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Introduction by the Organisers

The workshop Learning Theory and Approximation, organised by Kurt Jetter
(Stuttgart-Hohenheim), Steve Smale (Berkeley) and Ding-Xuan Zhou (Hong
Kong), was held June 29 – July 5, 2008. The meeting was attended by 22 partici-
pants from Europe, North America and Asia. It provided an excellent platform for
a fruitful interaction of scientists from learning theory and approximation theory.
Discussions with participants in the parallel workshop Computational Algebraic
Topology were encouraged by the program to include plenary sessions for both
workshops on subjects of common interest. Among these, the workshop addressed
here has contributed six plenary lectures presented by Smale, Suykens, Tsybakov,
Sauer, Temlyakov, and Schölkopf.

The scientific program started with Smale’s lecture which was perfectly within
the scope of both workshops. His idea was to apply various orders of boundary
and co-boundary operators in Hodge theory to develop learning algorithms for
pattern analysis on general probability spaces without Lebesgue structure, similar
to the graph Laplacian. To this end, approximation theory is needed for the study
of approximating integral operators associated with positive kernels by finite-rank
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operators and of the space of harmonic functions on general spaces. A useful
demonstration of this type of approximation of integral operators by finite-rank
operators was given by Tarres in his talk dealing with online learning algorithms
for regression.

Various central branches of learning theory have raised new approximation the-
ory problems. For example, kernel-based learning has become an indispensable
tool, and two plenary lectures have addressed this subject: Suykens surveyed var-
ious support vector machine type kernel-based learning algorithms and pointed to
approximation theory problems about kernel canonical correlation analysis, inde-
pendent component analysis and kernel PCA for sparsity. Schölkopf gave a general
introductory survey on kernel methods and discussed several interesting approxi-
mation theory problems on data dependent kernels, how to measure variable de-
pendence and covariance by kernel means, and learning surfaces from normals.
However, kernel-based methods have been used also in approximation theory for
some time, where explicit error estimates have been derived for the approximation
of smooth classes of functions. Examples include the use of frame decompositions,
see the contribution by Han on wavelet frames, or the use of a class of Bernstein-
Durrmeyer positive linear operators associated with general probability measures
and their applications to kernel learning algorithms, see the talks by Jetter and
by Berdysheva.

A second central topic in learning theory is sparsity, which is an important
property for dimension reduction, data representation and analysis, and informa-
tion retrieval. In this workshop, some statisticians discussed sparsity for various
purposes and raised the interesting problem of how to characterize functions with
sparse representations: Tsybakov discussed how to study the sparsity in statisti-
cal learning theory by sparsity oracle inequalities. Wahba discussed LASSO algo-
rithm and presented a separable approximation algorithm with projected Newton
acceleration for variable selection and clustering. Pontil surveyed some multi-task
learning with spectral regularization. Mukherjee talked about some predictive
models inferring structure and dependencies. And Boucheron discussed model
selection for Wilks phenomenon.

On the other hand, sparsity comes up in approximation theory with the develop-
ment of algorithms for non-linear approximation. Binev presented a mathematical
analysis of an adaptive sparse tree algorithm for regression problems in learning
theory by such non-linear methods. Temlyakov talked about optimal error bounds
of some universal estimators in learning theory by means of properties of N -term
approximation. Sauer considered a multivariate polynomial interpolation prob-
lem to learn an algebraic variety containing a finite set of points for the purpose
of dimension reduction. Zhou described some classification and regression learn-
ing schemes generated by Parzen windows and least squares regularization from
a new viewpoint of scaling in the time and the frequency domain. And Rosasco
introduced some learning algorithms associated with elastic net regularization by
means of some classes of wavelets and libraries from approximation theory.
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Two further talks have dealt with application of non-parametric regression:
Kohler applied smooth splines to non-parametric regression estimators by Monte
Carlo methods, with an interesting application to pricing of options. And Hein
studied non-parametric regression between manifolds and asked for properties of
thin-plate splines and higher order energy functionals including the so-called Eells
energy.

The workshop has provided an excellent overview on actual subjects where
learning theory and approximation theory meet, and where the two fields can ben-
efit from each other. It has also raised some questions to be settled in the future.
To address two of them: First, the usual estimates for variance involve essentially
capacity of function classes used in learning processes which relies on properties
of various functions spaces from approximation theory. However, smoothness of
functions is usually measured in a sophisticated way which makes such results less
applicable, in particular, if high-dimensional data are considered. This question
is important to topics and learning algorithms on dimension reduction. Second,
learning theory considers robustness of its methods, so far, only concerning statis-
tical errors. However, from the standpoint of numerical analysis, also the condition
of the used algorithms should be incorporated.

The organizers acknowledge the friendly atmosphere provided by the Oberwol-
fach institute, and express their thanks to the entire staff.
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Abstracts

Hodge Decomposition and Learning Theory

Steve Smale

(joint work with Nat Smale)

Partial differential equations and Laplacians in Euclidean spaces together with the
Lebesgue measure and its counterpart on manifolds have played a central role in
understanding natural phenomena. In many areas, calculus is obstructed as in
singular spaces, computer vision, learning theory, and quantum field theory. In
vision it would be useful to do analysis on the space of images and an image is a
function on a patch.

The point of view taken in this talk is to benefit from the Hodge theory to
develop pattern analysis on general probability spaces without Lebesgue structure.
This starts with a setX equipped with a distance d (which yields analysis like PDE
and heat equations) as well as a probability measure ρ (measuring the distribution
of objects like images in X).

Let ℓ ∈ Z+. The space L2(Xℓ+1) = L2
ρ(X

ℓ+1) consists of ℓ-forms. The Hodge

operator or co-boundary δ : L2(Xℓ+1) → L2(Xℓ+2) is defined by

δf(x0, . . . , xℓ+1) =

ℓ+1∑

i=0

(−1)if(x0, . . . , x̂i, . . . , xℓ+1).

Its dual δ∗ = ∂ : L2(Xℓ+2) → L2(Xℓ+1) is called the boundary operator.
The Laplacian on ℓ-forms is defined to be the operator ∆ : L2(Xℓ+1) →

L2(Xℓ+1) given by ∆ = δ∂ + ∂δ. If we denote Harm to be the space of all
harmonic functions in L2(Xℓ+1) satisfying ∆f = 0, then we have the following
Hodge decomposition (L2 theory) [1].

Theorem 1. L2(Xℓ+1) = Im∂ + Imδ + Harm.

The Hodge operator δ can be generalized to a weighted setting with a symmetric
and positive function K on X ×X . To see this, let Aℓ+1 be the weight function

on Xℓ+1 given by Aℓ+1(x
0, . . . , xℓ) = Πi6=j

(
K(xi, xj)

)1/2
for ℓ ≥ 1 while A1 ≡ 1.

Then the Hodge operator δ = δK is from the weighted space L2
ρAℓ+1

(Xℓ+1) to the

weighted space L2
ρAℓ+2

(Xℓ+2). Its dual δ∗ = ∂ : L2
ρAℓ+2

(Xℓ+2) → L2
ρAℓ+1

(Xℓ+1) is

given by

∂f(x0, . . . , xℓ) =

ℓ+1∑

i=0

(−1)i

∫

X

f(x0, . . . , xi−1, u, xi, . . . , xℓ)Πℓ
j=0K(xj , u)dρ(u).

The Hodge operator and induced Laplacian can be used for learning theory.
Consider the case ℓ = 0 in the weighted setting with K being a Mercer kernel on
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X . Then A1 ≡ 1 and A2(x
0, x1) = K(x0, x1). The Laplacian ∆ = ∂δ : L2

ρ(X) →
L2

ρ(X) on 0-forms takes the form

∆f(x) = 2D(x)f(x) − 2LKf(x),

where D(x) =
∫

X
K(x, u)dρ(u) and LK is the integral operator on L2

ρ(X) or the

reproducing kernel Hilbert space HK given by LKf(x) =
∫

X
K(x, u)f(u)dρ(u).

The operator ∆ can also be considered as one on HK . It can be discretized
by a sample {xi}m

i=1 drawn from ρ. The function D ∈ HK can be discretized as
1
m

∑m
i=1Kxi where Kx = K(·, x) ∈ HK . The operator LK : HK → HK can be

approximated by a finite-rank one 1
mS

T
x
Sx (induced by a sample operator Sx as

in [2]) defined as 1
mS

T
x
Sxf = 1

m

∑m
i=1〈·,Kxi〉KKxi .

Theorem 2. Assume κ :=
√

supx∈X K(x, x) <∞. With confidence 1 − δ,
∥∥∥∥

1

m
ST

x
Sx − LK

∥∥∥∥
HK→HK

≤ 4κ2 log
(
2/δ
)

√
m

.

Consider another weighted setting (corresponding to adjacency matrix of a
graph X). Let α > 0 and a subset of Xℓ+1 given by Uℓ+1

α = {(x0, . . . , xℓ) ∈
Xℓ+1 : d(xi, p) ≤ α for some p ∈ X, and all i} (it equals Xℓ+1 when α is large
enough). The Hodge operator δ = δα can be regarded as one from L2

ρ(Uℓ+1
α ) to

L2
ρ(Uℓ+2

α ). Its dual ∂ : L2
ρ(Uℓ+2

α ) → L2
ρ(Uℓ+1

α ) is given by

∂f(x0, . . . , xℓ) =

ℓ+1∑

i=0

(−1)i

∫

S
x0,··· ,xℓ

f(x0, . . . , xi−1, u, xi, . . . , xℓ)dρ(u).

Here Sx0,··· ,xℓ denotes the slice {t ∈ X : (x0, . . . , xℓ, t) ∈ Uℓ+2
α }. In this setting

we have the following Hodge decomposition [1] where the space Harm of harmonic
functions is defined by the corresponding Laplacian.

Theorem 3. For any α > 0 and ℓ ∈ Z+, we have

L2
ρ(Uℓ+1

α ) = Im∂ + Imδ + Harm.

The space of harmonic functions and in general eigenfunctions of the above
Laplacian would lead to some applications in pattern analysis [3] as the graph
Laplacian [4] does.
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Online Learning Algorithms as Stochastic Approximations of the
Regularization Path

Pierre Tarrès

(joint work with Yuan Yao)

Consider the following classical problem of learning from examples: given a se-
quence of i.i.d. random samples (zt = (xt, yt))t∈N drawn from a probability mea-
sure ρ on X × Y , one seeks to approximate the regression function

fρ(x) :=

∫

Y

ydρY |x,

i.e., the conditional expectation of y given x.
We study here online learning algorithms, which are recursive, contrary to batch

learning algorithms which process the data once and for all at some fixed time m.
We show [7], using stochastic approximation techniques, how their convergence
rates can match the batch learning ones.

The quality of the estimate one can obtain depends on the regularity of fρ,
measured through a Mercer kernel K : X × X −→ R (continuous, symmetric
and positive semidefinite). The Reproducing Kernel Hilbert Space (RKHS) HK is
defined as the closure of the linear span of the set of functions {Kx := K(x, .), x ∈
X}, with the inner product, denoted as < ., . >K , satisfying < Kx,Ky >K=
K(x, y).

Recall the reproducing property < Kx, f >= f(x), for all x ∈ X , f ∈ HK ,

which implies in particular that ‖f‖∞ ≤ κ‖f‖K, where κ := supx∈X

√
K(x, x).

We analyze online algorithms of the type

ft = ft−1 − γt[(ft−1(xt) − yt)Kxt + λtft−1], for some f0 ∈ HK , e.g. f0 = 0,

with gain sequences (λt)t∈N and (γt)t∈N taking values in R+ \{0}, originally intro-
duced by Smale and Yao in [5], and further studied by Yao in [8]. The recursion
can be interpreted as a stochastic gradient descent

ft = ft−1 − grad V λt
zt

(ft−1),

where

V λ
z (f) :=

1

2
[(f(x) − y)2 + λ‖f‖2

k]

for all f ∈ HK , z ∈ X ×Y and λ ∈ R+. One of the advantages of such algorithms
is their computational complexity, which is quadratic in time in the worst case,
and can be linear at the cost of a large memory allocation. In comparison, the
batch learning Tikhonov regularization scheme typically involves the inverse of a
matrix, which is O(t3) in the worst case.

We optimize the choice of (λt)t∈N and (γt)t∈N, as a function of the regularity
of fρ. More precisely, let ρX be the induced marginal probability measure from ρ
on X , and let LK : L2(ρX) −→ L2(ρX) be the self-adjoint operator defined by

LK(f)(x) =

∫

X

K(x, y)f(y)dρX(y) =< Kx, f >L2(ρX ), x ∈ X,
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which is positive and compact, so that we can define (through any orthornomal
system), the operators Lr

K : L2(ρX) −→ L2(ρX) for all r ∈ R+.
Assume that fρ lies in the image of Lr

K . We show that, if we choose f0 := 0,
and

(1) γt := a(t+ t0)
− 2r

2r+1 , λt := b(t+ t0)
− 1

2r+1 ,

for some t0 := Cst(κ), a, b := Cst(Mρ, ‖L−r
K fρ‖K) then, with confidence 1 − δ,

‖ft − fρ‖K ≤ Cst(κ,Mρ, ‖L−r
K fρ‖L2(ρX ))

(
log

2

δ

)
t−

2r−1
4r+2 ,

and

‖ft − fρ‖L2(ρX ) ≤ Cst(κ,Mρ, ‖L−r
K fρ‖L2(ρX ))

(
log

2

δ

)2

t−
r

2r+1 .

The choice a = b := 1 yields the same result, at the expense, however, of the
constants involved.

The exponent in t in the HK -norm rate is the same as the best known one
in batch learning, obtained by Smale and Zhou [6], and the mean square distance
convergence rate is optimal in the sense that it reaches the minimax and individual
lower rates (see for instance Caponnetto and de Vito [2]).

The choice of these gain sequences in (1) is derived from the analysis of the algo-
rithm as a stochastic approximation of a Tikhonov regularization path converging
to the regression function.

In the talk we explain some previous results on the convergence rates of sto-
chastic algorithms, in particular the “1/2-phase transition”, which also plays an
important rôle in the Pólya urn model (see for instance Athreya and Karlin [1] or,
more recently, Pouyanne [4]). We show how these finite-dimensional techniques
can be extended to the infinite-dimensional online algorithm considered here, us-
ing on the one hand some martingale and reverse-martingale expansions, and on
the other hand probabilistic exponential inequalities on Banach spaces provided
by Pinelis [3].
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Primal and Dual Model Representations in Supervised and
Unsupervised Kernel-based Learning

Johan A.K. Suykens

Support vector machine classification and regression problems have been charac-
terized as convex optimization problems. One makes use then of a high dimen-
sional feature map in the primal and expresses the solution in the (Lagrange) dual
through a positive definite kernel function. In this talk we explain about the gen-
eral role that primal and dual model representations may play towards constructive
approximation and integrative understanding of kernel-based learning methods.

Many basic problems in supervised and unsupervised learning, including regres-
sion, classification, principal component analysis, canonical correlation analysis,
spectral clustering, data visualization and others can be understood in terms of
simple core models involving a least squares objective and equality constraints.
Both in supervised and unsupervised learning problems, the formulations have
explicit underlying models which enable to make out-of-sample extensions. This
is relevant in model tuning and selection for achieving a good generalization of
the model. It also enables making predictions, which is illustrated by examples in
spectral clustering and independent component analysis.

Starting from core models different types of constraints can be added. We
illustrate this for problems of structure detection, semi-supervised learning, system
identification and time-series prediction. The optimal model representations and
kernel based model solutions both follow from the conditions for optimality.

For data visualization and dimensionality reduction we present kernel maps
with a reference point [1]. Unlike methods as locally linear embedding, Laplacian
eigenmaps and diffusion maps which are characterized by eigenvalue problems,
kernel maps with a reference point lead to solving linear systems. The underlying
model allows to make out-of-sample extensions and cross-validation based learning.
It contains an additional regularization term which is a modification to locally
linear embedding.

Sparse representations are readily obtained through fixed-size methods. One
employs then a finite dimensional approximation to the feature map with estima-
tion in the primal based on a subset of the training data. These methods are
suitable for handling large data sets. Finally, aspects of robustness are addressed
in relation to learning theory.
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Sparsity in Statistical Learning

Alexandre B. Tsybakov

The aim of talk was to give an introduction to statistical estimation in high-
dimensional models (where the dimension p of the vector of unknown parameters
is larger than the sample size n) under sparsity scenario. The model is called sparse
if the number of non-zero coordinates of the vector of unknown parameters is much
smaller than p. The quality of sparse estimation is usually assessed in terms of
model selection consistency (i.e., recovering of the set of non-zero coordinates)
and sparsity oracle inequalities (SOI) for the prediction risk. One of the most
important issues is to build methods that attain optimal performances with respect
to these two criteria under minimal assumptions on the dictionary (for example,
in linear regression, this requirement is translated as minimal assumptions on the
design matrix X). Sparse statistical estimation is closely related to the problem
of compressed sensing in approximation theory, but is more complex because the
noise is added. It is also related to the problem of aggregation of estimators since,
using sparse estimation methods obeying the SOI, we can construct aggregates that
are simultaneously optimal for convex, linear and model selection type aggregation.

Most popular methods of sparse statistical estimation are mainly of the two
types. Some of them, like the BIC, enjoy nice theoretical properties without any
assumption on the dictionary but are computationally infeasible starting from rel-
atively modest dimensions p. Others, like the Lasso or the Dantzig selector, are
easily realizable for very large p but their theoretical performance is conditioned
by severe restrictions on the dictionary. In this talk we focus on Sparse Exponen-
tial Weighting [4-5], a new method of sparse recovery in regression, density and
classification models realizing a compromise between theoretical properties and
computational efficiency. The theoretical performance of the method is compara-
ble with that of the BIC in terms of SOI for the prediction risk. No assumption
on the dictionary is required when the squared loss is considered. At the same
time, the method is computationally feasible for relatively large dimensions p. It
is constructed using exponential weighting with suitably chosen priors, and its
analysis is based on the PAC-Bayesian ideas in statistical learning. We develop
a general technique to derive sparsity oracle inequalities from the PAC-Bayesian
bounds. The talk is based on the papers [1-6].
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Analysis of Elastic-Net Regularization

Lorenzo Rosasco

(joint work with Christine De Mol, Ernesto De Vito)

In many learning problems, a major goal besides prediction is that of selecting
the variables that are relevant to achieve good predictions. In the problem of vari-
able selection we are given a set (ϕγ)γ∈Γ of functions from the input space X into
the output space Y and we aim at selecting those functions which are needed to
find a good representation of the regression function f∗ on the basis of n input-
output samples. In last decade many different algorithms have been introduced
to solve such problem, such as forward stepwise regression, Lasso and greedy al-
gorithms. However these procedures have drawbacks if there are highly correlated
features. To overcome this problem, Zou and Hastie suggest a new method, called
the elastic-net regularization [3]. In our work we study several properties of this
estimation procedure with the setting of statistical learning (see [2] for details).
In particular, we prove consistency for prediction and variable selection under
some adaptive and non-adaptive choices for the regularization parameter. As an
extension of the setting originally proposed in [3], our setting is random-design
regression where we allow the response variable to be vector-valued and we con-
sider prediction functions which are linear combination of elements (features) in an
infinite-dimensional dictionary. The elastic-net scheme is defined by the minimiza-
tion of the empirical risk penalized with a (weighted) elastic-net penalty, that is,
given a sample (X1, Y1), . . . , (Xn, Yn) of i.i.d random pairs in (X ,Y), the estimator
vector βλ

n is

βλ
n = argmin

β∈ℓ2

1

n

n∑

i=1

|Yi − fβ(Xi)|2 + λ
∑

γ∈Γ

(wγ |βγ | + εβ2
γ)

fβ =
∑

γ∈Γ

βγϕγ ,

where (wγ)γ∈Γ is a family of positive weights enforcing more or less sparsity, λ
is a regularization parameter controlling the trade-off between the empirical error
and the penalty, and ε is a tuning positive parameter that controls the trade-off
between the ℓ1-penalty (pure Lasso) and the ℓ2-penalty (regularized least-squares
regression). The ℓ1-penalty has selection capabilities since it enforces sparsity of
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the solution, whereas the ℓ2-penalty induces a linear shrinkage on the coefficients
leading to stable solutions.

Under the assumption that the features satisfy supx∈X

∑
γ∈Γ‖ϕγ(x)‖2

Y <∞ and

the noise Yi − f∗(Xi) has exponential tails, that is,

E

[
exp

(‖Yi − f∗(Xi)‖Y
L

)
− ‖Yi − f∗(Xi)‖Y

L
− 1
∣∣∣Xi

]
≤ σ2

2L2
,

we prove that, if the regularization parameter λ = λn satisfies limn→∞ λn = 0 and
limn→∞(λn

√
n− 2 logn) = +∞, then

lim
n→∞

‖βλn
n − βε‖2 = 0 with probability one,

where the vector βε, which we call the elastic-net representation of f∗, is the
minimizer of

min
β∈ℓ2


∑

γ∈Γ

wγ |βγ | + ε
∑

γ∈Γ

|βγ |2

 subject to

∑

γ∈Γ

βγϕγ = f∗.

The vector βε exists and is unique provided that the regression function f∗ ad-
mits a sparse representation on the dictionary, i.e. f∗ =

∑
γ∈Γ β

∗
γϕγ for at least

a vector β∗ ∈ ℓ2 such that
∑

γ∈Γwγ |β∗
γ | is finite. Notice that, when the fea-

tures are linearly dependent, there is a problem of identifiability since there are
many vectors β such that f∗ =

∑
γ∈Γ βγϕγ . The elastic-net regularization scheme

forces βλn
n to converge to βε. As a consequence of the above convergence re-

sult, one easily deduces the consistency of the corresponding prediction function
fn :=

∑
γ∈Γ(βλn

n )γϕγ , that is, limn→∞ E[|fn − f∗|2] = 0 with probability one.
When the regression function does not admit a sparse representation, we can still
prove the previous consistency result for fn provided that the regression function
is bounded and the linear span of the features is dense in L2(X , Q,Y), where Q is
the marginal distribution of X . Both the above convergence results are based on
the fact that βλ

n is the fixed point of the following contractive map

(1) β =
1

τ + ελ
Sλ (τI − Φ∗

nΦn)β + Φ∗
nY )

where τ is a suitable relaxation constant, Φ∗
nΦn is the matrix with entries

(Φ∗
nΦn)γ,γ′ = 1

n

∑n
i=1 < ϕγ(Xi), ϕγ′(Xi) >Y , Φ∗

nY is the vector (Φ∗
nY )γ =

1
n

∑n
i=1 < ϕγ(Xi), Yi >Y . Moreover, Sλ (β) is the soft-thresholding operator act-

ing componentwise as follows

[Sλ (β)]γ =





βγ − λwγ

2 if βγ >
λwγ

2

0 if |βγ | ≤ λwγ

2

βγ +
λwγ

2 if βγ < −λwγ

2

.

As a by-product of (1), βλ
n has only a finite number of non-zero components,

corresponding to the features whose weight satisfies wγ <
Cn

λ , where Cn is a known

constant. Moreover βλ
n can be computed by means of an iterative algorithm. This
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procedure is completely different from the modification of the LARS algorithm
used in [3] and is akin instead to the algorithm developed in [1].

Finally, we use a data-driven choice for the regularization parameter, based
on the so-called balancing principle, to obtain non-asymptotic bounds which are
adaptive to the unknown regularity of the regression function. More precisely,
letting λk = λ0q

k be a geometric sequence with q > 1, we define

λ+
n = max{λk|‖βλj

n − βλj−1
n ‖2 ≤ 4D√

nελj−1
for all j = 0, . . . , k},

where D is a suitable constant. If βε is such that for some unknown a ∈ (0, 1) it
satisfies the a-priori bound

‖βλ − βε‖2 = O(λa) where

βλ = argmin
β∈ℓ2

E[‖Y − fβ(X)‖2
Y ] + λ

∑

γ∈Γ

(wγ |βγ | + εβ2
γ),

then we prove that ‖βλ+
n − βε‖2 = O(n− a

2(a+1) ).
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Spectral Regularization for Multi-task Learning

Massimiliano Pontil

(joint work with Andreas Argyriou, Charles Micchelli, Yiming Ying)

We are interested in the problem of learning multiple regression or classification
functions (tasks) simultaneously. We present a method for learning a set of features
which are shared across the tasks [1]. The method is based on a non-convex
regularizer which encourages the number of such features to be small. We highlight
the observation that the method is equivalent to solving a convex optimization
problem, for which there is an iterative algorithm. The algorithm has a simple
interpretation and converges to an optimal solution.

1. Notation. We begin by introducing our notation. We let R be the set of
real numbers and R+ the subset of nonnegative ones. If w, u ∈ Rd, we define

〈w, u〉 :=
∑d

i=1 wiui and ‖w‖2 =
√
〈w,w〉. If A is a d × T matrix we denote by

ai ∈ RT and at ∈ Rd the i-th row and the t-th column of A respectively. We denote
by Sd

++ the set of symmetric and positive definite matrices. If D is a d×d matrix,

we define trace(D) :=
∑d

i=1Dii. If w ∈ Rd, we denote by Diag(w) or Diag (wi)
d
i=1
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the diagonal matrix having the components of vector w on the diagonal. We let
Od be the set of d× d orthogonal matrices.

2. Problem formulation. We are given T supervised learning tasks. For every
t = 1, . . . , T , the corresponding task is identified by a function ft : Rd → R. For
each task, we are given a set of m input/output examples

(xt1, yt1), . . . , (xtm, ytm) ∈ Rd × R .

We wish to use the available examples in order to uncover particular relation-
ships across the tasks. Our working assumption is that the tasks all share a small
set of features, namely the functions ft can be represented as a linear combination
of a few feature functions. For simplicity, we consider linear homogeneous features,
each of which is represented by a vector ui ∈ Rd – extensions to non-linear features
are dealt with in [1]. Furthermore, we assume that the vectors ui are orthogonal
and, so, we consider only up to d of such vectors.

If we denote by U ∈ Od the matrix whose columns are the vectors ui, the
task functions can be written as ft(x) = 〈ui, x〉 = 〈at, U

⊤x〉, x ∈ Rd, where
at = (at1, . . . , atd)

⊤ is the vector of regression coefficients for the t-th task.
Our assumption that the tasks share a “small” set of features means that the

matrix A has “many” rows which are identically equal to zero and, so, the corre-
sponding features (columns of matrix U) will not be used by any task.

The learning method described in [1] is to solve the optimization problem

(1) min
{
E(A,U) : U ∈ Od, A ∈ Rd×T

}
,

(2) E(A,U) =

T∑

t=1

m∑

i=1

L(yti, 〈at, U
⊤xti〉) + γ‖A‖2

2,1,

where γ > 0 is a regularization parameter.
The first term in (2) is the average of the error across the tasks, measured

according to a prescribed loss function L : R × R → R+ which we assume to
be convex in the second argument. The second term is a regularization function
which penalizes the (2, 1)-norm of matrix A. It is obtained by first computing the
2-norms of the (across the tasks) rows ai (corresponding to feature i) and then
the 1-norm of the vector (‖a1‖2, . . . , ‖ad‖2). The magnitudes of the components
of this vector indicate how important each feature is.

We note, that when T = 1, function (2) reduces to the well-known 1-norm
regularization problem.

The (2, 1)-norm above favors a small number of nonzero rows in the matrix A,
thereby ensuring that few common features will be learned across the tasks. Of
course the number of features learned depends on the value of the parameter γ
and it will typically be nonincreasing with γ.

We conclude this section by noting that when matrix U is not learned and we
set U = Id×d, problem (1) selects a “small” set of variables, common across the
tasks.
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3. Equivalent convex problem. Solving problem (1) is challenging for two main
reasons. First, it is a non-convex problem, although it is separately convex in each
of the variables A and U . Secondly, the regularizer ‖A‖2

2,1 is not smooth, which
makes the optimization problem more difficult to solve.

Fortunately, problem (1) can be transformed into an equivalent convex problem.
To describe this result, for every W ∈ Rd×T with columns wt and D ∈ Sd

++, we
define the function

(3) R(W,D) =

T∑

t=1

m∑

i=1

L(yti, 〈wt, xti〉) + γtrace(D−1WW⊤).

It is then possible to show that Problem (1) is equivalent to the convex opti-
mization problem

(4) inf
{
R(W,D) : W ∈ Rd×T , D ∈ Sd

++, trace(D) ≤ 1
}
.

In particular, any minimizing sequence of problem (4) converges to a minimizer of

problem (1)-(2). Moreover, the solutions (Â, Û) and (Ŵ , D̂) of problems (1) and
(4) respectively, are related by the formula

(Ŵ , D̂) =


Û Â , Û Diag

(
‖âi‖2

‖Â‖2,1

)d

i=1

Û⊤


 .

We refer the reader to [1, Sec. 3] for more information on this observation.
Note that, in problem (4) we have bounded the trace of the matrix D from

above, because otherwise the optimal solution would be to simply set D = ∞ and
only minimize the empirical error term in the right hand side of equation (3).

Returning to the discussion of Section 1 on the (2, 1)-norm, the rank of the
optimal matrix D indicates how many common relevant features the tasks share.
Indeed, it is clear from the above discussion that the rank of matrix D̂ equals the

number of nonzero rows of matrix Â.

4. Learning algorithm. We now briefly discuss an algorithm for solving problem
(4). The algorithm minimizes a perturbation of the objective function (3), in which
a perturbation ǫI is added to the matrix WW⊤, appearing in the second term in
the r.h.s. of (3), where ǫ > 0 and I is the identity matrix. This perturbation keeps
D nonsingular and ensures that the infimum over D is always attained.

The algorithm iterates between two steps, until a convergence condition is met.
In the first step, we keep D fixed and minimize over W . This step can be carried
out independently across the tasks since the regularizer decouples when D is fixed.
More specifically, introducing new variables for D− 1

2wt yields a standard 2-norm
regularization problem for each task with the same kernel K(x, x′) = x⊤Dx′. In
the second step, we keep the matrix W fixed, and minimize with respect toD. One
can show that partial minimization with respect to D has a closed-form solution
given by

(5) Dε(W ) =
(WW⊤ + εId)

1
2

trace(WW⊤ + εId)
1
2

.
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The above algorithm can be interpreted as alternately performing a supervised
and an unsupervised step. In the former step we learn task-specific functions
(namely the vectors wt) using a common representation across the tasks. This is
because D encapsulates the features ui and thus the feature representation is kept
fixed. In the unsupervised step, the regression functions are fixed and we learn
the common representation.

In [1] an analysis of the above algorithm is provided. In particular, it is shown
that, for every ǫ > 0, the algorithm converges to a solution of the corresponding
perturbed problem. Moreover, as ǫ → 0, any limiting points of the sequence of
such solutions solves problem (4)).

At last, we note that an extension of the ideas discussed here to the case of
Shatten norms and other spectral regularizers is presented in [2].
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Learning Gradients: Precitive Models that Infer Geometry and
Statistical Dependence

Sayan Mukherjee

Simultaneous dimension reduction and regression considers the problem of finding
directions that are informative with respect to predicting the response variable.
These methods can be summarized by three categories:

(1) methods based on inverse regression,
(2) methods based on gradients of the regression function,
(3) methods based on combining local classifiers.

Our focus is on the supervised problem however we will use the idea of local
estimates that is central to manifold learning.

The first main results in this paper are precise statistical relations between the
three approaches. We will show that the gradient estimate is central to this analy-
sis. Our second main result is the inference of graphical models based on gradient
estimates. We provide rates of convergence of the estimated graphical model to its
population counterpart. These rates and the underlying modeling depend not on
the sparsity of the graph but on the rank of the conditional independence matrix
or the intrinsic dimension of the gradient on the manifold supporting the data.

The problem of regression can be summarized as estimating the regression func-
tion

fr(x) = E(Y |X = x)

from data D = {Li = (Yi, Xi)}n
i=1 where Xi is a vector in a p-dimensional compact

metric space X ∈ X ⊂ Rp and Yi ∈ R is a real valued output. Typically the data
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are drawn i.i.d. from a joint distribution, Li
i.i.d.∼ ρ(X,Y ). When p is large the

response variable Y may depend on a few directions in Rp,

(1) Y = fr(X) + ε = g(bT1X, . . . , b
T
dX) + ε,

where ε is noise and B = (bT1 , ..., b
T
d ) is the effective dimension reduction (EDR)

space. In this case dimension reduction becomes the central problem in finding
an accurate regression model. In the following we develop a theory relating the
gradient of the regression function to the above model of dimension reduction.

The central concept of this paper is the gradient outer product matrix. Assume
the regression function fr(x) is smooth, the gradient is given by

∇fr =

(
∂fr

∂x1
, ...,

∂fr

∂xp

)T

and the the gradient outer product matrix Γ is a p× p matrix with elements

(2) Γij =

〈
∂fr

∂xi
,
∂fr

∂xj

〉

L2
ρ
X

,

where ρX is the marginal distribution of the explanatory variables. Using the
notation a⊗ b = abT for a, b ∈ Rp, we can write

Γ = E(∇fr ⊗∇fr).

The relation between the gradient outer product matrix and dimension reduction
is illustrated by the following observation.

Lemma 1. Under the assumptions of the semi-parametric model (1), the gradient
outer product matrix Γ is of rank at most d. Denote by {v1, . . . , vd} the eigenvectors
associated to the nonzero eigenvalues of Γ the following holds:

span(B) = span(v1, . . . , vd) .

The linear regression problem is often stated as

(3) y = βTx+ ε, E(ε) = 0.

For this model the following relation between gradient estimates and the inverse
regression holds.

Proposition 1. Suppose (3) holds. Given the covariance of the inverse regression,
Ω

X|Y
= covY (EX (X |Y )), the variance of the output variable, σ2

Y
= var(Y ), and

the covariance of the input variables, Σ
X

= cov(X), the gradient outer product
matrix is

(4) Γ = σ2
Y

(
1 − σ2

ε

σ2
Y

)2

Σ−1
X

Ω
X|Y

Σ−1
X
,

assuming that ΣX is full rank.
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In order to generalize Proposition 1 to the nonlinear regression setting we first
consider piecewise linear functions. Suppose there exists a non-overlapping parti-
tion of the input space

X =

I⋃

i=1

Ri

such that in each region Ri the regression function fr is linear

(5) fr(x) = βT
i x+ εi, E(εi) = 0 for x ∈ Ri.

The following corollary is true.

Corollary 1. Given partitions Ri of the input space for which (5) holds with
E(εi) = 0, define in each partition Ri the following local quantities: the covariance
of the input variables Σi = cov(X ∈ Ri), the covariance of the inverse regression
Ωi = cov(E(X ∈ Ri|Y )), the variance of the output variable σ2

i = var(Y |X ∈ Ri).
Assuming that the matrices Σi are full rank, the gradient outer product matrix can
be computed in terms of these local quantities

(6) Γ =

I∑

i=1

ρ
X

(Ri)σ
2
i

(
1 − σ2

εi

σ2
i

)2

Σ−1
i ΩiΣ

−1
i ,

where ρ
X

(Ri) is the measure of partition Ri with respect to the marginal distribution
ρ

X
.

A natural idea in multivariate analysis is to model the conditional independence
of a multivariate distribution using a graphical model over undirected graphs. The
theory of Gauss-Markov graphs was developed for multivariate Gaussian densities

p(x) ∝ exp

(
−1

2
xTJX + hTx

)
,

where the covariance is J−1 and the mean is µ = J−1h. The result of the theory
is that the precision matrix J , given by J = Σ−1

X , provides a measurement of
conditional independence. The meaning of this dependence is highlighted by the
partial correlation matrix RX where each element Rij is a measure of dependence

between variables i and j conditioned on all other variables S/ij and i 6= j

Rij =
cov(xi, xj |S/ij)√

var(xi|S/ij)
√

var(xj |S/ij)
.

The partial correlation matrix is typically computed from the precision matrix J

Rij = −Jij/
√
JiiJjj .

In the regression and classification framework inference of the conditional depen-
dence between explanatory variables has limited information. Much more useful
would be the conditional dependence of the explanatory variables conditioned on
variation in the response variable. We have shown that both the covariance of
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the inverse regression as well as the gradient outer product matrix provide esti-
mates of the covariance of the explanatory variables conditioned on variation in
the response variable. Given this observation the inverses of these matrices

JX|Y = Ω−1
X|Y and JΓ = Γ−1,

provide evidence for the conditional dependence between explanatory variables
conditioned on the response. We focus on the inverse of the gradient outer product
matrix in this paper since it is of use for both linear and nonlinear functions.

Our proof of the convergence of the estimated conditional dependence matrix
(Γ̂)−1 to the population conditional dependence matrix Γ−1 relies on the assump-
tion that the gradient outer product matrix being low rank. This again highlights
the difference between our modeling assumption of low rank versus sparsity of the
conditional dependence matrix. Since we assume that both Γ and Γ̂ are singular
and low rank we use pseudo-inverses in order to construct the dependence graph.

Proposition 2. Let Γ−1 be the pseudo-inverse of Γ. Let the eigenvalues and

eigenvectors of Γ̂ be λ̂i and v̂i respectively. If ε > 0 is chosen so that ε = εn = o(1)

and ε−1
n ‖Γ̂ − Γ‖ = o(1), then the convergence

∑

λ̂i>ε

v̂iλ̂
−1
i v̂i → Γ−1

holds in probability.

High Dimensional Learning via Sparse Occupancy Trees

Peter Binev

(joint work with Wolfgang Dahmen and Ronald DeVore)

Let X be a set of points in X ⊂ Rd and let for each xj ∈ X we are given the
computed value yj ∈ [−M,M ] of a function at xj . Our goal is to find an approxi-
mation to this function at any query point from X . We consider the points (x, y)
as random drawings from an unknown probability measure ρ on X × [−M,M ].
Then the function of interest is the regression function fρ(x) which is defined as
the expected value of y given x. We focus here on problems in very high dimen-
sion d, in which typically the number of data points m := #X is significantly less
than 2d. In particular, this means that the function is severely undersampled, if ρ
has full dimensionality. Standard methods suitable for low dimensions usually do
not apply well in these settings, since often some parameters exhibit exponential
dependence on the dimension. This effect is called sometimes ‘curse of dimension-
ality’. In certain situations it is possible to avoid it and one of them is the case
in which the measure ρ is concentrated around a set of low dimensionality. The
question is how to design a method which takes advantage of it.

We need three basic ingredients to develop adaptive methods for solving such
problems:
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(i) a data structure that allows an effective analysis and fast calculation of
the approximation at any query point;

(ii) a framework allowing development of fast adaptive algorithms with guar-
antied near-best performance;

(iii) theoretical analysis and estimates with high probability of the approxima-
tion error.

We consider a fixed procedure for receiving adaptive partitions of the domain
X and build the corresponding master tree T describing it. Based on the finest
resolution ǫ > 0 of the data, we prescribe the maximal depth of T to be in the
range of | log ǫ|. In order to develop an effective data structure for our algorithms
we propose a special organization of the data which we call sparse occupancy trees.
For each point x ∈ X we calculate a bitstream showing the sequence of splits up to
the leaf node ∆ in T to which x belongs. The lexicographical order of the points in
X with respect to these bitstreams allows a fast access to any (occupied) node of
the tree T which is represented by an interval in this list. This structure allows the
development of fast algorithms for analysis and fast evaluation. We create sparse
occupancy trees T = T (X) based on subtrees of T consisting of occupied nodes.
In addition, the edges from a parent node to a single child node are collapsed
and these nodes are merged. We can define sequences of sparse occupancy trees
Tj starting with T0 which contains only the root node of T and then subdividing
consecutively some leaf node of Tj to receive the next tree Tj+1. The complexity
of a tree T will be measured by the number of subdivisions N (T ) needed to receive
T from T0, or equivalently the number of its internal vertices. The corresponding
partition of X generated by a tree T will be denoted by Λ = Λ(T ).

Next we develop an approximation of the empirical data Z = {(x, y)} on par-
titions Λ(T ). First, we set eZ(∆) to be the empirical error of the approximation
at the points from X attached to the node ∆ ∈ T . In case of piecewise constant
approximation this error is

eZ(∆) := inf
y∈R

(
1

#{xi ∈ ∆ ∩X}
∑

xi∈∆∩X

|yi − y|2
)
.

For a given tree T and its corresponding partition Λ(T ) we set the global error to
be

EZ(T ) = EZ(Λ) :=
∑

∆∈Λ

eZ(∆).

Then the best approximation σn on partitions of complexity n is defined as

σn(T ) = σn(fρ)Z := inf
T :N (T )≤n

EZ(T ) .

In [2] we have considered near-best algorithms for general type of the errors. To
establish similar results for sparse occupancy trees we require that the following
subadditivity condition holds

(1) eZ(∆) ≥
∑

∆′∈C(∆)

eZ(∆′)



Learning Theory and Approximation 1677

for any node ∆ ∈ T and the set of its children C(∆). Using a modification of the
methods from [2] and the particular scheme from [1] we develop an adaptive tree
algorithm for building a near-best sparse occupancy tree and prove the following
result.

Theorem 1. Let the errors e(∆) in T satisfy the subadditivity condition (1).
Then at each step of the adaptive tree algorithm the output tree T satisfies

EZ(T ) ≤
( N (T ) + 1

N (T ) − n+ 1

)
σn(T )

whenever n ≤ N (T ).

Note that the above estimate does not depend directly on the number of
occupied cells #Λ. To connect with the next result we have to require that
#Λ(T ) ∼ N (T ). This is true in particular in case T is a binary tree, or more
generally, if the number of children of the nodes in T is bounded by a fixed (small)
constant.

To prove that our empirical solution gives good approximation to the regression
problem, we have to establish a relationship between the empirical error and the
actual error. We consider piecewise constant approximation on sparse partitions
Λ received via the adaptive procedure established by T . ‘Sparse’ means that it
is not necessary for the cells ∆ ∈ Λ to cover the entire domain X . The error of
approximation on Λ is defined as

E(Λ) :=

∫

X

∣∣∣∣∣fρ(x) −
∑

∆∈Λ

1∆(x)E(y|x ∈ ∆)

∣∣∣∣∣

2

dρX ,

where 1∆ is the indicator function for the set ∆, E(y|x ∈ ∆) is the conditional
expectation for y given that x ∈ ∆, and ρX denotes the marginal probability
measure on X . The best approximation is defined in terms of the complexity of
the sparse partition Λ

σn(fρ) := inf
Λ:#Λ≤n

E(Λ) .

Using the standard techniques from Learning Theory (see e.g. [3]) we can establish
the following relationship between E(Λ) and its empirical counterpart EZ(Λ).

Theorem 2. Given q ∈ (0, 1) and an upper bound N ≥ #Λ, for every η > 0 we
have

|E(Λ) − EZ(Λ)| ≤ η2 + qE(Λ)

with probability at least 1 − 6e
− mη2

(48+24/q)NM2 .

Choosing q = 1
3 and requiring that E(z) ≥ 3η2, we receive from the above

theorem that with high probability (at least 1 − 6e−
mη2

120NM2 ) the empirical error
and the actual error differ at most by a factor of two

1

2
≤ E(Λ)

EZ(Λ)
≤ 2 .
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It is customary to set the probability for such estimates in the form 1 −m−β for
some (large) positive β. Then we can determine the value of η setting

η2 =
NM2

m
(β lnm+ ln 6)

(
48 +

24

q

)
.

This also gives a natural stopping criterion for the tree algorithm which written
in a compact form is as follows:

Grow the tree T until for the corresponding partition Λ = Λ(T ) the inequality

EZ(Λ)

#Λ
≥ C0M

2 lnm

m

holds with a given absolute constant C0.
Combining the above results, we can prove the near-best approximation prop-

erty with high probability showing the instance optimality of our procedure.

Theorem 3. Given a fixed β > 0 there exist absolute constants C0 = C0(β), C1,
and C2 such that

|fρ − fΛ,z| ≤ C1σC2#Λ(fρ)

with probability at least 1 −m−β .
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Approximate Varieties and Dimension Reduction

Tomas Sauer

Though residing in a high dimensional space, a finite set Ξ ⊂ RN of measured
data can nevertheless be generated according to a “simple rule”, which could be
expressed by the data lying on a lower dimensional manifold. The simplest example
would be that some of the variables are irrelevant so that the data is contained in
the hyperplane xj = c for some j ∈ {1, . . . , N}.

Thus, the task of performing dimension reduction can be reduced to detect-
ing such a manifold. One particular class of manifolds to be considered are al-
gebraic varieties, that is, the common zeros of a finite set F of polynomials in
Π = R [x1, . . . , xN ]. Besides offering a well–defined and well–studied class of man-
ifolds that contains planes and coordinate spaces as above, algebraic surfaces have
the advantage of being computationally accessible. Indeed, a variety V can be
efficiently described by giving a basis for the associated radical ideal I such that

V = {x : f(x) = 0, f ∈ I} ,
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and polynomials as well as rational functions on an algebraic variety can be handled
by means of the isomorphism R[V ] = Π/I. This allows, for example, for the
definition and computational handling of polynomial kernels on the variety.

Naively, the problem could be described as

Find an ideal I such that the associated variety is Ξ.

Polynomial ideals are usually represented by a basis, i.e., a finite set F of polyno-
mials such that

I = 〈F 〉 =




∑

f∈F

gf f : gf ∈ Π



 ,

and so the task consists of finding a basis F such that Ξ is the set of solutions of
the system F (x) = 0. Indeed, the solution to this problem is well–known, namely
the Buchberger–Möller–algorithm [1] which even computes a Gröbner basis for
the ideal I whose associated variety is Ξ. In other words, Ξ itself is already an
algebraic variety, but a zero dimensional one that consists of isolated points –
which is definitely not what helps in terms of dimension reduction.

In fact, the “right” approach is to look for a “simple” variety V such that Ξ ⊂ V .
The intuition behind this concept is clear: if, for example, all points of Ξ lie on
an straight line, then the associated variety should be this straight line. Simple
varieties are varieties whose ideal is generated by polynomials of a low degree, so
the task is finally as follows:

Find, if possible, a set F of low degree polynomials such that
F (Ξ) = 0.

The key, of course, is “low degree”. Since F (Ξ) = 0, it is clear that F has to
be included in the radical I(Ξ) of all polynomials vanishing at Ξ, and so the
“candidates” for F are the low degree polynomials in I(Ξ). These, however, can
be conveniently found by considering an H–basis of I(Ξ) and simply picking the
low degree elements from this finite set. Recall that an H–basis H is a basis of an
ideal I such that any ideal element f can be written as

f =
∑

h∈H

gh h, deg f ≥ deg gh + deg h,

where “deg” denotes the usual total degree. H–bases were introduced by Macaulay
in 1914, long before the appearance of Gröbner bases, and they have the advantage
that they can be defined and computed in a completely homogeneous way without
the need for any artificial term order, cf. [2]. This type of H–bases is less sensitive
to perturbations and more useful for numerical ideal computations.

And “numerical” is finally the keyword as we cannot expect Ξ to be exact data
that would be suitable for a symbolic treatment as in usual computer algebra
systems: an arbitrary small perturbation of points on a line would result in point
set that is no more on the line and, even worse, that is not located on any simple
variety any more. Hence, we have to look for an ideal basis such that F (Ξ)
is not necessarily equal to zero but “only” very small, of course after a proper
normalization of the coefficients of the polynomials in F . This is the concept of
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an approximate ideal for a given variety and, conversely, the idea of approximate
variety associated to a certain ideal. The numerical task of finding an approximate
low degree ideal for Ξ again benefits strongly from the concept of H–bases as
it permits the use of orthogonality and thus of numerically stable methods to
compute polynomials such that ‖F (Ξ)‖∞ ≤ ε for a given ε > 0.

The details and algorithms for such a computation, together with some error
estimates can be found in [3].
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The LASSO-Patternsearch Algorithm: Finding “Patterns in a
Haystack”

Grace Wahba

(joint work with with Weiliang Shi, Steve Wright, Kristine Lee, Ronald Klein
and Barbara Klein)

The LASSO-Patternsearch algorithm is proposed to efficiently identify patterns of
multiple dichotomous risk factors for dichotomous outcomes of interest in demo-
graphic and genomic studies. Briefly, a data set {yi, x(i)}, i = 1, · · · , n is observed,
where i indexes subjects or objects, and x(i) is a long bit sequence associated with
subjects or objects, the elements of which are indicator variables for the state of
some attribute. yi is also an indicator variable of some response, or condition.
Given this training set, it is desired to build a model which will predict y for new
observations on x, and/or to understand the relationships between y and x. The
patterns are functions of subsets of bit sequences, and are those that arise naturally
from the log linear expansion of the multivariate Bernoulli density. The method
is designed for the case where there is a possibly very large number of candidate
patterns but it is believed that only a relatively small number are important. Al-
together if x is of dimension p there are 2p potential patterns, although for large p
only patterns involving a small number of bits are considered. A LASSO (ℓ1 pe-
nalized log likelihood) is used to greatly reduce the number of candidate patterns,
using a novel computational algorithm that can find the global optimum of the
associated mathematical programming problem with an extremely large number
of unknowns. The patterns surviving the LASSO are further pruned in the frame-
work of (parametric) generalized linear models. A novel tuning procedure based
on the GACV for Bernoulli outcomes, modified to act as a model selector, is used
at both steps. We applied the method to myopia data from the population-based
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Beaver Dam Eye Study, exposing physiologically interesting interacting risk fac-
tors. We then applied the method to data from a generative model of Rheumatoid
Arthritis based on Problem 3 from the Genetic Analysis Workshop 15, success-
fully demonstrating its potential to efficiently recover higher order patterns from
attribute vectors of length typical of genomic studies. The paper [1] has recently
been published and is available open source on the web at the journal website.
Other work can be found on the authors’ website:
http://www.stat.wisc.edu/~wahba, including the very recent report [2].
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On Universal Estimators in Learning Theory

Vladimir Temlyakov

This talk addresses a problem of constructing and analysing estimators for the
regression problem in supervised learning. Recently, there has been a big interest
in studying universal estimators. Universal means that the estimator does not
depend on an a priori assumption on the regression function fρ belonging to some
class F from a collection of classes F , and the method provides the estimation error
for the fρ close to the optimal error from the class F . The talk is an illustration
of how the general technique of construction of universal estimators, developed in
the previous author’s paper, can be applied in concrete situations.

A setting of the problem discussed here has been motivated by a recent paper
by Smale and Zhou. The starting point for us is a given kernel K(x, u) defined
on X × Ω. On the base of this kernel we build an estimator that is universal for
classes defined in terms of nonlinear approximations with regard to the system
{K(·, u)}u∈Ω. We apply the Relaxed Greedy Algorithm for construction of an
estimator that is easily implemented.

A Poor Man’s Wilks Phenomenon

Stéphane Boucheron

(joint work with Pascal Massart)

The Wilks phenomenon appears in parametric statistics when analyzing maximum
likelihood density estimation in a regular d-dimensional model. A theorem due to

Wilks asserts that both 2(ℓn(θ̂)− ℓn(θ)) and 2nD(Pθ, Pθ̂) converge in distribution
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toward χ2
d where ℓn(θ) denotes the log-likelihood of the sample under the proba-

bility indexed by θ, θ̂ the maximizer of the likelihood, and D the relative entropy
between two probability laws. This observation is at the root of several develop-
ments in model selection (including the development of Akaike’s aic criterion).
Here, we consider it as a statement on empirical processes. The sum of the excess

empirical risk 2(ℓn(θ̂) − ℓn(θ)) and of the excess risk 2nD(Pθ, Pθ̂) is equal to the
increment of the centered likelihood process between θ (the sampling probability)

and θ̂. We wonder whether this increment of a centered empirical process between
a fixed and a random point exhibits a non-trivial yet understandable behavior in
other settings. The classical proof of the Wilks theorem is based on the asymptotic
normality of the mle estimator and on the Delta-method. Such tools are pointless
in statistical learning theory.

If we consider model selection methods based on penalized contrast optimiza-
tion, in a variety of situations, the expected values of the empirical excess risk

2(ℓn(θ̂) − ℓn(θ)) can be considered as a lower bound on the minimum expected
values of penalties [1, 2]. This is an incentive to investigate the concentration
properties of the excess empirical risk for contrast optimization problems where
the ingredients of the proof of the Wilks theorem do not hold.

We will not attempt to establish asymptotic distributional results, but rather
focus on possible non-asymptotic statements. It is useful to keep in mind that we
intend to investigate the behavior of models of large dimensions. In that case, if
some kind of Wilks phenomenon shows up, it is likely that the excess empirical risk
will behave according to a Gamma distribution with a large shape parameter and
a small rate parameter. This would then imply that the q-norms of the centered
empirical excess risk grew like c

√
V q + c′q where c and c′ are universal constants

and V is an upper-estimate of the variance of the empirical excess risk.
We investigate this question for bounded contrast minimization problems. In

Statistical Learning, X × Y is endowed with a probability distribution P, the
coordinate projections are denoted by X and Y (in binary classification, Y =
{−1, 1}). A loss function ℓ maps Y × Y on R+ or rather a bounded interval.

The learning problem consists in finding a function f on X such that the risk
R(f) = Pℓ(f(X), Y ) is as small as possible. A learning algorithm starts from a
sample (X1, Y1), . . . , (Xn, Yn) collected from independent drawings according to
P. A function f∗ is assumed to minimize R(f) among all functions such that
(x, y) 7→ ℓ(f(x), y) is measurable. A learning algorithm typically looks for a good

approximation f̂ of f∗ in some class F of classifiers by minimizing an empirical
contrast like Rn(f) = Pnℓ(f(X), Y ). Thus, a learning task is defined by a sampling
probability P over X × Y, a loss function ℓ, and a collection of functions F . f̄
(respectively f̂) denotes a minimizer of R (respectively Rn(f)) in F . For a long

time, learning theory has been concerned with R(f̂) −Rn(f̂) but more recently a

great deal of efforts have been dedicated to the analysis of the excess risk R(f̂) −
R(f̄) (see [6, 8, 9, 3] and references therein). Here, we attempt to build on the
recent progress concerning excess risk and recent concentration inequalities due to
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the authors [4] and focus on another rather unusual part of the risk functionals

Rn(f̄) −Rn(f̂).
The complexity assumption aims at describing the richness of the L2 neighbor-

hood of ℓ(f̄(·), ·) in the loss class H. There exists some positive sub-linear function
ψ such that for all r ≥ rcr:

√
nE

[
sup

h∈H:P (h−h̄)2≤r2

∣∣(Pn − P )(h− h̄)
∣∣
]
≤ ψ(r) .

The possibility to derive interesting bounds (fast rates) for the excess risk critically
relies on the following assumption: There exists some positive sub-linear function
ω such that for all f ∈ F :

P (ℓ(f(X), Y ) − ℓ(f∗(X), Y ))
2 ≤ ω2

(√
R(f) −R(f∗)

)
.

The positive root r∗ of the equation
√
nr2 = ψ(ω(r))

is the key quantity that shows up in the analysis of empirical risk minimization
The positive root r∗ of equation

√
nr2 = ψ(ω(r)) also shows up in the detailed

analysis of the unnormalized empirical excess risk

Z = n(Rn(f̄) −Rn(f̂))

In the Statistical Learning Theory framework, the latter quantity is the analogue of
the likelihood ratio statistics encountered in the density estimation framework. As
a function of many independent random variables that do not (should not) depend
too much on any of them, Z is likely to be concentrated around its expected value.
But the complicated definition of the empirical excess risk makes it non-trivial to
identify the scale of this concentration. On the other hand, it is easily recognized
that Z is the supremum of an empirical process and deserves to be processed using
the tools from empirical process theory.

Upper-bounds on the variance of the empirical excess risk n(Rn(f̄)−Rn(f̂)) are
first derived by building on the Efron-Stein inequalities and the tail inequalities
on the excess risk and the excess empirical risk.

In order to state the results in a concise manner and to emphasize that those
results fit in the theory of empirical processes, it is convenient to introduce the
loss class H associated with a model F . To each f ∈ F corresponds a loss function
h from U = X × Y 7→ R+, h((x, y) = ℓ(f(x), y). Obviously, Ph = R(f) and
Pnh = Rn(f). The loss function associated with f∗ (respectively f̄) is denoted by

h∗ (respectively h̄.) Henceforth, ĥn denotes the loss function associated with the
minimizer of the empirical risk over a sample of size n.

Taking advantage of the fact that the excess empirical risk nPn(h̄− ĥn) is the
supremum of a bounded empirical process, invoking the Efron-Stein inequalities,
it is possible to relate the variance of the empirical excess risk with the expected

value of some interesting quantities like the L2 distance between h̄ and ĥn or the
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value of increment of the centered empirical risk process between h̄ and h̄n:

Var
[
nPn(h̄− ĥn)

]

≤ 2n
(
E

[
Pn(h̄− ĥn)2

]
+ E

[
P (h̄− ĥn)2

])

and

Var
[
nPn(h̄− ĥn)

]

≤ 2nE

[(
(Pn−1 − P )(h̄− ĥn−1)

)]
+ n2E

[
P
(
h̄− ĥn

)2
]

The second inequality can be immediately exploited using known tail bounds for
the excess risk and the empirical excess risk. Indeed, it is now well-known [11, 6,
8, 9, 3] that there exists some universal constants κ1, κ2 such that with probability
larger than 1 − 2δ:

max
(
R(f̂) −R(f̄), Rn(f̄) −Rn(f̂)

)

≤ κ1L(f̄) + κ2r
2
∗ + κ3r

2
∗ log

1

δ

max
(
E[R(f̂) −R(f̄)],E[Rn(f̄) −Rn(f̂)]

)

≤ κ1L(f̄) + (κ2 + κ3)r
2
∗

This allows to conclude that ∃κ4 such that

Var
[
n(Rn(f̄) −Rn(f̂))

]
≤ nκ4

(
ω2 (r∗) + ω2

(√
L(f̄)

))

If ω2(r) = r/β (when experiencing random classification noise as in [9]) this implies
that the upper-bounds on the expectation and the variance of the empirical excess
risk are of the same order of magnitude. Moreover, precise computations for
Vapnik-Chervonenkis classes reveal that those upper bounds essentially depend
on the model dimension while slowly varying with the sample size.

Those upper-bounds on variance can be completed by upper-bounds on higher
moments that suggest that the tails of the empirical excess risk are not larger than
the tails of a Gamma distribution. The empirical excess risk satisfies Bernstein
inequalities.

Thanks to recent moment inequalities for general functions of independent ran-
dom variables derived in [4], it is possible to relate the higher moments of the
empirical excess risk with the higher moments of the Efron-Stein estimates of
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variance. For q ≥ 2, this observation leads to:

‖(Z − E[Z])+‖q

≤
√

3q

∥∥∥∥∥

√
2n
(
Pn(h̄− ĥn)2 + P (h̄− ĥn)2

)∥∥∥∥∥
q

≤
√

6nq

(√∥∥∥Pn(h̄− ĥn)2
∥∥∥

q/2
+

√∥∥∥P (h̄− ĥn)2
∥∥∥

q/2

)
.

On the other hand, it is possible to check that there exists universal constants κ5

and κ6 such that for q ≥ 2
∥∥∥∥P
(
ĥ− h̄

)2
∥∥∥∥

q

∨
∥∥∥∥Pn

(
ĥ− h̄

)2
∥∥∥∥

q

≤ κ5

(
ω2

(√
L(f̄)

)
+ ω2 (r∗)

)
+ κ6ω

2(r∗)q .

Taking advantage on those moment estimates, it is then possible to show that the
unnormalized empirical excess risk satisfies a Bernstein-like inequality where the

variance term is of the order of ω2(r∗). Let Z = nPn

(
h̄− ĥn

)
, for q ≥ 2.

‖Z − E[Z]‖q ≤
√
nκ′5

(
ω

(√
L(f̄)

)
+ ω(r∗)

)
q1/2 +

√
nκ′6ω(r∗)q .
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Some Learning Schemes Generated by Scaling

Ding-Xuan Zhou

Some learning schemes are generated by scaling. In this talk we describe two classes
of learning algorithm: Parzen windows for multi-class classification generated by
scaling in the time domain and least square regularized regression generated by
scaling in the frequency domain or eigenspace.

Parzen windows were introduced for density estimation in the form pm(x) =
1

mσn

∑m
i=1 ϕ

(
x−xi

σ

)
where ϕ is a density function on Rn and {xi}m

i=1 is a sample
drawn from a probability measure ρX on the input spaceX ⊆ Rn. The convergence
of {pm(x)} for points in the interior of X has been well studied. We investigate
Parzen windows for the purpose of multi-class classification.

Let Y = {e1, . . . , ek} be the canonical basis of Rk representing k classes (k ≥ 2).
Let ρ be a probability measure on X×Y . The misclassification error for a classifier
C : X → Y is R(C) = Prob(x,y)∈Z{C(x) 6= y}.

If we denote pj(x) = P (y = ej |x) and p(x) = (p1(x), . . . , pk(x)) : X → Rk, we
see that the best classifier (Bayes rule) fc minimizing the misclassification error is
fc(x) = S(p(x)) where S : Rk → Y is the splitting function defined as

S(v) = ejv where jv = arg max
1≤j≤k

vj for v = (v1, . . . , vk) ∈ Rk.

The learning ability of a classifier C is measured by the excess misclassification error
R(C)−R(fc). If a learning algorithm produces a continuous function f : X → Rk

which induces a classifier S(f) : X → Y , we can estimate R(S(f)) − R(fc) by
bounding the error in L1(X) or C(X) as follows [1] where ρX is the marginal
distribution of ρ on X . This result extends comparison theorems of Zhang (for
k = 2) and Tewari and Bartlett.

Theorem 1. For any measurable function f : X → Rk, we have

R(S(f)) −R(fc) ≤
k∑

j=1

∥∥∥∥f j − pj dρX

dx

∥∥∥∥
L1(X)

and when f is continuous, with |Xρ| being the measure of the support of ρX ,

R(S(f)) −R(fc) ≤ 2|Xρ| max
j=1,...,k

∥∥∥∥f j − pj dρX

dx

∥∥∥∥
C(X)

.

The Parzen window of order J ∈ N is defined by

fz,σ(x) =
1

m

m∑

i=1

yiΦ
(x
σ
,
xi

σ

)
,

where σ > 0 is a window width, z = {(xi, yi)}m
i=1 is a sample drawn from ρ and

Φ : Rn × Rn → R is a basic window function of order J satisfying
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(i)
∫

Rn Φ(x, u)(u− x)α du ≡ δα,0 for 0 < |α| < J ,
(ii) for some q > n+ J and cq > 0,

|Φ(x, u)| ≤ cq
(1 + |x− u|)q

∀x, u ∈ Rn.

The multi-class classifier generated by the Parzen windows is given by S(fz,σ) :
X → Y . Its learning ability is studied with methods from approximation theory
by considering the behavior of ρX near the boundary measured by a Tsybakov
type noise condition: with 0 ≤ θ ≤ ∞ and Cθ > 0,

ρX

(
{x ∈ X : inf

y∈Rn\X
|x− y| ≤ Cθt}

)
≤ tθ ∀t > 0.

Theorem 2. Assume the above noise condition with some θ > 0. If dρX

dx and pj

are Lipschitz s for some 0 < s ≤ 1, then with confidence 1 − δ, we have

R(S(fz,σ)) −R(fc) ≤ C̃k log(2/δ)m− β
2n+2β ,

where σ = m− 1
2n+2β , β := min{s, θ(q−n)

θ+q−n} and C̃ is independent of m, δ or k.

Least square regularized regression is a classical learning algorithm. Here we
give an approximation theory viewpoint by considering scaling in the frequency
domain or eigenspace. The algorithm is a regularization scheme in a reproducing
kernel Hilbert space HK associated with a Mercer kernel K on X and with a
parameter λ > 0 takes the form

fz,λ = arg min
f∈HK

{
1

m

m∑

i=1

(f(xi) − yi)
2 + λ‖f‖2

K

}
.

By means of the sampling operator Sx : HK → Rm defined as Sx(f) =
(
f(xi)

)m
i=1

and its adjoint ST
x

, it can be represented as fz,λ =
(

1
mS

T
x
Sx + λI

)−1 1
mS

T
x
y where

y = (yi)
m
i=1 ∈ Rm. The operator 1

mS
T
x
Sx is a good approximation of the integral

operator LK on HK or L2
ρX

given by LK(f) =
∫

X
Kvf(v)dρX . Hence

fz,λ =
1

m

m∑

i=1

yi

( 1

m
ST

x
Sx + λI

)−1
(Kxi) ≈

1

m

m∑

i=1

yiΦλ(·, xi),

where Φλ(·, x) =
(
LK + λI

)−1
(Kx). But yi ≈ fρ(xi) where fρ is the regression

function, so fz,λ ≈ 1
m

∑m
i=1 fρ(xi)Φλ(·, xi) ≈

∫
X Φλ(·, x)fρ(x)dρX .

Choose a normalized eigenpairs of LK in L2
ρX

as {(λi, ϕi)}i≥1. By the Mercer

Theorem, we haveKx =
∑

i≥1 λiϕi(x)ϕi. Hence Φλ(u, x) =
∑

i≥1
λi

λi+λϕi(x)ϕi(u).

Since the delta function can be expressed as δx(u) =
∑

i≥1 ϕi(x)ϕi(u), we see that
the kernel function Φλ is a scaled version of the delta function by scaling 1 to

λi

λi+λ → 1 (as λ→ 0). More quantitatively, we have the following bound [2].

Theorem 3. Let 1
2 < r ≤ 3

2 and Lr
K(L2

ρX
) be the range of LK on L2

ρX
. Then

∥∥∥∥
∫

X

Φλ(u, x) · (x)dρX(x) − I

∥∥∥∥
Lr

K(L2
ρX

)→HK

≤ λr− 1
2 .
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Nonparametric Regression between Manifolds

Matthias Hein

(joint work with Florian Steinke, Bernhard Schölkopf)

We consider the problem of learning a mapping φ : M → N , where M , N
are Riemannian manifolds, given k i.i.d. samples (Xi, Yi)

k
i=1, Xi ∈ M and Yi ∈

N , from a probability measure P on M × N . This learning problem reduces to
standard multivariate regression if M and N are both Euclidean spaces Rm and
Rn and to regression on a manifold if at least N is Euclidean. For the case, where
M is Euclidean and N is a manifold, first results have been obtained in [1]. The
general setting together with a more formal approach is presented in [2].

We use the squared geodesic distance as loss measure and solve the problem
using regularized empirical risk minimization, which can be formulated in our
setting as

argmin
φ∈F

1

k

k∑

i=1

d2
N (Yi, φ(Xi)) + λS(φ),(1)

where F ⊂ C2(M,N), dN is the metric onN , λ ∈ R+ the regularization parameter,
and S : C2(M,N) → R the regularization functional. The goal is to find the Bayes
optimal mapping η : M → N (the regression function), which is defined as

η = argmin
φ:M→N, φmeasurable

E[d2
N (φ(X), Y )].

The purpose of the regularizer S(φ) is to avoid overfitting of the training data. It
is known that first order regularizers lead generally to piecewise geodesic solutions
[3], which is usually not sufficiently smooth for applications. We propose to use
a second order regularizer, which we have named Eells energy in honor of James
Eells, one of the pioneers of harmonic mappings,

SEells(φ) =

∫

M

‖∇′dφ‖2
T∗

x M⊗T∗
x M⊗Tφ(x)N

dV (x),

where ∇′ is the pull-back connection. The Eells energy reduces to the thin-plate-
spline energy, in the case where M and N are Euclidean.

The null space of a regularizer is quite important, since it contains the mappings
which are not penalized that is the set of mappings which ones is interested to fit
the data with. Interestingly, the null space of the Eells energy are the so called
totally geodesic maps, which can be seen as the generalization of linear mappings
in Euclidean space to mappings between Riemannian manifolds.
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Given that the input and output manifold are isometrically embedded into
Euclidean space one can find a (local) minima of the problem (1) quite efficiently
as shown in [1].

It turns out that the problem of nonparametric regression between manifolds is
a non-trivial generalization of the standard regression problem in Euclidean space.
We illustrate this non-trivial structure with two open problems.

Homotopy classes: The first one is the non-trivial topological structure of
the set C(M,N), the continuous mappings from M to N . Namely, the homotopy
classes [M,N ] (the equivalence classes of mappings which can be continuously
transformed into each other) can be non-trivial. This has an important practical
effect, since the objective function in (1) is usually optimized using descent tech-
niques. However, this implies that the initial mapping for the gradient descent
fixes the homotopy class, which leads to the question:

Does there exist a way to construct an initial solution φ(0) which for sufficiently
large sample size k is guaranteed to lie in the same homotopy class as η ?

We have found a first positive result for mappings from S1 to S1.

Capacity of totally geodesic mappings: Linear mappings in Euclidean
space are known to have small capacity. It turns out that totally geodesic mappings
can even have infinite capacity as the following reformulation of a well-known result
in number theory, see [4], shows.

Theorem 1. Let (Xi, Yi) ∈ S1×S1, i = 1, . . . , k, be the training data. Then there
exists for any set of training data and any ǫ > 0 a K ∈ N such that

max
i=1,...,k

dN (φK(Xi), Yi) ≤ ǫ,

where φK : S1 → S1, φK(x) = mod(Kx+ δ, 2π).

This leads us to the next open problem:

Under which conditions on M and N has the set of totally geodesic mappings
finite capacity ?
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Pricing of American Options by Regression-based Monte Carlo
Methods

Michael Kohler

(joint work with Daniel Egloff, Adam Krzyżak, Nebojsa Todorovic)

In this article we consider American options in discrete time, which are also called
Bermuda options. The price V0 of such options can be defined as a solution of an
optimal stopping problem

(1) V0 = sup
τ∈T (0,...,T )

E {fτ (Xτ )} .

Here ft is the (discounted) payoff function, X0, X1, . . . , XT is the underlying
stochastic process describing e.g. the prices of the underlyings and the financial
environment (like interest rates, etc.) which we assume to be a Rd-valued Markov
process, and T (0, . . . , T ) is the class of all {0, . . . , T}-valued stopping times, i.e.,
τ ∈ T (0, . . . , T ) is a measurable function of X0, . . . , XT satisfying

{τ = α} ∈ F (X0, . . . , Xα) for all α ∈ {0, . . . , T}.
The computation of (1) can be done by determination of an optimal stopping

rule τ∗ ∈ T (0, . . . , T ) satisfying

(2) V0 = E{fτ∗(Xτ∗)}.
Let

(3) qt(x) = sup
τ∈T (t+1,...,T )

E {fτ (Xτ )|Xt = x}

be the so–called continuation value describing the value of the option at time t
given Xt = x and subject to the constraint of holding the option at time t rather
than exercising it. Here T (t + 1, . . . , T ) is the class of all {t + 1, . . . , T}–valued
stopping times. It can be shown that

(4) τ∗ = inf{s ≥ 0 : qs(Xs) ≤ fs(Xs)}
satisfies (2), i.e., τ∗ is an optimal stopping time. Therefore it suffices to compute
the continuation values (3) in order to solve the optimal stopping problem (1).

It is easy to see that the continuation values satisfy the dynamic programming
equations

qT (x) = 0,

qt(x) = E {max{ft+1(Xt+1), qt+1(Xt+1)}|Xt = x}(5)

(t = 0, 1, . . . , T − 1).

Unfortunately, the conditional expectation in (5) in general cannot be computed in
applications. The basic idea of regression-based Monte Carlo methods for pricing
American options is to apply recursively regression estimates to artificially created
samples of

(Xt,max {ft+1(Xt+1), q̂t+1(Xt+1)})



Learning Theory and Approximation 1691

(so–called Monte Carlo samples) to construct estimates q̂t of qt. In connection with
linear regression this was proposed in Tsitsiklis and Van Roy (1999), and, based
on a different regression estimation than (5), in Longstaff and Schwartz (2001).

In this article we propose to use various nonparametric regression estimates in
order to compute the conditional expectations in (5). The outline of the estimation
procedure is as follows:

(1) Set qn,T = 0.

(2) Recursively define estimates of qT−1, qT−2, . . . , q0:

(a) Create Monte Carlo samples {X(t)
i,s }s=0,...,T of size n of {Xs}s=0,...,T .

(b) Use

X
(t)
i,t+1, . . . , X

(t)
i,T , qn,t+1, . . . , qn,T (i = 1, . . . , n)

in order to compute Ŷ
(t)
i,t (i = 1, . . . , n).

(c) Use {
(X

(t)
i,t , Ŷ

(t)
i,t )
}

i=1,...,n

to construct a (fully data-driven) regression estimate qn,t of qt.

(3) Estimate

τ∗ = inf {s ≥ 0 : qs(Xs) ≤ fs(Xs)}
by

τ̂ = inf {s ≥ 0 : qn,s(Xs) ≤ fs(Xs)} ,
and

V0 = E [fτ∗(Xτ∗)]

by the corresponding Monte Carlo estimate.

Estimates are defined as above by using truncated versions of least squares

splines (cf., e.g., Chapter 15 in Györfi et al. (2002)) for estimate q
(1)
n,t, least squares

neural networks (cf., e.g., Chapter 16 in Györfi et al. (2002)) for estimate q
(2)
n,t and

smoothing splines (cf., e.g., Chapter 20 in Györfi et al. (2002)) for estimate q
(3)
n,t,

where the parameter of the estimate is chosen by splitting of the sample.
The following results are valid for bounded Markov processes and bounded

payoff functions.

Theorem 1. (Consistency)

a) (Egloff, Kohler and Todorovic (2007)).
∫

|q(1)n,t(x) − qt(x)|2PXt(dx) → 0 in probability for all t ∈ {0, . . . , T − 1}.

b) (Kohler, Krzyżak and Todorovic (2006)).
∫

|q(2)n,t(x) − qt(x)|2PXt(dx) → 0 in probability for all t ∈ {0, . . . , T − 1}.
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c) (Kohler (2008)).
∫

|q(3)n,t(x) − qt(x)|2PXt(dx) → 0 in probability for all t ∈ {0, . . . , T − 1}.

Theorem 2. (Rate of convergence)

a) (Egloff, Kohler and Todorovic (2007)). Assume that the continuation values
are (p, C)–smooth, i.e., that derivatives of order p − 1 exists and are Lipschitz
continuous with Lipschitz constant C. Then for all t ∈ {0, 1, . . . , T − 1}:

∫
|q(1)n,t(x) − qt(x)|2PXt(dx) = OP

(
C2d/(2p+d) ·

(
logn

n

)2p/(2p+d)
)

b) (Kohler (2008)). Assume

Jk(qt) =
∑

α1,...,αd∈N, α1+···+αd=k

k!

α1! · · · · · αd!

∫

Rd

∣∣∣∣
∂kqt

∂xα1
1 . . . ∂xαd

d

(x)

∣∣∣∣
2

dx ≤ C

for all t ∈ {0, . . . , T − 1} and some natural number k. Then for all t ∈ {0, . . . , T −
1}:

∫
|q(3)n,t(x) − qt(x)|2PXt(dx) = OP

(
C2d/(2k+d) ·

(
logn

n

)2k/(2k+d)
)

c) (Kohler, Krzyżak and Todorovic (2006)).

Assume that the Fourier transform F̂qt(ω) = 1
(2π)d/2

∫
Rd e

−i·ωT zqt(z)dz (ω ∈ Rd)

of qt satisfies

qt(x) =
1

(2π)d/2

∫

Rd

ei·ωT xF̂qt(ω)dω (x ∈ Rd)

and ∫

Rd

‖ω‖ · F̂qt(ω)dω <∞

for all t ∈ {0, . . . , T − 1}. Then for all t ∈ {0, 1, . . . , T − 1}:
∫

|q(2)n,t(x) − qt(x)|2PXt(dx) = OP



√

log5 n

n



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Approximation and Balancing Properties of Wavelet Frames

Bin Han

In the interesting work [7, 8], Jetter and Zhou studied the approximation property
of a family of quasi-interpolation operators. More precisely, they prove that

Jetter-Zhou [7, 8]: Let ϕ ∈ L2(R) and ν ≥ 0. Define a linear operator P by
P (f) :=

∑
k∈Z

〈f, ϕ(·−k)〉ϕ(·−k), f ∈ L2(R). Then ‖f−P (f)‖L2(R) ≤ Cϕ|f |Hν(R)

for all f ∈ Hν(R) with a positive constant

Cϕ := π−1/2
√

max(c1, c3) + max(2c2, 2c4 + 1),

provided that there exist positive constants c1, c2, c3, c4 such that for almost every
ξ ∈ [−π, π], the following inequalities hold

∣∣1 − |ϕ̂(ξ)|2
∣∣2≤ c1|ξ|2ν ,

∑

k∈Z\{0}

|ϕ̂(ξ)|2|ϕ̂(ξ + 2πk)|2 ≤ c2|ξ|2ν ,

∑

k∈Z\{0}

|ξ + 2πk|−2ν |ϕ̂(ξ)|2|ϕ̂(ξ + 2πk)|2 ≤ c3,

∑

k∈Z\{0}

|ξ + 2πk|−2ν
∑

ℓ∈Z\{0}

|ϕ̂(ξ + 2πℓ)|2|ϕ̂(ξ + 2πk)|2 ≤ c4.

In this talk, we shall discuss several applications of the above result to study
some frame approximation properties of wavelet frames, in particular, stationary
tight wavelet frames, pairs of dual multiframelets, nonstationary tight wavelet
frames, and pairs of dual wavelet frames in Sobolev spaces.

For stationary tight wavelet frames obtained via the following Oblique Exten-
sion Principle (OEP) in [2] and independently [1], we have the following result.

Daubechies-Han-Ron-Shen [2]: Let φ ∈ L2(R) be a compactly supported func-

tion satisfying φ̂(2ξ) = â(ξ)φ̂(ξ). Suppose that â, Θ̂, b̂1, . . . , b̂L are 2π-periodic

trigonometric polynomials satisfying Θ̂(0) = â(0) = 1 and

Θ̂(2ξ)|â(ξ)|2 +
L∑

ℓ=1

|b̂ℓ(ξ)|2 = Θ̂(ξ), Θ̂(2ξ)â(ξ)â(ξ + π) +
L∑

ℓ=1

b̂ℓ(ξ)b̂ℓ(ξ + π) = 0.

Define ψ̂ℓ(2·) := b̂ℓφ̂. Then X(ψ1, . . . , ψL) := {ψℓ
j,k := 2j/2ψℓ(2j · −k) : ℓ =

1, . . . , L, j, k ∈ Z} is a tight wavelet frame in L2: ‖f‖2
L2

=
∑L

ℓ=1

∑
j,k∈Z

|〈f, ψℓ
j,k〉|2

for f ∈ L2(R). Moreover, if â contains the factor (1+e−iξ)m, then it has the frame
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approximation order ν with ν ≤ m:

‖f−Qn(f)‖L2(R) ≤ C|f |Hν(R), n ∈ N with Qn(f) :=

L∑

ℓ=1

n−1∑

j=−∞

∑

k∈Z

〈f, ψℓ
j,k〉ψℓ

j,k,

if and only if Θ̂(ξ) − Θ̂(2ξ)|â(ξ)|2 = O(|ξ|ν), ξ → 0.

For nonstationary tight wavelet frames, we have the following result.

Han-Shen [4]: Let {âj}∞j=1 be 2π-periodic trigonometric polynomials such that

âj(0) = 1 and
∑∞

j=1 2−j deg(âj) <∞. Suppose that there are 2π-periodic trigono-

metric polynomials b̂ℓj, ℓ = 1, . . . ,Jj, satisfying

|âj(ξ)|2 +

Jj∑

ℓ=1

|b̂ℓj(ξ)|2 = 1, âj(ξ)âj(ξ + π) +

Jj∑

ℓ=1

b̂ℓj(ξ)b̂
ℓ
j(ξ + π) = 0.

Define nonstationary refinable functions φj−1 and wavelets ψℓ
j−1 by φ̂j−1(ξ) :=

∏∞
n=1 ân+j−1(2

−nξ) and ψ̂ℓ
j−1 := b̂ℓj(·/2)φ̂j(·/2). Denote ψℓ

j;j,k := 2j/2ψℓ(2j · −k).
Then X(φ0; {ψℓ

j}j∈N0,ℓ∈{1,...,Jj+1}) is a nonstationary tight wavelet frame in L2(R):

‖f‖2
L2(R) =

∑

k∈Z

|〈f, φ0(· − k)〉|2 +

∞∑

j=0

Jj+1∑

ℓ=1

∑

k∈Z

|〈f, ψℓ
j;j,k〉|2, f ∈ L2(R).

If we further assume that for some α ≥ 0 and 0 ≤ β < 1, deg(âj) = O(jα2βj)
as j → ∞ and there exist ν ∈ 1

2N and N ∈ N such that for j ≥ N , |âj(ξ)|2 =

1 +O(|ξ|2ν ), ξ → 0, then we have the weak frame approximation property:

‖f −Qn(f)‖L2(R) ≤ Cnνα2−ν(1−β)n|f |Hν(R) ∀ f ∈ Hν(R), n ≥ N,

where Qn(f) :=
∑

k∈Z
〈f, φ0(· − k)〉φ0(· − k) +

∑n−1
j=0

∑Jj+1

ℓ=1

∑
k∈Z

〈f, ψℓ
j;j,k〉ψℓ

j;j,k.

Moreover, the nonstationary tight wavelet frame X(φ0; {ψℓ
j}j∈N0,ℓ=1,...,Jj ) con-

structed above provides the frame approximation order ν > 0:

‖f −Qn(f)‖L2(R) ≤ C2−νn|f |Hν(R) ∀ f ∈ Hν(R), large n

if and only if there is C > 0 such that for all large n, for almost every ξ ∈ [−π, π],

∣∣∣1 − |φ̂n(ξ)|2
∣∣∣
2

≤ C|ξ|2ν ,
∑

k∈Z\{0}

|φ̂n(ξ)|2|φ̂n(ξ + 2πk)|2 ≤ C|ξ|2ν .

In particular, the two conditions hold if 1 − |φ̂n(ξ)|2 ≤ C|ξ|2ν , a.e. ξ ∈ [−π, π].

If we choose âj(ξ) := cos2j(ξ/2)
∑lj−1

j=0

(
m+j−1

j

)
sin2j(ξ/2) with lim infj→∞

lj
j >

0, then all φj , ψ
ℓ
j are C∞(R) functions with symmetry and the nonstationary tight
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wavelet frame has the frame approximation order ν for all ν > 0. By [6], for any
s ∈ R, there exist positive constants C1 and C2 such that

C1‖f‖2
Hs(R) ≤

∑

k∈Z

|〈f, φ0(· − k)〉|2 +

∞∑

j=0

Jj+1∑

ℓ=1

∑

k∈Z

22js|〈f, ψℓ
j;j,k〉|2 ≤ C2‖f‖2

Hs(R).

Namely, {φ0(· − k) : k ∈ Z} ∪ {2j/2−sψℓ
j(2

j · −k) : j ∈ N0, k ∈ Z, ℓ = 1, . . . ,Jj+1

is a wavelet frame in the Sobolev space Hν(R) for all ν ∈ R.
For pairs of dual multiframelets, we have the following result.

Han [3]: Let φ and φ̃ be two r×1 refinable function vectors of compactly supported

functions in L2(R) satisfying φ̂(2ξ) = â(ξ)φ̂(ξ) and
ˆ̃
φ(2ξ) = ˆ̃a(ξ)

ˆ̃
φ(ξ). Suppose â

and ˆ̃a have m and m̃ sum rules. If r > 1, then one can obtain in a constructive

way r× r matrices Θ̂, ˆ̃Θ, b̂ℓ, ̂̃bℓ, ℓ = 1, . . . , d of trigonometric polynomials such that
all the conditions in OEP are satisfied with L = 2, and

(i) Θ̂−1 and ˆ̃Θ−1 are r× r matrices of 2π-periodic trigonometric polynomials.

(ii) (X({ψ1, ψ2}), X({ψ̃1, ψ̃2})) is a pair of compactly supported dual wavelet
frames in L2(R) with m̃ and m vanishing moments, respectively.

(iii) No de-convolution is involved in its fast frame transform with the highest
possible balancing order m and the frame approximation order m.

Han [3]: Let φ and φ̃ be two compactly supported scalar spline refinable functions

in L2(R) with masks a and ã. For any 2π-periodic trigonometric polynomials Θ̂, ˆ̃Θ,

b̂ℓ,
̂̃
bℓ, ℓ = 1, . . . , L, such that OEP holds, if no de-convolution is involved in its

fast frame transform, then the pair of dual d-wavelet frames obtained via OEP with
r = 1 can have the frame approximation order at most two and vanishing moments
at most one.

Finally, based on [5], we discuss pairs of dual wavelet frames in a pair of Sobolev
spaces. For φ, ψ1, . . . , ψL ∈ Hs(Rd), we say that Xs(φ;ψ1, . . . , ψL) :=

{φ(·−k) : k ∈ Zd}∪
{
ψℓ,s

j,k := 2j(d/2−s)ψℓ(2j ·−k) : j ∈ N0, k ∈ Zd, ℓ = 1, . . . , L
}
,

is a wavelet frame in Hs(Rd) if there are positive constants C1 and C2 such that

C1‖f‖2
Hs≤

∑

k∈Zd

|〈f, φ(· − k)〉Hs |2 +

L∑

ℓ=1

∞∑

j=0

∑

k∈Zd

|〈f, ψℓ,s
j,k〉Hs |2 ≤ C2‖f‖2

Hs , f ∈ Hs.

We say that (Xs(φ;ψ1, . . . , ψL), X−s(φ̃; ψ̃1, . . . , ψ̃L)) is a pair of dual wavelet
frames in (Hs(Rd), H−s(Rd)) if Xs(φ;ψ1, . . . , ψL) is a wavelet frame in Hs(Rd),

X−s(φ̃; ψ̃1, . . . , ψ̃L) is a wavelet frame in H−s(Rd), and for f ∈ Hs and g ∈ H−s,

〈f, g〉 =
∑

k∈Zd〈f, φ̃(· − k)〉〈φ(· − k), g〉 +
∑L

ℓ=1

∑∞
j=0

∑
k∈Zd〈f, ψ̃ℓ,−s

j,k 〉〈ψℓ,s
j,k, g〉.

Complete characterizations and examples in [5] are discussed for pairs of dual
wavelet frames and dual Riesz wavelets in a pair of Sobolev spaces.
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RKHS Representation of Measures Applied to Homogeneity,
Independence, and Fourier Optics

Bernhard Schölkopf

(joint work with Bharath Sriperumbudur, Arthur Gretton, Kenji Fukumizu)

A symmetric function k : X 2 → R, where X is a nonempty set, is called a pos-
itive definite (pd) kernel if for arbitrary points x1, . . . , xm ∈ X and coefficients
a1, . . . , am ∈ R, we have ∑

i,j

aiajk(xi, xj) ≥ 0.

The kernel is called strictly positive definite if for pairwise distinct points, the
implication

∑
i,j aiajk(xi, xj) = 0 =⇒ ∀i : ai = 0 is valid.

Any positive definite kernel induces a mapping

x 7→ k(x, .)

into a reproducing kernel Hilbert space (RKHS) satisfying

〈k(x, .), k(x′, .)〉 = k(x, x′)

for all x, x′ ∈ X .
Consider two sets of points X := {x1, . . . , xm} ⊂ X , Y := {y1, . . . , yn} ⊂ X .

We define the mean map µ by

µ(X) =
1

m

m∑

i=1

k(xi, ·).

One can define a classification rule in H based on the closest mean, i.e., using a
hyperplane with normal vector µ(X) − µ(Y ) [4]. This begs the question: when
is this normal vector zero (in which case it does not define a hyperplane)? For
polynomial kernels k(x, x′) = (〈x, x′〉+1)d, this amounts to all empirical moments
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up to order d vanishing. For strictly positive definite kernels, the means coincide
only if X = Y , rendering µ injective:

Lemma. Assume X,Y are defined as above, k is strictly pd, and for all i, j,
xi 6= xj, and yi 6= yj. If for some αi, βj ∈ R \ {0}, we have

(1)

m∑

i=1

αik(xi, .) =

n∑

j=1

βjk(yj , .),

then X = Y .

To see this, assume w.l.o.g. that x1 6∈ Y . Subtract
∑n

j=1 βjk(yj , .) from (1),
and make it a sum over pairwise distinct points, to get

0 =
∑

i

γik(zi, .),

where z1 = x1, γ1 = α1 6= 0, and z2, · · · ∈ X ∪ Y \ {x1}, γ2, · · · ∈ R. Take the
RKHS dot product with

∑
j γjk(zj , .) to get

0 =
∑

ij

γiγjk(zi, zj),

with γ 6= 0, hence k cannot be strictly pd. �

The mean map has some other interesting properties. Among them is the fact
that µ(X) represents the operation of taking a mean of a function on the sample
X :

〈µ(X), f〉 =

〈
1

m

m∑

i=1

k(xi, ·), f
〉

=
1

m

m∑

i=1

f(xi)

Moreover, we have

‖µ(X)− µ(Y )‖ = sup
‖f‖≤1

|〈µ(X) − µ(Y ), f〉| = sup
‖f‖≤1

∣∣∣∣∣
1

m

m∑

i=1

f(xi) −
1

n

n∑

i=1

f(yi)

∣∣∣∣∣ .

If Ex,x′∼p[k(x, x
′)], Ex,x′∼q[k(x, x

′)] <∞, then the above statements generalize
to Borel measures p, q, with the difference being that the mean map is defined as

µ : p 7→ Ex∼p[k(x, ·)],
and the notion of strictly pd kernels is replaced by that of characteristic kernels
[1]. In this case, the mean map can be viewed as a generalization of the moment
generating function Mp of a random variable x with distribution p,

Mp(.) = Ex∼p

[
e〈x, · 〉

]
.

If we restrict the class of distributions, the class of kernels for which µ is injective
gets larger. To see this, consider a bounded translation invariant kernel k(x, x′) =
ψ(x− x′), with continuous ψ : Rd → R, which by Bochner’s theorem corresponds
to a finite nonnegative Borel measure Λ. In that case, we have

‖µ(p) − µ(q)‖ = ‖F−1[(φ̄p − φ̄q)Λ]‖,
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where φp is the characteristic function of the measure p, ‖.‖ is the norm of the
RKHS, F−1 is the inverse Fourier transform, and the bar denotes complex conju-
gation. Roughly speaking, this shows that p and q can be distinguished as long as
the spectrum Λ of the kernel is nonzero wherever the spectra of the distributions
might differ. If supp(Λ) = Rd, the kernel can distinguish all Borel distributions; if
supp(Λ) ⊂ Rd has a non-empty interior, it can still distinguish Borel distributions
with compact support, subject to certain technical conditions (for details, see [5]).

The map µ has applications in a number of tasks including testing of homo-
geneity and independence [2, 3]. One can also establish a link to wave optics,
which we will briefly sketch presently. We consider p as the intensity distribution
of the light coming from an object which we would like to image. On the way to
the sensor, there is an aperture with indicator function L (i.e., L takes the value
1 in the aperture, and 0 elsewhere). In the setting of Fraunhofer diffraction, the
image intensity arising from a point source is the squared Fourier transform of L,
i.e., the Fourier transform of the convolution of L with itself, Λ := L ∗ L. For
instance, in the 1-D case, if L is the indicator function of an interval, then Λ is a
B1-spline. Under the assumption of incoherent light, the image of p would thus
be the convolution of p with the Fourier transform of Λ, equalling the map µ(p)
induced by the translation invariant kernel associated with the Fourier transform
of Λ. If the image has compact support, and the aperture has non-empty interior,
then the imaging process is thus invertible.
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Multivariate Bernstein Basis Polynomials and their Kernels I

Kurt Jetter

(joint work with Elena E. Berdysheva, Joachim Stöckler)

The results addressed in this talk partially support the idea to extend the estimates
given in [5] or in [6] to cases where multivariate approximation schemes are used
and where polynomial kernels for SVM classification algorithms are built from
good conditioned polynomial bases. The Bernstein basis polynomials are known
to be much better conditioned than the monomial basis [4], and it is expected
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that they will be useful in order to make some bias-variance estimates in learning
theory more efficient and more transparent.

Let

Sd = {(x1, . . . , xd) ∈ Rd : 0 ≤ x1, . . . , xd ≤ 1, x1 + · · · + xd ≤ 1}
denote the standard simplex in Rd. The Bernstein basis polynomials of degree n
in d variables, using barycentric coordinates

x = (x0, x1, . . . , xd) , x0 = 1 − x1 − · · · − xd ,

are defined by

Bα(x) =
n!

α0!α1! . . . αd!
xα0

0 xα1
1 · · ·xαd

d , |α| = n ,

for α = (α0, α1, . . . , αd) ∈ N
d+1
0 and |α| = α0 + α1 + · · · + αd. They form a basis

of Πd
n, the space of d-variate polynomials of total degree at most n.

We consider here kernels of the form

(1) Tn,ω(x,y) =
∑

|α|=n

ωα Bα(x) Bα(y) , x,y ∈ Sd ,

for positive weights ω =
(
ωα

)
|α|=n

, and the corresponding integral operators are

given by

(2) (Lρ,n,ωf)(x) =

∫

Sd

Tn,ω(x,y) f(y) dρ(y) ,

for f from an appropriate space of functions defined on the simplex. Here, ρ is
assumed to be a non-negative measure, whence the operator is positive. For special
situations (see [1]), kernels of this type have the remarkable analytical property
that the sequence

(
Tn,ω(x,y)

)
n∈N

, for fixed x,y ∈ Sd, is completely monotone.
In case the weights are chosen so as to enforce the integral operator to reproduce
constant functions, Lρ,n,ω is the so-called Bernstein-Durrmeyer operator, see [2, 3].

Since the polynomial kernel Tn,ω(x,y) is a Mercer kernel, we may look at the
polynomial space Πd

n as a RKHS (reproducing kernel Hilbert space) Hn,ω where
the norm is defined via the semi-innerproduct

〈
N∑

i=1

ciKxi |
N∑

j=1

djKxj

〉

Hn,ω

=

N∑

i,j=1

ci Tn,ω(xi,xj) dj ,

for given points xi ∈ Sd. Here, x 7→ Kx = Tn,ω(x, ·) is the so-called feature
map. With respect to this semi-innerproduct, the Bernstein basis polynomials are
orthogonal,

〈√
ωαBα | √ωβBβ

〉
Hn,ω

= δα,β , for |α| = |β| = n .

This latter property can be used in order to estimate the norm of the operator
Lρ,n,ω, considered as an operator from the space C(Sd) into the space Hn,ω. We
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have - with 1 the constant function taking the value 1 -

‖Lρ,n,ω‖2
C(Sd)→Hn,ω

= ‖Lρ,n,ω1‖2
Hn,ω

=
∑

|α|=n

ωα

(∫

Sd

Bα(y) dρ(y)

)2

,

and the right-hand side can be bounded from below and from above by

(3) cmin Mρ ≤ ‖Lρ,n,ω‖2
C(Sd)→Hn,ω

≤ cmax Mρ ,

with Mρ =
∫

Sd dρ(y) the total mass of the measure, and cmin, cmax the minimal
and maximal entry from the coefficients

cn,ρ(α) = ωα

∫

Sd

Bα(y) dρ(y) , |α| = n .

For the Bernstein-Durrmeyer operator, these coefficients are all equal 1, but for
this case the weights ωα are intimately connected with the measure ρ. Estimate
(3) allows us to get away from this restriction while keeping a control on the norm
of the operator.
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Multivariate Bernstein Basis Polynomials and their Kernels II:
Jacobi Weights

Elena E. Berdysheva

(joint work with Kurt Jetter, Joachim Stöckler)

In this talk we give a survey on the Bernstein-Durrmeyer operators with Jacobi
weights. These operators are special cases of a more general construction discussed
in K. Jetter’s talk [7].
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Let

Sd = {x = (x1, . . . , xd) ∈ Rd : 0 ≤ x1, . . . , xd ≤ 1, x1 + · · · + xd ≤ 1}
denote the standard simplex in Rd. The Bernstein basis polynomials of degree n
are defined by the formula

Bα(x1, . . . , xd) =
n!

α0!α1! . . . αd!
(1 − x1 − · · · − xd)α0xα1

1 · · ·xαd

d ,

where α = (α0, α1, . . . , αd) ∈ N
d+1
0 with |α| = α0+· · ·+αd = n. The Jacobi weight

is defined by ωµ(x) = (1−x1−· · ·−xd)
µ0xµ1

1 · · ·xµd

d for µ = (µ0, µ1, . . . , µd) ∈ Rd+1

with µi > −1, i = 0, . . . , d. We put |µ| = µ0 + µ1 + · · · + µd and µ = min
0≤i≤d

µi.

In a standard way, we define the weighted inner product 〈f, g〉µ and the spaces
Lp

µ(Sd). Let Pn denote the space of algebraic polynomials of total degree at most
n. Let E0,µ = P0 and Em,µ = {p ∈ Pm : 〈p, g〉µ = 0 ∀g ∈ Pm−1}, m ∈ N, be the
corresponding spaces of orthogonal polynomials.

The Bernstein-Durrmeyer operator is defined by

(1) Mn,µ f =
∑

|α|=n

〈f,Bα〉µ
〈1, Bα〉µ

Bα

for f ∈ Lp
µ(Sd), 1 ≤ p < ∞, or f ∈ C(Sd). Here, 1 denotes the constant function

equal to one. Operator (1) was introduced in the one-dimensional unweighted
case by Durrmeyer in 1967 and, independently, by Lupaş in 1972, and became
popular after works by Derriennic [4]. The Bernstein-Durrmeyer operator with
Jacobi weights was introduced by Păltănea and studied by Berens and Xu [3]; the
multidimensional theory is due to Derriennic [5], and Ditzian [6]. Operator (1)
was studied by many authors.

The Bernstein-Durrmeyer operator has the following properties:

(1) it is positive, i.e. Mn,µ f ≥ 0 if f ≥ 0,

(2) ‖Mn,µ f‖p,µ ≤ ‖f‖p,µ, 1 ≤ p ≤ ∞,

(3) it reproduces constant functions, i.e. Mn,µ p = p for p ∈ P0,

(4) it is degree reducing, i.e. p− Mn,µ p ∈ Pm−1 for p ∈ Pm, m ≤ n,

(5) it is self-adjoint, i.e. 〈Mn,µ f, g〉µ = 〈f,Mn,µ g〉µ.

Theorem 1. [4, 5, 3, 6] For all n ∈ N, the spaces Em,µ, m ∈ N0, are eigenspaces
of the Bernstein-Durrmeyer operator, and

Mn,µ pm = γn,m,µ pm for pm ∈ Em,µ,

where γn,m,µ =
(

n
m

)
/
(
n+d+|µ|+m

m

)
.

This nice spectral decomposition as well as the property of degree reduction are
not valid in the general case considered in [7].

The operator Mn,µ is an integral operator

(Mn,µf)(y) =

∫

Sd

Kn,µ(x, y) f(x)ωµ(x) dx,
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with the kernel function

Kn,µ(x, y) =
∑

|α|=n

1

〈1, Bα〉µ
Bα(x)Bα(y).

We consider the rescaled kernel

Tn,µ(x, y) =
Γ(n+ µ+ 1)

Γ(n+ |µ| + d+ 1)
Kn,µ(x, y).

Theorem 2. [2] Let µ ∈ Rd+1 be such that µ ≥ − 1
2 . Then, for every x, y ∈ Sd,

the sequence (Tn,µ(x, y))n∈N is bounded and completely monotonic; i.e.

(−1)r∆rTn,µ(x, y) =

r∑

ℓ=0

(−1)ℓ

(
r

ℓ

)
Tn+ℓ,µ(x, y) ≥ 0, r, n ≥ 0.

The differential operator

−Uµ =

d∑

i=1

(ωµ(x))−1 ∂

∂xi

{
ωµ(x)(1 − x1 − · · · − xd)xi

∂

∂xi

}

+
∑

1≤i<j≤d

(ωµ(x))−1

(
∂

∂xj
− ∂

∂xi

){
ωµ(x)xjxi

(
∂

∂xj
− ∂

∂xi

)}

plays an important role in the analysis of the operator Mn,µ. In particular [4, 5,
3, 6], the following Voronovskaya type statement holds true: if f ∈ C2(Sd), then

(2) lim
n→∞

n{f − Mn,µ f}(x) = Uµ f(x).

Being a positive operator, Mn,µ cannot converge fast, compare (2). To ac-
celerate the convergence, Jetter and Stöckler [8] introduced the natural quasi-
interpolants of Bernstein-Durrmeyer operators of order (r, n), 0 ≤ r ≤ n,

M(r)
n,µ f =

r∑

ℓ=0

1(
n
ℓ

)Uℓ,µ(Mn,µ f).

The differential operators Uℓ,µ here are defined recursively: U0,µ = I, the identity
operator, and

Uℓ+1,µ =
1

(ℓ + 1)2
(Uµ − ℓ(ℓ+ d+ |µ|)I)Uℓ,µ, ℓ ∈ N.

The quasi-interpolants M
(r)
n,µ have the following properties [8, 1, 2]:

(1) M
(0)
n,µ = Mn,µ and M

(n)
n,µ

∣∣∣
Pn

= I|
Pn

,

(2) they reproduce polynomials: M
(r)
n,µ(p) = p for p ∈ Pr, 0 ≤ r ≤ n,

(3) M
(r)
n,µ are bounded uniformly in n.

It was shown in [8] that the spaces Em,µ, m ∈ N0, are eigenspaces of the oper-
ators Uℓ,µ, ℓ ∈ N. It follows that the spaces Em,µ are also eigenspaces of the

operator M
(r)
n,µ. The approximation behavior of M

(r)
n,µ is described in the following
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theorems. These statements were obtained using the spectral properties of the
involved operators and the complete monotonicity property (Theorem 2).

Theorem 3. [2] The operators M
(r)
n,µ can be represented as linear combinations of

the Durrmeyer operators:

M(r)
n,µ =

r∑

ℓ=0

(−1)ℓ

(
r

ℓ

)(
n+ d+ |µ| + r − ℓ

r

)
Mn−ℓ,µ.

Theorem 4. [1] For f ∈ C2r+2(Sd), the following Voronovskaya type result holds
true:

lim
n→∞

(
n

r + 1

)
{f(x) − (M(r)

n,µ f)(x)} = (Ur+1,µ f)(x).

Theorem 5. [1] For f ∈ C2r+2(Sd), the following Jackson-Favard type estimate
holds true:

‖f − M(r)
n,µ f‖p,µ ≤ Cr,d,µ(

n
r+1

) ‖Ur+1,µ f‖p,µ.

Thus, the rate of convergence for smooth functions is n−r−1. To deal with non-
smooth functions, we introduce for f ∈ Lp

µ(Sd), 1 ≤ p ≤ ∞, a new K-functional

Kℓ,p,µ(f, t) := inf
g∈C2ℓ(Sd)

{‖f − g‖p,µ + t ‖Uℓ,µ(g)‖p,µ}.

Theorem 6. [2] Let n, r ∈ N0, 0 ≤ r ≤ n, and µ ∈ Rd+1 with µ ≥ − 1
2 . Then

‖f − M(r)
n,µ f‖p,µ ≤ Cr,µ,d Kr+1,p,µ(f, n−r−1).

References
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de Bernstein modifies, J. Approximation Theory 31 (1981), 325–343.

[5] M.-M. Derriennic, On multivariate approximation by Bernstein-type polynomials, J. Ap-
proximation Theory 45 (1985), 155–166.

[6] Z. Ditzian, Multidimensional Jacobi-type Bernstein-Durrmeyer operators, Acta Sci. Math.
(Szeged) 60 (1995), 225–243.

[7] K. Jetter, Multivariate Bernstein Basis Polynomials and their Kernels I, this report.
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