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Introduction by the Organisers

The meeting was inspired by the fact that the number of interesting new applicable
basic tools and techniques in applied dynamical systems and geometric mechanics
continues to grow and be developed in interesting ways, both from the point of
view of fundamental theory as well as from their applicability. Some examples of
specific areas are basic advances in geometric mechanics, techniques for dealing
with complex interconnected systems, new optimization methods, new geometric
structures such as Dirac structures, discrete mechanics and its related geometric
integrators, particle methods, variational principles, etc. Applications included
fluid mechanics, stochastic mechanics, nonholonomic systems, plasticity, atmo-
spheric dynamics, impact mechanics, nonlinear geometric control, and classical
field theory. The specific themes of the workshop were as follows:

Core Dynamical Systems. The basic theory of dynamical systems continues
to develop with numerous new ideas that have importance in applications. For
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example, the concept of Finite Time Lyapunov Exponents and their derivative,
Lagrangian Coherent Structures are tools that extend invariant manifold theory
in a nice way to the time dependent case. These ideas have found application
in, for example, the detection of recirculation zones in the heart and atmospheric
barriers to transport. Another example is the extension of classical concepts from
bifurcation and stability theory to time dependent systems with applications to
phase transitions and materials with memory.

Complex Interconnected Systems. The computational limitations of dealing
with complex interconnected systems, such as fuel cells, aircraft, etc have already
been reached. New methods are being developed that move away from the mono-
lithic approach (that is, thinking of systems of thousands of coupled equations, be
they ode’s or pde’s) to the idea of many computations running in parallel with
message passing and information exchange. This is an area in which dynamical
systems theory is playing a key role. Set oriented methods and multiobjective op-
timization is an example of a classical area that has seen significant applications
of dynamical systems.

Structured Model Reduction. Related to the previous topic is that of forming
dimensionally reduced models for computational feasibility. This is important in,
for example, complex fluid flows, where resolvability of the Navier-Stokes equa-
tions is simply not possible and where reduced order models have been developed.
POD (proper orthogonal decomposition) methods are also undergoing continued
development and their limitations being better understood. In carrying out such
reductions, it is of special interest to do so in a way that preserves structure (such
as symmetry structures, mechanical structures, etc).

Uncertainty and Stochastic Methods. Another area in which dynamical
systems can play a key role is how to deal with systems whose very models are
uncertain; for example, think of modeling an asteroid moving mainly in the field
of the sun and Jupiter. How much error is introduced by neglecting the effects
of Saturn? Is this more important than errors in initial conditions? How do
error balls propagate under the dynamics? Of course in many systems, such as
laboratory based mechanical systems, there are sources of uncertainty due to noise
as well and one needs techniques deal with this and to distinguish this from the
other sources of uncertainty and from numerical uncertainties.

Core Geometric Mechanics. Despite its maturity, especially over the last few
decades, the basic theory of geometric mechanics continues to thrive and develop.
For example, the reduction of mechanical systems with symmetry continues to
grow and find applications in, for instance, computation and control. Areas that
are currently undergoing particularly interesting growth that have links with appli-
cations are reduction by stages (for example, applied to fluid–solid interactions),
singular cotangent bundle reduction (relevant for instance, to the dynamics of
multiple pendula), and the development of Dirac structures. Also, the theory of
integrable systems continues to be a valuable link between geometric mechanics
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and pure mathematics. Another area that is of great interest is the application of
ideas from geometric mechanics to classical field theories such as electromagnetism.

Geometric Integrators. The area of structured integrators for mechanical sys-
tems continues to undergo strong growth for problems in which preserving struc-
ture is important, such as symplectic structures for backward error analysis, in fluid
systems in which it is important to conserve circulation, and in the development
of asynchronous integrators. New insight into the development of methods that
are robust to uncertainty are also quite promising. Both variational integrators
and particle methods were represented at the meeting.

Optimization and Control of Mechanical Systems. New methods for opti-
mization for mechanical systems such as DMOC (discrete mechanics and optimal
control) are showing promise for the optimization of, for example, complex systems
of vehicles—for instance a swarm of micro-air vehicles that is sent to investigate
a biohazard. In these methods, the use of techniques that are successful already
in internet congestion control as well as the use of parallel computation are quite
attractive. Other types of control, such as stabilization, continue to benefit from
basic advances in the theory and to make strong links with, for example, geometric
integrators and discrete mechanics.

Structure of the Meeting. The meeting had a balance of senior researchers,
postdoctoral fellows and graduate students. Consistent with the general approach
advocated by Oberwolfach, there were only about 20 main lectures at the meeting.
These senior people suggested students, postdoctoral fellows and junior faculty all
of whom participated through two poster sessions.

Posters. The poster session was one of the most interesting aspects of the meeting.
The organizers decided to award prizes for the best poster and an ad hoc committee
(consisting of Reich, Ratiu, Marsden and Scheurle) was formed to choose the four
best posters. This number matched the number of gifts that were available. The
winners were (in alphabetical order):

• Ueli Aeberhard (ETH Zürich), Perfect multi-contact collisions

• Philip Du Toit (Caltech), Hurricanes, Horseshoes, and Homoclinic Tan-
gles

• Andreas Johann (TU München), Spiral Waves and Spiral Solitons in Lat-
tice Differential Equations

• Sigrid Leyendecker and Sina Ober-Blöbaum (Caltech), Dynamic Optimiza-
tion of a Three-Dimensional Walker .

Impressions, Connections, Insights. The mixture of participants, from those
who were very applied and those who came from more of a dynamical systems or
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geometric mechanics background, but all with a strong mathematical dedication,
was very fruitful.

Dynamical systems and geometric mechanics methods are now used in a spec-
tacular array of very diverse application areas from complex fluids and plasticity
to impact mechanics and spacecraft control. There is a wide range of research
opportunities, including the possibility for new theoretical and methodological
progress.

Amongst the specific new connections and insights that were gained, the power
of dynamical systems ideas, such as invariant manifolds or Lyapunov exponents,
seemed to be quite impressive as well as useful in the context of atmospheric
science as well as oceanography. The use of dynamical systems ideas in control of
mechanical systems was also quite interesting for a number of the participants.
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Abstracts

Degenerate relative equilibria and the concept of criticality in fluid
mechanics

Thomas J. Bridges

Criticality is a central issue in fluid mechanics. Typically, a textbook on open
channel hydraulics will devote several chapters to the concept of criticality and its
implications [1]. For one-dimensional uniform flow in a channel, with depth h and
velocity u, criticality corresponds to Froude number unity, u2 = gh, where g is the
gravitational constant.

There has been very little work on the generalization of criticality to more gen-
eral states (see the introduction of [5] for a review). Like many generalizations,
the key is to choose a definition which is general enough. It turns out that the
natural definition for generalization is to consider uniform flows as relative equi-
libria (RE), and associate criticality with degeneracy of the RE characterization.
This definition works, and generalizes to any fluid flow which can be characterized
as a RE.

But why is criticality interesting? In classical hydraulics it is important for
determining the maximum flow rate for a given energy, and is used in design of
river controls [10]. When nonlinearity is included criticality signals a bifurcation
of solitary waves. In the classical case of a one-dimensional channel, criticality
generates the KdV solitary wave. It is this mechanism for creating solitary waves
that is of interest here.

One of the main implications of degeneracy of RE is the generation of a ho-
moclinic orbit, which in the spatial setting represents a solitary wave. Once this
connection between degenerate RE and criticality is established our problem is
reduced to a question in geometric mechanics.

Consider the standard setup of a Hamiltonian system which is equivariant with
respect to an Abelian Lie group acting symplectically and generating a momentum
map. Such systems have a natural definition of RE [11]. Given an n−parameter
family of RE of a finite-dimensional Hamiltonian system, what is a degenerate
RE and what is the implication of degeneracy of RE? There are a number of
ways that an RE can become degenerate: singularity of the momentum map,
failure of the G-Morse hypothesis, and degeneracy of the reduced momentum map
P : g → g∗. It is the latter degeneracy that corresponds to criticality in fluid
mechanics. Surprisingly the nonlinear implications of this degeneracy had not
previously been studied in the Hamiltonian system literature. A new theory is
presented in [3]. One of the interesting features of this theory is that the coefficient
of the nonlinear term, in the normal form near a degenerate RE, is determined
by the curvature of the momentum map. This observation has both theoretical
and practical implications. Theoretically it means the all the properties of the
leading order normal form near a degenerate RE are determined by the geometry
of the RE. Practically, it means that the properties of the bifurcating homoclinic
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can be determined by properties of the RE from which it bifurcates. For example,
when computing the homoclinics bifurcating from periodic orbits [4] (in the spatial
setting, computing the solitary waves bifurcating from periodic travelling waves)
a lengthy computation is reduced to an elementary one [5].

In summary, any fluid flow that can be characterized as a RE has a concept of
criticality. The more exotic the RE the more exotic the homoclinic orbit that is
created at degeneracy.

η

P

P

1

2

P
3

Figure 1. Schematic of surface of degeneracy in g∗.

For an n−parameter family of RE, the surface of degeneracy is typically a
smooth hypersurface in the Lie algebra g, and its image in g∗ is also a hypersurface
but can have singularities. Figure 1 shows an example with n = 3 of a surface of
degenerate RE in g∗.

Examples presented in the talk were (a) the bifurcation of solitary waves at the
interface between two fluids [7, 8] and (b) the steady dark solitary waves which are
created by criticality of periodic travelling waves in shallow water hydrodynamics.
These latter waves are localized and asymptotic as x→ ±∞ to the Stokes periodic
travelling wave (with a phase shift between −∞ and +∞) [5]. These latter waves
were discovered using the theory of degenerate RE, and are a pervasive new family
of waves in coastal hydrodynamics.

The degeneracy surfaces in g and g∗ found in [7] are shown in Figures 2(a) and
2(b).

Criticality can be generalized to time dependent states, and this leads to a
connection between criticality and the Benjamin-Feir instability [6], and explains
some of the properties of breaking waves (“micro-breakers”) due to superharmonic
instability [2].

There are connections between degenerate RE and degenerate conservation
laws. Consider a family of conservation laws

Ut + F(U)x = 0 , U ∈ Rn ,

where F : Rn → Rn is the flux vector. Such a conservation law is said to be
degenerate, when evaluated on a uniform state U0 ∈ Rn, when the Jacobian of
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the flux vector is degenerate

det[DF(U0)] = 0 .

It is shown in the talk how this degeneracy can be connected with degeneracy of
RE. When regularization is added (dispersive or dissipative) the degeneracy of the
flux vector generates a solitary wave or front. In recent work [9] the validity of
reduced models near degeneracy of the flux vector is considered for conservation
laws with dissipation

Ut + F(U)x = DUxx , U ∈ Rn ,

where D is a symmetric positive definite matrix.

(a) The Lie algebra g (b) The dual of the Lie algebra g
∗

Figure 2. Surface of degeneracy for the case of stratified flows
found in [7].
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Variational and Dissipative Aspects of Nonholonomic Systems

Anthony M. Bloch

In this work I consider variational and dissipative aspects of nonholonomic systems.
The dissipation encompasses external dissipation, including that induced from
coupling to an external field, and natural internal dissipation where system energy
is preserved but there is a contraction in the phase space. I discuss work with
Zenkov (see [9] and [1]) where the latter kind of dissipation is observed in systems
defined on groups. Examples of such systems are the Chaplygin sleigh and the
Suslov system. The latter system is a rigid body system with a constraint on the
body angular velocities.

The equations of the Chaplygin sleigh for example are

v̇ = aω2

ω̇ = −
ma

I +ma2
vω

These equations have a family of relative equilibria given by (v, ω)|v = const,
ω = 0. Linearizing about any of these equilibria one finds one zero eigenvalue and
one negative eigenvalue.

In fact the solution curves are ellipses in v − ω plane with the positive v-axis
attracting all solutions. Thus one sees immediately that the system cannot be
Hamiltonian. This is a simple but key example of nonholonomic systems which
do not preserve volume in the phase space.

Our work in this area builds on earlier work of Kozlov, Jovanovic and others
(see [1] and references therein). I also discuss generalizations to systems where
there is additional internal dynamics as described in [9].

I then discuss work with Hagerty and Weinstein (see [8]) on mechanical systems
with radiation damping, which involves dissipation arising from the coupling of the
mechanical system with a wave field. Related earlier work on dissipation induced
instabilities with Krishnaprasad, Marsden and Ratiu may be found in [3].

The key in this analysis is the original Lamb model (see [8]) of an oscillator
physically coupled to a string. The vibrations of the oscillator transmit waves into
the string and are carried off to infinity. Hence the oscillator loses energy and is
effectively damped by the string.

Let q denote the position of the oscillator and let w(x, t) denote the displacement
of the string. with mass density ρ, tension T . Assuming a singular mass density
at x = 0, we couple dynamics of an oscillator of mass M to obtain:
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∂2w

∂t2
= c2

∂2w

∂x2

Mq̈ + V q = T [wx]x=0

q(t) = w(0, t).

[wx]x=0 = wx(0+, t)−wx(0−, t) is the jump discontinuity of the slope of the string.
Note that this is a Hamiltonian system.

We can solve for w and reduce to obtain a reduced form of the dynamics de-
scribing the explicit motion of the oscillator subsystem,

Mq̈ +
2T

c
q̇ + V q = 0.

The coupling term arises explicitly as a Rayleigh dissipation term 2T
c q̇ in the

dynamics of the oscillator which loses energy and is effectively damped by the
string.

In recent work with Rojo (see [6]) I show how one can realize the nonholonomic
constraint that arises in the Chaplygin sleigh problem by taking the limit of a
suitable coupling to a wave field. This enables one to study the dynamics within
the class of (infinite) Hamiltonian systems. This builds on earlier work by Kozlov
and others which show how to represent the nonholonomic constraint as the limit
of a certain kind of nonlinear Rayleigh dissipation. Once we have the system in
Hamiltonian form we can then quantize the system using quantum field theory.
We discuss aspects of this process. We have carried out related work on quantum
subRiemmanian systems in [2].

We show that the sleigh equations can be obtained from a variational principle
as reduced equations of motion after the system is coupled to an environment
described by an U(1) infinite field of the form a(z, t) ≡ [cosα(z, t), sinα(z, t)]. For
the Lagrangian of the free field we choose

(1) LF =
K

2

∫
d2z ȧ2,

and we couple the sleigh and the field with a term of the form

(2) L1 =

∫
d2z δ(z − x) [γẋ · a + µ cos (α(z, t) − θ)] .

The first term in square brackets corresponds to a minimal coupling that favors
ẋ in the direction of a; the second has the form of a potential coupling that favors
an alignment of the internal variable θ with the local direction of a.

I also discuss work with Fernandez and Mestdag (see [4] and [7]) where we
use the inverse problem in the calculus of variations to define Lagrangian systems
which yield the dynamics of certain nonholonomic systems on the constraint man-
ifold. Again this yields a Hamiltonian version of the dynamics which is of interest
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for the purpose of quantization. The relationship of nonholonomic systems to the
inverse problem of the calculus of variations is of independent interest however.

Finally I discuss work with Marsden and Zenkov (see [5]) which describes the
rich dynamics of the Chaplyin sleigh coupled to a harmonic oscillator.This analysis
uses the theory of quasivelocities. This work is supported in part by the NSF.

References

[1] A. Bloch, (with the colloboration of J.Baillieul, P.E. Crouch and J.E. Mars-
den)Nonholonomic Mechanics and Control, Springer Graduate Text, 2003

[2] A. M. Bloch, R.W. Brockett and A. Rojo, Quantum subRiemannian dynamics in New
Directions and Applications in Control Theory ed. W.P. Dayawansa, A. Lindquist and Y.
Zhou, Springer Lecture Notes in Control and Information Sciences, 2005.

[3] A.M. Bloch, P.S. Krishnaprasad, J.E. Marsden and T.S. Ratiu, Dissipation Induced Insta-
bilities, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire 11, 37-90 (1994).
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Reduction of Dirac Structures and Dirac Systems

Hernán Cendra

(joint work with Jerrold E. Marsden, Tudor S. Ratiu)

Dirac Systems The geometric approach to Dirac structures was introduced in
[Courant(1990)], and has found many developments and applications afterwards.
Dirac structures satisfying the so-called integrability condition (or closedness
condition) include presymplectic and Poisson structures as particular cases. In
recent times the significance of Dirac structures (integrable or not) in representing
geometrically the fundamental equations in several fields, such as Lagrangian or
Hamiltonian mechanics, nonholonomic mechanics, several theories of circuits and
interconnected systems, control systems, has become clarified, from the Lagrangian
side, thanks to the work of many researchers, see [Yoshimura and Marsden(2006a),
Yoshimura and Marsden(2006b)] and references therein. See also the important
work of Van der Schaft and Blankenstein [Blankenstein and van der Schaft(2001)].
One must remark that those equations are in general implicit differential equa-
tions (IDE), see [Cendra and Etchechoury(2006)] for general references on IDE.



Applied Dynamics and Geometric Mechanics 1863

One of the interesting feature of our approach is the representation of those
equations in a unified form as a Dirac system , by definition, is written as follows

(1) (x, ẋ) ⊕ dE(x) ∈ Dx,

where D is a given (not necessarily closed) Dirac structure on a manifold M and
E : M → R is a given function which often has the meaning of energy .

There are two important questions that can be addressed in this general frame-
work, namely, the Theory of Constraints and Reduction .

Theory of Constraints The geometrically inspired Gotay-Nester constraint al-
gorithm for presymplectic manifolds [Gotay et al.(1978)Gotay, Hinds, and Nester]
was originally motivated by the Dirac theory of constraints, [Dirac(1950)]. One
can generalize the Gotay-Nester algorithm to solve a given Dirac system, for the
case of a general Dirac structures (not necessarily integrable) rather than presym-
plectic forms. We can also generalize the Dirac algorithm, obtaining explicit equa-
tions of motion in terms of brackets. [Cendra, Etchechoury and Marsden,(2008)]
(preprint). Both algorithms are closely related and, in a sense, equivalent.

Reduction If M is a principal bundle with structure group G and the energy
function and the Dirac structure are both invariant one would like to reduce the
Dirac system (1). This leads in a natural way to define the category of anchored
vector bundles and the category of Dirac anchored vector bundles, which
is stable under reduction . Examples of anchored vector bundles should be
reduced tangent bundles TM/G → M/G, where M is a principal bundle with
structure group G. Let us explain those concepts more precisely.

An anchored vector bundle is a pair (π(E,M), ρE) where π(E,M) : E → M is
a given vector bundle and ρE : E → TM is a given vector bundle map over the
identity (that is, ρE(e) ∈ Tπ(E,M)(e)M for e ∈ E) called the anchor. For x ∈ M ,
we denote by ρx : Ex → TxM the restriction of ρ to the fiber Ex.

Let π(E,M) : E → M be a given vector bundle and let π(E∗,M) : E∗ → M be
the dual vector bundle of E. A fiberwise Dirac structure on π(E,M), or simply a
Dirac structure on π(E,M), is a vector subbundle DE ⊆ E⊕E∗ such that, for each
x ∈ M, (DE)x ⊆ Ex ⊕ E∗

x is a linear Dirac structure on the vector space Ex. A
Dirac anchored vector bundle is a triple (π(E,M), ρE , DE) where (π(E,M), ρE)
is an anchored vector bundle and DE is a Dirac structure on π(E,M).

Let (π(E,M), ρE) be an anchored vector bundle. A curve e(t), t ∈ (a, b) on E is
called admissible if the following condition is satisfied

(2) ρE (e(t)) =
d

dt
π(E,M)(e(t)),

for all t ∈ (a, b).

Let (π(E,M), ρE , DE) be a given Dirac anchored vector bundle.
Let ϕ ∈ Γ(E∗) be a given section of the dual bundle of E, called the energy

form . In many cases ϕ = dE, where E represents energy.
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By definition, the associated Dirac system is defined as follows

(3) e⊕ ϕ(π(E,M)(e)) ∈ (DE)π(E,M)(e).

A solution to the Dirac system (3) is an admissible curve e = e(t) ∈ E, t ∈ (a, b),
such that (3) is satisfied for each t ∈ (a, b). By definition, a Dirac dynamical
system is a pair (ϕ,D) where D =

(
π(E,M), ρE , DE

)
is an Dirac anchored vector

bundle and ϕ is an energy form.
The definition of morphism in the category of Dirac anchored vector bundles

is a natural one, but it is delicate and we shall not give more details here.

Reduced Anchored Vector Bundles Let D = (π(E,M), ρE , DE) be a given
Dirac anchored vector bundle. Assume that M is a principal bundle with group
G acting on M on the left. Assume, in addition, that that G acts on E ⊕ E∗

by isomorphisms fg ⊕ f̃g : E ⊕ E∗ → E ⊕ E∗ of Dirac anchored vector bundles,

covering the action of G on M and satisfies the condition (fg)
∗ = (f̃g)

−1, for each
g ∈ G. One can show that everything passes to the quotient and the following
assertion holds.

Under the above assumptions and constructions, the triple

(4) D/G =
(
π(E/G,M/G), ρE/G, DE/G

)
,

is a Dirac anchored vector bundle, called the reduced Dirac anchored vector bundle.
Moreover, there is a natural morphism of Dirac anchored vector bundles PG :

D → D/G covering the projection πM,M/G : M → M/G. Restricted to each fiber
of E ⊕ E∗, the associated map of E ⊕ E∗ to (E ⊕ E∗)/G is an isomorphism.

Let (ϕ,D) =
(
ϕ, (π(E,M), ρE , DE)

)
be a given Dirac dynamical system and

assume that the group G is a symmetry of (ϕ,D). If a curve e(t), t ∈ (a, b) is a
solution of the Dirac system, that is,

(5) e⊕ ϕ(m) ∈ (DE)m

where m = π(E,M)(e), then the reduced curve [e]G(t), t ∈ (a, b) is a solution of the
reduced Dirac system, that is,

(6) [e]G ⊕ [ϕ]G([m]G) ∈ ([DE ]G)[m]G .

General Reduction. The reduction by the symmetry is only a part of the
general notion of reduction in the category of Dirac anchored vector bundles. The
general notion, explained in [Cendra, Marsden, Ratiu and Yoshimura, (2008)], in-
cludes as particular cases, Poisson reduction, symplectic reduction, Hamilton-
Poincare reduction, and many other examples of reduction.
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Set Oriented Numerics for Transport Phenomena and Optimization

Michael Dellnitz

Over the last years so-called set oriented numerical methods have been developed
in the context of the numerical treatment of dynamical systems, see [1, 2]. The
basic idea is to cover the objects of interest – for instance invariant manifolds
or invariant measures – by outer approximations which are created via adaptive
multilevel subdivision techniques. These schemes allow for an extremely memory
and time efficient discretization of the phase space and have the flexibility to be
applied to several problem types. An overview about these set oriented methods
can be found in [3].

In this talk we show that set oriented techniques can particularly be useful for
the approximation of transport processes which play an important role in many
real world phenomena. We mainly focus on two related applications: first we
analyze the transport of asteroids in the solar system – this work is particularly
motivated by the explanation of the existence of the asteroid belt between Mars
and Jupiter. Secondly we show how to analyze transport phenomena in ocean
dynamics. Here the related mathematical models depend explicitly on time and
this makes the numerical treatment inherently more difficult. However, following
[5] we demonstrate the strength of an appropriate set oriented approach by a study
of transport in Monterey Bay which is based on real data, see figure 1.

In addition we illustrate how to make use of these set oriented numerical tech-
niques for the solution of multiobjective optimization problems. In these problems
several objective functions have to be optimized at the same time. For instance,
for a perfect economical production plan one wants to simultaneously minimize
cost and maximize quality. As indicated by this example the different objectives
typically contradict each other and therefore certainly do not have identical op-
tima. Thus, the question arises how to approximate the ”optimal compromises”
which, in mathematical terms, define the so-called Pareto set. In order to make
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(a) (b)

Figure 1. Approximation of Lagrangian coherent structures us-
ing direct transport processes, cf. [5]. (a) ”Fast” method only
using the center points; (b) standard direct transport process ap-
proach.

our set oriented numerical methods applicable we first construct a dynamical sys-
tem which possesses the Pareto set as an attractor. In a second step we develop
appropriate step size strategies. The corresponding techniques are applied to the
optimization of an active suspension system for cars, see [4].

Our approach can briefly be illustrated as follows, see figure 2: We consider the
three objective functions f1, f2, f3 : R3 → R,

f1(x1, x2, x3) = (x1 − 1)4 + (x2 − 1)2 + (x3 − 1)2 ,

f2(x1, x2, x3) = (x1 + 1)2 + (x2 + 1)4 + (x3 + 1)2 ,

f1(x1, x2, x3) = (x1 − 1)2 + (x2 + 1)2 + (x3 − 1)4 .

The basic domain is chosen as Q = [−5, 5]3. The resulting box collections are
shown in figure 2 (a)-(c). Here, we have taken a 3 × 3 × 3 grid as test points for
every box.

Alternatively, we have used a combination of three different algorithms from [4]
to achieve a better performance. The result shown in figure 2 (d)-(f) was obtained
by the following steps: first, the subdivision algorithm was applied for 21 steps
using only the center point of every box as the test point for the dynamical system
(figure 2 (d)). Using only these few test points, the computed box collection B21

reveals already the shape of the set of Pareto points, but it contains also many
holes. These holes could be filled by an application of the recovering algorithm on
B21 (figure 2 (e)). Finally, the covering was tightened using the sampling algorithm
(figure 2 (f)).
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Figure 2. Resulting box collections using 27 test points per box
after (a) 10, (b) 15, and (c) 25 steps. (d)-(f) Combination of the
three algorithms from [4].
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A discussion of the standard inequality impact laws of Newton type

Christoph Glocker

(joint work with Ueli Aeberhard, Remco Leine)

In dynamics, collisions are normally met when bodies come into contact with
each other. If the contacts are modeled without compliance, collisions have to
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be treated within impact theory. As an impact we understand a velocity jump
which occurs at a discrete point in time, and which is associated with impulsive
forces as a consequence on finite, non-disappearing masses in the system. Processes
with rapidly changing but continuous velocities will not be understood as impacts.
Only impacts with constant generalized force directions will be investigated, which
excludes discontinuities from crossing sharp bends in the configuration manifold.
Impulsive forces applied from outside that can be regarded as external impact
excitation, e.g. the impact from the queue on the ball when playing billiard, will
also not be examined, and all discussions will be limited to scleronomic systems.
Only the impact itself will be examined. Pre- and post-impact motions will not
be discussed.

The most established and widespread impact law is the one of Newton, which
changes for a collision at time t the relative normal velocity γ(t) according to the
rule γ+ = −εγ−. The indices ( )+ and ( )− denote the right and left limit of γ(t),
corresponding to the post- and pre-impact normal relative velocity. The parameter
ε is called the Newtonian coefficient of restitution and is normally taken from the
interval [0, 1]. For ε = 0, one classically speaks about a perfect inelastic impact,
whereas collisions with ε = 1 are called perfectly elastic as they invert the relative
velocity to γ+ = −γ−.

In the above form, Newton’s impact law can be applied to model collisions
at only a single contact point. One of the first approaches to extend it to multi-
contact problems within the setting of analytical dynamics is found in [6], in which
it is still stated as an equality and thus not yet respecting the unilateral nature
of the contacts. The latter is taken into account in [5] and extended to frictional
behavior by a Coulomb type impact law for the tangential directions of the contact.
It turns out that both, the normal and the tangential portion of the impact law
can be written in the form

(1) (γi+ + εiγi−) ∈ NCi
(−Λi) ,

where NCi
denotes the normal cone of convex analysis to the convex set Ci of

negative impulsive forces Γi = −Λi, defined as

(2) NCi
(Γi) = { ξi | ξiT(Γ∗

i − Γi) ≤ 0 forΓi ∈ Ci, ∀Γ∗
i ∈ Ci } .

Apparently, the impact laws (1) are kinematic laws, because they relate the pre-
and post-impact relative velocities γi− and γi+ directly to each other as in the
original law of Newton. In addition, they take care of restrictions on the impulsive
forces by the inequalities in (2). We therefore call (1) the standard inequality
impact laws of Newton type and propose to accept them with an even more general
meaning as in [5], namely as a class of constitutive laws for impacts with the
structure (1) that are applied on various types of constraints after the sets −Ci

of transferable impulsive forces have been determined by integration from impact-
free motion. In a succeeding step, those laws have to be analyzed on kinetic,
kinematic and energetic consistency, as well as on the physical effects that they
are able to reproduce adequately. The latter defines then the class of mechanical
impact problems on which they can be applied successfully.
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Important examples on which the impact law (1) may be applied are geometric
and kinematic inequality constraints, representing hard unilateral contacts and
one-way clutches, as well as planar and spatial Coulomb type friction laws. The
impact laws (1) differ for the particular constraints only in the reservoirs of im-
pulsive forces −Ci, which are Ci = R

−
0 for the geometric and kinematic inequality

constraints, Ci = [−1, 1]µΛN for planar and Ci = D2 µΛN for spatial Coulomb
type friction. For the latter, µ denotes the friction coefficient, ΛN is the associated
impulsive force in normal contact direction, and D2 the two-dimensional unit disk.

In order to obtain a complete set of equations for resolving the impact, the
Newton-Euler equations on impulsive level as well as the relative velocities γi

need still to be introduced. For the former, one starts with the virtual work of
the system by including the inertia terms and all the external forces, interprets
the resulting balance law as an equality of measures, and integrates it over one
singleton {t} in time. This yields

(3) M(u+ − u−) =
n∑

i=1

WiΛi

with M(q0) being the symmetric and positive definite mass matrix of the system
evaluated at the location q0 of the impact, u = q̇ a.e. the generalized velocities,
and F =

∑
WiΛi the generalized impulsive force of all force elements i that may

have survived integration over {t}. Each of the matrices Wi = (wi1 , . . . ,wik)
consists of ik generalized force directions wij (q0) that are necessary to characterize
the force element i, and Λi = (Λi1 , . . . , Λik

)T is the tuple of associated Lagrangian
multipliers with the physical meaning of scalar impulsive forces. In addition, the
relative velocities γi in each force element can be described as

(4) γi = WiT u .

The whole system (1)–(4) has now to be checked for kinetic, kinematic and en-
ergetic consistency. We call a system kinetically consistent if the impact equations
(3) and the force restrictions −Λi ∈ Ci are met, which is obviously the case for
any post-impact velocity u+ determined from (1)–(4).

For ensuring kinematic consistency, each of the impact elements (1) has to be
analyzed separately. For a unilateral geometric constraint, the values of the pre-
and post-impact relative velocities have to have different signs. To ensure this in
the impact law (1), the restitution coefficient has to be restricted to non-negative
values, εi ≥ 0. In contrast, the relative velocities at a unilateral kinematic con-
straints do not change sign at the impact. Therefore, εi ≤ 0 has to be demanded.
There are no kinematical restrictions for the friction elements. For them, the
restitution coefficients can freely be chosen according to physical needs.

In a last step, energetic consistency has to be ensured which leads to additional
restrictions on the restitution coefficients. The difference in kinetic energy for the
post- and pre-impact configuration,

(5) T+ − T− = 1
2 u+TMu+ − 1

2 u−TMu− ,
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may be stated with the help of (3) and (4) in two useful forms. The first one is

(6) T+ − T− = 1
2

n∑
i=1

ΛT
i ξi + 1

2

n∑
i=1

(1 − εi)ΛT
i γi− ,

where ξi = γi++εiγi−. It holds that ΛT
i ξi ≤ 0. This can be seen from (2) together

with the fact that 0 ∈ Ci for all impact elements considered here. Further, it can be
shown [5, 1] that ΛT

i γi− ≤ 0 for geometric unilateral constraints, which physically
means that the impulsive force Λi always acts against the approaching velocity
γi−. In other words, frictionless collisions are always energetically consistent as
soon as the restitution coefficients are restricted to εi ≤ 1. Together with the
restrictions from kinematics, one ends up with εi ∈ [0, 1] which is the well-known
interval from which the restitution coefficients are normally taken. One further
sees from (6) that energetic inconsistency might appear when miscellaneous impact
elements are contained in the system and that particular instances like slip reversal
in the Coulomb type elements could cause energetic problems.

To further elaborate on sufficient conditions for energetic consistency, another
form of the energy difference has proven to be useful,

(7) T+ − T− = ΛT(I + ǫ)−1ξ − 1
2 ΛT(I + ǫ)−1(I − ǫ)GΛ .

Here, ΛT = (ΛT
1 , . . . ,Λ

T
n ), ξT = (ξ1T, . . . , ξnT), ǫ = diag (εi), I denotes identity,

and G is the symmetric and at least positive semi-definite Delassus operator de-
fined by G = WTM−1W with W = (W1, . . . ,Wn). As before, the first term
ΛT(I + ǫ)−1ξ in (7) is non-positive as soon as the restitution coefficients are re-
stricted to εi > −1. To ensure energetic consistency under all cases, one has to
work on the second term which yields as sufficient conditions [4]

(8)
2 εmax

1 + εmax
≤

1

condG
or

εmax − εmin

1 − εmin εmax
≤

1

condG
,

where condG = λmax(G)/λmin(G) denotes the condition of G. The first inequal-
ity in (8) guarantees energetic consistency for small, the second one for similar
restitution coefficients. They contain as special cases the one of all restitution
coefficients being equal to zero, and the one of all restitution coefficients being
equal to each other, which can directly be verified from (7).

Although there are obvious restrictions on the validity and consistency of the
standard inequality impact laws presented here, they have successfully been used
in a great number of application problems. However, even frictionless collisions
which are represented by geometric unilateral constraints can not completely be
captured, because the local restitution coefficients in (1) do not fully parameterize
the set of consistent post-impact velocities. The most prominent counter-example
is Newton’s cradle which is discussed within this context in [1].

In [3], energy increase has been reported for the frictional impact of a double
pendulum against a rigid wall. For a particular configuration, the authors have
been used normal restitution coefficients of εN = 0.7 and εN = 0.5 together with
a friction coefficient of µ = 0.5 to observe energy increase for slip and stick at the
end of the impact, respectively. Nothing is said about the tangential restitution
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coefficient, because the authors have implicitly assumed εT = 0. Apparently, the
restitution coefficients here are not similar enough to ensure energetic consistency.

Even Coulomb type friction is not needed to cause energetic inconsistency. The
most simple counter-example the authors have found is a system on R×R consist-
ing of two masses with a unilateral geometric constraint between them and another
unilateral kinematic constraint between one of the masses and the environment.
The source for the inconsistency is the cone of admissible pre-impact generalized
velocities, which is much too big in the sense that it is no longer the polar to
the cone of transferable impulsive forces, as it is for systems with only unilateral
geometric constraints. In the author’s opinion, the same reasoning applies to the
frictional impact at the double pendulum: It has been shown in [2] that Coulomb
friction can be build up by a serial arrangement of unilateral kinematic constraints,
which means that this most critical element is also always present when frictional
impacts take place.
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General covariance and parametrization in classical field theory

Mark J. Gotay

(joint work with Marco Castrillón López and Jerrold E. Marsden)

To efficiently investigate the structure of classical field theories (“CFTs”) it is
useful to require that

(I) they be generally covariant, and

(II) all constituent fields be dynamic.

Examples of such CFTs include Einstein’s theory of gravity, topological field theo-
ries and a nucleon moving in a dynamic Klein–Gordon field. But not all CFTs have
these attributes. For instance, Nordstrøm’s theory of gravity (see §17.6 of [7]), has
a dynamic metric which propagates on a background Minkowskian spacetime, and
thus contains an “absolute object” in the sense of [1]. This theory is not generally
covariant, since (arbitrary) spacetime diffeomorphisms are not symmetries of the
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Minkowski metric. A nonrelativistic free particle is not generally covariant either
(in this case, general covariance means time-reparametrization covariance), even
though the system contains no absolute objects.

If a given CFT does not possess attributes (I) and (II), we wish to modify it
so as to produce a physically equivalent system in which every field is variational
and which is spacetime diffeomorphism covariant.

As luck would have it, this is not always a straightforward task. Consider again
Nordstrøm’s theory; we could make it generally covariant by letting the Minkowski
metric h “flap in the breeze,” that is, letting spacetime diffeomorphisms move it.
Then (I) will be satisfied, but (II) is more difficult to arrange. If one simply
demands that h be variational then, as it does not derivatively couple in the
Lagrangian L, we would have

0 =
δL

δh
=
∂L

∂h
!

To avoid this contradiction we must modify L, say by adding in a free field term
for h. But it is absolutely unclear as to what that should be. In any case, one will
end up with a modified CFT which cannot be expected to be physically equivalent
to that with which we started. So we must be more subtle.

Here we restrict consideration to CFTs whose Lagrangians are built from dy-
namic matter or other fields and a non-dynamic background metric. Such theories
often have at most the isometry group of the metric as a spacetime symmetry
group. We will indicate, following [6] (see also [5]) and [2], how CFTs of this type
can be parametrized, that is, made generally covariant, if one introduces space-
time diffeomorphisms themselves as dynamic fields. Many of the ideas herein are
applicable to a wider range of field theories, as [6] already indicates, but in this
paper we confine ourselves to this important class. The general case is presented
in [4].

Our setup is the following. We start with a configuration bundle Y → X over
the (n+ 1)-dimensional spacetime (X, g). Sections of this bundle, denoted φ, are
the dynamic fields under consideration. We assume for simplicity that the theory
is first order, and that the metric g does not derivatively couple to the φ (although
our results below remain valid in the derivatively coupled case). Let

L : J1Y ×X Met(X) → Λn+1X

be a Lagrangian density, where J1Y is the first jet bundle of Y , Met(X) is the
bundle whose sections are metrics on X , and Λn+1X is the bundle of top forms on
X . We suppose that a means of lifting a spacetime diffeomorphism σ ∈ Diff(X)
to σY ∈ Aut(Y ) has been chosen, and set

σY · φ = σY ◦ φ ◦ σ−1.

We further assume that L transforms as a scalar density under Diff(X). (This
does not mean that Diff(X) is a symmetry group of the CFT since, as emphasized
above, it will not preserve the metric g.)
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We sidestep both the issues of making g variable, and then dynamic, in one
fell swoop as follows. Introduce a copy (S, g) of spacetime into the fiber of the
configuration bundle, and view diffeomorphisms η : X → S as sections of S×X →
X . We regard the diffeomorphisms η as new fields—covariance fields—and

correspondingly replace the configuration bundle by Ỹ = Y ×X (S × X) → X .

Next, replace the Lagrangian density L : J1Y → Λn+1X by L̃ : J1Ỹ → Λn+1X
defined according to

(1) L̃(j1φ, j1η) = L(j1φ, η∗g).

Thus, we obtain a modified field theory with the underlying bundle Ỹ and first
order Lagrangian L̃. The general set up is shown in the figure following.

The general set up for the introduction of covariance fields.

We pause to point out the salient features of this construction. First, the fixed
metric g on spacetime is no longer regarded as living on X , but rather on the copy

S of X in the fiber of the configuration bundle Ỹ . Consequently g is no longer
considered a field—it has been demoted to a mere geometric object on the fiber
S. Second, the role formerly played by g on X is now played by G = η∗g, which
acquires its variability from that of η. Finally, we gain a field η which we allow to
be dynamic; we will soon see that this imposes no restrictions on the theory at all.

We now show that with this construction we have attained goals (I) and (II).
To this end define the lift σS of σ ∈ Diff(X) to the trivial bundle S × X by
σS(u, x) = (u, σ(x)). Then on sections η : X → S × X (i.e., diffeomorphisms
η : X → S) we have the action

(2) σS · η = η ◦ σ−1.

As our construction has removed the only absolute object (viz., g) from the
ranks of fields (so it no longer necessary that it transforms under diffeomorphisms),
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to establish (I) we need only verify that the new Lagrangian transforms as a scalar
density. This is the content of the following result.

Theorem 1. The Lagrangian density L̃ : J1(Y ×X (S×X)) → Λn+1X is Diff(X)-
equivariant, that is,

L̃
(
j1(σY · φ), j1(σS · η)

)
= σ∗

(
L̃
(
j1φ, j1η

))
.

for all σ ∈ Diff(X).

Proof. By construction and from (2), (1) yields

L̃
(
j1(σY · φ), j1(σS · η)

)
= L

(
j1(σY · φ), (η ◦ σ−1)∗g

)

= L
(
j1(σY · φ), (σ−1)∗(η∗g)

)

= σ∗
(
L(j1φ, η∗g)

)

= σ∗

(
L̃(j1φ, j1η)

)
.

as was to be shown, where the third equality is a consequence of the fact that L

transforms as a scalar density. �

This property is the reason we call η the “covariance field.” Thus Diff(X) acts
on the modified CFT by symmetries and so we have attained goal (I).

Next we show something remarkable:

Theorem 2. The Euler–Lagrange equation for the covariance field η is vacuous.

This is why we can introduce η as a dynamic field with impunity, namely, its
Euler–Lagrange equation does not add any new information to, or impose any
restrictions upon, the system. Since, as is readily verified, the Euler–Lagrange
equations for the fields φ remain unaltered, we see that the parametrized system
is physically equivalent to the original system.

Proof. From (1) and the chain rule we find [2] that

δL̃

δην
= 0 ⇐⇒ ∇µTµ

ν = 0

where T is the SEM tensor density of the original field theory with the Lagrangian
L(j1φ,G):

(3) Tµν = 2
δL

δGµν
,

G = η∗g, and ∇ is the G-covariant derivative.
It is known from Proposition 5 in [3] that the SEM tensor is covariantly con-

served when the metric G is the only nondynamic field. Thus, in our context, the
equation ∇µTµ

ν = 0 is an identity, whence the result follows. �
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Consequently we are free to suppose η is dynamic, and so we have accomplished
goal (II): we have constructed a new field theory in which all fields are dynamic.

As an aside, it is interesting to compare the SEM tensors T and T̃ for the
original and parametrized systems, respectively. Using [3] we compute that

T̃µ
ν = Tµ

ν − 2
∂L

∂Gµρ
Gρν .

But then T̃µ
ν = 0 by the Hilbert formula (3). It follows that the SEM tensor

density for the fully covariant, fully dynamic modified theory vanishes. One can
also obtain this result directly by applying the generalized Hilbert formula (3.13)
in [3] to the parametrized theory, since it is fully dynamic.
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Euler-Poincaré Flows on the Space of Tensor Densities and Integrable
Systems

Partha Guha

The one–parameter family of shallow water equations

(1) ut − uxxt + (b+ 1)uux = buxuxx + uuxxx,

where b is a real parameter, has recently drawn some attention. This equation
is known as the b-field equation. It was introduced by Degasperis, Holm and
Hone [3, 4], who showed the existence of multi-peakon solutions for any value of
b, although only the special cases b = 2, 3 are integrable, having bihamiltonian
formulations. The b = 2 case is the well-known Camassa-Holm (CH) equation [1]
and b = 3 is the integrable system discovered by Degasperis and Procesi [5].

Using the Helmholz field m := u− uxx , the DHH equation (1) allows reformu-
lation in the compact form

(2) mt + umx + buxm = 0 ,

where the three terms correspond respectively to evolution, convection and stretch-
ing of the one-dimensional flow.
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In a more recent paper Fokas et al. [6] proposed an algorithmic construction of
(2+1) dimensional integrable systems which yield peakon/dromion type solutions.

(3) qxt − νqxxxt + aqxy + bqxxxy + c
(
qxxqy + 2qxqxy

)
− cν

(
qxxxxqy + 2qxxxqxy

)
.

This equation can be identified with the potential form of the Camassa-Holm
analogue of the Calogero-Bogoyavlenskii-Schiff equation. For ν = 0, this reduces
to Camassa-Holm equation in potential form u = qx. In this talk we study an
Euler-Poincaré formulation of (2 + 1)-dimensional b-field equation.

Recently an Euler-Poincaré formalism has been studied for the Degasperis and
Procesi (DP) equation. It turns out that the DP equation is the Euler-Poincaré
flow on the combined space of Hill’s (second order) and first order differential
operators on circle. It has been generalized to the two component generalization of
the DP equation. It has been shown also that the Hamiltonian structure obtained
from the EP framework exactly coincides with the Hamiltonian structues of the DP
equation obtained by Degasperis, Holm and Hone. In this paper we give a short
derivation of the DP and the b-field equation using the deformation of vector field
structure on S1. We study a new kind of deformation of loop Virasoro algebra.

1. Euler-Poincaré framework of 1 + 1-dimensional b-field equation

Denote Fµ(S1) the space of tensor-densities of degree µ on S1

Fµ = {a(x)dxµ | a(x) ∈ C∞(S1)},

where µ is the degree, x is a local coordinate on S1. As a vector space, Fµ(S1) is
isomorphic to C∞(S1).

Geometrically we say

Fλ ∈ Γ(Ω⊗λ), where Ω⊗λ = (T ∗S1)⊗λ,

Ω = T ∗S1 is the cotangent bundle of S1. Here F0(M) = C∞(M), the space
F1(M) and F−1(M) coincide with the spaces of differential forms and vector fields
respectively.

A vector field f(x) d
dx acts on the space of tensor densities Fµ by the Lie deriv-

ative

(4) Lµ

f(x) d
dx

(a(x)(dx)µ) =
(
f(x)a′(x) + µf ′(x)a(x)

)
(dx)µ.

Definition 1.1. The b- bracket between v(x) d
dx and w(x) d

dx is defined as

(5) [v, w]b = vwx − (b− 1)vxw

This b-bracket can also be expressed as

(6) [v, w]b =
b

2
[v, w] −

b− 2

2
[v, w]sym,

where [v, w] = vwx − vxw and [v, w]sym = vwx + vxw ≡ ∂x(vw).
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Remark. The b-bracket can be interpretred as an action of V ect(S1) on F−(b−1)(S
1),

a tensor densities on S1 of degree −(b− 1). For b = 2 this is just a vector field ac-
tion corresponding to a Lie algebra. Moreover because of [v, w]sym term b-bracket
is not a skew-symmetric bracket, it is a deformation of the bracket of vector fields.

There is a pairing
〈, 〉 : Fb ⊗ F1−b → R

given by

(7) 〈a(x)(dx)b, b(x)(dx)1−b〉 =

∫

S1

a(x)b(x) dx

which is Diff(S1)-invariant. We can define a H1 Sobolev metric on b-algebra
according to

〈a(x)(dx)−(b−1) , b(x)(dx)b〉H1 =

∫

S1

a(x)b(x) dx +

∫

S1

ax(x)bx(x) dx.

Let us compute the coadjoint action with respect to the b–field equation.

Lemma 1.2.

(8) (adH1

)∗f (u) = (1 − ν∂2)−1[f(1 − ν∂2)ux + bfx(1 − k∂2)u.

Proof: We know

< ad∗f (u), g >H1 = − < u, [f, g]b >H1

≡ − < udxb, (fg′ − (b − 1)f ′g)(dx)1−b >H1 ,

hence the pairing is well-defined. Let us compute

R.H.S. =

∫

S1

(ufg′ − (b− 1)uf ′g)dx+ ν

∫

S1

u′(fg′ − (b − 1)f ′g)′dx

=

∫

S1

[f(1 − ν∂2)u′ + bf ′(1 − ν∂2)u

L.H.S. =

∫

S1

(adH1

)∗fu)gdx+ ν

∫

S1

(adH1

)∗fu
′g′dx

=

∫

S1

[(1 − ν∂2)adH1

)∗fu]gdx.

Thus by equating the R.H.S. and L.H.S. we obtain the above formula.
2

Using the Helholtz operator we express m = (1 − ν∂2)u. Thus, we express the
Hamiltonian operator corresponding to (8) as

(9) O1 = −(1 − ν∂2)−1(mx + bm∂).

The Euler-Poincaré equation

ut = O1
δH

δu
for H =

∫

S1

u2 dx,

can be rewritten as mt = O
δH
δu , where O = −(mx + bm∂). Using the EP equation

we construct b-field equation.
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Proposition 1.3. The Euler-Poincaré flow on the dual space of b-algebra yields
the b-field equation

mt +mxu+ bmux = 0.

This is a new derivation of the b-field equation is given in [2]. Earlier [7] we gave
a different derivation of the DP equation and its two component generalization.

1.1. DHH Hamiltonian structure and EP framework. Degasperis et al
studied Hamiltonian structures for b = 3 case of DHH equation, in other words,
they exhibits bihamiltonian features of the Degasperis-Procesi system. They ex-
pressed the Degasperis-Procesi equation as

(10) mt = Bi
δHi

δm
i = 0, 1,

where m = u − uxx. Thus they studied the flow of Helmholtz function. They
showed that there is only one local Hamiltonian structure

(11) B0 = ∂x(1 − ∂2
x)(4 − ∂2

x),

and the second Hamiltonian structure is given by

(12) B1 = m2/3∂xm
1/3(∂x − ∂3

x)−1m1/3∂xm
2/3,

which can be simplified to

B1 ≡ B̂ =
2

9
(3m∂ +mx)(∂ − ∂3)−1(3m∂ + 2mx).

Proposition 1.4. The Degasperis-Procesi equation

(13) mt = B̂
δH1

δm
, B̂ = (3m∂ +mx)(∂ − ∂3)−1(3m∂ + 2mx)

is equivalent to mt = O
δH
δu for H =

∫
S1 u

2 dx, where O = (mx + bm∂).

Proof: Our goal is to show

2

9
(∂ − ∂3)−1(3m∂ + 2mx)

δH1

δm
=
δH

δu
,

where H1 = 9
4

∫
S1 mdx. If we insert δH1

δm = 9
4 to left hand side of above equation

we obtain (∂ − ∂3)−1mx = u, where we use u = (1 − ∂2)−1m. Thus we obtain

mt = (3m∂ +mx)
δH

δu
,

where H = 1
2

∫
S1 u

2 dx.
Therefore the Degasperis-Holm-Hone form of Hamiltonian structure coincides

with our Hamiltonian structure. 2

Incidentally the proof of this section is in the same spirit of [7].
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2. EP formalism for 2 + 1-dimensional b-field equation

We wish to extend the Virasoro algebra to the case of two space variables. A
natural way to do this is to consider the loops on it. One defines the loop group
on Diff (S1) as follows

L
(
Diff (S1)

)
=
{
φ : S1 → Diff (S1) | φ is differentiable

}
,

the group law being given by

(φ ◦ ψ) (y) = φ(y) ◦ ψ(y), y ∈ S1.

In the similar way, we construct the Lie algebra L(V ect(S1)) consisting of vector
fields on S1 depending on one more independent variable y ∈ S1. The loop variable
is thus denoted by y and the variable on the “target” copy of S1 by x. The elements
of L(V ect(S1)) are of the form: f(x, y) ∂

∂x where f ∈ C∞(S1 × S1) and the Lie
bracket reads as follows [8]

(14)

[
f(x, y)

∂

∂x
, g(x, y)

∂

∂x

]
= (f(x, y) gx(x, y) − fx(x, y) g(x, y))

∂

∂x
.

It is easy to convince oneself that L
(
V ect(S1)

)
is the Lie algebra of L

(
Diff (S1)

)

in the usual weak sense for the infinite-dimensional case; a one-parameter group
argumentation gives an identification between the tangent space to L

(
Diff (S1)

)
at

the identity and L
(
V ect(S1)

)
, equipped with its Lie bracket. The natural pairing

between the loop Virasoro algebra and its dual is given by

(15)
〈
f(x, y)

∂

∂x
, v(x, y) dx2

〉
=

∫

S1×S1

fv dxdy.

2.1. Loop tensor density algebra and 2 + 1-dimensional b-field equation.
Consider G̃1 = LG1 be the associated loop group corresponding to G1 whose Lie
algebra is given by

g̃1 = L(F−(b−1)).

Consider an action of L(V ect(S1)) on L(F−(b−1))

(16) Lf(x,y) ∂
∂x

(g(x, y) (dx)−(b−1)) = (f gx − (b − 1)fx g)(dx)
−(b−1),

this yields the loop b- bracket (14). Let us introduce H1 norm on the loop tensor
density algebra.

Definition 2.1. The H1- Sobolev norm on the loop tensor density algebra is
defined as

(17) < f(x, y)(dx)−(b−1), v(x, y)(dx)b >H1=

∫

S1

fvdx+ ν

∫

S1

dxfdxvdx.

We perform same type of calculation to compute the (deformed) coadjoint ac-
tion ad∗

f(x,y) ∂
∂x

v(x, y)(dx)b|H1 . The Hamiltonian operator corresponding to this

action is given by

(18) Ô = −(1 − ν∂2
x)−1

(
∂xṽ + (b− 1)ṽ∂x

)

where ṽ = (1 − ν ∂2)v.
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Proposition 2.2. The Euler-Poincaré flow on the dual space of loop tensor alge-
bra yields the 2 + 1-dimensional b-field equation

(19) vt − νvxxt + (vx − νvxxx)∂−1
x vy + b(v − νvxx)vy = 0

where the Hamiltonian is given by H = 1
2

∫
S1×S1 v∂

−1
x vy dxdy. The potential form

v = qx yields the Fokas-Olver-Rosenau type systems.

In our forthcoming paper we will give Euler-Poincaré formalism of various other
2 + 1-dimensional integrable systems.
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Pursuit and Cohesion

P.S. Krishnaprasad

1. Talk Summary: Pursuit is a familiar mechanical activity that humans and
animals engage in, – athletes chasing balls, predators seeking prey, insects ma-
neuvering in aerial territorial battles. In this talk, we discussed strategies for
pursuit, the occurrence in nature of a strategy known as motion camouflage, and
some evolutionary arguments to support claims of prevalence of this strategy, as
opposed to alternatives. We discussed feedback laws for a pursuer to realize mo-
tion camouflage, as well as two alternative strategies. We stated a dynamics in the
probability simplex in three dimensions that captures an evolutionary game model
of competition between these strategies. We sketched the analysis of this dynamics
as an ascent equation solving a linear programming problem. Convergence to the
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maximum is consistent with observed behavior in Monte-Carlo experiments.
In the final component of the talk, we discussed how pursuit strategies may be

useful as building blocks for coherent structures, – flocks, swarms, schools, etc. We
explored this aspect through the example of a two-body problem involving mutual
motion camouflage.

The talk was confined to the setting of a pair of interacting particles in two
dimensions.

2. Model: Consider a system of two interacting particles of unit mass in the
plane, denoted as p (for pursuer) and e (for evader/pursuee). The speeds of the
particles are constant, respectively 1 for p, and ν for e, where 0 < ν < 1. The
particles interact through forces that leave invariant their speeds, and hence the
forces are necessarily perpendicular to their respective velocities. Letting rp and re

denote the position vectors of p and e, and (xp,yp) and (xe,ye) respective natural
moving frames attached to the particles, the forces on the particles are expressed
as

fp = upyp ; fe = ν2ueye

where up and ue are respective signed curvatures of the particle trajectories. The
equations of motion are:

ṙp = xp; ẋp = upyp; ẏp = −upxp

and

ṙe = νxe; ẋe = νueye; ẏe = −νuexe.

The state space of the system consisting of all possible pairs ((rp,xp,yp), (re,xe,ye))
is SE(2) × SE(2), the cartesian product of two copies of the rigid motion group
in the plane. Interactions of the particles arise from state-dependent curvatures
(controls). By a strategy we mean an SE(2)-invariant submanifold of the state
space. The pursuit problem is to design an SE(2)-invariant feedback law for up

that makes a strategy (approximately) accessible, irrespective of the actions of the
evader/pursuee.

3. Strategies: Particular strategies may be discernible in nature as fulfilling
certain ecological imperatives. Three strategies are identified by suitable anti-
parallelism conditions in state space (minus collision set). These are:

Classical Pursuit (CP) defined by Λ =
rp−re

|rp−re|
· xp = −1;

Constant Bearing (CBθ) defined by Λθ =
rp−re

|rp−re|
·Rot(θ)xp = −1, where Rot(θ)

denotes rotation by a specific angle θ;
and Motion Camouflage (MC) defined by Γ =

rp−re

|rp−re|
· xp−νxe

|xp−νxe|
= −1.

Definition: Motion Camouflage (MC) is accessible in finite time if for any ǫ > 0,
there is a t1 > 0 and a feedback law for up such that Γ(t1) ≤ −1 + ǫ.
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(Analogous definitions apply for the other strategies.)

4. Feedback Laws: Let r = rp − re and let a⊥ denote the vector obtained
by rotating a through π/2 in the counter-clockwise direction. In their work (see
Notes on References), Justh and Krishnaprasad showed:

Theorem For given system and feedback law

up = −µ

(
r

|r|
· ṙ⊥

)
,

with hypotheses

(i) 0 < ν < 1
(ii) ue is continuous and |ue| is bounded

(iii) Γ0 = Γ(t)
∣∣∣
t=0

< 1

(iv) |r(0)| > 0,

MC is accessible in finite time, for choice of gain µ high enough.

Feedback laws for other strategies and settings have been derived. See Notes
on References.

5. Prevalence and a Game: In empirical studies of dragonflies engaged in
territorial battles and echolocating bats chasing evasive insect prey, the motion
camouflage strategy MC has been observed in a statistically significant way. The
prevalence of MC over other strategies was explored by Wei, Justh and Krish-
naprasad using Monte-Carlo trials and an evolutionary game model, viewed as
repeated bat (p) and insect (e) encounters (see Notes on References). Let
pi i = 1, 2, 3 denote the proportion of trials (out of N trials in each generation)
employing strategy i, where i = 1 corresponds to CBθ, i = 2 corresponds to CP,
and i = 3 corresponds to MC. The fitness of the ith strategy in each generation

is Wi = 1
N

N∑

k=1

(τ i
k)−1, where τ i

k = time-to-prey-capture in trial k using strategy i.

The probability vector p = (p1, p2, p3) is updated from generation-to-generation

by the rule pi −→ pi
Wi

W̄
where W̄ =

3∑

i=1

piWi. It is observed that p −→ (0, 0, 1),

that is, MC prevails. A deterministic ordinary differential equation limit of this
update rule supports the Monte-Carlo experimental results. This equation is an
ascent equation in the simplex for a linear programming problem. The under-
lying Riemannian geometry (associated with Fisher, Rao and Shahshahani) is of
interest to information theorists, game theorists and researchers in mathematical
population genetics.
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6. Mutual Pursuit and Cohesion: Letting the particles cooperate by using
the (essentially same) mutual pursuit law of the MC type:

up = u = −µ

(
r

|r|
· ṙ⊥

)

ue =
u

ν
= −

µ

ν

(
r

|r|
· ṙ⊥

)

we observe that the resulting dynamics is reducible to a two dimensional system
with an interesting hamiltonian structure. There are parallels to earlier examples
investigated by Yavuz Nutku(1990). We consider this (oscillator) system to be a
building block for further work in cohesion laws.

7. Notes on References: In joint work of Eric Justh and P.S. Krishnaprasad
(2006), the mathematical framework for investigation of motion camouflage was
introduced and a basic accessibility theorem was proved in two dimensions.

In the joint work of Reddy-Justh-Krishnaprasad (2006,2007) feedback laws for
three dimensions and sensorimotor delay in motion camouflage were derived.

In joint work of Galloway-Justh-Krishnaprasad (2007), the case of stochastic
inputs was analyzed.

In the work of Wei-Justh-Krishnaprasad (2008), strategy selection is explored
using an evolutionary game approach which goes back to the work of Maynard
Smith and Price (1973) and Taylor and Jonker (1978).

The empirical data for study of motion camouflage in dragonflies originates in
the paper of Mizutani, Chahl and Sreenivasan (2003). The empirical data for prey
capture behavior in echolocating bats is first presented in Ghose, Horiuchi, Krish-
naprasad and Moss (2006).

8. Collaborators: Work on motion camouflage was begun with Eric W. Justh.
Other collaborators who have since joined the project are P. Viswanadha Reddy,
Kevin Galloway and Matteo Mischiati. The work on Mutual Pursuit and Cohesion
discussed here is with Mischiati. Empirical work involving bat echolocation and
prey capture behavior is joint with Kaushik Ghose, Timothy Horiuchi and Cyn-
thia Moss. Monte-Carlo simulation and evolutionary game approach to strategy
selection is joint with Ermin Wei and Justh.
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Lagrangian Coherent Structures, Homoclinic Tangles, and Hurricanes

Jerrold E. Marsden

(joint work with Philip Du Toit)

This talk concerned a basic technique in dynamical systems, namely Lagrangian
Coherent Structures (LCS). This is a technique that is used for determining mixing
properties of fluid flows as well as transport barriers. The basic idea is to use
Finite Time Liapunov Exponents (FTLE) to extract the time dependent analog
of Invariant Manifolds. This technique is applied to wind field data for several
tropical cyclones (hurricanes). The resulting structures reveal sharply defined
boundaries that take the form of homoclinic tangles with lobe dynamics from
classical geometric dynamics, which are ideas going back to Poincaré and further
analyzed by Smale. The analysis indicates that the dominant transport mechanism
for large scale (exterior to the eye) flow into and out of typhoons is via lobe
dynamics.

Introduction. Recently, Lagrangian methods using Finite Time Liapunov Expo-
nents (FTLE) have been developed to uncover the underlying skeletal structure
that dictates how transport occurs in aperiodic flows; see [3], [9] and [6]. Interest-
ingly, these Lagrangian methods reveal well-defined surfaces in the flow that act
as barriers to transport and separate regions of different dynamical behavior. This
method has been applied to many situations, such as transport of pollutants (see
[4]) and for detailed studies of the structure of vortices in turbulent flows (see [2].

We apply this method to extract LCS to the manifestly turbulent wind field
data for hurricanes. A main result is the discovery of sharply defined surfaces
in the flow surrounding the hurricane that govern the transport of air both into
and out of the storm. Furthermore, the evolution of these surfaces indicate very
plainly that transport in the large-scale flow occurs via the mechanism of lobe dy-
namics associated with a homoclinic tangle, a process well-understood in classical
geometric dynamics (see [7] and [10]). The LCS method reveals that transport
in hurricanes is a low-dimensional process whose salient features are adequately
described by a simple two-dimensional chaotic tangle.

We begin with a brief review of the mathematical definitions and practical
implementation of the LCS method as first proposed by [3] and later developed by
[9]. We then illustrate the LCS method by applying it to an actual hurricane data
set. The transport structures uncovered clearly show the low-dimensionality of
the transport process in the hurricane flow and its similarity with lobe dynamics
one sees in simple planar time dependent systems. Here we focus on the 2D
case, although LCS ideas and computations extend to the 3D case as well (see
[5]). These extensions are important when studying, for instance, the eye wall
structure of hurricanes.
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Finite Time Liapunov Exponents. In many time dependent flows, inspection
of the velocity field or streamlines yields little insight into Lagrangian transport
in the flow and can lead to erroneous conclusions about flow structure. Further-
more, an attempt to uncover Lagrangian information about the flow by simply
integrating particle trajectories at different locations and times very quickly leads
to ‘spaghetti’ plots that are also not helpful. However, the LCS method provides
a systematic approach for analyzing aperiodic flows and extracting the coherent
structures that govern transport. The method has been successfully applied to a
wide range of flows including HF radar data for oceanic flows [4], numerically mod-
eled data for flow over airfoils, laboratory flows for vortex rings, flows surrounding
jelly-fish [8], and flows in the phase space of the dynamical system defined, for
instance, by the three body problem, in which the resulting coherent structures
dictate transport of trajectories in phase space [1].

Let the open set D ⊂ R2 be the domain of interest in the flow, and let v :
D×R → TD be a smooth time-dependent vector field on D. Consider a trajectory
ξ(x0,t0) : R → D that passes through x0 ∈ D at time t0 ∈ R; that is, the unique
time parametrized curve in D whose tangent vectors satisfy:

dξ(x0,t0)(t)

dt
= v(ξ(x0,t0)(t), t)

and the initial condition

ξ(x0,t0)(t0) = x0 .

Let Φt0+T
t0 : D → D be the the associated flow map, so that

Φt0+T
t0 (x0) := ξ(x0,t0)(t0 + T ) .

The FTLE, denoted σT : D×R → R, is a time-dependent scalar field on D defined
by

σT (x, t) :=
1

|T |
ln

∥∥∥∥∥
dΦt+T

t (x)

dx

∥∥∥∥∥
2

.

The FTLE defined in this way is a measure of the separation of trajectories induced
by the flow over the interval of time [ t , t+ T ]. Following Shadden [9], we define
the LCS to be locally maximizing surfaces, or ‘ridges’, in the scalar field σT .
Hence, LCS can be thought of as surfaces of greatest separation. Review of the
LCS computed for the wide range of flows in the previously-mentioned examples
indicates that LCS defined in this way are remarkably sharp ridges that act as
invariant separatrices in the flow.

The definition of FTLE admits both positive and negative flow times T . For
positive values of T , the FTLE measures separation forward in time and yields LCS
that act as repelling surfaces; while for negative values of T , the FTLE measures
separation backward in time and hence yields LCS that act as attracting surfaces
in forward time.

In order to extract the LCS for a given flow, we require as an input the velocity
field defined by an analytical expression, or the velocity data recorded discretely
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in space and time. Given a velocity field in either of these forms, we begin by nu-
merically approximating the flow map at each desired output time by numerically
integrating a uniform grid of trajectories. The requisite derivatives of the flow map
are then computed using finite differencing. Once the numerical approximation for
dΦt+T

t (x)
dx is obtained, calculation of the FTLE follows in a straightforward man-

ner from the definition. The most computational intensive aspect of the FTLE
calculation is the integration of trajectories for each time frame and for each lo-
cation on the spatial grid. Since these integrations are all independent, they may
be computed in parallel, allowing for dramatic speed-up of the computation. For
example, the computation of the FTLE for a typical velocity field on a 512 x 512
spatial grid at 64 time frames requires approximately 1 minute on 64 processors.

Transport in Typhoon Nabi. We have applied the method of LCS to extract
coherent structures in the velocity field data for a Pacific typhoon. The data is
obtained from the NCAR-NCEP repository at http://www.cdc.noaa.gov/cdc/

data.ncep.reanalysis.html. Specifically, we use the two-dimensional velocity
field at the 850mb pressure level over the Western Pacific for late summer of 2005.
The particular typhoon of interest during this period is Typhoon Nabi, a category
5 tropical storm, that made landfall in Japan on September 6, 2005. A snapshot
of the velocity field provided in the data set is shown in figure 1.

Figure 1. Snapshot of the velocity field above the Western Pacific at the

850mb pressure level provided by the NCAR-NCEP reanalysis data set. The

prominent vortical flow is associated with Typhoon Nabi (2005).

Computation of the FTLE was performed with an integration time T = 120
hours. Snapshots depicting both the repelling and attracting LCS are shown in
Figure 2.

Despite the complex flow surrounding the typhoon, we observe that the re-
pelling and attracting LCS accurately capture the boundary of the storm vortex
and has the shape of the homoclinic connection. Furthermore, the evolution of the
LCS reveals that the transport mechanism that governs entrainment into and de-
trainment out of the typhoon across this boundary is lobe dynamics. For example,
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(a) (b)

(c) (d)

Figure 2. LCS for typhoon Nabi. The intersections of the repelling

(red) and attracting (blue) LCS define lobes that enclose regions of fluid that

will be either entrained into or detrained out of the cyclone. For clarity,

only two lobes have been colored although many more are evident during the

animation. The LCS reveals that transport into and out of the cyclone is

well-described by lobe dynamics. Indeed, the LCS forms a boundary to the

cyclone that is a homoclinic tangle. Over the three day period shown, the

green lobe is entrained, while the brown lobe is detrained.

the region of fluid colored brown and enclosed by the intersection of the repelling
and attracting LCS is a lobe that will be detrained out of the hurricane, while the
region colored green is a lobe that will be entrained into the storm. Indeed, with-
out computing the LCS, the location of the boundary to the storm is not clear,
and hence the concepts of detrainment and entrainment are not well-defined. In
the literature, plots of vorticity and humidity are typically provided to indicate
the size and location of the storm. These quantities are indeed correlated with the
motion of the vortex, but do not provide sharp boundaries so that the transport
mechanisms can be inferred.

Computations of the LCS for several typhoons has revealed that mixing via
lobes in a homoclinic tangle is a generically dominant feature in tropical storms.
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Figure 3 shows the homoclinic tangles revealed via LCS computations for Pacific
Typhoons Tip (1979), Banyan, and Nabi (2005) with the homoclinic tangle com-
puted in the flow of a simple explicit 2d time dependent ode model provided for
comparison.

(a) LCS in a simple 2D ode model (b) LCS in Typhoon Nabi.

(c) LCS in Typhoon Banyan (d) LCS in Typhoon Tip

Figure 3. The LCS computed for a simple planar ode model is shown

in (a) and compared with the LCS computed for the wind fields in three

other Pacific typhoons (b)-(d). The homoclinic tangle structure is evident in

all three storms and indicates that lobe dynamics is a dominant transport

structure in tropical storms.

The similarity between the LCS computed for Typhoon Nabi wind field data
and the LCS computed for the simple kinematic model is quite striking. In figure
2(a), we see that the LCS defines a boundary to the vortex, as well as lobes
both inside and outside this boundary. The LCS dictate how the lobes will be
transported by the flow, and how the processes of entrainment and detrainment
from the vortex will occur. More revealing movies of this process may be viewed
online at http://www.cds.caltech.edu/ pdutoit/Hurricanes. In the movies,
one sees that the structure of the flows is remarkably similar in the real flow
and in the simple 2D ode model, despite the complexity of the atmospheric flow
compared with the low-dimensionalty of the simple model. To this point, we assert
that the computations of the LCS not only allow us to identify and characterize
the dominant transport mechanism in hurricane flows, but also to observe that
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the essential structure of that transport mechanism can be faithfully reproduced
by a very simple low-dimensional model.

Careful study of the LCS computed for hurricanes flows at fine detail reveals
all the intricacies of the homoclinic tangle. For instance, the action of the Smale
horseshoe map and the first iteration in the formation of a Cantor set can be
discerned in the evolution of the LCS. These concepts are typically studied with
regard to the Poincaré maps of periodically perturbed systems and are presented
in abstraction, whereas here we see quite surprisingly that the FTLE method
for extracting LCS uncovers these very same notions in the seemingly unrelated
turbulent and aperiodic flows of hurricane data and presents them in a way that
their evolution can be observed naturally through animation. Figure 4 illustrates
how the central “third” region shaded brown is advected out of the storm, while
the outer two “thirds” shaded green remain inside the storm, just as is prescribed
by a single iteration of the Smale horseshoe map in the formation of the Cantor
set, as in [10].

(a) (b)

Figure 4. The action of lobe dynamics in the homoclinic tangle induces

a map that, as has been shown by Smale, leads to the formation of a Cantor

set when iterated. Here we see the first iteration of this ‘horseshoe’ map in

the flow of the typhoon: the middle ’third’, colored brown, is removed from

the storm, while the two outer ‘thirds’ remain.
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Lie groups and plasticity at finite strain

Alexander Mielke

Introduction. The theory of polyconvex materials introduced in [Bal76] provided
a basis for a general theory of elastostatics that allows us to treat the geometric
nonlinearities arising in physically correct models. A stored-energy density W :
Rd×d → R∪{∞} has to satisfy frame indifference W (RF ) = W (F ) for R ∈ SO(d)
and F ∈ Rd×d, blow up for volume compression W (F ) → ∞ for detF → 0+, and
local non-self-interpenetration W (F ) = ∞ for detF ≤ 0. Thus the proper domain
for W is GL(d) = {F ∈ Rd×d | detF > 0 } rather than Rd×d.

In plasticity the strain tensor F or its linearized version e(u) = 1
2 (∇u+(∇u)T )

are decomposed into an elastic and a plastic part, where the latter evolves under
time-dependent loadings according to a suitable flow law. While in the case of
small strains the decomposition e(u) = eel+epl is additive, elastoplasticity at finite
strain is based on the multiplicative decomposition ∇ϕ = F = FelFpl, introduced

in [Lee69]. Here P
def

= Fpl lies in the plastic Lie group P, which is usually chosen
to be SL(d) = {F ∈ Rd×d | detF = 1 }. This decomposition is often used in
engineering and is quite successful in predicting macroscopic deformation processes
like deep drawing and other forming processes [SiO85, MiS92, NeW03]. A major
advance was the observation in [OrS99] that the time-incremental problems in rate-
independent and in the viscoplastic case can be written as minimization problems
for the sum of the increments in the stored energy and in the dissipated energy to
obtain the state at the next time level [OrR99, CHM02, Mie03, GM*06].

The issue of this note is to address the question how one can use the methods of
the calculus of variations to combine the tools from linear functional analysis (like
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weak convergence) with the strong geometrical nonlinearities inherent to elasto-
plasticity at finite strain. In fact, so far this is only possible in the case that the
flow law is rate independent, which is a common assumption in engineering.

The mechanical model. Consider the body Ω ⊂ Rd in the reference configu-
ration and let ϕ : Ω → Rd denote the deformation, P : Ω → SL(d) = {P ∈
Rd×d | detP = 1 } the plastic tensor, and p : Ω → Rm some hardening variables.
Then, we assume that the stored-energy functional takes the form

E(t, ϕ, P, p) =

∫

Ω

Wel(x,∇ϕ, P )+Wh,r(P, p,∇P,∇p) dx− 〈ℓ(t), ϕ〉.

Here the gradients (∇P,∇p) introduce a length scale for the materials, which is
essential to provide compactness and prevent formation of microstructures. Elastic
equilibrium is obtained via

(1) ϕ minimizes E(t, ·, P, p) subject to ϕ = gDir on ΓDir.

To formulate the plastic flow law we combine the plastic variables into one inner

variable z = (P, p) ∈ Z
def

= P×Rm. Using a dissipation metric R : TZ → [0,∞] the
flow law can be written as an internal force balance (Biot’s law) that is equivalent
to the “principle of maximal dissipation”:

(2) 0 ∈ ∂żR(z, ż) +
(
∂P Wel(F,P )

0

)
+ ∂zWh,r(z,∇z) − div∂∇zWh,r(z,∇z).

Rate independence is enforced by the assumption that R(z, ·) : TzZ → [0,∞]
is homogeneous of degree 1, which implies that the subdifferential ∂żR(z, ·) is
homogeneous of degree 0, and hence insensitive to the modulus of the argument.

The invariances we have to satisfy are frame indifference and plastic invariance:

(3) Wel(RFQ,PQ) = Wel(F, P ) and R(PQ, p, ṖQ, ṗ) = R(P, p, Ṗ , ṗ)

for all F ∈ GL(d), (P, p) ∈ P×Rm, R ∈ SO(d), and Q ∈ P. Here plastic invari-
ance means that previous distortions Q of the crystallographic lattice are forgot-
ten. Note that this invariance does not apply to the hardening and regularizing
energy contribution Wh,r. In particular, (3) implies the multiplicative decomposi-

tion Fel = FP−1 via the existence of Ŵ and R̂:

(4) Wel(F, P ) = Ŵ (FP−1) and R(P, p, Ṗ , ṗ) = R̂(p, ṖP−1, ṗ).

Energetic formulation. A proper solution theory for the system (1) and (2) is so
far not available. Hence we concentrate on the so-called energetic solutions that
are especially adapted to rate-independent processes with strong nonlinearities,
see [MaM05, Mie05, FrM06].

Since solutions may develop jumps in time we replace the (infinitesimal) dissipa-
tion metric R by the dissipation distance D : Z×Z → [0,∞] such that D(z0, z1) is

the infimum of
∫ 1

0
R(z(s), ż(s)) ds over all smooth curves z starting in z0 and end-

ing in z1. With this we define the functional D(z0, z1) =
∫
ΩD(x, z0(x), z1(x)) dx,

and emphasize that D satisfies a triangle inequality.
We choose now a suitable state space Q for the triple q = (ϕ, P, p) which satisfies

ϕ = gDir on ΓDir and (P (x), p(x)) ∈ Z in Ω. Then, a function q : [0, T ] → Q is
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called an energetic solution for the rate-independent system (Q,E,D) if for all
t ∈ [0, T ] the stability condition (S) and the energy balance (E) hold:

(5)
(S) E(t,q(t)) ≤ E(t, q̂) + D(q(t), q̂) for all q̂ ∈ Q,

(E) E(t,q(t)) + DissD(q; [0, t]) = E(0,q(0)) −
∫ t

0
〈ℓ̇(t), ϕ(t)〉 ds,

where DissD(q; [r, s]) = sup
∑N

1 D(P (τj−1), p(τj−1), P (τj), p(τj)) taken over all
partitions of [r, s].

The advantage of the energetic formulation via (S) and (E) is that it is totally
derivative-free and purely geometric, i.e., independent of choices of coordinates.
Thus it is especially adapted to treat strongly nonlinear problems. However, to
obtain existence results one has to combine it with some functional analysis.

Existence result. We choose Q as a weakly closed subset of the Sobolev space

W1,qY (Ω; Rd) ×
(
W1,r(Ω; Rd×d) ∩ LqP(Ω; Rd×d)

)
× W1,r(Ω; Rm)

by asking the pointwise restrictions given in the previous sections. The essential

conditions are the polyconvexity of Ŵ in (4) and the coercivity

Ŵ (Fel) +Wh,r(P, p,∇P,∇p) ≥ c
(
|Fel|

qE+|P |qP+|p|r+|(∇P,∇p)|r
)
− C.

Under some more technical conditions and the crucial assumptions

1

qE
+

1

qP
=

1

qY
, qY > d, r > 1,

it is shown in [MaM08] that energetic solutions in the sense of (5) exist. The proof
uses the abstract ideas developed in [FrM06] to complete the ideas developed in
[CHM02, Mie04, MiM06], where only finitely many time-incremental minimization
steps were considered.

References

[Bal76] J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch.
Rational Mech. Anal., 63(4), 337–403, 1976.

[CHM02] C. Carstensen, K. Hackl, and A. Mielke. Non–convex potentials and microstructures
in finite–strain plasticity. Proc. Royal Soc. London, Ser. A, 458, 299–317, 2002.

[FrM06] G. Francfort and A. Mielke. Existence results for a class of rate-independent material
models with nonconvex elastic energies. J. reine angew. Math., 595, 55–91, 2006.
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Bifurcations of relative equilibria at zero momentum

James Montaldi

We consider Hamiltonian systems with G = SO(3) symmetry, and in particular
where SO(3) is acting freely on the phase space P . Zero momentum is special as it
is the only momentum value which is fixed by the whole group of rotations. Indeed
the symplectic reduced spaces Pµ have dimension dimP −3−dimGµ (3 = dimG)
so that for µ 6= 0, dimPµ = dimP0 + 2. This difference in the geometry of
reduction has implications for the dynamics; here we discuss the implications for
the family of relative equilibria in a neighbourhood of one with zero momentum.
In particular, we discuss what typical sets of relative equilibria look like, and how
this set depends on the choice of Hamiltonian H and how it changes when the
Hamiltonian is varied.

To analyze such questions, the first step is to quotient by the group action
and to consider the reduced dynamics on P/G. Let p ∈ P be a point with zero
momentum: J(p) = 0, and write p̄ for the corresponding point in P0 ⊂ P/G. In a
neighbourhood of p̄, one can write

P/G ≃ P0 × g∗,

where g = so(3) is the Lie algebra of SO(3), and g∗ its dual [4]. The reduced
space P0 can often be thought of as the phase space associated to shape dynamics,
while g∗ corresponds to rotational motion, as for a rigid body. An application of
the implicit function theorem reduces the search for relative equilibria to finding
the critical points of the restriction of a function h : g∗ → R to the spheres
|µ|2=const, see [4, 5] for details. If we write φ(µ) = |µ|2 (the Casimir on g∗), then
this is equivalent to finding the singular points of the reduced energy-momentum
map (or energy-Casimir map) (h, φ) : g∗ → R2. We use Singularity Theory to
study these singular points.
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Instead of working directly with (h, φ), we use an equivalence relation on the
differential F = d(h, φ). This F is a map from g∗ to Mat(2, 3), the set of 2 × 3
matrices. Let V ⊂ Mat(2, 3) be the set of matrices of rank at most 1. Then
µ is a singular point of (h, φ) if and only if F (µ) ∈ V . The set R of relative
equilibria is therefore equal to F−1(V ). The equivalence relation we use is called
KV equivalence, developed by J. Damon [1, 2]. This equivalence relation is defined
by a diffeomorphism of (a neighbourhood of the origin in) g∗ × Mat(2, 3) of the
form

Ψ(µ,A) = (σ(µ), τ(µ,A)),

where σ is a diffeomorphism of g∗ = R3 and τ preserves V in the sense that if
A ∈ V then τ(µ,A) ∈ V (∀µ). Two maps F,G : g∗ → Mat(2, 3) are then KV -
equivalent if there is such a diffeomorphism Ψ which maps the graph of F to that
of G. This implies in particular that F−1(V ) and G−1(V ) are diffeomorphic (via
σ).

Choose a basis on g∗ ≃ R3 so that φ(x, y, z) = 1
2 (x2 + y2 + z2). Then with

h0 = 1
2 (ax2 + by2 + cz2) the map F becomes F0(x, y, z) =

(
ax by cz
x y z

)
. If

a, b, c are distinct then the set R = F−1(V ) of relative equilibria consists of the
three axes (as should be familiar for Euler’s equations for the rigid body, where
P0 is just a single point). One shows using singularity theory that this map F0 is
1-determined with respect to KV -equivalence, which implies that if h = h0 +O(3)
then the set of relative equilibria for h will be diffeomorphic to the three axes,
always providing a, b, c are distinct, as in Fig. 1(a).

Now define the family of functions

hu(x, y, z) = h0(x, y, z) + αx + βy + γz,

where u = (α, β, γ) ∈ U (a neighbourhood of 0 in R3). The resulting maps Fu are
given by

Fu(x, y, z) =

(
ax+ α by + β cz + γ
x y z

)
.

Using singularity theory methods, one shows that Fu is a KV versal deformation
of F0, implying that if h′ǫ is any parametrized deformation of h0 then there is a
smooth map k : ǫ 7→ u = k(ǫ) ∈ U for which F ′

ǫ is KV -equivalent to Fk(ǫ), and so
in particular the sets of relative equilibria for h′ǫ and hk(ǫ) are diffeomorphic.

To understand all possible deformations of the set R0 consisting of the three
axes, one need only study the family Fu, which is straightforward. In U , the
deformation Ru is singular whenever u = (α, β, γ) lies on one of the coordinate
planes, otherwise it is a smooth curve (or union of curves), and hence a smooth
manifold in the original phase space P , as in Fig. 1(c). In Fig. 1(b) we show a
typical deformation of R0 when it is singular. The large dot in each of the figures
represents the point µ = 0.
Stability of relative equilibria. One can proceed further with this analysis
and determine the stabilities of the relative equilibria. Returning to the splitting
P/G ≃ P0 × g∗, suppose the central relative equilibrium at p is Lyapounov stable
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b

(a) α = β = γ = 0

b

(b) α = 0, β, γ 6= 0

b

(c) α, β, γ 6= 0

Figure 1. Deformations of the set of relative equilibria

on P0 and satisfies Dirichlet’s criterion there: the hessian of H0 on P0 is positive
definite (this is essentially the energy-Casimir method for determining stability).
We wish to know which nearby relative equilibria are stable.

Suppose dhu(0) 6= 0. Then in a neighbourhood of µ = 0, of the two relative
equilibria in Pµ one is stable (by Dirichlet’s criterion) while the other is elliptic
(all eigenvalues are imaginary). As |µ| is increased, there are two saddle-centre
bifurcations (for nonzero α, β, γ): one produces a linearly unstable RE and an
elliptic one, and the other produces a linearly unstable RE and a Lyapounov
stable one. If on the other hand, say α = 0, as in Fig. 1(b), then one of the
saddle-centre bifurcations becomes a pitchfork bifurcation, while if say α = β = 0
then both become pitchforks.

Note that dh(0) 6= 0 is the condition for the relative equilibrium at µ = 0 to be
a “transverse relative equilibrium”, in the sense of Patrick and Roberts [6].

I would like to thank J.E. Marsden and P.S. Krishnaprasad for suggesting during
the conference that these results may be applicable to coupled rotor systems, and
J.E. Marsden for asking about reconstruction of the dynamics from P/G to P in
the presence of these bifurcations. This is still to be elaborated.
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Stochastic Hamiltonian dynamical systems

Juan-Pablo Ortega

(joint work with Joan-Andreu Lázaro-Camı́)

The generalization of classical mechanics to the context of stochastic dynamics has
been an active research subject ever since K. Itô introduced the theory of stochastic
differential equations in the 1950s (see for instance [14, 2, 18, 19, 20, 16, 17, 1, 3, 4],
and references therein). The motivations behind some pieces of work related to
this field lay in the hope that a suitable stochastic generalization of classical me-
chanics should provide an explanation of the intrinsically random effects exhibited
by quantum mechanics within the context of the theory of diffusions . In other in-
stances the goal is establishing a framework adapted to the handling of mechanical
systems subjected to random perturbations or whose parameters are not precisely
determined and are hence modeled as realizations of a random variable.

The approach followed in our work (see [10, 11]) is closer to the one introduced
in [2] in which stochastic Hamiltonian systems are those that satisfy a stochastic
differential equation that generalizes the standard Hamilton’s equations. We then
show that this SDE is characterized by a critical action principle where the action
has its image in the space of real valued processes and the variations are taken in
the space of processes with values in the phase space of the system that we are
modeling.

1. The Hamiltonian stochastic differential equation

Let (M, {·, ·}) be a finite dimensional Poisson manifold, X : R+ × Ω → V a
continuous semimartingale that takes values on the vector space V with X0 =
0, and let h : M → V ∗ be a smooth function with values in V ∗, the dual of
V . Let {ǫ1, . . . , ǫr} be a basis of V ∗ and let h1, . . . , hr ∈ C∞(M) be such that
h =

∑r
i=1 hiǫ

i. The stochastic Hamiltonian system associated to h with
stochastic component X is the stochastic differential equation

(1) δΓh = H(X,Γ)δX

defined by the Stratonovich operator H(v, z) : TvV → TzM defined by

(2) H(v, z) (u) :=

r∑

i=1

〈
ǫi, u

〉
Xhi

(z) ,

where Xhi
is the Hamiltonian vector field associated to hi ∈ C∞ (M). The dual

Stratonovich operatorH (v, z) : T ∗
zM → T ∗

v V ofH(v, z) is given byH∗(v, z)(αz) =
−dh(z) · B♯(z)(αz), where B♯ : T ∗M → TM is the vector bundle map naturally
associated to the Poisson tensor B ∈ Λ2(M) of {·, ·} and dh =

∑r
i=1 dhi ⊗ ǫi. We

will summarize this construction by saying that (M, {·, ·}, h,X) is a stochastic
Hamiltonian system.

Evolution of the observables. Let f ∈ C∞(M) and ζh maximal stopping time
of the Hamiltonian system (M, {·, ·}, h,X). Then, for any stopping time τ < ζh,
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the solution semimartingales Γh satisfy

(3) f(Γh
τ ) − f(Γh

0 ) =

r∑

j=1

∫ τ

0

{f, hj}(Γ
h)δXj .

The Itô representation of this expression is given by

f
(
Γh

τ

)
−f
(
Γh

0

)
=

r∑

j=1

∫ τ

0

{f, hj}
(
Γh
)
dXj+

1

2

r∑

j,i=1

∫ τ

0

{{f, hj} , hi}
(
Γh
)
d
[
Xj, X i

]
.

Stochastic Hamiltonian systems locally preserve the symplectic leaves of the Pois-
son manifolds they live in and satisfy a stochastic version of the Liouville Theorem.
More specifically:

Theorem 1.1. Let (M,ω) be a symplectic manifold, X : R+ × Ω → V ∗ a semi-
martingale, and h : M → V ∗ a Hamiltonian function. Let F be the associated
Hamiltonian flow. Then, for any z ∈M and any (t, η) ∈ [0, ζ (z)],

F ∗
t (z, η)ω = ω.

2. Critical action principle for the stochastic Hamilton equations

We will show that the stochastic Hamilton equations can be characterized by
a variational principle that generalizes the one used in the classical deterministic
situation. In this section, our phase space will be an exact symplectic manifold
(M,ω), that is, there exist a one-form θ ∈ Ω (M) such that ω = −dθ. The
archetypical example of an exact symplectic manifold is the cotangent bundle
T ∗Q of any manifold Q, with θ the Liouville one-form.

Definition 2.1. Let (M,ω = −dθ) be an exact symplectic manifold, X : R+×Ω →
V a semimartingale taking values on the vector space V , and h : M → V ∗ a
Hamiltonian function. We denote by S (M) and S (R) the sets of M and real-
valued semimartingales, respectively. We define the stochastic action associated
to h as the map S : S(M) → S(R) given by

S (Γ) =

∫
〈θ, δΓ〉 −

∫ 〈
ĥ (Γ) , δX

〉
,

where in the previous expression, ĥ (Γ) : R+×Ω → V ×V ∗ is given by ĥ (Γ) (t, ω) :=
(Xt(ω), h(Γt(ω))).

We now specify the kind of variations that we will use in the critical action
principle. Let M be a manifold and Γ a M -valued semimartingale. Let s0 > 0;
we say that the map Σ : (−s0, s0) × R+ × Ω → M is a pathwise variation of Γ
whenever Σ0

t = Γt for any t ∈ R+ a.s.. We say that the pathwise variation Σ of Γ
converges uniformly to Γ whenever the following properties are satisfied:

(1) For any f ∈ C∞ (M), f (Σs) → f (Γ) in ucp as s→ 0.
(2) There exists a process Y : R+ × Ω → TM over Γ such that, for any

f ∈ C∞ (M), the Stratonovich integral
∫
Y [f ] δX exists for any con-

tinuous real semimartingale X (this is for instance guaranteed if Y is a
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semimartingale) and, additionally, the increments (f (Σs) − f (Γ))/ s con-
verge in ucp to Y [f ] as s → 0. We will call such a Y the infinitesimal
generator of Σ.

We will say that Σ (respectively, Y ) is bounded when its image lies in a compact
set of M (respectively, TM).

Theorem 2.2 (Critical Action Principle). Let (M,ω = −dθ) be an exact symplec-
tic manifold, X : R+ × Ω → V a semimartingale that takes values in the vector
space V, and h : M → V ∗ a Hamiltonian function. Let m0 be a point in M and
Γ : R+ ×Ω →M a continuous adapted semimartingale defined on [0, ζΓ) such that
Γ0 = m0. Let K ⊆M be a compact set that contains m0 and τK the first exit time
of Γ from K. Suppose that τK <∞ a.s.. Then,

(1) For any bounded pathwise variation Σ with bounded infinitesimal generator
Y which converges uniformly to ΓτK uniformly, the action has a directional
derivative that equals

d

ds

∣∣∣∣
s=0

S (Σs) := lim
s→0

1

s
[S (Σs) − S (ΓτK )]

=

∫
〈iY dθ, δΓ

τK 〉 −

∫ 〈
Ŷ [h](ΓτK ), δX

〉

+ 〈θ (ΓτK ) , Y 〉 − 〈θ (ΓτK ) , Y 〉t=0 ,

where the symbol Ŷ [h](ΓτK ) is consistent with the notation introduced in
Definition 2.1

(2) The semimartingale Γ satisfies the stochastic Hamilton equations with ini-
tial condition Γ0 = m0 up to time τK if and only if, for any bounded
pathwise variation Σ : (−s0, s0)×R+×Ω → M with bounded infinitesimal
generator which converges uniformly to ΓτK and such that Σs

0 = m0 and
Σs

τK
= ΓτK

a.s. for any s ∈ (−s0, s0),
[
d

ds

∣∣∣∣
s=0

S (Σs)

]

τK

= 0 a.s..
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Lagrangian and Hamiltonian structure of complex fluids

Tudor S. Ratiu

(joint work with François Gay-Balmaz)

This talk is based on some results in [2], where the geometric structure of many
complex fluids models is studied in detail.

The equations of motion of an adiabatic compressible fluid on an oriented Rie-
mannian manifold D are given by






∂u

∂t
+ ∇uu =

1

ρ
gradp,

∂ρ

∂t
+ div(ρu) = 0,

∂S

∂t
+ div(Su) = 0,
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where ∇ is the Levi-Civita connection of the metric, u is the spatial velocity of
the fluid, ρ is the mass density, S is the entropy density, and p is the pressure.
The boundary conditions are u · n = 0, where n is the outside pointing unit
normal vector field to the boundary. It was shown in [13] that this system, as
well as its magnetohydrodynamic extension, admit a non-canonical Hamiltonian
formulation, that is, these equations can be written as ḟ = {f, h}, where h is a
Hamiltonian function and {·, ·} is a Poisson bracket. In [12], this non-canonical
Poisson bracket was obtained via Lie-Poisson reduction for the semidirect product
group of diffeomorphisms with the vector space that is the product of functions
and densities. The Lagrangian formulation of these equations and the associated
variational principle were given in [10].

In the same spirit, the non-canonical Hamiltonian structure for adiabatic Yang-
Mills charged fluids discovered in [3] was obtained by reduction from a canonical
formulation in [1], by using a Kaluza-Klein point of view involving the automor-
phism group of the principal bundle of the theory. The Euler-Poincaré formulation
of these equations is also found in this paper.

There is a long list of non-canonical Hamiltonian structures for a wide class of
non-dissipative fluid models; see, for example, [7], [4], [8], [9], and [5]. These models
include Yang-Mills magnetohydrodynamics , spin glasses , and several models of
superfluids . Many of these models have their Hamiltonian structure given by
Lie-Poisson brackets with cocycles ; see [6] where the corresponding variational
principles are also studied and the theory is applied to liquid crystals.

The goal of this talk is to present a unified mathematical approach that explains
the geometric structure of the equations of motion for all these models and to show
that they are all derived from one and the same reduction theorem generalizing
Lie-Poisson reduction to systems that have built-in cocycles. The physical systems
to which this theory is applicable are the complex fluids which are fluids whose
particles in material representation have an order parameter attached to them.

1. Prerequisites

In this short section we summarize the necessary concepts, definitions, and
notations needed later.

Let G be a Lie group, ρ : G→ Aut(V ) a right representation, and S := GsV
the semidirect product of G with V . Recall that the multiplication is given by

(g1, v1)(g2, v2) = (g1g2, v2 + ρg2(v1)),

where g1, g2 ∈ G and v1, v2 ∈ V . The Lie algebra s := g sV of S has bracket

ad(ξ1,v1)(ξ2, v2) = [(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], v1ξ2 − v2ξ1),

where ξ1, ξ2 ∈ g and vξ denotes the induced action of g on V , that is,

vξ :=
d

dt

∣∣∣∣
t=0

ρexp(tξ)(v) ∈ V.

If (ξ, v) ∈ s and (µ, a) ∈ s∗ = g∗ × V ∗ we have

ad∗
(ξ,v)(µ, a) = (ad∗

ξ µ+ v ⋄ a, aξ),
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where aξ ∈ V ∗ and v ⋄ a ∈ g∗ are defined by

aξ :=
d

dt

∣∣∣∣
t=0

ρ∗exp(−tξ)(a) and 〈v ⋄ a, ξ〉g := −〈aξ, v〉V ,

and 〈·, ·〉
g

: g∗ × g → R, 〈·, ·〉V : V ∗ × V → R are the duality parings.

Let F(G, V ∗) denote the vector space of smooth V ∗-valued functions onG. Then
c ∈ F(G, V ∗) is a right one-cocycle if it verifies the identity c(fg) = ρ∗g−1(c(f)) +

c(g) for all f, g ∈ G. This implies that c(e) = 0 and c(g−1) = −ρ∗g(c(g)). In-
stead of the contragredient representation ρ∗g−1 of G on V ∗ form the affine right

representation of G on V given by

θg(a) = ρ∗g−1(a) + c(g).

Note that
d

dt

∣∣∣∣
t=0

θexp(tξ)(a) = aξ + dc(ξ).

and

〈aξ + dc(ξ), v〉V = 〈dcT (v) − v ⋄ a, ξ〉g,

where dc : g → V ∗ and dcT : V → g∗ are defined by dc(ξ) := Tec(ξ) and
〈dcT (v), ξ〉g := 〈dc(ξ), v〉V , respectively.

2. Affine Lagrangian semidirect product theory

Let L : TG×V ∗ → R be a rightG-invariant Lagrangian function under the affine
G-action (vh, a) ∈ TG × V ∗ 7→ (ThRg(vh), θg(a)) = (ThRg(vh), ρ∗g−1(a) + c(g)) ∈

TG × V ∗. Thus, if a0 ∈ V ∗, we define La0 : TG → R by La0(vg) := L(vg, a0).
Then La0 is right invariant under the lift to TG of the right action of Gc

a0
on G,

where Gc
a0

:= {g ∈ G | θg(a0) = a0}. Right G-invariance of L permits us to define
l : g × V ∗ → R by l := L|g×V ∗ and hence we have

l(TgRg−1(vg), θg−1(a0)) = L(vg, a0) for all vg ∈ TgG, a0 ∈ V ∗.

For a curve g(t) ∈ G, let ξ(t) := TRg(t)−1(ġ(t)) and define the curve a(t) ∈ V ∗ as
the unique solution of the following affine differential equation with time dependent
coefficients

ȧ(t) = −a(t)ξ(t) − dc(ξ(t)), a(0) = a0.

The solution of this equation is a(t) = θg(t)−1(a0).

Theorem. The following statements are equivalent:

(i) With a0 ∈ V ∗ fixed, Hamilton’s variational principle

δ

∫ t2

t1

La0(g(t), ġ(t))dt = 0,

holds, for variations δg(t) of g(t) vanishing at the endpoints.
(ii) The curve g(t) satisfies the Euler-Lagrange equations for La0 on G.
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(iii) The constrained variational principle

δ

∫ t2

t1

l(ξ(t), a(t))dt = 0,

holds on g × V ∗, upon using variations of the form

δξ =
∂η

∂t
− [ξ, η], δa = −aη − dc(η),

where η : [t1, t2] → g is an arbitrary smooth curve with η(t1) = η(t2) = 0.
(iv) The affine Euler-Poincaré equations hold on g × V ∗:

∂

∂t

δl

δξ
= − ad∗

ξ

δl

δξ
+
δl

δa
⋄ a− dcT

(
δl

δa

)
.

3. Affine Hamiltonian semidirect product theory

The Hamiltonian analogue of the previous theorem necessitates considerably
more background material related to the reduction by stages process (see [11]).
We summarize here only the final result.

Let H : T ∗G× V ∗ → R be a right-invariant Hamiltonian under the G-action

(αh, a) ∈ T ∗G×V ∗ 7→ (RT∗

g (αh), θg(a)) := (RT∗

g (αh), ρ∗g−1(a)+ c(g)) ∈ T ∗G×V ∗,

where RT∗

g (αh) := T ∗
hgRg−1αh is the cotangent lift of right translation. In partic-

ular, if a0 ∈ V ∗ is fixed, then Ha0 := H |T∗G×{a0} : T ∗G → R is invariant under
the induced action of the a0-isotropy subgroup Gc

a0
relative to the affine action θ.

Theorem. For α(t) ∈ T ∗
g(t)G and µ(t) := T ∗

eRg(t)(α(t)) ∈ g∗, the following are

equivalent:

(i) α(t) satisfies Hamilton’s equations for Ha0 on T ∗G.
(ii) The following affine Lie-Poisson equation holds on s∗:

∂

∂t
(µ, a) =

(
− ad∗

δh
δµ
µ−

δh

δa
⋄ a+ dcT

(
δh

δa

)
,−a

δh

δµ
− dc

(
δh

δµ

))
, a(0) = a0.

The evolution of the advected quantity a(t) is given by a(t) = θg(t)−1(a0).

4. Perfect complex fluids

The passage from usual fluids to complex fluids is based on two key observations.
First, one needs to enlarge the configuration manifold Diff(D) to a bigger group
G that contains variables in the Lie group O of order parameters. Second, the
usual advection equations (for the mass density, the entropy, the magnetic field,
etc) need to be augmented by a new advected quantity on which the group G acts
by an affine representation.
The general setup. We shall denote in what follows by O the order parameter
Lie group and let F(D,O) := {χ : D → O smooth} be the infinite dimensional
group of O-valued functions on D relative to pointwise multiplication. The Lie
algebra of O is denoted by o and its dual by o∗. The basic idea in the geometric
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theory of complex fluids is to enlarge the “particle relabeling group” Diff(D) to
the semidirect product G = Diff(D)s F(D,O) whose multiplication is given by
(η, χ)(ϕ, ψ) = (η ◦ ϕ, (χ ◦ ϕ)ψ) for any (η, χ), (ϕ, ψ) ∈ Diff(D)s F(D,O).

The Lie algebra of G is the semidirect product g = X(D)s F(D, o) whose Lie
bracket is

ad(u,ν)(v, ζ) = (adu v, adν ζ + dν · v − dζ · u),

where adu v = −[u,v], adν ζ ∈ F(D, o) is given by adν ζ(x) := adν(x) ζ(x), and
dν · v ∈ F(D, o) is given by dν · v(x) := dν(x)(v(x)) for all x ∈ D.

The dual of g is g∗ = Ω1(D) × F(D, o∗) through the pairing

〈(m, κ), (u, ν)〉 =

∫

D

(m · u + κ · ν)µ,

where µ is a volume form on D, (m, κ) ∈ Ω1(D) × F(D, o∗), and (u, ν) ∈ X(D) ×
F(D, o). The dual map to ad(u,ν) is

ad∗
(u,ν)(m, κ) =

(
£um + (div u)m + κ · dν, ad∗

ν κ+ div(uκ)
)
.

Explanation of the symbols:

• κ · dν ∈ Ω1(D) denotes the one-form defined by

κ · dν(vx) := κ(x)(dν(vx))

• ad∗
ν κ ∈ F(D, o∗) denotes the o∗-valued mapping defined by

ad∗
ν κ(x) := ad∗

ν(x)(κ(x)).

• uκ is the 1-contravariant tensor field with values in o∗ defined by

uκ(αx) := αx(u(x))κ(x) ∈ o∗ for all αx ∈ T ∗
D.

So uκ is a generalization of the notion of a vector field. X(D, o∗) denotes the space
of all o∗-valued 1-contravariant tensor fields.
• div(u) denotes the divergence of the vector field u with respect to the fixed
volume form µ. Recall that it is defined by the relation (divu)µ = £uµ. This
operator can be naturally extended to the space X(D, o∗) as follows. For w ∈
X(D, o∗) we write w = waε

a where (εa) is a basis of o∗ and wa ∈ X(D). We define
div : X(D, o∗) → F(D, o∗) by

divw := (divwa)εa.

Note that if w = uκ we have

div(uκ) = dκ · u + (div u)κ.

Now, that the particle relabeling group has been replaced by the semidirect
product G = Diff(D)s F(D,O), we construct the space of advected quantities.
These are of two kinds: usual ones (as in the theory of adiabatic fluids, for example)
and new ones, intimately connected to the order parameter group, that involve
affine actions and cocycles.

We take as the affine representation space V ∗
1 ⊕ V ∗

2 , where V ∗
i are subspaces

of the space of all tensor fields on D, possibly with values in a vector space. In
addition, we assume that V ∗

1 is only acted upon by the component Diff(D) ofG and
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that the action of G on V ∗
2 is affine, with the restriction that the affine term only

depends on the second component F(D,O) of G. The right affine representation
of G = Diff(D)s F(D,O) on V ∗

1 ⊕ V ∗
2 is given by

(a, γ) ∈ V ∗
1 ⊕ V ∗

2 7→ (aη, γ(η, χ) + C(χ)) ∈ V ∗
1 ⊕ V ∗

2 ,

where γ(η, χ) denotes the action of (η, χ) ∈ G on γ ∈ V ∗
2 , and C ∈ F(F(D,O), V ∗

2 )
satisfies the cocycle identity

C((χ ◦ ϕ)ψ) = C(χ)(ϕ, ψ) + C(ψ) for all χ, ψ ∈ F(D,O), ϕ ∈ Diff(D).

Thus, the representation ρ and the affine term c in the general theory are

ρ∗(η,χ)−1(a, γ) = (aη, γ(η, χ)) and c(η, χ) = (0, C(χ)).

The infinitesimal action of (u, ν) ∈ g on γ ∈ V ∗
2 is given by γ(u, ν) := γu + γν.

Therefore, the diamond operation has the expression

(v, w) ⋄ (a, γ) = (v ⋄ a+ w ⋄1 γ, w ⋄2 γ), (v, w) ∈ V1 ⊕ V2, (a, γ) ∈ V ∗
1 ⊕ V ∗

2 ,

where ⋄1 and ⋄2 are associated to the induced representations of the first and
second component of G on V ∗

2 . On the right hand side, ⋄ is associated to the
representation of Diff(D) on V ∗

1 . Usually, V ∗
1 is naturally the dual of some space

V1 of tensor fields on D. For example the (p, q) tensor fields are naturally in duality
with the (q, p) tensor fields. For a ∈ V ∗

1 and v ∈ V1, the duality pairing is

〈a, v〉 =

∫

D

(a · v)µ,

where · denotes the contraction of tensor fields.
The affine cocycle is c(η, χ) = (0, C(χ)). Hence

dcT (v, w) = (0,dCT (w)).

The Lagrangian formulation. For a Lagrangian

l = l(u, ν, a, γ) : [X(D)s F(D, o)] s [V ∗
1 ⊕ V ∗

2 ] → R ,

the affine Euler-Poincaré equations become





∂

∂t

δl

δu
= −£u

δl

δu
− (div u)

δl

δu
−
δl

δν
· dν +

δl

δa
⋄ a+

δl

δγ
⋄1 γ

∂

∂t

δl

δν
= − ad∗

ν

δl

δν
− div

(
u
δl

δν

)
+
δl

δγ
⋄2 γ − dCT

(
δl

δγ

)
,

and the advection equations are
{
ȧ+ au = 0
γ̇ + γu + γν + dC(ν) = 0.

In the concrete case of complex fluids, one chooses V2 = X(D, o∗) and so V ∗
2 :=

Ω1(D, o). We still let V1 be arbitrary. In concrete examples, its dual V ∗
1 is formed

by the classical convected quantities such as mass density, entropy density, or
magnetic field, for example. The affine representation is given by

(a, γ) 7→ (aη,Adχ−1 η∗γ + χ−1Tχ),
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where (η, χ) ∈ Diff(D)s F(D,O), (a, γ) ∈ V ∗
1 ×Ω1(D, o), and Adχ−1 η∗γ+χ−1Tχ

is the o-valued one-form
(
Adχ−1 η∗γ + χ−1Tχ

)
(vx) := Adχ(x)−1(η∗γ(vx)) + χ(x)−1Txχ(vx),

for vx ∈ TxD. One can check that γ(η, χ) := Adχ−1 η∗γ is a right representation
of G on V ∗

2 and that C(χ) = χ−1Tχ verifies the cocycle identity. The formula of
the affine representation is identical to the action of the automorphism group of
the trivial principal bundle O × D on the space connections.

For this example we have

γu = £uγ, γν = − adν γ and dC(ν) = dν,

where adν γ ∈ Ω1(D, o) and dν ∈ Ω1(D, o) are the one-forms defined by

(adν γ) (vx) := adν(x)(γ(vx)) = [ν(x), γ(vx)], dν(vx) := Txν(vx) ∈ o

for all vx ∈ TxD. A direct computation shows that

w ⋄1 γ = (divw) · γ − w · i dγ ∈ Ω1(D),

w ⋄2 γ = −Tr(ad∗
γ w) ∈ F(D, o∗),

dCT (w) = − divw ∈ F(D, o∗),

where Tr denotes the trace of the o∗-valued (1, 1) tensor

ad∗
γ w : T ∗

D × TD → o∗, (αx, vx) 7→ ad∗
γ(vx)(w(αx)).

In coordinates we have Tr(ad∗
γ w) = ad∗

γi
wi.

The affine Euler-Poincaré equations become in this case




∂

∂t

δl

δu
= −£u

δl

δu
− (div u)

δl

δu
−
δl

δν
· dν +

δl

δa
⋄ a+

(
div

δl

δγ

)
· γ −

δl

δγ
· i dγ

∂

∂t

δl

δν
= − ad∗

ν

δl

δν
+ div

(
δl

δγ
− u

δl

δν

)
− Tr

(
ad∗

γ

δl

δγ

)
,

and the advection equations are
{
ȧ+ au = 0
γ̇ + £uγ − adν γ + dν = 0.

These are, up to sign conventions, the equations for complex fluids given by
Holm[2002].

We close with some comments regarding the geometry of these equations. The
first observation is that γ defines a connection, namely,

(vx, ξh) ∈ TxD × ThO 7→ Adh−1(γ(x)(vx) + TRh−1(ξh)) ∈ o.

The covariant differential of this connection is denoted by dγ . For example, if
ν ∈ F(D, o), then

dγν(v) := dν(v) + [γ(v), ν].

The covariant divergence of w ∈ X(D, o∗) is the function

divγ w := divw − Tr(ad∗
γ w) ∈ F(D, o∗),
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defined as minus the adjoint of the covariant differential, that is,
∫

D

(dγν · w)µ = −

∫

D

(ν · divγ w)µ

for all ν ∈ F(D, o).
Note that the Lie derivative of γ ∈ Ω1(D, o) can be written as

£uγ(v) = d(γ(u))(v) + iudγ(v)

= dγ(γ(u))(v) − [γ(v), γ(u)] + dγγ(u,v) − [γ(u), γ(v)]

= dγ(γ(u))(v) + iuB(v),

where

B := dγγ = dγ + [γ, γ],

is the curvature of the connection induced by γ.
Note also that, using covariant differentiation, we have

w ⋄1 γ = (divw) · γ − w · i dγ = (divγ w) · γ − w · i B.

Therefore, in terms of dγ , divγ , and B = dγγ, the equations of motion of a
complex fluid read




∂

∂t

δl

δu
= −£u

δl

δu
− (div u)

δl

δu
−
δl

δν
· dν +

δl

δa
⋄ a+

(
divγ δl

δγ

)
· γ −

δl

δγ
· i B

∂

∂t

δl

δν
= − ad∗

ν

δl

δν
− div

(
u
δl

δν

)
+ divγ δl

δγ
,

and {
ȧ+ au = 0
γ̇ + dγ(γ(u)) + iuB + dγν = 0.

The Hamiltonian formulation. The Lie-Poisson space is
(

[X(D)s F(D, o)] s [V1 ⊕ V2]
)∗

∼= Ω1(D) × F(D, o∗) × V ∗
1 × V ∗

2

with affine Lie-Poisson bracket given by

{f, g}(m, κ, a, γ) =

∫

D

m ·

[
δf

δm
,
δg

δm

]
µ

+

∫

D

κ ·

(
ad δf

δκ

δg

δκ
+ d

δf

δκ
·
δg

δm
− d

δg

δκ
·
δf

δm

)
µ

+

∫

D

a ·

(
δf

δa

δg

δm
−
δg

δa

δf

δm

)

+

∫

D

γ ·

(
δf

δγ

δg

δm
+
δf

δγ

δg

δκ
−
δg

δγ

δf

δm
−
δg

δγ

δf

δκ

)
µ

+

∫

D

(
dC

(
δf

δκ

)
·
δg

δγ
− dC

(
δg

δκ

)
·
δf

δγ

)
µ.
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For a Hamiltonian h = h(m, κ, a, γ) : Ω1(D)×F(D, o∗)×V ∗
1 ×V ∗

2 → R, the affine
Lie-Poisson equations are therefore






∂

∂t
m = −£ δh

δm
m − div

(
δh

δm

)
m − κ · d

δh

δκ
−
δh

δa
⋄ a−

δh

δγ
⋄1 γ

∂

∂t
κ = − ad∗

δh
δκ
κ− div

(
δh

δm
κ

)
−
δh

δγ
⋄2 γ + dCT

(
δh

δγ

)

∂

∂t
a = −a

δh

δm
∂

∂t
γ = −γ

δh

δm
− γ

δh

δκ
− dC

(
δh

δκ

)
.

Recall that in the concrete case of complex fluids one takes V2 = X(D, o∗).
Thus V ∗

2 := Ω1(D, o). We let V ∗
1 be arbitrary; this is the space of the classical

convected quantities such as mass, entropy, or magnetic field. The affine Lie-
Poisson equations become in this concrete case





∂

∂t
m = −£ δh

δm
m − div

(
δh

δm

)
m − κ · d

δh

δκ
−
δh

δa
⋄ a

−

(
divγ δh

δγ

)
γ +

δh

δγ
· i dγγ

∂

∂t
κ = − ad∗

δh
δκ
κ− div

(
δh

δm
κ

)
− divγ δh

δγ

∂

∂t
a = −a

δh

δm
∂

∂t
γ = −dγ

(
γ

(
δh

δm

))
− i δh

δm
dγγ − dγ δh

δκ

and the associated affine Lie-Poisson bracket is

{f, g}(m, κ, a, γ) =

∫

D

m ·

[
δf

δm
,
δg

δm

]
µ

+

∫

D

κ ·

(
ad δf

δκ

δg

δκ
+ d

δf

δκ
·
δg

δm
− d

δg

δκ
·
δf

δm

)
µ

+

∫

D

a ·

(
δf

δa

δg

δm
−
δg

δa

δf

δm

)
µ

+

∫

D

[(
dγ δf

δκ
+ £ δf

δm
γ

)
·
δg

δγ
−

(
dγ δg

δκ
+ £ δg

δm
γ

)
·
δf

δγ

]
µ.

One can also formulate all of this in terms of the curvature. For details see [2].
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Large-scale atmospheric circulation, semi-geostrophic motion and
Lagrangian particle methods

Sebastian Reich

(joint work with Colin Cotter)

The compressible non-viscous Euler equations provide the starting point for mod-
eling atmospheric and ocean dynamics [5, 6]. Given typical length and time-scales
for global circulation patterns, approximations are often employed which filter non-
significant flow patterns from the equations of motion. Among the most popular
and useful approximations are the hydrostatic and the semi-geostrophic approxi-
mations, which reads [5]

Dug

Dt
+ fk× u +

1

ρ
∇p+ gk = 0,

ρt + ∇ · (ρu) = 0,

θt + u · ∇θ = 0,

with the geostrophic wind approximation

ug =
[
ug vg 0

]T

and

fug = −
1

ρ

∂p

∂y
, fvg = +

1

ρ

∂p

∂x
.
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A practical implication in the northern hemisphere is that pressure increases to
the right if you stand with our back to the wind.

The semi-geostrophic equations make use of the geostrophic wind approxima-
tion in a particularly clever way giving rise to many interesting underlying geo-
metric features including links to optimal transportation, variational mechanics
and constraint dynamics. One can explain these ideas by going first to the shallow
water equations and then further on to a single fluid parcel approximation

ṗ = J2p− ε∇µ(τ,q), J2 =

(
0 1
−1 0

)
,

q̇ = p,

with state variable z = (qT ,pT )T ∈ R4, µ a given (time-dependent) potential, and
the small parameter ε > 0. The associated “semi-geostrophic” equations are given
by

ṗg = J2p− ε∇µ(τ,q),(1)

q̇ = p,(2)

with geostrophic “wind” pg = −εJ2∇µ(τ,q). For time-independent µ (which we
assume from now on), the energy

E =
1

2
‖pg‖

2 + εµ(q)

is preserved.
Much insight into the semi-geostrophic approximation has been gained by the

Hoskins’ transformation [5]

qε = q + ε∇µ(q) = q + J2pg,

which leads to the following equation in the transformed variable qε:

(3) q̇ε = −εJ2∇µ(q).

It turns out that the Hoskin’s transform is linked to an optimal transportation
problem. See [5] for the fascinating details.

While the semi-geostrophic equations are well studied much less is known about
its range of validity in terms of the small parameter ε. Improved semi-geostrophic
models can be found in [6]. More recently, asymptotic expansions have been
considered within the Lagrangian variational framework in [8, 9].

A different approach has been taken in [3], which applies Hamiltonian normal
form theory to the gyroscopic particle problem (1)-(2), i.e., one finds a canonical
near-identity change of coordinates Ψn : zε → z so that

(4) Hn = H0 ◦ Ψn = K + εGn + εn+1Rn,

where

(5) {Gn,K} = 0, K =
1

2
‖pε‖

2,
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with {·, ·} being the Poisson bracket for (1)-(2). Optimal truncation in the in-
dex n yields the desired exponential dependence on ε and the preservation of
“geostrophic/gyroscopic” balance over exponentially long periods of time.

As a consequence of (4) and (5), we may consider the reduced equations

0 = ṗε = J2∇pGn(qε, 0) − εGn(qε, 0),

q̇ε = ∇pGn(qε, 0),

for initial conditions satisfying pε(0) = 0. These equations are equivalent to

q̇ε = −εJ2∇qGn(qε, 0)

and the leading order term coincide with Hoskin’s transformed equation (3).
Furthermore, the normal form estimates remain valid for many particle systems

of type (1)-(2), which couple through a multi-particle potential µ(q1, . . .qN ). This
observation allows one to go back to the continuum limit by first considering
finite dimensional particle approximations of the shallow-water equations (see,
e.g., [1, 2]). The continuum limit gives rise to a set of regularized fluid equations
which can be interpreted as Euler’s equations subject to a regularized pressure
field [7]. Similar pressure regularizations arise from semi-implicit time-stepping
methods, which are widely used in numerical weather prediction. See [4] and
references therein.
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Symmetry reduction for low-dimensional models of self-similar fluid
flows

Clarence W. Rowley

(joint work with Mingjun Wei, Miloš Ilak)

Fluid flows are, of course, described by nonlinear partial differential equations
that are typically difficult to solve. For all practical situations, numerical sim-
ulations are necessary, and the resulting numerical models are too complex for
many useful analysis tools to apply. This talk concerns techniques for developing
reduced-order models that approximate the full dynamics of fluid flows, in the
form of ordinary differential equations that are useful for analysis and, ultimately,
for designing model-based feedback control laws to achieve a desired behavior in
the fluid.

Reduced-order models. First, we review some existing methods for developing
reduced-order models. A typical technique is to use Galerkin projection, in which
one projects the governing equations onto a particular subspace. For instance,
if the full-order dynamics evolve on an inner product space V (possibly infinite-
dimensional), then we write the full-order equations as

(1) ẋ(t) = f(x(t)), x(t) ∈ V,

where f is a vector field on V . Given an orthonormal basis {ϕ1, . . . , ϕn} for
a subspace S ⊂ V , Galerkin projection specifies dynamics on this subspace by
writing

(2) r(t) =

n∑

j=1

aj(t)ϕj , r(t) ∈ S ⊂ V

and prescribing the reduced-order dynamics by projecting f(r(t)) onto the sub-
space S, to obtain

(3) ȧj(t) = 〈ϕj , f(r(t))〉 , j = 1, . . . , n,

where 〈·, ·〉 denotes the inner product on V . Galerkin projection thus involves two
distinct choices: the choice of the subspace S, and the choice of the inner product
on V . Both of these choices affect the quality of the approximate models obtained.

A popular method for determining a suitable subspace S, of fixed dimension n,
is to use Proper Orthogonal Decomposition (POD), in which one starts with a
particular dataset x(t) ∈ V and finds a subspace S of dimension n such that the
orthogonal projection of the data onto S best approximates the original data. For
more details of this modeling approach, see [1].

Unfortunately, models developed by projection onto POD modes often behave
unpredictably. One reason for this is that low-energy modes are often important
for the dynamics, but because of their low energy content do not appear as domi-
nant modes in POD. For instance, we show an example of a linearized channel flow
in which the first 5 POD modes capture over 99.7% of the energy in a particular
dataset that exhibits large transient growth, but a 5-dimensional POD-Galerkin
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model captures none of the transient growth. In contrast, a 5-dimensional model
containing POD modes 1–3, 10, and 17 captures the transient growth nearly per-
fectly. That is, replacing the more energetically dominant modes 4 and 5 with the
less energetic 10 and 17 produces vastly superior models [2].

For linear problems, an alternative to POD-Galerkin is to use balanced trun-
cation [3]. Balanced truncation of an input-output system involves balancing the
properties of controllability (loosely equivalent to the energy in a dataset consist-
ing of impulse responses) and observability (related to “dynamical importance,” or
the sensitivity of the output to perturbations in a given direction in state space).
Recently, an approximate procedure was developed that makes computation of
balanced-truncation model reduction tractable even for systems of very large di-
mension, such as arise in fluids simulations [4]. For the linearized channel flow
example presented earlier, balanced truncation produces dramatically superior
models to POD-Galerkin: a 3rd-order model using balanced truncation performs
better than a 16th-order POD-Galerkin model, and the models always improve as
more modes are included, unlike POD.

Symmetry reduction. Many problems in fluid mechanics exhibit some type of
continuous symmetry, which manifests itself in the form of traveling wave solutions
or self-similar solutions. It is usually desirable for reduced-order models to respect
the same continuous symmetries as the full problem, and the typical approach is to
place a requirement on the subspace S, in particular that it is invariant to actions
of the symmetry group. For instance, for translation invariance, this requirement
implies that the optimal POD modes in the direction of translation are Fourier
modes [1].

An alternative approach is to factor out the symmetry, using a type of symmetry
reduction, and write reduced-order models in a setting in which the symmetry no
longer appears. This approach has been shown to give superior models, since in the
reduced setting, solutions such as traveling waves or self-similar solutions appear
simply as fixed points [5], whose dynamics are trivial to model.

In this talk, we carry out a version of symmetry reduction for the temporal
development of a two-dimensional free shear layer [6]. The domain is periodic in
the streamwise (x) direction, and infinite in the transverse (y) direction. In such
a domain, an exact solution of the Navier-Stokes equations exists, in the form of
a self-similar solution

(4) u(x, y, t) =
U∞

2
erfc

(
−y

(
Re

4(t− t0)

)1/2
)
,

where Re is the Reynolds number, U∞ is the fluid velocity as y → ∞, and t0 is
the singularity time.

This self-similar solution is always unstable for a certain range of wavenumbers
in the x-direction: this is called Kelvin-Helmholtz instability. High-wavenumber
perturbations grow exponentially at first, and then saturate due to nonlinearities.
As the shear layer spreads in the y-direction, lower wavenumbers become more un-
stable, and the energy from high-wavenumber perturbations is transferred to the
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lower wavenumbers, also through nonlinearities, through a process known as pair-
ing. We seek to develop models of this phenomenon, that capture the exponential
growth, nonlinear saturation, and pairing.

Our approach is to write the equations in a scaled reference frame, in which the
spreading of the shear layer in the y-direction is removed. We do this by scaling
the velocity as

(5) u(x, y, t) = ũ(x, g(t)y, t), v(x, y, t) =
1

g(t)
ṽ(x, g(t)y, t),

where g(t) > 0 is a scaling factor, and obtaining reduced-order models for the
dynamics of the scaled velocities (ũ, ṽ). We choose the scaling factor g(t) such
that the solution best matches a given reference function, called a template func-
tion. For instance, for the self-similar solution (4), g(t) would be the coefficient
multiplying y, and the scaled velocities (ũ, ṽ) would be constant in time. For more
complicated solutions, we still write dynamics in this scaled reference frame, along
with dynamics of the scaling g(t), and then obtain reduced-order models in the
scaled frame. In this setting, we obtain a model using 4 complex POD modes
plus the scaling factor g(t) (related to the shear layer thickness), that capture all
of the desired effects: growth, saturation, and pairing. For further details and
preliminary results, see [6].

Acknowledgments. This work was supported by the National Science Founda-
tion, award CMS-0347239.
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Reachability Analysis for Hybrid Dynamic Systems

Olaf Stursberg

1. Introduction

Hybrid Dynamic Systems (HDS), which combine discrete event dynamics with
ordinary differential equations, have evolved as a suitable means to represent a
wide range of applications, including not only simple mechanic systems but also
manufacturing and processing systems as well as robotic and automotive appli-
cations (see, e.g., [2] for a survey). The analysis, design, and control of HDS is
often an intricate task as the interaction of the two types of dynamics requires
the consideration of techniques for smooth systems as well as search methods for
discrete models. This contribution addresses techniques for analysis and synthesis
for hybrid models based on reachability analysis (RA). The latter is the task of
computing the subset of the state space of a HDS, which can be attained starting
from an initial state set (and, if the HDS is not autonomous, for a given set of
input trajectories).

Different analysis and design tasks can be formulated such that RA is the key
step of computation. In order to make the computations efficient for real-world
computations, much effort has been invested in recent years to develop RA for
different classes of HDS and for the use in analysis and control synthesis – this
contribution presents a survey on different approaches which, in particular, intro-
duce the use of model abstraction and refinement into RA-based techniques for
HDS.

2. Hybrid Dynamic Models and Reachability Analysis

Among a large set of formulations for HDS, the class of hybrid automata (HA)
can be regarded as the most important one. While [4] presents a very general
class of HA, this contribution refers to the class specified in [8]. The automaton
HA = (X,U, V, Z, inv,Θ, g, r, f) consists of: the continuous state space X ⊆ Rnx

(on which the state vector x is defined), the continuous input space U ⊆ Rnu (with
input vector u ∈ U), the discrete input space V ⊂ N, the finite set of locations
Z = {z1, . . . , znz

}, an invariant mapping inv : Z → 2X (assigning a permitted
subset ofX to each z ∈ Z), the set of transitions Θ ⊆ Z×Z, a mapping g : Θ → 2X

that associates a guard g((z1, z2)) ⊆ X with each (z1, z2) ∈ Θ, a reset function
r : Θ×X → X which assigns an updated state x′ ∈ X to each (z1, z2) ∈ Θ, and a
vector field f : Z×X×U×V → Rnx that defines an ordinary differential equation
(ODE) ẋ = f(z, x, u, v) for each location z ∈ Z.

A feasible execution of HA is an alternating sequence of continuous evolutions
and discrete transitions, where the following applies: (a) a continuous evolution
is the solution of the ODE constrained by the invariant function, initialized by
the preceding reset, and subject to given input trajectories for u and v, (b) a
transition is enabled if the continuous state is inside of the guard g((z1, z2)), and
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(c) the continuous state is updated according to the reset function r (see [8] for
details).

The computation of reachable sets involves to determine and represent (or
conservatively approximate) the subset of hybrid states of the HA that are at-
tainable for a given initialization and sets of input trajectories (as imposed by
a controller). Let s = (z, x) denote a hybrid state, S the hybrid state set,
Φu the set of continuous input trajectories, Φv the set of discrete input tra-
jectories, and Φs the set of hybrid state trajectories according to the sketched
model dynamics. For a given set of initializations S0 = (z0, X0) ⊂ S with
X0 ⊆ inv(z0) and given Φu and Φv, the reachable set of HA is defined as
R := {s ∈ S | ∃s0 ∈ S0, φu ∈ Φu, φv ∈ Φv : s ∈ φs for any feasible φs ∈ Φs}.

Assuming that the inputs trajectories φu and φv of HA are fixed by a given
controller function (i.e. the resulting system can be seen as autonomous), the
following simple algorithm for computing R can be formulated:

S0 := (z0, X0), k := 0, D := S0, R := ∅
WHILE D := ∅

k := k + 1, R := R ∪D, Sk := Reach(D), D := Sk \R
END

k denotes an iteration counter, R the accumulated set of reachable hybrid states, D
the set of newly reached states in the current iteration, and Reach an operator that
computes one-step successors of the argument set. Critical issues of executing this
algorithm are the representation of the sets Sk, D, and R as well as the operator
Reach. Further details can be found in [6].

Typical procedures for analyzing and synthesizing HDS based on such reacha-
bility computations are sketched in the sequel.

3. Verification based on Reachability Analysis

Given a HDS (possibly representing the composition M of a plant P and a
controller C for fixing the input trajectories, i.e. M = C||P ) and a specification γ,
the task of verification is to show that M |= γ. A specification considered in many
approaches is the one of safety: given HA, S0, and an unsafe set Su, show that R∪
Su = ∅. Since the algorithmic proof of this property is computationally expensive
for HDS in general [6], this contribution describes the approach of abstraction-
based and counterexample-guided verification [3]. It maps the model M into an
abstract model A given as finite state automaton, which can be obtained, e.g.,
simply by omitting the continuous dynamics and for which γ can be shown (or
refuted) with relatively low effort. In case of refutation, the violating execution
(the counterexample) is mapped back onto the compositionM and is (in-)validated
for it by using local reachability computation.

If the counterexample is invalid for the hybrid model M , the abstract model
is adapted according to the reachability information by eliminating transitions
and/or splitting states. By iterating between the hybrid model and the abstract



1916 Oberwolfach Report 33/2008

representation, the verification of the satisfaction / violation of γ for the model M
can be completed with - in average - much lower effort as with a full computation
of the reachable set.

The task of verifying safety using reachability computations can be extended
to HDS with uncertain parameters as described in [1].

4. Controller Synthesis using Reachable Sets

With a slightly modified structure, the abstraction-based iterative computation
can also be used to generate a controller C for a hybrid model HA representing a
given plant P . More precisely, given P and a specification γ comprising a safety
specification as a above, S0, and a specification for a control goal (i.e. a subset
of hybrid states SG ⊂ S into which P has to be driven), the task is to generate
C such that P ||C |= γ. The task can be solved by the following steps [9, 7]: It is
assumed that C is a controller that only encodes discrete input trajectories where
v is defined on a finite set and can be changed only at points of time when P
executes a transition. Then, a finite state automaton C′ is generated that models
all possible input trajectories. For the composition C′||P an abstraction A is
generated which is searched for a candidate path to drive P from the initial into
the goal set. The path is (in-)validated by reachability analysis for the model P .
If it is invalid, A is refined similarly as in the verification procedure (i.e. C′ is
reduced by the invalid path).

The iteration continues until a feasible control strategy is found, leading to the
controller C which limits the possible executions of P to a trajectory bundle that
transfers any initial state into a goal region while avoiding unsafe state sets.

5. Optimization based on Abstractions

The synthesis procedure can be extended by performance measures such that
it selects from a set of feasible controllers the one with lowest cost for transferring
the HDS into a goal region. Formally this means that for a hybrid plant model P ,
a specification γ defining an initial set S0, a goal set SG, and an unsafe set Su, as
well as a performance measure ψ, the task is to compute a controller C such that
it minimizes ψ subject to P ||C |= γ.

The proposed solution is to first generate an abstract model A with local tran-
sition costs by using reachability computations. A cost-optimal candidate path
is then computed for A and the path (i.e. the sequence of discrete states z and
inputs v) is projected back onto P . Re-optimization evaluates the achievable per-
formance over variations of u for the hybrid model P . Iterations between A and P ,
which lead to refinement of A with respect to transition costs and feasible discrete
inputs, result in convergence to a (sub-)optimal solution of the control problem.

6. Conclusions

This contribution presents three algorithmic procedures for HDS that employ
reachability computations as the basic step combined with the principle of model
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abstraction and refinement. Set-valued reachability computations are indispens-
able if either uncertainties of the initial state or the parametrization of HA exists,
or if the continuous space is partitioned in order to achieve a finite number of
steps of computation. The use of abstractions is favorable, if the inherently high
computational load of algorithmic techniques for HDS has to be lowered to enable
applicability to real world systems. It has been found for applications from the
areas of automobiles, robotics, and processing systems that the proposed tech-
niques can significantly decrease the computation time compared to techniques
that analyze or optimize directly the HDS.
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Bilinear discretization of quadratic vector fields

Yuri B. Suris

(joint work with Matteo Petrera, Andreas Pfadler)

This talk deals with some aspects of the problem of integrable discretization, as
defined in [1]: consider a completely integrable flow

(1) ẋ = f(x) = {H,x}

with a Hamilton function H on a Poisson manifold P with a Poisson bracket {·, ·}.
Thus, the flow (1) possesses sufficiently many functionally independent integrals
Ik(x) in involution. The problem consists in finding a family of diffeomorphisms
P → P,

(2) x̃ = Φ(x; ǫ),

depending smoothly on a small parameter ǫ > 0, with the following properties:

• The maps (2) approximate the flow (1): Φ(x; ǫ) = x+ ǫf(x) +O(ǫ2).
• The maps (2) are Poisson w. r. t. the bracket {·, ·} or some its deformation
{·, ·}ǫ = {·, ·} +O(ǫ).

• The maps (2) are integrable, i.e. possess the necessary number of indepen-
dent integrals in involution, Ik(x; ǫ) = Ik(x) +O(ǫ).

The talk is devoted to discretizations of the type introduced in [2, 3] and missing
from the book [1], despite its encyclopedic nature. Reasons for this omission:
discretization of the Euler top [2] seemed to be an isolated curiosity; discretization
of the Lagrange top [3] seemed to be incomprehensible, if not even wrong.

It turns out that the discretizations of Hirota-Kimura are instances of a general
method for discretizing differential equations with quadratic vector fields, proposed
by W. Kahan in [4]. According to this method, a differential equation

ẋ = Q(x) +Bx,

where B ∈ Rn×n and Q : Rn → Rn is a quadratic function, is discretized as

(x̃− x)/ǫ = Q(x, x̃) +B(x+ x̃),

where Q(x, x̃) = Q(x+ x̃) −Q(x) −Q(x̃) is the corresponding symmetric bilinear
function. General features of this discretization:

• discrete equations are linear w.r.t. x̃ and define therefore an explicit (ra-
tional) map x̃ = f(x, ǫ);

• moreover, this map is reversible (therefore birational):

(3) f−1(x, ǫ) = f(x,−ǫ).

Kahan illustrated his method with an application to the famous Lotka-Volterra
system, where it produces non-spiralling orbits, unlike the majority of conven-
tional integrators. A sort of an explanation of this favorable behavior was given
by J. Sanz-Serna in [5], where it was shown that Kahan’s integrator for the Lotka-
Volterra system has the Poisson property. A bi-Hamiltonian structure of the
Hirota-Kimura discretizations of the Euler top was established in [6].
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The following definition is a formalization and an extension of the method
proposed in [3].

Definition (Hirota-Kimura basis). For a given birational map f : Rn → Rn,
a set of functions Φ = (ϕ1, . . . , ϕl), linearly independent over R, is called a HK-
basis, if for every x ∈ Rn there exists a vector c = (c1, . . . , cl) 6= 0 such that

c1ϕ1(f
i(x)) + . . .+ clϕl(f

i(x)) = 0 ∀i ∈ Z.

For a given x ∈ Rn, the set of all vectors c ∈ Rl with this property will be denoted
by KΦ(x) and called the null-space of the basis Φ (at the point x). This set clearly
is a vector space.

Note: we cannot claim that h = c1ϕ1 + ...+ clϕl is an integral of motion, since
vectors c ∈ KΦ(x) vary from one initial point x to another. However, the existence
of a HK-basis Φ with dimKΦ(x) = d confines the orbits of f to (n−d)-dimensional
invariant sets.

Proposition (from HK-bases to integrals). If Φ is a HK-basis for a map
f , then KΦ(f(x)) = KΦ(x). In particular, if dimKΦ(x) = 1 for all x ∈ Rn, and
KΦ(x) = [c1(x) : . . . : cl(x)] ∈ RPl−1, then the functions cj/ck are integrals of
motion for f .

A sufficient condition for a given set of functions Φ to be a HK-basis, as well as
a theoretical basis for a numerical algorithm for finding HK-bases, is given by the
following result.

Theorem (finding HK-bases). Let, for all x ∈ Rn, the dimension of the
solution space of the homogeneous system for c1, . . . , cl,

c1ϕ1(f
i(x)) + . . .+ clϕl(f

i(x)) = 0, i = 0, . . . , s− 1,

be equal to l− s for 1 ≤ s ≤ l−d and to d for s = l−d+1. Then KΦ(x) coincides
with the solution space for s = l − d, and, in particular, dimKΦ(x) = d.

We applied these notions and results for studying the Hirota-Kimura type dis-
cretization of the Clebsch system, which describes the motion of a rigid body in
an ideal fluid:

ṁ = p× Ωp, ṗ = p×m,

where m, p ∈ R3, Ω = diag(ω1, ω2, ω3). Its Hirota-Kimura type discretization was
proposed by T. Ratiu on Oberwolfach workshop “Geometric Integration” (March
2006):

m̃−m = ǫ(p̃× Ωp+ p× Ωp̃), p̃− p = ǫ(p× m̃+ p̃×m).

This defines a birational map (m̃, p̃) = f(m, p, ǫ), reversible as in (3).
The Clebsch system is Hamiltonian w.r.t. Lie-Poisson bracket of e(3), and has

four functionally independent integrals in involution:

Ii = p2
i +

m2
j

ωk − ωi
+

m2
k

ωj − ωi
, (i, j, k) = c.p.(1, 2, 3), H4 = m1p1 +m2p2 +m3p3.

We are interested in establishing the integrability of the map f . The integrability is
suggested by considering the phase portraits. The first pair of plots below shows
the projections to (m1,m2,m3) and to (p1, p2, p3) of one orbit of the discrete
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Clebsch system with ω1 = 0.1, ω2 = 0.2, ω3 = 0.3 and ǫ = 1; ; initial point
(m0, p0) = (1, 1, 1, 1, 1, 1).
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On the second pair of plots the parameters have been changed to ω1 = 1, ω2 = 0.2,
ω3 = 30.
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These (and similar) pictures suggest that the orbits are confined to two-dimensional
submanifolds in the six-dimensional phase space. These observations are confirmed
by the following results.

Theorem (integrability of the discrete Clebsch system). a) The set of
functions

Φ = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m1p1,m2p2,m3p3, 1)

is a HK-basis for f , with dimKΦ(m, p) = 4. Thus, any orbit of f lies on an
intersection of four quadrics in R6.

b) The following four sets of functions are HK-bases for f with one-dimensional
null-spaces:

Φ0 = (p2
1, p

2
2, p

2
3, 1),

Φ1 = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m1p1),

Φ2 = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m2p2),

Φ3 = (p2
1, p

2
2, p

2
3,m

2
1,m

2
2,m

2
3,m3p3).

There holds: KΦ = KΦ0 ⊕KΦ1 ⊕KΦ2 ⊕KΦ3 .
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Our proof of this theorem is computer assisted. A general structure which
would provide us with less computational proofs and with more insight remains
to be found. In particular, no Lax representation has been found. Nothing is
known about the existence of an invariant Poisson structure for the map f . In
order to appreciate the difficulty of symbolic computations necessary to establish
our results, one should be aware of the complexity of the map f . Numerators and
denominators of components of (m̃, p̃) = f(m, p, ǫ) are polynomials of degree 6,
the numerators of p̃i consist of 31 monomials, the numerators of m̃i consist of 41
monomials, the common denominator consists of 28 monomials. The claims in
part b) of the above theorem refer to the solutions of the following systems:

(c1p
2
1 + c2p

2
2 + c3p

2
3) ◦ f

i = 1,

(α1p
2
1 + α2p

2
2 + α3p

2
3 + α4m

2
1 + α5m

2
2 + α6m

2
3) ◦ f

i = m1p1 ◦ f
i,

(β1p
2
1 + β2p

2
2 + β3p

2
3 + β4m

2
1 + β5m

2
2 + β6m

2
3) ◦ f

i = m2p2 ◦ f
i,

(γ1p
2
1 + γ2p

2
2 + γ3p

2
3 + γ4m

2
1 + γ5m

2
2 + γ6m

2
3) ◦ f

i = m3p3 ◦ f
i.

The first one has to be solved for i = 0, 1, 2, each of the last three systems has
to be solved for i = −2, . . . , 3 (say). This can be done numerically without any
difficulties, but becomes (nearly) impossible for a symbolic computation, due to
complexity of f2. The following table lists degrees of numerators and denominators
of f2:

deg degp1
degp2

degp3
degm1

degm2
degm3

Denom. of f2 27 24 24 24 12 12 12
Num. of p1 ◦ f2 27 25 24 24 12 12 12
Num. of p2 ◦ f2 27 24 25 24 12 12 12
Num. of p3 ◦ f2 27 24 24 25 12 12 12
Num. of m1 ◦ f2 33 28 28 28 15 14 14
Num. of m2 ◦ f

2 33 28 28 28 14 15 14
Num. of m3 ◦ f2 33 28 28 28 14 14 15

The numerator of the p1-component of f2(m, p), as a polynomial of mk, pk, con-
tains 64 056 monomials; as a polynomial of mk, pk, and ωk, it contains 1 647 595
terms. Symbolic manipulations with polynomials of this complexity are virtu-
ally impossible. In order to prove the above theorem, one needs new ideas! The
main one: find (observe numerically) linear relations between the components of
KΦ(x0), and then use them to replace the dynamical relations. On this way, one
arrives at the following, more detailed, results.

Theorem (HK-basis Φ0). At each point (m, p) ∈ R6 there holds:

KΦ0(m, p) = [c1 : c2 : c3 : −1],

where ci = 1/J0 + ǫ2ωi with

J0(m, p, ǫ) =
p2
1 + p2

2 + p2
3

1 − ǫ2(ω1p2
1 + ω2p2

2 + ω3p2
3)
.

This function is an integral of motion of the map f .
This is the only “simple” integral of f !
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Theorem (additional HK-basis Ψ). Set Ψ = (p2
1, p

2
2, p

2
3,m1p1,m2p2,m3p3).

At each point (m, p) ∈ R6 there holds:

KΨ(m, p) = [−1 : −1 : −1 : d7 : d8 : d9],

with

dk =
(p2

1 + p2
2 + p2

3)(1 + ǫ2d
(2)
k + ǫ4d

(4)
k + ǫ6d

(6)
k )

∆
, k = 7, 8, 9,

∆ = m1p1 +m2p2 +m3p3 + ǫ2∆(4) + ǫ4∆(6) + ǫ6∆(8),

where d
(2q)
k and ∆(2q) are homogeneous polynomials of degree 2q in phase variables.

The functions d7, d8, d9 are integrals of motion of the map f . They satisfy

(ω2 − ω3)d7 + (ω3 − ω1)d8 + (ω1 − ω2)d9 = 0.

Any two of them together with J0 are functionally independent.
Each of the functions dk takes about three pages of MAPLE output!
Theorem (HK-bases Φ1,Φ2,Φ3). At each point (m, p) ∈ R6 there holds:

KΦ1(m, p) = [α1 : α2 : α3 : α4 : α5 : α6 : −1],

KΦ2(m, p) = [β1 : β2 : β3 : β4 : β5 : β6 : −1],

KΦ3(m, p) = [γ1 : γ2 : γ3 : γ4 : γ5 : γ6 : −1],

where αj,βj , and γj are rational functions of (m, p) of the form

h =
h(2) + ǫ2h(4) + ǫ4h(6) + ǫ6h(8) + ǫ8h(10) + ǫ10h(12)

2ǫ2(p2
1 + p2

2 + p2
3)∆

.

Here h stands for any of the functions αj , βj , γj, j = 1, 2, 3, and the corresponding

h(2q) are homogeneous polynomials of degree 2q in phase variables. For instance,

α
(2)
1 = H3 − I1, α

(2)
2 = −I1, α

(2)
3 = −I1,

β
(2)
1 = −I2, β

(2)
2 = H3 − I2, β

(2)
3 = −I2,

γ
(2)
1 = −I3, γ

(2)
2 = −I3, γ

(2)
3 = H3 − I3,

where H3 = p2
1 + p2

2 + p2
3. The functions αj , βj, γj are integrals of motion of the

map f . The four integrals J0, α1, β1 and γ1 are functionally independent.
Thus, we established the integrability of the Hirota-Kimura discretization of

the Clebsch system, in the sense of

• existence, for every initial point (m, p) ∈ R6, of a four-dimensional pencil
of quadrics containing the orbit of this point;

• existence of four functionally independent integrals of motion (conserved
quantities).

Analogous theorems hold also for an arbitrary flow of the Clebsch system (with
one “simple” and three very big integrals).

Conjecture. For any algebraically completely integrable system with a qua-
dratic vector field, its Hirota-Kimura discretization remains algebraically com-
pletely integrable.

This conjecture is supported by the results of [2, 3, 6] and of the present work,
as well as our preliminary results on the following systems: Zhukovsky-Volterra
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gyrostat; so(4) Euler top and its commuting flows; Volterra lattice; Toda lattice;
classical Gaudin magnet. See also [7] on the Suslov system. If true, this statement
could be related to addition theorems for multi-dimensional theta-functions.
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Multiscale time integration for aerosol dynamics

Matthew West

(joint work with Jim Barnard, Dick Easter, Adrian Lew, Jerry Marsden, Michael
Ortiz, Nicole Riemer, Minyong Shin, Ronny Votel and Rahul Zaveri)

Atmospheric aerosol modeling involves complex physics over a wide ranges of
timescales, including coagulation, evaporation/condensation, and chemistry pro-
cesses. Both the evaporation/condensation and coagulation processes do not have
a clear timescale separation, making it difficult to homogenize or average out the
fast scales. We consider box models of aerosols with deterministic chemistry and
stochastic coagulation models and present two new multiscale algorithms that en-
able efficient simulation of all scales without requiring scale separation.

First, we consider asynchronous multistep ODE integrators for deterministic
systems that enable adaptive time resolution. This is an extension of work in
[4, 5] where Asynchronous Variational Integrators (AVIs) were developed and gen-
eralized to Asynchronous Splitting Methods (ASMs). These are methods to nu-
merically integrate systems of the form

(1) ẋ(t) = f(x(t)) =

M∑

i=1

fi(x(t))

that integrate each component fi asynchronously in time. Multistep Asynchronous
Splitting Methods (MASMs) generalize ASMs to integrators of the form

(2) xk+1 +

p∑

ℓ=p−n+1

M∑

i=1

αi,ℓxi,ℓ =

p∑

ℓ=p−n+1

M∑

i=1

βi,ℓfi(xi,ℓ)
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where xk+1 is the next solution value to be computed, xi,ℓ is the ℓ-th previous
solution value computed via an fi update, and αi,ℓ and βi,ℓ are coefficients that
define the step. These coefficients must be determined to satisfy both order and
stability conditions and for a fully adaptive and asynchronous scheme they will be
time-varying and i-dependent.

The second new algorithm we present is a multiscale sampling method for sto-
chastic coagulation. This is described in more detail in [6]. We are concerned
with coagulation for a multivariate number density n(µ, t) where µi is the mass
of species i in an aerosol particle, for µ ∈ RA. The continuum limit coagulation
process is described by the Smolukowski equation

∂n(µ, t)

∂t
=

1

2

∫

RA+

K(µ′, µ− µ′)n(µ′, t)n(µ− µ′, t) dµ′

−

∫

RA+

K(µ,mu′)n(µ, t)n(µ′, t) dµ′(3)

where K(µ, µ′) is the probability rate that a particle with masses µ coagulates
with one with masses µ′.

We use a particle-based solution method, where we store NMC particles with
masses µ1, . . . , µNMC ∈ RA in a volume V ∈ R. The coagulation model is a
Markov process where each particle coagulates with every other with probability
rate K(µi, µj). The standard exact simulation method for such systems is Gille-
spie’s SSA method [3], but this is very inefficient for systems with a wide range
of scales in the rates K. Accelerated multiscale variants of SSA have been de-
veloped in recent years, such as [1, 2], but these require scale separation which is
not present in atmospheric aerosol coagulation. We use a new solution method,
where we group the particles into bins by total mass and use the fact that the
primary dependence of K on µ is via the total mass ‖µ‖1 of the particle. Coagu-
lation events are then generated for each bin pair, using an approximate sampling
method. This gives the algorithm:

divide total mass axis into bins
NMC(b) is the number of particles in bin b
µ(b, i) is the mass vector of the i-th particle in bin b
Kmax(b1, b2) is a precomputed upper bound on the kernel for any particles from

bins b1 and b2
∆t is the timestep
for all bin pairs (b1, b2) do:

Nevent = NMC(b1)NMC(b2)/2

Ntest =
⌈
Kmax(b1, b2)∆tNevent/V

⌉

for Ntest repetitions do:
randomly choose particles i1 and i2 uniformly in bins b1 and b2
K12 = K

(
µ(b1, i1), µ(b2, i2)

)

randomly choose r uniformly in [0, 1]
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if r < K12 ∆tNevent/(NtestV ) then:
coagulate the two particles, updating the arraysN(b) and µ(b, i)

end if
end for

end for

Both of these algorithms mean that the computational work performed is locally
adapted to be proportional to the complexity of the evolution, measured either by
curvature of a vector field or by the event rate in a Markov process.
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Dirac cotangent bundle reduction

Hiroaki Yoshimura

(joint work with Jerrold E. Marsden)

In this talk, we show a reduction theory for the canonical Dirac structures D on
the cotangent bundle T ∗Q of a configuration manifold Q and we carry out the
reduction under the assumption that a Lie group G acts freely and properly on Q,
in which case there is an associated principal bundle π : Q→ Q/G. This procedure
induces, in particular, a reduction theory for standard implicit Lagrangian systems,
which includes the case of degenerate Lagrangians.

The notion of Dirac structures is a generalized notion of unifying pre-symplectic
and almost Poisson structures, which was introduced by Courant and Weinstein
[2] in conjunction with Hamiltonian mechanics, inspired from Dirac’s theory of
constraints. Interestingly, an idea of interconnections, which we now know can
be modeled by Dirac structures, has been often employed in engineering (see, for
instance, [3, 6]), and it was shown by van der Schaft and Maschke [5] and Bloch
and Crouch [1] that dynamics of L-C circuits, which is a typical interconnected
system, can be formulated by using Dirac structures in the context of Hamiltonian
mechanics, namely, implicit Hamiltonian systems. On the other hand, the link with
Lagrangian mechanics had not been sufficiently studied though Dirac’s theory of
constraints was originally started from degenerated Lagrangians, until the notion



1926 Oberwolfach Report 33/2008

of implicit Lagrangian systems was established by Yoshimura and Marsden [7, 8]
in the context of Dirac structures D∆Q

on T ∗Q, which is induced from given
constraint distributions ∆Q onQ, whereD∆Q

can be defined by using the canonical
symplectic structure Ω on T ∗Q.

Given a Lagrangian L (possibly degenerate) on the tangent bundle TQ, an
implicit Lagrangian system is a triple (L,D,X), which satisfies, for each (q, v, p) ∈
TQ⊕ T ∗Q,

(X(q, v, p),dE(q, v, p)|TP ) ∈ D∆Q
(q, p)

where X : TQ⊕ T ∗Q→ TT ∗Q is a partial vector field, P = FL(∆Q) ⊂ T ∗Q and
E is the generalized energy defined by E(q, v, p) = 〈p, v〉 −L(q, v). For the case in
which ∆Q = TQ, one can obtain a standard implicit Euler-Lagrange equations

q̇ = v, ṗ =
∂L

∂q
, p =

∂L

∂v
,

which can be also obtained from the Hamilton-Pontryagin principle

δ

∫ b

a

{L(q(t), v(t)) + 〈p(t), q̇(t) − v(t)〉} dt = 0

and with fixed endpoints δq(a) = δq(b) = 0.
Next, we consider the case in which a Lie group act on Q freely and properly,

where there is a principal bundle Q → Q/G and let L : TQ → R be a left-
invariant Lagrangian, possibly degenerate. Let A : TQ→ g be a chosen principal
connection on the principal bundle π : Q→ Q/G and we employ the isomorphism

(TQ⊕T ∗Q)/G ∼=A T (Q/G)⊕T ∗(Q/G)⊕Ṽ , where Ṽ = g̃⊕g̃∗ and g̃ = (Q×g)/G is
the associated bundle to g, regarded as a bundle overQ/G. We explore geometry of
variations of reduced curves in (TQ⊕T ∗Q)/G and we develop a reduced Hamilton-
Pontryagin principle as

δ

∫ t1

t0

{
l(x(t), u(t), η̄(t)) + 〈y(t), ẋ(t) − u(t)〉 +

〈
µ̄(t), ξ̄(t) − η̄(t)

〉}
dt = 0,

under appropriate variations of curves as well as boundary conditions, where l =
L|g is the reduced Lagrangian. Then, it follows that one can obtain horizontal
implicit Lagrange-Poincaré equations

Dy

Dt
=
∂l

∂x
−
〈
µ̄, B̃(ẋ, ·)

〉
, ẋ = u, y =

∂l

∂u

as well as vertical implicit Lagrange-Poincaré equations

Dµ̄

Dt
= ad ∗

ξ̄ µ̄, µ̄ =
∂l

∂η̄
, ξ̄ = η̄.

We establish Dirac cotangent bundle reduction, namely, a reduction pro-
cedure for the canonical Dirac structure on the cotangent bundle T ∗Q by em-

ploying a connection dependent isomorphism T ∗Q ∼= Q̃∗ × g∗, (an unreduced

version of the Sternberg space, where Q̃∗ is a pull-back bundle) via which we

develop a G-invariant Dirac structure D̄ on Q̃∗ × g∗. By using an isomorphism

(Q̃∗ × g∗)/G ∼= T ∗(Q/G) ⊕ g̃∗ between the Sternberg and Weinstein spaces and
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by taking the quotient of D̄ by G, one is lead to a gauged Dirac structure

[D̄]G = [D̄]Hor
G ⊕ [D̄]Ver

G on the bundle (TT ∗Q)/G ∼= g̃∗ × (TT ∗(Q/G) ⊕ Ṽ )
over T ∗(Q/G) ⊕ g̃∗, where [D̄]Hor

G is a horizontal Dirac structure on the bundle
g̃∗ × TT ∗(Q/G) over T ∗(Q/G) and [D̄]Ver

G is a vertical Dirac structure on the

bundle g̃∗ × Ṽ over g̃∗.
Finally, it is shown that making use of the gauged Dirac structure, one gets a

reduction procedure for a standard implicit Lagrangian system (L,D,X), which
we shall call Lagrange-Poincaré-Dirac reduction. Using the trivialized vector
field X̄ of X : TQ ⊕ T ∗Q → TT ∗Q, this procedure naturally yields the reduced
implicit Lagrangian system (l, [D̄]G, [X̄]G) = (l, [D̄]Hor

G , [X̄]Hor
G )⊕ (l, [D̄]Ver

G , [X̄]Ver
G )

such that it satisfies

([X̄ ]G, [dĒ]G|g̃∗×(TT∗(Q/G)⊕eV )) ∈ [D̄]G,

where [X̄]G = [X̄]Hor
G ⊕ [X̄]Ver

G is the reduced partial vector field and [dĒ]G =
[dĒ]Hor

G ⊕ [dĒ]Ver
G is the reduction of the differential of the trivialized general-

ized energy Ē. Then, it follows that the horizontal implicit Lagrangian system
(l, [D̄]Hor

G , [X̄]Hor
G ) that satisfies ([X̄ ]Hor

G , [dĒ]Hor
G |g̃∗×TT∗(Q/G)) ∈ [D̄]Hor

G induces
horizontal implicit Lagrange-Poincaré equations, while the verticall implicit La-
grangian system (l, [D̄]Ver

G , [X̄ ]Ver
G ) that satisfies ([X̄ ]Ver

G , [dĒ]Ver
G |

g̃∗×eV ) ∈ [D̄]Ver
G

induces vertical implicit Lagrange-Poincaré equations. We can also develop the
case in which a Hamiltonian is given (perhaps coming from a regular Lagrangian);
namely, it is shown that Hamilton-Poincaré-Dirac reduction yields horizontal im-
plicit Hamilton-Poincaré equations as well as vertical implicit Hamilton-Poincaré
equations. Finally, illustrative examples of artificial spacecraft with rotors and
space robots are shown.
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ETH Zürich

Tannenstr. 3

CH-8092 Zürich

Prof. Dr. Perinkulam S. Krish-

naprasad

Institute for Systems Research

A.V. Williams Building

University of Maryland

College Park , MD 20742

USA

Sigrid Leyendecker

Graduate Aeoronautical Laboratories

California Institute of Technology

Mail Code 205-45

1200 E. California Boulevard

Pasadena , CA 91125

USA

Zhanhua Ma

Department of Mechanical and

Aerospace Engineering

Princeton University

Engineering Quad, Olden Street

Princeton , NJ 08544-5263

USA

Prof. Dr. Jerrold E. Marsden

Dept. of Control and Dynamical Systems

California Institute of Technology

MC 107-81

1200 E. California Blvd.

Pasadena , CA 91125-8100

USA

Prof. Dr. Alexander Mielke

Weierstraß-Institut für

Angewandte Analysis und Stochastik

im Forschungsverbund Berlin e.V.

Mohrenstr. 39

10117 Berlin

Prof. Dr. James Montaldi

School of Mathematics

The University of Manchester

Oxford Road

GB-Manchester M13 9PL



Applied Dynamics and Geometric Mechanics 1931

Sina Ober-Blöbaum
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