convergence

4. emergence of a unique overall geometric (Wulff) shape.

A key new idea compared to previous studies of discrete-to-continuum limits for
crystals is not to try to parameterize particle positions xj by displacements from
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some reference configuration (Lagrangian viewpoint), but to study the (appropri-

ately re-scaled) empirical measure µN = 1
N

∑N
j=1 δxj/N1/d (Eulerian viewpoint).

Point 1 can then be implemented as the mathematical statement that the weak*
limit measure as the number of particles gets large has the structure of Lebesgue
measure restricted to a set whose characteristic function belongs to BV. This forms
the starting point for connecting atomistic energy minimization to a continuum
surface energy problem.

2. Set-up

Our precise results are obtained in the following setting. We consider the following
energy on (R2)N :

E(x1, .., xN ) =
∑

i6=j
V (|xi − xj |),

where the pair potential V satisfies

(H1) (minimum at r = 1) V (1) = −1, V (r) > −1 for all r 6= 1
(H2) (behaviour at short and long range) There exist constants α ∈ (0, 1], β ∈

[1,∞) such that V (r) = +∞ for r < α, V (r) = 0 for r > β, V continuous
on (α, β)

(H3) (narrow potential well) α, β are close to 1.

A finite set S ⊂ R2 of particle positions is called connected if for any two x, y ∈ S
there exist x0, .., xN ∈ S such that x0 = x, xN = y, and |xj − xj−1| < β (i.e., the
nearest neighbours along the connecting chain always lie within the interaction
range of the potential) for all j = 1, .., N . It is easy to show that minimizers
are always connected. In case of disconnected configurations, our analysis can be
applied separately to the connected components.

3. Clusters of finite perimeter

Our first result makes precise part 1 of the above program. Implicitly, its proof
requires to also implement part 2.

Theorem 1. Let E : (R2)N → R be a short range pair potential energy. Let

{x(N)
1 , .., x

(N)
N } be any sequence of connected N -particle configurations satisfying

the energy bound

E({x(N)
1 .., x

(N)
N }) ≤ −6N + constN1/2.
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Let {µN} be the sequence of re-scaled empirical measures

µN =
1

N

N
∑

i=1

δ
x
(N)
i /

√
N
.

As N → ∞, and up to subsequences,

limµN = ρχ
E
,

where ρ = 2√
3

and E is some set of finite perimeter of volume
√

3
2 .

Here the limit is taken in the sense of weak* convergence of Radon measures.
Note that he assumptions of the theorem allow atoms to ”do what they like” in
regions of size N1/4.

4. Rigorous interfacial energy result

Parts 3 and 4 of the above program require us to restrict to the case of the
Heitmann-Radin potential

V (r) =







+∞, 0 ≤ r < 1
−1, r = 1
0 r > 1.

We start by re-writing the atomistic energy of a particle configuration in terms of
the associated empirical measure,

IN (µ) =

{

+∞, µ 6= 1
N

∑N
i=1 δxi/

√
N with xi ∈ L

E(x1, .., xN ), otherwise,

We then subtract the leading order (bulk) term e ·N , where e := limN→∞
inf IN

N ,
and extract a rigorous surface energy functional, via Gamma convergence:

Theorem 2. N−1/2(IN − e · N) Gamma-converges to the Wulff/Herring type
functional

I(µ) :=

{

+∞, µ 6= 2√
3
χE for some set E of finite per. and mass

√
3

2
∫

∂⋆E Γ(νE)dH1(x), otherwise,

where Γ is the 2π/6-periodic function

Γ(ν) = 2

(

ν2 −
ν1√
3

)

for ν =

(− sinϕ

cosϕ

)

, ϕ ∈ [0, 2π
6 ].

As a corollary, we obtain that the rescaled empirical measures of atomistic
minimizers must converge to Lebesgue measure restricted to a regular hexagon.
This follows from the uniqueness theorem of minimizers of Wulff/Herring type
energies, due to Taylor (in a geometric measure theory setting) and to Fonseca
and Müller (in a, for our purposes more convenient, BV setting).

Finally, we remark that atomistic minimizers are trivially non-unique, because
one can re-arrange surface atoms. However, the natural conjecture that non-
uniqueness is only due to surface atoms (of which there are O(N1/2)) is false. The
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true amount of non-uniqueness in much bigger. We prove that for infinitely many
choices of the particle number N , one can re-arrange O(N3/4) atoms. This scaling
is sharp, that is to say we establish a matching upper bound for the number of
atoms one can re-arrange.
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Quasistatic crack growth in elasto-plastic materials

Gianni Dal Maso

(joint work with Rodica Toader)

We present here a variational model for the quasistatic evolution of an elasto-
plastic body with cracks. The variational approach to fracture mechanics [1] is
based on Griffith’s idea [9] that the crack growth is determined by the competition
between the elastic energy released when the crack grows and the energy dissipated
to produce new crack. Except for the models where the crack path is prescribed,
all mathematical results obtained so far in this framework deal with the case of
brittle fracture (see [8], [4], [2], [5], [7], [3]).

Our model is developed in dimension two, assuming an a priori bound on the
number of connected components of the cracks , which are represented by one di-
mensional closed sets. The plastic behaviour is described within the framework of
the linearized theory of small strain elasto-plasticity.

The reference configuration is a bounded open set Ω ⊂ R2 with Lipschitz bound-
ary ∂Ω. Given a positive integer m, the set of admissible cracks Cm is defined as

Cm := {C : C is closed, C ⊂ Ω, H1(Γ) < +∞},

where H1 is the one dimensional Hausdorff measure. For every Γ ∈ Cm the
displacement u : Ω\Γ → R2 belongs to L1

loc(Ω\Γ; R2) and its symmetrized gradient
Eu is defined by Eu := 1

2 (∇u + ∇ut).
The linearized strain Eu is additively decomposed as Eu = e+ p, where e is the

elastic part and p is the plastic part of the strain. The stress σ depends only on
the elastic part of the strain and is given by σ := Ce, where C is the elasticity
tensor . The stress must satisfy the constraint σ(x) ∈ K for a.e. x ∈ Ω\Γ, where K

is a prescribed bounded closed convex subset of the space M2×2
sym of 2×2 symmetric

matrices, whose boundary ∂K plays the role of the yield surface.
The boundary condition on ∂Ω \ Γ is prescribed by assigning a function w ∈

H1(Ω \Γ; R2). The weak formulation of the problem requires the use of the space
Mb(Ω\Γ; M2×2

sym) of bounded Radon measures on Ω\Γ with values in M2×2
sym. Given
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w and Γ, the set A(w,Γ) of admissible strains with prescribed boundary condition
w and crack Γ is defined as the set of all pairs (e, p), with

e ∈ L2(Ω \ Γ; M2×2
sym) and p ∈Mb(Ω \ Γ; M2×2

sym),

for which there exists u ∈ L1
loc(Ω \ Γ; R2), with Eu ∈ Mb(Ω \ Γ; M2×2

sym) and trace

u ∈ L1(∂Ω \ Γ; R2), which satisfies the kinematic admissibility conditions
{

Eu = e+ p in Ω \ Γ (additive decomposition),

p = (w − u) ⊙ νH1 in ∂Ω \ Γ (relaxed boundary condition),

where ν is the outward unit normal to ∂Ω and ⊙ is the symmetrized tensor product .
The prescribed boundary condition u = w is relaxed in the usual way: it is satisfied
only on ∂Ω \ (Γ ∪ supp(p)).

The stored elastic energy Q(e) is the quadratic form defined by

Q(e) :=

∫

Ω\Γ
σ(x) : e(x) dx =

∫

Ω\Γ
Ce(x) : e(x) dx,

where the colon denotes the Euclidean scalar product in M2×2
sym. To define the

dissipative terms, we introduce the support function H of K, defined by

H(ξ) := sup
σ∈K

σ : ξ for every ξ ∈ M
2×2
sym .

For every p ∈Mb(Ω \Γ; M2×2
sym) we consider the measure H(p) on Ω \Γ defined by

H(p)(B) :=

∫

B

H(
dp

d|p| (x)) d|p|(x),

for every Borel set B ⊂ Ω \ Γ, where dp
d|p| is the Radon-Nikodym derivative of p

with respect to its variation |p|.
Given two cracks Γ1 ∈ Cm and Γ2 ∈ Cm, with Γ1 ⊂ Γ2, and two plastic strains

p1 ∈ Mb(Ω \ Γ1; M
2×2
sym) and p2 ∈ Mb(Ω \ Γ2; M

2×2
sym), the dissipation distance

D((p2,Γ2), (p1,Γ1)) represents the energy dissipated during the transition from
(p1,Γ1) to (p2,Γ2). It is given by

D((p2,Γ2), (p1,Γ1)) := H(p2 − p1)(Ω \ Γ2) + H1(Γ2 \ Γ1).

The former term is the usual plastic dissipation in the region Ω \ Γ2, while the
latter is the energy spent to produce the new crack Γ2 \Γ1. If the inclusion Γ1 ⊂ Γ2

does not hold, we set D((p2,Γ2), (p1,Γ1)) = +∞. This reflects the irreversibility
of crack growth. The total dissipation in the time interval [0, T ] is defined by

DissD(p,Γ; 0, T ) := sup
k
∑

i=1

D((p(ti),Γ(ti)), (p(ti−1),Γ(ti−1))),

where the supremum is over all partitions 0 = t0 < t1 < · · · < tk = T . Of course,
if DissD(p,Γ; 0, T ) < +∞, then t 7→ Γ(t) is increasing with respect to inclusion.

Given a crack Γ0 ∈ Cm and a function t 7→ w(t) from [0, T ] into H1(Ω \Γ0; R
2),

a quasistatic evolution with initial crack Γ0 and boundary condition w(t) is a
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function t 7→ (e(t), p(t),Γ(t)), with Γ(0) = Γ0 and t 7→ e(t) in L∞([0, T ];L2(Ω \
Γ; M2×2

sym)), which satisfies the following conditions for every t ∈ [0, T ]:

• Global stability: (e(t), p(t)) ∈ A(w(t),Γ(t)) and

Q(e(t)) ≤ Q(ê) + D((p̂, Γ̂), (p(t),Γ(t)))

for every Γ̂ ∈ Cm and every (ê, p̂) ∈ A(w(t),Γ(t));
• Energy balance: setting σ(t) := Ce(t), we have

Q(e(t)) + DissD(p,Γ; 0, t) = Q(e(0)) +

∫ t

0

〈σ(s), Eẇ(s)〉 ds,

where 〈·, ·〉 is the scalar product in L2(Ω \ Γ(s); M2×2
sym).

In [6] we proved the following theorem.

Theorem 1 (Dal Maso-Toader 2008). Assume that the prescribed boundary condi-
tion t 7→ w(t) belongs to AC([0, T ];H1(Ω\Γ0; R

2)) and that (e0, p0) ∈ A(w(0),Γ0).
Then there exists a quasistatic evolution t 7→ (e(t), p(t),Γ(t)) with initial crack Γ0

and boundary condition w(t), such that e(0) = e0 and p(0) = p0.

Variations of e in the global stability condition lead to the equilibrium conditions

divxσ(t, x) = 0 in Ω \ Γ(t) and σ(t, x)ν(x) = 0 on Γ(t)

in the usual weak sense. Variations with p = −e lead to the stress constraint

σ(t, x) ∈ K for a.e. x ∈ Ω \ Γ(t).

The energy balance, together with the differential conditions obtained from the
global stability, allows to prove the next theorem (see [6]) about the flow rule,
that for p(t, x) smooth is expressed by the classical inclusion

ṗ(t, x) ∈ NK(σ(t, x)) for x ∈ Ω \ Γ(t),

where NK(σ) is the normal cone to K at σ.

Theorem 2 (Dal Maso-Toader 2008). For a.e. t ∈ [0, T ] the limits

p(t) − p(t− h)

h
⇀ ṗ(t) weakly∗ in Mb(Ω \ Γ(t); M2×2

sym)

H1(Γ(t)) −H1(Γ(t− h))

h
→ ṡ(t)

exist as h → 0+. Let t ∈ [0, T ] be a Lebesgue point of t 7→ ‖Eẇ(t)‖L2 such that
the above limits exist and σ(t) ∈ C(Ω \ Γ(t); M2×2

sym). Then

dṗ(t)

d|ṗ(t)| (x) ∈ NK(σ(t, x)) for |ṗ(t)|-a.e. x ∈ Ω \ Γ(t).
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Local-to-global principles in Riemannian geometry and optimal
transport

Cédric Villani

1. An analogy

Convexity in Rn has a local side and a global side. An example of local property
is, ∇2Φ ≥ κ In (κ ∈ R); the corresponding global property is Φ((1−t)x+ty) ≤ (1−
t)Φ(x)+tΦ(y)−κ t(1−t)|x−y|2/2. Both formulations have their advantages: the
local formulation is effective (can be checked in practice); the global formulation
on the other hand is often useful, more general and more stable. Observe that it
is not a priori obvious that the global property has a local reformulation.

2. Local-to-global principles for curvature

The main local-to-global principles associated with curvature bounds in Rie-
mannian geometry are those associated with lower sectional curvature bounds,
upper sectional curvature bounds, and lower Ricci curvature bounds. As pointed
out by G. Huisken at the end of my talk, there is also an important local-to-global
principle associated with scalar curvature: this is the content of the mass gap
theorem.

3. Sectional curvature bounds

Let (M, g) be a Riemannian manifold with its geodesic distance d. The in-
equality Sect ≥ κ (sectional curvatures bounded by κ ∈ R) can be seen as a local



1760 Oberwolfach Report 31/2008

inequality on the geometry of M : if u, v are two unit tangent vectors at x, and
ℓ(t) = d(expx(tu), expx(su)), then the inequality amounts to

ℓ(t) ≤
√

2(1 − cos θ) t

(

1 − κ cos2(θ/2)

6
t2 +O(t4)

)

.

There is also an equivalent inequality in the large: for t ∈ [0, 1], δ > 0, L > 0,
define

D(t, δ, L) = inf
{

d(expx(tu), expx(tv)); |v| = |w| = δ; d(expx u, expx v) = L
}

then D(t, δ, L) ≥ D(κ)(t, δ, L), where D(κ) is the D function for the reference space
with constant sectional curvature κ. This reformulation is at the basis of the
Toponogov theorem.

For upper sectional curvature bounds, the story is the same, reversing all in-
equalities, except that now one needs an additional assumption of simple connect-
edness.

4. Ricci curvature bounds

The Ricci curvature bound Ric ≥ K g of a Riemannian manifold, or more
generally the curvature-dimension condition CD(K,N) for a measured Riemannian
manifold, also has an interpretation in terms of local geometry, expressed either
via the Bochner formula or equivalently via estimates on the Jacobian of the
Riemannian exponential of a symmetric vector field. Let me recall that CD(K,N)
means RicN,ν ≥ K g, where RicN,ν = Ric−(∇V ⊗∇V )/(N−n)+∇2V , where ν is
the reference measure (absolutely continuous with respect to the volume measure)
and V = − log(dν/dvol).

The discussion is similar to the one for sectional curvatures, with now the
function

JM,ν(t, δ, J) = inf
{

Jacx(exp t∇ψ); |∇ψ(x)| = δ, Jacx(exp∇ψ) = J
}

,

where ν is the reference measure on M , the (geometric) Jacobian is defined with
respect to this reference measure, and ψ is a C2 function defined in the neigh-
borhood of x, such that there Jacx(exp(t∇ψ)) stays positive for all t ∈ [0, 1] (no
focalization).

However, this is not really global, since ψ is defined only locally!

5. Globalization via optimal transport

Optimal transport canonically produces gradients of globally defined (alas, not
smooth) gradients, such that there is no focalization. This can be seen from the
following theorem of McCann: On (M, g) compact let µ0(dx) = f(x) vol(dx) and
µ1(dy) be two probability measures, then the solution of the variational problem

C(µ0, µ1) = inf
T#µ0=µ1

∫

d(x, T (x))2 µ0(dx)

is given by T = exp(∇ψ), where ψ is a semiconvex function M → R.
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Then the formula T#µ0 = µ1 gives a way to express the Jacobian in terms of
µ0 and µ1 via the change of variables formula.

This leads to the possibility to define global reformulations of Ricci bounds,
either via the convexity of certain functionals along minimizing curves for optimal
transport, or via estimates of contraction rates along the heat equation, in the
distance of optimal transport. A very incomplete list of people who have worked
in this direction over the past years are Cordero-Erausquin, Lott, McCann, Otto,
Schmuckenschläger, Sturm, and myself.

The simplest example is the following: Ric ≥ 0 if and only if for all t ∈ [0, 1] and
for any curve (µt)0≤t≤1 defined from McCann’s theorem by µt = (exp(t∇ψ))#µ0,
one has

H(µt) ≤ (1 − t)H(µ0) + tH(µ1),

whereH(µ) =
∫

ρ log ρ dvol, ρ = dµ/dvol. There is another statement according to
which Ric ≥ 0 if and only if the heat equation is a (possibly nonstrict) contraction
in the space of probability measures, equipped with the distance W2(µ0, µ1) =
√

C(µ0, µ1).

6. Applications

The global reformulation of Ricci curvature bounds makes sense in terms of
metric and measure only. This leads to

• more generality. For instance, for any norm on RN , the metric-measure space
(RN , ‖ · ‖, λN ) satisfies CD(0, N) (Ric ≥ 0, dimension ≤ N), although this is not
a Riemannian manifold (neither an Alexandrov space) if the norm is non-Hilbert.
This might seem shocking, but after all these spaces have common geometric
features, for instance they share the same Sobolev inequalities.

• stability. For instance, the geodesic reformulation is very well adapted to the
Gromov–Hausdorff convergence. Using these techniques, Lott, Sturm and myself
established the following theorem (as a particular case of more general results): If a
sequence of compact Riemannian manifolds (Mk, gk, e

−Vk) converges in measured
Gromov–Hausdorff topology to a Riemannian manifold (M, g, e−V ), and any Mk

satisfies CD(K,N), then also M satisfies the same bound.

• robustness under discretization or other perturbation. Using these formu-
lations we can easily cook up definitions of Ricci curvature bounds for discrete
spaces, using approximate geodesics in replacement for geodesics, or Markov chains
instead of heat flows. In this way Ollivier could prove that the Ricci curvature of
the hypercube {0, 1}N , at scale O(1), is bounded below by const./N as N → ∞.
Motivations for such a study come from statistical mechanics.

• a remarkable algebra with links to the Ricci flow. For instance, part of
Perelman’s work in this topic(such as the monotonicity formula for the reduced
volume) can be reinterpreted in terms of optimal transport, as was done by Lott
and Topping.
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7. Yet another local-to-global principle

Recent research by Delanoë, Figalli, Ge, Kim, Loeper, McCann, Rifford, Tru-
dinger and myself has focused on the Ma–Trudinger–Wang tensor: for (x, y) ∈
M \ cut(M), ξ ∈ TxM , η ∈ TyM define in coordinates

S(x,y)(ξ, η) =
∑

ijkℓrs

(

cij,rc
r,scs,kℓ − cij,kℓ

)

ξi ξj ηk ηℓ,

where c(x, y) = d(x, y)2/2, and cij,r = ∂3c/∂xi∂xj∂yr, etc.
Assuming that all tangent injectivity loci on M are convex, there is equivalence

between the local condition (S ≥ 0 if ci,jξ
iηj = 0), and the global condition

∀x, x, y0, y1 : d(x, yt)
2−d(x, yt)2 ≥ min

[

d(x, y0)
2−d(x, y0)2, d(x, y1)2−d(x, y1)2

]

,

where yt = expx((1 − t)(expx)
−1(y0) + t(expx)

−1(y1)).
This story is not unrelated to the previous one. First, bounds on the Ma–

Trudinger–Wang tensor also enjoy stability under Gromov–Hausdorff convergence
(although this tensor is of fourth order in the Riemannian metric!). Secondly,
it is intimately related to optimal transport theory; in fact, adequate positivity
conditions on this tensor come close to be equivalent to the smoothness of the
function ψ appearing in McCann’s theorem, for arbitrary measures µ0 and µ1

with smooth positive densities.
A last word on the assumption of convexity of the tangent injectivity loci: I

conjecture that it follows automatically from the Ma–Trudinger–Wang condition.
Together with Loeper, I have proved some partial results in this direction, but the
general case remains to be done. This in my opinion is remarkable, since the cut
locus is a quite mysterious object. Research in this subject is currently advancing
with works by Figalli, Rifford, myself and others.

8. References

The main reference for this talk is my book Optimal transport, old and new
(which grew up of notes for the 2005 Saint-Flour summer school), to appear in
Grundlehren der mathematischen Wissenschaften; precise statements and refer-
ences can be found there. One may also consult the proceedings Optimal trans-
port and curvature, from the 2008 CIME Course in Cetraro, Nonlinear partial
differential equations and applications.

Measuring the Geodesic Radon Transform with Mass Transport

Benjamin K. Stephens

In tomography one extracts averages of an input density field along slices. If an
input density with sharp features is disturbed by local and global displacements,
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how does this affect the slice averages? We use as model the geodesic Radon
transform R, acting on spherical measures as the dual of the map

R0[f ](u) =
1

|E(u)|

∫

E(u)

f, f ∈ C0(Sn−1).

Here E(u) is the equator of u, composed of all points geodesic distance π/2 from u.
Restricting to probability measures P(Sn−1), we have available the Wasserstein-p
distance

dWp(µ, ν) =

(

inf
γ∈Γ(µ,ν)

∫

Sn−1×Sn−1

dSn−1(x, y)p dγ(x, y)

)1/p

for p ∈ [1,∞). Here Γ(µ, ν) is the set of all transference plans γ ∈ P(Sn−1 ×
Sn−1) which push forward to µ = π1

#γ and ν = π2
#γ via the projections π1, π2

to the respective sphere factors. This is a natural way to measure displacement
type errors; note that a translating delta measure δP (t) moves continuously in
Wasserstein-p distance, but immediately jumps distance 2 away from δP (0) in
total-variation. Our conclusion is that R is a contraction, with Lipschitz constant
that is sharp, less than one, and given by a simple trigonometric formula:

C(p, n) =

(

∫ π
2

0
(sin t)n−3(cos t)p dt
∫ π

2

0
(sin t)n−3 dt

)1/p

.

One consequence is a new range criterion for R: If µ ∈ P(Sn−1) satisfies µ =
R[ν] for ν ∈ P(Sn−1) then for all p ≥ 1,

dWp(µ,Z) ≤ C(p, n)D(p, n)

where Z is the uniform probability measure and

D(p, n) = sup
µ∈P(Sn−1)

dWp(µ,Z) ≤ π.

The contraction constant C(p, n) appears as the rate at which the equator measure
R[δp(t)] of a delta measure δp(t) moves away from the equator measure R[δp(0)]
when δp(t) moves at speed 1 and all distances are measured in Wasserstein-p. The
speaker would like to thank Elliott Lieb for pointing out that this result may
be seen as a manifestation of the principle that convolution by a fixed measure
causes Wasserstein distances to contract. (See for example Villani, [4, Chapter
7], for the case of normed vector spaces.) Note that continuity questions for R
(and inverse R) have been extensively studied with respect to Lp type norms; we
cite for the Euclidean Radon transform [3] and [1], also the work [2] with respect
to weak-topology-metrizing distances that are not Wasserstein. A question for
further study is whether there is a uniform inequality in the other direction — a
factor C′(p, n) which is the most that Wasserstein-p distance may contract under
R.
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Conservation laws for 2-dimensional conformally invariant variational
problems

Tristan Rivière

The presentation which took place on july 11th 2008 at 10:30 am was divided in
three parts.

In the first one we proved a compensation compactness result satisfied by se-
quences of solutions to elliptic linear systems of the form

(1) −∆u = Ω · ∇u ,

where u is a W 1,2−map from a 2-dimensional domain ω into Rn (n is an arbitrary
integer) and Ω is an L2 vector-field taking values into antisymmetric matrices
and where we have used matrix-vector multiplication. Precisely (1) reads : ∀i ∈
{1 · · ·n} −∆ui =

∑n
j=1 Ωij ·∇uj where · is the scalar product between vectorfields

in the 2-dimensional domain. The compensation compactness result says then the
following :

Theorem 1. [Ri1] Let uk and Ωk be two uniformly bounded sequences in respec-
tively W 1,2(ω,Rn) and L2(∧1ω ⊗ so(n)). Assume that there exists fk converging
strongly to zero in H−1(ω,Rn) such that

−∆uk = Ωk · ∇uk + fk .

Then, modulo extraction of a subsequence, uk and Ωk converge weakly, respectively
in W 1,2 and L2, to a pair (u,Ω) which solves (1). �

This compensation compactness result is based on the discovery of conservation
laws equivalent to (1) which can be written locally in divergence form. These
conservation laws imply moreover the Hölder continuity C0,α (for some α > 0) of
the solution u (see [Ri2]).

In the second part of the talk we show that the critical points u ∈ W 1,2(ω,Nk),
to continuously differentiable conformally invariant lagrangians, with quadratic
growth in the gradient of the map u - where ω is a 2-dimensional domain and
where Nk is a closed submanifold of an euclidian space - satisfy elliptic systems of
the form (1) for antisymmetric potentials Ω in L2. We then deduce from the first
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part of the presentation the Hölder continuity of these critical points. This solves
a conjecture posed by Stefan Hildebrandt in the seventies.

In the last part of the talk we present corresponding conservation laws for
critical points to the Willmore Functional (see [Ri3]). From these conservation
laws we deduce that Palais-Smale sequences to the Conformal Willmore Equation
converge to solutions to the Conformal Willmore Equation see [BR].

References
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Reporter: Maria-Cristina Caputo
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CNRS UMR 6621, Parc Valrose,
F-06108 Nice Cedex 02

Prof. Dr. Gero Friesecke

Zentrum Mathematik
Technische Universität München
Boltzmannstr. 3
85747 Garching bei München

Prof. Dr. Nassif Ghoussoub

Department of Mathematics
University of British Columbia
Vancouver BC V6T 1Z2
CANADA



Calculus of Variations 1767

Prof. Dr. Yury Grabovsky

Department of Mathematics
Temple University
Philadelphia, PA 19122
USA

Prof. Dr. Gerhard Huisken

MPI für Gravitationsphysik
Albert-Einstein-Institut
Am Mühlenberg 1
14476 Golm

Dr. Young-Heon Kim

Department of Mathematics
University of British Columbia
Vancouver BC V6T 1Z2
CANADA

Hans Knüpfer
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