
Mathematisches Forschungsinstitut Oberwolfach

Report No. 37/2008

C*-Algebras

Organised by

Claire Anantharaman-Delaroche, Orleans

Siegfried Echterhoff, Münster

Uffe Haagerup, Odense

Dan Voiculescu, Berkeley

August 17th – August 23rd, 2008

Abstract. The theory of C*-algebras plays a major rôle in many areas of
modern mathematics, like Non-commutative Geometry, Dynamical Systems,
Harmonic Analysis, and Topology, to name a few. The aim of the conference
“C*-algebras” is to bring together experts from all those areas to provide a
present day picture and to initiate new cooperations in of this fast growing
mathematical field.

Mathematics Subject Classification (2000): 46Lxx, 19Kxx, 37-xx, 22Dxx, 20G42, 81R50, 81R60.

Introduction by the Organisers

A C*-algebra is an involutive Banach algebra A which satisfies the C*-condition
‖a∗a‖ = ‖a‖2 for all a ∈ A. The theory of C*-algebras goes back to work of
Murray and von Neumann, who first studied a special variant now known as von
Neumann algebras. The theory developed rapidly after some ground breaking
work of Gelfand and Naimark in 1943 in which they showed that

• every commutative C*-algebra can be realized up to isomorphism as an al-
gebra of continuous functions which vanish at infinity on a locally compact
Hausdorff space,

• every C*-algebra can be realized as a closed *-subalgebra of the algebra
of bounded operators B(H) on some Hilbert space H.

In the 70’s and 80’s of the last century, the first of the above items lead to the
point of view that non-commutative C*-algebras should be regarded as function
spaces of “non-commutative” topological spaces. As a consequence, completely
new areas in mathematics, like Non-commutative Geometry or Free Probability
evolved and we now see that the theory of C*-algebras became a very active field
with applications in and interactions with almost all areas of modern mathematics.
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The aim of the workshop C*-algebras, organized by Claire Anantharaman-
Delaroche, Siegfried Echterhoff, Uffe Haagerup, and Dan Voiculescu, is to bring
together leading researchers from basically all areas related to the field. This
gives a unique opportunity to maintain a broad view on the subject and to create
new cooperations between researchers with different background. Among the 42
participants was a good number of young researchers, some of them already on
the top of the field. There have been 27 lectures presented at the workshop with
topics ranging from classification of C*-algebras, group actions on C*-algebras,
orbit equivalence of dynamical systems, Jones’ theory of subfactors, fundamen-
tal groups of II1-factors, L2-invariants, duality for quantum groups and quantum
groupoids, Index theorems, C*-algebras related to number theory, free probability,
the relation between C*-algebras and Harmonic Analysis, and others.

Among the most exciting recent developments in the field we mention the
breathtaking advances of Popa and Vaes on the fundamental groups of II1-factors
in the theory of von Neumann algebras, with beautiful applications to the clas-
sification of equivalence relations and dynamical systems. Other milestones are
the progress of Kirchberg and coworkers on the classification of actions on O2

and the beautiful results of Dadarlat on continuous bundles of C*-algebras. Im-
portant progress has been achieved also in the classification theory of simple and
non-simple C*-algebras by Elliot, Rørdam, Toms, and Winter–with some further
progress being made during the workshop. There were many other exciting con-
tributions to this very successful workshop, which can be seen from the reports
presented in this issue.

It is a pleasure for the organizers to thank all participants of the workshop for
their beautiful lectures and fruitful discussions. We also want to use this opportu-
nity to thank the Mathematisches Forschungsinstitut Oberwolfach for providing a
very stimulating environment and strong support for organizing this conference.
Special thanks also go to the very competent and helpful staff of the institute.
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Abstracts

Compact C
∗-quantum groupoids

Thomas Timmermann

Quantum groupoids have successfully been axiomatized and studied in the fi-
nite case by Böhm, Szlachányi, Nikshych, Vainerman and others [3], and in the
measurable case by Enock, Lesieur and Vallin [2] who were motivated by depth
2 inclusions of factors. In this talk, we turn to the setting of C∗-algebras and
introduce compact C∗-quantum groupoids and an analogue of the fundamental
multiplicative unitaries of Baaj and Skandalis [1] that is adapted to C∗-quantum
groupoids. These unitaries form the basis for further developments like the con-
struction of Pontrjagin duals and of reduced crossed products for coactions.

1. A fiber product of C∗-algebras and Hopf C∗-bimodules

1.1. Introduction. Recall that a groupoid consists of a space of units G0, a to-
tal space G, range and source maps r, s : G → G0, and a multiplication map
G × G ⊇ Gs×rG → G, subject to several axioms. Replacing spaces by algebras
and reversing the maps as in the transition from groups to Hopf algebras, we ar-
rive at the notion of a Hopf bimodule: two algebras B, A with range and source
maps ρ, σ : B → A and a comultiplication ∆: A → Aσ∗ρA. In the purely alge-
braic setting, Aσ∗ρA is defined using Takeuchi’s ×R-product; in the setting of von
Neumann algebras, Aσ∗ρA is the fiber product defined by Sauvageot and Vallin.
For the setting of C∗-algebras, we propose a definition of Aσ∗ρA in this section.

1.2. Hilbert C∗-modules and C∗-algebras over KMS-weights. Let B,C be
C∗-algebras with faithful proper KMS-weights µ, ν and associated GNS-spaces
Hµ, Hν . We identify B with a C∗-subalgebra of L(Hµ), and Hµ with the GNS-
space Hµop for the opposite weight µop on Bop; then Bop ⊆ B′ ⊆ L(Hµ). A
Hilbert C∗-µ-module Hα consists of a Hilbert space H and a space α ⊆ L(Hµ, H)
satisfying [αHµ] = H , [α∗α] = B, [αB] = α, where, [ · ] denotes the closed linear
span. Given such a Hilbert C∗-µ-module, we can view α as a Hilbert C∗-B-
module, identify the internal tensor product α ⊗B Hµ with H via ξ ⊗B ζ 7→ ξζ,
and construct a representation ρα : B′ → L(H), x 7→ idα⊗Bx. A C∗-µ-algebra Aα

H

consists of a Hilbert C∗-µ-module Hα and a nondegenerate C∗-algebra A ⊆ L(H)
such that [ρα(Bop)A] = A. A Hilbert C∗-(µ, ν)-module αHβ is formed by a Hilbert
C∗-µ-module Hα and a Hilbert C∗-ν-module Hβ such that [ρα(Bop)β] = β and

[ρβ(Cop)α] = α. Finally, there exist natural notions of a C∗-(µ, ν)-algebra Aα,β
H

and of morphisms of Hilbert C∗-µ/(µ, ν)-modules and C∗-µ/(µ, ν)-algebras [4].

1.3. The relative tensor product. Let µ, ν, τ be faithful proper KMS-weights,

αHβ a Hilbert C∗-(τop, µ)-module, and γKδ a Hilbert C∗-(µop, ν)-module. Then
we can form a Hilbert space Hβ ⊗γ K := β ⊗B (Hµ)Bop⊗γ and associate to each
ξ ∈ β and η ∈ γ operators l(ξ) : K → Hβ⊗γK and r(η) : H → Hβ⊗γK that
are given by tensor multiplication on the left and on the right, respectively. The
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relative tensor product αHβ⊗γKδ := [r(γ)α](Hβ⊗γK)[l(β)δ] is a Hilbert-C∗-(τop, ν)-
module. The situation is depicted in the diagram below:

Hτop α
))

Hµ
∼= Hµopβ

ss
γ

++
Hνδ

vv
H ∼= β ⊗B Hµ r(γ)

++
Hµ Bop⊗γ ∼= K

l(β)
ss

β ⊗B (Hµ) Bop⊗γ

The assignment (αHβ , γKδ) 7→ αHβ ⊗ γKδ is functorial, associative, and unital
[4].

1.4. The fiber product and concrete Hopf C∗-bimodules. Let Aα,β
H be a

C∗-(τop, µ)-algebra and Dγ,δ
K a C∗-(µop, ν)-algebra. Then the space Aβ∗γD :=

{T ∈ L(Hβ⊗γK) | T (∗)l(β) ⊆ [l(β)D], T (∗)r(γ) ⊆ [r(γ)A]} is a C∗-algebra. If it
is nondegenerate, then it is a C∗-(τop, ν)-algebra on αHβ ⊗ γKδ and we call it the

fiber product Aα,β
H ∗Dγ,δ

K . The situation can be depicted as follows:

H
A ��

r(γ) // Hβ⊗γK
Aβ∗γB��

K
l(β)oo

B��
H

r(γ) // Hβ⊗γK K
l(β)oo

This fiber product construction is functorial, but neither associative nor unital. A

concrete Hopf C∗-bimodule over µ is a C∗-(µ, µop)-algebraAα,β
H with a morphism ∆

from Aα,β
H to Aα,β

H ∗Aα,β
H such that (∆∗id)◦∆ = (id∗∆)◦∆, where the image of this

map is contained in (Aα,β
H ∗Aα,β

H )∗Aα,β
H ∩Aα,β

H ∗(Aα,β
H ∗Aα,β

H ) ⊆ L(Hα⊗βHα⊗βH).

2. A definition of compact C∗-quantum groupoids

A compact C∗-quantum groupoid consists — roughly — of the following in-
gredients: a unital C∗-algebra B with faithful KMS-state µ, a unital C∗-algebra
A, unital embeddings ρ : B → A and σ : Bop → A, faithful conditional expecta-
tions φ : A → ρ(B) ∼= B and ψ : A → σ(Bop) ∼= Bop, and a Radon-Nikodym-
derivative δ = dν/dν−1, where ν = µ ◦ φ and ν−1 = µop ◦ ψ. Using (partial)
GNS-constructions for µ, ν and φ, ψ, φop, ψop, one can construct a Hilbert C∗-

(µ, µop, µ, µop)-module (H, α̂, β̂, α, β) such that Aα,β
H is a C∗-(µ, µop)-algebra. Fur-

ther ingredients are a morphism ∆ such that (Aα,β
H ,∆) is a Hopf C∗-bimodule

and φ, ψ are left- and right-invariant with respect to ∆, and a unitary antipode
R which is an anti-automorphism of A and satisfies a strong invariance condition
involving φ and ∆. The precise definition can be found in [4].

3. C∗-pseudo-multiplicative unitaries

3.1. Definition and associated Hopf C∗-bimodules. In the theory of quan-
tum groups, a fundamental role is played by the multiplicative unitaries of Baaj,
Skandalis and Woronowicz. For the study of quantum groupoids in the setting of
C∗-algebras, we propose the following generalization. A C∗-pseudo-multiplicative
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unitary over a proper, faithful KMS-weight µ consists of a Hilbert C∗-(µop, µ, µop)-

module (H, β̂, α, β) and a unitary V : H β̂⊗αH → Hα⊗βH that satisfies cer-

tain compatibility conditions with respect to β̂, α, β and the pentagon equation
V12V13V23 = V12V23. Here, the Vij are operators that act on relative tensor prod-
ucts of three copies of H like V at the positions i, j and like the identity at the
remaining position. If V satisfies a certain regularity condition, we can associate to

V two concrete Hopf C∗-bimodules (Â(V )β̂,α
H , ∆̂) and (A(V )α,β

H ,∆). Using repre-
sentations and corepresentations of the unitary V , we can also form two universal
C∗-algebras Âu(V ) and Au(V ) with surjections onto Â(V ) and A(V ), respectively,
but we have no universal fiber product construction to define the target of the co-
multiplication on these C∗-algebras.

3.2. Examples. To every compact C∗-quantum groupoid as above, we can as-
sociated a regular C∗-pseudo-multiplicative unitary using similar formulas as in
the setting of quantum groups. One of the associated Hopf C∗-bimodules coin-
cides with the initial compact C∗-quantum groupoid, and the other is the Hopf
C∗-bimodule of the generalized Pontrjagin dual. We hope to axiomatize these
duals as étale C∗-quantum groupoids and to establish a duality between étale and
compact C∗-quantum groupoids.

As another example, every locally compact Hausdorff groupoid G yields a reg-
ular C∗-pseudo-multiplicative unitary V such that Â(V ) ∼= C0(G) and A(V ) ∼=
C∗

r (G). Further examples of C∗-pseudo-multiplicative unitaries can be obtained
from continuous bundles of multiplicative unitaries, tracial conditional expecta-
tions, and via natural constructions like tensor products and direct sums.

3.3. Duality for coactions. There exists a natural notion of a coaction of a
concrete Hopf C∗-bimodule over µ on C∗-µ-algebras. Given a regular C∗-pseudo-
multiplicative unitary V with a suitable additional symmetry, we can construct
for each coaction of one of the associated Hopf C∗-bimodules a reduced crossed
product with a dual coaction of the other Hopf C∗-bimodule, and identify the
iterated reduced crossed product with a stabilization of the initial coaction. In
particular, this duality result covers actions of and Fell bundles on locally compact
groupoids.

4. Transition to the setting of von Neumann algebras

All concepts introduced above — the relative tensor product, the fiber product,
Hopf C∗-bimodules, and C∗-pseudo-multiplicative unitaries — can be mapped
functorially to their respective counterparts in the setting of von Neumann alge-
bras, which were introduced by Connes, Sauvageot, Vallin, Enock, Lesieur and
others.

References
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Liberation of orthogonal Lie groups

Teodor Banica

(joint work with Roland Speicher)

The notion of free quantum group appeared in Wang’s papers. The idea is
as follows: let G ⊂ Un be a compact group. The n2 matrix coordinates uij

satisfy certain relations R, and generate the algebra C(G). One can define then
the universal algebra A generated by n2 noncommuting variables uij , satisfying
the relations R. For a suitable choice of R we get a Hopf algebra in the sense
of Woronowicz, and we have the heuristic formula A = C(G+), where G+ is a
compact quantum group, called free version of G. (Clearly, if A is not commutative
then G+ is a fictional object and any statement about G+ has to be interpreted
in terms of A to make rigorous sense.)

This construction is not axiomatized, in the sense that G+ depends on the rela-
tions R, and it is not known in general what the good choice of R is. For instance
any choice with R including the commutativity relations uijukl = ukluij would
be definitely a bad one, because in this case we would get G+ = G. Moreover,
any choice with R including certain relations which imply these commutativity
relations would be a bad one as well.

The purpose of this talk is to bring some advances on the axiomatization and
general study of free quantum groups.

The starting object is a compact group satisfying Sn ⊂ G ⊂ Un. The main
problem with the construction of the liberation A = C∗(uij |R) is whether the
normality of the generators should be included or not into the relations R.

For instance in the case G = Un the normality of generators has definitely to
be avoided, simply in order to get a Hopf algebra, while in the case of the complex
reflection groups G = Hs

n, the normality of generators has to be included into
the relations R, for the “liberation” to be compatible in some natural sense with
Voiculescu’s free probability theory.

Summarizing, in the unitary case the main problem, recently discovered and
not solved yet, concerns the normality of the generators.

In this talk we investigate the orthogonal case, G ⊂ On. The matrix coordinates
uij , being in this case real functions, are self-adjoint in the C∗-algebra sense. So,
it is natural to assume that the relations R contain the self-adjointness conditions
uij = u∗ij , and the above-mentioned normality issue dissapears.

With this observation at hand, the main problem if to find the relevant “extra
relations” between the generators uij . Inspired by Tannakian philosophy as devel-
oped by Woronowicz, we propose here the following answer: the relevant “extra
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relations” should be those corresponding to the “noncrossing partitions appearing
as intertwiners between the tensor powers of u”.

Our main results can be described as follows. First, we classify on one hand
the orthogonal groups having “noncrossing presentations”, and on the other hand,
the orthogonal free quantum groups. These groups and quantum groups are in a
natural correspondence, as follows:

Bn ⊂ B′
n ⊂ On

∪ ∪ ∪

Sn ⊂ S′
n ⊂ Hn

⇐⇒

B+
n ⊂ B′+

n ⊂ O+
n

∪ ∪ ∪

S+
n ⊂ S′+

n ⊂ H+
n

Here Sn, On are the symmetric and orthogonal groups, Bn, Hn are the bis-
tochastic and hyperoctahedral groups, and we use the notation G′ = Z2 ×G.

The classification is done by computing all possible categories of partitions,
respectively of noncrossing partitions. We show that each of these two categorical
problems has exactly 6 solutions, given by:

{
singletons and

pairings

}
⊃

{
singletons and

pairings (even part)

}
⊃

{
all

pairings

}

∩ ∩ ∩
{

all
partitions

}
⊃

{
all partitions
(even part)

}
⊃

{
with blocks of

even size

}

We discuss now a basic problem, belonging at the same time to representa-
tion theory and to probability, namely the computation of the asymptotic laws of
truncated characters for the above 6 groups and 6 quantum groups. These laws,
depending on a truncation parameter t ∈ (0, 1], are as follows:

st − s′t − gt

| | |

pt − p′t − bt

⇐⇒

σt − σ′
t − γt

| | |

πt − π′
t − βt

Here pt, gt, st, bt are the Poisson, Gaussian, shifted Gaussian and Bessel laws,
πt, γt, σt, βt are the free Poisson, semicircular, shifted semicircular and free Bessel
laws, and the prime signs denote the symmetric versions.

The laws at the corners of the above two rectangles are known to form semi-
groups with respect to convolution and free convolution, respectively, and corre-
spond to each other via the Bercovici-Pata bijection. We have a simple proof for
this fact, by using cumulants and free cumulants.
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Finally, we have some more general classification problems. The idea is that
the above 6-classification results concern the following two situations:

S+
n ⊂ Gfree ⊂ O+

n

∪ ∪

Sn ⊂ Gclass ⊂ On

The unifying problem concerns the classification of the quantum groups satis-
fying Sn ⊂ G ⊂ O+

n . We don’t have an answer here, but have several advances on
the problem, notably the construction of 3 more examples.

These new quantum groups, that we denote O∗
n, B

∗
n, B

′∗
n , are constructed via

Tannakian duality, by using certain categories of partitions. They sit as follows
with respect to the previously known examples of orthogonal quantum groups:

B+
n ⊂ B′+

n ⊂ O+
n

∪ ∪ ∪

B∗
n ⊂ B′∗

n ⊂ O∗
n

∪ ∪ ∪

Bn ⊂ B′
n ⊂ On

As a conclusion, the present results bring us one step further into the clarifi-
cation of the relationship between free quantum groups and free probability, from
the representation theory point of view.

References
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The Free Product of Planar Algebras

Dietmar Bisch

(joint work with Vaughan Jones)

Let N ⊂ M be an (extremal) inclusion of II1 factor with finite Jones index ([7]).
The standard invariant of N ⊂M , given by the system of higher relative commu-
tants

C = N ′ ∩N ⊂ N ′ ∩M ⊂ N ′ ∩M1 ⊂ N ′ ∩M2 ⊂ · · ·
∪ ∪ ∪

C = M ′ ∩M ⊂ M ′ ∩M1 ⊂ M ′ ∩M2 ⊂ · · ·
can be axiomatized as a (subfactor) planar algebra ([8], [10]). It is a very

rich group-like object that captures the “quantum symmetries” encoded in the
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subfactor. The planar algebra formalism allows one to carry out sophisticated
computations with the standard invariant in an extremely efficient way, and hence
one can analyze the structure of subfactors via Popa’s reconstruction theorem [10].
Note that the standard invariant is a complete invariant for amenable subfactors
of the hyperfinite II1 factor ([9]). In the remainder of this report, we will mean
“subfactor planar algebra” whenever we say “planar algebra”. See [8] for the
notation used here.

We will proceed with the definition of what we call the free product of two planar
algebras A and B.

Definition 1. Given labelled n-tangles TA of A and TB of B we say that TA is free
with respect to TB if there is a Temperley-Lieb n-tangle T0 (called the separating
tangle) such that:

(i) The interior of each shaded boundary interval of T0 contains exactly two
marked boundary points of TB and the interior of every unshaded boundary in-
terval of T0 contains exactly two marked boundary points of TA.

(ii) The starred boundary interval of TB contains that of T0 which contains that
of TA.

(iii) TB is contained entirely within the shaded regions of T0 and TA is contained
entirely within the unshaded regions of T0.

Definition 2. A free product n-tangle T is a 2n-tangle labelled with A⊔B which
is the union of a TA and a TB with TB free with respect to TA.

Isotopy classes of free product n-tangles span a graded vector space denoted
by AB = {(AB)n}. We define an action of the planar operad on AB as follows.
Given a planar (unlabelled) n-tangle T with k internal disks, add close parallels to
each of its strings on the side of the shaded regions to form the planar 2n-tangle

T̂. Then given appropriate free product tangles T1, T2, ..., Tk, Z
T̂
(T1, T2, ..., Tk) is

a well defined labelled 2n-tangle which is obviously a free product tangle whose
separating tangle is Z

T̂
applied to the separating tangles of T1, T2,..., Tk. Isotopies

of T and the Ti only affect Z
T̂
(T1, T2, ..., Tk) by isotopies. Thus AB becomes a

planar algebra.

Lemma 3. Let T be a free product tangle as above. The map T 7→ Z(TA)⊗Z(TB)
defines a planar algebra homomorphism Ψ from AB to the tensor product planar
algebra A ⊗ B.

We can therefore define the free product planar algebra A ∗ B as the image
Ψ(AB) in A⊗B ([6]). It is obvious from the definition in [3] that the Fuss-Catalan
planar algebras are the free product of two Temperley-Lieb planar algebras. Note
that our notion of free product planar algebra corresponds to what is called free
composition of subfactors in [3] (see also [2]).

It turns out that the structure of the free product planar algebra A ∗ B can
be determined explicitly. For instance, the dimensions of the vector spaces (A ∗
B)n can be computed from the dimensions of Ak and Bl using Voiculescu’s free
multiplicative convolution ([11]). Principal graphs and fusion algebras can be
determined as well using similar methods as in [3] and [4].
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Another interesting feature of the free product planar algebra is the fact that
it has the following universal property. If P is a planar algebra which contains a
biprojection p ∈ P2 ([1], see also [5]), one can define two natural projections in
the annular algebra associated to P using this biprojection (see [6] for details).
One can then show that the images of P under these projections become planar
algebras A and B, and under suitable irreducibility assumptions one can prove
that A∗B is a sub-planar algebra of P. This is a subtle and nontrivial result from
which the structure theorem below follows. If N ⊂ P ⊂ M is a composition of
subfactors N ⊂ P and P ⊂ M , then the Jones projection onto the intermediate
subfactor P is a biprojection in the planar algebra PN⊂M associated to N ⊂ M
by [1]. Thus we obtain:

Theorem 4. Let N ⊂ P ⊂M be an inclusion of (extremal) subfactors with finite
index. Assume N ′ ∩ P = C and P ′ ∩M = C. Then PN⊂P ∗ PP⊂M ⊂ PN⊂M .

Thus, in general, the planar algebra of N ⊂ M will contain more structure
then just the Fuss-Catalan planar algebra whenever an intermediate subfactor is
present.
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Some applications of free stochastic calculus

Dimitri Shlyakhtenko

Hypotesis A. We say that a II1 factor M satisfies this hypothesis, if there exists
a one-parameter family of embeddings αt : M →M ∗L(F∞), having the property
that for some generators X1, . . . , Xn of M ,

αt(Xj) = Xj + tQj +O(t2)
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with Qj ∈ span(MS1M + · · · +MSnM)
L2

, where S1, S2, . . . , Sn are a free semi-
circular system in L(F∞).

Theorem [5] Assume that a II1 factor M satisfies Hypothesis A for some genera-
tors X1, . . . , Xn, and that M is embeddable into the ultrapower of the hyperfinite
II1 factor. Then Voiculescu’s free entropy dimension δ0 satisfies

δ0(X1, . . . , Xn) ≥ dimM⊗Mo span(MQ1M + · · · +MQnM)
L2

(here MS1M+MS2M+· · · is isometrically identified, as an M,M -bimodule, with
L2(M)⊗̄L2(M)⊕n).

Combined with previous results of Voiculescu, Ge and others (cf. Voiculescu’s
survey [6]), this theorem implies that any algebra satisfying Hypothesis A is non-
Γ, has no Cartan subalgebras and is prime.

We show that several classes of von Neumann algebras satisfy Hypothesis A.
These include von Neumann algebras of groups in the smallest class of groups
closed under passage to finite index subgroups/extensions, amalgamated free prod-
ucts over finite groups, and containing all groups with vanishing first L2-Betti
number which are Rω-embeddable. Combined with earlier estimates on free en-
tropy dimension [3], this implies that for such groups δ0 is equal to the following

combination of L2-Betti numbers: β
(2)
1 − β

(2)
0 + 1.

Another class of von Neumann algebras satisfying Hypothesis A are von Neu-
mann algebras coming from random matrix models with polynomial potentials
satisfying a convexity property [4].

We also show that von Neumann algebras generated by q-semicircular systems
[2] satisfy Hypothesis A for small values of |q|.

To show that Hypothesis A holds for these von Neumann algebras, at the sug-
gestion of A. Guionnet, we utilize free stochastic calculus [1]. We prove a technical
result, showing existence of stationary solutions to certain free stochastic differen-
tial equations with coefficients given by analytic power series. If such a stationary
solution has the same law as a generating set of M , then M satisfies Hypothesis
A.
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Towards a Universal Coefficient Theorem
for Kirchberg’s bivariant K-theory

Ralf Meyer

(joint work with Ryszard Nest)

I present here some recent joint work with Ryszard Nest that aims at a Universal
Coefficient Theorem that would help to extend classification results for simple
purely infinite C∗-algebras to the non-simple case.

First I discuss the results for simple C∗-algebras that we would like to generalise.
These build upon two rather deep classification results by Eberhard Kirchberg:

Theorem 1. Let A and B be simple, purely infinite, stable, separable, nuclear
C∗-algebras. Then any KK-equivalence between them lifts to a ∗-isomorphism.

Theorem 2. Any separable, nuclear C∗-algebra is KK-equivalent to a simple,
purely infinite, stable, separable, nuclear C∗-algebra.

Roughly speaking, these two results mean that classifying simple, purely in-
finite, stable, separable, nuclear C∗-algebras up to isomorphism is equivalent to
classifying separable, nuclear C∗-algebras up to KK-equivalence.

The main point of the second theorem is to replace a nuclear C∗-algebra by
a KK-equivalent simple nuclear C∗-algebra. It is useful to allow non-simple C∗-
algebras because the category of all separable, nuclear C∗-algebras with KK(A,B)
as morphisms from A to B has good formal properties: it is a triangulated cat-
egory. This provides some tools to study separable, nuclear C∗-algebras up to
KK-equivalence.

The main tool here is the Universal Coefficient Theorem. It holds for a certain
class of separable, nuclear C∗-algebras called the bootstrap class, and it computes
Kasparov’s bivariant K-theory in terms of ordinary K-theory. As a consequence,
two C∗-algebras in the bootstrap class are KK-equivalent if and only if they have
isomorphic K-theory; more precisely, any K-theory isomorphism lifts to a KK-
equivalence and, in the purely infinite, stable, simple case, even to a ∗-isomorphism.

We want to develop an analogous theory for non-simple algebras. In this case,
the primitive ideal space is another important invariant, which we have to take
into account. To extend Kirchberg’s Theorem 1, we need a version of Kasparov
theory that takes into account the primitive ideal spaces in question. This theory
was developed by Eberhard Kirchberg as well.

Let X be a sober topological space, possibly non-Hausdorff. A C∗-algebra
over X is a C∗-algebra A together with a continuous map from its primitive ideal
space to X . Since the lattice of open subsets in the primitive ideal space of A
agrees with the ideal lattice of A, such maps correspond to maps from the lattice
of open subsets in X to the ideal lattice in A that preserve arbitrary suprema
and finite infima. Roughly speaking, a C∗-algebra over X is a C∗-algebra A with
distinguished ideals A(U) for open subsets U of X satisfying natural assumptions.
We call a C∗-algebra over X tight if the map from its primitive ideal space to X
is a homeomorphism.
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Let A and B be two C∗-algebras over X . We may consider Kasparov cycles
for A and B that are compatible with the distinguished ideals in a suitable sense
which ensures that our cycle restricts to Kasparov cycles for A(U) and B(U) for all
open subsets U of X . Homotopy classes of such cycles define Kirchberg’s bivariant
K-theory for C∗-algebras over X . It has the same formal properties as Kasparov’s
bivariant K-theory. In particular, it is the universal split-exact C∗-stable functor
on the category of separable C∗-algebras over X .

Kirchberg already extended Theorem 1 to the non-simple case:

Theorem 3. Let A and B be tight, strongly purely infinite, stable, separable, nu-
clear C∗-algebras over the same topological space X. Then any invertible element
in KKX

0 (A,B) lifts to a ∗-isomorphism from A to B.

The tightness assumption replaces simplicity, otherwise the assumptions are the
same. A C∗-algebra is strongly purely infinite if and only if it absorbs the Cuntz
algebra O∞.

Theorem 2 above is harder to extend because not every topological space is the
primitive ideal space of a C∗-algebra. So far, we can only prove an analogue of
Theorem 2 if the underlying space X is finite:

Theorem 4. Let X be a finite T0-space. Any separable nuclear C∗-algebra over X
is KKX-equivalent to a tight, strongly purely infinite, stable, separable, nuclear
C∗-algebra over X.

In particular, this contains the well-known fact that any finite T0-space is
the primitive ideal space of some separable nuclear C∗-algebra. We can make
it strongly purely infinite and stable by tensoring with the Cuntz algebra O∞ and
with the C∗-algebra of compact operators.

As above, this theorem means that classifying strongly purely infinite, stable,
separable, nuclear C∗-algebras with finite primitive ideal space X up to isomor-
phism over X is equivalent to classifying separable, nuclear C∗-algebras over X
up to KKX -equivalence. Again, the latter problem is simpler because KKX is a
triangulated category, so that we may study it using homology theories. It is not
clear to what extent Theorem 4 extends to infinite X .

The next issue is the right analogue of the bootstrap class for C∗-algebras
over X . Several of the equivalent characterisations make sense in this generality,
but it is somewhat unclear which of them remain equivalent. We only define
the bootstrap class for finite spaces X here. We prefer the characterisation by
generators.

For each x ∈ X , we let (C, x) be the elementary C∗-algebra C viewed as a
C∗-algebra over X via the constant map from its primitive ideal space – a single
point – to X with value x. We let B(X) be the localising subcategory of KKX

generated by (C, x); that is, we take the smallest class of C∗-algebras over X that
contains (C, x) for all x ∈ X and is closed under suspensions, extensions, countable

direct sums, and KKX -equivalence.
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Proposition 5. Let X be a finite T0-space. A C∗-algebra A over X belongs
to B(X) if and only if KKX

∗ (A,D) = 0 whenever K∗

(
D(U)

)
= 0 for all open

subsets U of X.

Roughly speaking, this means that B(X) is exactly the right category on which
a Universal Coefficient Theorem should be formulated. If K∗

(
D(U)

)
= 0 for all

open subsets U of X , then all K-theoretic data we can attach to D vanishes; hence
any Universal Coefficient Theorem will predict KKX

∗ (A,D) = 0 for such D. That
is, B(X) is the largest possible category on which a Universal Coefficient Theorem
can hold.

The main point in the proof of the proposition is the natural isomorphism

KKX
∗

(
(C, x), D

) ∼= K∗

(
D(Ux)

)
,

where Ux is the minimal open neighbourhood of x, which exists because x is finite.
It turns out that a separable, nuclear C∗-algebra A over X belongs to B(X) if

and only if A(U) belongs to the usual bootstrap category for all open subsets U
of X – it even suffices to assume this for the minimal open subsets Ux for x ∈ X
mentioned above. As a consequence, any C∗-algebra over X of type 1 belongs to
B(X). Conversely, a C∗-algebra overX that belongs to B(X) is KKX -equivalent to
a type 1 C∗-algebra overX by adapting the proof of Theorem 4. Even more, we can
achieve that the subquotients Ax = A(Ux)

/
A(Ux \ {x}) are all commutative. It

seems likely that we can even achieve that A itself is commutative – this description
of the bootstrap category was suggested by Kirchberg – but it is unclear how to
prove this.

Now we know for which class of C∗-algebras over X a Universal Coefficient
Theorem is expected to hold. It remains to find a Universal Coefficient Theorem
suitable for classification purposes. There is some general machinery available
for this purpose, but it only produces spectral sequences in general. A spectral
sequence is merely a bookkeeping tool that guides computations, but it is usually
not enough to actually carry them out to the finish. Roughly speaking, it involves
a recursive procedure that converges towards the group we want to compute and
whose starting point has a reasonably simple description. But in each step, we
need certain boundary maps that provide obstructions to lifting the results of our
computation so far to the group we wish to compute. In particular, these may
obstruct the lifting of an isomorphism on the invariant to a KKX -equivalence.
Therefore, an invariant is only suitable for classification purposes if the spectral
sequence that it produces degenerates at the very first step.

Here an invariant is a homological functor F from KKX to some Abelian cat-
egory C that is universal in the sense that any other homological functor with a
larger kernel on morphisms factors through it; this ensures that the category C sees
all the internal symmetries of F . We must check that Extp

C

(
F (A), F (B)

)
vanishes

for p ≥ 2: then we get a Universal Coefficient Theorem of the usual form:

Ext1C
(
F (A), F (B)

)
 KKX

∗ (A,B) ։ HomC

(
F (A), F (B)

)
.

This ensures that an isomorphism F (A) ∼= F (B) in C lifts to a KKX -equivalence.
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For some particularly simple spaces X , for instance, in the linearly ordered
case, filtrated K-theory is an invariant with this property. But there are also
simple spaces with four points for which filtrated K-theory still has non-vanishing
Ext2. It seems likely that there are spaces X for which it is impossible to find an
invariant with a UCT as above. But in the simple counterexamples studied so far,
filtrated K-theory may be enriched to a complete invariant.

Finally, I briefly discuss filtrated K-theory. The main issue is to describe the
target Abelian category C. For any subset Y of X of the form Y = U \V with open
subsets V ⊆ U ⊆ X , we want to consider the K-theory of the subquotient A(Y ) =
A(U)

/
A(V ). These K-theory groups admit certain natural transformations.

The target category C is the category of all countable graded modules over the
ring of natural transformations between K∗

(
A(Y )

)
for subsets Y as above. More

precisely, we should also restrict to subsets Y that are non-empty and connected
here.

To describe the ring of natural transformations, we construct C∗-algebras RY

over X with KKX(RY , D) ∼= K∗

(
D(Y )

)
. Then the natural transformations from

K∗

(
D(Y )

)
to K∗

(
D(Z)

)
are given by KKX(RZ ,RY ) ∼= K∗

(
RY (Z)

)
. The con-

struction of RY is quite explicit and uses certain natural subcomplexes of the
order complex of the partial order on X induced by the topology. Hence the ring
of natural transformations may be computed explicitly. In the examples studied
so far, this ring may also be described by obvious generators and relations coming
from K-theory six-term exact sequences.
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The automorphism groups for non-simple Cuntz-Krieger algebras

Søren Eilers

(joint work with Gunnar Restorff and Efren Ruiz)

The profound isomorphism theorem of Kirchberg ([5]) allows a reduction of the
study of ∗-automorphisms of certain non-simple C∗-algebras to the study of their
ideal-related KK-theory. However, the ideal-related KK-groups have proved to
be quite difficult to compute in general, as explained below and indicated also by
the work of Meyer and Nest (ibid.), and thus at this stage we do not even in the
finite ideal case have a canonical candidate for a univariant K-functor to classify
such objects or indeed their automorphism groups. We report on a complete
solution of the latter type of problem in a special case leading to computations
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of automorphism groups of certain non-simple Cuntz-Krieger algebras (cf. [1]) the
novel feature of which is a new kind of K-groups which could lead to a deeper
understanding of the general problem.

We focus on the fundamental case of C∗-algebras with precisely one non-trivial
ideal, as it is in this case quite clear from the seminal work of Rørdam ([8]) that
any useful invariant must be based on the six-term exact sequence in K-theory.
In fact, we have managed to generalize this as follows:

Theorem 1. [3] Let two unital extensions

ei : 0 // Bi ⊗ K // Ei
// Ai

// 0

be given. If all algebras Ai and Bi are unital and fall in either of the classes
of simple C∗-algebras classified by Lin ([7]) or by Kirchberg-Phillips ([6]) then
E1 ⊗K ≃ E2⊗K precisely when the six term sequences associated to e1 and e2 are
isomorphic with order isomorphisms at K0(Ai) and K0(Bi).

Remark 2. The case when all Ai and Bi are Kirchberg algebras is [8]; the mixed
cases are relevant for applications such as Matsumoto algebras and graph algebras.

To classify automorphisms on non-simple C∗-algebras up to approximate uni-
tary equivalence, one naturally follows the lead of the work of Dadarlat and Loring
([2]) which gave such a characterization of the automorphism groups of certain
stably finite C∗-algebras of real rank zero as a corollary to their Universal Multi-
Coefficient Theorem (UMCT). Combining this result with the classification of
isomorphisms on simple Kirchberg algebras it is clear that one needs to consider
K-theory with coefficients in a similar manner.

To our initial surprise, we could prove ([4]) that this collection is not sufficient
to support a model for the automorphisms even for Cuntz-Krieger algebras with
one ideal. For instance, OA with

A =

[
B 0
C B

]
; B =




1 0 0 1
0 1 0 1
1 1 0 0
1 1 1 1


 , C =




1 0 0 1
1 0 1 0
0 0 1 1
1 0 0 0




we get that

Inn(OA) → Aut(OA) → Aut(K∆(OA))

is not injective, where K∆(OA) is the six term exact sequence of total K-theory
which in triangular form looks like

K(OA)

$$JJJJJJJJJ

K(OB)

::ttttttttt

K(OB)©oo

Investigating cases of this type has lead us to a new form of K-groups which
can be used to compute Aut(A)/Inn(A) for A a Cuntz-Krieger algebra of the type
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mentioned above. They are given by using certain extensions en as “test objects”
in Kirchberg’s ideal-related KK-theory, where

e0 : 0 // Mn(C0(0, 1)) // In
// C // 0

is the canonical extension associated to the nonunital dimension drop algebra
In, and the subsequent extensions are given by mapping cones of their predeces-
sors. The new groups KKi

E(en, A) are 6-periodic in the sense that KKi
E(e3, A) =

KKi+1
E

(e0, A), and must be considered along with certain natural transformations
similar to the Bockstein operations. Thus, with K

N
(−) defined taking all this

structure into account (notation may be subject to change), we get

Theorem 3. For a Cuntz-Krieger algebra OA with property (II) and precisely one
ideal, we have short exactness of

{1} → Inn(OA) → Aut(OA) → Aut(K
N
(OA)) → {1}

We have not been able to determine whether or not this invariant allows a
UMCT in general, but by using the special propeties of the six-term exact sequence
for Cuntz-Krieger algebras we have established a UMCT in this particular case.
In fact, as a part of the proof we show that only a small subset of the invariants
mentioned above (and in particular not all of the new groups) are necessary when
all K-groups are finitely generated, all K1-groups are free, and the exponential
map vanishes.
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Fundamental groups of II1 factors and equivalence relations

Stefaan Vaes

(joint work with Sorin Popa)

Murray and von Neumann [6] introduced in 1943 the fundamental group of a
II1 factor and of a II1 equivalence relation and showed that it equals R+ in the
hyperfinite case. Since then, the question which subgroups of R+ can arise as
a fundamental group, attracted a lot of attention. The first breakthrough was
obtained by Connes, who proved [2] that the group von Neumann algebra L(Γ)
has countable fundamental group whenever Γ is a group with property (T) and
infinite conjugacy classes (ICC).

Although Popa proved in [8] that every countable subgroup of R+ is the fun-
damental group of a II1 factor M , as well as of a II1 equivalence relation R, the
question whether uncountable subgroups different from R+ can occur, remained
open. If you moreover require that M = L∞(X) ⋊ Γ, resp. R = R(Γ y X), is
given by a free ergodic probability measure preserving (p.m.p.) action Γ y (X,µ)
of a countable group Γ on a standard probability space (X,µ), only the groups
{1} and R+ had been realized as F(M),F(R), see [3, 4, 7].

In [9], we exhibit a large family S of subgroups of R and prove that for every
H ∈ S, there exist uncountably many free ergodic p.m.p. actions of the free group
F∞ y (X,µ) such that the associated II1 factors and equivalence relations have
fundamental group exp(H) and are non-isomorphic. The family S includes R, all
its countable subgroups and subgroups of arbitrary Hausdorff dimension in the
interval (0, 1). In [10], it is shown that the same statement holds if we replace
F∞ by an arbitrary group of the form Γ∗∞ ∗Σ, where Γ and Σ are infinite groups
and Σ is amenable. On the other hand, let Γ, Σ be infinite, finitely generated
groups such that Γ is ICC and either has property (T) or can be written as a
direct product Γ = Γ1 × Γ2 of infinite groups with Γ1 non-amenable. We prove in
[10] that the fundamental group of M = L∞(X) ⋊ (Γ ∗ Σ) is trivial for any free
ergodic p.m.p. action of Γ ∗ Σ. Note that the equivalence relation R(Γ ∗ Σ y X)
has trivial fundamental group by [3], since Γ ∗Σ has first L2-Betti number strictly
between 0 and ∞.

Given a free ergodic p.m.p. action Γ y (X,µ), in order to prove that M =
L∞(X) ⋊ Γ and R(Γ y X) have the same fundamental group, one has to show
that whenever θ : M → pMp is a ∗-isomorphism with p a projection in L∞(X),
the Cartan subalgebras θ(L∞(X)) and L∞(X)p are unitarily conjugate. In the
setup of [9], involving rigid actions of the free group F∞, this follows directly from
[7], while in [10], we rely on several results of [5].

Finally, we provide in [10] examples of II1 equivalence relations R having prop-
erty (T) in the sense of Zimmer (see [1, 11]) and yet having fundamental group
R+. In particular, neither R nor any of its amplifications Rt ∼= R, t > 0, can be
implemented by a free action of a group. We also give examples of II1 factors M
with F(M) = R+, but such that nevertheless M⊗B(ℓ2) admits no trace scaling
action of R+.
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R-Actions on the Cuntz algebra O2 and Reconstruction

Eberhard Kirchberg

(joint work with N.C. Phillips)

In the following all algebras A, . . . are separable, all spaces are second countable
and “G-actions” are injective group-morphisms G →֒ Aut(A).

It is folklore that a C*-algebra A is simple if it is prime and is G-simple for
a compact group G. In joint work with Chris Phillips [4] we show that, for
each non-compact second countable amenable l.c. group G, there exists separable
amenable(=nuclear) A with a G-action such that A⋊G ∼= O2 ⊗ K, A ∼= A ⊗ O2,
and A is prime and is not simple, but is G-simple (One finds in the case G = Z also
a Z-simple, prime, non-simple and unital AF-algebra, — but by different meth-
ods —). Our proof uses the following characterization of primitive ideal spaces
Prim(A) of amenable separable C*-algebras and the “reconstruction” theorem,
respectively its G-equivariant corollary (their proofs are scattered over [2],[3],[5]
and use [6]):

Theorem [H.Harnisch, E.K., M.Rørdam]
Let X a point-complete (or spectral, sober) T0-space. TFAE:

(i) X ∼= Prim(E) for some separable exact C*-algebra E.
(ii) The lattice of open sets O(X) is isomorphic to an sup–inf invariant sub-

lattice of O(Y ) for some l.c. Polish space Y .
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If X satisfies (ii), then there is a nuclear C*-algebra A with A ∼= A ⊗ O2 ⊗ K,
and a homeomorphism ψ : X → Prim(A), that is unique in the following sense:
For every nuclear B with B ∼= B ⊗ O2 ⊗ K and every homeomorphism φ : X →
Prim(B), there is an isomorphism α : A→ B with α(ψ(x)) = φ(x) for x ∈ X .
The isomorphism α is uniquely determined up to unitary homotopies (in U(M(B))
— in particular up to approximately inner automorphisms.
(Notice here that ψ(x) and φ(x) are — in particular — ideals of A.)

Reconstruction-Theorem [H.Harnisch, E.K.]
Suppose that A is a nuclear and stable, that Ω is a sup–inf closed sub-lattice
of I(A) ∼= O(Prim(A)) with Prim(A), ∅ ∈ Ω . Then there is a non-degenerate
*-monomorphism H0 : A→ M(A) with following properties:

(i) The infinite repeat δ∞ ◦H0 is unitarily equivalent to H0.
(ii) For every U ∈ O(Prim(A)) holds H0(J(V )) = H0(A)∩M(A, J(U)) , where

V ∈ Ω is given by V =
⋃{W ∈ Ω ; W ⊂ U}.

The H0 is uniquely determined up to unitary homotopy.
The Cuntz-Pimsner algebra OH of the Hilbert A-A-module H := (A,H0) is

stable and strongly purely infinite; and it is the same as the C*-Fock algebra
F(H) of H.

The natural embedding of A into OH defines a lattice isomorphism from Ω onto
O(Prim(OH)) and is a KK(Ω; ·, ·)-equivalence.

One can use the pentagon-rule unitary on L2(G × G) to see that the unique-
ness (in conjunction with the classification of non-simple amenable s.p.i. algebras)
implies the following:

Corollary [G-equivariant Reconstruction]
Suppose that A and Ω are as in the Reconstruction Theorem. If a locally com-
pact group G acts on A by α : G → Aut(A) with α(g)(J) ∈ Ω for all J ∈ Ω,
then H0 : A → M(A) can be found such that — in addition —, H0 can be taken
G-equivariant.
More precisely: there is an action γ : G→ Aut(A) ofG on A that is outer conjugate
to α such that that H0 can be found with γ(g) (H0(a)b) = H0 (γ(g)(a)) γ(g)(b)
for g ∈ G, a ∈ A.
In particular, G acts on OH in a way that the inclusion map A →֒ OH is G-
equivariant.
(Notice: If above A is of type I, then OH is a Z-crossed product of an inductive
limit of type I algebras.
The Corollary remains true for some Quantum groups including all Kac algebras
(Ring groups) — with obvious modifications of the formulation —.)

The proof of the existence of prime, non-simple and G-minimal A with the
quoted properties proceeds as follows:
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(1) We define a T0 space X(G) by X(G) = G ∪ {∞} with topology given by
{∅, (G \ C) ∪ {∞} ; G ⊃ C compact} . Then we show that X(G) satisfies (ii) of
the first of the above theorems. It gives amenable B with B ∼= B ⊗ O2 ⊗ K and
Prim(B) ∼= X(G). Clearly, G acts on X(G) naturally, the action is topologically

minimal, and B is prime, because {∞} = X(G).
(2) The action of G on X(G) defines a homeomorphism ℓ : (t, s) → (s + t, s) of
X(G)×G ∼= Prim(B ⊗C0(G)). It lifts to an automorphism κ of C := B ⊗ C0(G)
— by the uniqueness part of the characterization of Prim(C) —, because C ∼=
C ⊗ O2 ⊗ K.

(3) We apply the G-equivariant Reconstruction to C, Ω := {U × G ; U ∈
O(X(G)) } and the action α : g ∈ G 7→ κ−1 ◦ (id⊗ ρg) ◦ κ . Since Ω ∼= O(X(G)) by
a G-equivariant isomorphism, the resulting amenable stable separable C*-algebra
A := OH (for G-equivariant H0 with respect to ρ : G → Aut(C) — outer conju-
gate to α —), carries a G-action such that the natural monomorphism C →֒ A is
G-equivariant and is a KK(Ω; ·, ·)-equivalence. Since C ∼= C⊗O2 ⊗K, we get that
the stable separable amenable A must satisfy A ∼= A ⊗ O2 ⊗ K (by classification
of amenable s.p.i. algebras) and the G-action on A . The pure infiniteness and
primeness of A implies that A contains a full projection.

(4) Suppose that G is amenable. We replace the action of G on A by the diag-
onal action of G on A ⊗ O∞

∼= A, where we consider O∞ as the C*-Fock-algebra
of L2(G). Then we obtain that A ⋊G is a simple nuclear algebra. We can again
tensor by O2 ⊗ K (with trivial G-action) and get A⋊G ∼= O2 ⊗ K.

(5) If G = R then one finds actions β : R → Aut(A) and γ : R → Aut(O2), such
that β fixes a full projection of A, O2 ⋊γ R ∼= A and β and the dual action γ̂ on A
are both outer conjugate to the action on A that was defined finally in part (4).
(See a footnote [1]). �

In our talk, we have also discussed some applications of the Reconstruction
theorem to questions concerning the range of possible “Universal Coefficient The-
orems”, e.g. as follows:
We say that a C*-subalgebra A ⊂ B is regular (in B) if

(A ∩ I) + (A ∩ J) = A ∩ (I + J) ∀ closed ideals I, J ⊂ B .

Suppose that a regular Abelian A ⊂ B exists such that — in addition — the
inclusion defines in KK(X ;A,B) a KK(X ; ·, ·)–equivalence of A and B for X :=
Prim(B). Such A is not uniquely determined by B, but it has the property that
A and the action of X on A determine B ⊗ O∞ ⊗ K by the Reconstruction The-
orem (and by classification of non-simple amenable stable s.p.i. algebras) up to
X-equivariant isomorphisms if B is nuclear, i.e., there is a canonical reconstruc-
tion of B from (A,X) if B is strongly purely infinite, separable, stable and nuclear.
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If such A ⊂ B exists, we say that B is in the strong UCT-class for KK(X ; ·, ·).
(Notice: The action of the infinite T0 space X := Prim(B) on A satisfies

in particular the required ∩-∪-compatibility by R. Meyer and R. Nest, see their
abstract.)
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Singular foliations: C*-algebra and pseudodifferential calculus

Georges Skandalis

(joint work with Iakovos Androulidakis)

We construct the holonomy groupoid of any singular foliation. Our construction
generalizes that of Ehresmann, Winkelnkemper, Connes [5, 10, 15] in the regular
case and of Pradines, Bigonnet, Debord [3, 4, 8, 9, 13, 14] in an“almost regular”
case.

Our holonomy groupoid is a quite ill behaved geometric object (but often has
a nice longitudinal smooth structure). Nevertheless, we are able to use it in order
to generalize Connes’ construction of:

• the C∗-algebra C∗(M,F) of the foliation;
• the longitudinal pseudo-differential calculus;
• the analytic index of a longitudinally elliptic operator which is an element

of K(C∗(M,F)).

This talk is an account of results published in [1] and work in progress.

1. Singular foliations

The kind of foliations that we deal with are the Stefan-Sussman foliations: such
a foliation is a partition into connected submanifolds (of non constant dimension)
given by vector fields more precisely with a (locally) finitely generated submodule
of C∞

c (M ;TM) stable under Lie brackets.
We actually wish to keep track which vector fields we used to define our foliation.

So, our definition is:
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Definition. A foliation on M is a locally finitely generated submodule F ⊂
C∞

c (M ;TM) stable under Lie brackets.

It is immediate that Lie algebroids and in particular Lie groupoids (hence Lie
group actions) give rise to foliations.

The foliation F is regular if it is a direct summand of C∞
c (M ;TM), i.e. it is

the set of (smooth compactly supported) sections of an integrable subbundle of
the tangent bundle TM .

The foliation F is almost regular if the module F is projective.

Examples

(1) Consider R foliated by three leaves: (−∞, 0), {0}, (0,+∞). One can take
F to be generated by xn∂/∂x (n > 0). From our definition, we consider
these as different foliations for each n.

(2) Consider R2 foliated by two leaves {0} and R2 \ {0}. There is no obvious
best choice for F. The foliation can be given by an action of a Lie group
G, where G can be GL(2,R), SL(2,R), or C∗. Moreover, there are many
more choices: one could take vector fields that are o(‖x‖k)...

2. The holonomy groupoid

In the singular case, we do not define directly the holonomy groupoid. We
define submersions into the holonomy groupoid. These are given by a manifold U
with two submersions s, t : U → M such that each fiber of s maps through t into
the same leaf in a “submersive” way. More precisely:

Definition. Let (M,F) be a foliation. A bi-submersion of (M,F) is a manifold U
with two submersions s, t : U →M such that s−1(F) = t−1(F) = kerdt+ ker ds.

There is an obvious meaning of the inverse of a bi-submersion, the composition
of two bi-submersions. Moreover, one may define a notion of a bi-submersion “near
the identity”.

There is an easy definition of equivalence of two germs of bi-submersions.
We then define an atlas to be a family of bi-submersions stable - up to equiv-

alence by composition and inverse and which contains (up to equivalence) the
bi-submersions near the identity. There is a minimal atlas (Ui, ti, si)i∈I corre-
sponding somewhat to paths.

Definition. The holonomy groupoid of the foliation is the quotient of
⋃

i∈I Ui by
the above mentioned equivalence relation.

3. The C*-algebra, pseudodifferential calculus

In order to construct the analogue of smooth functions on our groupoid, we
push a little further the construction of Alain Connes in the case of non Hausdorff
holonomy groupoids [6]:
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Our algebra is A =
(⊕

iC
∞
c (Ui)

)
/ ∼ where ∼ is a equivalence relation. Its

∗-algebra is quite easily defined. Note that in our construction we need to consider
half densities (on ker ds⊕ kerdt).

We then define unitary representations of the groupoid, and associate to them
∗-representations of our algebra (thanks to a - not so obvious - L1 estimate). We
then define C∗(M,F) to be C∗-algebra obtained by completing A with respect to
these representations.

NB. If the groupoid is smooth along the leaves we can further define regular
represenations (on L2(Gx)) and form the reduced C∗-algebra C∗

r (M,F).

In order to construct the pseudodifferential calculus, we discuss the cotangent
space to the foliation and construct pseudodifferential operators using the usual
oscillatory integrals.

Theorem. These operators satisfy:

• A negative order pseudodifferential operator belongs to C∗(M,F);
• A zero order pseudodifferential operator is a multiplier of C∗(M,F);
• A positive order elliptic pseudodifferential operator is a regular (cf. [2])

unbounded multiplier of C∗(M,F).

We discuss a few applications of these results. In particular, they tell us that
we actually constructed the right object.

4. Further developments

We presented several developments and generalizations of our constructions. In
particular, we discussed:

• Generalization to our case of Connes’ tangent groupoid ([7]) and its rela-
tion to analytic index (see also [11]).

• Smooth singular foliations on locally compact spaces in the spirit of con-
tinuous family groupoids of [12].

References

[1] I. Androulidakis and G. Skandalis The holonomy groupoid of a singular foliation. J.
Reine Angew. Math.

[2] S. Baaj, Multiplicateurs non bornés. Thèse, Univ. P. et M.Curie, Paris (1980).
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KMS-states on Bost-Connes type systems

Nadia S. Larsen

(joint work with M. Laca and S. Neshveyev)

In a remarkable paper, Bost and Connes [1] introduced and studied a quantum
statistical dynamical system which has deep connections with number theory. The
underlying C∗-algebra is associated to a Hecke pair (P+

Q , P
+
Z ) coming from the

rational ax + b-group. From its presentation in terms of generators and relations
Laca and Raeburn [8] formalized an alternative description of this C∗-algebra as

the semigroup crossed product C(Ẑ)⋊αN∗, where Ẑ =
∏

p Zp is the compact group

of integral adeles and the action α by endomorphisms of C(Ẑ) satisfies

αn(f)(x) =

{
f(n−1x) if x ∈ nẐ

0 otherwise.

There is a natural one-parameter group of automorphisms (a dynamics) σt ∈
Aut(C(Ẑ) ⋊α N∗) satisfying σt(µ

∗
mfµn) = (m−1n)itµ∗

mfµn, for t ∈ R, f ∈ C(Ẑ)
and n ∈ N∗ (here µ∗

mfµn are spanning monomials of the crossed product, with

µn isometries). The compact group Ẑ∗ =
∏

p Z∗
p acts as symmetry group, i.e.

it implements automorphisms commuting with σ. Later Laca [5] also obtained

C(Ẑ) ⋊α N∗ as the full corner in C0(Af ) ⋊ Q∗
+ determined by the projection

corresponding to the characteristic function of Ẑ.
We recall that a KMSβ-state of a C∗-algebra B with a dynamics σ is a σ-

invariant state ϕ of B such that ϕ(ab) = ϕ(bσiβ(a)) for a, b in a set of σ-analytic
elements with dense linear span in B. A ground state is a σ-invariant state ϕ such
that the holomorphic function z 7→ ϕ(aσz(b)) is bounded on the upper half-plane
for a, b analytic. A KMS∞-state is a weak∗ limit point of a sequence {ϕn}n with
ϕn a KMSβn

-state and βn → +∞ as n→ ∞ [2].
The main theorem of [1] establishes several outstanding properties of the Bost-

Connes system: a phase transition occurs at the pole of the Riemann zeta function,
namely in the range 0 < β ≤ 1 there is a unique KMSβ-state which is a type III1
factor state, while in the range β > 1 the symmetry group of the system acts freely
and transitively on the extremal KMSβ-states. Moreover, each extremal KMSβ-
state for β > 1 is a type I∞ state, and the partition function of the system is the
Riemann zeta function. Further, the system encodes explicit class field theory for
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the rationals in the existence of a Q-subalgebra such that values of the extremal
KMS∞-states at elements of this algebra give algebraic numbers on which the
Galois action of Gal(Qab/Q) is intertwined via the class-field theory isomorphism

with the action of the symmetry group Ẑ∗.
The generalization of the Bost-Connes theorem to arbitrary number fields has

been the focus of much research, and was achieved in the case of K = Q(
√
−d) by

Connes, Marcolli and Ramachandran [3]. For more general fields K we refer to [2,
Section 1.4] for a discussion of several constructions of systems exhibiting some, but
not all, of the properties of the Bost-Connes system. A proposal of Bost-Connes
systems for arbitrary number fields due to Ha and Paugam [4] materializes as a
special case of their more general construction of systems associated to Shimura
data.

In our approach the C∗-algebra A arises from a restricted groupoid associated
to a transformation groupoid. However, our systems are isomorphic to the systems
for number fields from [4], and for totally imaginary fields of class number one are
also isomorphic to the systems constructed in [6] using Hecke algebras and crossed
products by semigroups of endomorphisms.

We fix some notation. We let O denote the ring of integers in an algebraic
number field K and VK the set of places (or equivalence classes of valuations) of
K. The finite places corresponding to non-archimedean valuations is VK,f . For
v ∈ VK denote by Kv the corresponding completion of K and, when v is finite, let

Ov be the closure of O in Kv. The ring of finite integral adeles is Ô =
∏

v∈VK,f
Ov,

and AK,f = K ⊗O Ô is the ring of finite adeles. Denoting by K∞ =
∏

v|∞Kv

the completion of K at all infinite places, we get the ring AK = K∞ × AK,f of
adeles. The idele group is IK = A∗

K . We let JK (and J+
K) be the free abelian

group (semigroup) on the non-zero prime ideals p of O.
The multiplicative group A∗

K,f acts on Gal(Kab/K) ×AK,f by

j · (α, a) = (αs(j)−1, ja),

where s : IK → Gal(Kab/K) is the Artin map. Upon quotienting out the action

of the (compact open) subgroup Ô∗ of A∗
K,f (similarly to [3]) we get the space

X := Gal(Kab/K)×
Ô∗ AK,f

with a quotient action of A∗
K,f/Ô

∗ (note that this group is known to be isomorphic

to JK). Finally, note that Y := Gal(Kab/K) ×
Ô∗ Ô is clopen in X , let 1Y be the

characteristic function of Y , and set (A, σ) = (1Y (C0(X) ⋊ JK)1Y , σ) with σt

implemented by the absolute norm of an ideal, so N(a) = |O/a| for a ∈ J+
K .

Alternatively, A is the semigroup crossed product C(Y ) ⋊ J+
K .

The zeta function of the BC-system for K is ζK(β) =
∑

a∈J+

K
N(a)−β, with the

series converging for β > 1 and diverging for β ∈ (0, 1]. Our main result is the
following theorem:

Theorem 1. ([7]) For the system (A, σ) we have:
(i) for β < 0 there are no KMSβ-states;
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(ii) for each 0 < β ≤ 1 there is a unique KMSβ-state;
(iii) for each 1 < β < ∞ the extremal KMSβ-states are indexed by Y0 :=

Gal(Kab/K)×
Ô∗ Ô∗, with the state corresponding to w ∈ Y0 given by

ϕβ,w(f) =
1

ζK(β)

∑

a∈J+

K

N(a)−βf(aw) for f ∈ C(Gal(Kab/K)×
Ô∗ Ô);

moreover, Gal(Kab/K) acts freely and transitively on these states;
(iv) the extremal ground states are indexed by Y0, with the state corresponding

to w ∈ Y0 given by ϕ∞,w(f) = f(w), and all ground states are KMS∞-states.

Connes and Marcolli [2] defined n-dimensional Q-lattices as pairs (L,ϕ) with
L ⊂ Rn a lattice and ϕ : Qn/Zn → QL/L a homomorphism. Connes, Marcolli and
Ramachandran [3] defined 1-dimensional K-lattices for K an imaginary quadratic
field. Similarly we define n-dimensional K-lattices for an arbitrary number field
K and n ≥ 1 a positive integer. An n-dimensional O-lattice is a lattice L in Kn

∞

such that OL = L. An n-dimensional K-lattice is a pair (L,ϕ) where L ⊂ Kn
∞

is an n-dimensional O-lattice and ϕ : Kn/On → KL/L is an O-module map.
As in [2] and [3] we say that two n-dimensional K-lattices (L1, ϕ1) and (L2, ϕ2)
are commensurable if KL1 = KL2 and ϕ1 = ϕ2 modulo L1 + L2. We let RK,n

denote the equivalence relation of commensurability of n-dimensional K-lattices,
and identify the resulting groupoid with a noncommutative space associated to
a restricted transformation groupoid. Next, we consider a scaling action of K∗

∞

on 1-dimensional K-lattices which is similar to the scaling action of C∗ on the
1-dimensional K-lattices for imaginary quadratic fields from [3]; namely we let
k(L,ϕ) = (kL, kϕ) for (L,ϕ) a K-lattice and k ∈ K∗

∞. The quotient of RK,1 by
the scaling action of (K∗

∞)◦ is a groupoid isomorphic to the noncommutative space

(1) (A∗
K,f/Ô

∗) ⊠ ((A∗
K/K

∗(K∗
∞)◦) ×

Ô∗ Ô)

arising from the action of A∗
K,f on K∗\A∗

K ×AK,f given by right-multiplication in
the first component and left multiplication in the second, followed by restriction

to Ô in the last component. By taking the closure of K∗(K∗
∞)◦) in (1) we recover

A (after invoking the class-field theory isomorphism), see [7] for details. Thus A

can be introduced solely in terms of K-lattices.
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Permanence Properties of the Bost Conjecture

Walther Paravicini

Let G be a locally compact second countable Hausdorff group. If A is a G-C∗-
algebra, then the Bost assembly map is a homomorphism

µG,A
L1 : KG,top

∗ (EG;A) → K∗(L
1(G,A));

the Bost conjecture with C∗-algebra coefficients for G asserts that µG,A
L1 is an

isomorphism for all A. This conjecture is known to be true for a large class of
groups by the work of Lafforgue [Laf02], including closed subgroups of reductive
Lie groups, all groups having the Haagerup property and all hyperbolic groups.

The homomorphism µG,A
L1 can be constructed in analogy to the Baum-Connes

assembly map by the use of Vincent Lafforgue’s bivariant K-theory KKban, which
is defined for Banach algebras. It should be mentioned that most of the proofs of
the following results can be carried out in a purely Banach algebraic framework,
we need to have C∗-coefficients only to ensure good properties of the left-hand side
of the Bost conjecture.

It is known that the Bost conjecture for discrete groups is stable under colimits
of groups with injective structure maps [BEL07]; it is also true for non-injective
structure maps if we combine the first part of Theorem 0.7 of [BEL07] with the
following permanence result:

Theorem 1. If the Bost conjecture is true for G and arbitrary separable C∗-
coefficients, then the same is true for all open subgroups of G.

This theorem is known in the Baum-Connes context even for closed subgroups
[CE01], and the only obstruction to proving it also for closed subgroups in our
context is a technical subtlety concerning L1-completions which can hopefully be
dealt with at a later date.

Using very similar techniques, we also extend a theorem of Oyono-Oyono [OO98]
about the Baum-Connes conjecture to the Bost conjecture, obtaining the following
result:

Theorem 2. Let G act on an oriented tree X. Then the group G satisfies the
Bost conjecture with arbitrary separable C∗-coefficients if and only if the stabilisers
of all vertices of X satisfy it.

The machinery that we deploy to prove both theorems uses a version of KKban

which is equivariant with respect to an action of a locally compact Hausdorff
groupoid G, see [Laf06]: A G-Banach algebra is an upper semi-continuous field of
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Banach algebras over the unit space of G carrying a continuous action by isometric
Banach algebra isomorphisms. The definition of the group KKban

G (A,B) for G-
Banach algebras A and B is analogous to the group case. If G carries a Haar
system, then we obtain a descent homomorphism

KKban
G (A,B) → KKban(L1(G, A),L1(G, B))

which can be used to construct an assembly map

µG,A
L1 : KG,top

∗ (EG;A) → K∗(L
1(G, A)),

where A is a G-C∗-algebra. The Bost conjecture for the groupoid G and coefficients
in A asserts that this assembly map is an isomorphism.

There is a standard notion of equivalence for locally compact Hausdorff grou-
poids, see for example [LG94]. If we are given an equivalence between such
groupoids G and H, then we can use it to implement an induction construction
which assigns to every H-Banach algebra A a G-Banach algebra IndG

H
A. It turns

out that equivalent groupoids have Morita equivalent L1-algebras (in the sense of
Lafforgue, see [Par07c]):

L1(G, IndG

HA) ∼ L1(H, A).

This implies that their K-theory is the same. Even more is true:

Theorem 3. Let G and H be locally compact Hausdorff groupoids admitting Haar
systems and having σ-compact unit spaces. If G and H are equivalent, then the
Bost conjecture with arbitrary C∗-coefficients is true for G if and only it is true
for H.

The theorem can be read off the following commutative square which has to be
established with some technical ado.

KH,top
0 (EH;A) //

∼=

��

K0(L
1(H, A))

∼=

��
KG,top

0 (EG; IndG

HA) // K0(L
1(G, IndG

HA))

The key point in the construction of this diagram is that KKban is functorial with
respect to generalised morphisms of groupoids in the sense of Le Gall ([LG94],
[LG99]).

In the special case that H is a closed subgroupH of a locally compact Hausdorff
group G and that G is the transformation groupoid G⋉G/H , which is equivalent



2126 Oberwolfach Report 37/2008

to H , the above diagram can be extended as follows:

KH,top
0 (EH ;A) //

∼=

��

K0(L
1(H,A))

∼=

��
KG,top

0 (EG; IndG
HA) //

∼=

��

K0(L
1(G, IndG

HA))

KG,top
0 (EG; IndG

HA) // K0(L
1(G, IndG

HA))

?

OO�
�

�

Note that IndG
HA is by definition a G ⋉ G/H-C∗-algebra. In particular, it is a

field of C∗-algebras over G/H . The G-C∗-algebra IndG
HA is the standard induced

algebra that can be found in the literature, see for example [CE01]. There is a close

link between the two algebras: the algebra IndG
HA is Ind

G⋉G/H
H A after forgetting

the additional fibration over G/H .
The “forgetful map” can also be defined on the level of KK-theory, yielding a

forgetful homomorphism from KG,top
0 (EG; IndG

HA) to KG,top
0 (EG; IndG

HA). It is a
theorem of Chabert, Echterhoff and Oyono-Oyono [CEOO03] that this forgetful
homomorphism is actually an isomorphism.

Note that there is a ∗-isomorphism between
(
IndG

HA
)

⋊r G and
(
IndG

HA
)

⋊rG.

So for the Baum-Connes conjecture, there is no problem finding the analogue of
the dashed arrow in the above diagram and it is an isomorphism. For the Bost
conjecture, we have to compare L1(G, IndG

HA) and L1(G, IndG
HA).

It turns out that there is always a homomorphism with dense image between
these Banach algebras, but it is certainly not an isomorphism of Banach algebras
in most cases, and it is not clear whether it still is an isomorphism in K-theory
in general. In case that H is an open subgroup of G, there is a dense hereditary
subalgebra of both algebras, L1(G, IndG

HA) and L1(G, IndG
HA), so we obtain an

isomorphism in K-theory at least for open H . This proves Theorem 1 by the
above extended diagram.

Because the stabilisers of vertices are open subgroups, Theorem 2 can be proved
with the same techniques as Theorem 1, combined with the ideas of [OO98].
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Topological dimension and Z-stability

Wilhelm Winter

Consider the following regularity conditions on a C∗-algebra A which, at first
glance, do not seem to have much in common, but occur simultaneously in many
of our stock-in-trade examples; even more surprisingly, there are large natural
classes of C∗-algebras for which they are equivalent.

(A) A is topologically finite-dimensional.
(B) A absorbs a suitable strongly self-absorbing C∗-algebra tensorially.
(Γ) A allows comparison of its positive elements in the sense of Murray and

von Neumann.
(∆) The natural order structures on suitable homological invariants of A are

complete in the sense that they are sufficiently unperforated.

Obviously, these conditions are of a somewhat philosophical nature, and require
interpretation. All of them may be viewed as regularity properties, with (A) of
a topological nature and (B) and (Γ) of a (C∗-)algebraic type, thus approaching
the homological condition (∆) from quite different directions. The following con-
jecture, suggested in this form by A. Toms, gives a concrete interpretation of the
properties listed above.

Conjecture: For a separable, finite, nonelementary, simple, unital and nuclear
C∗-algebra A, the following are equivalent:

(α) A has finite decomposition rank.
(β) A absorbs the Jiang–Su algebra Z tensorially.
(γ) A has strict comparison of positive elements.
(δ) A has almost unperforated Cuntz semigroup.

Some of these implications are known, but none is trivial. The conjecture has
been verified by Toms and Winter for the class of Villadsen algebras of the first
type. Rørdam has shown that (γ) is equivalent to (δ), and that (β) implies (δ).
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Little is known about implication (γ) =⇒ (β); it has been confirmed for A strongly
self-absorbing by Rørdam and Winter. There are partial verifications of (β) =⇒
(α), but only under additional hypotheses on A (e.g., asking for locally finite de-
composition rank and for many projections or few traces); these results factorize
through classification theorems, and hence additionally require the Universal Co-
efficient Theorem (UCT) to hold for A. There are no direct proofs known. The
situation for (α) =⇒ (β) up to this point was similar: it had been known under
additional structural conditions (e.g., for A approximately homogeneous, or when
A has many projections and few traces, and only in the presence of the UCT).

Our main result is a direct proof of (α) =⇒ (β). Using earlier work of the author
and of H. Lin, Q. Lin and N. C. Phillips, this has a number of consequences for
the classification program for nuclear C∗-algebras. In particular, we can now clas-
sify simple, unital C∗-algebras with locally finite decomposition rank which satisfy
the UCT and for which projections separate tracial states. This includes the real
rank zero case as well as the monotracial case; it completes the classification of
C∗-algebras associated to smooth, minimal, uniquely ergodic dynamical systems.
We can also characterize the Jiang–Su algebra as the uniquely determined mono-
tracial C∗-algebra with finite decomposition rank which is KK-equivalent to the
complex numbers.

In a joint project with J. Zacharias, we introduce another interpretation of property
(A) above, the so-called weak decomposition rank. In a sense, this has even better
permanence properties than the original decomposition rank. Moreover, it turns
out that a simple infinite C∗-algebra with finite weak decomposition rank absorbs
the Cuntz algebra O∞ tensorially. Conversely, every Kirchberg algebra with UCT
has finite weak decomposition rank. Together with earlier results of Kirchberg,
this verifies the infinite version of the conjecture above, at least in the UCT case.
Moreover, weak decomposition rank allows an interesting connection to coarse
geometry: If a discrete metric space with bounded geometry has finite asymptotic
dimension n, then its associated uniform Roe algebra has weak decomposition rank
at most n.

Traces on C
∗-algebras of arithmetic groups

Bachir Bekka

Let Γ be a countable group. Two distinguished C∗-algebras are associated with
Γ: the reduced C∗-algebra C∗

r (Γ) and the maximal (or full) C∗-algebra C∗(Γ) of
Γ. One is interested in a description of the convex set of all tracial states on C∗

r (Γ)
and on C∗(Γ).

The reduced C∗-algebra C∗
r (Γ) has a canonical tracial state τreg given by

τreg(T ) = 〈Tδe|δe〉. The maximal C∗-algebra C∗(Γ) has, besides the lifting of τreg
to C∗(Γ), other tracial states: for every finite dimensional unitary representation
π of Γ, the normalized character of π induces such a state on C∗(Γ).
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The main theme of the talk is that, for several arithmetic groups Γ, these are
the only tracial states on C∗

r (Γ) respectively on C∗(Γ).
For a discrete group Γ, an obvious necessary condition for τreg to be the unique

tracial state on C∗
r (Γ) is that the amenable radical Ra(Γ) (i.e. the largest amenable

normal subgroup) of Γ is trivial. Let Γ be a linear group (that is, Γ is a subgroup
of GLn(C) for some n) with trivial Ra(Γ). Let G be the connected component of
the Zariski closure of Γ in GLn(C). If G has no compact factor, then, by results
of [2] and [3], τreg is the unique tracial state on C∗

r (Γ) and C∗
r (Γ) is simple. The

assumption that G has a compact factor seems to have been removed in recent
work by T. Poznansky, yielding the result that the reduced C∗-algebra of a linear
group Γ with Ra(Γ) = {e} is simple and has a unique tracial state. Here are two
open problems:

• Does there exist a group Γ with Ra(Γ) = {e} for which C∗
r (Γ) is not simple

or does not have a unique tracial state?
• Does there exist a group Γ for which C∗

r (Γ) is simple but does not have
a unique tracial state? Vice versa, does there exist a group Γ for which
C∗

r (Γ) is not simple but has a unique tracial state?

As to the maximal C∗-algebra C∗(Γ), it turns out that, if Γ is higher rank
arithmetic lattice like PSLn(Z) for n ≥ 3, the only tracial states on C∗(Γ) are
the obvious ones: τreg and the normalized characters of finite dimensional unitary
representations of Γ (see [1]). As a consequence, this answers to the negative a
question of E. Kirchberg ([4]): there is no faithful trace on C∗(SL4(Z)).
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Super moonshine and operator algebras

Yasuyuki Kawahigashi

The Moonshine conjecture is on mysterious relations between the Monster group,
the largest among 26 sporadic finite simple groups, and modular invariant j-
functions. A mathematical object to study is the Moonshine vertex operator
algebra, where a vertex operator algebra gives an algebraic axiomatization of a
family of operator-valued distributions on the circle appearing in a conformal field
theory. We constructed the operator algebraic counterpart of the Moonshine vertex
operator algebra as a family of von Neumann algebras parameterized by intervals
on the circle and showed that its automorphism group in the operator algebraic
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sense is indeed the Monster group with Longo in [3]. It has all expected nice
properties.

Duncan constructed an “super” analogue of the Moonshine vertex operator al-
gebra and showed that its automorphism group fixing a “super conformal element”
is Conway’s sporadic finite simple group Co1 in [2]. Here “super” refers to a Z2-
grading. We now present its operator algebraic counterpart. We study this within
a general operator algebraic framework for super conformal field theory [1], where
the N = 1 super Virasoro algebras play an essential role.
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Separable states and positive maps

Erling Størmer

Let A be a C∗−algebra, H a Hilbert space and B(A,H),( resp.B(A,H)+) the
bounded (resp. positive) linear maps of A into B(H). Let t denote the transpose
map of B(H) with respect to a fixed orthonormal basis. For simplicity of this
abstract we assume A and H are finite dimensional. The work is based on [3]
and the following fact: There is a duality between maps φ ∈ B(A,H) and linear

functionals φ̃ on A⊗B(H) given by

φ̃(a⊗ b) = Tr(φ(a)bt), a ∈ A, b ∈ B(H),

where Tr is the usual trace on B(H). Furthermore, φ is positive if and only if φ̃ is
positive on the cone A+⊗B(H)+ generated by tensors a⊗b with a and b positive.

We say a nonzero cone K in B(B(H), H)+ is a mapping cone if α ∈ K implies
β ◦ α ◦ γ ∈ K for all β, γ ∈ CP (H) - the completely positive maps of B(H) into
itself. Well known examples are B(B(H), H)+, CP (H), the copositive maps, i.e.
maps α ◦ t with α ∈ CP (H), and S(H) consisting of maps of the form

∑
biωi

where ωi is a state and bi a positive operator. The latter maps are often called
entanglement breaking or superpositive. We denote by

P (A,K) = {x ∈ A⊗B(H)sa : ι⊗ α(x) ≥ 0, ∀α ∈ K}
where ι denotes the identity map. P (A,K) is a proper closed cone in A ⊗
B(H) containing the cone A+ ⊗ B(H)+, which can be shown to be equal to
P (A,B(B(H), H)+).

We say φ is K-positive if φ̃ is positive on P (A,K). Then, see [3], φ is completely

positive if and only if φ̃ is a positive functional if and only if φ is CP (H)−positive.
Let Kd denote the cone consisting of maps t ◦ α∗ ◦ t with α ∈ K, where α∗ is the
adjoint of α considered as an operator on the Hilbert-Schmidt operators. Then we
have the following characterization of K-positivity.
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Theorem 1. Let CK denote the closed cone generated by maps of the form α ◦ ψ
with α ∈ Kd and ψ completely positve in B(A,H). Then φ is K-positive if and
only if φ ∈ CK .

A state ρ on A⊗B(H) is called separable if it is a convex sum of product states.
Otherwise ρ is called entangled. The following result is essentially proved in [2],
but appears in the present form in [4].

Theorem 2. Let φ ∈ B(A,H)+. Then the following are equivalent.

(i) φ̃ is a separable state.
(ii) φ is S(H)−positive.
(iii) φ is of the form φ(a) =

∑
ωi(a)bi, ωi state of A, bi ∈ B(H)+.

Assume A is the complex n×n matrices with matrix units (eij). Then the Choi
matrix for φ is Cφ =

∑
ij eij ⊗ φ(eij). If φt = t ◦ φ ◦ t, then Cφt is the density

matrix for φ̃. Furthermore we have

P (A,S(H)) = {Cφ : φ ≥ 0}.
Using this identity it is easy to prove the Horodecki Theorem [1] which charac-
terizes separable states in terms of the action of positive maps on their density
matrices. One version of the Horodecki Theorem is as follows, see [5]

Theorem 3. If A is a matrix algebra contained in B(L) with dimL ≤ dimH <∞,
and ρ is a state on A⊗B(H), then ρ is separable if and only if ρ ◦ (ι⊗ψ) ≥ 0 for
all ψ ∈ B(B(H), H)+.

This theorem has a natural extension to C∗−algebras, [5].

Theorem 4. Let A be a nuclear C∗−algebra, B a UHF-algebra, and ρ a state on
A ⊗ B. then ρ is a w∗−limit of separable states if and only if ρ ◦ (ι ⊗ ψ) ≥ 0 for
all positve maps ψ : B → B.

A state ρ satisfies the Peres (or PPT) condition if ρ ◦ (ι ⊗ t) ≥ 0. If ρ = φ̃
then ρ satisfies the Peres condition if and only if φ is both completely positive
and copositive. The definite set Dφ of φ is the set of operators a ∈ Asa - the self-
adjoint operators in A- such that φ(a2) = φ(a)2. Then Dφ is a Jordan algebra.
Furthermore if φ satisfies the Peres condition, then Dφ is the self-adjoint part of
an abelian C∗−algebra. The next theorem connects this to separability, [5].

Theorem 5. Assume φ(1) = 1 and that φ(Asa) = φ(Dφ). Then φ̃ is separable if
and only if φ(A) is an abelian C∗−algebra.

If φ : A → A is positive and unital let Pφ denote the positive projection of A
onto the fixed point set Aφ of φ. If Pφ is faithful, e.g. when there exists a faithful
φ−invariant state, then Aφ is a Jordan subalgebra of Dφ. Then we have that Pφ

is decomposable i.e. the sum of a completely positive map and a copositive map,
if and only if Aφ is a reversible Jordan algebra, i.e. if a1, ..., ak ∈ Aφ, then the
symmetric product a1...ak + ak...a1 ∈ Aφ. It follows that if Aφ is a nonreversible
Jordan algebra, for example that its self-adjoint part is a spin factor, the φ is
nondecomposable.
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Turbulence, representations, and trace-preserving actions

David Kerr

(joint work with Hanfeng Li and Mikaël Pichot)

The last couple of decades have witnessed great progress in the study of classi-
fication problems from the descriptive set theory viewpoint, as illustrated for ex-
ample in [5, 6]. The descriptive theory of classification complexity revolves around
the concept of Borel reducibility. Suppose we have a collection of objects that can
be viewed as elements in a Polish space X and an equivalence relation E on X en-
coding the isomorphism relation between the objects. Given another equivalence
relation F on a standard Borel space Y , one says that E is Borel reducible to F if
there is a Borel map θ : X → Y such that, for all x1, x2 ∈ X , x1Ex2 if and only
if θ(x1)Fθ(x2). We can thus measure the complexity of E by the way it relates
to other equivalence relations in the hierarchy of Borel reducibility. For example,
the classical notion of smoothness can be described as Borel reducibility to the
relation of equality on R. At a higher level of complexity one has the notion of
classification by countable structures, as exemplified by the Halmos-von Neumann
classification of measure-preserving transformations with discrete spectrum.

In the 1990s Hjorth introduced the topological-dynamical notion of turbulence
as an obstruction to classifiability by countable structures in the case that E arises
as the orbit equivalence relation of the continuous action of a Polish group [5]. A
point is said to be turbulent if its orbit satisfies a certain local density condition,
and an action is said to be turbulent if every point is turbulent and every orbit is
meager and dense. In fact to obtain the nonclassifiability conclusion it is enough
that some orbit be dense, some point be turbulent, and every orbit be meager, in
which case one speaks of generic turbulence.

Generic turbulence has been shown to occur in various examples such as the
space of unitary operators on a separable infinite-dimensional Hilbert space [7],
certain subspaces of irreducible representations of non-type I groups [4], the space
of ergodic measure-preserving actions of a countably infinite amenable group on
a standard atomless probability space [2], and certain subspaces of free ergodic
measure-preserving actions of arbitrary countably infinite groups (see Section 13
of [6]). Following the line of this work, Hanfeng Li, Mikaël Pichot, and I have
developed a general spectral approach to the identification of turbulent behaviour
in spaces of representations and actions [8].
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We show that the nondegenerate representations of a separable C∗-algebra A
on a fixed separable infinite-dimensional Hilbert space do not admit classification
by countable structures as soon as the spectrum of A is uncountable. This special-
izes for example to the unitary representations of any separable noncompact Lie
group. The nonclassifiability conclusion is based on spectral criteria for generic
turbulence in spaces of representations under the action of the unitary group on the
given Hilbert space. By a standard second quantization procedure using the the
canonical commutation or anticommutation relations, this also produces nonclas-
sifiability by countable structures for actions of a second countable locally compact
group with uncountable dual on a standard atomless probability space and on the
hyperfinite II1 factor R.

In the case that the acting group G is countably infinite and amenable, we
establish turbulence in the space of free G-actions on R, yielding a noncommu-
tative analogue of the result of Foreman and Weiss from [2]. The meagerness of
orbits is obtained by developing a noncommutative version of Foreman and Weiss’s
entropy and disjointness argument. This requires the use of Connes-Narnhofer-
Thirring entropy [1] and of von Neumann algebra correspondences viewed in terms
of completely positive maps. For general second countable locally compact G we
show that there exists a turbulent point with dense orbit. When G is countably
infinite and amenable we can then apply Ocneanu’s result that any two free ac-
tions are cocycle conjugate [9, Thm. 1.4] to conclude that every free action is a
turbulent point. Our method for demonstrating the existence of a turbulent point
with dense orbit also works the commutative situation, in which case we use it
to show generic turbulence in the space of ergodic measure-preserving flows on a
standard atomless probability space.
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Towards a Generalized Dixmier-Douady Theory

Marius Dadarlat

The importance of continuous fields of C*-algebras (continuous C(X)-C*-algebras)
is evident from their role as topological bundles in the C*-algebra theory. Contin-
uous fields appear naturaly as C*-algebras with Hausdorff primitive spectrum but
also as versatile tools in a large array of contexts.

Let X be a metrizable locally compact space of finite dimension and let A
be a separable continuous field over X with fibers isomorphic to the compact
operators K on an infinite dimensional separable Hilbert space. Dixmier and
Douady proved that the field A is locally trivial if and only it satisfies the Fell’s
Condition: for any x0 ∈ X , there is a closed neighborhood V of x0 and there
is a projection p ∈ A(V ) such that rank(p(x)) = 1 for all x ∈ V . Moreover
they showed that these locally trivial fields are classified up to isomorphism by
a characteristic class δ(A) ∈ H3(X ; Z) (Cech cohomology) with the propery that
δ(A⊗A′) = δ(A) + δ(A′).

It is natural to investigate generalizations of the results of Dixmier and Douady
to continuous with fibers nuclear C*-algebras. In what follows we report on some
results obtained in this direction.

A separable simple nuclear purely infinite algebra is called a Kirchberg algebra.
Kirchberg proved that the Cuntz algebra O2 is the unique unital Kirchberg algebra
which KK-equivalent to zero. His remarkable work on the classification of non-
simple purely infinite C*-algebras [5] led to the question of automatic triviality
of separable unital continuous fields with all fibers isomorphic to O2. We have
answered this question in [1]:

Theorem. All separable unital continuous fields with fiber O2 over a finite di-
mensional compact metrizable X space are trivial, i.e. they are isomorphic to
C(X) ⊗ O2.

The result was extended to strongly selfabsorbing algebras in our joint work with
Winter. The finite dimensionality of the spectrum is essential. For a nonempty
set P of prime numbers, let Z(P ) be the subgroup of T consisting of all elements
whose orders have all prime factors in P . Let GP be the group of all continuous
functions from the Cantor set to Z(P ). We exhibit in [2]:

Examples. For each set of primes P , there is a separable unital continuous field
with fiber O2 over the Hilbert cube whose K0-group is isomorphic to GP .

Since P 6= P ′ ⇒ GP ≇ GP ′ , we obtain a continuum of separable, unital, non-
isomorphic O2-continuous fields over a contractible compact space. The input
in the construction of our examples is a locally nontrivial continuous field with
fibers the universal UHF algebra over an infinite product of two spheres, due to
Hirshberg, Rørdam and Winter, [4].

In his work on the Novikov conjecture, Kasparov has introduced parametrized
KK-theory groups KKX(A,B) for C(X)-algebras A and B. These groups, admit
a Kasparov product KKX(A,B) × KKX(B,C) → KKX(A,C). The invertible
elements inKKX(A,B) are denoted byKKX(A,B)−1. Recently we have obtained
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the following comparison result which shows that fibrewise KK-equivalence does
imply KKX(A,B)-equivalence under suitable assumptions [2].

Theorem. Let A and B be separable nuclear continuous C(X)-algebras over
a finite dimensional compact metrizable space X. If σ ∈ KKX(A,B), then σ ∈
KKX(A,B)−1 if and only if σx ∈ KK(A(x), B(x))−1 for all x ∈ X.

Let us also note that the theorem is easily applicable if the fibers of A and
B satisfy the UCT. The case A = C(X) ⊗ D together with the identification
KKX(C(X) ⊗D,B) ∼= KK(D,B) gives a very simple Fell-type condition for the
KKX -triviality of B:

Corollary. Let A be a separable nuclear continuous C(X)-algebra over a finite
dimensional compact metrizable space X with fibers stable Kirchberg C*-algebras.
Then A is locally trivial if and only if for any x0 ∈ X, there is a closed neighborhood
V of x0 and there is σ ∈ KK(A(x0), A(V )) such that σx ∈ KK(A(x0), A(x))−1 for
all x ∈ V .

The finite dimensionality assumption is again essential as one sees by considering
a unital embedding of one of the nontrivial O2-fields over the Hilbert cube X into
C(X) ⊗ O2 given by E. Blanchard’s embedding theorem.

Once we have an effective criterium for local triviality is natural to investigate
invariants for locally trivial C(X)-algebras with a fixed fiber D. This leads to the
question of computing homotopy invariants of the automorphism group Aut(D)
and of the classifying space BAut(D) for principal Aut(D)-bundles.

Let D be a unital Kirchberg algebra. The unital inclusion ν : C → D induces

a morphism KK(D,SD)
ν∗

// KK(C, SD)
∼ // K1(D) whose cokernel is de-

noted by K1(D)/ν. Let CνD denote the mapping cone of ν and let KK(D,D)−1
u

denote the invertible elements of the ring KK(D,D) which map [1D] to [1D]. We
prove in [3]

Theorem. πn Aut(D) ∼= KK(CνD,S
n+1D) for n ≥ 1. There is an exact

sequence 1 → K1(D)/ν → π0Aut(D) → KK(D,D)−1
u → 1.

More generally, we compute the homotopy classes [X,Aut(D)] for finite dimen-
sional metric spaces X . In the case of On we have that for any compact metrizable
space X there is a bijection [X,Aut(On)] → K1(C(X) ⊗ On). The kth-homotopy
group πk(Aut(On)) is isomorphic to Z/(n − 1) if k is odd and it vanishes if k is
even.

Let E be a complex vector bundle of rank n over a compact Hausdorff space
X , i.e. E ∈ Vectn(X). After putting a hermitian metric on E, the continuous
sections in E becomes a C(X)-Hilbert module. denoted again by E. The Cuntz-
Pimsner algebra OE is a locally trivial continuous field with fiber On over X , [6].
Cuntz suggested the following question. What invariants of the vector bundle E
are captured by the isomorphism class of the continuous field OE?

The geometric motivation behind this question is that given a smooth compact
manifold M of dimension n, with tangent space TM , one can associate to it the
continuous field of C*-algebras OTM⊗C with fibers On. It will interesting to see
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what invariants for M will emerge from the invariants of OTM⊗C. Assuming that
X is finite dimensional, Vasselli showed that OE depends only on the K-theory
class of E. In other words, if E,F ∈ Vectn(X) and [E] = [F ] in K0(X), then
OE

∼= OF as continuous fields.

Theorem. If E ∈ Vectn(X), then the continuous field OE is trivial if and only
if [E] − n is divisible by (n− 1) in the group K0(X).

Let Cn(X) denote the isomorphism classes of unital locally trivialC(X)-algebras
with fiber On. Using our computation of the homotopy groups of Aut(On) [3], we
introduced a characteristic class δ : Cn(X) → H2(X ; Z/n− 1) corresponding to
a generator of H2(BAut(On); Z/n− 1) ∼= Z/n− 1. We showed that δ(OE) can
be identified with the reduction mod (n − 1) of the first Chern class of E. Thus
δ(OE) = ρc1(E), where ρ : H2(X ; Z) → H2(X ; Z/n− 1) is the natural coefficient
map. Consider the Bockstein exact sequence

H2(X ; Z)
n−1 // H2(X ; Z)

ρ // H2(X ; Z/n− 1)
β // H3(X ; Z)

n−1 // H3(X ; Z).

It turns out that the map ∆ = βρ gives an obstruction for a locally trivial On-field
to come from a vector bundle of rank n. For spaces of low dimension the picture
is complete:

Theorem. If dim(X) ≤ 3 and n ≥ 2, then:
(a) δ : Cn(X) → H2(X ; Z/n− 1) is a bijection.
(b) If E,F ∈ V ectn(X), then OE

∼= OF if and only if c1(E) − c1(F ) ∈ (n −
1)H2(X ; Z).
(c) A continuous field A ∈ Cn(X) is isomorphic to OE for some E ∈ V ectn(X) if
and only if ∆(A) = 0 in H3(X ; Z).
(d) If τ ∈ H3(X ; Z) and (n− 1)τ = 0 then ∆(A) = τ for some A ∈ Cn(X).
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The Cuntz semigroup and the structure of C∗-algebras

Andrew Toms

In his 1978 paper [2], Cuntz generalised Murray-von Neumann comparison for
projections to the realm of positive elements. If a, b are positive elements of a
C∗-algebra A, then we write a - b if there is a sequence (vn)∞n=1 in A such that

‖vnbv
∗
n − a‖ → 0.

We write a ∼ b if a - b and b - a. It is straightforward to show that ∼ is
an equivalence relation on positive elements in A. We can construct an Abelian
monoid from the set of ∼ equivalence classes in arbitrarily large matrices over A,
in perfect analogy with the construction of the Murray-von Neumann semigroup.
This new monoid is called the Cuntz semigroup, and we denote it by W (A). We
use 〈a〉 to denote the Cuntz equivalence class of a positive operator a.

Interest in the Cuntz semigroup has been high lately, due in part to the dis-
covery that it is a very sensitive invariant in the matter of distinguishing simple
separable amenable C∗-algebras (see [4]). But this invariant does not appear in
most classification theorems for simple separable amenable C∗-algebras via topo-
logical K-theory and traces. This invites the question of how one might recover the
Cuntz semigroup from K-theory and traces in the case of well behaved C∗-algebras.

Let A be a simple unital C∗-algebra with a trace. It is shown in [3] that

W (A) = V (A) ⊔W (A)+,

where V (A) denotes the semigroup of Cuntz equivalence classes whose representa-
tives are Cuntz equivalent to a projection, and W (A)+ is the semigroup of Cuntz
equivalence classes whose representatives have zero as an accumulation point of
the spectrum. Let T(A) denote the tracial state space of A, and let L(T(A)) de-
note the space of strictly positive, lower semicontinuous, bounded, affine functions
on T(A). Define a map ι : W (A)+ → L(T(A)) by

ι(〈a〉)(τ) = dτ (a) := lim
n→∞

τ(a1/n), ∀τ ∈ T(A).

Now define a map φ : W (A) → V (A) ⊔ L(T(A)) by φ(x) = x if x ∈ V (A), and
φ(x) = ι(x) otherwise. It turns out that φ is an order-preserving semigroup map.

Theorem 1 (Brown-Perera-T, [1]). Let A be a unital simple exact finite C∗-algebra
which absorbs the Jiang-Su algebra Z tensorially. It follows that

φ : W (A) → V (A) ⊔ L(T(A))

is an isomorphism.

All classes of simple separable amenable C∗-algebras known to be classified
by K-theory and traces are also known to consist of algebras which absorb Z

tensorially, and so our theorem applies to them. Note that absorbing Z yields
stable rank one, whence the monoid V (A) carries the same information as K0(A).
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The spaces T(A) and L(T(A)) are in natural duality. It follows that W (A) is
recovered from K-theory and traces for algebras A as in the theorem.

A close analysis of the order structure on the Cuntz semigroup (inherited from
the relation - above) yields an invariant which may be thought of as a R-valued
topological dimension. Assume that A is unital, exact (so that we can dispense
with the consideration of quasi-traces), and stably finite, and let r > 0. Say that
A has r-strict comparison if a - b in (matrices over) A whenever

dτ (a) + r < dτ (b), ∀τ ∈ T(A).

We define the radius of comparison of A to be the infimum of the set of r ∈ R+

such that A has r-strict comparison. We denote this quantity by rc(A).

Theorem 2 (T, [5]). Let X be a CW-complex of dimension d < ∞, and let k be
the largest integer such that 2k < n. It follows that

k − 1 ≤ rc(C(X)) ≤ d− 1

2
.

In particular, rc(C(X)) ≈ d/2.

This result shows that the radius of comparison recovers topological dimension
in the commutative case.

Theorem 3 (T, [5]). For each r ∈ R+ ∪ {∞} there is a unital simple C∗-algebra
Ar such that rc(Ar) = r.

In other words, C∗-algebras admit a continuous topological dimension theory.
The minimal instance of this dimension can be viewed as the condition that the
C∗-algebra exhibits no unstable homotopy phenomena.
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On sums of Hermitian operators in finite von Neumann algebras

Ken Dykema

(joint work with Hari Bercovici, Benôıt Collins, Wing Suet Li and Dan Timotin)

Suppose A,B ∈Mn(C)s.a. have eigenvalues

λA(1) ≥ λA(2) ≥ · · · ≥ λA(n) of A

λB(1) ≥ λB(2) ≥ · · · ≥ λB(n) of B.
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What can the eigenvalues of A+B be? This is an old question. Equivalently (in
a symmetric reformulation), which triples

(λA(i))n
i=1, (λB(j))n

j=1, (λC(k))n
k=1,

of sequences in Rn
≥ arise as eigenvalues of A,B,C ∈Mn(C)s.a. with A+B+C = 0?

An obvious necessary condition is

(1)
n∑

i=1

λA(i) +
n∑

j=1

λB(j) +
n∑

k=1

λC(k) = 0.

A. Horn [8] considered inequalities of the form

(2)
∑

i∈I

λA(i) +
∑

j∈J

λB(j) +
∑

k∈K

λC(k) ≤ 0,

where I, J , and K are subsets of {1, . . . , n} of the same cardinality. He recursively
defined sets T n

r of such triples (I, J,K) with |I| = |J | = |K| = r. and conjectured
that λA, λB , λC arise as eigenvalue sequences of A, B and C with A+B+C = 0
if and only if

• the trace equality (1) holds

• the inequality (2) holds for all (I, J,K) ∈ ⋃n−1
r=1 T

n
r .

Here is Horn’s recursive definition: Consider triples (I, J,K) of subsets of
{1, . . . , n} with |I| = |J | = |K| = r. Let

Un
r =

{
(I, J,K)

∣∣∣∣
∑

i∈I

i+
∑

j∈J

j +
∑

k∈K

k =
r(4n− r + 3)

2

}
.

When r = 1, set T n
1 = Un

1 . Otherwise, writing I = {i1 < i2 < · · · < ir}, etc., let

T n
r =

{
(I, J,K) ∈ Un

r

∣∣∣∣
∑

f∈F

if +
∑

g∈G

jg +
∑

h∈H

kh ≥ p(4n− p+ 3)

2
,

for all p < r and (F,G,H) ∈ T r
p

}
.

One way of proving that a Horn inequality (2) for a given (I, J,K) always holds
is to show the existence of a projection P ∈Mn(C) such that

∑

i∈I

λA(i) ≤ Tr(PAP ),
∑

j∈J

λB(j) ≤ Tr(PBP ),

∑

k∈K

λC(k) ≤ Tr(PCP )

and then to use that Tr(PAP + PBP + PCP ) = 0. To find P so that

(3)
∑

i∈I

λA(i) ≤ Tr(PAP ),

holds, write I = {i1 < i2 < · · · < ir} and let v1, . . . , vn be orthonormal eigenvectors
for A with Avi = λA(i)vi. Consider the flag E = (Em)n

m=0 where Em is the rank
m projection onto span {v1, . . . , vm}. If
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• rank (P ) = r
• rank (P ∧ Eiℓ

) ≥ ℓ for all 1 ≤ ℓ ≤ r,

then (3) holds. The set of projections P satisfying the two conditions above is the
Schubert variety S(E, I). Thus, to prove that (2) holds for a particular (I, J,K),
it suffices to show that for all flags E, F and G, we have

S(E, I) ∩ S(F, J) ∩ S(G,K) 6= ∅.
Horn’s conjecture was proved approximately ten years ago, due to work of

Klyachko, Knutson, Tao, and others. We will now describe some elements of

proof. To each (I, J,K) ∈ Un
r , one associates a nonnegative integer c

(n)
IJK , which is

the Littlewood–Richardson coefficient cγα,β where α, β and γ are certain partitions
of integers obtained from I, J and K, respectively. These coefficients appear in the
representation theory of permutation groups and general linear groups, the have a
combinatorial description in terms of integer fillings of Young diagrams and they
appear in the cohomology ring of the Grassmanian G(r,Cn) (when multiplying
Schubert cycles). Moreover, from Horn’s recursive definition one can show

T n
r = {(I, J,K) ∈ Un

r | c(n)
IJK > 0},

• Many authors, ([9], [13], [7], [10]) showed that for every (I, J,K) ∈ T n
r ,

the Horn inequality (2) holds (whenever A+B+C = 0). This proves half
of Horn’s conjecture.

• Klyachko [10] showed that the reverse direction would follow, i.e. the Horn
inequalities together with the trace equality would determine the set of
possible eigenvalues of A,B,C such that A+B +C = 0, if the saturation
conjecture were known to hold, i.e.,

K ∈ N and cKγ
Kα,Kβ > 0 =⇒ cγα,β > 0.

• Knutson and Tao [11] proved the saturation conjecture.

• Belkale [1] showed that the (I, J,K) such that c
(n)
IJK > 1 are redundant.

• Knutson, Tao, and Woodward [12] give a direct proof of Horn’s conjecture,

and show that the set of Horn inequalties (2) over all (I, J,K) with c
(n)
IJK =

1 is minimal.

The question in a II1–factor M with trace τ that is analogous to Horn’s question
is: if “spectral data” of a, b ∈ Ms.a. are specified, what can be the “spectral data”
of a+ b? Or, in symmetric form: what are the possible spectral data of a, b and c
when a+ b+ c = 0? For “spectral data” we have the distribution µa of a, a Borel
probability measure on R, such that

τ(ak)

τ(1)
=

∫

σ(a)

tk dµa(t), (k ∈ N).

Moreover, there is the eigenvalue function λa : [0, τ(1)) → R, given by

λa(t) = sup
{
s ∈ R | µa((s,∞)) >

t

τ(1)

}
,
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which is bounded, right–continuous, nonincreasing. This function λa : [0, τ(1)) →
R has properties expected of eigenvalues. For example,

τ(ak) =

∫ τ(1)

0

λa(t)k dt.

If (I, J,K) ∈ T n
r , we say that the corresponding Horn inequality holds in M if,

taking the trace normalization τ(1) = n, we have

∑

i∈I

∫ i

i−1

λa +
∑

j∈J

∫ j

j−1

λb +
∑

k∈K

∫ k

k−1

λc ≤ 0

whenever a, b, c ∈ Ms.a. and a+ b+ c = 0.

• Bercovici and Li observed in [4] that if a II1–factor M is embeddable in
Rω, then all Horn inequalities hold in M.

• Bercovici and Li showed in [3] that the analogues of the Freede–Thompson
inequalities hold in all II1–factors.

• With Benôıt Collins in [6] we showed that the Horn inequalities for all

(I, J,K) ∈ T n
3 with c

(n)
IJK = 1 hold in all II1–factors.

Here, now, is our main result:

Theorem [2]: All Horn inequalities hold in all II1–factors.

The proof can be described as “practical Schubert calculus,” because we solve
the intersection problem for Schubert varieties in II1–factors. The same methods
work in n× n matrices, and give a new constructive solution in this case.

Here is an outline of the proof. We need only consider those (I, J,K) ∈ T n
r

with c
(n)
IJK = 1. Let M be a II1–factor (or Mn(C)) with trace τ , normalized so

that τ(1) = n. We consider flags E, F and G in M, of the form

E : 0 = E0 ≤ E1 ≤ E2 ≤ · · · ≤ En−1 ≤ En = 1

with τ(Ej) = j. We will show

S(E, I) ∩ S(F, J) ∩ S(G,K) 6= ∅.

For this, we must prove there is a projection P ∈ M such that τ(P ) = r and

τ(P ∧ Eiℓ
) ≥ ℓ, τ(P ∧ Fjℓ

) ≥ ℓ, τ(P ∧Gkℓ
) ≥ ℓ

for all 1 ≤ ℓ ≤ r.
We describe an algorithm for constructing P from the projections in E, F and

G, using lattice operations ∧ and ∨, (but only in the case c
(n)
IJK = 1.)

Following [11], triples (I, J,K) ∈ T n
r with c

(n)
IJK = 1 correspond to certain

positive measures m supported on the edges of a triangular grid ∆r (shown here
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in the case r = 5)

such that the small edges have integer masses.
The measures m must satisfy a balance condition: around every vertex

AC′ C

B′

B

D

D′

we must have

m(AB) −m(AB′) = m(AC) −m(AC′) = m(AD) −m(AD′).

Then I, J , and K are read off from values of m on edges at the boundary of the
triangle ∆r. We consider the cone of all positive measures on the grid that satisfy
the balance condition (+ some further orientation conditions).
Step I: Decompose. Write the measure m as a sum of extremal ones, which are
characterized (because of the balance condition and a characterization from [12]

for c
(n)
IJK = 1) by their supports.

Step II: Reduce. It is possible to select one of these extremal measures µ1 and
to show that the intersection problem for m reduces to solving the intersection
problems for µ1 and for m− µ1 (which has fewer extremal measures).

Step III: Dualize. The intersection problem for a measure µ is equivalent to the
intersection problem for a dual measure µ∗. This duality (following [12]) is realized
by inflation and deflation. For example:

��
��
��

��
��
��

�
�
�
�

�
�
�
�

������
If µ is an extremal measure supported, then µ∗ is a sum of extremal measures

whose supports have lower complexity.

Step IV: The most reduced case.
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corresponds to an intersection problem that has a trivial solution.

QED

Connes’ embedding problem asks whether every II1–factor having separable
predual embeds in Rω. We were actually inspired by the earlier result [4] of
Bercovici and Li, that all Horn inequalities hold in all II1–factors that embed
in Rω, to try to construct a II1–factor in which some Horn inequality fails to
hold. Our main result, above, shows that this is impossible. However, with Benôıt
Collins in [5], have shown that a certain generalization of the Horn question, “with
matrix coefficients” is equivalent to Connes’ embedding problem.
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Applications of classification results to perturbation questions.

Erik Christensen

(joint work with Allan M. Sinclair, Roger R. Smith, Stuart White)

Given a C*-algebra C, two sub C*-algebras A, B and γ > 0 then we define

A
γ

⊆ B if ∀a ∈ A ∃b ∈ B : ‖a− b‖ ≤ γ‖a‖

‖A − B‖ := inf{γ
∣∣A

γ

⊆ B and B
γ

⊆ A }

In 1973 Kadison & Kastler [8] raised the Question: If A and B are sufficiently
close, are they then isomorphic ? Some answers have been obtained, and we know
that the general answer is no [1], [6], but in some special situations the answer is
yes. Especially so for injective von Neumann algebras and AF-C*-algebras, [3],
[10].

Strategy

The classification program has obtained a great number of results of the type:
If two C*-algebras inside a certain class have isomorphic invariants then they are
isomorphic, [5], [7], [Elliott, Kirchberg, Phillips + many more]
The class is defined by certain properties among which one finds algebras with
some of the following properties
unital, separable, simple, nuclear, purely infinite, inductive limits of certain types,
UCT, real rank zero
The invariants were in the first place K-groups, traces and the pairing of traces
and K0, but much more is involved now [Lin, Winter, ... ]
This work does not discuss perturbations of the UCT-property,KK−groups,
topological stable rank and the many properties introduced in recent results.
This article will show that many of the named properties and the classical
invariants are stable under small perturbations if the algebras are of finite
lengths.

Near inclusions, finite length and K−theory

We will not discuss the concept of length of a C*-algebra here. It was first intro-
duced by Gilles Pisier [11] under the name similarity degree, because Pisier showed
that a C*-algebra will have finite similarity degree if and only if any bounded ho-
momorphism of this C*-algebra into some B(H) is similar to a *-representation.
The importance of finite length for perturbation questions comes from the follow-
ing theorem.

Theorem 1. Let A
γ

⊆ B. If A has finite length then there exists L > 0 s. t.

∀n : Mn(A)
Lγ

⊆ Mn(B.)
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Given a situation such that

∀n : Mn(A)
Lγ

⊆ Mn(B)

then it is quite easy to obtain the following result:

Theorem 2. If Lγ < 1 then there exist homomorphisms

Φ0 : K0(A) → K0(B), Φ1 : K1(A) → K1(B).

For p, u ∈Mn(A) a projection and a unitary, let q, v ∈Mn(B) be a projection and
a unitary such that ‖p − q‖ < 1/2 and ‖u − v‖ < 1 then Φ0([p]K0

) = [q]K0
and

Φ1([u]K1
) = [v]K1

.
There exists α > 0 s. t. if ‖A − B‖ < α then Φ0 and Φ1 are isomorphisms.

Which algebras have finite lengths ? Let A be a C*-algebra and let ℓ(A)
denote its length.

(i) ℓ(A) ≤ 2 if and only if A is nuclear. Pisier
(ii) A has no bounded traces ⇒ ℓ(A) ≤ 3.

Stability of properties when ‖A − B‖ < γ

Length. There exists an α > 0 such that if γ < α then A has finite length if and
only if B has finite length.

Unitality. If γ < 1 then A is unital if and only if B is unital.

Separability. If γ < 1 then A is separable if and only if B is separable.

Simplicity. If γ < 0.4 then A is simple if and only if B is simple.

Nuclearity.

‖A − B‖ < 1/100 ⇒ {A is nuclear if and only if B is nuclear }
The proof is by [C ] from 1980 and is based on Choi-Effros and Connes’ works on
nuclear C*-algebras and injective von Neumann algebras.

Real rank zero. There exists an α > 0 such that if γ < α then A has real rank
zero if and only if B has real rank zero.

Finiteness

If γ < 0.5. and any isometry in A is unitary, then any isometry in B is unitary.

Purely infiniteness If γ < 1/100 and the algebras are simple then A is purely
infinite if and only if B is purely infinite.

Stability of tracial state spaces under perturbations

Theorem 3. Let 0 < γ < 1/102. If ‖A − B‖ < γ then there exists an affine
isomorphism Ψ of the w*-compact convex set of tracial states on B onto that of A

s. t.

(i) If γ < 2 560 000−1 = 1 600−2 and the C*-algebra A has real rank zero then
Ψ is an affine w*-homeomorphism of TS(A) onto TS(B).
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(ii) If A has finite length then there exists an α > 0 s. t. if ‖A−B‖ < α, then
for any tracial state τ on B, the induced homomorphisms τ0 on K0(B) and
Ψ(τ)0 on K0(A), are connected via the isomorphism Φ0 : K0(A) → K0(B),
s. t.

∀g ∈ K0(A) : Ψ(τ)0(g) = τ0(Φ0(g)).

Combined results

Theorem 4. There exists an α > 0 s. t. if ‖A−B‖ < α, and A is unital separable,
nuclear, simple and of real rank zero, then:

(i) the algebra B is unital separable, nuclear, simple and of real rank zero.
(ii) There exists an isomorphism Φ0 : K0(A) → K0(B) such that for any pair

of projections

p ∈Mn(A), q ∈Mn(B) : ‖p− q‖ < 1/2 ⇒ Φ0([p]) = [q].

(iii) There exists an isomorphism Φ1 : K1(A) → K1(B) such that for any pair
of unitaries

u ∈Mn(A), v ∈Mn(B) : ‖u− v‖ < 1 ⇒ Φ1([u]) = [v].

(iv) There exists an affine w*-homeomorphism Ψ of TS(B) onto TS(A) s. t.
for τ in TS(B) the homomorphisms τ0, and Ψ(τ)0 on K0(B) and K0(A)
satisfy ∀g ∈ K0(A) : Ψ(τ)0(g) = τ0(Φ0(g)).

You may add finite or purely infinite to the list of properties.
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ℓ
2-invariants and simplicity of the reduced group C

∗-algebra

Andreas Thom

(joint work with Jesse Peterson)

1. Introduction

The computations of ℓ2-homology have been algebraized through the seminal
work of W. Lück, which is summarized and explained in detail in his nice com-
pendium [2]. This extended abstract is a report about results obtained in [3].

Our first theorem gives an identification of dimensions of cohomology groups,
where the coefficients vary among the canonical choices LG, ℓ2G and UG.

Theorem 1.1. Let G be a countable discrete group.

β
(2)
k (G) = dimLGH

k(G,UG) = dimLGH
k(G, ℓ2G) = dimLGH

k(G,LG).

Moreover, if β
(2)
k (G) = 0 for some k, then Hk(G,UG) = 0.

2. Free subgroups

2.1. Restriction maps and free subgroups. Throughout this section, we are
assuming that G is a torsionfree discrete countable group and most of the time
also that it satisfies the following condition:

(⋆) Every non-trivial element of ZG acts without kernel on ℓ2G.

Condition (⋆) is known to hold for all right orderable groups and all residually
torsionfree elementary amenable groups. No counterexample is known.

Let G be a discrete group, we use the notation Ġ to denote the set G\{e}. The
main result here is the following theorem.

Theorem 2.1. Let G be a torsionfree discrete countable group. There exists a
family of subgroups {Gi | i ∈ I}, such that

(i) We can write G as the disjoint union:

G = {e} ∪
⋃

i∈I

Ġi.

(ii) The groups Gi are mal-normal in G, for i ∈ I.
(iii) If G satisfies condition (⋆), then Gi is free from Gj , for i 6= j.

(iv) β
(2)
1 (Gi) = 0, for all i ∈ I.

Remark 2.2. It follows from Theorem 7.1 in [3], that the set I is infinite if the first
ℓ2-Betti number of G does not vanish.

Corollary 2.3. Let G be a discrete countable group satisfying condition (⋆). As-
sume that the first ℓ2-Betti number does not vanish. Let F be a finite subset of G.
There exists g ∈ G, such that g is free from each element in F . In particular, G
contains a copy of F2.
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Remark 2.4. Corollary 2.3 confirms the feeling that a sufficiently non-amenable
group contains a free subgroup. Note, that various weaker conditions like non-
amenability itself or uniform non-amenability have been proved to be insufficient
to ensure the existence of free subgroups, at least in the presence of torsion.

Using results from [1] we obtain the following result.

Corollary 2.5. Let G be a torsionfree discrete countable group satisfying condition
(⋆). If the first ℓ2-Betti number does not vanish, then the reduced group C∗-algebra
C∗

red(G) is simple and carries a unique trace.

The following result is a generalization of the main result of J. Wilson in [4]
for torsionfree groups which satisfy (⋆). For this, note that a group G with n

generators and m relations satisfies β
(2)
1 (G) ≥ n−m− 1.

Corollary 2.6 (Freiheitssatz). Let G be a torsionfree discrete countable group

which satisfies (⋆). Assume that a1, . . . , an ∈ G generate G and ⌈β(2)
1 (G)⌉ ≥ k.

There exist k+ 1 elements ai0 , . . . , aik
among the generators such that the natural

map

π : Fk+1 → 〈ai0 , . . . , aik
〉 ⊂ G

is an isomorphism.

Corollary 2.7. Let G be a finitely generated torsionfree discrete countable group
which satisfies (⋆). Then

eS(G) ≥ 2⌈β(2)
1 (G)⌉ + 1,

for any generating set S. Here, eS(G) denotes the exponential growth rate w.r.t.
the generating set S.

In particular, a torsionfree group satisfying condition (⋆) has uniform exponen-
tial growth if its first ℓ2-Betti number is positive.
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MASAs in C*-algebras

Simon Wassermann

(joint work with N. Christopher Phillips)

I. Tensor products of MASAs.

For C*-algebras A and B, A ⊗ B will denote the minimal C*-tensor product
A ⊗min B. By a MASA of A we mean a maximal abelian C*-subalgebra of A.
The following result was obtained in 1973.

Theorem 1 [3] Let A1 and A2 be C*-algebras. If C is a MASA of A1, then
(C ⊗ 1)c = C ⊗ A2. If C1 and C2 are MASAs in A1 and A2, respectively, then
C1 ⊗ C2 is a MASA in A1 ⊗A2.

This suggested the more general question: if C1 ⊂ A1 and C2 ⊂ A2 are MASAs, is
C1 ⊗C2 a MASA in A1 ⊗β A2 for any C*-norm ‖ ‖β on A1 ⊙A2, in particular if
β = max 6= min? I have recently obtained a fairly complete answer to this question
[4], though further interesting questions are raised. Provided one of the MASAs
has the following extension property and the other contains an approximate unit
for the containing algebra, Theorem 1 extends to arbitrary tensor products.

Definition. A MASA C in a C*-algebra A has the extension property if

(i) Every character of C has a unique (pure) state extension to A.

(ii) If A is non-unital then no pure state of A restricts to the zero functional on C.

Theorem 2 Let A1 and A2 be C*-algebras with A2 unital and let C be a MASA
of A1 with the extension property. Let (C ⊗ 1)c denote the algebra

{x ∈ A1 ⊗β A2 : (c⊗ 1)x = x(c⊗ 1) for c ∈ C},
for a given C*-norm ‖ ‖β on A1 ⊙A2. Then

(C ⊗ 1)c = C ⊗A2

in A1 ⊗β A2 .

Corollary 3 Let A1 and A2 arbitrary C*-algebras and let C1 and C2 be MASAs
of C*-algebras A1 and A2, respectively. If C1 has the extension property and C2

contains an approximate unit {ei}i∈I for A2, then C1⊗C2 is a MASA in A1⊗βA2

for any C*-norm ‖ ‖β on A1 ⊙A2.

The conditions on the MASAs in this corollary cannot be relaxed. In the unital
case C1⊗C2 can fail to be a MASA in A1⊗βA2 if neither MASA has the extension
property, as the following example shows.

Let

A = C∗
r (F2) +K(ℓ2(F2))
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in B(ℓ2(F2)), where F2 is the free group on two generators. Let {ξg : g ∈ F2} be
the canonical orthonormal basis of ℓ2(F2), let eg be the projection onto Cξg, and
let C be the abelian C*-algebra generated by {eg : g ∈ F2} ∪ {1}. Then C is a
MASA in A.

Proposition 4 There is a C*-norm α on the algebraic tensor product A⊙A such
that C ⊗ C is not maximal abelian in A ⊗β A for any C*-norm ‖ ‖β satisfying
‖x‖β ≥ ‖x‖α on x ∈ A⊙A, in particular if ‖ ‖β = ‖ ‖max.

When A2 is non-unital, C1 ⊗C2 can fail to be a MASA in A1 ⊗β A2 if C2 does
not contain an approximate unit for A2, even if C1 has the extension property in
A1. In fact a modification of the definition of A and C in the unital case gives a
separable non-unital C*-algebra A0 with a MASA C0 such that, for any MASA C1

in C∗
r (F2), C1⊗C0 is not a MASA in C∗

r (F2)⊗maxA0. It is known that the abelian
C*-subalgebras of C∗

r (F2) generated by each of the canonical unitary generators
are MASAs with the extension property.

Open Questions.

1. By [5], ‖ ‖max 6= ‖ ‖min on B(H) ⊙ C∗
r (F2) if H ∼= ℓ2(N). If C is a MASA of

B(H) isomorphic to L∞(0, 1), is it true that

(C ⊗ 1)c = C ⊗ C∗
r (F2)

in B(H) ⊗max C
∗
r (F2)?

2. By [1], ‖ ‖max 6= ‖ ‖min on B(H) ⊙B(H). Is it true that

(C ⊗ 1)c = C ⊗B(H)

in B(H) ⊗max B(H) for any MASA C of B(H)? Is C1 ⊗ C2 maximal abelian in
B(H) ⊗max B(H) for any (all) MASAs C1 and C2?

3. If C ∼= ℓ∞(N) is a MASA of B(H), does C have the extension property? (This is
the celebrated Kadison-Singer question [2].) Is C⊗C a MASA inB(H)⊗maxB(H)?
A negative answer to this last question would imply a negative answer to the
Kadison-Singer question.

4. Can any compact Hausdorff space occur as the spectrum of a MASA C in a
C*-algebras A exhibiting the pathology in Proposition 4? By an extension of the
above construction, it can be shown that [0, 1] occurs as such a spectrum.

II. MASAs of the CAR algebra (jointly with N.C. Phillips).

This is a brief report on a project which is at a relatively early stage. The CAR
algebra can be defined as the infinite tensor product ⊗M2(C) of a countable set of
copies of M2(C). A MASA is obtained by taking the infinite tensor product of 2-
dimensional diagonal algebras from each 2×2 matrix algebra. MASAs constructed
in this way have the extension property and their spectra are totally disconnected.
A question which we are currently investigating is which compact metric spaces
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can occur as the spectra of MASAs of the CAR algebra. Using an alternative
characterisations of the CAR algebra as an inductive limit of building blocks of
the form C([0, 1],Mn) with appropriately defined connecting maps, we are able
to show that a wide variety of compact metric spaces do occur as the spectra
of MASAs, though MASAs without the extension property. The set of possible
spectra includes for example the unit interval [0, 1] and, more generally, any finite
graph. For a given spectrum, the construction gives a continuum of mutually
non-unitarily conjugate MASAs.
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K1-injectivity and proper infiniteness

Mikael Rørdam

(joint work with Etienne Blanchard, Randi Rohde)

We discuss how certain permanence problems of proper infiniteness is related to
K1-injectivity. We begin by defining and motivating the basic concepts.

A unital C∗-algebra A is said to be properly infinite if the unit 1A for A is
a properly infinite projection, i.e., if 1A ⊕ 1A - 1A. Equivalently, A is properly
infinite if one can embed any of the Cuntz-Toeplitz algebras Tn (n ≥ 2) unitally
into A, or if one can embed the Cuntz algebra O∞ unitally into A.

The significance of being properly infinite lies perhaps primarily in its tight
connection with existence of traces (or 2-quasi-traces). Blackadar and Handel-
man proved in [1] that a unital C∗-algebra admits a 2-quasitrace if and only if
Mn(A) fails to be properly infinite for all n; and Haagerup proved in [5] that all
2-quasitraces on a unital C∗-algebra are equal to (or lift to) a tracial state.

These results raise the question if proper infiniteness is a stable property, i.e., if
Mn(A) is properly infinite for some n implies that A itself is properly infinite. This
question turns out to have negative answer (see [8]), even in the simple nuclear
case (see [9]).

A unital C∗-algebra A is said to be K1-injective if the canonical mapping
U(A)/U0(A) → K1(A) is injective. One can usually calculate the K1-class of
a unitary in a C∗-algebra and decide if it is zero. In presence of K1-injectivity,
this will imply that such a unitary is homotopic to 1; a useful fact which often is
hard to obtain with bare hands.



2152 Oberwolfach Report 37/2008

It is know that a C∗-algebra is K1-injective if it is simple and purely infinite
(Cuntz, [4]); of stable rank one (Rieffel, [7]); of real rank zero (Lin, [6]); or ex-
tremally rich (Brown-Pedersen, [3]).

Our main result, from [2], relating permanence properties of proper infiniteness
and K1-injectivity can be stated as follows.

Theorem 1. The following statements are equivalent:

(1) All unital properly infinite C∗-algebras are K1-injective.
(2) Proper infiniteness is closed under forming pull-backs.
(3) All unital C(X)-algebras with properly infinite fibres are properly infinite.
(4) All sub-trivial C(T)-algebras with properly infinite fibres are properly in-

finite.
(5) For any unital (properly infinite) C∗-algebra A and for any full, properly

infinite projections p, q in A there exist full, properly infinite projections
p0 ≤ p and q0 ≤ q such that p0 ∼h q0.

(6) There exists a projection p ∈ O∞ with p 6= 0, 1 such that ι1(p) ∼h ι2(p) in
the set of projections in O∞ ∗ O∞.

(7) The (sub-trival) C([0, 1])-algebra

{f ∈ C([0, 1],O∞ ∗ O∞) | f(0) ∈ O∞ ∗ C, f(1) ∈ C ∗ O∞}
contains a non-trivial projection (or is properly infinite).

(8) O∞ ∗ O∞ is K1-injective.

It is quite likely that all these equivalent properties are false!
We indicate below why the first four conditions are equivalent. (1) ⇒ (2) follows

from Proposition 3, (2) ⇒ (3) follows from Proposition 4 (and its proof), (3) ⇒
(4) is trivial, and the proof of (4) ⇒ (1) is given at the end.

The lemma below is well-known (and can be easily proved using the Whitehead
lemma):

Lemma 2. Let A be a unital C∗-algebra, let u be a unitary element in A, and let
p be a projection in A such that [u] = 0 in K1(A), ‖up− pu‖ < 1, and p and 1− p
are properly infinite and full. Then u ∼h 1.

Proposition 3. Given a pull-back diagram of unital C∗-algebras:

A

}}||
||

!!B
BB

B

B1

π1 !!B
BB

B
B2

π2}}||
||

D

If B1 and B2 are properly infinite, then M2(A) is properly infinite; and if D is also
assumed to be K1-injective, then A itself is properly infinite.

Proof: Take unital ∗-homomorphisms ρj : T3 → Bj , j = 1, 2. With s1, s2, s3 the
canonical generators of T3, a standard argument gives a unitary u in D such that
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[u] = 0 in K1(D) and (π1 ◦ ρ1)(sj) = u(π2 ◦ ρ2)(sj) for j = 1, 2 (we use the “free”
space from s3s

∗
3 to arrange that u is unitary with trivial K1-class). If D were K1-

injective, then u would lift to a unitary v in B1. The ∗-homomorphisms π′
j : T2 →

Bj given by π′
1(si) = vπ1(si), i = 1, 2, and π′

2 = π2|T2
, satisfy π′

1 ◦ ρ1 = π′
2 ◦ ρ2,

and hence give rise to a unital ∗-homomorphism T2 → A, whence A is properly
infinite.

In general, if D is not injective, then by tensoring the pull-back diagram by
M2, the unitary u above is being replaced with diag(u, u), and this unitary is
homotopic to 1 by Lemma 2, and hence lifts to a unitary in M2(B1). One can now
argue as above to get that M2(A) is properly infinite. �

Proposition 4. Let A be a C(X)-algebra and assume that all fibres Ax, x ∈ X ,
are properly infinite. Then Mn(A) is properly infinite for some n.

Proof: Each x ∈ X has a closed neighborhood Fx for which A|Fx
is properly infi-

nite. Hence one can cover the compact space X with finitely many closed subsets
F1, F2, . . . , Fm such that A|Fj

is properly infinite for each j. Apply Proposition 3
to conclude that M2m−1(A) is properly infinite.

(4) ⇒ (1). Assume that (4) holds, let A be a unital properly infinite C∗-algebra,
and let u be a unitary in A such that [u] = 0 in K1(A). Then diag(u, 1) ∼h 1
in M2(A) (by Lemma 2), and so there is a continuous path t 7→ vt of unitaries
in M2(A) such that v0 = 1 and v1 = diag(u, 1). Put p(t) = vtdiag(1, 0)v∗t . Then
p(0) = p(1) = diag(1, 0), and so p is an element in C(T,M2(A)).

The (sub-trivial) C(T)-algebra B = pC(T,M2(A))p has properly infinite fibres
Bt = p(t)M2(A)p(t) ∼= A, t ∈ T. If (4) holds, then B is properly infinite, whence
p is a full properly infinite projection in C(T,M2(A)).

The partial isometry t 7→ vtdiag(0, 1) belongs to C(T,M2(A)) and induces an
equivalence between 1−p and diag(0, 1). As p is properly infinite and full, we con-
clude that p is unitarily equivalent to diag(1, 0). We can therefore find a continous
path of unitaries t 7→ wt ∈M2(A) such that w0 = w1 = 1 and [wtvt, diag(1, 0)] = 0.
It follows that wtvt = diag(ut, zt), u0 = 1 and u1 = u, whence u ∼h 1 in U(A) as
desired. �.

References

[1] B. Blackadar and D. Handelman, Dimension functions and traces on C∗-algebras, J. Funct.
Anal. 45 (1982), 297–340.

[2] E. Blanchard, R. Rohde, M. Rørdam Properly infinite C(X)-algebras and K1-injectivity, J.
Noncommutative Geom., to appear.

[3] L. G. Brown and G. K. Pedersen, Non-stable K-theory and extremally rich C∗-algebras,
Preprint 2007.

[4] J. Cuntz K-theory for certain C∗-algebras, Ann. of Math. 113 (1981), 181–197.
[5] U. Haagerup, Every quasi-trace on an exact C∗-algebra is a trace, Preprint 1991.
[6] H. Lin Approximation by normal elements of finite spectra in C∗-algebras of real rank zero,

Pacific J. Math. 2 (1996), 443–489
[7] M. Rieffel The cancellation theorem for projective modules over irrational rotaion C∗-

algebras, Proc. London Math. Soc. 47 (1983), 285–302.



2154 Oberwolfach Report 37/2008

[8] M. Rørdam, Stability of C∗-algebras is not a stable property, Doc. Math. J. DMV 2 (1997),
375–386.

[9] M. Rørdam, A simple C∗-algebra with a finite and an infinite projection, Acta Math. 191
(2003), 109–142.

On non-existense of certain finite depth subfactors

Marta Asaeda

(joint work with Seidai Yasuda)

Since Jones introduced the index theory of subfactors in [6], the theory of op-
erator algebras have been achieving a remarkable development, having relations
with various other areas of mathematics. One of the important objective is to find
exotic subfactors: subfactors that are not constructed from other known math-
ematical objects, such as finite groups and quantum groups. One of the most
important invariants of subfactors are (dual) principal graphs. Haagerup started
a systematic search for exotic subfactors in 1991, and gave the list of graphs in [5,
§7] as candidates which might be realized as (dual) principal graphs of subfactors.
Haagerup and I proved that two pairs of graphs: the case n = 3 of (2) (see Fig-
ure 1) as well as the case (3) in [5, §7], are realized as (dual) principal graphs of
subfactors, and that such subfactors are unique respectively ([2]).

n=4k+3, k=1,2,...

r1

r2

r3

r4

r5r(6+2k)

c1

c2

c3

r(5+2k)

c(4+2k)
Γk:=

Figure 1. The pairs of graphs (2) in the list of Haagerup

In 2005, Etingof, Nikshych, and Ostrik showed in [4, Theorem 8.51], that the
index of a subfactor has to be a cyclotomic integer, namely an algebraic integer that
lies in a cyclotomic field. This implies that if the square of the Perron-Frobenius
eigenvalue (PFEV) of a graph is not a cyclotomic integer, the graph cannot be
the (dual) principal graph of a subfactor. In this talk we prove that none of the
graphs in Figure 1 can be realized a (dual) principal graph for k ≥ 2.
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1. Minimal polynomials

Let dk be the square of PFEV of the graph Γk in Fig. 1. In [1] the adjacency
matrix Ak of Γk was given. The characteristic polynomial of the matrix Nk :=
Ak

tAk divided by (x − 2)2, which is denoted by qk(x), satisfies the following
recursive formula

qk(x) = (x2 − 4x+ 2)qk−1(x) − qk−2,

q0(x) = x2 − 5x+ 3,

q1(x) = (x3 − 8x2 + 17x− 5)(x− 1).

Theorem 1. ([3]) Let

rk(x) =

{
qk(x)/(x − 1), if k ≡ 1 mod 3,

qk(x), else.

Then rk(x) is irreducible for any k, thus it is the minimal polynomial of dk.

I do not get into the proof of this theorem here. However note that qk’s are
generally ugly. By the change of variable one obtains better polynomials. Let

Pk(q) := qk(x)|x=q+q−1+2q
2k+2.

Then

Pk−1(q) = q4k − q4k−1 − q4k−2 − q4k−3 + q4k−4 − · · · − q5 + q4 − q3 − q2 − q + 1.

for any k ≥ 1. The polynomials Pk(q)’s are one of the key players in proving
Theorem 1, as well as further argument.

2. dk’s are not cyclotomic integers for k ≥ 2

Let me briefly describe Hilbert’s theory on ramification of ideals.
Let K be a finite extension of Q, We denote by OK the ring of integers of K,

namely the set of algebraic integers contained in K. For example, OQ = Z. Let p
be a prime number. It generates a prime ideal (p) in Z.Consider the ideal pOK ,
generated by p in OK . This is not generally a prime ideal, however, it factorizes
into a product of prime ideals uniquely:

pOK = Pe1

1 · · ·Peg
g ,

where Pi’s are distinct prime ideals of OK . We call ei the ramification index of
Pi. For a prime ideal P of OK , OK/P is a field extension over k := Z/pZ. We
call [OK/P, k] =: h(P) the degree of P over k.

The ramification theory concerns the factorization described above, for a given
prime p and a field extension K. When K is a Galois extension of Q, it is known
that ei’s and h(Pi) does not depend on i. We modify a well-known classical
theorem by Dedekind ([7], Theorem 4.33) and obtained the following theorem
that we use for our purpose:
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Theorem 2. Let d be an algebraic integer, K = Q(d), and f(x) ∈ Z[x] be the
minimal polynomial of d with degree n. Suppose that K/Q is Galois. Let p be a
prime number, and k := Z/pZ. Let e, f , and g be integers such that

pOK = (P1 · · ·Pg)
e,

where Pi’s are distinct prime ideals of OK , and h(Pi) = h for all i = 1, . . . , g.
Then f(x) factorizes mod p as follows:

f̄(x) = (f1 · · · fg)
e mod p,

where fi ∈ k[x] with deg fi = h for all i and each fi is of the form fi = g
e′

i

i , where
gi ∈ k[x] is irreducible.

Note that if dk is a cyclotomic integer, then K = Q(dk) is automatically a
Galois extension of Q. Thus, in order to prove that dk is not a cyclotomic integer,
it suffices to show that K is not Galois over Q. We study the factorization of the
minimal polynomial modulo suitable prime p and derive a contradiction by the
above theorem. For simplicity, we prove the equivalent statement that ek = dk −2
is not cyclotomic integers for k ≥ 2. We shift the variable of all the polynomials
accordingly: The minimal polynomial for ek is mk(x) := rk(x + 2), and pk(x) :=
qk(x+ 2). Here we list the key observations.

(1) pk−1(0) = (−1)k(2k + 1), p′k−1(0) = (−1)kk
(2) If p > 3, pk−1(x) mod p has multiplicities at most 4.

Note that for a prime p so that p|2k + 1, p 6 |k. Thus, (1) and Theorem 2 imply
that, if Q(ek−1)/Q is Galois, we have

mk−1(x) = x
∏

06=a∈Z/pZ

(x− a)na mod p.

We demonstrate the proof for the simplest case here:
Case 1: 2k + 1 is not a prime, nor a power of 3, and k 6= 2 mod 3.
By the assumption, there is a prime number p 6= 2k + 1, 3 that divides 2k + 1.
Since 2 6 | 2k + 1, 2k + 1 is divisible by some number larger or equal to 5, thus
p ≤ 2k+1

5 . Since degmk−1 = deg pk−1 = 2k and na ≤ 4,

2k ≤ 1 + 4(p− 1) ≤ 1 + 4(
2k − 4

5
) =

8k

5
− 11

5
< 2k,

thus contradiction.
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The Effros-Ruan conjecture for bilinear forms on C∗-algebras

Magdalena Musat

(joint work with Uffe Haagerup)

In 1956 Grothendieck published the celebrated ”Résumé de la théorie métrique des
produits tensoriels topologiques”, containing a general theory of tensor norms on
tensor products of Banach spaces, describing several operations to generate new
norms from known ones, and studying the duality theory between these norms.
Since 1968 it has had considerable influence on the development of Banach space
theory. The highlight of the paper [2], now referred to as the ”Résumé” is a result
that Grothendieck called ”The fundamental theorem on the metric theory of tensor
products”. Grothendieck’s theorem asserts that given compact spaces K1 and K2

and a bounded bilinear form u : C(K1) × C(K2) → K (where K = R or C) , then
there exist probability measures µ1 and µ2 on K1 and K2 , respectively, such that

|u(f, g)| ≤ KK
G‖u‖

(∫

K1

|f(t)|2 dµ1(t)

)1/2 (∫

K2

|g(t)|2 dµ2(t)

)1/2

,

for all f ∈ C(K1) and g ∈ C(K2) , where KK
G is a universal constant.

The non-commutative version of Grothendieck’s inequality (conjectured in the
”Résumé”) was first proved by Pisier under some approximability assumption (cf.
[6]) , and obtained in full generality in [3]. The theorem asserts that given C∗-
algebras A and B and a bounded bilinear form u : A × B → C , then there exist
states f1 , f2 on A and states g1 , g2 on B such that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ ‖u‖(f1(a∗a) + f2(aa
∗))1/2(g1(b

∗b) + g2(bb
∗))1/2 .

As a corollary, it was shown in [3] that given C∗-algebras A and B , then any
bounded linear operator T : A → B∗ admits a factorization T = SR through a

Hilbert space H , where A
R−→ H

S−→ B∗ , and

‖R‖‖S‖ ≤ 2‖T ‖ .
Let E ⊆ A and F ⊆ B be operator spaces sitting in C∗-algebras A and B , and let
u : E × F → C be a bounded bilinear form. Then, there exists a unique bounded
linear operator ũ : E → F ∗ such that

(1) u(a , b) := 〈ũ(a) , b〉 , a ∈ E , b ∈ F ,

where 〈 · , · 〉 denotes the duality bracket between F and F ∗ . The map u is called
jointly completely bounded (for short, j.c.b.) if the associated map ũ : E → F ∗ is
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completely bounded, in which case we set

(2) ‖u‖jcb := ‖ũ‖cb .

(Otherwise, we set ‖u‖jcb = ∞ .) It is easily checked that

(3) ‖u‖jcb = sup
n∈N

‖un‖ ,

where for every n ≥ 1 , the map un : Mn(E)⊗Mn(F ) →Mn(C)⊗Mn(C) is given
by

un




k∑

i=1

ai ⊗ ci ,

l∑

j=1

bj ⊗ dj


 =

k∑

i=1

l∑

j=1

u(ai, bj)ci ⊗ dj ,

for all finite sequences {ai}1≤i≤k in E , {bj}1≤j≤l in F , {ci}1≤i≤k and {dj}1≤j≤l

in Mn(C) , k , l ∈ N . Moreover, ‖u‖jcb is the smallest constant κ1 for which, given
arbitrary C∗-algebras C and D and finite sequences {ai}1≤i≤k in E , {bj}1≤j≤l in
F , {ci}1≤i≤k in C and {dj}1≤j≤l in D , where k , l ∈ N , the following inequality
holds∥∥∥∥∥∥

k∑

i=1

l∑

j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
C⊗minD

≤ κ1

∥∥∥∥∥

k∑

i=1

ai ⊗ ci

∥∥∥∥∥
E⊗minC

∥∥∥∥∥∥

l∑

j=1

bj ⊗ dj

∥∥∥∥∥∥
F⊗minD

.

It was conjectured by Effros and Ruan in 1991 (cf. [1] and [7], Conjecture 0.1)
that if A and B are C∗-algebras and u : A×B → C is a jointly completely bounded
bilinear form, then there exist states f1 , f2 on A and states g1 , g2 on B such that
for all a ∈ A and b ∈ B ,

(4) |u(a, b)| ≤ K‖u‖jcb(f1(aa
∗)1/2g1(b

∗b)1/2 + f2(a
∗a)1/2g2(bb

∗)1/2) ,

where K is a universal constant.
In [7] Pisier and Shlyakhtenko proved an operator space version of (4), namely,

if E ⊆ A and F ⊆ B are exact operator spaces with exactness constants ex(E)
and ex(F ) , respectively, and u : E × F → C is a j.c.b. bilinear form, then there
exist states f1 , f2 on A and states g1 , g2 on B such that for all a ∈ E and b ∈ F ,

|u(a, b)| ≤ 23/2ex(E)ex(F )‖u‖jcb(f1(aa
∗)1/2g1(b

∗b)1/2 + f2(a
∗a)1/2g2(bb

∗)1/2) .

Moreover, by the same methods they were able to prove the Effros-Ruan conjecture
for C∗-algebras with constant K = 23/2 , provided that at least one of the C∗-
algebras A , B is exact (cf. [7], Theorem 0.5).

Our main result from [5] is that the Effros-Ruan conjecture is true. Moreover,
it holds with constant K = 1 , that is,

Theorem 1. Let A and B be C∗-algebras and u : A × B → C a jointly
completely bounded bilinear form. Then there exist states f1 , f2 on A and states
g1 , g2 on B such that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ ‖u‖jcb(f1(aa
∗)1/2g1(b

∗b)1/2 + f2(a
∗a)1/2g2(bb

∗)1/2) .

We also prove that K = 1 is the best constant in the inequality (4) .
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It follows from Theorem 1 that every completely bounded linear map T : A→
B∗ from a C∗-algebra A to the dual B∗ of a C∗-algebra B has a factorization
T = vw through Hr ⊕ Kc (the direct sum of a row Hilbert space and a column
Hilbert space), such that

‖v‖cb‖w‖cb ≤ 2‖T ‖cb .

Furthermore, thanks to Theorem 1 we can strengthen a number of results from
[7] . For instance, it follows that if an operator space E and its dual E∗ both embed
in noncommutative L1-spaces, then E is completely isomorphic to a quotient of a
subspace of Hr ⊕Kc , for some Hilbert spaces H and K .

While the approach by Pisier and Shlyakhtenko relies on free probability tech-
niques, our proof uses more classical operator algebra theory, namely, Tomita-
Takesaki theory and special properties of the Powers factors of type IIIλ , 0 < λ < 1
(cf. [4]) .
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