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Introduction by the Organisers

This workshop, which continued the triennial series at Oberwolfach on Real
and Harmonic Analysis that started in 1986, has brought together experts and
young scientists working in harmonic analysis and its applications (such as to dis-
persive PDE’s and ergodic theory) with the objective of furthering the important
interactions between these fields.

Three prominent experts, Elon Lindenstrauss (Princeton), Amos Nevo (Tech-
nion, Haifa), and Terence Tao (UCLA), gave survey respectively introductory
lectures. Their topics included ”Effective equidistribution on the torus”, ”Non-
Euclidean lattice point counting problems, and the ergodic theory of lattice sub-
groups,” and ”The van der Corput lemma, equidistribution in nilmanifolds, and
the primes.”

Major further areas and results represented at the workshop are:

• Application of Time Frequency analysis: this is an outgrowth of the
method of ”tile decomposition” which has been so successful in solving
the problems of the bilinear Hilbert transform. Recent progress includes
applications of these techniques and the theory of multilinear singular
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integral operators to ergodic theory and an extension of the celebrated
Carleson-Hunt theorem to the ”polynomial Carleson operator.”

• Estimates for maximal functions: this includes recent progress on best
weak (1, 1) constants for the Hardy-Littlewood maximal function on metric
measure spaces, estimates for maximal functions associated to monomial
polyhedra, with applications to sharp estimates for the Bergman kernel
on a general class of weakly pseudoconvex domains of finite type in Cn, as
well as estimates for maximal functions for the Schrödinger and the wave
equation.

• Fourier and spectral multipliers: a breakthrough has been obtained on the
characterization of radial Fourier multipliers. Contrary to a general belief
that for p 6= 1, 2 or ∞, no ”concrete” characterization of Fourier multi-
pliers for Lp(Rd) would be possible, radial Fourier multipliers have been
characterized for the range 1 < p < 2d/(d + 1), at least when acting on
radial functions, and in sufficiently high dimension even when acting on
arbitrary Lp- functions, in terms of Fourier localized pieces of the convo-
lution kernels. Moreover, improvements on Wolff’s inequality for the cone
multiplier have been achieved.

Also, a theory of Hardy spaces on metric measure spaces with exponen-
tial growth has been developed, which allows for instance to significantly
improve on a spectral multiplier theorem for Riemannian manifolds with
bounded geometry by M.Taylor. For instance, the new results apply to
complex powers of the Laplacian, which could not be handled before.

• Oscillatory and Fourierintegral operators: this includes endpoint Lp − Lq

and Sobolev inequalities for certain broad classes of highly degenerate
Radon-like averaging operators.

• Applications to PDE’s: this includes optimal global existence theorems by
means of abstract Strichartz estimates for small amplitude nonlinear wave
equations associated to certain linear wave equations involving compact
perturbations of the standard Laplacian, global well-posedness and scat-
tering in H1 for defocusing nonlinear Schrödinger equations on hyperbolic
space, and a smoothing property for the L2-critical nonlinear Schrödinger
equation.

The meeting took place in a lively and active atmosphere, and greatly benefited
from the ideal environment at Oberwolfach. It was attended by 43 participants.
The program consisted of 3 survey lecture series and 25 lectures. The organis-
ers made an effort to include young mathematicians, and greatly appreciate the
support through the joint Oberwolfach/NSF program ”US Junior Oberwolfach
Fellows,” which allowed to invite several outstanding young scientists from the
United States.
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Abstracts

Effective equidistribution on the torus

Elon Lindenstrauss

(joint work with J. Bourgain, A. Furman, P. Michel, S. Mozes, A. Venkatesh)

In my talks I have presented two effective results related to distribution of orbits
of groups (or semigroups) of endomorphisms on the torus T = R/Z and Td.

First consider the action of the semigroup generated by two multiplicatively
independent integers1 on T. In [3], Furstenberg showed that the only closed,
infinite subset of R/Z invariant under the maps ta : x 7→ a.x and tb : x 7→ b.x is
R/Z (with a.x = ax mod 1). This implies that for any irrational x,

(1) {akbℓ.x : k, ℓ ≥ 0} = R/Z.

Furstenberg raised the question of what are the ta, tb invariant measures on R/Z,
conjecturing that the only nonatomic such measure2 is the Lebesgue measure λ.
A theorem of Rudolph for a, b relatively prime [6], generalized by Johnson to the
case of a, b multiplicatively independent, asserts that a probability measure on the
circle R/Z that is invariant and ergodic with respect to the semigroup generated
by the maps ta : x 7→ ax and tb : x 7→ bx, and has positive entropy with respect
to ta, is equal to λ.

In joint work with J. Bourgain, P. Michel and A. Venkatesh [2], we give an effec-
tive versions of the Rudolph-Johnson theorem, and use it (among other things) to
obtain effective versions of Furstenberg’s theorem, in particular giving an estimate
on the rate in (1) in terms of the Diophantine properties of x.

We now consider the case of Td, and consider the action on Td generated by
two (or more) automorphisms, say A and B. The case of actions generated by
commuting automorphisms is quite similar to the action of the semigroup gener-
ated by multiplication by a and b on the T. In this generality we do not know
yet how to extend the effective density results of BLMV to Td but this has been
carried out by Zhiren Wang [7] for several interesting families.

In joint work with J. Bourgain, A. Furman and S. Mozes [1] we consider the
case where A and B generate a big group (e.g. a Zariski dense subgroup of SLd(R)
(so in particular A and B do not commute). In this case a much more satisfactory
picture can be given:

Theorem 1 (Invariant Measures). Let Γ < SLd(Z) be a subgroup Zariski dense

in SLd(R) or, more generally, a group whose Zariski closure Γ
Z
< SLd(R)

(2) acts strongly irreducibly on Rd and contains a proximal element.

1I.e. not powers of the same integer, or equivalently so that log a/ log b 6∈ Q — for example,
a, b relatively prime.

2I.e. a measure which gives measure zero to any single point.
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If µ is a probability measure on Td invariant under the Γ-action, then it is a convex
combination of the Haar measure m on Td and an atomic measure supported by
rational points.

Recall that the linear action of a group G < GLd(Rd) on Rd is strongly irre-
ducible if no finite union of proper subspaces is G-invariant; equivalently, if every
finite index subgroup of G acts irreducibly. An element g ∈ GLd(R) is called prox-
imal if g has a dominant eigenvalue: |λ1| > max2≤i≤d |λi|. In [5] it is proved that

if the Zariski closure Γ
Z
< GLd(R) is strongly irreducible and contains a proximal

element then so does Γ itself.

Given a probability measure ν on SLd(Z) and a probability measure µ on Td

the convolution ν ∗ µ ∈ Td is

ν ∗ µ =
∑

g∈Γ

ν(g) g∗µ.

If ν ∗ µ = µ we say that µ is ν-stationary. Any Γ-invariant probability measure is
ν-stationary for any distribution ν on Γ, but the converse (even for a fixed ν) is
not true in general. Actions of the group Γ on a space X for which all ν-stationary
measures are Γ-invariant, are called ν-stiff (Furstenberg [4]).

Theorem 2 (Stiffness). Let ν be a probability measure on SLd(Z) so that the group
Γ = 〈supp(ν)〉 is as in Theorem 1, and for some ǫ > 0

(3)
∑

g∈Γ

‖g‖ǫν(g) < +∞.

Then any ν-stationary measure µ on Td is Γ-invariant, and is, therefore, a convex
combination of the Haar measure on Td and an atomic measure supported by
rational points.

Theorem 3 (Quantitative). Let ν and Γ = 〈supp(ν)〉 < SLd(Z) be as in The-
orem 2. Then there exist c > 0 and k < ∞ so that: if for a point x ∈ Td the
measure µn = ν∗n ∗ δx has Fourier coefficient |µ̂n(a)| > δ for some a ∈ Zd\{0},
then x admits a rational approximation

(4)

∥∥∥∥x− p

q

∥∥∥∥ < e−cn for some p ∈ Zd, q <

(‖a‖
δ

)k

.

Theorem 3 answers the question of equidistribution, posed by Y. Guivarc’h .

References

[1] Jean Bourgain, Alex Furman, Elon Lindenstrauss, and Shahar Mozes. Invariant measures
and stiffness for non-abelian groups of toral automorphisms. C. R. Math. Acad. Sci. Paris,
344(12):737–742, 2007.

[2] Jean Bourgain, Elon Lindenstrauss, Philippe Michel, and Akshay Venkatesh. Some effective
results for ×a,×b. preprint (17 pages).

[3] Harry Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine
approximation. Math. Systems Theory, 1:1–49, 1967.



Real Analysis, Harmonic Analysis and Applications 1777

[4] Hillel Furstenberg. Stiffness of group actions. In Lie groups and ergodic theory (Mumbai,
1996), volume 14 of Tata Inst. Fund. Res. Stud. Math., pages 105–117. Tata Inst. Fund.
Res., Bombay, 1998.
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A sharp multiplier theorem for the Kohn sublaplacian on the sphere
in Cn

Michael G. Cowling

(joint work with Oldrich Klima, Adam Sikora)

The Kohn sublaplacian L on the unit sphere S in Cn is of interest in complex
analysis, and as a model subelliptic operator. We take L to be ∆ +T 2, where −∆
and T denote the Laplace–Beltrami operator on S and the unit vector field in the
iz direction at the point z (we take Laplacians to be positive operators).

Given a self-adjoint positive operator L on L2(X), where X is a measure space,
one can define the bounded operator F (L) on L2(X) for any bounded Borel func-
tion F : [0,∞) → C by spectral theory. If we specialise to radial functions in
Hörmander’s Fourier multiplier theorem [7, Theorem 2.5],then it becomes the fol-
lowing prototypical spectral multiplier theorem for the Laplacian ∆, in which we
denote by Hs(R) the Sobolev space of functions on R with s derivatives in L2(R)
and by δtG the function G(t·).
Theorem. Suppose that G : [0,∞) → C is continuous. Suppose also that 0 6= η ∈
C∞

c (0,∞), that s > n/2, and that

‖ηδtG‖Hs ≤ C ∀t > 0.

Then G(∆), initially defined on L2(Rn), extends continuously to a bounded oper-
ator on the space Lp(Rn) whenever 1 < p <∞.

In this result, the “index” n/2 cannot be improved, and is therefore called
critical. M. Christ [2] and G. Mauceri and S. Meda [9] proved that the index
for a homogeneous sublaplacian on a homogeneous Lie group is at most half the
homogeneous dimension of the group. D. Müller and E.M. Stein [11], W. Hebisch
[6] and some of the present authors [5] showed that the critical index is half the
topological dimension for Heisenberg-like groups and for SU(2). Our main result
here is the following.

Theorem. Suppose that G : [0,∞) → C is continuous. Suppose also that 0 6= η ∈
C∞

c (0,∞), that s > n− 1/2, and that

(1) ‖ηδtG‖Hs ≤ C ∀t > 0.

Then G(L), initially defined on L2(S), extends continuously to a bounded operator
on the space Lp(Rn) whenever 1 < p <∞.
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If F (λ) = G(λ2), then F satisfies (1) if and only if G does. Therefore one can

consider F (
√
L) instead of G(L). This simplifies some homogeneity arguments.

There is a subriemannian or control distance dist0 associated to the Kohn Lapla-
cian. R.B. Melrose [10] showed that the distribution cos(t

√
L)δw is supported in

the dist0 ball with centre w and radius t. Since dist0 is hard to work with, we use
a simpler equivalent distance, dist:

dist(w, z) = |1 − 〈w, z〉|1/2 ∀w, z ∈ Cn.

Equipped with the distance dist and the standard surface measure σ, S is a
space of homogeneous type in the sense of R.R. Coifman and G.L. Weiss [3],
of homogeneous dimension 2n. Using this, Coifman and Weiss [3, 4] proved a
Hörmander multiplier theorem with index n.

The key step in proving the multiplier theorem is to associate to the opera-
tor F (

√
L) a kernel kF : S × S → C and to establish that

(2)

∫

dist(w,z)>2dist(z,z′)

|kF (w, z) − kF (w, z′)| dw ≤ C

for all y and y′ in S.
Take smooth functions ϕn : [0,∞] → [0, 1] such that ϕn+1 = ϕ1(2−n·) when

n ≥ 1, supp(ϕ0) ⊆ [0, 1], supp(ϕ1) ⊆ [1/2, 2], and
∑∞

n=0 ϕn = 1. Write Fn for
ϕnF , and kFn for the corresponding kernels. The kernel kF0 is smooth and poses
no problems. We estimate the integral (2) by

∞∑

n=0

∫

dist(w,z)>2 dist(w,z′)

|kFn (w, z) − kFn (w, z′)| dw.

The worst terms are where dist(y, y′) is close to 2−n/2. For smaller n, dist(y, y′)
is small compared to the scale on which kFn oscillates, and the two kernels tend
to cancel. For larger n, kFn(·, y) and kFn(·, y′) are nearly disjoint, and we control
the integral by

2

∫

dist(w,z)>dist(z,z′)

|kFn(w, z)| dw;

here we integrate where the kernel is small. Then the real task is to control
∫

dist(w,z)>ǫ

|k(w, z)| dw.

Hörmander used Fourier analysis to prove his multiplier result. On Rn,
∫

Rn

|f(x)| dx ≤
(∫

Rn

1

(1 + |x|)2s
dx

)1/2(∫

Rn

(1 + |x|)2s|f(x)|2 dx
)1/2

;

the first factor on the right hand side converges provided that s > n/2, and the

second is essentially the Hs(Rn) norm of f̂ , the Fourier transform of f ; this is why
n/2 is the index for the classical Hörmander theorem. We decompose the integral
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into integrals over annuli:
∫

dist(w,z)>ǫ

|k(w, z)| dw =

∞∑

n=0

∫

2n+1ǫ≥dist(w,z)>2nǫ

|k(w, z)| dw,

and in each annulus we use the trivial estimate

(3)

∫

B(z,2δ)\B(z,δ)

|k(w, z)| dw ≤
∣∣B(z, 2δ) \B(z, δ)

∣∣1/2
(∫

S

|k(w, z)|2 dw
)1/2

.

We use Melrose’s finite propagation speed result in an argument due to J. Cheeger,
M. Gromov and M. Taylor [1] to control the decay of kFn(w, z) as dist(w, z) grows.
However, this still only yields a multiplier theorem when s > n, because |B(y, t)|
behaves like a multiple of t2n for small t.

The trick needed is to use a weight: we replace the right hand side of (3) by
(∫

B(z,2δ)\B(z,δ)

dist(w, z)−α dx
)1/2(∫

S

|k(w, z)|2 dist(w, z)α dw
)1/2

.

Then the first integral on the right hand side behaves as δn−α/2. The price that
we pay is that we need weighted L2 estimates for the second integral.

In [5], we used weighted L2 estimates for the sphere in C2 using harmonic
analysis on SU(2). We can now prove the general theorem for the sphere in Cn

using the weighted L2 estimates in the M.Sc. thesis of Klima [8] — the key to
these is a careful study of complex spherical harmonics.
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Applications of time-frequency analysis in ergodic theory

Christoph Thiele

The classical paradigm of Calderón and Zygmund provides a set of techniques
invariant under translations and dilations that allow to prove estimates for opera-
tors acting on function spaces on IRn. We focus on the real line as underlying space
and further concentrate on estimates for operators that are themselves invariant
under translation and dilation. The only such operators bounded on Lp(R) are
the linear combinations of the identity operator and the Hilbert transform

p.v.

∫
f(x− t)

dt

t
.

Passing to invariant sub-linear operators, we have the well known examples of the
maximal operators and maximal truncated Hilbert transform

sup
ǫ

1

ǫ

∫ ǫ

−ǫ

f(x− t) dt, sup
ǫ

∫

R\[−ǫ,ǫ]

f(x− t)
dt

t
.

To obtain further invariant operators we may replace the supremum norm in the
parameter ǫ by other norms such as the V r variation norm

sup
N,ǫ0,ǫ1,...,ǫN

(
N∑

j=1

|f(ǫj) − f(ǫj−1)|r)1/r

or variants thereof with names such as jump counting norms and oscillation norms
that we shall not elaborate on in detail. For r > 2 the operators

‖1

ǫ

∫ ǫ

−ǫ

f(x− t) dt‖V r(ǫ), ‖
∫

R\[−ǫ,ǫ]

f(x− t)
dt

t
‖V r(ǫ)

are bounded in Lp for 1 < p <∞.
By a classical transfer principle bounds on the former can be used to prove

Birkhoff’s ergodic theorem: For a probability space X and a measure preserving
transformation T of X , and for f ∈ Lp(X), the ergodic averages

1

N

N∑

n=1

f(T nx)

converge for almost every x in X .
Time-frequency analysis provides an additional paradigm to Calderón-Zygmund

analysis that allows to estimate operators that are invariant under translation,
dilation, and modulation. Modulation is defined as

Mηf(x) = f(x)eiηx .

There are no bounded linear operators on Lp(IR) with non-trivial translation, di-
lation and modulation symmetry other than the identity operator, so we immedi-
ately turn to sublinear operators. The classical operator in this class is Carleson’s
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operator. It is the maximal operator over the family of operators formed by pre-
composing the Hilbert transform with a modulation:

Cf(x) = sup
η
p.v.

∫
f(x− t)eiη(x−t) dt

t
.

Boundedness of this operator in Lp(R) is the celebrated Carleson-Hunt theorem
[2],[8] with alternative approaches by Fefferman [5] and by Lacey and the author
[11].

Taking a supremum or variation norm over the dilation parameter one obtains
the operators

C∗f(x) = sup
ǫ

sup
η
p.v.

∫

R\[−ǫ,ǫ]

f(x− t)eiη(x−t) dt

t

CV f(x) = sup
η

‖p.v.
∫

R\[−ǫ,ǫ]

f(x− t)eiη(x−t) dt

t
‖V r(ǫ)

While the first operator can somewhat surprisingly be bounded by a superposition
of the classical Carleson operator, it is not known whether the second operator is
bounded. Lacey and Terwilleger have estimated a variant of the second operator
with variation norm replaced by some oscillation norm, motivated by a family of
Wiener-Wintner theorems in ergodic theory [10].

For another strengthening of Carleson’s operator we recall that the L∞ norm
of a function f is the same as the M2 Fourier multiplier norm, i.e. the norm of
the operator

g → F−1(fF (g))

where F denotes the Fourier transform. Given a family fǫ of function, one can
form the maximal operator associated to the family of multipliers. We denote by
‖f‖M∗

2
the norm of this maximal operator on L2(R):

g → sup
ǫ
F−1(fǫF (g)) .

We then have the sublinear operator

CMf(x) = ‖p.v
∫
f(x− t)eiη(x−t) dt

t
‖M∗

2 (η)

This operator has been estimated in Lp for 1 < p < 2 in [4]. By transfer to
ergodic theory this result implies Bourgain’s Return Times theorem [1] as well as an
extension of the range of exponents p and q in that theorem compared to previously
known results. The Return Times Theorem states: If Y is a probability space and
S a measure preserving transformation on Y and g in Lp(Y ), then for almost
every y ∈ Y the sequence an = g(Sny) is a good sequence for a weighted Birkhoff
theorem: Given a probability space X , a measure preserving transformation T on
X and f ∈ Lq(X), then the averages

1

N

N∑

n=1

anf(T nx)
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converge for almost every x ∈ X .
Another class of objects with translation, dilation, and modulation invariance

can be found among multilinear operators and forms. Fix a vector β = (β1, β2, β3)
of unit length in R3 that is perpendicular to (1, 1, 1). Then the trilinear form

Λ(f1, f2, f3) =

∫
p.v.

∫
f1(x− β1t)f2(x− β2t)f3(x− β3t)

dt

t
dx

is invariant under simultaneous translations and dilations of the three functions,
as well as under the modulations

Λ(f1, f2, f3) = Λ(Mα1f1,Mα2f2,Mα3f3)

where (α1, α2, α3) is perpendicular to (1, 1, 1) and β.
One has to distinguish two cases: If two of the components βj coincide, then

the trilinear form is called degenerate and can be reduced to the combination of
a pointwise product and a bilinear form. In this degenerate case Lp(R) bounds
follow trivially by Hölder’s inequality and bounds for the linear Hilbert transform.
In the non-degenerate case, the trilinear form has been proved to be bounded in
[12] and [13] for

∑
j 1/pj = 1 and 1 < p1, p2, p3 ≤ ∞.

Interesting questions concern uniform bounds in the vicinity of the degenerate
cases. For any triple of exponents p1, p2, p3 for which one has bounds both in
the non-degenerate case and at some degenerate point β, one may expect that
one has uniform bounds in the vicinity of this degenerate point. This has been
established only for a certain sub-optimal range of triples (p1, p2, p3) in a series of
papers [15],[7],[14].

Maximal and oscillation norm operators derived from the dual bilinear operator
(the bilinear Hilbert transform) have been considered in [9] and [3] in connection
with ergodic averages of the form

1

N

N∑

n=1

f(T nx)g(T 2nx) .

A longstanding open problem in ergodic theory concerns the almost everywhere
convergence of ergodic averrages formed using two commuting but otherwise ar-
bitrary measure preserving transformations S and T on a probability space X :

1

N

N∑

n=1

f(T nx)g(Snx)

for two bounded measurable functions f and g. An approach to this problem using
time frequency analysis suggests the study of the two dimensional analogue of the
above trilinear Hilbert form with x ∈ IR2 and β1, β2, β3 vectors in IR2. No Lp

estimates are known for this form. An apparently easier question arises when one
replaces t by a variable in IR2. Thus we consider the trilinear form

∫

IR2
p.v.

∫

IR2
f1(x −B1t)f2(x−B2t)f3(x−B3t)K(t)dt dx
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where K is some Calderón Zygmund kernel on IR2 and B1, B2, B3 are 2 × 2 real
matrices.

In all interesting cases one may by a change of variables and possible permu-
tation of indices assume that B1 = 0, B2 = id and B3 is in Jordan canonical
form. As in the one dimensional case one encounters certain degenerate behaviour
when eigenvalues of B3 coincide with the eigenvalues of B1 and B2. We have five
essentially different cases:

(1) Neither of 0 and 1 is an eigenvalues of B3.
(2) B3 is equal to B1 or B2.
(3) B3 has two different eigenvalues of which exactly one is equal to 0 or 1.
(4) B3 is a Jordan block of size 2 with eigenvalue 0 or 1.
(5) Both 0 and 1 are eigenvalues of B3.

Cases 1 and 2 are relatively straight-forward generalizations of the non-degene-
rate and the degenerate cases in one dimension. Cases 3 and 4 are discussed in
[6] and bounds are proved in the range

∑3
i=1 1/pi = 1 and 2 < p1, p2, p3 < ∞.

Interestingly, while evidently Case 3 implies bounds for the one dimensional Hilbert
form, the bound in Case 4 can be used as a an alternative approach to the Carleson-
Hunt theorem. This provides a somewhat unified approach to these two objects.

It is not known whether the trilinear form satisfies any Lp bounds in Case 5.
This is a basic challenge in harmonic analysis. In the following paragraphs we
rephrase it in more concrete terms.

Let φ be a smooth approximation to the characteristic function of [−1, 1] in the
Schwartz class S(IR) with integral 1. Define

φk(x) = 2kφ(2kx) ,

ψk = φk − φk−1 ,

and define the “sum” and “difference” operators

Pkf(x) = f ∗ φk ,

Qkf(x) = f ∗ ψk .

Let Pk,1 and Qk,1 be the corresponding operators on functions in IR2 that act only
in the first variable, e.g.

Pk,1f(x, y) =

∫
f(x− t, y)φk(t) dt

and define similarly Pk,2 and Qk,2. The bounds for the trilinear form in Case
5 essentially reduce to finding any Lp bounds for the bilinear paraproduct type
operator

B(f, g) =

∞∑

k=−∞
(Pk,1f)(Qk,2g) .

No such bound is known. Any bound together with analoguous bounds for the
dual forms and interpolation would imply the bound

‖B(f, g)‖3/2 ≤ C‖f‖3‖g‖3
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which may therefore be the main estimate in question.
There is an analoguous question when Pk and Qk are replaced by the natural

dyadic martingale sum and difference operators on the real line. No Lp bounds are
known for this dyadic analogue, which therefore presents another closely related
and possibly simpler problem.
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Heat-flow monotonicity related to some inequalities in euclidean
analysis

Jonathan Bennett

The purpose of this talk is to draw attention to some heat-flow monotonicity
phenomena underlying certain integral inequalities in euclidean analysis.

We begin by clarifying what we mean by this on an informal level. Suppose that
X1, . . . Xn are function spaces and that the quantities QL, QR : X1×· · ·×Xn → R

satisfy the inequality QL(f1, . . . , fn) ≤ QR(f1, . . . , fn) for all fj ∈ Xj , 1 ≤ j ≤ n.
In such a situation it is conceivable that one may define “flows” t 7→ (fj)t, t > 0
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under which the quantity t 7→ QL((f1)t, . . . , (fn)t) is nondecreasing and

QL((f1)t, . . . , (fn)t) −→
{
QL(f1, . . . , fn) as t→ 0
QR(f1, . . . , fn) as t→ ∞.

This type of flow approach to proving inequalities, by its nature, tends to generate
sharp constants and identify extremisers. Such information will be a byproduct of
all of the examples we discuss here.

In certain situations where the quantities QL and QR are appropriately “geo-
metric”, and the flows are variants of euclidean heat flow, this sort of phenomenon
does indeed exist. This was observed explicitly by Carlen, Lieb and Loss in [7],
and later by Bennett, Carbery, Christ and Tao in [5]. Such heat-flow monotonicity
methods also appeared in the work of Bennett, Carbery and Tao [6] on certain
multilinear analogues of the longstanding Kakeya conjecture (see also [6] for appli-
cations to the closely related joints problem from incidence geometry). The reader
is referred to [1] for a discussion of the historical context of such ideas within
geometric analysis and for some further references.

Here we shall indicate how this phenomenon manifests itself in various contexts.
We shall largely restrict our attention to settings in which the function spaces
Xj are Lebesgue Lp spaces and the inputs f1, . . . , fn flow by classical heat-flows

conjugated by powers; that is, flows of the form t 7→ (Ht ∗fp)1/p for some p, where
Ht denotes a euclidean heat kernel.

1. Heat-flow monotonicity underlying geometric inequalities

As is implicit in several works, beginning with Carlen, Lieb and Loss [7], mono-
tone quantities underlying many geometric inequalities turn out to be generated
by algebraic closure properties of solutions to heat inequalities.

We illustrate this with the classical Hölder inequality, which states that for
1 ≤ p1, p2 ≤ ∞ satisfying 1

p1
+ 1

p2
= 1,

∫
f1f2 ≤ ‖f1‖p1‖f2‖p2

for all nonnegative functions f1 ∈ Lp1(Rd) and f2 ∈ Lp2(Rd). One way of observing
a heat-flow monotonicity phenomenon underlying this inequality is to appeal to a
certain algebraic closure property of solutions to the heat inequality

(1) ∂tu ≥ 1

4π
∆u.

Namely, if u1, u2 : (0,∞) × Rd → (0,∞) satisfy (1) then their geometric mean

u := u
1/p1

1 u
1/p2

2 also satisfies (1). As a corollary to this, provided that u1 and u2

are sufficiently well-behaved, it follows from differentiating under the integral and
the divergence theorem that the quantity

Q(t) :=

∫

Rd

u1(t, x)1/p1u2(t, x)1/p2dx
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is nondecreasing for all t > 0. Now, on insisting that, for j = 1, 2, uj satisfies (1)
with equality and nonnegative initial data f

pj

j , it follows that
∫

Rd

f1(x)f2(x)dx = lim
t→0

Q(t) ≤ lim
t→∞

Q(t) = ‖f1‖p1‖f2‖p2 ;

that is, we recover the classical Hölder inequality in the manner in which we sought.
The nonnegative inputs f1 and f2 have associated flows t 7→ (Ht ∗ fp1

1 )1/p1 and

t 7→ (Ht ∗ fp2

2 )1/p2 respectively, where Ht(x) is the appropriate heat kernel.
These considerations may be generalised considerably to the so-called geometric

Brascamp–Lieb inequalities, where the associated closure property of solutions to
(1) involves “nonisotropic geometric means”. This was first observed by Carlen,
Lieb and Loss [7], and later by Carbery, Christ, Tao and the author in some
generality.

In addition to such geometric means and the trivial operation of ordinary ad-
dition, solutions to certain heat inequalities are closed under convolution-based

operations of the form (u1, u2) 7→ (u
1/p1

1 ∗ u1/p2

2 )p, yielding various sharp Young’s
convolution inequalities of Beckner and Brascamp–Lieb. It is perhaps also inter-
esting to note that the solutions of (1) are also closed under harmonic addition
(u1, u2) 7→ (1/u1 + 1/u2)−1. See [2].

2. More “exotic” inequalities

As we have seen, a byproduct of such heat-flow monotonicity phenomena is the
existence of centred gaussian extremisers to the inequalities under consideration.
It is natural at this stage to turn our attention to other types of inequalities (which
are not manifestly geometric) where we know, or at least suspect that gaussians
are extremisers.

The classical mixed-norm Strichartz inequalities for the free Schrödinger equa-
tion take the form

(2) ‖eiπs∆f‖Lp
s(Lq

x(Rd)) ≤ c‖f‖L2(Rd),

for certain indices p and q. Here c denotes a constant depending on at most d, p
and q. A necessary condition for this inequality to hold is that

(3)
2

p
+
d

q
=
d

2
.

See [10] for historical references and a full treatment of (2) for suboptimal c.
Recently Foschi [8] (see also Hundermark and Zharnitsky [9]) showed that in

the cases where one can “multiply out” the Strichartz norm (i.e. when q ∈ 2N and
q | p) the sharp constants c in (2) are obtained by testing on centred gaussians.

Due to the presence of an L2 norm on the right hand side of Inequality (2), it
is natural to flow the input f ∈ L2(Rd) under a quadratic heat flow. For such a
function f and such p, q let

Qp,q(t) := ‖eiπs∆(eπt∆|f |2)1/2‖Lp
s(Lq

x(Rd)).
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Theorem 3 (B., Bez, Carbery, Hundertmark [4]). If in addition to (3) we have
that q ∈ 2N and q | p, then Qp,q(t) is nondecreasing for all t > 0; i.e. Qp,q is
nondecreasing in the cases (d, p, q) = (1, 8, 4), (1, 6, 6), (2, 4, 4).

There is strong anecdotal evidence to suggest that the monotonicity of Qp,q

will in general fail when q 6∈ 2N or q does not divide p. We refer the reader to [3]
where we provide counterexamples to an analogous question in the setting of the
Hausdorff–Young inequality.

References

[1] F. Barthe, The Brunn-Minkowski theorem and related geometric and functional inequalities,
International Congress of Mathematicians. Vol. II, 1529-1546, Eur. Math. Soc., Zürich, 2006.
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Ergodic Theory, lattice subgroups and lattice points

Amos Nevo

1. General set-up.

Let :
− G be a locally compact second countable group,
− Γ ⊂ G a discrete lattice subgroup, namely G/Γ carries a G-invariant proba-

bility measure, m = mG/Γ,
− Bt ⊂ G a growing family of sets, for example Bt = {g ∈ G ; N(g) ≤ t} for

some gauge function N .
Basic problem : Let (X,µ) be an arbitrary measure preserving action of Γ.

Consider the lattice points in Bt, and the uniform averages supported on them.
Do these averages

λtf(x) =
1

|Γ ∩Bt|
∑

γ∈Γ∩Bt

f(γ−1x)

converge, for a given function f on X ??
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2. Ergodic theorems for Lattices in semisimple Lie groups

Let now
− G = connected semisimple Lie group with finite center and no compact

factors.
− S = G/K the symmetric space (K = maximal compact subgroup), d the

distance function.
− Bt = {g ∈ G : d(gK,K) < t}.
− Γ = any lattice subgroup, λt = uniform averages on Γ ∩Bt = Γt.
Theorem 1. (Gorodnik-Nevo, 2005).
If the Γ-action is ergodic then the pointwise ergodic theorem holds: for every

f ∈ Lp, p > 1, for almost every x,

lim
t→∞

λtf(x) =

∫

X

fdµ .

In particular, the mean ergodic theorem holds: for every f ∈ Lp, 1 ≤ p <∞

lim
t→∞

∥∥∥∥λtf −
∫

X

fdµ

∥∥∥∥
p

= 0 .

An important phenomenon that arises for semisimple groups (but not for amenable
groups) is the appearance of a spectral gap.

Definition : The Γ-action has a spectral gap in L2(X) if there exists a probability
measure ν on Γ with full support, satisfying

∥∥∥∥π(ν)f −
∫

X

fdµ

∥∥∥∥ < (1 − η) ‖f‖

for f ∈ L2(X) and a fixed η > 0.
Theorem 2. (Gorodnik-Nevo, 2005).
If the Γ-action has a spectral gap then the fast pointwise ergodic theorem holds:

for every f ∈ Lp, p > 1, for almost every x,
∣∣∣∣λtf(x) −

∫

X

fdµ

∣∣∣∣ ≤ Cp(x, f)vol (Bt)
−θp .

In particular, the fast mean ergodic theorem holds : for every f ∈ Lp, 1 ≤ p <∞

lim
t→∞

∥∥∥∥λtf −
∫

X

fdµ

∥∥∥∥
p

≤ Cpvol (Bt)
−θp ,

where θp > 0.

3. Equidistribution is isometric actions

In certain situations, it is possible to assert that convergence holds everywhere,
not just almost everywhere.
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Theorem 3. (Gorodnik-Nevo, 2006).
Let (X, d) be a compact metric space, and Γ act by isometries, ergodically with

respect to an invariant probability measure µ of full support on X . Then for every
continuous function f on X , uniformly

lim
t→∞

max
x∈X

∣∣∣∣λtf(x) −
∫

X

fdµ

∣∣∣∣ = 0 .

If the Γ-action has a spectral gap (and the measure satisfies µ(Bǫ) ≥ Cǫd), then
for every continuous function f , and for every point x∣∣∣∣∣∣

1

|Γt|
∑

γ∈Γt

f(γ−1x) −
∫

X

fdµ

∣∣∣∣∣∣
≤ C(x, f)e−κt ,

for an explicit rate κ > 0 (independent of f).

4. Solution of the lattice point counting problem

Let us demonstrate the basic idea in the simplest possible case. Consider the
action induced to G by the trivial action of Γ on one point. Consider the simplest
ergodic theorem for G, namely the mean ergodic theorem for the Haar uniform
averages βt supported on a family of sets Bt. Let us assume

A) The validity of the (stable) mean ergodic theorem in theG-action on L2(G/Γ),
in the form ∥∥∥∥∥βtf −

∫

G/Γ

fdm

∥∥∥∥∥
2

≤ Cvol (Bt)
−θ

B) The regularity condition for the sets Bt given by (t > t0, 0 < ǫ < ǫ0)

vol (OǫBtOǫ) ≤ (1 + cǫ)vol (∩u,v∈OǫuBtv)

where Oǫ is a family of decreasing symmetric neighborhoods of e ∈ G satisfying :
vol (Oǫ) ≥ Cǫd.

Theorem 4. (Gorodnik-Nevo, 2006).
For any lcsc group G and any lattice Γ, under conditions A and B, the lattice

point counting problem in the domains Bt has the solution

|Γ ∩Bt|
vol (Bt)

= 1 +O
(

vol (Bt)
−θ/(d+1)

)

Theorem 4 gives rise to a an explicit quantitative solution of the following lattice
points counting problems, among others :

(1) Number of integral points in a norm ball on any semisimple Lie group
defined over Q.

(2) Number of S-integral points in a ball defined by a height function on any
semisimple S-algebraic group.

(3) The number of rational points in a ball defined by a height function on
any semisimple algebraic group.

(4) The number of lattice points in a norm ball on a homogeneous affine
symmetric variety.



1790 Oberwolfach Report 32/2008

(5) Number of lattice points in an angular sector in the preceding situations.
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Estimates for Poisson kernels and stationary measures

Ewa Damek

(joint work with S.Broferio, D.Buraczewski, Y.Guivarc’h, A.Hulanicki, R.Urban)

1

Consider a very simple example: the upper half plane

{(x, a) : x ∈ R, a > 0}
and the hyperbolic Laplacian there.

L = a2∂2
a + a2∂2

x = a2(∂2
a + ∂2

x)

= (a∂a)2 − a∂a + a2∂2
x

It is well known that bounded L harmonic functions are Poisson integrals

F (xa) =
1

π

∫

R

f(y)
a

(x− y)2 + a2
dy

=
1

π

∫

R

f(x+ ay)
1

y2 + 1
dy, f ∈ L∞(R)

against the kernel
1

π

1

y2 + 1
, y ∈ R.

The operator L is left invariant on the affine group S = R×R+ with multiplication

(x, a)(y, b) = (x+ ay, ab).
Consider some more examples of invariant operators:

L1 = (a∂a)2 − αa∂a + a2∂2
x + βa∂x, α ≥ 0

L2 = −a∂a + a2∂2
x + βa∂x

L3 = (a∂a)2 − αa∂a − a∂x, α ≥ 0

After a change of variables all left-invariant Hörmander type operators on S with
negative drift are of this form. Let νj be the Poisson kernel corresponding to the
operator Lj . Functions

F (xa) =

∫

R

f(xa ◦ y)dνj(y) =

∫

R

f(x+ ay)dνj(y), f ∈ L∞

1This research project has been partially supported Marie Curie Transfer of Knowledge Fel-
lowship Harmonic Analysis, Nonlinear Analysis and Probability (contract number MTKD-CT-
2004-013389). D. Buraczewski and E. Damek were also supported by KBN grant N201 012
31/1020.
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are harmonic with respect to Lj (for α = 0 we have to assume f ∈ L∞
c ). Moreover,

if α > 0 all bounded harmonic functions are of this form. The corresponding
Poisson kernels are given by the formulas:

L1 ν1(x) = c(1 + x2)−
1+α

2 eβ arctan x

L2 ν2(x) = ce−
(x−β)2

2

L3 ν3(x) = c|x|−1−αe−
1

|x| , x < 0

ν3(x) = 0, x ≥ 0

As far as (a∂a)2 is present in the operator, decay at infinity as |x|−1−α is
observed provided a give half line is in the support of the kernel. If α = 0, the
kernel is not integrable and there are no bounded harmonic functions.

Let µ̌t be the semigroup with the infinitesimal generator Lj . Then µ̌t ∗ νj = νj .
It is natural to ask what happens if instead of the semigroup we consider a single
measure µ? Is there a stationary measure ν i.e a measure such that µ ∗ ν = ν? Is
it unique? If so what is it’s behavior at infinity?

We make the following assumptions:

S = Rn × R+

axa−1 = (ad1x1, ..., a
dnxn), dj > 0

contraction in mean

∫

S

log a dµ(x, a) < 0

there is α > 0

∫

S

aα dµ(x, a) = 1

∫

S

(aα| log a| + |x|α) dµ(x, a) <∞,

where | | is a homogeneous norm corresponding to dilations axa−1. Moreover, to
simplify the presentation we assume that suppµ generates S.

Theorem 1. (Buraczewski, Guivarc’h, Hulanicki, Urban, Damek, [2]) Let
µ be a probability measure on S satisfying the above assumptions. Then there is a
Radon measure Λ on Rn \ {0} such that for any f ∈ Cc(Rn \ {0}) we have

lim
a→∞

aα

∫

Rn

f(δa−1x) dν(x) =

∫

Rn

f(x) dΛ(x).

Λ is homogeneous i.e

δa ∗ Λ =aαΛ
∫

Rn

f(ax) Λ(x) =aα

∫

Rn

f(x) Λ(x).
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In radial coordinates
∫

Rn

f(x)dΛ(x) =

∫

S1×R+

f(rω)dσ(ω)
dr

r1+α

for a finite not zero measure σ.

In particular

lim
a→∞

aαν({x : |x| > a, δ|x|−1(x) ∈ W}) =
1

α
σ(W )

for W ⊂ S1, σ(∂W ) = 0.
Theorem (1) holds in a much more general setting: Rn may be replaced by

a nilpotent group and dilations by a direct product of dilations and the norm
preserving transformations.

The above estimate should be compared with the one obtained for Poisson
kernels corresponding to differential operators.

Theorem 2. (D.Buraczewski, A.Hulanicki, E.Damek, [3]) Let S = NA,
be a semi-direct product of a nilpotent group N and A = R+ acting on N by
contracting automorphisms δa (i.e. real parts of eigenvalues of the adjoint action
on the Lie algebra of N are positive). Let

L =

m∑

j=0

Y 2
j + Y

be a left-invariant operator satisfying the Hörmander condition i.e.

S = Lie(Y0, ..., Ym, Y )

Assume that via the homomorphism π : S 7→ A, π(xa) = a, L is mapped onto

π(L) = (a∂a)2 − αa∂a, α ≥ 0.

Let µt be the semigroup of measures with the infinitesimal generator L. Then, for
the unique positive measure ν on N such that

µ̌t ∗ ν = ν,

we have

lim
a→∞

aα+Qν(δa(x)) = c(x),

and c(x) is a continuous function on Σ = {x : |x| = 1}. If Lie(Y0, ..., Ym) = S
then c(x) > 0.

Notice that α ≥ 0 in Theorem (2) i.e. we reach the bottom of the spectrum,
while in Theorem (1), α > 0. The case

∫
S

log a dµ(x, a) = 0 has been treated
separately and differently:
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Theorem 3. (S.Broferio, Buraczewski, Damek, [1]) Assume that S = Rn×
R+ with axa−1 = (ax1, ..., axn), x ∈ Rn, a ∈ R+. Let µ be a probability measure
on S such that

∫

S

log a dµ(x, a) = 0,

suppµ generates S,

there is a positive δ

∫

S

∫

S

(aδ + a−δ + |x|δ) dµ(x, a) <∞

Then

lim
a→∞

∫

Rn

f(a−1x) ν(x)

=

∫

Rn

f(rω)
dr

r
σ(ω)

for f ∈ Cc(Rd \ {0}) and σ 6= 0 provided some additional assumptions (suppµ
compact is sufficient).
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Abstract Strichartz estimates and existence theorems for nonlinear
wave equations

Christopher D. Sogge

(joint work with K. Hidano, J. Metcalfe, H. Smith, and Y. Zhou)

Our purpose is to show how local energy decay estimates for certain linear wave
equations involving compact perturbations of the standard Laplacian lead to op-
timal global existence theorems for the corresponding small amplitude nonlinear
wave equations with power nonlinearities. To achieve this goal, at least for spa-
tial dimensions n = 3 and 4, we shall show how the aforementioned linear decay
estimates can be combined with “abstract Strichartz” estimates for the free wave
equation to prove corresponding estimates for the perturbed wave equation.

Let us start by describing the local energy decay assumption that we shall make
throughout. We shall consider wave equations on the exterior domain Ω ⊂ Rn of
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a compact obstacle:

(1)





(∂2
t − ∆g)u(t, x) = F (t, x), (t, x) ∈ R+ × Ω

u(0, · ) = f

∂tu(0, · ) = g

(Bu)(t, x) = 0, on R+ × ∂Ω,

where for simplicity we take B to either be the identity operator (Dirichlet-wave
equation) or the inward pointing normal derivative ∂ν (Neumann-wave equation).

The operator ∆g is the Laplace-Beltrami operator associated with a smooth,
time independent Riemannian metric gjk(x) which we assume equals the Euclidean
metric δjk for |x| ≥ R, some R. The set Ω is assumed to be either all of Rn, or
else Ω = Rn\K where K is a compact subset of |x| < R with smooth boundary.

We can now state the main assumption that we shall make.
Hypothesis B. Fix the boundary operator B and the exterior domain Ω ⊂ Rn as
above. We then assume that given R0 > 0

(2)

∫ ∞

0

(
‖u(t, · )‖2

H1(|x|<R0)
+ ‖∂tu(t, · )‖2

L2(|x|<R0)

)
dt

. ‖f‖2
H1 + ‖g‖2

L2 +

∫ ∞

0

‖F (s, · )‖2
L2 ds,

whenever u is a solution of (1) with data (f(x), g(x)) and forcing term F (t, x) that
both vanish for |x| > R0.

Having described the main assumption about the linear problem, let us now
describe the nonlinear equations that we shall consider. They are of the form

(3)





(∂2
t − ∆g)u(t, x) = Fp

(
u(t, x)

)
, (t, x) ∈ R+ × Ω

Bu = 0, on R+ × ∂Ω

u(0, x) = f(x), ∂tu(0, x) = g(x), x ∈ Ω,

with B as above. We shall assume that the nonlinear term behaves like |u|p when
u is small, and so we assume that

∑
0≤j≤2 |u|j

∣∣ ∂j
uFp(u)

∣∣ . |u|p, when u is small.

If we let {Z} = {∂l, xj∂k − xk∂j : 1 ≤ l ≤ n, 1 ≤ j < k ≤ n} then we can now
state our existence theorem for (3).

Theorem 1. Let n = 3 or 4, and fix Ω ⊂ Rn and boundary operator B as above.
Assume further that Hypothesis B is valid.

Let p = pc be the positive root of (n− 1)p2 − (n+ 1)p− 2 = 0, and fix pc < p <
(n+ 3)/(n− 1). Then if γ = n

2 − 2
p−1 , there is an ε0 > 0 depending on Ω, B and p

so that (3) has a global solution satisfying (Zαu(t, · ), ∂tZ
αu(t, · )) ∈ Ḣγ

B × Ḣγ−1
B ,

|α| ≤ 2, t ∈ R+, whenever the initial data satisfies the boundary conditions of
order 2, and

(4)
∑

|α|≤2

(
‖Zαf‖Ḣγ

B(Ω) + ‖Zαg‖Ḣγ−1
B (Ω)

)
< ε, 0 < ε < ε0.
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To prove Theorem 1, we shall use certain “abstract Strichartz estimates” which
we now describe. Earlier works ([1], [5], [6]) have focused on establishing cer-
tain mixed norm, Lq

tL
r
x estimates on R+ × Ω for solutions of (1). For certain

applications, such as obtaining the Strauss conjecture in various settings, it is con-
venient to replace the Lr

x norm with a more general one. To this end, we consider
pairs of normed function spaces X(Rn) and X(Ω). The spaces are localizable,
in that ‖f‖X ≈ ‖βf‖X + ‖(1 − β)f‖X for smooth, compactly supported β, with
β = 1 on a neighborhood of Rn\Ω in case X = X(Ω). Finally, we assume that
‖(1 − β)f‖X(Ω) ≈ ‖(1 − β)f‖X(Rn) for such β. Weighted mixed Lp spaces, as well

as
(
Ḣγ(Rn), Ḣγ

B(Ω)
)
, are the examples used in the proof of Theorem 1.

We shall let ‖ · ‖X′ denote the dual norm (respectively over Rn and Ω) so

that ‖u‖X = sup‖v‖X′=1

∣∣∣
∫
u v dx

∣∣∣ . An important example for us is when ‖u‖X =

‖ |x|αu‖Lp , for a given 1 ≤ p ≤ ∞ and |α| < n/p, in which case the dual norm is
‖v‖X′ = ‖ |x|−αv‖Lp′ , with p′ denoting the conjugate exponent.

We shall consider time Lebesgue exponents q ≥ 2 and assume that we have the
global Minkowski abstract Strichartz estimates

(5) ‖v‖Lq
t X(R×Rn) . ‖v(0, · )‖Ḣγ (Rn) + ‖∂tv(0, · )‖Ḣγ−1(Rn) ,

assuming that (∂2
t −∆)v = 0 Here ‖v‖Lq

t X(I×Rn) =
( ∫

I ‖v(t, · )‖q
X dt

)1/q

. We shall

also consider analogous norms on I × Ω ‖u‖Lq
t X(I×Ω) =

( ∫
I ‖u(t, · )‖q

X(Ω) dt
)1/q

.

In addition to Hypothesis B and (5), we shall assume that we have the local
abstract Strichartz estimates for Ω:

(6) ‖u‖Lq
tX([0,1]×Ω) . ‖f‖Ḣγ

B(Ω) + ‖g‖Ḣγ−1
B (Ω),

assuming that u solves (1) with vanishing forcing term.

Definition 2. When (5) and (6) hold we say that (X, γ, q) is an admissible triple.

We can now state our main estimate.

Theorem 3. Let n ≥ 2 and assume that (X, γ, q) is an admissible triple with
q > 2 and γ ∈ [−n−3

2 , n−1
2 ]. Then if Hypothesis B is valid and if u solves (1) and

(∂2
t − ∆g)u ≡ 0, we have the global abstract Strichartz estimates

(7) ‖u‖Lq
tX(R×Ω) . ‖f‖Ḣγ

B(Ω) + ‖g‖Ḣγ−1
B (Ω).

The condition on γ ensures that γ and 1−γ are both ≤ (n−1)/2, which is what
the proof seems to require. Unfortunately, for n = 2, this forces γ to be equal to
1/2, while a larger range of γ ∈ (0, 1) is what certain applications require. For this
reason, we are unable at present to show that the Strauss conjecture for obstacles
holds when n = 2.

Corollary 4. Assume that (X, γ, q) and (Y, 1−γ, r) are admissible triples and that
Hypothesis B is valid. Also assume that (7) holds for (X, γ, q) and (Y, 1−γ, r), and
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that 0 ≤ γ ≤ 1. Then we have the following global abstract Strichartz estimates
for the solution of (1)

(8) ‖u‖Lq
tX(R+×Ω) . ‖f‖Ḣγ

B(Ω) + ‖g‖Ḣγ−1
B (Ω) + ‖F‖Lr′

t Y ′(R+×Ω),

where r′ denotes the conjugate exponent to r and ‖ · ‖Y ′ is the dual norm to ‖ · ‖Y .

One can adapt arguments from Hidano [2], [3] to show that

(9)
∥∥∥ |x|n

2 −n+1
p −γu

∥∥∥
Lp

t Lp
rL2

ω(R+×Rn)
. ‖u(0, · )‖Ḣγ(Rn) + ‖∂tu(0, · )‖Ḣγ−1(Rn)

+
∥∥∥ |x|− n

2 +1−γ(∂2
t − ∆)u

∥∥∥
L1

t L1
rL2

ω(R+×Rn)
,

provided that 1
2 − 1

p < γ < n
2 − 1

p and 1
2 < 1 − γ < n

2

This inequality is strong enough to prove the variant of Theorem 1 for the
nonobstacle case when 2 ≤ n ≤ 4. Using Corollary 4, one can show that a variant
of (9) is also valid for the obstacle case under the above assumptions when n = 3
and n = 4, which is strong enough to prove Theorem 1.
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The Hardy-Littlewood maximal inequality in metric measure spaces

Terence Tao

(joint work with Assaf Naor)

We study the best weak (1, 1) constant ‖M‖L1→L1,∞ of the Hardy-Littlewood
maximal function Mf := supr>0

1
µ(B(x,r))

∫
B(x,r)

|f | dµ in a metric measure space

(X,µ, d). A classical Vitali-type covering argument of Wiener gives the bound
‖M‖L1→L∞ ≤ K whenever the metric measure space has doubling constant at
most K, thus µ(B(x, 2r)) ≤ Kµ(B(x, r)) for all x, r. We give various examples
that show that Wiener’s bound is essentially sharp, even when assuming the metric
measure space is an abelian group with translation-invariant measure and metric,
assuming Lp operator bounds on M , and also restricting attention to dyadic radii
r.
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On the other hand, if we instead assume a micro-doubling condition µ(B(y, (1+
1
d)r)) ≤ Kµ(B(x, r)) whenever r > 0 and y ∈ B(x, r), then one has the improved

bound ‖M‖L1→L1,∞ ≤ CK2d log d, recovering a result of Stein and Strömberg (and
also closely related to a maximal inequality of Lindenstrauss); if one restricts to
dyadic radii then one can improve this to CK log d. More generally, if MI denotes
the maximal function with radii restricted to some set I ⊂ R+, then we have the
localisation result ‖MI‖L1→L1,∞ ≤ CK supr ‖MI∩[r,dr]‖L1→L1,∞ . Thus, in order
to analyse the weak (1, 1) constant in the Hardy-Littlewood maximal inequality,
it suffices to restrict attention to a range of scales such as [1, d].

Finally, we show that the Hardy-Littlewood inequality can hold in some contexts
with no doubling properties whatsoever, such as the free group or hyperbolic space.

An affine invariant inequality and applications in harmonic analysis

James Wright

(joint work with Spyridon Dendrinos, Magali Folch-Gabayet, Norberto Laghi)

Recently there has been considerable attention given to certain euclidean harmonic
analysis problems associated to a surface or curve (for example, the problems of
Fourier restriction and the smoothing effects of generalised Radon transforms)
where the underlying surface measure is replaced by the so-called affine arclength
or surface measure. See [1], [2], [3], [5], [8], [11], [12], [13], [14], [15], [16], [17] and
[18]. This has the effect of making the problem affine invariant as well as invariant
under reparametrisations of the underlying curve or surface. For this reason there
have been many attempts to obtain universal results, establishing uniform bounds
over a large class of surfaces or curves. The affine arclength or surface measure also
has the mitigating effect of dampening any curvature degeneracies of the variety
and therefore one expects that the universal bounds one seeks will be the same as
those arising from the most non-degenerate situation.

In this talk we will be concerned with problems associated to curves in Rd

defined with respect to the affine arclength measure. If Γ : I → Rd parametrises a
smooth curve in Rd on an interval I, set

LΓ(t) = det(Γ′(t) · · ·Γ(d)(t));

this is the determinant of a d × d matrix whose jth column is given by the jth
derivative of Γ, Γ(j)(t). The affine arclength measure ν = νΓ on Γ is defined on a
test function φ by

ν(φ) =

∫

I

φ(Γ(t))|LΓ(t)| 2
d(d+1) dt;

one easily checks that this measure is invariant under reparametrisations of Γ.
We will be mainly interested here in obtaining universal bounds for two prob-

lems in euclidean harmonic analysis. One such problem lies in the theory of Fourier
restriction where one would like to determine the exponents p and q so that the
apriori estimate

(1) ‖f̂ |Γ‖Lq(Γ,dν) ≤ C‖f‖Lp(Rd)
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holds uniformly for a large class of curves Γ. This problem was first considered
by Sjölin in [19] where he showed that (1) holds uniformly over all smooth convex
curves in the plane if and only if p′ = 3q (here p′ = p/(p−1) denotes the conjugate
exponent to p) and 1 ≤ p < 4/3. See also [15]. The convexity assumption implies
that LΓ(t) remains single-signed and Sjölin produced a plane curve Γ where LΓ

rapidly changes sign and (1) fails for any p′ = 3q and 1 < p < 4/3 (Sjölin’s
argument establishing (1) for convex curves works for any smooth plane curve as
long as the number of sign changes of LΓ remains bounded).

Another basic problem arises in the theory of averaging operators along curves
where one wants to determine the optimal exponents p and q so that the apriori
estimate

(2) ‖Tf‖Lq(Rd) ≤ C‖f‖Lp(Rd)

holds uniformly for a large class of curves Γ where

Tf(x) = f ∗ ν(x) =

∫

I

f(x− Γ(t))|LΓ(t)| 2
d(d+1) dt.

Again simple examples where LΓ changes sign too often show that (2) can fail in
such situations.

Therefore in both problems it is natural to restrict to families of curves Γ
where one has control over the number of sign changes of LΓ. Of course convex
curves in the plane is one such natural family. We will be interested in families
of curves Γ(t) = (Q1(t), . . . , Qd(t)) where each Qj is a real polynomial (more
generally we also consider the class where each Qj is a rational function). Both
cases are natural families as LΓ is either a polynomial or rational function and the
number of sign changes is controlled by the degrees of the polynomials defining
Γ. One method for establishing (1) or (2) is the so-called T ∗T method where
one examines the regularity properties of the measure ν by considering its d-
fold convolution ν ∗ · · · ∗ ν. The map which carries this d-fold convolution is
ΦΓ(t1, . . . , td) = Γ(t1) + · · · + Γ(td) and the determinant of the Jacobian matrix
for this map, JΓ(t1, . . . , td) = det(Γ′(t1) · · ·Γ′(td)), then determines the density of
ν ∗ · · · ∗ ν.

M. Christ introduced two methods to establish (1) and (2), see [6] and [7]
respectively, reducing matters (in part) to proving the following affine invariant
inequality relating the jacobi-determinant JΓ and LΓ:

(3) |JΓ(t1, . . . , td)| ≥ ǫ

d∏

j=1

|LΓ(tj)| 1d
∏

j<k

|tj − tk|.

In [12] Drury and Marshall proved (3) for monomial curves Γ(t) = (tk1 , . . . , tkd)
where k1, . . . , kd are positive integers and thereby establishing (1) for this family of
curves. In joint work with S. Dendrinos, we extend the work of Drury and Marshall
from monomial curves to general polynomial curves Γ(t) = (P1(t), . . . , Pd(t)). For
such Γ one easily sees that (3) cannot possibly hold for all tj ∈ R. Nevertheless
we have
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Theorem 1. For Γ(t) = (P1(t), . . . , Pd(t)) where each Pj is a real polynomial,
there is a decomposition of the reals R = ∪I into M disjoint intervals so that on
each Id, (3) holds. Moreover M and ǫ can be taken to depend only on d and the
degrees of the polynomials Pj .

As a consequence we establish (1) for general polynomial curves Γ on the sharp

line p′ = d(d+1)
2 q but only in the range 1 ≤ p < d2+2d

d2+2d−d . We expect that this

should be extended to the full range 1 ≤ p < d2+d+2
d2+d ; see [2] for this extension

in particular cases. As another consequence of Theorem 1, in joint work with S.
Dendrinos and N. Laghi, we extend some work of Oberlin [16] and obtain sharp
universal bounds for (2) over the class of polynomial curves in dimensions two
and three. Finally in joint work with S. Dendrinos and M. Folch-Gabayet, we
have extended Theorem 1 and the corresponding consequences for (1) and (2) to
the family of curves Γ(t) = (R1(t), . . . , Rd(t)) where each Rj is a general rational
function.

2. Outline of proof of Theorem 1

The decomposition is produced in two stages. The first stage produces an
elementary decomposition of R = ∪J so that on each interval J , various polynomial
quantities (more precisely, certain determinants of minors of the d × d matrix
(Γ′(t) · · ·Γ(d)), including LΓ) are single-signed. This allows us to write down a
formula relating JΦΓ and LΓ. When d = 2 this formula is particularly simple;
namely,

JΦΓ(s, t) = P ′
1(s)P ′

1(t)

∫ t

s

LΓ(w)

P ′
1(w)2

dw

for any s, t ∈ J (here Γ = (P1, P2)). Simple examples show that (3) can fail on
some J and therefore we need to decompose each J = ∪I further so that on each
Id, (3) holds.

This second stage decomposition J = ∪I is much more technical and derived
from a certain algorithm which uses two further decomposition procedures gener-
ated by individual polynomials; one of these decomposition procedures has been
used in other problems and first appeared in [4]. The algorithm exploits in a cru-
cial way the affine invariance of the inequality (3); that is, the inequality is left
invariant when Γ is replaced by AΓ for any invertible d× d matrix A.
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On Stein’s conjecture on the Polynomial Carleson Operator

Victor Lie

The topic that we address in our talk follows from the work in [5], [6] and has
its origin in the celebrated Carleson-Hunt Theorem ([1],[3]):

Theorem (Carleson-Hunt). If for f ∈ C1(T) we define the expression

Cf(x) := sup
a∈Z

(a∈R)

∣∣∣∣
∫

T

1

y
eiayf(x− y)dy

∣∣∣∣ ,

then
i) (Carleson) C is of weak type (2, 2).
ii) (Hunt) C is of strong type (p, p) for 1 < p <∞.

The proof of the above theorem brought to light a series of new techniques, which
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developed further, set the foundation of a new field: the time-frequency analy-
sis. Following this, many analysts focused on further finding different approaches
(proofs) and/or extending this result. In terms of different proofs two more are
known: one due to Fefferman ([2]) and the other due to Lacey and Thiele ([4]).
With respect to the second direction (extensions), Stein proposed the following

Conjecture (Stein). Define

Cdf(x) := sup
Q∈Qd

∣∣∣∣p.v.
∫

T

1

y
eiQ(y)f(x− y)dy

∣∣∣∣

where here d ∈ N, Qd is the class of all integer (real) coefficient polynomials Q
with deg(Q) ≤ d, and f ∈ C1(T); then
i) Cd is of weak type (2, 2).
ii) Cd is of strong type (p, p) for 1 < p <∞.

If the supremum in the above expression is restricted only to polynomials without
linear term (call the corresponding operator C̃d), then Stein (for d = 2, [8]) and
respectively Stein and Wainger (for general d, [9]) proved that ii) holds with Cd

replaced by C̃d.
Our aim in this talk is to provide a (partial) positive answer to this conjecture.

Indeed the main results presented can be summarized as follows:

Theorem A. i) Cd is of weak type (2, 2).
ii) Cd is of strong type (p, p) for 1 < p < 2.

More generally:

Theorem B. Let 1 < r < p <∞; then

‖Cdf‖Lr(T) .p,r,d ‖f‖Lp(T) .

It is worth noting that Theorem A is a consequence of Theorem B via the results
appearing in [7].

A key ingredient in the proof of Theorem B is a new perspective on determining
the time-frequency localization of an object, which we call the relational time-
frequency perspective; this perspective is based on the following loose assertion:
”Interactions among objects (scalar products) precede the objects themselves in
terms of importance.” An important consequence of this viewpoint is a method of
representing our objects (by drawing pictures) in which we encode their oscillation
as well as their magnitude.

Further, we will develop analytic and combinatorial techniques (many of them
inspired by [2]), adapting them to this relational perspective.

The actual proof of Theorem B will follow two basic steps:
Step 1 - a discretization procedure, in which we split our operator into “small

pieces” that are “well-localized” in both time and frequency.



1802 Oberwolfach Report 32/2008

Step 2 - a selection algorithm, which relies on finding qualitative and quantita-
tive criteria depending on which we decide how to glue the above-mentioned pieces
together to obtain a global estimate on our operator.
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Geometric configurations in Euclidean, integer, and finite field
geometries

Alex Iosevich

A theorem due to Furstenberg, Katznelson, and Weiss says that any δ-neighborhood
of a subset of R2 of positive density contains a copy of every sufficiently large tri-
angle. Bourgain removed the δ-neighborhood assumption for k-simplexes in Rd,
d ≥ k.

In this talk we study finite field models and prove the following results:

Theorem 1. Let E ⊆ Fd
q , d ≥ 2 with |E| ≫ qd

(
k−1

k

)
+ k−1

k . Then E contains a
copy of every k-point configuration.

Theorem 2. Let E ⊆ F2
q with |E| = pq. Then E determines at least pq3 non-

congruent triangles.

The methods are Fourier analytic and bootstrapping plays a major role.
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Semilinear Schrödinger flows on hyperbolic spaces

Alexandru Ionescu

(joint work with Gigliola Staffilani)

We consider the defocusing semilinear Schrödinger equation

(1)

{
(i∂t + ∆g)u = u|u|2σ;

u(0) = φ,

on Riemannian manifolds (M,g) of dimensions d ≥ 2, for exponents σ ∈ (0,∞).
The initial-value problem (1) has been studied extensively in the Euclidean ge-
ometry, for more general classes of nonlinearities, see the recent books [2] and [7]
and the references therein. For example, on Euclidean spaces, it is known that the
defocusing H1 subcritical initial-value problem (1), which corresponds to expo-
nents σ ∈ (0, 2/(d− 2)), is globally well-posed in the energy space H1; moreover,
scattering to linear solutions is known in the restricted range σ ∈ (2/d, 2/(d− 2)).
In recent years, the more delicate problems that correspond to critical power non-
linearities, both in Ḣ1 (with σ = 2/(d− 2), d ≥ 3) and L2 (with σ = 2/d, d ≥ 2),
have also been considered.

Suitable solutions on the time interval (−T, T ) of (1) satisfy (at least formally)
mass and energy conservation,

E0(u)(t) := ||u(t)||L2(M) = E0(u)(0);

E1(u)(t) :=
1

2

∫

M

|∇u(t)|2 dµ+
1

2σ + 2

∫

M

|u(t)|2σ+2 dµ = E1(u)(0),
(2)

for any t ∈ (−T, T ). In the case σ ∈ (0, 2/(d− 2)] these conservation laws suggest
that H1 is a suitable space to study the global behaviour of solutions of (1). Let
M = Hd, the hyperbolic space of dimension d. Our main theorem concerns global
well-posedness and scattering in H1(Hd) of the initial-value problem (1).

Theorem 1. Assume σ ∈ (0, 2/(d− 2)) is fixed.
(a) (Global well-posedness) If φ ∈ H1(Hd) then there exists a unique global

solution u ∈ C(R : H1(Hd)) of the initial-value problem (1). In addition, for any
T ∈ [0,∞), the mapping

φ→ UT (φ) = 1(−T,T )(t) · u
is a continuous mapping from H1(Hd) to C((−T, T ) : H1(Hd), and the conserva-
tion laws (2) are satisfied.

(b) (Scattering) For any φ ∈ H1(Hd) there exist unique u± ∈ H1(Hd) such that

(3) ||u(t) − eit∆gu±||H1(Hd) = 0 as t→ ±∞.

The main conclusion of the theorem is the H1 scattering, particularly in the
case of small exponents σ ∈ (0, 2/d]. We also emphasize that this theorem does
not require radial symmetry. The conclusion of Theorem 1 (b) is in sharp contrast
with its Euclidean analogue: on Euclidean spaces scattering to linear solutions
is only known for exponents σ ∈ (2/d, 2/(d − 2)), see [4, 6], and also for σ =
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2/(d− 2), see [4, 3]. Moreover, on Euclidean spaces, scattering in H1 is known to
fail for exponents σ ∈ (0, 1/d]. Even the easier question of existence of the wave
operator in the range (1/d, 2/d] is not settled yet, and in particular no (unweighted)
scattering results are known for the range σ ∈ (1/d, 2/d].

Our proof of Theorem 1 depends on two main noneuclidean ingredients. The
first ingredient is the inequality

(4) ‖f ∗ |K| ‖L2(Hd) ≤ C‖f‖L2(Hd) ·
∫ ∞

0

|K(r)|e−ρr(r + 1)(sh r)2ρ dr,

for any f,K ∈ C∞
0 (Hd), provided that K is a radial kernel. For comparison,

‖K‖L1(Hd) = C
∫ ∞
0

|K(r)|(sh r)2ρ dr, thus the factor e−ρr(r + 1) in (4) represents

a nontrivial gain1 over the (best possible) Euclidean inequality ‖f ∗ |K| ‖L2(Rd) ≤
‖f‖L2(Rd)‖K‖L1(Rd). We exploit this gain to prove the noneuclidean Strichartz
estimates (as well as suitable inhomogeneous estimates)

(5) ‖eit∆φ‖Lq(R×Hd) ≤ Cq‖φ‖L2 for any q ∈ (2, (2d+ 4)/d].

On Euclidean spaces, this global inequality holds only for q = (2d+ 4)/d.
The second noneuclidean ingredient we need is the existence of a smooth radial

function a : Hd → [0,∞) with the properties

∆a = 1, |∇a| ≤ C, D2a ≥ 0 on Hd.

We use this function and standard arguments to prove the Morawetz inequality

(6) ‖u‖2σ+2
L2σ+2((−T,T )×Hd)

≤ Cσ sup
t∈(−T,T )

‖u(t)‖L2(Hd)‖u(t)‖H1(Hd),

for any solution u of the nonlinear Schrödinger equation (1), with a constant Cσ

that does not depend on T . Theorem 1 follows, using mostly standard arguments,
from this Morawetz inequality and the noneuclidean Strichartz estimates (5).
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Holomorphic Sobolev spaces associated to compact symmetric spaces

Sundaram Thangavelu

Given a compact Lie group G and f ∈ L2(G) consider the convolution f ∗ ht of
f with the heat kernel ht associated to the Laplacian on G. The Segal-Bargmann
transform of f , also known as the heat kernel transform, is just the holomorphic
extension of f ∗ ht to the complexification GC of G. In 1994 Hall [2] characterised
the image of L2(G) under this transform as a weighted Bergman space. This
extended the classical results of Segal and Bargmann, where the same problem
was considered on Rn. Later, Stenzel [5] treated the case of compact symmetric
spaces obtaining a similar characterisation.

In 2004, Hall and Lewkeeratiyutkul [3] studied the Segal-Bargmann transform
on Sobolev spaces H2m(G) associated to compact Lie groups. They have shown
that the images can be characterised as certain holomorphic Sobolev spaces. The
problem of treating the Segal-Bargmann transform on Sobolev spaces defined
over compact symmetric spaces remained open until recently. Our aim in this
talk is to describe our results in [6] where we have characterised the images of
the Sobolev spaces Hm(X) under the Segal-Bargmann transform as holomorphic
Sobolev spaces when X is a compact symmetric space.

Using an interesting formula due to Lassalle [4], called the Gutzmer’s formula,
Faraut [1] gave a different proof of Stenzel’s result. The same arguments can be
extended to treat Sobolev spaces as well. For the proof of our main theorem we
need some estimates on derivatives of the heat kernel on a noncompact Riemann-
ian symmetric space. This is achieved by using a result of Flensted-Jensen. We
also remark that the images of the Sobolev spaces turn out to be Bergman spaces
defined in terms of certain weight functions which are not necessarily nonnega-
tive. Nevertheless, they can be used to define weighted Bergman spaces. This is
reminiscent of the case of the heat kernel transform on the Heisenberg group.

We consider a compact Riemannian symmetric space X = U/K. Let u and k
be the Lie algebras of U and K and let θ be an involutive automorphism so that
u = k⊕p where p = {Y ∈ u : dθ(Y ) = −Y }. Let a be a Cartan subspace of p. Let
∆ be the Laplace-Beltrami operator on X with heat kernel ht. Let UC (resp.KC)
be the universal complexification of U (resp.K). The complex homogeneous space
XC = UC/KC, is a complex variety and gives the complexification of the symmetric
space X = U/K. For every f ∈ L2(X) the convolution f ∗ ht extends to XC as a
holomorphic function. We let Y = G/K where G is a closed subgroup of UC, be
the noncompact dual of X. Let γ1

t be the heat kernel associated to the Laplace-
Beltrami operator on Y.

Recall that for each real umber s, the Sobolev space Hs(X) of order s can be
defined as the completion of C∞(X) under the norm ‖f‖(s) = ‖(1 − ∆)

s
2 f‖2. We

define the holomorphic Sobolev space Hs
t (XC) to be the image of Hs(X) under

the heat kernel transform. This can be made into a Hilbert space, simply by
transfering the Hilbert space structure of Hs(X) to Hs

t (XC). This means that if
F = f ∗ γt, G = g ∗ γt, where f, g ∈ Hs(X) then (F,G)Hs

t (XC) = (f, g)Hs
t (X). Then,
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it is clear that the heat kernel transform is an isometric isomorphism from Hs(X)
onto Hs

t (XC). We are interested in realising Hs
t (XC) as weighted Bergman spaces.

Theorem 1. Let m be any integer. Then there exists a non-negative weight func-
tion wm

t such that F ∈ Hm
t (XC) if and only if

∫

XC

|F (z)|2wm
t (z)dm(z) <∞.

Moreover, the norm on Hm
t (XC) is equivalent to the above weighted L2 norm.

The weight function wm
t involves derivatives of the heat kernel γ1

t associated
to the noncompact dual of the symmetric space X. And hence, proving the non-
negativity of wm

t is not easy since we do not have explicit formulas for γ1
t . However,

the case of H−s
t (XC), s > 0 is much simpler, as the weight function is given by the

Riemann-Liouville fractional integral

w−s
t (expH) =

1

Γ(s)

∫ 2t

0

(2t− r)s−1erγ1
r (exp 2H)dr.

Holomorphic Sobolev spaces can also be characterised in terms of pointwise
estimates. We make use of the duality between Hs

t (XC) and H−s
t (XC) in obtaining

pointwise estimates. Once we have such a characterisation the following result for
the image of C∞(X) under the Segal-Bargmann transform can be proved, as the
intersection of all Sobolev spaces is just C∞(X).

Theorem 2. A holomorphic function F on XC is of the form F = f ∗ γt with
f ∈ C∞(X) if and only if it satisfies

|F (u exp(H))| ≤ Cm(1 + |H |2)−m/2(Φ(H))
1
2 e

1
4t |H|2

for all u ∈ U,H ∈ ia and for all positive integers m.

In the above theorem Φ is a certain function defined in terms of restricted roots.
We also have a characterisation of the image of distributions on X under the heat
kernel transform. If f is a distribution, f ∗ γt still makes sense and extends to XC

as a holomorphic function.

Theorem 3. A holomorphic function F on XC is of the form F = f ∗ γt for a
distribution f on X if and only if it satisfies the estimate

|F (u exp(H))| ≤ C(1 + |H |2)m/2(Φ(H))
1
2 e

1
4t |H|2

for some positive integer m for all u ∈ U and H ∈ ia.

This result settles a conjecture stated in Hall-Lewkeeratiyutkul [3]. The proof is
based on results for holomorphic Sobolev spaces as the union of all Sobolev spaces
is precisely the space of distributions.
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Improvements in Wolff’s inequality for the cone multiplier

Gustavo Garrigós

(joint work with W. Schlag and A. Seeger)

In this work we pursue a better understanding of an inequality proposed by
T. Wolff in relation with two outstanding problems in Harmonic Analysis: the
so-called cone multiplier problem and the local smoothing inequality for the wave
equation (Sogge’s conjecture). Wolff’s deep methods imply the first optimal results
for these two problems, which are valid in Lp only for large values of the exponent
p (see [9], and [4] for the higher dimensional case). In our work we organize more
efficiently the original proof to obtain improvements in the range of p, as well as
stronger versions of Wolff’s inequality with applications to other problems.
To be more precise, for small δ > 0, consider δ-neighborhoods of the truncated
light-cone in Rd+1

Γδ = {(τ, ξ) ∈ Rd+1 : 1 ≤ τ ≤ 2 and
∣∣τ − |ξ|

∣∣ ≤ δ},
and the usual plate decomposition of Γδ subordinated to a covering of the sphere
by

√
δ-caps. Namely, given a maximal

√
δ-separated sequence {ωk} ⊂ Sd−1 and a

constant c ≈ 1, we let

Π
(δ)
k =

{
(τ, ξ) ∈ Γδ :

∣∣ξ/|ξ| − ωk

∣∣ ≤ c
√
δ
}
.

Wolff’s inequality can then be written as follows (see [9]): for every ε > 0 there
exists Cε > 0 (independent of δ and {ωk}) so that

(1)
∥∥∥

∑

k

fk

∥∥∥
p
≤ Cε δ

−α(p)−ε
(∑

k

‖fk‖p
p

)1/p

, ∀ fk : supp f̂k ⊂ Π
(δ)
k ,

where α(p) := d(1
2 − 1

p ) − 1
2 is the standard Bochner-Riesz critical index in d

dimensions. The inequality is conjectured to hold for all p > 2(d+ 1)/(d− 1), and
for each such p, the power α(p) is optimal (except perhaps for ε > 0).

The methods developed by T. Wolff in his fundamental paper [9] give a positive
answer to (1) for large p; namely p > 74 when d = 2, and p > 2 + min{ 32

3d−7 ,
8

d−3}
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when d ≥ 3 (the latter contained in the paper by  Laba and Wolff [4]). In both
papers the authors announce that improvements over these indices should certainly
be possible, although perhaps still far from the conjectured exponents. In fact, a
slight improvement was already presented by Garrigós and Seeger in [2].

The most recent results, which appear in [3], give the following improved range.

Theorem 1. Let d ≥ 2. Then, for all ε > 0 the inequality (1) holds when p > pd,
where

(2) pd = 2 + 8
d−2

(
1 − 1/2

d+1

)
for d ≥ 3, and p2 = 20 for d = 2.

In [3] we also consider a stronger inequality than (1), which is motivated by
questions on the Bergman projection for tube domains over light cones (see [1]).
Namely, we consider a mixed norm ℓ2(Lp) version of (1):

(3)
∥∥∥

∑

k

fk

∥∥∥
p
≤ Cε δ

−β(p)−ε
(∑

k

‖fk‖2
p

)1/2

, ∀ fk : supp f̂k ⊂ Π
(δ)
k ,

where now

(4) β(p) =
d− 1

4
− d+ 1

2p
.

Note that the Wolff inequality (1) is implied by (3) and Hölder’s inequality, since

# k′s = Card (Ω) ≤ C δ−
d−1
2 ,

and β(p) + d−1
2 (1

2 − 1
p ) = α(p). As before, (3) is conjectured to hold for all

p > 2 + 4
d−1 , in which case the power β(p) in (4) is also best possible. It may also

be conjectured the validity of (3) for all 2 < p ≤ 2 + 4
d−1 , in which case one must

let β(p) = 0. The hardest case should be p = 2 + 4
d−1 , which by interpolation

will imply all the other cases p > 2. However, none of these inequalities with the
optimal exponent β(p) seem to have been known before, even in the simpler setting
when the cone is replaced by a sphere. Our contribution in [3] can be stated as
follows.

Theorem 2. Let d ≥ 2. Then, the inequality (3) holds for all ε > 0 when

(5) p > pd for d ≥ 3, and p > 23 + 1
3 for d = 2.

Moreover, when d = 2, an optimal ℓ4(Lp) inequality (and in particular an ℓp(Lp)
as in (1)) holds for all p > 20.

Among the consequences of these theorems we can list the following:

(i) Sogge’s conjecture: For all p > pd and α > d−1
2 − d

p , we have

(∫ 2

1

∥∥eit
√
−∆f

∥∥p

Lp(Rd)
dt

)1/p

≤ C ‖f‖Lp
α(Rd).

(ii) Cone multiplier : For all p ∈ (pd,∞) and α > d−1
2 − d

p , the Fourier multiplier

mα(τ, ξ) = (1 − |ξ|2/τ2)α
+



Real Analysis, Harmonic Analysis and Applications 1809

defines a bounded operator in Lp(Rd+1).

(iii) Averages over curves in R3 (see [7]): Let s 7→ γ(s) ∈ R3 be a smooth curve
satisfying

∑n
j=1 |〈θ, γ(j)(s)〉| 6= 0 for every unit vector θ, and let χ ∈ C∞

0 (R). Then
the convolution operator

Atf(x) =

∫
f(x− tγ(s))χ(s)ds

maps Lp(R3) into Lp
1/p(R3) for every t > 0, provided max{n, (p2 +2)/2} < p <∞.

(iv) Radial multipliers (see [5]): Let K ∈ S′(Rd) be radial, and Kt = F−1[ϕK̂(t·)],
for a fixed radial ϕ ∈ C∞

0 (Rd \ {0}) (not identically zero). Then when 1 < q < p′d,
K defines a bounded convolution operator in Lq(Rd) provided that

(6) sup
t>0

∥∥Kt‖Lq(Rd;(1+|x|)ε dx) <∞, for some ε > 0.

(v) Bergman projections in tubes over light-cones (see [1, 3]). Let T = Rd+1 + iΩ
denote the tube domain in Cd+1 over the open light-cone Ω ⊂ Rd+1, and Q(y) =
y2
0 − |y′|2 the associated Lorentz form. The (weighted) Bergman projections Pγ

are bounded in Lp(T d+1, Q(y)γ
+ dx dy) in the optimal range

1 +
d− 1

2(γ + d+ 1)
< p < 1 +

2(γ + d+ 1)

d− 1
,

provided γ ≥ max
{
−1+ d−1

4 (pd− 2(d+1)
d−1 ), d−1

2 (pd− 2(d+1)
d−1 −1)

}
. (The conjectured

range of weights is γ > −1.)

(vi) Square function estimates (see [8, 2]): For all α > 1
9 and all fk with supp f̂k ⊂

Π
(δ)
k , we have

∥∥∥
∑

k

fk

∥∥∥
L4(R3)

≤ Cα δ
−α

∥∥∥
(∑

k

|fk|2
)1/2

∥∥∥
L4(R3)

.

This is a slight improvement over the previously known α > 5/44, due to Tao-
Vargas and Wolff [8, 10].

As a last comment, we observe that concerning the application to radial mul-
tipliers (iv), Nazarov and Seeger have recently shown a characterization theorem
(with ε = 0 in (6)) for dimensions d ≥ 5 in the range 1 < q < 2(d2−2d−3)/(d2−5),
which in addition to the endpoint ε = 0, gives also a better range of p for large
dimensions (d ≥ 6). The proof involves different and very interesting techniques
(see [NS], or the survey by A. Seeger in this issue).
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The Vitali covering lemma, equidistribution in nilmanifolds, and the
primes

Terence Tao

In this talk we survey (in broad terms, without details) the basic strategy in
additive prime number theory in being able to count the solutions to additive pat-
terns in the primes, such as arithmetic progressions, originating from the classical
arguments of Hardy-Littlewood and Vinogradov. The starting point is van der
Corput’s lemma, which gives a criterion for a sequence xn in a torus (R/Z)d to be
equidistributed; a generalisation of this lemma also works for other spaces, such as
nilmanifolds. This lemma gives quantitative bounds on exponential sums such as∑

n e(φ(n)) for polynomials φ, or
∑

n F (gnx) for some nilsequence F (gnx), in the
case when the polynomial or nilsequence is suitably “irrational”, “minor arc”, or
“ergodic”. (We deliberately suppress the range of summation for the index n.) Us-
ing the TT ∗ method (or the large sieve inequality), this allows us to control bilinear
summations such as

∑
n

∑
m anbme(φ(nm)) or

∑
n

∑
m anbmF (gnmx), where the

sequences an, bm obey size bounds but are otherwise allowed to be rough. Using
divisor sum identities such as Vaughan’s identity (which are based on truncating
standard identities such as µ(n) =

∑
abc=n µ(a)µ(b)), one can obtain non-trivial

control of sums such as
∑

n µ(n)F (gnx) in the minor arc case. Meanwhile, classical
analytic number theory results (such as the prime number theorem in arithmetic
progressions) control the major arc case, in which the nilsequence is approximately
periodic.
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The classical circle method of Hardy and Littlewood, based on the linear Fourier
transform, lets one convert bounds on linear-phase exponential sums such as∑

n µ(n)e2πiαn, or
∑

n µ(n)F (gnx) where gnx is an orbit in a 1-step nilmani-
fold (i.e. a torus), into an accurate count on solutions to some additive problems,
such as the count of arithmetic progressions of primes of length 3. More recently,
the nascent theory of quadratic Fourier analysis has allowed one to use bounds on

quadratic-phase exponential sums such as
∑

n e
2πiα2n, or

∑
n µ(n)F (gnx) where

gnx is an orbit in a 2-step nilmanifold, such as a quotient of the Heisenberg
group, to control more complex additive patterns, such as arithmetic progressions
of length 4. Some partial results are now also available for even more complex
patterns.

The structure of monomial polyhedra and applications

Malabika Pramanik

(joint work with Alexander Nagel)

Let P = {P1, · · · , Pd} be a finite set of polynomials on Fn, F = R or C. For

every x = (x1, · · · , xn) ∈ Fn and every multi-radius ~δ = (δ1, · · · , δd) ∈ (0,∞)d, we

define a polynomial ball BP(x;~δ) as the connected component containing x of the
set

B̃P(x;~δ) :=
{
y ∈ Rn

∣∣∣|Pj(y) − Pj(x)| < δj , 1 ≤ j ≤ d
}
.

The structure and size of balls of the form BP are of interest in various problems
in analysis. Two examples are:

• Study of maximal operators associated to polynomial polyhedra
in Rn. Let us set for instance

MP [f ](x) := sup
~δ

|B(x;~δ)|−1

∫

B(x;~δ)

|f(y)| dy.

The operator MP may be thought of as a natural generalization of the
classical strong maximal function, and one would like to determine for
which collections P of polynomials and which exponents p ∈ [1,∞] the
operator MP is bounded on Lp(Rn).

• Estimation of the Bergman kernel on certain domains in Cn, such
as Reinhardt or weakly pseudoconvex domains with polynomial defining
inequalities.

In joint work with Alexander Nagel, we address these problems in the special case
where P consists of monomials. Our structure theorem for monomial balls leads
to Lp bounds for the maximal operator MP and sharp Bergman kernel estimates
for a general class of weakly pseudoconvex domains of finite type, in particular the
“cross of iron” domain.
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Radon-like operators and rank conditions

Philip T. Gressman

The purpose of this talk is to disucss new endpoint Lp-Lq and Sobolev inequalities
for certain broad classes of highly degenerate Radon-like averaging operators. The
study of such questions was begun by Phong and Stein [11], [12]. Since that
time, the literature relating to this problem has grown both broad and deep,
including but not limited to the works of Bak, Oberlin, and Seeger [1]; Cuccagna
[2]; Greenblatt [3]; Greenleaf and Seeger [5], [6]; Lee [7], [8]; Phong and Stein [13];
Phong, Stein, and Sturm [14]; Pramanik and Yang [15]; Rychkov [16]; Seeger [17];
and Tao and Wright [18]. This literature provides a comprehensive theory of Radon
transforms in the plane (optimal Lp-Lq and Sobolev bounds were established by
Seeger [17] and others). Tao and Wright [18] have also established sharp (up to
ǫ-loss) Lp-Lq inequalities for completely general averaging operators over curves
in any dimension.

In the remaining cases, though, little has been proved regarding optimal inequal-
ities for Radon-like operators. Among the reasons for this is that the rotational
curvature (in the sense of Phong and Stein [9], [10]) is essentially controlled by
a scalar quantity for averaging operators in the plane, but is governed in higer
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dimensions (and higher codimension) by a matrix condition which is increasingly
difficult to deal with using standard tools. While it is generally impossible for
rotational curvature to be nonvanishing in this case, the corresponding matrix can
be expected to have nontrivial rank. Under this assumption, works along the lines
of Cuccagna [2] and Greenleaf, Pramanik, and Tang [4] have been able to use this
weaker information as a replacement for nonvanishing rotational curvature. In
particular, Greenleaf, Pramanik, and Tang showed that optimal L2-decay inequal-
ities for “generic” oscillatory integral operators can be established in the highly
degenerate case with only the knowledge that the corresponding matrix quantity
has rank one or higher at every point away from the origin.

Fix positive integers n′ and n′′, and let S be a smooth mapping into Rn′′

which is
defined on a neighborhood of the origin in Rn′ ×Rn′′ ×Rn′

. We consider operators
of the form

(1) Tf(x′, x′′) :=

∫
f(y′, x′′ + S(x′, x′′, y′))ψ(x′, x′′, y′)dy′,

where x′, y′ ∈ Rn′

and x′′ ∈ Rn′′

(n′ represents the dimension of the manifolds
over which f is averaged, and n′′ represents the codimension). When no confusion
arises, the variable x will stand for the pair (x′, x′′), and n will refer to the sum
n′ + n′′.

The assumption to be made on S is that it exhibits a sort of approximate
homogeneity (aka semiquasihomogeneity). The notation to be used to describe
this scaling will be as follows: given any multiindex γ := (γ1, . . . , γm) of length
m, any z := (z1, . . . , zm) ∈ Rm, and any integer j, let 2jγz := (2jγ1z1, . . . 2

jγmzm).
The order of the multiindex γ will be denoted |γ|, is the sum of the entries, i.e.,
γ1 + · · · + γm, and may be negative in some cases. With this notation, it will be
assumed that there exist multiindices α′ and β′ of length n′ and α′′ and β′′ of
length n′′ such that the limit of

(2) lim
j→∞

2jβ′′

S(2−jα′

x′, 2−jα′′

x′′, 2−jβ′

y′) =: SP (x′, x′′, y′)

as j → ∞ exists and is a smooth function of x′, x′′, and y′ which does not vanish
identically (note that, given a smooth mapping S, there is always at least one choice
of multiindices so that this condition holds). Furthermore, it will be assumed that
β′′

i > α′′
i for i = 1, . . . , n′′. The assumption on α′′ and β′′ will together with (2)

be referred to as the homogeneity conditions.
Additionally, for each pair (x, y′) in the support of the cutoff ψ in (1) and each

η′′ ∈ Rn′′ \ {0}, consider the n′ × n′ mixed Hessian matrix HP whose (i, j)-entry
is given by

(3) HP
ij (x′, x′′, y′, η′′) :=

∂2

∂x′iy
′
j

(
η′′ · SP (x′, x′′, y′)

)
.

The main theorems can be stated as follows:

Theorem 1. Suppose that the operator (1) satisfies the homogeneity conditions
and that the mixed Hessian (3) has rank at least r whenever (x′, x′′, y′) 6= (0, 0, 0)
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and η′′ 6= 0. If the support of ψ is sufficiently near the origin and r
n′′ >

|α′|+|β′|
|β′′|

then T maps Lp(Rn) to Lq(Rn) provided that the following inequalities are satisfied:

(4)
|β′| + |β′′|

p
− |α′| + |β′′|

q
< |β′|,

(5)

∣∣∣∣
1

p
+

1

q
− 1

∣∣∣∣ < 1 − 2n′′ + r

r

(
1

p
− 1

q

)
.

Additionally, T maps Lp to Lq if either one of the inequalities (4) or (5) are
replaced with equality. If both inequalities are replaced with equality, then T is of
restricted weak-type (p, q).

Theorem 2. Suppose that T satisfies the rank and homogeneity conditions and
r

n′′ >
|α′|+|β′|

|β′′| (and the support of ψ is sufficiently near the origin). Then the

operator T maps the space Lp(Rn) to the Sobolev space Lp
s(Rn) (s ≥ 0) provided

that the following two conditions are satisfied:

(6) smax{β′′
1 , . . . , β

′′
n′′} ≤ |α′|

p
+ |β′|

(
1 − 1

p

)
,

(7)
s

r
<

1

2
−

∣∣∣∣
1

2
− 1

p

∣∣∣∣ .

In both theorems, the shape of the regions defined by the given inequalities are
quadrilaterals; this is also the same shape that was first identified by Phong and
Stein [11].

In addition to these theorems, quantitative estimates of the largest possible
value of r are obtained in many cases. When the multiindices α′, β′ and α′′ are
considered fixed, a “positive fraction” of the choices of β′′ will be examined and
shown to generically admit large values of r. There are a variety of ways to
formulate this concept; here a set of multiindices E of length n′′ will be said to
have lower density ǫ provided that

lim inf
N→∞

# {β′′ ∈ E | β′′
i ≤ N ∀i = 1, . . . , n′′ }
Nn′′ ≥ ǫ.

Let Λα,β be the space of all n′′-tuples of real polynomials (p1, . . . , pn′′) in the

variables x′, y′, and x′′ (for x′, y′ ∈ Rn′

and x′′ ∈ Rn′′

) such that

pl(2
jα′

x′, 2jα′′

x′′, 2jβ′

y′) = 2β′′
l pl(x

′, x′′, y′)

for each integer j and l = 1, . . . , n′′; suppose further that Λα,β is given the topology
of a real, finite-dimensional vector space. Each element (p1, . . . , pn′) naturally
induces an operator of the form (1) which satisfies the homogeneity condition.
The strength of the condition (3) can now be quantified as follows:

Theorem 3. Fix α′, α′′, and β′. Let K1 be the least common multiple of the
entries of α′, α′′ and β′; let K2 be the number of distinct values (modulo K1)
taken by the sum α′

i +β′
j for i, j = 1, . . . , n′. Then for any β′′ in some set of lower
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density K−n′′

1 , the operators (1) corresponding to the polynomials Λα,β generically
satisfy the rank condition provided

r < n′ −
√

(1 −K−1
2 )(n′)2 + 2n.

In the context of averages over hypersurfaces with isotropic homogeneity (taking
the entries of α′, α′′, and β′ to equal one, corresponding to the case nX = nZ in
the work of Greenleaf, Pramanik, and Tang [4]), a generic mixed Hessian (3) has
everywhere (exept the origin) rank at least n′ − 1−

√
2n′ + 2, and the hypotheses

of the theorems 1 and 2 are satisfied for any choice of β′′ ≥ 3 when n′ > 25. On

the opposite extreme, a rank one condition holds provided that n′′ < n′(n′−4)
2 (an

extremely large codimension, similar to those encountered by Cuccagna [2] and
well beyond the range of nonvanishing rotational curvature) and theorems 1 and
2 hold with r = 1 for all multiindices β′′ satisfying |β′′| > (n′)2(n′ − 4).
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On matrices with (almost) prime entries, lattice points and ergodic
theorems

Amos Nevo

1. Matrices with prime entries

Let P = primes in Z.
Consider 2 × 2 matrices with determinant 2 and prime entries.
Question 1 : Is this set infinite ?
A positive answer will be quite close to the best result ever proved towards the

twin primes problem (Chen, 1967), namely : There exist infinitely many pairs p, q
with q − p = 2, such that p is prime and q has at most two prime factors.

Question 1 is still open. Let us formulate an even stronger quantitative version
of it.

Fix any norm on M2(R), for example ‖A‖2
= tr (AtA). Restrict the resulting

metric to the algebraic variety

V = {A ∈M2(R) ; detA = 2} ,
and consider the balls

BT = {A ∈ V ; ‖A‖ ≤ T } .
The number of integral matrices in BT , namely |BT ∩M2(Z)|, is well-known to

be asymptotic to cT 2, where 0 < c <∞.
Question 2 : How many of these integral matrices have all their entries prime ?

2. Counting heuristics

The prime number theorem asserts that

1

x
|{p ∈ P ; p ≤ x}| ∼ 1

log x

Therefore, the expected number of matrices with prime entries in BT is the
total number of integral matrices, multiplied by the ”probability” that the four
entries of size ≤ T are all prime, namely (1/ logT )4.

We are therefore led to formulating the following

Conjecture (Prime matrix theorem) (Nevo-Sarnak, 2006).

|{A ∈ BT ; a, b, c, d ∈ P}| ∼ CT 2

(logT )4
.
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3. Progress towards the conjecture

Let Pr=integers with at most r prime factors (r-almost primes).
Theorem 1. (Nevo-Sarnak, 2006).
1) There exists a constant C such that the following upper bound holds

|{A ∈ BT ; a, b, c, d ∈ P}| ≤ CT 2

(logT )4
,

2) There exist constants r and D such that the following lower bound holds

|{A ∈ BT ; a, b, c, d ∈ Pr}| ≥
DT 2

(logT )4
.

The method of proof is based on the following ingredients

(1) Sieve theory,
(2) Congruence groups,
(3) Counting lattice points,
(4) Ergodic theory and spectral estimates.

Parts (3) and 4 consist of an ergodic-theoretic estimate of the error term in the
lattice point counting problem, uniformly over all congruence subgroups and their
cosets. Namely, G/Γ = SL2(R)/SL2(Z) is a probability space with an ergodic
action of SL2(R). The same holds for G/∆ for all finite-index subgroups ∆ ⊂ Γ.
Consider the averaging operators on L2(G/∆), given by

βT f(x) =
1

vol (BT )

∫

g∈BT

f(g−1x)dg

Theorem 2. (Nevo-Sarnak, 2006, see also Gorodnik-Nevo, 2005). Let Γ be
any lattice in G = SL2(R), ∆ ⊂ Γ a finite index subgroup, and fix any norm on
M2(R). If the corresponding averaging operators βT on L2(G/∆) satisfy the norm
bound ∥∥∥∥∥βT f −

∫

G/∆

f(x)dλ(x)

∥∥∥∥∥ ≤ C(vol BT )−θ ‖f‖

then the lattice point counting problem in the norm ball BT has the solution

|BT ∩ γ∆| =
vol BT

[Γ : ∆]
+O

(
vol BT )1−θ/4

)

for every coset γ∆.

4. General results

Theorems 1 and 2 are instances of much more general results, as follows.

(1) (almost) prime points on principal homogeneous spaces. Theorem
1 applies to almost prime points in every principal homogeneous space of a
semisimple algebraic group defined over Q, with certain necessary caveats.
Property τ for congruence subgroups of the group of integer points gives
uniformity of the spectral gap for βT (property τ was recently established
in full generality by Clozel).
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(2) Counting lattice points. Theorem 2 is valid for all semisimple S-
algebraic groups and in fact has a version in considerably greater general-
ity, valid also for semisimple groups over the ring of adeles. In addition, it
is possible to apply similar ideas to solve the uniform lattice points count-
ing problem on homogeneous affine symmetric varieties defined over Q,
We refer to [GN2] for these generalizations.

(3) (almost) prime points on homogeneous symmetric varieties. Us-
ing the previous two items, the methods presented give a lower bound on
the number of almost prime points on the an affine homogeneous sym-
metric variety. A quantitative version of this result is currently being
developed.

5. Matrices with genuine prime entries

The case of 2× 2 matrices is actually the hardest. In the case of n×n matrices
where n ≥ 3 one can establish :

Theorem 3. (Nevo-Sarnak, 2006).
The set of n × n matrices with prime entries and determinant 2n−1 is Zariski

dense in the set of n× n matrices with determinant 2n−1.
In fact, one can establish that there are at least T a(n) prime matrices in a ball

of radius T , with some a(n) > 0. The conjecture calls for CnT
n2−n/(logT )n2

such
matrices.
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Estimates for oscillatory integrals related to Fourier restriction to
curves

Isroil A. Ikromov

Let γ ⊂ Rn be a differentiable curve in Rn defined by a differentiable map
ϕ : [−1, 1] 7→ Rn and ψ ∈ C∞

0 (Rn) be a fixed smooth function with compact
support. Consider the following measure (charge) concentrated on that curve:
dµα := (ϕ′, ϕ′)αψ(ϕ(t))dt, where α is a real number satisfying the condition:∫

γ
(ϕ′(t), ϕ′(t))α|ψ(ϕ(t))|dt <∞.

Then the Fourier transform of that charge is defined by: d̂µα(ξ) =
∫

γ
e2πi(ξ,x)dµα.

Proposition of the main problem: Find q(γ, α) := inf{q ∈ [1,+∞] :

d̂µα ∈ Lq(Rn)}, where Lq(Rn) space of summation functions with de-
gree q (1 ≤ q < ∞), in the case q = ∞ we have the space of essentially
bounded functions.
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Remark 1. Note that in general may be q(γ, α) = ∞. For example if γ ∈ R3 is

the unite circle and ψ is a nontrivial function then we have d̂µα(ξ) /∈ Lq(Rn) for
any q <∞.

1. Brief outline of history and motivations of the problem.

The analogical problem for the following trigonometric integrals:

J(ξ) :=

∫ 1

0

e2πiP (t,ξ)dt, where P (t, ξ) := ξ1t+ ξ2t
2 + · · · + ξnt

n

has been considered by I.M. Vinogradov [13]. He obtain the following estimate for
the trigonometric integral J(ξ):

|J(ξ)| ≤ min{1, 32|ξ|−1/n
∞ }, where |ξ|∞ := max

1≤j≤n
|ξj |.

From the last estimate it follows that if q > n2 then J(ξ) ∈ Lq(Rn).
Further, Hua-Lo-Geng [7] proved that if q > 0.5n2 + n then J(ξ) ∈ Lq(Rn).
Finally, by Arkhipov G.I., Karatsuba A.A. and Chubarikov V.N. proved that

J(ξ) ∈ Lq(Rn), whenever q > n(n + 1)/2 + 1 and J(ξ) /∈ Lq(Rn) for q ≤ n(n +
1)/2 + 1. Moreover, they considered trigonometric integrals with phase function
P (t, ξ) := ξ1t

k1 + ξ2t
k2 + · · ·+ ξnt

kn , where k1 < k2 < · · · < kn are positive integer
numbers satisfying the condition q0 := k1 +k2 + · · ·+kn > n(n+1)/2. It is proved
that if q > q0 then J(ξ) ∈ Lq(Rn) and if q ≤ q0 then J(ξ) /∈ Lq(Rn).

The problem on summation of trigonometric integrals for multidimensional
cases remains open until now. Although, there are some partial results (see [1],
[10] and also [9]).

It is well-known that the restriction problem of Fourier transform to smooth
surfaces is connected to the summation property of trigonometric integrals [10].

The restriction problem for smooth curves with torsion has been considered by
M. Christ [4], S. Drury [5]. Moreover, estimates for oscillatory integral operators
associated to the restriction problem are connected to the summation problem (see
[6], [2]).

Note that from the results of the paper [1] it follows sharpness of estimates
obtained by S. Drury [5] and also J.-G.-Bak and S. Lee [2] for model curves with
torsion.

Therefore, it is important to obtain analogical estimates for curves with torsion
and for more general finite type curves.

2. Discussion of results.

Let γ ⊂ Rn be a differentiable curve. We assume ϕ : [−1, 1] 7→ Rn is a fixed
parameter.

The group C∞ of diffeomorphisms of the interval [−1, 1] is denoted by H and
G := Rn ⊗O(n,R) is the group of motion of Euclidian space.

Denote by M the set of differentiable curves in Rn. The group (G,H) acts on
that set by [8]: ρ(g, h)(ϕ)(t) := gϕ(h−1(t)).
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Definition 2. The map s : M 7→ R is called to be an invariant with weight r of the
group (G,H) if the following relation s(ρ(g, h)(ϕ))(t) = ((h−1)′(t))rs(ϕ)(h−1)(t)
holds for any (g, h) ∈ (G,H).

We define the following invariants with weights 2 and n(n+ 1)/2 respectively:

sd(t) := (ϕ′(t), ϕ′(t)), sκ(t) = det[ϕ′(t), ϕ′′(t), . . . , ϕ(n)(t)].

The curve γ is called to be a curve with torsion if sκ(t) 6= 0 for any t ∈ [−1, 1].
It is called a finite type curve if sκ(t) has no roots of infinite order. Note that
in the book by E.M. Stein [5] it is defined a notion of finite type surfaces. For
curves the both definitions are equivalent. It is easy to see that the definitions are
well-defined i.e. there are do not depend on parametrization.

Theorem 3. Let γ ∈ Rn be a curve with torsion and dµα := sα
d (t)ψ(ϕ(t))dt be

a smooth charge on the curve γ. Then we have d̂µα(ξ) ∈ Lq(Rn) for any q >
n(n+ 1)/2 + 1. Moreover, if ψ(0) 6= 0 and ψ is a smooth function concentrated in

a sufficiently small neighborhood of the origin, then d̂µα(ξ) 6∈ Lq(Rn) for q ≤ n(n+
1)/2 + 1. In particular, for any real number α we have: q(γ, α) = n(n+ 1)/2 + 1.

Note that the sharp exponent of summation n(n+ 1)/2 + 1 of such oscillatory
integrals is connected to weight of the invariant sκ(t). Since sd(t) 6= 0 the result
does not on a real number α.

Let sκ(t) be a function which has no roots of infinite order. We introduce some
notation

md := max{kd(t) : sd(t) = 0}, mκ := max{kκ(t) : sκ(t) = 0},
where k(t) is a multiplicity of root t of the function s(t).

For any α > − 1
md

we define:

q(γ, α) = max

{
n(n+ 1)

2
+ 1,

2kκ(t) + n(n+ 1)

2(1 + kd(t)α)
: sκ(t) = 0

}
.

Theorem 4. Let γ ∈ Rn be a finite type curve and dµα = ψ(ϕ(t))sα
d (t)dt be an

associated charge. Then we have d̂µα ∈ Lq(Rn) for any q > q(α, γ). Moreover, if
t0 ∈ [−1, 1] is a point with properties

q(γ, α) =
2(kκ(t0) + n(n+ 1))

2(1 + kd(t0)α)

for q(γ, α) > n(n+ 1)/2 + 1 and t0 is a point satisfying the condition kκ(t0) 6= 0
in the case q(γ, α) ≤ n(n+ 1)/2 + 1 and also ψ is a smooth function concentrated
in a sufficiently small neighborhood of the point ϕ(t0) with ψ(ϕ(t0)) 6= 0, then

d̂µα 6∈ Lq(α,γ)(Rn).

Corollary 5. Let γ ∈ Rn be a finite type curve and dµα = ψ(ϕ(t))sα
d (t)dt. Then

the following operator R∗f(t) :=
∫

γ
f(t)e2πi(ξ,x)dµα has no type (p, q) for any

q ≤ q(γ, α) and p ≥ 1.
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Let’s consider the oscillatory integral operator:

Tλf(x) :=

∫

R

eiλΦ(x,t)a(x, t)f(t)dt, (2.1)

where a ∈ C∞
0 (Rn × R) and Φ(x, t) is a real-valued smooth phase function.

From the Theorem 3 and from results proved by J. Mokenhaupt [10] and J. C.
Bak and S. Lee [2] it follows the following Theorem.

Theorem 6. Let Tλ be a family of oscillatory integral operators defined by the
relation (2.1) and the phase function Φ(x, t) satisfies the following Carleson–Sjölin
[3] condition:

det(∂t∇Φ(x, t), ∂2
t ∇Φ(x, t), . . . , ∂n

t ∇Φ(x, t)) 6= 0

on the support of the amplitude function a(x, t) and a(0, 0) 6= 0. Then the following
conditions are equivalent:

1) 1
p + n(n+1)

2q ≤ 1, q > n2+n+2
2 ;

2) there exists a positive real number C such that, for any f ∈ Lp(R) and λ > 1 it
holds the following estimate:

‖Tλf‖Lq(Rn) ≤ Cλ−
n
q ‖f‖Lp(R). (2.2)

Now, we consider estimates for oscillatory integral operators associated to finite
type curves. Suppose that the phase function has the form:

Φ(x, t) = x1t
k1b1(t) + x2t

k2b2(t) + · · · + xnt
knbn(t), (2.3)

where b1, b2, . . . , bn are smooth functions satisfying the condition:
b1(0)b2(0) . . . bn(0) 6= 0.

Theorem 7. Let Tλ be a family of oscillatory integral operators defined by the
relation (2.1) and the phase function Φ(x, t) is defined by (2.3) and a(x, t) ≡ a(t)
is a smooth function concentrated in a sufficiently small neighborhood of the origin
of R and a(0) 6= 0. Assume q0 := k1 + k2 + · · · + kn > n(n + 1)/2. Then the
following conditions are equivalent:
1) 1

p + q0

q ≤ 1, q > q0;

2) there exists a positive real number C such, that the estimate (2.2) holds for any
f ∈ Lp(R) and λ > 1.
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Cauchy Integrals for non-smooth domains in Cn vs. C: the effect of
dimension

Loredana Lanzani

(joint work with E. M. Stein)

1. Introduction

This is an announcement of work that will appear in the forthcoming paper [LS].
Depending on context, here and below σ will denote arc-length, or surface measure.
Our main goal is to extend to several complex variables the celebrated result by A.
Calderon [Ca] and Coifman-McIntosh-Meyer [CMM] concerning the regularity on
Lp(bD, dσ) of the singular integral operator associated with the classical Cauchy
integral:

(1) Cϕ(z) =
1

2πi

∫

w∈bD

ϕ(w)

w − z
dw, z ∈ D

where D ⊂ C is a domain with Lipschitz boundary. This result is most effectively
proved by means of a T (1) theorem applied to the closely related operator

(2) TCϕ(z) =
1

2πi

∫

t∈R

ϕ(t+ if(t))

x− t+ i(y − f(t))
dt, z = x+ iy ∈ D,

where f : R → R satisfies a Lipschitz condition:

|f(t) − f(s)| ≤ C|t− s|, s, t ∈ R.

By Cauchy formula we have

TC(1) = −i TC(f ′)

where f ′ = df/dt. If f is merely Lipschitz then TC(f ′) will, in general, be of
bounded mean oscillation and no better. Thus, although far from being optimal, in
complex dimension 1 (the planar domain setting) the Lipschitz condition already
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captures the main difficulty of the general case1: this is our motivation for the
investigation of an analogue condition in higher dimension.

The kernel that is canonically associated with the Lipschitz condition in Cn is
the Martinelli-Bochner kernel:

(3) K(z, w) =
(n− 1)!

(2πi)n

n∑

j=1

w̄j − z̄j

|w − z|2n
dwj ∧


∧

ℓ 6=j

dw̄ℓ ∧ dwℓ


,

see e.g. [Ra]. This kernel is intimately related to the double layer potential
operator (see e.g. [K] and [CMM]) in the sense that the latter is the analogue, for
the Martinelli-Bochner integral, of the operator (2). In particular, it follows that
the singular integral operator associated with the Martinelli-Bochner integral for
a Lipschitz domain D ⊂ Cn is bounded: Lp(bD, dσ) → Lp(bD, dσ), 1 < p < +∞.
Note, however, that the one-dimensional Cauchy kernel:

(4) C(z, w) =
1

2πi

dw

w − z

is holomorphic in the parameter z ∈ D, see (1), whereas K(z, w) is not (unless
n = 1). This lack of holomorphicity drastically reduces the applications of the
Martinelli-Bochner integral to complex function theory2, so we refine our goal and
investigate higher dimensional versions of Cauchy-type integrals with kernels that
are holomorphic in the parameter z ∈ D. The simplest such example is given by
the Leray kernel:

(5) L(z, w) =
1

(2πi)n

∂ρ(w) ∧ (∂∂ρ)n−1(w)

〈∂ρ(w), w − z〉n ,

see Leray [Le] and Norguet [No], where ρ : Cn → R is a defining function for D
and we have set

(6) 〈∂ρ(w), w − z〉 =

n∑

j=1

∂ρ

∂wj
(w)(zj − wj).

Note that when n = 1 both of (3) and (5) reduce to (4). Also, note that the Leray
kernel is not canonical in the sense that it is defined in terms of a defining function
of the domain (this is not the case for the one-dimensional Cauchy kernel, see (4),
nor for the Martinelli-Bochner kernel); this fact has a deep impact on both of our
two main concerns:

• Holomorphicity of the kernel. The Leray kernel is of course holomorphic in
z ∈ D provided the condition

(7) 〈∂ρ(w), w − z〉 6= 0 z ∈ D,w ∈ bD

1that is the case when the domain has Ahlfors-regular boundary
2to name two: the ∂-problem; representation of Hardy spaces of holomorphic functions, see

[Ra]. For additional applications see Kerzman-Stein [KS].
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is satisfied. On account of the identity

| 〈∂ρ(w), w − z〉 | =
dE(z, TC

w(bD))

|∇ρ(w)| ,

where TC
w (bD) denotes the complex tangent space to D at w ∈ bD (see e.g. [Ra])

and dE denotes the Euclidean distance in Cn, we see that naturally associated
with (7) is the notion of strong C-linear convexity, see [APS]:

Definition 1. A bounded open set D ⊂ Cn is said to be strongly C-linearly convex
if the boundary of D is of class C1 and, moreover, there is 0 < C < +∞ such that
the following inequality:

(8) dE(z, TC
w(bD)) ≥ C|z − w|2

holds for all w ∈ bD and z ∈ D̄.

• Identification of the correct analogue of the Lipschitz boundary condition.
Strong C-linear convexity puts a constraint on the minimal amount of boundary
regularity that is required to define the Leray kernel, namely: D ∈ C1. Looking at
the numerator of L(z, w) we see that, in fact, an additional amount of regularity
is needed; an obvious condition is: D ∈ C2 but we claim it suffices to require:
D ∈ C1,1, that is ρ ∈ C1,1(Cn). Passing from C2 to C1,1 raises an interesting
question: on the one hand, by the Rademecher theorem, we have that ∂∂ρ(w)
exists in the sense of distributions for a.e. w ∈ Cn. On the other hand, in dealing
with the Leray integral one only uses w ∈ bD, and the latter has measure zero in
Cn. Whereas ∂∂ρ may indeed not exist on bD if D ∈ C1,1, it turns out that its
tangential component: j∗(∂∂ρ)(w) exists as a distribution for σ-a.e. w ∈ bD, and
this amount of control is enough to establish the existence of the Leray integral
oprator.

2. Statement of the main results

In studying the one-dimensional Cauchy integral (1) the auxiliary operator (2)
is introduced in order to deal with the fact that the measure occurring in the
Cauchy kernel (4) is non positive:

∫

bD

dw = 0.

In higher dimension this is no longer an issue: the measure induced on the bound-
ary by the numerator of the Leray kernel is

dµρ(w) =
1

(2πi)n
j∗(∂ρ ∧ (∂∂ρ)n−1)(w) , w ∈ bD,

where j∗ : Λr(Cn) → Λr(bD) denotes the pull back of the inclusion: j : bD →֒ Cn

acting on r-forms (0 ≤ r ≤ 2n− 1). We will henceforth refer to µρ as the Leray
ρ-measure for bD.
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Theorem 2 ([LS]). Suppose D = {ρ < 0} ⊂ Cn is a strongly C-linearly convex,
bounded domain of class C1,1. Then we have that the density dµρ(w) is defined
for σ-a.e. w ∈ bD and, moreover

dµρ ≈ dσ.

In particular, it follows that the Leray-ρ measure is positive.

Proposition 3 ([LS]). With same setting as above, we have

(9) ϕ(z) =

∫

w∈bD

ϕ(w)

〈∂ρ(w), w − z〉n dµρ(w), z ∈ D, ϕ ∈ ϑ(D) ∩C(D̄).

Here, ϑ(D) denotes the space of holomorphic functions.

Theorem 4 ([LS]). With same setting as above, we have that (bD, µρ, d) is a
space of homogeneous type, where we have set

(10) d(z, w) = |〈∂ρ(w), w − z〉| 12 , z, w ∈ bD.

Moreover, we have

(11) d(z, w) ≈ |z − w| + |Im〈∂ρ(w), z − w〉| 12 , z, w ∈ bD;

(12)

∫

d(z,w)<R

d(z, w)−2n+δdµρ(w) ≤ C R δ for all δ > 0.

We may now define the Leray integral as an operator acting on the boundary:

(13) Lϕ(z) =

∫

w∈bD

ϕ(w) − Φ(z)

〈∂ρ(w), z − w〉n dµρ(w) + Φ(z), z ∈ D,

where Φ ∈ C1(D̄) is an extension3 of ϕ to D. It follows from (11) that the
absolute value of the integrand in (13) is bounded by d(z, w)−2n+1, and the latter
(as a function of w ∈ bD) belongs to L1(bD, µρ), see (12). Thus, Lϕ(z) is an

absolutely convergent integral for all ϕ ∈ C1(bD) and z ∈ D. On account of the
reproducing formula for holomorphic functions, see Proposition 3, for z ∈ D we
have that Lϕ(z) agrees with the value of the boundary integral with kernel (5).
When z ∈ bD the definition of Lϕ(z) does not depend on the choice of the C1

extension of ϕ.

Theorem 5 ([LS]). With same setting as above, we have

(14) L∗(1) ∈ Lip
1
2 (bD, d),

that is
|L∗(1)(z) − L∗(1)(w)| ≤ Cd

1
2 (z, w), z, w ∈ bD.

Here, L∗ denotes the formal L2(bD, µρ)-adjoint of L.

We may now state our main result.

3the extension function is obtained by applying a linear operator to ϕ, so L is linear in ϕ.
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Theorem 6 ([LS]). Suppose D = {ρ < 0} ⊂ Cn is a strongly C-linearly convex,
bounded domain of class C1,1.

Then, we have that L extends to a bounded operator: Lp(bD, µρ) → Lp(bD, µρ),
1 < p < +∞.

Corollary 7 ([LS]). With same setting as above, we have that L extends to a
bounded operator: Lp(bD, σ) → Lp(bD, σ), 1 < p < +∞.

3. conclusion

On the one hand, in light of the previous remarks we see that, for the Leray
kernel, the correct higher dimensional analog of the Lipschitz condition for planar
domains appears to be the notion of strong C-linearly convexity paired up with
C1,1-boundary regularity.

On the other hand, as recalled earlier, the proof of the one-dimensional result
requires the application of the T (1) theorem in its sharpest form: T (1), T ∗(1) ∈
BMO; whereas on account of Theorem 5, the proof of Theorem 6 is obtained by
applying the T (1) theorem, for spaces of homogeneous type, in its simplest form:
T (1) = T ∗(1) = 0, to the auxiliary operator

TLϕ(z) = Lϕ(z) − 1

µρ(bD)

∫

w∈bD

¯L∗(1)(w)ϕ(w)dµρ(w),

see e.g. [Ch]. The reason for this phenomenon is purely dimensional and is due
to the fact that when n = 1, passing from C to TC brings up a change of measure
(from dw to dσ), whereas for n ≥ 2 passing from L to TL does not.

One may ask whether either of the assumptions: strong C-linear convexity (resp.
C1,1-boundary regularity) may be weakened, to C-linear convexity (resp. C1,α-
boundary regularity). The answer is no: in Barrett-Lanzani [BL], with different
methods, the following examples are obtained:

• Example 1. D ⋐ C2 complete Reinhardt: bD ∈ C∞; D weakly C-linearly
convex.

• Example 2. D ⋐ C2 complete Reinhardt: bD ∈ C1,α (for any given
0 < α < 1); D strongly C-linearly convex.

In either case we have that L is unbounded: L2(bD, µ) → L2(bD, µ), where
µ ∈ {σ; µρ}.
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Sharp weighted bound for Calderón-Zygmund Singular Integral
Operators and Sobolev inequalities

Carlos Pérez

(joint work with A. Lerner, S. Ombrosi, K. Moen and R. Torres)

In the first part of this talk we will present recent results about sharp weighted
estimates for Calderón-Zygmund singular integral operator assuming that the
weight satisfy the A1 condition. To be more precise we presented the following
result for Calderón-Zygmund Singular Integral Operators.

Theorem A (The linear growth theorem)
Let T be a Calderón-Zygmund operator and let w ∈ A1. Then for 1 < p <∞

(1) ‖Tf‖Lp(w) ≤ c pp′ [w]A1‖f‖Lp(w) (1 < p <∞)

where c = c(n, T ).
Recall that w is an A1 weight if there is a finite constant c such that Mw ≤ cw,

a.e.. [w]A1 denotes the smallest of these c. This result can be found in [3] (see
also [2]) improving a corresponding result from [1] for just p = 2 and the Hilbert
transform. An application of this result is the following weak type result.

Theorem B (The logarithmic growth theorem)
Let T as above and let w ∈ Ap with 1 ≤ p <∞. Then

(2) ‖Tf‖Lp,∞(w) ≤ c ϕ
(
[w]Ap

)
‖f‖Lp(w),

where c = c(n, p, T ) and ϕ(t) = t(1 + log+ t).
We explained in the lecture that the right result should be with ϕ(t) = t instead,

namely the linear growth. In the case 1 < p <∞ we used the notation

[w]Ap ≡ sup
Q

(
1

|Q|

∫

Q

w(x)dx

) (
1

|Q|

∫

Q

w(x)−1/(p−1)dx

)p−1

<∞.

This result is related to a problem of Muckenhoupt-Wheeden that we discussed,
namely

(3) ‖Hf‖L1,∞(w) ≤ c ϕ
(
[w]A1

)
‖f‖L1(Mw)

where H is the Hilbert transform. Observe that no condition is assumed on w.
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We also discussed that all these results are related to the A2 theorems obtained
in [5] for the Ahlfors-Beurling transform [6] the Hilbert transform and [7] for the
Riesz transforms which we believe is true for any Calderón-Zygmund Singular
Integral Operator T .

We will show that the endpoint result follows by proving first a corresponding
sharp weighted Lp estimate both sharp on p and the A1 constant of the weight. The
connection of this result with the A2 conjecture for Singular Integrals Operators
will be discussed as well. Finally we will show some sharp string type weighted
estimates for Sobolev type inequalities. They will be derived from corresponding
weak type results for fractional integrals.

In the second part of the talk we consider very recent results for the classi-
cal fractional integral operator Iα. The classical result is due to Muckenhoupt-
Wheeden which establishes that if 1 < p < q <∞ with 1

p − 1
q = α

n

‖w Iαf‖Lq(Rn) ≤ C ‖w f‖Lp(Rn)

holds if and only if w satisfies the Ap,q condition:

[w]Ap,q ≡ sup
Q

(
1

|Q|

∫

Q

wq

) (
1

|Q|

∫

Q

w−p′

)q/p′

<∞

Theorem C (The strong fractional integral case)
Let p, q and α as above and let w ∈ Ap,q, then

‖w Iαf‖Lq(Rn) ≤ C [w]
max{1,(1−α

n ) p′

q }
Ap,q

‖w f‖Lp(Rn)

We discussed that the right result is with the exponent (1− α
n ) max{1, p′

q } instead.

The result is proved by means of an “off-diagonal” extrapolation theorem with
sharp bounds. We also discussed the following weak version.

Theorem D (The weak fractional integral case)
Let p, q, α and w as above with p ≥ 1. Then

‖Iαf‖Lq,∞(wq) ≤ C[w]
1− α

n

Ap,q
‖fw‖Lp

These type of estimates are of interest because results of Sobolev type for the
gradient which are important in applications.

Theorem E (Sobolev estimate)
Let p ≥ 1 and w ∈ Ap,p∗ , where p∗ is the Sobolev exponent given by p∗ = np

n−p .

Then
(∫

Rn

|w(x)f(x)|p∗

dx

)1/p∗

≤ C [w]
1

n′

Ap,p∗

(∫

Rn

|w(x)∇f(x)|p dx
)1/p
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[2] A. Lerner, S. Ombrosi and C. Pérez, Sharp A1 bounds for Calderón-Zygmund operators and
the relationship with a problem of Muckenhoupt and Wheeden. International Mathematics
Research Notices, (2008)
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A smoothing property for the L
2-critical NLS equation

Ana Vargas

(joint work with Sahbi Keraani)

We consider the initial value problem for the L2–critical nonlinear Schrödinger
equation

(1) i∂tu+ ∆u + κ|u| 4d u = 0 ; u|t=0 = u0 ∈ Hs(Rd).

It is well known that for every u0 ∈ L2(Rn), there is a unique maximal solution

u ∈ C((−T∗, T ∗);L2(Rn)) ∩ L
2(n+2)

n

loc ((−T∗, T ∗);L
2(n+2)

n (Rn)).

The solution is global for data with small L2 norm. In the focusing case, (+),
there are solutions that blow up in finite time. It has been conjectured that in the
defocusing case, (-) conjecture the solution is global.

For data in the Sobolev space H1, the conjecture is known to be true. Moreover,
it is known that in the focusing case and for H1–data, with ‖u0‖L2 < ‖Q‖L2, the
solution is global. Here Q is the ground state, i.e., the unique positive solution of
∆Q−Q+ |Q|4/nQ = 0.

Bourgain [4] proved that in the defocusing case, in dimension 2, there is some
s < 1, so that for u0 ∈ Hs(R2), the solution is global. This result was improved
by Colliander-Keel-Staffilani-Takaoka-Tao [3], Fang-Grillakis [6] and Colliander-
Grillakis-Tzirakis [2]. It has been extended to other dimensions by De Silva-
Pavlovic-Staffilani-Tzirakis [4] [5]. In this situation, the energy method can not
be used, and more refined techniques are needed. Very recently, global existence
has been proved for any radial datum in the defocusing case, and for datum with
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‖u0‖L2 < ‖Q‖L2 in the focusing case (Tao-Visan-Zhang [12], Killip-Tao-Visan [7],
Killip-Visan-Zhang [9]).

In this talk we show the following theorem

Theorem 1. For d = 1, set s1 = 3/4. For 2 ≤ d ≤ 4, set sd = d
d+2 . Finally,

for d ≥ 5, set sd = d2+2d−8
d(d+2) . The solution of (1) with initial data u0 ∈ Hs(Rd),

s > sd, can be written

u(t) = eit∆u0 + w(t), t ∈ [0, T ∗[ ,

with w ∈ C([0, T ∗[, H1(Rd)).

This type of result was firstly discovered by Bourgain [4].

The theorem says that the blowup phenomenon has an H1 mechanism. In fact,
any singular solution can be split en two parts: an Hs part which is global (since
it is linear) and an H1 part, which blows up.

Combining the Theorem with the local smoothing result for the linear Schrödinger
equation (Sjölin [10], Vega [13]), we obtain the following

Corollary 2. Under the assumptions of the Theorem, u(t) ∈ H1
loc(R

d) for almost
every t ∈ [0, T ∗[.

For the proof of the theorem, we use the norms defined by Bourgain

‖φ‖Xs,b =

[∫∫
(1 + |ξ|2s)(1 + |λ− |ξ|2|)2b|φ̃(ξ, λ)|2dξdx

] 1
2

.

The main proposition is

Proposition 3. For b > 1
2 , ‖v1∇v2‖

L
n+2

n
t,x

≤ Cs,b‖v1‖Xs+,b‖v2‖X1−s,b , for every

s < 2
n+2 when n ≥ 2, and for for every s < 1

4 , when n = 1.

This is a consequence of the following

Proposition 4. For all s < 2
n+2 , n ≥ 2, and for all s < 1

4 if n = 1,

‖eit∆ψ1∇eit∆ψ2‖
L

n+2
n (Rn+1)

≤ Cb‖ψ1‖W s(Rn)‖ψ2‖W 1−s,2(Rn).

Using a Littlewood–Paley decomposition, it is enough to prove an estimate for
functions having a Fourier transform supported in dyadic annuli.

Proposition 5. For s = 1
4 if n = 1, for s = 1

2 if n = 2, and for every s < 2
n+2

for n ≥ 3, there exists C = C(s), such that the following estimate

‖eit∆feit∆g‖
L

n+2
n (Rn+1)

≤ C

(
M

L

)s

‖f‖L2‖g‖L2
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holds for all functions f and g with supp f̂ ⊂ {ξ ∈ Rn : M ≤ |ξ| ≤ 2M} and
supp ĝ ⊂ {ξ ∈ Rn : L ≤ |ξ| ≤ 2L} for all 0 < M ≤ L.

The two dimensional case of this proposition was already stated in [4].

The ingredients to prove this estimate are the bilinear restriction theorem by
Tao [5] and a bilinear L2–estimate that is proven using geometric methods.
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Space time estimates for Schrödinger and wave equations

Andreas Seeger

(joint work with Fedor Nazarov, Keith Rogers)

The talk was based on work with Fedor Nazarov [10] on the wave equation
and related multiplier results and work with Keith Rogers on Schrödinger type
equations [13].

Consider the operators T a
t given by

T̂ a
t f(ξ) = ei|ξ|a f̂(ξ)
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By results of Stein, Miyachi and Peral ([15], [2], [8], [9], [11]) there are the fixed
time regularity results

(1) ‖T a
t f‖q

q ≤ C(t)q‖f‖q
Lq

β

where

β ≥ βcr(a, q) :=

{
ad| 12 − 1

q | if a 6= 1

(d− 1)| 1q − 1
2 | if a = 1

;

here Lq
β denotes the standard Sobolev space.

It is also conjectured that for suitable q ≫ 2 the estimate improves with a gain
of 1/q derivatives after integrating over a compact time interval, i.e. one expects

(2)

∫

I

‖T a
t f‖q

qdt ≤ Cq
I ‖f‖

q
Lq

β−1/q

, β ≥ βcr(a, q)

to hold. The conjectured range for this inequality is q ∈ (2(d + 1)/d,∞) if a 6= 1
and q ∈ (2d/(d− 1),∞) if a = 1.

In joint work with Rogers [13] it is shown that (2) holds for a 6= 1, in the range
q > 2(d + 3)/(d + 1) (see [12] for a prior result for a = 2 and β > βcr(a, q)).
The proof uses the (bilinear version of) Fourier extension theorems in [1], [18]
and [16], and an argument from [7]. A more recent variant, namely control of
‖‖χT a

∗ f‖Bq
1/q,1

(dt)‖Lq(dx) for f ∈ Lq
β , with χ smooth and compactly supported in

(−2,−2), also leads to new bounds for the maximal function sup|t|≤1 |T a
t f |.

The above mentioned conjecture on (2) for a = 1 had been formulated by Sogge
[14]; this case corresponds to the wave equation. With an ǫ-loss this conjecture was
proven by T. Wolff [17], for q > 74 and d = 2 (for extensions and improvements
see [6] and [3], [5]).

In joint work with Nazarov [10] a proof of the sharp from of Sogge’s conjecture
for a suitable (non-optimal) range of q, is obtained in dimension d ≥ 5. In high
dimensions our range is larger than the previously known on Wolff’s inequality for

plate decompositions; we show that (2) holds for a = 1, d ≥ 5 and q > 2(d2−2d−3)
d2−4d−1 .

The smoothing estimate in the case a = 1 is also closely related to another result
with Nazarov [10] which gives characterizations of Lp boundedness for convolution
operators with radial kernels. To formulate this let φ be a nontrivial C∞ function
supported in (1, 2) and m ∈ L∞[0,∞). Set Kt[m] = F−1[φ(| · |)m(t| · |)]. Then for

d ≥ 5 and 1 < p < 2(d2−2d−3)
d2−5 there is the equivalence

(3) ‖m(
√
−∆)‖Lp(Rd)→Lp(Rd) ≈ sup

t>0
‖Kt[m]‖Lp(Rd).

We remark that the corresponding result on radial functions, i.e.

‖m(
√
−∆)‖Lp

rad
(Rd)→Lp

rad
(Rd) ≈ sup

t>0
‖Kt[m]‖Lp(Rd)

had been obtained in work with Garrigós [4], in the optimal range 1 < p < 2d
d+1 ,

d > 1. One may conjecture that (3) holds in the same range.
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Hardy spaces on metric measure spaces of exponential growth

Giancarlo Mauceri

(joint work with Andrea Carbonaro, Stefano Meda, Maria Vallarino)

There are interesting operators on metric measure spaces of exponential growth
which are bounded on Lp for every p ∈ (1,∞), but are neither bounded on L1, nor
of weak type (1, 1). Examples include higher order complex powers of the Lapla-
cian and higher order Riesz transforms on non-compact Riemannian symmetric
spaces and on homogeneous trees [1] [3]. The purpose of our work is to introduce
subspaces of L1 on certain measure metric spaces of exponential growth that allow
us to obtain endpoint estimates for such operators.

We assume that (M,ρ, µ) is a metric measure space which is unbounded and
satisfies the following properties
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(LD) locally doubling property: for every s > 0 there exists a constant Ds such
that for every ball B of radius ≤ s

µ(2B) ≥ Ds µ(B),

where 2B denotes the ball with the same centre and twice the radius of
B.

(AM) approximate midpoint property: there exist two constants R0 > 0 and
β < 1 such that for all x, y in M there exists z in M such that
max

(
ρ(z, x), ρ(z, y)

)
≤ βρ(x, y);

(I) isoperimetric property: There exist positive constants C and κ0 such thar
for every bounded open set A in M

µ{x ∈ A : ρ(x,Ac) ≤ t} > C tµ(A) ∀t ∈ (0, κ0).

These properties are satisfied, for instance, by Riemannian manifolds with a lower
bound on Ricci curvature, positive injectivity radius and positive spectral gap.

First, in a joint work with A. Carbonaro and S. Meda [2] we define an atomic
Hardy space H1(µ), where atoms are supported only on “small balls”, and a
corresponding space BMO(µ) of functions of “bounded mean oscillation”, where
the control is only on the oscillation over small balls. We prove that BMO(µ) is the
dual of H1(µ) and that an inequality of John–Nirenberg type on small balls holds
for functions in BMO(µ). Furthermore, we show that, even though H1(µ) and
BMO(µ) are much smaller and much larger, respectively, than the classical spaces
defined in terms of all balls, the Lp(µ) spaces are intermediate spaces between
H1(µ) and BMO(µ). Next we develop a theory of singular integral operators
acting on function spaces on M . Namely, we show that singular integral operators
which satisfy the Hörmander integral condition

sup
B

sup
x,x′∈B

∫ ∞

(2B)c

|k(x, y) − k(x′, y)| dµ(y) <∞,

where B varies over all the “small balls”, are bounded from H1(µ) to L1(µ).
There is a corresponding L∞(µ)-BMO(µ) result for operators satisfying the dual
condition. This result allows us to prove an endpoint H1(µ)-H1(µ) estimate for
the functions of the Laplacian on Riemannian manifolds considered by M. Taylor
in [5], under weaker bounded geometry assumptions. Namely,

Theorem 1. Let M be a Riemannian manifold of dimension d, with positive
injectivity radius and Ricci curvature bounded from below. Denote by κ the growth
exponent of M . Let b > 0 be the bottom of the spectrum of the Laplacian L on
L2(M) and denote by H the operator

√
L− b. If m is an even bounded holomorphic

function on the strip {z ∈ C : |ℑz| < κ/2} whose boundary values satisfy a Mihlin
condition at infinity of order N > d/2 + 2, i.e.

∣∣Dj
sm(s± iκ/2)

∣∣ ≤ C(1 + |s|)−j ∀s ∈ R ∀j = 0, 1, . . . , N

then the operator m(H) is bounded on H1 and from L∞(M) to BMO.
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The space H1(µ) turns out to be too large to obtain endpoint estimates for
singular integrals which are “singular at infinity” such as certain complex powers
of the Laplacian or Riesz transforms on symmetric spaces. Thus, in a second
paper with M. Vallarino and S. Meda [4], we introduce a sequence Xk, k ∈ N+ of
subspaces of L1(µ) associated to the generator L of a semigroup of contractions on
L1(µ) +L2(µ), which is ultracontractive and has a positive spectral gap on L2(µ).
For each positive integer k the space Xk is defined as the range of the restriction
to H1(µ) of the operator J k = Lk(I + L)−k, with norm ‖f‖Xk

= ‖J−kf‖H1 .
We prove that, on Riemannian manifolds, (Xk) is a strictly decreasing sequence
of subspaces of H1(µ). Moreover we show that the complex interpolation space
[Xk, L

2(µ)]θ is Lp(µ), 1/p = 1 − θ/2, for all θ ∈ (0, 1). Finally, by using these
spaces we are able to obtain endpoint estimates for the complex powers of the
Laplacian and all Riesz transforms on symmetric spaces.

Theorem 2. Let M be a noncompact Riemannian symmetric space of dimension
d and let L be the Laplacian on M . Then

(i) if ℜz > d/2 − k the operator Lz is bounded from Xk to L1(µ)
(ii) for all positive integers m the Riesz transform ∇mL−m/2 is bounded from

X[m/2]+1 to L1(µ) Here [m/2] denotes the greatest integer ≤ m.

We also obtain endpoint estimates for a class of spectral multipliers on Rie-
mannian manifolds, more general than that considered by M. Taylor in [5].

Theorem 3. Let M and H be as in Theorem 1. If m is an even holomorphic
function on the strip {z ∈ C : |ℑz| < κ/2} whose boundary values satisfy

∣∣Dj
sm(s± iκ/2)

∣∣ ≤ C |s|−γ−j ∀s ∈ R ∀j = 0, 1, . . . , N

for some γ ≥ 0 and for some N > d/2 + 2. Then the operator m(H) is bounded
from Xk to H1(µ) for all k > γ + d/2 + 2.
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Large sets with limited tube occupancy

Anthony Carbery

A subset E of Rd is a Kakeya-type set, (or a Besicovitch–Kakeya–Furstenberg-type
set) if each of a large set of tubes (say one in each direction, or one passing through
each point of a hyperplane) contains a relatively large amount of E. The natural
question for such sets is how small they can be, and this question has received a
great deal of attention over the last 40 years.

In this talk we are concerned, in contrast, with “Anti-Kakeya”-type sets, that is,
subsets E of Rd such that for every tube, the amount of mass of E contained in
the tube is small. The question now is how large such sets may be.

This question naturally arises in X-ray tomography, but we are interested in its
connections with harmonic analysis and PDEs.

In the late 1970’s Stein proposed that the disc multiplier operator should be con-
trolled by a maximal function involving averages over eccentric rectangles via an
L2-weighted inequality. Parallel to this, it is natural to ask the same question
(and indeed in some model cases the questions are equivalent) for the extension
operator for the Fourier transform associated to a hypersurface of non-vanishing
gaussian curvature such as the unit sphere.

In the mid 1980’s, Mizohata and Takeuchi, in connection with estimates for solu-
tions to the Helmholtz equation, and apparently unaware of the connection with
Stein’s proposal, suggested that the following inequality should hold:

(1)

∫

Rd

|ĝdσ(x)|2w(x)dx ≤ C sup
T
w(T )

∫

Sd−1

|g|2

where the sup is taken over all 1-tubes T , i.e. 1-neighbourhoods of lines in Rd.

This question is still open, but was resolved in the affirmative for radial weights
w independently by Barceló, Ruiz and Vega and by Carbery and Soria about 10
years ago.

The work of Carbery and Soria concerned analogues of Riemann’s Localisation
Theorem for Fourier transforms in higher dimensions. For f ∈ L2(Rd) let

SRf(x) =

∫

|ξ|≤R

f̂(ξ)e2πix·ξdξ.

If f is identically zero on the unit ball B of Rd, in what senses can we expect
pointwise convergence of SRf(x) to zero on B? Three results were given (some in
later work of Carbery, Soria and Vargas):

• If E ⊆ B supports a positive measure µ with

sup
r-tubes T

µ(T )

rd−1
≤ C

uniformly in r then, conditional on (1) holding, SRf → 0 a.e dµ.
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• If d− 1/2 < β ≤ d, if 0 < Hβ(E) <∞, and if E is radial, then

sup
r-tubes T

Hβ(T ∩ E)

rd−1
≤ C

uniformly in r (and so SRf(x) converges to 0 a.e. with respect to Hβ |E if
f ≡ 0 on B).

• There is no E ⊆ B with 0 < Hd−1(E) <∞ such that

sup
r-tubes T

Hd−1(T ∩ E)

rd−1
≤ C

uniformly in r (and moreover if Hd−1(E) is σ-finite, there is an f ∈ L2(Rd),
identically zero on B such that SRf(x) diverges on E.)

(Here, r-tubes are r-neighbourhoods of lines in Rd, and Hβ denotes β-dimensional
Hausdorff measure.)

Thus the following problem naturally arises: determine the set of pairs (β, γ) such
that there is an E ⊆ B with 0 < Hβ(E) <∞ such that

(2) sup
r

sup
r-tubes T

Hβ(T ∩ E)

rγ
<∞.

It is easy to see that if either γ > d−1 or β < γ, then (2) implies that Hβ(E) = 0.

Theorem 1. If γ < d − 1 and β > γ, then there exists a set E ⊆ B with
0 < Hβ(E) <∞ and such that (2) holds.

Returning to (1), recall the Stein–Tomas restriction theorem which says, in its
weighted formulation, that

∫

Rd

|ĝdσ(x)|2w(x)dx ≤ C‖w‖(d+1)/2

∫

Sd−1

|g|2.

So, in considering testing (1), it only makes sense to do so on weights w for which

sup
T
w(T ) << ‖w‖(d+1)/2.

Because of the uncertainty principle we may assume that the finest scale appearing
is 1, and to suitably quantify the previous inequality, we introduce a scale N >> 1
and consider weights w supported in B(0, N) which are essentially constant on
unit scale. For such weights it is easy to see that for p ≥ 1,

‖w‖p ≤ Cd,pN
(d−1)/p sup

1-tubes T
w(T ).

Theorem 2. There exists a w taking integer values such that

sup
1-tubes T

w(T ) ≤ Cd logN

while

‖w‖1 ≥ Cd logN Nd−1.
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Corollary 3. With the same w, if p > 1 we have

‖w‖p ≥ Cd,p
N (d−1)/p

(logN)1/p′ sup
1-tubes T

w(T ).

Such weights should in principle be good candidates on which to test (1).

In fact, there is a finer version of Theorem 2:

Theorem 4. For 2 ≤ k ≤ N1/2 there is a collection of at least CdkN
d−1N−(d−1)/k

lattice points in {1, 2, . . . , N}d so that no 1-tube contains more than k of them.

We caution that the collection may not consist of distinct points. Notice that
CdkN

d−1 would be best possible for no 1-tube to contain more than k points, and
that when k ≥ logN the term N−(d−1)/k essentially disappears. On the other
hand, when k = 2, the result is easy as can be seen by placing ∼ N (d−1)/2 points
at roughly equal spacings on a sphere of radius ∼ N .

The proof of Theorem 4 is probabalistic and is closely related to work of Komlós,
Pintz and Szemerédi on the Heilbronn triangle problem. In fact there is a loga-
rithmic improvement of the case k = 2, d = 2 of Theorem 4 implied by the work of
those authors and our argument is based on a simplified version of that analysis.
Theorem 2 can be obtained by a simpler large deviation/Bernoulli trials analysis;
Michael Christ has also made a similar observation. Theorem 1 is obtained by
building Cantor sets based upon the examples furnished by Theorem 2 or 4. Since
the examples are generated probabalistically rather than deterministically their
potential as counterexamples to (1) is perhaps limited: for example it is not hard
to show that if we write g ∈ L2(Sd−1) in its wave packet representation and then
put random ±1’s on the coefficients, then (1) holds for all weights w almost surely.

Details of the proofs will appear elsewhere.

Bochner-Riesz analysis on on asymptotically conic manifolds

Adam Sikora

(joint work with Colin Guillarmou and Andrew Hassell)

Suppose that X is a measure space, equipped with a measure µ, and that L is a
self-adjoint positive definite operator on L2(X). Then L has a spectral resolution:

L =

∫ ∞

0

λdEL(λ),

where the EL(λ) are spectral projectors. For any bounded Borel function
F : [0,∞) → C, we define the operator F (L) by the formula

(1) F (L) =

∫ ∞

0

F (λ)dEL(λ).
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By the spectral theorem, F (L) is well defined and bounded on L2(X). To define
the Bochner-Riesz means of the operator L we put

σα(λ) =

{
(1 − λ)α for λ ≤ 1

0 for λ > 1.

We then define the operator σα
R(tL) using (1). We call σα(tL) the Riesz or the

Bochner-Riesz means of order α. The basic question in Bochner-Riesz analysis is
to establish the critical exponent for the continuity and convergence of the Riesz
means. More precisely we want to study the optimal range of α for which

sup
t>0

‖σα(tL)‖p→p <∞.

for a given p 6= 2.
We study Bochner-Riesz analysis in the setting of asymptotically conic mani-

fold. We say that complete noncompact manifold M◦ with a Riemannian metric
g is an asymptotically conic manifold on M◦ if it compactifies to a manifold with
boundary M in such a way that g becomes a scattering metric on M . A good
illustrative example is an exact metric cone (that is manifold R+ × Y with Rie-
mannian metric dr2 + r2h where (Y, h) is a compact Riemannian manifold) with
a smoothed out vertex. Let ∆ be the positive Laplacian associated to g, and
L = ∆ + V , where V is a potential function obeying certain conditions. We ana-
lyze the asymptotics of the spectral measure dE(λ) = 1

2πiR(λ + i0) − R(λ − i0),

where R(λ) = (L − λ2)−1, as λ → 0, in a similar way as in [2] and [1]. Using
this analysis, we obtain L1 → L∞ estimates on derivatives (in λ) of the spectral
measure under the assumption that (M, g) has no conjugate points. Then we show

that such L1 → L∞ estimates imply restriction theorems, i.e. Lp → Lp′

continuity
of the spectral projection dE(λ), which are as good as those currently known for
flat Euclidean space.

As an immediate application, spectral multiplier and Bochner Riesz summa-
bility results for H , similar to those described in [3, 4, 5], hold under the same
assumption. Moreover, when there are conjugate points, then we show that the
restriction estimates definitely fail to hold.
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An Algebra Containing the Two-Sided-Convolution Operators

Brian Street

Let G be a stratified Lie group. Given a Calderón-Zygmund distribution kernel
K ∈ C∞

0 (G)
′
, one obtains two “Calderón-Zygmund singular integral operators”:

OpL (K) f := f ∗K

OpR (K) f := K ∗ f
The operators of the form OpL (K) form an algebra:

OpL (K1) OpL (K2) = OpL (K1 ∗K2)

In addition, they are bounded on Lp (1 < p <∞), and are pseudolocal. The same
is true for operators of the form OpR (K). Also, if we consider:

OpL (K1) OpR (K2) f = (K2 ∗ f) ∗K1 = K2 ∗ (f ∗K1) = OpR (K2) OpL (K1) f

we see that OpL (K1) and OpR (K2) commute.
Hence, it follows that:

OpL (K1) OpR (K2) OpL (K3) OpR (K4) = OpL (K1 ∗K3) OpR (K4 ∗K2)

and so operators of the form OpL (K1) OpR (K2) are closed under composition. It
is also evident that they are bounded on Lp (1 < p < ∞) and are pseudolocal.
This raises the question as to what the algebra is that is “generated” by operators
of the form OpL (K1) OpR (K2). An extrinsic answer to the question is quite easy.
Indeed, operators of the form:

(1) Tf(x) =

∫
K (y, z) f

(
z−1xy−1

)
dydz

whereK is a suitable ”product kernel,” form a natural algebra containing operators
of the form OpL (K1) OpR (K2).

In this talk, we present an intrinsic approach to an appropriate algebra con-
taining the above operators. This turns out to be somewhat more difficult, and
requires singular integrals that have a truly two-parameter nature. Indeed, the
cancellation conditions that these operators satisfy are defined in terms of a one-
parameter family of Carnot-Carathéadory metrics. These results can be found in
[1].
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Structure of sets with small additive doubling

Nets Hawk Katz

(joint work with Paul Koester)

We give a new basic result in the study of sets with small additive doubling. For
simplicity, in this talk we restrict to the setting of characteristic 2 so that the set
A in question is a subset of FN

2 for some N , presumably very large. We assume
a bound on the size of the sumset |A + A| ≤ K|A|, with K a relatively small
constant. By the Cauchy-Schwarz inequality, this implies a lower bound on the
additive energy E(A) ≥ 1

K . Here we define additive energy by

E(A) =
1

|A|3 |{(a, b, c, d) ∈ A4 : a+ b = c+ d}|.

Our theorem is

Theorem 1. There is an ǫ > 0 and C > 0 so that if A is as above, there is a
subset B ⊂ A so that |B| > K−C |A| and so that E(B) > Kǫ−1.

Part of the motivation of this theorem was an attempt to settle the celebrated
Polynomial Freiman-Ruzsa conjecture which says

Conjecture 2. Let A be as above, then there is a subspace H ⊂ FN
2 so that

|H | ≤ KC |A|, and |H ∩A| ≥ K−C |A|.

The work was inspired by the incrementation argument of Green and Tao, and
would have yielded a proof of the conjecture if the result obtained on the set B
estimated its additive doubling. As it is, our result shows that the enemy of the
conjecture is a set whose energy is substantially higher than what is predicted
by additive doubling. In characteristic zero, such a set is a generalized arithmetic
progression of high dimension which of course must be encoded into a characteristic
zero Polynomial Freiman-Ruzsa conjecture.
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The complex Monge-Ampère equation and the Szegö kernel

Duong H. Phong and Jacob Sturm

We describe recent progress on the following Dirichlet problem: let M be a
complex manifold with smooth boundary ∂M , Ω0 be a non-negative (1, 1)-form
on M , and Φb a smooth function on ∂M . Find Φ satisfying Ω0 + i

2∂∂̄Φ ≥ 0 and

(1) (Ω0 +
i

2
∂∂̄Φ)dimM = 0 on M, Φ|∂M

= Φb.
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A case of particular interest is M = X ×A, where (X,ω0) is a polarized compact
Kähler manifold, and A = {e−T < |w| < 1} ⊂ C is an annulus. The parameter T
can be infinite, in which case A is a punctured disk, and by convention, we define
∂M to be then X × {|w| = 1}. Polarized means that ω0 arises as the curvature
− i

2∂∂̄ log h0 of a metric h0 on a holomorphic line bundle L→ X .

The equation (1) is motivated by the still unsolved problem of determining when
the Kähler class [ω0] of a given polarized compact Kähler manifold X contains
a metric of constant scalar curvature. A well-known conjecture of Yau [28] is
that the existence of such a metric should be equivalent to the stability of the
polarization L → X in the sense of geometric invariant theory. There are several
candidate notions of stability: classical notions of Chow-Mumford and Hilbert-
Mumford stability [17] (now known to be asymptotically equivalent [16]), notions
ofK-stability due to Tian [26] and Donaldson [13]; and infinite-dimensional notions
due to Donaldson [12] and the authors [18]. The notion of stability in [12] is based
on the geometry of the space

(2) K = {φ ∈ C∞(X);ωφ ≡ ω0 +
i

2
∂∂̄φ > 0},

of Kähler potentials, which is a symmetric space of non-positive curvature with
respect to the metric ‖δφ‖2 =

∫
X
|δφ|2ωn

φ [12, 15, 22]. The polarization L → X

is then defined not to be stable in the sense of [12] if there exists an infinite

geodesic ray (−∞, 0] ∋ t → φ(·, t) ∈ K with
∫

X
φ̇(R − 〈R〉)ωn

φ ≤ 0 for all t ∈
(−∞, 0]. Here R is the scalar curvature of the metric ωφ and 〈R〉 its average.

Now the geodesic equation for a path φ(·, t) in K is φ̈ − ωjk̄
φ ∂j φ̇∂k̄φ̇ = 0. If we

set Φ(z, w) ≡ φ(z, log |w|), Ω0 = ω0 viewed as a form on M , then this equation is
actually equivalent to (1), with M ≡ X × A, and Φb = 0 on |w| = 1. Thus the
existence and regularity of geodesics in K reduces to the existence and regularity
of solutions of (1).

Our results are of two types. In the first, generalized solutions of (1) are con-
structed explicitly as limits of geodesics in SL(N +1)/U(N+1) as N → ∞. More

precisely, for each k ∈ N∗, let s = {sα}Nk
0 be an orthonormal basis of the space

H0(X,Lk) of holomorphic sections of Lk, with respect to the L2 metric defined

by h0 and the volume form ωn
0 . Given weights λ

(k)
α , set

Φk(z, w) ≡ 1

k
log

Nk∑

α=0

|w|2λ(k)
α |sα(z)|2hk

0 − n
log k

k
(3)

and, with ∗ denoting the upper semi-continuous envelope,

Φ(z, w) ≡ limℓ→∞

[
supk≥ℓΦk(z, w)

]∗
.(4)

Theorem 1. [19] Let φ1 ∈ K. Let A = {e−1 < |w| < 1}, M = X × A, and
define the boundary value Φb in the Dirichlet problem (1) by Φb = 0 when |w| = 1,
Φb = −φ1 when |w| = e−1. Then a generalized solution of (1) can be obtained in

the form (4), by choosing the weights λ
(k)
α to be the coefficients of proportionality
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s
(1)
α = eλ(k)

α sα between two bases s = {sα}Nk
0 , s(1) = {s(1)α }Nk

0 of H0(X,Lk),
orthonormal with respect to h0, ω

n
0 and h1 ≡ e−φ1h0, ω

n
φ1

respectively.

Theorem 2. [20] Let L → X → C be a test configuration for L → X in the

sense of Donaldson. Let λ
(k)
α be the weights of the corresponding C× action on

H0(X0, L
k
0) where X0 is the central fiber of X and L0 the corresponding fiber of

L. Then the formula (4) defines a generalized solution of the Dirichlet problem
(1), with M = X × {0 < |w| < 1}, Φb = 0 when |w| = 1. The solution is not
identically 0 when the test configuration is non-trivial.

The proof of the preceding theorems makes essential use of two fundamental
ingredients, namely the Tian-Yau-Zelditch theorem [27, 25, 29] and the Bedford-
Taylor pluripotential theory. Geometrically, the TYZ theorem asserts that an
arbitrary metric on a positive line bundle L can be approximated by Fubini-Study
metrics. It insures that the ansatz (4) satisfies the desired boundary values. A
proof can be found in [29] and Catlin [7], using an asymptotic expansion for the
Szegö kernel due to Boutet de Monvel-Sjöstrand [5] and Fefferman [11]. The
Bedford-Taylor theory [2] provides conditions for the uniqueness and weak con-
vergence of the Monge-Ampère determinants. Precise estimates on the rate of
convergence in (4) when X is a toric variety have recently been obtained by Song
and Zelditch [23, 24]. A different approximation scheme with a twist of Lk by
the canonical bundle KX , in the spirit of the L2 estimates of Hörmander and
Akizuki-Kodaira-Nakano, has been proposed by Berndtsson [3].

Theorems 1 and 2 provide constructions in terms of Fubini-Study metrics on
CPN , which are expected to provide the vital link between infinite-dimensional
and finite-dimensional notions of stability. However, they give only generalized
solutions. A priori estimates for the Monge-Ampere equation [6, 14, 8, 4] can also
be applied to give C1,1 solutions for the completely degenerate case. In the case
of A = {e−T < |w| < 1} with T finite, this was done by X.X. Chen [8]. Applying
a priori estimates as well as a resolution of singularities, we have

Theorem 3. [21] Let L → X → C be a test configuration for L→ X in the sense

of Donaldson. Let p : X̃ → X → C be any smooth, S1 equivariant resolution of X.
Then the Dirichlet problem (1) admits a solution Φ, with Ω0+ i

2∂∂̄Φ the restriction

to p−1(X|{0<|w|<1}
) of a non-negative current Ω+ i

2∂∂̄Ψ on p−1(X|{|w|<1}
) satisfying

(Ω + i
2∂∂̄Ψ)n+1 = 0, with Ω a smooth Kähler form.

Other constructions of geodesic rays have also been given in [1] and [9, 10].
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