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Introduction by the Organisers

The workshop covered developments in the field in the last four years. Roughly
speaking arithmetic geometry consider algebraic schemes over rings of integers of
numberfields. However an important tool is to first extend the base to a p-adic
completion. Although both global and local problems matter this time there was
a heavy emphasis on p-adic topics.

One of them is the deformation-theory of Galois-representations, leading to a
proof of Serre’s conjecture. here one starts with a global Galois-representation
modulo p, then lifts modulo p2, etc. For the lifts one requires certain local condi-
tions (like being unramified outside a given set of places), and the most important
and difficult such conditions arise at primes dividing p. Here the most impor-
tant tool is J.M.Fontaine’s theory which relates Galois-representations to filtered
Frobenius-crystals.

Another spectacular progess is the proof (by Ngo) of the fundamental lemma in
the theory of automorphic representations. It postulates identities of p-adicorbital
integrals and is reduced to a geometric statement about perverse sheaves on
Hitchin-fibrations in positive characteristic.

Concerning p-adic cohomology theories we are getting closer to a p-adic the-
ory of D-modules, and of overconvergent crystals, over singular schemes. Also
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the long awaited etale coverings of p-adic period domains have finally been con-
structed, after it has been understood that they have ”holes” which are visible
in the Berkovich-space but not in the conventional rigid space. That they ex-
ist is suggested by Fontaine’s theory. These period domains classify p-divisible
groups. Some of them (Drinfeld, Lubin-Tate) can be covered by explicit affinoid
domains, thus giving some type of reduction theory for p-divisible groups. There
are attempts to extend this to finite flat group-schemes.

Concerning K-theory the classical Borel-regulator from K-theory to Deligne-
cohomology has been extended to syntomic cohomology, as well as the computation
of its values on Eisenstein-symbols. For the l-adic etale theory general finiteness
theorems can now be shown for quasi-excellent schemes. A further topic was the
theory of p-adic Banach-representations of p-adic Lie-groups.

On a more global level we had talks about (p-adic!) constructions of rational
points on elliptic curves, the association of K-classes to abelian varieties, and the
theory of tame fundamental groups. Finally the theory of small points has been
extended to function fields (over numberfields it leads to equidistribution) using
tropical geometry.
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Abstracts

Applications of D-module theory to finiteness conditions in crystalline
cohomology

Pierre Berthelot

Let k be a perfect field of characteristic p > 0, S0 = Spec(k), S = Spec(Wn(k))
for some fixed integer n ≥ 1, and let X0 be a proper and smooth S0-scheme.
We assume that n = 1 if p = 2, and we denote here by Crys(X0/S) the nilpotent
crystalline site [1, III, 1.3] and by OX0/S its structural sheaf. Using D-module the-
ory, we define two triangulated subcategories of the derived category DF (OX0/S)
of complexes of filtered OX0/S-modules, whose objects are called respectively D-
perfect and D∨-perfect complexes. For these complexes, the classical finiteness
and duality theorems can be generalized.

D-perfect complexes. For any smooth S-scheme X , we denote by DX the sheaf
of PD-differential operators on X (see [1, II, 2.1] or [2, Ch. 4]).

Let X0 be a smooth S0-scheme which can be lifted as a smooth S-scheme X ,
and let

CX0 : {left DX -modules}
≈
−→

{
crystals of

OX0/S-modules

}
→֒

{
sheaves of

OX0/S-modules

}

be the classical functor which associates to a left DX -module a sheaf of OX0/S-
modules (which is a crystal). This functor has a right adjoint MX . We denote
respectively by LCX0 and RMX the left and right derived functors of CX0 andMX .
A complex E ∈ D−(OX0/S) is called a crystalline complex if, for any morphism
v : (U ′, T ′) → (U, T ) of Crys(X0/S), the canonical morphism Lv∗ET → ET ′ is an
isomorphism of D−(OT ′).

Theorem 1. The functors LCX0 and RMX induce quasi-inverse equivalences be-
tween the full subcategory of Db(DX) whose objects have finite Tor-dimension and
quasi-coherent cohomology, and the full subcategory of Db(OX0/S) whose objects
are crystalline complexes which have finite Tor-dimension, and quasi-coherent co-
homology on every thickening in Crys(X0/S).

Without liftability assumption, we define D-perfect complexes on Crys(X0/S) to
be complexes E ∈ Db(OX0/S) such that there exists an open covering (U0,α) of X0,

smooth liftings (Uα) of the subschemes U0,α, perfect complexes Eα ∈ Db
perf(DUα)

and isomorphisms E|U0,α
≃ LCU0,α(Eα). The previous theorem implies that, if X0

has a smooth lifting X on S, this local condition is equivalent to the similar global
condition on X .

We assume that X0 has constant relative dimension d over S0. For E ∈
Db

perf(DX), we set

CRX0(E) = LCX0 (E)[d].

Theorem 2. Let f0 : X0 → Y0 be a smooth morphism of smooth S0-schemes.
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(i) If f0 can be lifted as a morphism f : X → Y of smooth S-schemes, and
if E ∈ Db

perf(DX), there exists in Db(OY0/S) a canonical isomorphism

CRY0(f+(E))
∼

−−−→ Rf0 crys ∗(CRX0 (E)).

(ii) Without liftability assumption, but if in addition f0 is proper, Rf0 crys ∗

preserves D-perfection.

Local duality and D∨-perfection. The previous theorem does not hold when
f0 is a closed immersion. To obtain a finiteness condition which is stable under
direct images by arbitrary proper maps, we introduce another notion of perfection,
dual to D-perfection. We will now use filtered versions of the previous results: this
will be indicated by the addition of the symbol “F” to the notations. The sheaf OX
is filtered by the divided powers of the ideal pOX , the sheaf DX is endowed with
the tensor product filtration of the filtration by the order of differential operators
with the filtration of OX , and the sheaf OX0/S is filtered by the divided powers of
its canonical PD-ideal. Our treatment of derived categories and derived functors
for filtered modules is based on Laumon’s constructions in [4].

If A is a filtered ring, and E a complex of filtered A-modules, we denote by
Ef the subcomplex defined by Ef = ∪i∈ZE

i, and we say that E is exhaustive if
the morphism Ef → E is a quasi-isomorphism. We endow Crys(X0/S) with the
dualizing complex

KX0/S = OX0/S(d)[2d],

and, for any exhaustive complex E ∈ D−F (OX0/S), we define

E∨ = RHomf
OX0/S

(E,KX0/S).

Theorem 3. Let E ∈ DbF (OX0/S) be a D-perfect complex.
(i) E is exhaustive, and E∨ is exhaustive and bounded.

(ii) There exists a canonical isomorphism E
∼

−−−→ (E∨)∨ in DbF (OX0/S).

Without liftability assumption, we can use this biduality theorem to define D∨-
perfect complexes as being exhaustive complexes such that E∨ is D-perfect and
the biduality morphism E → (E∨)∨ is an isomorphism. The functor E 7→ E∨

induces an anti-equivalence between the categories of D-perfect and D∨-perfect
complexes.

Stability and duality. If X is a smooth S-scheme lifting X0, we will define a
functor CRF∨

X0
on DbFperf(DX) by setting CRF∨

X0
(E) = CRFX0(E)∨.

Theorem 4. Let f0 : X0 → Y0 be a S0-morphism between proper and smooth
S0-schemes.

(i) If f0 can be lifted as a morphism f : X → Y of proper and smooth
S-schemes, and if E ∈ DbFperf(DX), there exists a canonical isomorphism

CRF∨
Y0

(f+(E))
∼

−−−→ Rf0 crys ∗(CRF
∨
X0

(E)).

(ii) Without liftability assumption, Rf0 crys ∗ preserves D∨-perfection.



Arithmetic Algebraic Geometry 1985

The proof of assertion (ii) uses Theorem 2 and the following relative duality
theorem, where r is the relative dimension of X0 over Y0.

Theorem 5. Let f0 : X0 → Y0 be a proper and smooth morphism.
(i) There exists in DbF (OY0/S) a trace morphism

Trf0 : Rf0 crys ∗(KX0/S) → KY0/S ,

compatible with the usual trace morphism Rrf0∗(Ω
r
X0/Y0

) → OY0 .

(ii) If E is a D-perfect complex on Crys(OX0/S), the natural pairing and the

previous trace morphism induce a perfect duality pairing in DbF (OY0/S)

Rf0 crys ∗(E)
L

⊗OY0/S
Rf0 crys ∗(E

∨) → KY0/S .

Remarks on the logarithmic case. One can endow S and S0 with the log
structures associated to the pre-log structures defined by the morphism of monoids
N → OS sending 1 to 0, and work within the category of fine log schemes over S,
using the PD nilpotent variant of the log crystalline cohomology defined by Kato
[3]. Then, under various additional hypotheses (see in particular [5], [6]), similar
results hold for smooth logarithmic schemes over S0. In particular, one can use
Theorem 4 to show that, when X0 is the special fiber of a proper semi-stable
scheme over a totally ramified extension of W , and X0 →֒ Y is a closed immersion
of X0 into a smooth usual scheme over S, the DY -module constructed by Tsuji in
[6] computes the Hyodo-Kato cohomology of X0.
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p-adic Rankin L-series

Massimo Bertolini

(joint work with Henri Darmon, Kartik Prasanna)

The general theme of this talk is the p-adic construction of rational points on
elliptic curves, by means of values (or derivatives) of p-adic L-functions. The
following two basic examples should be kept in mind.
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(1) Rubin’s formula [1], which expresses the square of the p-adic formal group
logarithm of a rational point on a CM elliptic curve as a value of Katz’s
2-variable p-adic L-function outside the range of p-adic interpolation. (We
mention, in this connection, also the conjectural generalization of Rubin’s
formula obtained by Perrin-Riou [2].)

(2) The main result of [3], which identifies the p-adic logarithm of a Heegner
point on an elliptic curve with multiplicative reduction at p with the first
derivative of a (square-root) anticyclotomic p-adic L-function.

In this talk we present new results of a similar nature, resulting from collabo-
rations with H. Darmon, and with H. Darmon and K. Prasanna. We also attempt
to fit these results and examples in a unified setting.

Let A be a elliptic curve over Q of squarefree conductor N , and let p be an
ordinary prime for E. Fix an imaginary quadratic field K of discriminant −D.
Assume for simplicity that K has class number one, and that D is greater than 3
and does not divide pN .

We also make the basic assumption that the complex L-series L(A/K, s) van-
ishes to odd order at s = 1. In this case, the Birch and Swinnerton-Dyer conjecture
predicts that the Mordell-Weil group A(K) contains a point of infinite order. In
many instances, the theory of complex multiplication provides a construction of
such a point, via a Shimura curve parametrization of A.

It will be crucial to distinguish the following two cases:

(1) Case I (the “exceptional case”): p divides exactly N (so that A has mul-
tiplicative reduction at p).

In this case, we assume that p is inert in K.
(2) Case II (the “generic case”): p does not divide N (so that A has good

ordinary reduction at p).
In this case, we assume that p is split in K, and that all the primes

dividing N are split in K.

The work of Hida [4] attaches to the triple (A,K, p) a p-adic L-function L(A,K; k)
in a weight variable k.

In the exceptional case, this p-adic L-function satisfies the interpolation prop-
erty

Lp(A,K; k)2
.
= L(fk × θ1, k/2) for k ∈ Z≥2 even,

where the symbol
.
= denotes equality up to an explicit constant. Here, fk is the

weight k specialization of the Hida family of normalized eigenforms attached to A
(thus f2 = fA is the normalised eigenform attached to A). Furthermore, θ1 is the
canonical theta series of weight one attached to K, such that the Rankin L-series
L(fk × θ1, s) is equal to the L-series of the base-change of fk to K.

In the generic case, the interpolation formula has the shape

Lp(A,K; k)2
.
= L(fA × θk, (k + 1)/2) for k ∈ Z≥3 odd.

Here θk is the theta series of weight k attached to ψk−1, where ψ is the canonical
Hecke character of infinity type (1, 0) and minimal conductor attached to K, and
L(fA × θk, s) is the Rankin convolution L-series.
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Note that in both the exceptional and the generic case Lp(A,K; k) should be
regarded as a “square-root” p-adic L-function, since it interpolates square-roots of
special values of complex L-functions.

We now state our results alluded to above.

Theorem 0.1. Assume we are in the exceptional case. Then L′
p(A,K; 2) =

logA(P ), where P is a global point in A(K) ⊗ Q and logA denotes the formal
group logarithm on A.

The proof of this result in based on the Cerednik-Drinfeld theory of p-adic
uniformization of Shimura curves, on the theory of complex multiplication and on
Coleman’s theory of p-adic integration. See [5] for details.

Theorem 0.1 is related the the second example mentioned above in the following
way. The work of Hida [4] yields a 2-variable p-adic L-function Lp(A,K; k, ℓ) that
interpolates the central critical values at s = (k+ℓ−1)/2 attached to the products
fk × θℓ, for 1 ≤ ℓ ≤ k− 1. By setting k = 2, one obtains the anticyclotomic p-adic
L-function of example (2), whose derivative L′

p(A,K; 2, 1) at ℓ = 1 gives rise to
the logarithm of a global point.

Theorem 0.2. Assume we are in the generic case. Then Lp(A,K; 1) = logA(P ),
where P is a global point in A(K) ⊗ Q.

Note that the value Lp(A,K; 1) is outside the range of p-adic interpolation. The
proof of this result, based on the theory of p-adic modular forms, can be found in
[6].

What is the relation (if any) between theorem 0.2 and Rubin’s formula (example
(1))? It should be noted that Rubin’s formula holds for an elliptic curve A with
good ordinary reduction at p, having CM by the ring of integers of K. This
implies that the L-series L(A/K, s) = L(A, s)2 vanishes to even order at s = 1,
so that our basic assumption fails in this new setting. Rubin’s formula can be
understood in the framework of theorem 0.2 by replacing the modular form fA
(equal to θ2 in the new setting) by a theta series θ2+r of odd weight 2 + r ≥ 3.
This leads to a higher dimensional generalization of theorem 0.2, which relates the
value at r+1 of the Hida p-adic L-function interpolating the central critical values
L(θ2+r × θ1+r+2j, r + 1 + j), for j ≥ 1, to the image by the p-adic Abel-Jacobi
map of a r + 1-codimensional algebraic cycle ∆. More specifically, let Xr be the
2r + 1-dimensional product variety Ar ×Wr, where Wr denotes the r-fold fiber
product of the universal generalised elliptic curve over the modular curve on which
θ2+r arises. Then ∆ defines an element of the Chow group CHr+1(Xr)0 of r + 1-
codimensional cycles on Xr modulo rational equivalence, which are homologically
trivial. Rubin’s theorem implies that the Abel-Jacobi image of ∆ in the continuous
Galois cohomology group H1(K,Vp(A)), Vp(A) being the Tate module with Qp

coefficients of A, arises from a global point. The reader is referred to [6] and [7]
for more details and explanations.



1988 Oberwolfach Report 35/2008

References

[1] K. Rubin, p-adic L-functions and rational points on elliptic curves with complex multipli-
cation, Inventiones Math. 107 (1992), 323–350.

[2] B. Perrin-Riou, Fonctions L p-adiques d’une courbe elliptique et points rationnels, Ann.
Inst. Fourier 43 (1993), 945–995.

[3] M. Bertolini, H. Darmon, Heegner points, p-adic L-functions, and the Cerednik-Drinfeld
uniformisation, Inventiones Math. 131 (1998), 453–491.

[4] H. Hida, Elementary theory of L-functions and Eisenstein series, London Math. Society
Student Texts 26 (1993), Cambridge University Press.

[5] M. Bertolini, H. Darmon, Hida families and rational points on elliptic curves, Inventiones
Math. 168 (2007), 371–431.

[6] M. Bertolini, H. Darmon, K. Prasanna, Generalised Heegner cycles and p-adic Rankin L-
series, in preparation.

[7] M. Bertolini, H. Darmon, K. Prasanna, Exotic Heegner points on CM elliptic curves and
periods of binary theta series, in preparation.

Pseudo-reductive groups and finiteness theorems

Brian Conrad

1. Motivation

Let G be an affine algebraic group scheme over a global field k. Let Ak denote
the locally compact adele ring of k, and consider the double coset space

(1.1) ΣG,S,K = G(k)\G(Ak)/G(kS)K = G(k)\G(AS
k )/K

for a finite non-empty set S of places of k that contains the archimedean places,
kS =

∏
v∈S kv and AS

k the factor ring of adeles with vanishing component along

S (so Ak = kS × AS
k as topological rings), and K a compact open subgroup of

G(AS
k ). Such double cosets arise in many contexts in number theory, and it is an

important result of Borel from the 1960’s that double coset spaces as in (1.1) are
always finite when k is a number field. We say that G has finite class numbers if
ΣG,S,K is finite for all S and for all (equivalently, one) K.

Over global function fields the finiteness of class numbers for solvable G was
proved by Oesterlé, and the connected reductive case can be deduced from results
of Borel, Prasad, and Harder. However, the general case of function fields does
not follow from such methods. For various reasons (some indicated below) it is
desired to handle all affine algebraic groups, so we need a new ingredient to get
beyond the usual framework of reductive groups.

2. Main finiteness results

By using the new results described in §3, we developed an entirely different
approach to the problem of finiteness of class numbers, and in the number field
case we get a proof which is far from the original one of Borel (i.e., no use of
reduction theory). Our first main finiteness result is a generalization to all global
fields (in odd characteristic) of Borel’s theorem over number fields.
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Theorem 2.1. Let k be a global function field with char(k) 6= 2. Every affine
algebraic k-group scheme has finite class numbers.

As an application of theorem 2.1 and the main result in §3 below, we obtain the
following theorem that is an analogue of a result of Borel and Serre over number
fields.

Theorem 2.2. Let k be a global function field with char(k) 6= 2, and let S be a
finite (possibly empty) set of places of k. Let G be an affine k-group scheme of
finite type.

(1) The natural localization map θS,G : H1(k,G) →
∏
v 6∈S H1(kv, G) has finite

fibers.
(2) Let X be a k-scheme equipped with a right action by G. For x ∈ X(k),

the set of points x′ ∈ X(k) in the same G(kv)-orbit as x in X(kv) for all
v 6∈ S consists of finitely many G(k)-orbits.

Our proof of Theorem 2.2 uses the known finiteness of X
1
S(k,G) := ker θS,G

when G is a smooth connected commutative affine k-group, which was proved by
Oesterlé over all global fields by a uniform method.

Remark 2.3. The proof of Theorem 2.2(2) is an easy consequence of part (1)
applied to the stabilizer group Gx that is generally not smooth. The proof of both
parts of Theorem 2.2 involves reduction to cases in which all relevant group schemes
are smooth. The main ingredients we use are Harder’s vanishing theorem for
H1(k,G) for any global function field k and any (connected and) simply connected
semisimple k-group G, as well as the main result in §3 below. We expect Theorems
2.1 and 2.2 to be true in characteristic 2. Ongoing work with O. Gabber and G.
Prasad should settle this point.

Our ability to get beyond the reductive case is the key innovation in this work,
and such generality is needed to even prove Theorem 2.2(2) for connected semisim-
ple G. The work in §3 below was largely motivated by its role in the proofs of the
above results.

3. Pseudo-reductive groups

The technical heart of the proofs of the preceding finiteness theorems is a struc-
ture theory for a class of groups that was first studied by Borel and Tits. What
follows is joint work with Gabber and Prasad.

For an arbitrary field k, a smooth affine k-group G is pseudo-reductive over k if
it is connected and the maximal smooth connected unipotent normal k-subgroup
Ru,k(G) is trivial. In general if G is connected then G/Ru,k(G) is pseudo-reductive
and the canonical exact sequence

(3.1) 1 → Ru,k(G) → G→ G/Ru,k(G) → 1

over k expresses G as an extension of a pseudo-reductive k-group by a smooth
connected unipotent k-group.
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By (3.1), pseudo-reductive groups naturally arise in solving rationality questions
for general smooth affine groups over general fields. The main reason for interest
in the structure of pseudo-reductive groups is as a very useful device for proving
theorems about general affine algebraic groups (over imperfect fields) that were
previously only known in the reductive case.

Example 3.1. Let k′/k be a finite extension of fields with arbitrary character-
istic and let G′ be a connected reductive k′-group. The affine Weil restriction
Resk′/k(G

′) is pseudo-reductive over k, but if k′/k is not separable and G′ 6= 1
then it is not reductive.

Pseudo-reductive groups were the topic of courses by Tits and the Collège
de France in 1991–92 and 1992–93. Tits attempted to classify pseudo-reductive
groups over separably closed fields of positive characteristic, but he ran into many
complications and so did not write up all of his results. Away from characteris-
tic 2 we give a canonical description of pseudo-reductive groups that isolates the
mysteries of the commutative case in a useful manner.

Example 3.2. Let k′ be a nonzero finite reduced k-algebra and let G′ be a k′-
group whose fiber over each factor field of k′ is an absolutely simple and connected
semisimple group that is simply connected. Let j : T ′ →֒ G′ be a maximal k′-torus,

ZG′ the (scheme-theoretic) center of G′, and T
′
= T ′/ZG′ . Suppose that there is

given a factorization

(3.2) Resk′/k(T
′)

ϕ
→ C → Resk′/k(T

′
)

of the canonical map of k-groups Resk′/k(T
′) → Resk′/k(T

′
) with C a commutative

(connected) pseudo-reductive k-group; it is not assumed that ϕ is surjective (e.g.,

for C = Resk′/k(T
′
) the map ϕ can fail to be surjective).

Let C act on Resk′/k(G
′) on the left through conjugation by its image in

Resk′/k(T
′
), so there arises a semidirect product group Resk′/k(G

′)⋊C. Using the
pair of homomorphisms

ϕ : Resk′/k(T
′) → C, Resk′/k(j) : Resk′/k(T

′) → Resk′/k(G
′),

the twisted product map α : Resk′/k(T
′) → Resk′/k(G

′) ⋊ C defined by t′ 7→

(Resk′/k(j)(t
′)−1, ϕ(t′)) is readily checked to be an isomorphism onto a central

subgroup. The k-group G := coker α turns out to be non-commutative and
pseudo-reductive over k.

The non-commutative pseudo-reductive groups arising as in Example 3.2 are
called standard. For such G the pair (G′, k′/k) is uniquely determined by G up
to a non-canonical k-isomorphism, and the choice of T ′ corresponds to a choice
of maximal k-torus T in G (in which case C is the associated Cartan k-subgroup
ZG(T )). Our main result is:

Theorem 3.3. Assume char(k) 6= 2 and let G be a non-commutative pseudo-
reductive k-group. If k is imperfect with char(k) = 3 then assume Gss

k
has no

simple factor of type G2. The k-group G is standard.
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For imperfect k with char(k) = 3 we can also classify the structure of all pseudo-
reductive groups G for which Gss

k
has G2-factors. Our classification provides some

new insight into Tits’ results on root systems and pseudo-parabolic subgroups of
pseudo-reductive groups: the root groups and minimal pseudo-parabolic subgroups
in Tits’ theory are obtained from (possibly non-étale) Weil restrictions of root
groups and parabolic subgroups in semisimple groups over certain intrinsically
associated finite extensions of k, at least away from characteristic 2.

A key difference between pseudo-reductive k-groups and connected reductive k-
groups is that the Cartan k-subgroups in pseudo-reductive groups may not be tori,
although they are always commutative. If char(k) 6= 2 then a pseudo-reductive
k-group is reductive if and only if its Cartan k-subgroups are tori; this is false
in characteristic 2. In this sense, a basic reason that pseudo-reductive groups are
more difficult to understand than connected reductive groups is that we do not
understand the general structure of the commutative objects.

Coverings of p-adic period domains

Gerd Faltings

The theory of Fontaine relates crystalline p-adic Galois-representations to cer-
tain objects which typically arise as crystalline cohomology. Namely a Frobenius-
crystal over an unramified field K0 and a Hodge filtration on it defined over a finite
extension K of K0. The correspondence is fully faithful and its essential image
consists of weakly admissible objects (some type of stability condition). For infi-
nite extensions K one can still associate to certain crystals with Hodge-filtration a
Qp-vectorspace, but it has been shown by U.Hartl that ”weakly admissible” is not
sufficient for that. If we fix the Frobenius crystal the possible Hodge-filtrations are
parametrised by a flag-variety, the weakly admissible points form a rigid analytic
subspace, and the admissible points in it an open Berkovich-subspace which has
the same conventional rigid points but fewer Berkovich-points.

If the Hodge-filtrations has length one (corresponding to representations which
should be associated to p-divisible groups) we show that over this subspace there
exist etale local systems naturally associated to the tautological Hodge-filtration.
Here ”associated” is defined by generalising Fontaine’s theory from discrete valu-
ation-rings to higher dimensional p-adic domains. The proof uses a simple deforma-
tion-argument:

One has to solve certain equations. A solution at one point extends to an
approximate solution in an open neighbourhood, which then can be corrected to
yield an exact solution.

Finally one can show that the resulting Galois-representations arise from p-
divisible groups, by reducing to the known (Breuil, Kisin) result over conventional
rigid points.

For Hodge filtrations of higher length the method should work in the same way.
However one needs at some stage Griffiths’ transversality so there exist (like in
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classical Hodge theory) no universal families, and the optimal generality in which
a theorem should be formulated remains unclear.
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Reduction theory for p-divisible groups

Laurent Fargues

In [1], Gerd Faltings has shown the existence of a link between Lubin-Tate and
Drinfeld towers (see [3] too). Using the link between Drinfeld’s Ω space and the
Bruhat-Tits building of PGLn/Qp one can use this to define an Hecke equivariant
“parametrization” by the geometric realization of this Bruhat-Tits building of
the Berkovich space associated to the Lubin-Tate tower with infinite level. This
parametrization has been studied in details in [4].

The Lubin-Tate tower can be seen as tubes (or p-adic Milnor fibers) over some
“supersingular” points in the reduction mod p of some particular type of Shimura
varieties (unitary type with signature (1, n − 1) × (0, n) × · · · × (0, n) at a split
prime p). In fact one can extend the results of [4] to define and study an Hecke
equivariant parametrization of the p-adic Berkovich analytic space associated to
this Shimura variety with infinite level at p by compactifications of the preceding
buildings. In this parametrization the boundary stratification of the compactified
building corresponds to the Newton stratification of the Shimura variety. For n = 2
one finds back Lubin’s theory of canonical subgroup. For general n this should
be helpful to construct a theory of p-adic automorphic forms on those Shimura
varieties generalizing Katz theory for modular curves (for n = 2 the structure of
the Bruhat-Tits tree being “simple” one can compute everything, but in general
the structure of the building is more complicated).

We propose a new way to stratify and define fundamental domains for the
action of p-adic Hecke correspondences on more general moduli spaces (Rapoport-
Zink spaces or general PEL type Shimura varieties). In [2] the author has defined
Harder-Narasimhan type filtrations for finite flat group schemes over unequal char-
acteristic complete valuation rings. Stuhler and Grayson have developed reduction
theory for the action of arithmetic groups on archimedean symmetric spaces us-
ing Harder-Narasimhan filtrations for hermitian vector bundles in the sense of
Arakelov geometry. We use our theory for finite flat group schemes to define a
reduction theory for p-divisible groups (like reduction theory for quadratic forms)
and define fundamental domains for the action of Hecke correspondences on some



Arithmetic Algebraic Geometry 1993

Rapoport-Zink spaces and Shimura varieties. Those fundamental domains are in-
teresting from the point of view of the associated period mapping. When one starts
from a Q-point in our Shimura variety the associated point in the fundamental
domain is a point in the Hecke orbit where the Faltings height of the associated
abelian variety is minimized in its p-isogeny class.
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Finiteness theorems in étale cohomology

Ofer Gabber

Theorem 1 [1]. Let ℓ be a prime and f : X → Y a morphism of finite type
between quasi-excellent noetherian Z[1/ℓ]-schemes and F a constructible sheaf of
Z/ℓr-modules on Xet. Then the sheaves Rif∗ F on Yet are constructible and vanish
except for finitely many i’s.

There are analogues of theorem 1 for non-abelian coefficients. For direct images
of sheaves of sets the quasi-excellence condition is not needed. The conclusion of
theorem 1 also holds for morphisms between S-schemes of finite type where S is a
noetherian Z[1/ℓ]-scheme of dimension ≤ 1 (this is reduced to results of [3]). If X
is normal excellent and j : U → X an open immersion with cod(X−U,X) ≥ 2 one
can show by another method (which uses ultraproducts) that the sheaves R1j∗G
are constructible for every finite group G.

Let S be a noetherian scheme and C the category of reduced S-schemes of

finite type X
f

−→ S such that f sends maximal points to maximal points and
is generically finite. The alteration topology is the Grothendieck topology on C

defined by the pretopology generated by Zariski covers and proper surjective maps.
A family {Xi → X} in C is covering for the alteration topology iff it is covering
for the Voevodsky h-topology. For a prime ℓ, the ℓ′-alteration topology on C is
the Grothendieck topology generated by

(i) families of étale morphisms {Xi → X} such that every x ∈ X is the image
of some point y ∈ Xi with [κ(y) : κ(x)] prime to ℓ,

(ii) proper surjective maps X ′ → X satisfying the same condition for maximal
points of X .
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Theorem 2. Let X be a reduced quasi-excellent noetherian scheme and Z ⊂ X a
nowhere dense closed subset. Then there is a covering family {Xi → X} for the
alteration topology such that each Xi is regular and the inverse image of Z in Xi

is the support of a normal crossings divisor.

The conclusion of theorem 2 can be reformulated in terms of points of the
alteration topology, which correspond to valuations. There is a refined form with
the ℓ′-alteration topology when a prime ℓ is invertible. With further work one can
add the condition that the Xi → X are generically étale.

One proof of a part of theorem 1 (constructibility for each i) uses theorem 2
and cohomological descent for oriented product toposes, and the proof of the full
result uses the refined form of theorem 2. We discussed the use of reduction to the
complete case (Artin-Popescu approximation) and Epp’s theorem in the proof of
theorem 2, and a modification theorem (theorem 3) which is used in the proof of
the refined form.

Let X be a locally noetherian scheme and Z ⊂ X a closed subset. We say
that (X,Z) is log-regular if X is log-regular when equipped with some fs (étale)
log-structure with locus of triviality X−Z. The log-structure is then given by the
subsheaf of OX of functions invertible outside Z.

Theorem 3. Let (X,Z) be a noetherian log-regular scheme equipped with an
action of a finite group G which is generically free, admissible (so that p : X →
X/G exists) and such that for every x ∈ X the order of the inertia group Gx is
invertible in κ(x). Then there is a projective birational map q : Y ′ → X/G such
that (Y ′, Z ′) is log-regular where Z ′ = q−1p (Z ∪ (locus of non-trivial inertia)).

This requires some form of canonical desingularization in characteristic zero.

As a consequence of theorem 3 (version with log-smoothness over a base) and
de Jong’s results one has

Theorem 4. Let ℓ be a prime and R an excellent Dedekind ring over Z[1/ℓ] and
X a separated integral flat R-scheme of finite type. Then there is an alteration
q : X ′ → X of generic degree prime to ℓ (generically étale if R is a perfect
field), with X ′ regular integral quasi-projective over R, such that X ′ has an fs
log-structure such that there is a log-smooth R-morphism X ′ → Spec(R′) where R′

is the normalization of R in a finite extension of Frac(R) and the log-structure of
Spec(R′) is defined by a finite set of codimension one points.

Theorem 4 is used in a new proof of absolute cohomological purity in the mixed
characteristic case.

We mentioned cohomological dimension results

(i) Affine Lefschetz: If R is an excellent strictly henselian noetherian local ring
with 1/ℓ ∈ R, the ℓ-cohomological dimension of affine open subschemes of
Spec(R) is ≤ dim(R).
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(ii) For R as above a domain, cdℓ(Frac(R)) = dim(R) holds without the ex-
cellence assumption.

(iii) Kato’s conjecture on p-cohomological dimension [2].

One can prove the existence of dualizing complexes adapted to dimension func-
tions [4].
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Equidistribution of small points

Walter Gubler

Let K be a number field or a function field (of any dimension) over the constant

field k (of any characteristic). We consider the Néron–Tate height ĥ on an abelian
variety A over K. For a closed subvariety X of A, the Bogomolov conjecture
claims that there is a well-understood exceptional set E in X such that X(K)−E
is discrete with respect to the semidistance given by the positive semidefinite

quadratic form ĥ. In case of number fields, this was proved by Ullmo [8] for curves
inside the Jacobian and by Zhang [10] in general.

Theorem 1. Gu2 The Bogomolov conjecture holds for abelian varieties over func-
tion fields which are totally degenerate with respect to some place.

The proofs of the Bogomolov conjecture rely on the equidistribution of small
points. The original equidistribution theorem of Szpiro–Ullmo–Zhang was recently
generalized by Yuan in the following way: Let (Pm) be a generic net in the in the
d-dimensional projective variety X such that limm h(Pm) = 1

(d+1) degL(X)h(X),

where the heights are with respect to an ample line bundle L endowed with semi-
positive admissible metrics ‖ ‖v. The absolute Galois group G of the algebraic
closure K over K acts on X(K). We fix a place v of K to get a discrete proba-
bility measure µm on Xan

v which is supported and equidistributed on the Galois
orbit GPm.

Theorem 2. The measures µm converge weakly to the regular probability measure
1

degL(X)c1(L, ‖ ‖v)
∧d on Xan

v .

Yuan [9] proved the number field case. For a non-archimedean place v, Xan
v is

the Berkovich analytic space associated to X and the limit is given by Chambert-
Loir’s measures. In [6], the function field case of Theorem 2 is proved. The special
case h(X) = 0 was shown independently by Faber [3].

This theorem is only useful for applications if we have a good understanding of
the limit measure. This poses no special problem in the archimedean case as we
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get volume forms on the complex space Xan
v . We attack now the non-archimedean

case in the following special case relevant for the Bogomolov conjecture:
Let v be a discrete valuation on the field K and let X be a closed d-dimensional

subvariety of the abelian variety A over K. We assume for simplicity that X has
a strictly semistable model X. Then Berkovich has defined the skeleton S(X) as a
compact subset of Xan

v (see [1], [2]). It is a proper deformation retraction of Xan
v .

Moreover, it is a union of canonical simplices ∆S corresponding to the strata S
of the special fibre of X. This is a higher dimensional generalization of the dual
graph. Let b be the dimension of the abelian variety of good reduction in the
Raynaud extension of A.

Theorem 3 ([6]). There is e ∈ {0,min(b, d)} and a list (∆S)S∈I of canonical
simplices such that

a) all the simplices of the list have dimension ≥ d− b and the maximal ones
have dimension d− e;

b) for any ample line bundle L on A endowed with the canonical metric
‖ ‖can, v, Chambert-Loir’s measure µ := c1(L|X , ‖ ‖can, v)

∧d is supported
in

⋃
S∈I ∆S .

c) For any S ∈ I, the restriction of µ to the relative interior of ∆S is a
positive multiple rS of the relative Lebesgue measure µS and we have

µ =
∑

S∈I

rSµS .

Using the Raynaud extension of A, one can define the tropical variety associated
to X which turns out to be a polytopal subset of pure dimension d − e (see [6]).
This is based on an analytic generalization of tropical algebraic geometry (see [4]).

If A is totally degenerate at the place v, then we have b = 0 by definition and
hence e = 0. Then the supporting simplices of µ in Theorem 3 are all of dimension
d. Using a tropical adaption of Zhang’s original proof, we can deduce Theorem 1
(see [5], Section 6).

For an application, we consider a discrete valuation v on the number field or
function field K. Let Knr be a maximal algebraic extension of K which is unram-
ified over v.

Theorem 4 ([5]). Let A be an abelian variety over K which is totally degenerate
at v. Then the following two statements hold:

a) The set of torsion points in A(Knr) is finite.

b) The Néron–Tate height ĥ has a positive lower bound on A(Knr) −Ators.

The proof uses Theorem 1 and a tropical version of the equidistribution theorem.

References

[1] V.G. Berkovich, Smooth p-adic analytic spaces are locally contractible, Invent. Math. 137

(1999), 1–84.
[2] V.G. Berkovich, Smooth p-adic analytic spaces are locally contractible. II, Adolphson, Alan

(ed.) et al., Geometric aspects of Dwork theory. Vol. I. Berlin: de Gruyter (2004). 293–370.



Arithmetic Algebraic Geometry 1997

[3] X.W.C. Faber: Equidistribution of dynamically small subvarieties over the function field of
a curve, Preprint available at arXiv:math.NT:0801.4811v2.

[4] W. Gubler, Tropical varieties for non-archimedean analytic spaces, Invent. Math. 169

(2007), 321–376.
[5] W. Gubler, The Bogomolov conjecture for totally degenerate abelian varieties, Invent. Math.

169 (2007), 377–400.
[6] W. Gubler: Equidistribution over function fields, Preprint available at

arXiv:math.NT:0801.4508v3.
[7] W. Gubler, Non-archimedean canonical measures on abelian varieties, Preprint available at

arXiv:math.NT:0801.4503v2.
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The image of the Rapoport-Zink period morphism

Urs Hartl

Fix a Barsotti-Tate group X over Falg
p of height h and dimension d. Let W :=

W (Falg
p ) be the ring of Witt vectors and let K0 := W [ 1p ]. Let (D,ϕD) be the

covariant F -isocrystal of X, let F := Grass(h−d;D) be the Grassmannian of (h−d)-
dimensional subspaces of D, and let Fan be the K0-analytic space associated with
F in the sense of Berkovich [2, 3]. A point LK ∈ Fan with values in a complete,
rank one valued field extension K of K0 is viewed as a K-subspace LK ⊂ DK :=
D ⊗K0 K. One defines the Newton slope tN (D,ϕD, LK) := ordp(detϕD) and the
Hodge slope tH(D,ϕD, LK) := dimK LK − dimK DK . Following Fontaine [4] and
Rapoport-Zink [10, 1.18], the point LK ∈ F is called weakly admissible if

tN (D,ϕD, LK) = tH(D,ϕD, LK) = −d and

tN (D′, ϕD|D′ , LK ∩D′
K) ≥ tH(D′, ϕD|D′ , LK ∩D′

K)

for all ϕD-stable K0-subspaces D′ ⊂ D. There is the following

Theorem 1. (Rapoport-Zink [10, Proposition 1.36], see also [6, Proposition 1.3])
The set Fan

wa := {LK ∈ Fan : LK is weakly admissible } is an open K0-analytic
subspace of Fan.

The space Fan
wa is an example for the p-adic period domains constructed more

generally in [10, Proposition 1.36] for arbitrary filtered isocrystals. Likewise Rapo-
port and Zink have constructed moduli spaces for Barsotti-Tate groups isogenous
to X in the following way. Let NilpW be the category of W -schemes on which p is
locally nilpotent. For an S ∈ NilpW we set S̄ := V(p) ⊂ S.

Theorem 2. (Rapoport-Zink [10, Theorem 2.16]) The functor G : NilpW → Sets

S 7−→
{

isomorphism classes of pairs (X, ρ) where X is a Barsotti-Tate

group over S and ρ : XS̄ → XS̄ is a quasi-isogeny
}
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is pro-representable by a formal scheme locally formally of finite type over W .

With G one can associate a K0-analytic space Gan. Rapoport and Zink [10,
5.16] construct a period morphism π̆an

1 : Gan → Fan
wa as follows. By the theory of

Grothendieck-Messing [9], the universal Barsotti-Tate group X over G gives rise
to an extension

0 // (LieX∨)∨Gan
// D(XḠ)Gan // LieXGan // 0

of locally free sheaves on Gan, where D(XḠ)Gan is the crystal of Grothendieck-
Messing evaluated on Gan. The quasi-isogeny ρ : XḠ → XḠ induces by the crys-

talline nature of D( . ) an isomorphism D(ρ)Gan : D(X)Gan −
∼
−→ D(XḠ)Gan and the

preimage D(ρ−1)Gan (LieX∨)∨Gan defines a Gan-valued point of Fan. By [10, 5.27] the
induced morphism Gan → Fan factors through Fan

wa. This is the period morphism
π̆an

1 .
In our talk we determined the image of π̆an

1 as follows. In a construction sim-
ilar to Berger’s [1, §II] we associated with each K-valued point L = LK ∈ Fan

a ϕ-module ML over the ring B̃†
rig (“the algebraic closure of the Robba ring”)

associated with K (see also [6, Proposition 4.1]).

Theorem 3. (Hartl [6, Theorem 5.2]) The subset

Fan
a := {L ∈ Fan : ML is isoclinic of slope zero }

is an open K0-analytic subspace of Fan
wa.

In general the inclusion Fan
a ⊂ Fan

wa is strict. We gave an example with h =
5, d = 3 for this fact; see [6, 5.4].

Theorem 4. (Hartl [5, Theorem 3.5])
Fan
a is the image of the period morphism π̆an

1 : Gan → Fan
wa.

Finally we would like to mention that the ideas for the above results were
inspired by our analogous theory in equal characteristic [7], see also our dictio-
nary [8].
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A p-adic Borel regulator

Annette Huber

(joint work with Guido Kings)

1. Introduction

The aim of the project is to develop a p-adic version of the theory that led
to Borel’s computation of ranks of K-groups of number fields and the regulator
formula for Dedekind-Zeta-functions up to rational factors. This follows the phi-
losophy of Bloch and Kato, who conjecture such formulae for special values of
L-functions of motives at integral points up to sign.

2. Definition

Let p be a fixed prime, K/Qp be a finite extension with ring of integers OK .

Definition 2.1. Let G be a K-Lie group with K-Lie algebra g. The morphism

L : Hi
an(G,K) → Hi(g,K)

f1 ⊗ · · · ⊗ fi 7→ (df1)e ∧ · · · ∧ (dfi)e

is called Lazard morphism. Here Hi
an denotes cohomology with locally analytic

cochains.

For K = Qp and suitable G this can be proved to be the same morphism as
considered by Lazard, [2] chapter V.

Proposition 2.2. Let G/OK be a smooth group scheme with GK connected. Let
G ⊂ G(OK) a sub-Lie group. Then the Lazard morphism is an isomorphism.

Proof. We reduce to Lazard’s case. �

We now consider the composition

H2n−1(glN ,K) ∼= H2n−1
an (GLN (OK),K) → H2n−1(GLN (OK),K) .
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For N ≥ n, there is a distinguished element pn on the left-hand side, the suitably
normalized primitive element. These elements are compatible for varying N and
the usual GLN → GLN+1.

Definition 2.3. The image rp ∈ H2n−1(GLN (OK),K) of pn under the above
composition is called p-adic Borel regulator.

Elements in cohomology can be viewed as maps on homology. ForN big enough,
algebraic K-theory embeds into group homology; hence this is indeed a regulator.

3. Relation to Tamagawa numbers

In the spirit of Borel’s regulator computation, we want to evaluate top degree
Lie algebra cohomology classes on fundamental classes in group homology.

By the work of Lazard ([2] V.2.5), torsion free p-adic Lie groups are Poincaré
groups with trivial dualizing module. This implies an isomorphism

Zp ∼= Hom(H0
an(G,Qp/Zp),Qp/Zp) ∼= Hd

an(G,Zp)

where G has dimension d. We call the image ηG ∈ Hd
an(G,Zp) of 1 the fundamental

class of G.
In particular, letG/Zp be a smooth group scheme with GQp connected reductive

and G ⊂ G(Zp) torsion free. Let ω be a non-vanishing invariant d-form on G. It
defines a cohomology class

[ω] ∈ Hd
dR(GQp)

∼= Hd(g,Qp) ∼= Hd
an(G,Qp)

Its image can be written as per · ηG with a period number per ∈ Qp.

Definition 3.1. ∫

G(Zp)

[ω] = [G(Zp) : G] |per|p

Proposition 3.2. If G is abelian (i.e. a torus), then
∫

G(Zp)

[ω] := τω (G(Zp))

where τω is the local Tamagawa measure on G(Qp) attached to ω.

4. Relation to the Bloch-Kato conjecture

We return toK/Qp a finite extension, OK its ring of integers. In the formulation
of the Bloch-Kato conjecture, the Soulé regulator is used, i.e. the Chern class in
étale cohomology. By definition

rSou
p : K2n−1(K) → H1

Gal(K,Qp(n))

is given by a compatible system of elements in H2n−1(GLN (OK), H1
Gal(K,Qp(n)).

Recall the Bloch-Kato exponential exp : K → H1
Gal(K,Qp(n)), which is also used

in the formulation of the Bloch-Kato conjecture. It is an isomorphism for n ≥ 2.
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Theorem 4.1 ([1] Theorem 1.3.2). Let N ≥ n ≥ 2. Then the Soul’e regulator is
given by the p-adic Borel regulator, i.e., under exp

H2n−1(GLN (OK),K) ∼= H2n−1(GLN (OK), H1
Gal(K,Qp(n))

rp 7→ rSou
p

In particular, this means that the Soulé regulator is continuous (even analytic)
in the sense that it is given by continuous cochains in group cohomology.

Idea of proof: We replace étale cohomology by a version of rigid syntomic coho-
mology. This is viewed as a p-adic analogue of absolute Hodge cohomology. Hence
the theorem is a p-adic analogue of Beilinson’s comparison of the Beilinson reg-
ulator (chern class in absolute Hodge cohomology) and the Borel regulator. The
same arguments go through. The above mentioned analyticity is a non-formal
ingredient that has to be checked directly. �
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Semistable reduction for overconvergent F -isocrystals

Kiran S. Kedlaya

We report on results from our recently completed series of papers [3, 4, 5, 6].
Let k be a field of characteristic p > 0. Let K be a complete discretely valued field
of characteristic 0 with residue field k, equipped with a continuous endomorphism
σK : K → K. Using this data, for any open immersionX →֒ Y , we have a category
F -Isoc†(X,Y ) of F -isocrystals on X overconvergent within Y . For X = Y , we
abbreviate to F -Isoc(X) and call these convergent F -isocrystals; for Y proper, we

abbreviate to F -Isoc†(X) and call these overconvergent F -isocrystals (the choice
of Y not mattering in this case). If X carries a log-structure, we also have a
category of convergent log-F -isocrystals; if X is smooth and the log-structure
is the canonical one associated to a normal crossings divisor Z, we denote this
category by F -Isoc((X,Z)). In this case, we can restrict to objects with nilpotent

residues; we denote the resulting subcategory by F -Isocnil((X,Z)).
Our main theorem is the following [6, Theorem 2.4.4]; this answers a conjec-

ture of Shiho [8, Conjecture 3.1.8]. (In fact, [6, Theorem 2.4.4] also includes an
analogous assertion for partially overconvergent F -isocrystals, which we omit.)

Theorem 1 (Global semistable reduction). Let X be a smooth k-variety, and

take E ∈ F -Isoc†(X). Then there exists an alteration f : X ′ → X (in the sense

of de Jong [2]) and an open immersion X ′ →֒ X
′

with X
′

proper over k and

Z ′ = X
′
−X ′ a normal crossings divisor, with the following property: the pullback

f∗E is the restriction of an object in F -Isocnil((X
′
, Z ′)).
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The resulting object of F -Isocnil((X
′
, Z ′)) is unique if it exists, because the re-

striction functor to F -Isoc†(X ′) is fully faithful [3, Theorem 6.4.5]. Moreover, the

existence of the extending object in F -Isocnil((X
′
, Z ′) can be checked in codimen-

sion 1 on X
′
[3, Theorem 6.4.5].

Using the compactness of Zariski-Riemann spaces [4, Proposition 3.3.4], Theo-
rem 1 can be reduced to the following.

Theorem 2 (Local semistable reduction). Let X be a smooth irreducible k-variety,

let v be a valuation on k(X) trivial on k, and take E ∈ F -Isoc†(X). Then there

exists an irreducible alteration f : X ′ → X and an open immersion X ′ →֒ X
′

with X
′

proper over k and Z ′ = X
′
− X ′ a normal crossings divisor, with the

following property: for some open U ⊆ X
′
on which some extension of v to k(X ′)

is centered, the restriction to F -Isoc†(U ∩ X ′, U) of f∗E is the restriction of an

object in F -Isocnil((U,U ∩ Z ′)).

Furthermore, it suffices to check Theorem 2 in case k is algebraically closed, v
has real rank 1, and the residue field of the valuation ring of v equals k (see [4,
§4]).

We prove Theorem 2 by induction on the corank of v, which under our hy-
potheses is just dim(X) minus the rational rank of v. Abhyankar’s inequality
[4, Theorem 2.5.2] implies that the corank is nonnegative, and that the case of
corank 0 is particularly simple: such valuations (Abhyankar valuations) can be
described in suitable local coordinates x1, . . . , xn in which v(x1), . . . , v(xn) are lin-
early independent over Q and generate the value group. For such valuations, we
may obtain Theorem 2 using a generalization of the theory of (F,∇)-modules over
the Robba ring, together with a numerical argument involving an analogue of the
Swan conductor for overconvergent F -isocrystals. See [5].

To complete the proof of Theorem 2, we must use a different argument because
no local uniformization exists which is simple enough to allow for suitable p-adic
analytic arguments. Instead, we induct on corank. Given v of positive corank, we
construct a fibration X → X1 in curves, such that the restriction v1 of v to k(X1)
has lower corank. We then view v as a real valuation on ℓ[x], for ℓ the completion
of k(X1) with respect to v1 and x restricting to a local parameter of the center of
v within its fibre. We identify v with a point in the Berkovich affine line over ℓ;
under the tree structure on this Berkovich space, v corresponds to an end, while
all other points on a path leading to v correspond to valuations of lower corank.
We show (using new results on p-adic differential equations from [7]) that local
semistable reduction at v can be reduced to another point on the path, to which
the induction hypothesis applies. See [6].

We note that Theorem 1 has strong consequences in the theory of coefficients
in p-adic cohomology. For instance, Caro and Tsuzuki [1] have shown that over-
convergent F -isocrystals belong to the category of overholonomic arithmetic D-
modules; this implication is a key step in Caro’s proof that the latter category is
stable under the expected cohomological operations.
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p-adic elliptic polylog and Katz Eisenstein measure

Guido Kings

(joint work with Kenichi Bannai)

The specializations of the motivic elliptic polylogarithm on the universal elliptic
curve to the modular curve are referred to as Eisenstein classes. In this talk,
we explain that the syntomic realization of the Eisenstein classes restricted to the
ordinary locus of the modular curve may be expressed using p-adic Eisenstein series
of negative weight, which are p-adic modular forms defined using the two-variable
p-adic measure with values in p-adic modular forms constructed by Katz. This
answers a question raised by Beilinson and Levin and is a key step towards Perrin-
Riou’s p-adic Beilinson conjecture for Hecke characters over imaginary quadratic
fields for ordinary p. The reference for this result is [1].

Consider the universal elliptic curve π : E → M over the moduli scheme M
with full level-N -structure, N ≥ 3 and let p be a prime number, which does not
divide N .

Let Hk+1
mot (E

k,Q(k+1))(ε) be the ε-eigen part of the motivic cohomology group

of Hk+1
mot (E

k,Q(k + 1)).
Recall from [2] 6.4.3. that for each non-zero torsion point t ∈ E(M) the motivic

elliptic polylog gives a class

t∗polk+1
mot ∈ Hk+1

mot (E
k,Q(k + 1))(ε).

Let ϕ =
∑
att be a formal linear combination of non zero torsion sections t ∈

Etors(M) with coefficients in at ∈ Q, then we define the motivic Eisenstein class
to be

Eisk+2
mot(ϕ) :=

∑

t∈E[N ]−{0}

att
∗polk+1

mot ∈ Hk+1
mot (E

k,Q(k + 1))(ε).
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This Eisenstein class was used to prove the Beilinson conjecture for CM elliptic
curves, modular forms and Dirichlet L-functions by Bloch, Beilinson, Deninger,
Scholl and Huber/Kings. For this one needs an explicit knowledge of the image of
the Eisenstein class under the regulator to Deligne cohomology. To obtain similar
results for the p-adic Beilinson conjecture of Perrin-Riou, one needs an explicit
formula for the syntomic realization.

Our main theorem concerns the description (on the ordinary locus) of the image
of this Eisenstein class under the syntomic regulator

rsyn : Hk+1
mot (E

k,Q(k + 1))(ε) → H1
syn(M,SymkH(1)),

here H is the filtered overconvergent F -isocrystal R1π∗Qp(1). This syntomic coho-
mology group has the following description: Let [α] ∈ H1

syn(M,SymkH(1)). Then

[α] is given uniquely by pairs of sections (α, ξ) for α ∈ Γ(MQp , Sym
kH(1)rig) and

ξ ∈ Γ(MQp , F
−1SymkH⊗Ω1(log)) satisfying the conditions ∇(α) = (1−Φ)ξ and

∇(ξ) = 0. Define

Ek+2,0,ϕ(τ, g) :=
(−N)k+2

2(2πi)k+2
(k + 1)!

∑

(m,n)∈Z2−(0,0)

ĝϕ(m,n)

(m+ nτ)k+2
,

where τ is the coordinate on the upper half plane and g ∈ GL2(Z/N). Let NΘ be
the operator on p-adic modular forms defined by Katz, which is the operator q ddq
on the q-expansion. Define

Ek,r,ϕ := (NΘ)rEk−r,0,ϕ

if k ≥ r and Ek,r,ϕ := (NΘ)kEr−k,0,ϕ if r ≥ k. The main theorem in Katz [3]
implies the following result:

Let k > 0, r > 0, then there is a p-adic measure µk on Z∗
p × (Z/N)2 such that

∫

Z∗
p×(Z/N)2

yrϕdµk = (1 − prFrob)Ek,r,ϕ.

With the help of this theorem we can now define for k > 0 and r ∈ Z the p-adic
Eisenstein series of negative weight :

E
(p)
k,r,ϕ :=

∫

Z∗
p×(Z/N)2

yrϕdµk

Now let M̃ord be the moduli space of elliptic curves with full level N structure

and a trivialization Ĝm
∼= Ê. On M̃ord the isocrystal H has a trivialization by

global sections ω̃∨, ũ∨ given by the unit root subspace. Define

α̃k+2
ϕ :=

k∑

n=0

(−1)nk!

(k − n)!
E

(p)
k+1−n,−1−n,ϕ(ω̃∨)n(ũ∨)k−n.
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This descends to a section αk+2
ϕ ∈ Γ(M

ord

Qp
, SymkH(1)rig) and we if we let

Ek+2
DR (ϕ) :=

2

Nk+1k!
Ek+2,0,ϕ

dq

q
∧ dz1 ∧ . . . ∧ dzk,

then the pair

(αk+2
ϕ , Ek+2

DR (ϕ)) ∈ H1
syn(M

ord, SymkH(1))

describes the realization of the syntomic Eisenstein class.
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Truncated Hitchin Fibration

Gérard Laumon

(joint work with Pierre-Henri Chaudouard)

Our main result is the weighted Fundamental Lemma formulated by James
Arthur. This is a combinatorial statement which extends the Langlands-Shelstad
Fundamental Lemma and which is needed for stabilizing the Arthur-Selberg trace
formula.

The Langlands-Shelstad Fundamental Lemma has been proved in general by
Ngô Bao Châu as a consequence of his cohomological study of the elliptic part
of the Hitchin fibration. In the same way, we obtain the weighted Fundamental
Lemma by extending Ngô’s cohomological study to the hyperbolic part of the
Hitchin fibration.

Here I consider the GL(n) case. It is trivial from the point of view of the
Fundamental Lemma, but Ngô’s main cohomological result and our extension of
it are not.

1. Hitchin Fibration

Let k be an algebraically closed field and let C be a smooth, connected, projec-
tive curve over k of genus g.

We fix an even effective divisor D = 2D′ ⊂ C of degree > 2g and a closed point
∞ of C which is not in the support of D.

We also fix an integer n ≥ 1 and we assume that either k is of characteristic 0
either it is of characteristic p > n. We denote by G the full general linear group
GL(n) and by T ⊂ G its diagonal maximal torus.

Let M = MG be the algebraic stack of quadruples (E, θ, t∞, e∞) where:

• E is a rank n vector bundle over C of degree 0,
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• θ : E → E(D) is a twisted endomorphism such that its fiber at ∞, θ∞ ∈
End(E∞), is regular semisimple,

• t∞ = (t1, . . . tn) is an ordering on the set of eigenvalues of θ∞,
• e∞ is a basis of the 1-dimensional eigenspace of θ∞ for the eigenvalue t1.

Let A = AG be the affine scheme of pairs a = (P (U), t∞) where:

• P (U) := Un + a1U
n−1 + · · · + an with ai ∈ H0(C,OC(iD)),

• t∞ = (t1, . . . tn) is an ordering on the set of roots of the polynomial

P (∞)(U) = Un + a1(∞)Un−1 + · · · + an(∞) ∈ k[U ]

that we assume two by two distinct.

For us the Hitchin fibration is the morphism

f = fG : M → A

which takes (E, θ, t∞, e∞) to a = (P (U), t∞) where P (U) is the characteristic
polynomial of θ.

2. The elliptic part

Let L(T ) the set of the proper Levi subgroups M of G containing T .
For each M ∼= GL(n1) × · · · × GL(ns) ∈ L(T ) we have the base AM =∏s
j=1 AGL(nj) of the Hitchin fibration of M , the open subset

AG−reg
M ⊂ AM

of s-uples (Pj(U), tj,∞ = (tj,1, . . . , tj,ni))j=1,...,s such that the tj,i’s are two by two
distinct, and a closed embedding

AG−reg
M →֒ A

which maps (Pj(U), tj,∞)j=1,...,s to (P (U), t∞) where

P (U) =

s∏

j=1

Pj(U)

and t∞ is (t1,1, . . . , t1,n1 , . . . , ts,1, . . . , ts,ns) up to some reordering of the entries.
The elliptic part Aell of A is the complementary open subset of the union of the

AG−reg
M for M ∈ L(T ).

Let f ell = Mell → Aell be the restriction of the Hitchin fibration to the elliptic
open subset.

Proposition 1 (Altman-Kleiman, Mumford-Langton, Faltings). The algebraic
stack Mell is a smooth scheme over k and the morphism f ell is proper.
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3. Ngô’s main cohomological result

Let us fix a prime number ℓ invertible in k. We may consider the complex of
ℓ-adic sheaves

Rf ell
∗ Qℓ[dimM]

over A and the direct sum of its perverse cohomology sheaves

pH•(Rf ell
∗ Qℓ[dimM]) =

⊕

i

pHi(Rf ell
∗ Qℓ[dimM])

By Deligne’s theorem, these cohomology sheaves are all pure and their direct sum
is thus semisimple. We thus have a canonical decomposition

pH•(Rf ell
∗ Qℓ[dimM]) =

⊕

a∈Aell

ia,∗ja,!∗F
•
a[dima]

where ia : {a} →֒ Aell and ja : {a} →֒ {a} are the inclusion, dima is the dimension

of {a} and F•
a is a graded local system over a which extends to a local system over a

dense open subset of {a}. Almost all F•
a are zero. The socle of pH•(Rf ell

∗ Qℓ[dimM])
is the finite set of a’s such that F•

a 6= (0).
The main result of Ngô in the GL(n) case is:

Theorem 1 (Ngô). The socle of pH•(Rf ell
∗ Qℓ[dimM]) is reduced to the generic

point of Aell.

Remark 1. As it is stated, the above theorem is completely proved only if k is
of characteristic 0. If k is of characteristic p > 0, there is a slightly weaker more
technical statement which is sufficient for the Fundamental Lemma.

4. ξ-stability

Let us fix ξ = (ξ1, . . . , ξn) ∈ Qn such that ξ1 + · · · + ξn = 0.
Let (E, θ, t∞, e∞) be a Hitchin quadruple. Let us recall that deg(E) = 0 and that

t∞ = (t1, . . . , tn) is an ordering on the set of eigenvalues of the regular semisimple
endomorphism θ∞ of E∞.

Then, for any θ-stable subbundle F ⊂ E the set of eigenvalues of θ∞ on F∞ is
of the form {ti | i ∈ IF} for some uniquely determined subset IF ⊂ {1, . . . , n} with
rank(F) elements.

For any non empty proper subset I ⊂ {1, . . . , n} let us set ξI :=
∑

i∈I ξi.

Definition 1. We say that (E, θ, t∞, e∞) is ξ-stable if for every non trivial proper
θ-stable subbundle F of E we have the inequality

deg(F) < ξIF
.

If ξI is not an integer for any non empty proper subset I of {1, . . . , n}, we can
replace in the above definition the strict inequality by less or equal. For such a ξ
we have:
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Theorem 2. The ξ-stable Hitchin quadruples form an open substack Mξ−st of
M which contains the elliptic locus. It a smooth algebraic space over k and the
restriction f ξ−st : Mξ−st → A of f to Mξ−st is proper.

The proof is a variant of Mumford-Langton and Faltings’ one. We also prove
an analogous result for a general semisimple group by using the uniformization
method of Heinloth.

5. Our main result

Theorem 3. The socle of the graded perverse sheaf pH•(Rf ξ−st
∗ Qℓ[dimM]) is

reduced to the generic point of A.

The proof is a variant of Ngô’s one.

Remark 2. Same as Remark 1.

Fujiwara’s theorem for stacks

Martin Olsson

We discuss a generalization of Fujiwara’s theorem (formerly known as Deligne’s
conjecture) on traces of correspondences [2]. Throughout we use Grothendieck’s
six operations for sheaves on stacks as developed in [3, 4]. The preprint containing
this work is [5].

Let Fq be a finite field, and let X0/Fq be an algebraic stack of finite type. A
correspondence on X0 is a morphism of algebraic stacks over Fq

c = (c1, c2) : C0 → X0 × X0.

Fix an algebraic closure k of Fq, and let X (resp. C) denote the base change of
X0 (resp. C0) to k.

Let FX0 : X0 → X0 denote the q-power Frobenius morphism. For any integer
n ≥ 0, we get a correspondence

c(n) = (FnX0
◦ c1, c2) : C0 → X0 × X0.

For a correspondence c, let Fix(c) denote the fiber product of the diagram of
stacks (over k)

C

c

��

X
∆

// X × X.

Theorem 1. Let X0/Fq be an algebraic stack of finite type, and let c : C0 →
X0 × X0 be a correspondence with c2 representable and quasi-finite. Then there
exists an integer n0 such that for every n ≥ n0 the maximal reduced substack of
Fix(c(n)) is isomorphic to a finite disjoint union of stacks of the form BH, with
H a finite group.
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For the rest of this report, we assume furthermore that c1 is proper with finite
diagonal, and that c2 is representable and quasi-finite.

A Weil complex on X is an object F ∈ Db
c(X,Qℓ) (where as usual ℓ is a prime

not dividing q) and ϕ : F ∗
XF → F is an isomorphism (here FX is the base change

to k of the q-power Frobenius morphism on X0).
A C-structure on F ∈ Db

c(X,Qℓ) is a morphism

u : c2!c
∗
1F → F (equivalently a map c∗1F → c!2F).

A c-structure on F induces an endomorphism of RΓc(X,F) as the composite

RΓc(X, F ) // RΓc(X, c1∗c
∗
1F)

≃
// RΓc(C, c

∗
1F)

≃
rrff

f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f

RΓc(X, c2!c
∗
1F)

u
// RΓc(X, F ).

Here the second isomorphism results from a natural isomorphism c1∗ ≃ c1! con-
structed in [5].

For a fixed point (x, λ) ∈ Fix(C)(k), with x ∈ C(k) and λ : c2(x) → c1(x) an
isomorphism in X(k), we get for any F ∈ Db

c(X,Qℓ) with a c-structure u : c2!c
∗
1F →

F an endomorphism

u(x,λ) : Fc2(x) → Fc2(x)

defined as follows.
Since c2 : C → X is representable and quasi-finite, we have

(c2!c
∗
1F)c2(x) = ⊕(y,τ)Fc1(y),

where the sum is taken over isomorphism classes of pairs (y, τ) with y ∈ C(k) and
τ : c2(y) ≃ c2(x) an isomorphism in X(k). The map u(x,λ) is defined to be the
composite

Fc2(x)
λ

// Fc1(x)
�

� x
// ⊕(y,τ)Fc1(y) (c2!c

∗
1F)c2(x)

u
// Fc2(x).

For a Weil complex with c-structure (F, ϕ, u), we obtain a c(n)-structure u(n)

from the composite

c∗1F
n∗
X F

ϕn
// c∗1F

u
// c!2F.

Let (F, ϕ, u) be a Weil complex with c-structure. If n0 is as in theorem 1 and
n ≥ n0, then for (x, λ) ∈ Fix(c(n))(k) define the local term

LT((x, λ), (F, ϕ, u))

to be the trace of u
(n)
(x,λ) divided by the order of the stabilizer group of (x, λ). This

depends only on the connected component β of (x, λ) in Fix(c(n)).
Based on the case of separated schemes in [2], one would expect that for n

sufficiently big that there is an equality

tr(u(n)|RΓc(X,F)) =
∑

β

LT(β, (F, ϕ, u)).
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This does not make sense as written as RΓc(X,F) is usually an unbounded com-
plex so the left side is not in general defined. However, using a suitable notion
of convergence one can make sense of both sides. The main result is then the
following:

Theorem 2. Suppose either of the following conditions hold:
(i) X0 is an Artin stack with finite diagonal;
(ii) X0 = [X0/G0] is a global quotient of a separated algebraic space by a finite

type group scheme G0, C0 = [C0/G0] where C0 is a separated algebraic space,
c1 is induced by a morphism C0 → X0 which is α-equivariant for some finite
homomorphism α : G0 → G0, and c2 is induced by a G0-equivariant morphism
C0 → X0.

Then there exists an integer n0 such that for n ≥ n0 the trace

tr(u(n)|RΓc(X,F))

converges and is equal to ∑

β

LT(β, (F, ϕ, u)).

Remark 3. In the case of Frobenius, theorem 2 holds in complete generality and
the result is due to Behrend [1].
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Tamely branched covers and degenerations

Brian Osserman

The classical Riemann existence theorem describes complex branched covers of the
projective line in terms of the monodromy over the branch points. In characteristic
p, if we restrict to the case of tame branching, Grothendieck shows that every cover
is still characterized by its monodromy, and that when the monodromy group
has order prime to p, every possibility for the monodromy group in the complex
case also occurs in characteristic p. However, when p divides the order of the
monodromy group, very little is known about which possibilities for monodromy
are realized by covers.

We present a sharp Riemann existence theorem for two families of tamely
branched covers of the projective line. Both families consist of genus-0 “pure-
cycle” covers, meaning that there is a single ramified point over each branch point.
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In [6], we define a complicated but purely elementary notion of p-admissibility for
prospective tuples of monodromy. Our main theorem is then the following.

Theorem 1. Suppose we have (e1, . . . , er) and d with 2d−2 =
∑

i(ei−1), and p ∤ ei
for i = 1, . . . , r. Suppose further that either r = 3, or ei < p for i = 1, . . . , r. Then
a tuple of cycles (σ1, . . . , σr) having lengths (e1, . . . , er) occurs as a the monodromy
of a tamely branched cover of the projective line in characteristic p if and only if
(σ1, . . . , σr) is p-admissible.

The proofs of both cases of the theorem make use of a shift in point of view
from branched covers to linear series: that is, instead of controlling the branch
points on the target, we control the ramification points on the source, and work
up to automorphism of the target.

The case of three branch points is relatively straightforward: we show that a
related intersection number is 1, and conclude that a map of the specified type
exists if and only if an inseparable linear series of degree d with at least the required
ramification does not exist. Studying the possibilities for inseparable linear series
then reduces the problem to a purely combinatorial condition.

The proof of the second case is more involved. Here, the idea is to use degen-
erations from the linear series point of view, using the Eisenbud-Harris theory of
limit linear series. Existence statements are relatively straightforward, but non-
existence statements are much more difficult. The first step is to understand the
linear series situation from a numerical standpoint: that is, when we have a map
of degree d with ramification indices ei at r general ramification points. This is
carried out in [4], with the crucial point being to prove that in the given situation,
separable maps will always degenerate to separable maps. The second step is to
translate from linear series to branched covers, which amounts to seeing that if any
map exists with the specified ramification, then one exists which also has general
ramification points. This is a consequence of the following theorem, proved in [5].

Theorem 2. Given e1, . . . , er and d with 2d − 2 =
∑

i(ei − 1) and ei < p for i =
1, . . . , r, assume also that each ei is odd. Then for any distinct points P1, . . . , Pr on
the projective line, the number of rational functions of degree d from the projective
line to itself, ramified exactly to order ei at each Pi, and counted up to linear
fractional transformation, is finite.

The theorem is false if we allow some ei to be greater than p, highlighting the
contrast with the case of branched covers, where the equivalent statement would
be true much more generally for arbitrary tame ramification indices and covers
of any genus. Despite the elementary nature of the statement, the proof involves
exploiting a relationship between such rational functions and Mochizuki’s dormant
torally indigenous bundles, which are certain bundles of rank 2 on the projective
line with logarithmic connection and vanishing p-curvature.

Finally, to go from numerical statements involving ramification indices to group-
theoretic statements involving monodromy, we use the following theorem on com-
plex Hurwitz spaces, proved with Fu Liu in [3].

Theorem 3. Complex genus-0 pure-cycle Hurwitz spaces are always irreducible.



2012 Oberwolfach Report 35/2008

Putting everything together gives the proof of Theorem 1.
There at two natural approaches to attempting to generalize these results to

higher-genus covers. The first approach is to imitate the structure of the above
argument, using a degeneration to a curve with one component of genus 0, with
g elliptic tails. In this case, the natural context would be to consider maps with
at least 3g simply ramified points, which specialize to the tails, and r additional
points with arbitrary ramification indices ei < p, which specialize to the genus-
0 component. In principle, this would allow us to reduce to the genus-0 case.
The two main obstacles are controlling degeneration to inseparable maps, and
understanding the relationship between linear series and branched covers.

To study degenerations, one promising approach is to generalize the relationship
between rational functions and dormant torally indigenous bundles. Mochizuki
proves that the latter are finite and flat in families, so a family of maps specializing
to an inseparable one would correspond to a family of indigenous bundles special-
izing to an indigenous bundle with certain pathological properties, and studying
possibilities for indigenous bundles on the degenerate curve, one might be able
to rule this out. To make the transition from linear series to branched covers,
and then to translate from numerical to group-theoretic results, a positive answer
to the following question (in characteristic p when ei < p and in characteristic 0
respectively) would be sufficient:

Question 4. Fix r, g ≥ 0, d ≥ 1 and (e1, . . . , er) with 2d−2−g =
∑

i(ei−1). Let
H be the Hurwitz space of genus-g pure-cycle covers branched to orders ei over
r points and simply branched over 3g additional points. Is it the case that every
component of H maps dominantly to Mg,r under the map induced by forgetting
the covering map and the 3g simple ramification points?

Finally, a rather different approach to understanding higher-genus covers would
be to study degenerations entirely within the point of view of branched covers.
Here the main obstacle is that we have very few tools for controlling specializa-
tion to inseparable maps, although another problem is that the geometry does not
simplify as much under degeneration as it does in the case of linear series. Exam-
ples of Irene Bouw [1] show that we do not always obtain good degenerations for
p-rank reasons, but degenerations in the branched cover setting nonetheless seem
to be surprisingly well-behaved. For instance, in [2] (with Bouw) we carry out the
following calculation (with possibly finitely many exceptions):

Theorem 5. Suppose we have e1 ≤ e2 ≤ e3 ≤ e4 < p all odd, with 2p − 2 =∑
i(ei−1). Then every degree p pure-cycle genus-0 cover with ramification indices

e1, e2, e3, e4 has good degeneration under the degeneration sending the first two
branch points to one component and the last two to the other.
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Elements of the group K1 associated to abelian schemes

Damian Rössler

(joint work with Vincent Maillot)

In this short description of results, we shall use the general terminology of higher-
dimensional Arakelov theory (cf. [7]).

Let B be a regular arithmetic variety over Z and let π : A → B be an abelian
scheme over B. We choose a Kähler fibration structure ω on A(C), such that the
metrics induced on the fibers are translation invariant. We choose a line bundle
L on A, which is rigidified along the 0-section and such that there exists k ∈ N∗,
such that there exists an isomorphism L⊗k ≃ OB respecting the rigidification. We
equip this line bundle with the unique hermitian metric hL(C), whose curvature
form vanishes and such that the rigidification is an isometry. We shall write

T (A(C), ω, hL(C)) ∈ Ã(B) for the higher analytic torsion form of L(C) over B(C)
(see [1]). We shall denote by reg the regulator map

reg : K1(B) → ⊕p>0H
2p−1
D,an (B(C),R(p)).

Here H2p−1
D,an (B(C),R(p)) is the p-th analytic Deligne cohomology of B(C). There

is a natural inclusion of groups ⊕p>0H
2p−1
D,an (B(C),R(p)) ⊆ Ã(B) (see [2]).

The object of the talk was to present the following

Proposition 0.1. Suppose that L|Ab 6≃ OAb for all fibers Ab of π. Then

(1) The element T (A(C), ω, hL(C)) does not depend on the choice of ω. We
shall thus henceforth write T (A(C), L) for T (A(C), ω, hL(C)).

(2) We have

T (A,L) ∈ image(reg ⊗ Q).

(3) Let n ∈ N be such that (n, k) = 1. Suppose that the dual abelian scheme
A∨ → B has n2g disjoint n-torsion sections. Let M1, . . . ,Mn2g be the
corresponding rigidified line bundles on A. Then

T (A,L⊗n) =

n2g∑

j=1

T (A,L⊗Mj).
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In the case where dim(A/B) (elliptic fibrations), it is shown in [6] that the
function part of T (A,L) is a certain elliptic unit. The No. 2 in the Proposition
0.1 contains in particular the reciprocity law for this elliptic unit. The No. 3 is a
generalisation of part of the distributivity law for (certain) elliptic units.

Sketch of proof of Proposition 0.1. No.1 is a consequence of the anomaly
formula [1, Th. 3.10]. No. 2 is a direct consequence of the arithmetic Riemann-
Roch theorem in all degrees proven in [3]. No. 3 results from a computation with
the Fourier-Mukai transform and from the main result of [5].�

During the talk, G. Kings made the very interesting suggestion that the elements
T (A,L) coincide with the Hodge realisations of certain elements of K1(B) ⊗ Q
constructed using the motivic polylogarithmic sheaf on abelian scheme (see [4]).
Since these elements are constructed using an (apparently) completely different
method, the proof of such an identity would be of great interest.
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Smooth representations and (ϕ, Γ)-modules

Peter Schneider

(joint work with Marie-France Vigneras)

The classical local Langlands correspondence (proved by Harris/Taylor and
Henniart) establishes a distinguished bijection between n-dimensional discrete
semisimple representations of the Weil-Deligne group of the nonarchimedean lo-
cal field Qp on the one hand and irreducible smooth representations of the group
GLn(Qp) on the other hand. The Weil-Deligne group is a modification of the abso-
lute Galois group of the field Qp and its discrete representations are closely related
to the ℓ-adic Galois representations where ℓ is any prime number different from
p. If we consider p-adic Galois representations instead then the picture becomes
much more complicated. On the other hand one can reduce it modulo p. By a the-
orem of Fontaine the category of p-adic Galois representations is equivalent to the
category of etale (ϕ,Γ)-modules. So it seems a natural attempt to relate smooth
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representations of GLn(Qp) with torsion coefficients to etale (ϕ,Γ)-modules. In
spectacular recent work Colmez has managed to do exactly this, and surprisingly
even in a functorial way, in the special case of the group GL2(Qp).

In this talk I describe the general construction of a δ-functor from the category
of smooth representations of G(Qp) in Zp-torsion modules where G is any split
reductive group over Qp to the category of etale (ϕ,Γ)-modules but which are not
required to be finitely generated. The crucial technique consists in introducing
a much more general noncommutative analog of (ϕ,Γ)-modules which can be re-
lated to the action of the dominant submonoid in a Borel subgroup. The passage
to commutative (ϕ,Γ)-modules uses a nondegenerate character of the unipotent
radical of Borel. In the case of the group GL2(Qp) and under the finiteness as-
sumptions on the representations imposed by Colmez we show that our zeroth
functor coincides with Colmez’ functor and that our higher functors vanish.
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On the Tate and Langlands–Rapoport Conjectures for Shimura
Varieties

Adrian Vasiu

Let p ∈ N be a prime. Let F be an algebraic closure of the field Fp with p elements.
By an algebraic cycle on an abelian variety △ we mean a Q–linear combination of
irreducible subvarieties of products of △. We report on work whose main goal is:

• to show that many crystalline cycles on abelian varieties over F are in fact
algebraic (i.e., are crystalline realizations of algebraic cycles) and to get combinato-
rial descriptions of certain isogeny classes of principally polarized abelian varieties
over F endowed with families of crystalline (presumed algebraic) cycles.

1. Preliminaries. Let (W,ψ) be a symplectic space over Q. Let d ∈ N be such
that dim(W ) = 2d. Let (G,X) →֒ (GSpGSpGSp(W,ψ), S) be an injective map of Shimura
pairs. Let (vα)α∈J be the family of all tensors of the tensor algebra T(End(W ))
of End(W ) = W ⊗Q W

∗ that are fixed by G. Let L be a Z-lattice of W such that
we have a perfect alternating form ψ : L× L→ Z. We will assume that:

(*) The schematic closure GZ(p)
of G in GLGLGLL⊗ZZ(p)

is a reductive group scheme.

Let E(G,X) be the reflex field of (G,X). Let Sh(G,X) be the canonical model

over E(G,X) of the complex Shimura variety defined by (G,X), cf. [1]. Let A
(p)
f

be the ring of finite adèles of Q with the p-component omitted; we have Af :=

Ẑ⊗Z Q = Qp×A
(p)
f . The group G(Af ) acts naturally on Sh(G,X). For a compact

subgroup † of G(Af ), let Sh†(G,X) be the quotient of Sh(G,X) by †. Let Kp :=
GSpGSpGSp(L,ψ)(Zp) and Hp := Kp ∩ G(Qp) = GZ(p)

(Zp). We have Sh(G,X)(C) =
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G(Q)\[X×G(Af)] and Sh(GSpGSpGSp(W,ψ), S)(C) =GSpGSpGSp(W,ψ)(Q)\[S×GSpGSpGSp(W,ψ)(Af )]
(cf. [2]) and a functorial closed embedding Sh(G,X) → Sh(GSpGSpGSp(W,ψ), S)E(G,X)

(cf. [1], Cor. 5.4). The last two sentences imply that we also have a functorial
closed embedding ShHp(G,X) →֒ ShKp(GSpGSpGSp(W,ψ), S)E(G,X).

We say (G,X) has compact factors if for each simple factor H of Gad, there
exists a simple, compact factor of HR. For Hodge cycles on abelian schemes over
reduced Q–schemes we refer to [3].

Let v be a prime of E(G,X) that divides p. Let O be the localization of
the ring of integers of E(G,X) at v. Property (*) implies that O is an étale
Z(p)-algebra. Let M be Mumford’s moduli scheme over Z(p) that parametrizes
isomorphism classes of principally polarized abelian schemes of relative dimension
d over Z(p)-schemes that have compatibly level-N symplectic similitude structures
for all N ∈ N prime to p. We can identify ShKp(GSpGSpGSp(W,ψ), S) = MQ (cf. [1],

Prop. 4.17) and thus one can speak about the schematic closure Ncl of ShHp(G,X)

in MO. Let N be the normalization of Ncl. The morphism N → MO is finite.

1.2. On F-valued points. To each point y : Spec(F) → N one associates
naturally a principally polarized abelian variety (A, λA) over F and an isomorphism
ηN : (L/NL)F→̃A[N ] of constant étale group schemes over F that defines a level-
N symplectic similitude structure on (A, λA). Let (M,ϕ, ψM ) be the principally
quasi-polarized Dieudonné module of the principally quasi-polarized p-divisible
group of (A, λA). Let tα be the tensor of the tensor algebra T(End(M [ 1p ])) of

End(M [ 1p ]) which is the crystalline realization of the Hodge cycle on the lift of A

to V defined by any lift z̃ : Spec(V ) → N of y that corresponds to vα, with V as
a finite, discrete valuation ring extension of W (F).

1.3. Basic Theorem. (a) The O-scheme N is regular and formally smooth.
Thus N is the integral canonical model of ShHp(G,X) over O in the strongest
sense of [6], Def. Def. 3.2.3 6).

(b) There exist isomorphisms (M, (tα)α∈J, ψM )→̃(L∗ ⊗Z W (F), (vα)α∈J, ψ).
(c) If (G,X) has compact factors, then N is a pro-étale cover of a projective

O-scheme.

Part (a) is proved in [6] and [8] for p ≥ 5 and for the unitary case; see [11] for
the general case. Part (b) is proved in [9], Thm. 1.2 and Rm. 4.4 (a) for p ≥ 3;
the case p = 2 follows from [11]. See [7], Cor. 4.3 for (c). Due to (b), we can
speak about the reductive subgroup G of GLGLGLM whose generic fibre is the subgroup
of GLGLGLM [ 1

p ] that fixes each tα with α ∈ J.

2. Conjecture (adèlic version of a conjecture of Tate). Let y : Spec(F) → N.
Then each tα is the crystalline realization of an algebraic cycle on A.

3. Pointwise properties. Let E(y) be the set of those h ∈ G(B(F)) such
that the pair (h(M), ϕ) is a Dieudonné module over k and there exists h1 ∈
G(W (F)) for which we have ϕ−1(ph(M)) = hh1(ϕ

−1(pM)). Let E0(y) := {h ∈
E(y)|h fixes ψM}. For each h ∈ E0(y), let (A(h), λA(h)) be the principally

quasi-polarized abelian variety over F which is Z[ 1p ]-isogenous to (A, λA) and
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whose principally quasi-polarized Dieudonné module is canonically identified with
(h(M), ϕ, ψM ). Let y(h) : Spec(F) → M be the F-valued point defined by
(A(h), λA(h)) and its level-N symplectic similitude structures defined by ηN ’s.

3.1. Definitions. (a) We say the isogeny property holds for y : Spec(F) → N,
if for each h ∈ E0(y) the point y(h) : Spec(F) → M factors through a morphism
y(h) : Spec(F) → N in such a way that for a (any) lift z(h) : Spec(W (F)) → N

of it, every tensor tα ∈ T(End(M [ 1p ])) is the crystalline realization of the Hodge

cycle on the abelian scheme over W (F) defined by z(h) that corresponds to vα.
(b) We say the endomorphism property holds for y : Spec(F) → N, if there exists

a reductive subgroup E of AutAutAut(A)Q that has the following two properties: (i) its
extension to W (F)[ 1p ] has (via crystalline realizations) {x ∈ Lie(G)[ 1p ]|ϕ(x) = x}

as its Lie algebra and (ii) for each prime l 6= p, its extension to Ql is (via l-adic
realizations and the isomorphisms ηln with n ∈ N) a subgroup of GQl .

(c) We say the unramified CM lift property holds for y : Spec(F) → N, if there
exists h ∈ E0(y) for which the morphism y(h) : Spec(F) → M factors through N as
in (a) and for which there exists a lift z(h) : Spec(W (F)) → N of it whose generic
fibre is a special point.

4. Main Theorem. We assume that (G,X) has compact factors and each
simple factor of (Gad, Xad) is of An, Bn, Cn, or DR

n type. Let Θ be the Frobenius
endomorphism of F that fixes the residue field of v. Then we have:

(a) The isogeny, the endomorphism, and the unramified CM lift properties hold
for all points y : Spec(F) → N.

(b) The Langlands–Rapoport conjecture of [4] and [5] holds i.e., there exists a

bijection of ZΘ × G(A
(p)
f )-equivariant sets between N(F) and

⊔
[ϕ:P→G]Xp(ϕ) ×

Xp(ϕ), where P is the pseudo-motivic Q/Q groupoid of motives over F, where G is
the Q/Q groupoid defined by G, where ϕ : P → G is an admissible homomorphism

of Q/Q groupoids, where Xp(ϕ) and Xp(ϕ) are ZΘ- and G(A
(p)
f )-equivariant sets

naturally associated to ϕ, and where [ϕ] is the G(Q)-conjugacy class of ϕ.
(c) We have N = Ncl.

The proof of the Main Theorem relies heavily on the Basic Theorem 1.3 (c) as
well as on the following basic result.

5. Basic Theorem. Let (G0, H0) be an arbitrary simple, adjoint Shimura pair
of An, Bn, Cn, or DR

n Shimura type. We assume that the group G0,Qp is unram-
ified (i.e., it extends to a reductive group scheme over Zp). Then there exists an
injective map (G,X) →֒ (GSpGSpGSp(W,ψ), S) of Shimura pairs such that the following
two properties hold (for each prime v of E(G,X) that divides p):

(a) We have (G0, X0) = (Gad, Xad), Gder is simply connected, and there exists
a Z-lattice L of W such that the property (*) holds.

(b) Let y : Spec(F) → N be a basic point (i.e., a point such that all Newton
polygon slopes of (Lie(G)[ 1p ], ϕ) are 0). If (G0, X0) is of Bn, Cn, or DR

n type, then

the abelian variety A is supersingular and thus the classical Tate conjecture holds
for A; moreover the Conjecture 2 holds for y : Spec(F) → N.
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Modularity of 2-adic Galois representation

Jean-Pierre Wintenberger

(joint work with Chandrashekhar Khare)

In this joint work with Chandrashekhar Khare ([4]), We extend Wiles Taylor-
Wiles modularity theorem to 2-adic Galois representations. We rely on endhance-
ments of the method of Wiles Taylor-Wiles ([9],[8]) by Diamond ([1]) Fujiwara ([3])
and Kisin ([5]). As Dickinson, who proved some particular cases of our theorem
([2]), we use the whole adjoint Galois representation instead of the representation
in the matrices of trace 0.

Let us state our result. p = 2, ρ : GQ → GL2(Q2) a continuous odd Galois rep-
resentation. Let ρ be the reduction of ρ which is defined up to semisimplification.

One supposes that ρ(GQ) have non-solvable image (then it is isomorphic to
SL2(F2r ) for r ≥ 2).

One supposes that ρ is modular. Let us be more precise. Following Serre ([6]),
we define k(ρ) to be 2 if the restriction of ρ to the decomposition group D2 comes
from a finite flat group over Z2, and k(ρ) = 4 if not (then the restriction of ρ to D2

has up to unramified twist trivial semisimplified reduction and is “très ramifiée”).
Then ρ is the reduction of the Galois representation associated to a primitive form
g in S2(Γ1(N)) with k = 2 and 2 does not divide N if k(ρ) = 2 and 2 divides
exactly N if k(ρ) = 4 (that if ρ comes from a modular form then it comes from
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such a g is a particular case of the theorem that weak form of Serre’s conjecture
implies strong form).

One supposes that ρ is unramified outside a finite set of primes and the re-
striction of ρ to D2 is crystalline of Hodge-Tate weights (0, 1) if k(ρ) = 2 and
semistable of Hodge-Tate weights (0, 1) if k(ρ) = 4.

Then ρ is modular, meaning that there exists N ′ and a primitive form f in
S2(Γ1(N

′)) such that ρ is isomorphic to the Galois representation associated to f .
Here the 2 part of N ′ is the same as the one of N , and the prime to 2 part of N ′

is the prime to 2 part of the conductor of ρ.
For the proof we need to introduce a solvable totally real field F . We prove

that ρ|GF is modular, i.e. arises from an Hilbert modular form, or from a cuspidal
automorphic representation π of GL2(AF ) which at infinity is the discrete series
corresponding to parallel weight 2 Hilbert modular forms. Then, by Arthur-Clozel
solvable base change, we will know that ρ is modular.

With F , we gain in particular following advantages. First, we can suppose that
ρ|GF is unramified outside primes over 2 and primes in a finite set of primes Σ′

where at v ∈ Σ′, ρDv is semistable. We call Σ = Σ′ if k(ρ) = 2 and Σ = Σ′ ∪ V2

if k(ρ) = 4 (V2 is the set of primes of F above 2). Furthermore, we have an
automorphic representation π′ such that ρ|GF arises from π′, and πv is unramified

outside Σ and is unramified twist of Steinberg at v ∈ Σ. We also have that π′

comes from an automorphic representation π′′ of (D⊗FAF )∗ by Jacquet-Langlands
correspondence, whereD is the quaternion algebra of center F and ramified exactly
at infinity and primes in Σ.

Let O be the ring of integers of a finite extension of Q2 that is supposed to be
big enough. Let ψ be the character det(ρ)χ−1

2 where χ2 is the 2-adic cyclotomic

character. We also call ψ the character of (AfF )∗/F ∗ → O∗ associated to the totally
even Galois character ψ. For U =

∏
Uv an open subgroup of the finite adeles

(D ⊗F AfF )∗, we define the space of modular forms Sψ(U,O) with coefficients in
O with central character ψ. It has the following combinatorial description : it

is the O-module of functions g 7→ f(g) of D∗\(D ⊗F AfF )∗ to O(γ) such that

f(gu) = u−1f(g) for u ∈ U , f(gz) = ψ(z)f(g) for z ∈ (AfF )∗, γ being a character

of U(AfF )∗ coming from the twists occuring in the twists of Steinberg.
We take Uv to be GL2(Ov) if v /∈ Σ and Uv to be the multiplicative group

of the completion Dv of D at v ∈ Σ. We call Tψ(U) the Hecke algebra acting
on Sψ(U,O) generated by the Hecke operators Tv and Sv at primes v /∈ Σ ∪ V2.
The automorphic form π′′ defines an eigenform f hence a morphism Tψ(U) → O

sending Tv to the eigenvalue of Tv on f and Sv to ψ(ωv), where ωv is a uniformizer
of Fv. By reduction it defines a maximal ideal m of Tψ(U). Let Tψ(U)m be the
completion. By Deligne and Carayol, we get a Galois representation we call ρT :
GF → GL2(Tψ(U)m) that lifts ρ. It satisfies the following condition : det(ρT ) =
ψχ2, it is unramified outside Σ∪V2, it is finite if v ∈ V2 if k(ρ) = 2 and semistable

if k(ρ) = 4, it is semistable at v ∈ Σ. Let S = V∞∪V2,∪Σ. We call R
ψ

S the CNLO-
algebra whose formal spectrum classifies the deformations of ρ that satisfies these
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conditions. By a CNLO-algebra we mean a Complete Noetherian Local O-algebra
with residue field the coefficient field F of ρ.

We get a surjective map R
ψ

S → Tψ(U)m. To get our theorem, we prove that this

map is bijective after inverting 2, or that R
ψ

S [1/2] acts faithfully on Sψ(U,O)m[1/2]
For that, we use the idea of Kisin to consider framed deformations of ρ : a

framed deformation with values in a CNLO algebra A is the data of a deformation
with values in A and of a basis of the underlying space, or equivalently a morphism
with values in GL2(A) that lifts ρ. A deformation is a lift modulo conjugation by
the completion of GL2 at the identity of the special fiber. We indicate by a �

when we consider framed deformations.
We use the technique of auxiliary primes. For each integer n ≥ n0, we have a

finite set of primes Qn of primes of F : we impose to Qn to be disjoint of S, that
v ∈ Qn to be such that ρ(Frobv) has distinct eigenvalues and N(v) ≡ 1mod 2n.
We consider modular forms space Sψ(UQn ,O) where we allow level at Qn. It is
defined by the open subgroup UQ of U , where (UQ)v = (U)v for v /∈ Qn and for
v ∈ Qn

(UQ)v = {g ∈ GL2(OFv ) : g =

(
a b
0 d

)
(πv), ad

−1 → 1 ∈ ∆v},

with ∆v = ∆′
v/2

a∆′
v for an integer a independent of n and ∆′

v the biggest 2
quotient of the multiplicative group k∗v of the residue field. We have corresponding
Tψ(UQn) Hecke algebra. We can choose a maximal ideal m of Tψ(UQn) and consider
the completion Sψ(UQn ,O)m of the space of modular forms. Sψ(UQn ,O) has a
∆Qn =

∏
v∈Qn

∆v by Diamond operators. We have the following control theorem :

Sψ(UQn ,O)m is free over O[∆Qn ]-module and its coinvariants by ∆Qn is Sψ(U,O)m.
Its proof relies in particular on the combinatorial description of the spaces of
modular forms.

We have the framed deformation ring R
�,ψ

S∪Qn where we impose the same con-
dition as above outside Qn and no condition for v ∈ Qn. It has an action of ∆Qn

coming from the action of (tame) inertia at v ∈ Qn, with coinvariants R
�,ψ

S , and

a surjective map R
�,ψ

S → Tψ(UQn).

We consider R
�,ψ

S∪Qn as an algebra on R
�,loc,ψ

S that is ⊗̂v∈SR
�

v , where R
�

v is
ring of framed deformations of the restriction of ρ at the decomposition group Dv

that satisfies the current conditions for v ∈ S. We know from the study of local

deformation rings that R
�,ψ

S∪Qn is a domain, flat over O of relative dimension 3|S|
and regular after inverting 2.

We have to control the number of generators ofR
�,ψ

S∪Qn as an algebra onR
�,loc,ψ

S .

By deformation theory, it is controled by the dimension h1
Lv

(S∪Qn, ad0(ρ)) of the

H1, Lv meaning that we consider c ∈ H1 such that the image cv by the localization
map in H1(Dv, ad0(ρ)) is in Lv. Here Lv is (0) if v ∈ S and H1(Dv, ad0(ρ)) for
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v ∈ Qn. The formula of Wiles for M = ad0(ρ) allows this control :

|H1
{Lv}

(S ∪ V,M)|

|H1
{L⊥

v }
(S ∪ V,M∗(1))|

=
|H0(GF ,M)|

|H0(GF ,M∗(1))|

∏

v∈S

|Lv|

|H0(Dv,M)|

∏

v∈V

|Lv|

|H0(Dv,M)|

where {L⊥
v } is the dual of Lv in Tate’s duality. For p 6= 2 one can finds Qn such

that h1
{L⊥

v }(S ∪ Qn, ad0(ρ)∗(1)) = 0, where |Qn| = h1
{L⊥

v }(S, ad0(ρ)∗(1)). This is

possible as for every irreducible subspace V ⊂ (ad0), there is a σ ∈ GF (µpn ) which

have eigenvalue not equal to 1 in (ad0) but has eigenvalue 1 on V (lemma 2.5. of
[7]). This last assertion is not true for p = 2. But, as Dickinson uses, for p = 2,
we can find a set Qn with |Qn| = h1(S, ad(ρ))− 2 such that H1

{L⊥
v }(S ∪Qn, ad(ρ))

has dimension 2 (it coincides with the image of H1(F (µ2n)/F,F)).
We come to the patching argument. We take a projective limit of quotients of

finite length of the R
�,ψ

S∪Qn and the modules Sψ(UQn ,O)m ⊗
R
ψ
S∪Qn

R
�,ψ

S∪Qn .

We obtain a ring R∞ and a module M∞ with action the Iwasawa algebra
O[[y1, . . . , yh]] with h = |Qn| and control theorem saying that M∞ is finite free over

the Iwasawa algebra with coinvariants Sψ(U,O)m ⊗
R
ψ
S
R

�,ψ

S . To get the theorem,

we prove that M∞ is a faithful R∞-module that is finite free after inverting 2.
To prove the first statement, we need to prove that the relative dimension of

R∞ is ≤ to h + 4|S| − 1 (4|S| − 1 comes from the framing). For that we also
to consider a patch R′

∞ of deformation rings for representations which satisfies
current properties at v ∈ S and that are unramified outside S ∪ Qn (we do not
impose determinant only at places in S). Wiles formula allows to control the
number of generators of R′

∞. At the end, one has to prove the codimension of
Specf(R∞) in Specf(R′

∞) is t := h1
S−split(Qn,F) (split at S unramified outside

Qn). One sees applying Wiles formula for M = F that t = 2 − |S| + |Qn|. One
proves that one can impose to Qn to be such that the Galois group Gn of the
maximal abelian extension of F which is of order a power of 2 which is split at S
and unramified outsideQn has a quotientG′

n isomorphic to (Z/2n−2Z)t. The proof
uses the Wiles formula for M = Z/2nZ and the construction of an explicit class
in H1

Qn−split(S, µ2n) which has order divisible by 2n−1. The action of twists by

characters of G′
n patches to an action of the formal split torus T of dimension t on

Specf(R′
∞). This action is free (that follows from that ρ has non solvable image).

One proves that Specf(R∞) is a torsor of group (µ2)
t on Specf(Rinv

∞ ), where Rinv
∞

is the ring of invariants of R′
∞ under the action of the torus T . In particular R∞

is finite over Rinv
∞ and this gives the needed inequality of dimensions. Then an

easy argument gives that R∞ acts faithfully on M∞.
The proof of the freeness of the module after inverting 2 one uses the usual

argument of Daimond and Fujiwara which uses Auslander-Buchsbaum theorem.
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